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Abstract

A formula of multidimensional logarithmic residue is proved for holomorphic
maps with zeroes on the boundary of a bounded domain in C".
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Let D be a bounded domain in C* with piecewise smooth boundary 90D
and let w = 1(z) be a holomorphic map from D to C*, having a finite set Ey
of zeroes on D. We recall the definition of the multiplicity of zero of a map 1
(see, for example, [1, §2]). Let B(z,R) = {C : |¢ — z| < R} stand for the ball
with center z and radius R > 0, and S(z, R) = 0B(z, R). We assume that a
is a zero of ¢ and B(a, R) does not contain other zeroes of ¢. Then there is
a ball B(0,r) such that for almost all points ¢ € B(0,7) the map w = ¢ — ¢
has the same number of zeroes in B(a, R). This number is referred to as the
multiplicity of zero a and it is denoted ju,.

For a point z € E,,N0D we consider a ball B(z, R) which does not contain
other zeroes of 1), and we denote by 7,(2) the expression

ry(2) = lim L2"7HS(0,r) Ny (B(z, R) N D)]
v r—40 L£27=18(0, )] ’

Here £2"~1 is the (2n — 1)-Lebesgue measure.

In other words, we consider the solid angle of the tangent cone for the
image ¢(B(z, R) N D) at the point 0 rather than that for the domain D at
the point z. (For a definition of the tangent cone we refer the reader to [6,
§3.1.21)).

For z € B, and for a sufficiently small neighborhood V, of z, we have
By(z,r) ={C €V, - |¥(Q)| < r}. Moreover, Sy(z,r) ={¢C eV, : [¢({)] =r}
is a relatively compact smooth (2n — 1)-cycle in V, (for almost all sufficiently
small 7 > 0) by the Sard theorem.

We define the principal value v.p. ¥ of the integral of any measurable
function ¢ over a neighborhood S C 0D of the point z € £, as follows:

vp [ elQde O = lim [ el0de o).

r—+0
S S\ By (z,r)

This definition is different from of usual definition of the Cauchy principal
value v.p. , namely, we remove the “curved” ball By(z,r) rather than the
usual ball with center at z.

We introduce the kernel U(t)(¢)) used in the multidimensional logarithmic
residue formula (see, for example, [1, §3]). It is obtained from the Bochner-
Martinelli kernel U(w) by substitution w = t(z). Recall that

k=1

where dwlk] = dwi A.. . ANdwWg_1 AdwWg 1 A. .. ANdw,, and dw = dw; A.. N duwy,.
The kernel U(¢(¢)) is a closed differential form of type (n,n—1) on D with

singularities at the points a € Ey. The explicit form of this kernel is

(n—1)! i (=1 (Q)dv (Q) [k] A di(C)
(2mi)" D) '

U((C) =
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We formulate our main result.

Theorem 1 If a function F satisfies a Holder condition of exponent v > 0 in
D (i.e., F € C"(D) ) and F is holomorphic in D then

v [FOUOED = Y @+ 3 ml@uk ().

oD a€EyND a€EyNOD

This formula presents the multidimensional logarithmic residue in the case
of singularities on the boundary of D. If ¢) does not have any zero on the
boundary, it is the usual logarithmic residue formula of [1, §3]. For the case of
simple zeroes a € 0D it recovers the theorem of [5]. Moreover, the above the-
orem generalizes Theorem 20.7 from [2], which imposes additional conditions
on the boundary 0D and the map 1.

We first prove Theorem 1 for the principal value v.p. ¥, and then, using
Proposition 1, we get it for usual Cauchy principal value. For the proof, we
use Theorem 3.2.5 of [6]. We formulate it:

Let ¢ : R™ — R" be a Lipschitz map and m < n. Then

[ o)t acm@ = [ swN@ay e, o

A

where the set A is L™-measurable, g : R* — R and N(¢|A,y) < oo for H™-
almost all y.

Here J,,¢(z) is the m-dimensional Jacobian of the map v, £™ is the m-
dimensional Lebesgue measure, H™ is the m-dimensional Hausdorff measure,
and N(¢|A,y) is the multiplicity function of the map 1, i.e. the number of
preimages ¢! (y) lying in A.

Proor. Consider the domain

D,=D\ |J Bylar)

aEEw noD

By the multidimensional logarithmic residue formula (see [1, §3]), we have

[ Fovwo) = X k)

oD, aEEwﬂD

Moreover,
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whence
/ FOUW() = / FOU@E) - / FIOUW(Q)).
aD, dD\Uq By (a,r) * Sy(a;)ND

Consider the integral

| rovwo)

Sy (a,r)ND
- / (F(C) — F@)U((C)) + F(a) / UWE). @)
Sy (a,r)ND Sy (a,r)ND

Further we use the Lojasiewicz inequality (see [4, Ch. 4]) which asserts that

¢ —al < Clp(Q)]" (3)

for some positive numbers a and C' and points ( of a sufficiently small neigh-
borhood of a.

Show that the first integral in the formula (2) tends to zero as r — +0.
The Hoélder condition for the function F, equality (1) and inequality (3) imply

[ 1F© — @l gk n

MGIR
Sy (a,r)ND
<G / ()P K] A dy
Sy (a,r)ND

< Cipta / |2 G2 ()
5(0,r)N(D)
e w2 L2 (),
S(0,1)
Since the map 1) is smooth, we have H?*"71(¢(S)) < C3L*71(S), and so the

last integral tends obviously to zero as r — +0.
For the second integral of (2) we use the equality (1) to get

B [ V@) = e [ U@
Sy (a,r)ND S(0,r)Mp(D)
= NaTzlf(a)7

because

L2 YS(0,7) N (D)
/) Utw) = = Fi50,1)]
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by Lemma 2.1 of [2]. O

Let now ¢ = (¢1,...,%,) be a holomorphic map of C* with entire com-
ponents, 1) having a unique zero at the origin, i.e. 1(0) = 0 and ¢ (z) # 0 for
z # 0. The multiplicity of this zero of ¢ we denote by pu.

We define integrals

F*(z), z € D,

F~(2), 2¢ D. (4)

/ FO U~ 2) :{

oD,

Corollary 1 Suppose f € CY(0D), v > 0. Then the integrals F* extend
continuously to D and F*(z) — F~(z) = uf(z) on 0D.

PROOF. Let us extend f to a function in a neighborhood V' of the boundary
of D, satisfying a Holder condition of exponent vy. Prove that the function

/ (F(Q) = FENUWEC ~ 2))

oD,

is continuous in V.
To do this it is necessary to show that the integrals of the form

UVr(( — 2)

(e vk Ay

/ (FO) — (=)

S¢

converge absolutely in some neighborhood S of the point z on the surface 0D.
The inequality (3), if applied to ¥(¢ — 2), and the Holder continuity of f yield

1f(Q) = fR < el =2 < aly(C — =)

for the points ¢ of a sufficiently small neighborhood of z.
The equality (1) implies in the same way as in the proof of Theorem 1 that

V(¢ — 2)

[ 1€ = FEL S vl 1 s

(C = 2)[™ 2" |d k] A dyf]

/\
O
—
ASS

/ |w|'ya+1f2n dHanl(w)
¥(S)
62/|w|7a+1—2n d£2n—1(w)7

S

IN
AN
=

N
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and the last integral is obviously convergent.
The equality
p, z€D,
U —2)) = —
[vee-2) {07 o
oD
completes the proof. O

Proposition 1 For any function f € C7(0D), v > 0, the equality

vp. ¥ / FOUWE) = vp. / FOU()

holds.

This proposition generalizes the assertion of [5] on the equality of principal
values for the case of simple zeroes of 1.
PROOF. As it is shown in Corollary 1, the integral

/ (F(Q) = FEDUW())

S

absolutely converges, therefore the principal values are equal for the given
integral.
It remains to prove that

We transform the integral on the left-hand side of this equality by the
logarithmic residue formula. Namely,

S\By (z,r)
- v+ [ v+ [ uwo)
d(DNB(z,R)\By(z,r)) DNS(z,R) DNSy(z,r)
- U((Q)) + U((<))
DNS(z,R) DNSy(z,r)

for r small enough, where S = 0DN B(z, R). Therefore, we have to prove that

fim [ @) = tm [ W)

r—+0
DNSy(z,r) DnS(z,r)



By Theorem 3.2.5 of [6] (equality (1)), we get

UW(Q) = pe / U(w),
DNSy (2,r)
[ vwo) = w [ v,
DS (z,r)

Hence, one needs to show that

i, [ Vw=tm [ )

P(D)NS(0,r) P(DNS(2,r))

S. Myslivets

In the latter equality one can replace (D) by the tangent cone to (D)

at the point 0. We denote it by II. We show that

[ vw= [ v

IINS(0,r1) Ny (S(z,r2))

Consider the domain G bounded by the hypersurfaces IT N S(0,7), II N
¥ (S(z,rs)) and a part of the conic hypersurface M NIl (r; and 75 are chosen so
that the ball B(0, ;) contains the hypersurface (S (z,72))). By the Bochner-

Martinelli formula,

oG
whence
[ vw- [ vw-[vw
IINS(0,r1) Ny (S(z,r2)) M
We show that
/ Uw) =0
M

To this end, we pass from complex coordinates w to real coordinates w; =

& +inyj, 7 =1,...,n. Then (see [5] or [2, §20])

_ 1) 2n
Ret(w) = VS0 St
k=1
ImU(w) = —(n4;n2)!d (Z W%df[k’,n—i- k]) , n>1,
k=1
and for n =1 )
ImU(w) = _dlufg] :

47
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The restriction of the differential form ReU(w) to the conic surface M
(at the smooth points of M) is equal to 0. Indeed, let M be the zero set of
the homogeneous real-valued function ¢, i.e. M = {£ : p(§) = 0}. Then
at the smooth points of ]\g the restriction of the form dé[k] to M is equal to

¥

0, |grad ¢|
normal vector, and do is the area element of M. Then

(—1)¥tydo, where v = are the components of the unit outward

2n f 2n a(p 1
_1)k-1 kdfk = v L (o)
2V | = 3G e
1
= lp———do
? Jerad gl[€ "

=0

by the Euler formula for homogeneous functions, [ being the homogeneity
degree of ). Clearly, the (2n — 1)-dimensional measure of the singular set is
equal to 0.

The integration over M shall go as follows. We consider real lines on M of
the form

Lb:{fi fj:bjt,jzl,...,2n,t€R},

where |b] = 1. For fixed b € S(0,1), the variable ¢ varies from some number
r9(b) to r1. The function re(b) is measurable. Thus M is fibering over the
cycle 01T N S(0,1).

In this variable it is not difficult to show

dt .
ImU(w) = ¢,d (7 A kzj +bidb[j, k,n + k])

dt
= A ;db[k,n+ k],

since the form containing the product of more than (2n — 2) differentials db;
vanishes on S N OIl. Then

/ImU(w):cn / ln%&)zﬂ:db[k,nij].

M 5(0,1)NAII k=1

For almost all points S N O1l, the variables by, b, 1 are functions of other



10 S. Myslivets

variables b;, j # k,n + k. Therefore, the last integral takes the form

> @by, ... K], [ K] ba )bk, o+ K]
s(,1)nam k=1
= d (Zln@k(bl,... K] k] ,b2n)db[k~,n+k]>
S(0,1)NII k=1
= 0

by the Stokes formula. The proof of Theorem 1 is complete. O
Corollary 1 allows one to strengthen Theorem 1 of [3], which has been
proved for smooth functions.

Corollary 2 Let D be a bounded domain in C* with connected smooth bound-
ary. Given a function f € C7(0D), if the integral F'~(z) vanishes outside of
D then f extends holomorphically to D.

PROOF completely repeats the proof of Theorem 1 of [3] with Corollary 1
thereof replaced by Corollary 1 of the present paper.
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