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Introduction

In the present paper we construct the theory of elliptic operators acting in subspaces
determined by pseudodi�erential projections�

The classical elliptic theory deals with elliptic operators in Sobolev spaces� The main
results are the Fredholm property of elliptic operators �on a closed manifold or a manifold
with boundary� and an index formula for such problems� Unfortunately� for a number
of applications the theory of elliptic operators in Sobolev spaces is not su�cient� Let
us consider an example� In the theory of boundary value problems� an elliptic operator
may not admit well�posed �Fredholm� boundary value problems in the Sobolev spaces� In
particular� this is the case for some fundamental geometric operators �Dirac and Hirze�
bruch operators� etc��� Indeed� Atiyah and Bott ��� pointed out that an operator admits
a Fredholm boundary value problem if and only if its principal symbol satis�es a cer�
tain condition� The above�mentioned geometric operators violate this condition� Thus�
the following question arises� is it possible to construct an elliptic theory for operators
violating the Atiyah�Bott condition� The answer is �yes�� Namely� it turns out that
an arbitrary elliptic operator admits a well�posed boundary value problem in Sobolev
subspaces� rather than spaces� This is due to the absence of the Fredholm property in
Sobolev spaces for non�Atiyah�Bott operators �the cokernel is in�nite�dimensional�� If
we take the boundary values in a subspace of the Sobolev space� then the corresponding
problem becomes well�posed ����� �

� �see also �
��� Boundary value problems for gen�
eral elliptic pseudodi�erential operators were constructed in a recent paper �
�� in the
framework of Boutet de Monvel�type algebra� This observation naturally leads to the
construction of the theory of elliptic operators in subspaces of Sobolev spaces�

It turns out that such class of subspaces is related to pseudodi�erential projections�
and it is possible to prove the �niteness theorem on a compact manifold with or without
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boundary and carry out the index computation� We point out that to compute the index
of an elliptic operator in subspaces� it is necessary to consider not only its principal
symbol but also the subspaces where the operator acts� Earlier� the authors introduced
a numerical functional de�ned on the set of subspaces subject to the so�called parity
conditions for the sake of index computation� This functional takes dyadic values� We
proved a simple and elegant index formula �
�� 
�� in terms of this functional� The
functional is closely related to the ��invariant �
� of elliptic operators� Namely� under
the parity conditions� the ��invariant of an operator A coincides with the value of the
functional on the nonnegative spectral subspace of this operator� This equality and the
above�mentioned index formula allowed solving an important problem� posed by P�Gilkey�
of computing the fractional part of the ��invariant in topological terms �
��� The solution
to this problem is of theoretical interest and also has important applications in di�erent
areas of algebraic topology� for example� in the theory of pin bordisms�

The paper is organized as follows� In the �rst section� we discuss subspaces de�ned
by pseudodi�erential projections� introduce symbols of subspaces and present examples�
In the second section� we consider operators in such subspaces and introduce the notion
of ellipticity� Here we prove the Fredholm property for elliptic operators and discuss
properties of the index of elliptic operators in subspaces� Even and odd subspaces are
introduced in Section 	� We show that these are related to spectral subspaces of di�erential
self�adjoint operators of even or odd order� respectively� The dimension functional is
de�ned for even and odd subspaces� The index theorem for elliptic operators in subspaces
is obtained in Section �� We conclude the paper with an appendix� where the relevant
computations in K�theory are given�

The authors are grateful to Vladimir Nazaikinskii for advice and numerous fruitful
discussions� which were of great use in the preparation of the paper�

� Subspaces� determined by pseudodi�erential pro�

jections

Let M be a smooth manifold and E a vector bundle on M �

De�nition � A linear subspace bL � C� �M�E� is called pseudodi�erential if there is a
pseudodi�erential projection

P � C� �M�E� � C� �M�E�

of order zero that de�nes this subspace

bL � ImP�

De�nition � The symbol of a pseudodi�erential subspace is the subbundle L � ��E�
� � S�M �M� determined by the projection P according to the formula

L � Im� �P � � ��E � Vect �S�M� �

	



The symbol of a subspace is a smooth vector bundle independent of the choice of projection
P on bL�
Proposition � An arbitrary smooth subbundle L � ��E is the symbol for some subspacebL � C� �M�E��

Proof� We prove the proposition by constructing a pseudodi�erential projection with the
principal symbol projecting on the bundle L�

Denote by � �P � the orthogonal projection onto the subbundle L with respect to a
metric on E� Let P� be a self�adjoint pseudodi�erential operator of order zero with the
principal symbol � �P � � The desired projection P can be de�ned via the Cauchy�type
integral

P �
i

��

Z
j���j��

�P� � �I��� d�� �
�

It is assumed that the number � in �
� is chosen such that the circle j�� 
j � �� � 	 � 	 

contains no eigenvalues of the operator P�� This proves the proposition�

Example � Consider the Hardy space

bL � C��S��

of boundary values of functions holomorphic in the unit disk

D � C� 
D � S��

A Fourier series calculation shows that the Hardy space coincides with the spectral sub�
space of the elliptic self�adjoint operator A � �id�d� on the circle S�� corresponding to
nonnegative eigenvalues� The projection on this subspace is given by the formula

Pf �z� �



��i
lim

r����

Z
f �
� d



 � rz
�

Its principal symbol equals �e�g�� see �
��� Chapter 

�

� �P � ��� �� �

�

� � � 
�
�� � � �
�

Hence� the symbol of the Hardy space is equal to

L��� � Im� �P � ��� �� �

�
C� � � 
�
�� � � �
�

The Hardy space is the spectral subspace of a self�adjoint operator� We show in the next
proposition that in the general case the spectral subspaces are pseudodi�erential�

�



Proposition � Let A be an elliptic self�adjoint operator of nonnegative order on the
manifold M� Then the subspace bL��A�� generated by the eigenvectors of A� corresponding
to nonnegative eigenvalues� is pseudodi�erential and its symbol L� �A� is equal to the
nonnegative spectral subbundle� corresponding to the principal symbol � �A� �

L� �A� � L� �� �A�� �

Proof � It can be assumed that A is invertible �otherwise we replace it by A � �� for
� su�ciently small� the spectral subspace remains the same�� In this case the spectral
projection P� onto bL��A� has the form

P� �
jAj�A

� jAj � jAj �
p
A��

By virtue of the work of Seeley ��
�� the operator jAj is pseudodi�erential� Consequently�
the projection P� is pseudodi�erential with the principal symbol equal to

� �P�� �
j� �A�j� � �A�

� j� �A�j �

i�e� � �P�� projects on the nonnegative spectral subbundle of the principal symbol of A�
as desired�

Proposition � The orthogonal complement of a pseudodi�erential subspace is also pseu�
dodi�erential�

Proof � Denote by P an arbitrary pseudodi�erential projection on bL� Then the following
equality holds bL � bL���PP

� � Id��

To conclude the proof� it remains to apply Proposition � to the self�adjoint operator
�PP � � Id�

We refer the reader to the paper ���� for other methods of de�ning pseudodi�erential
subspaces�

� Elliptic operators in subspaces

Consider two pseudodi�erential subspaces bL��� � C� �M�E���� and a pseudodi�erential
operator

D � C� �M�E�� �� C� �M�E�� �

of order m� acting in the ambient spaces� Suppose also that this operator respects the
subspaces�

D bL� � bL�� ���

�In this paper the authors call pseudodi	erential subspaces 
admissible
�

�



De�nition � The restriction of D

D � bL� �� bL� �	�

is called operator of order m� acting in subspaces�

The restriction of the principal symbol � �D� to the subbundle L� de�nes the homomor�
phism

� �D� � L� �� L� ���

of bundles over S�M � Indeed� in terms of the projections P��� on bL��� condition ��� takes
the form P�DP� � DP�� A similar equality for the principal symbols yields ����

De�nition � Homomorphism ��� is called the principal symbol of operator in subspaces�

Proposition � An arbitrary bundle homomorphism ��� is the principal symbol for some
operator in subspaces�

Proof � Consider an arbitrary pseudodi�erential operator

D� � C
��M�E��� C��M�E��

with the principal symbol � �D�� equal to � �D� on L � ��E� and arbitrary on the
complementary subbundle� The operator

D � P�D�� for bL� � ImP�

is the desired pseudodi�erential operator in subspaces bL�� bL� with symbol ����

De�nition 	 An operator in subspaces is called elliptic� if its symbol ��� is a vector
bundle isomorphism�

Theorem � Elliptic operator D of order m in subspaces

D � Hs �M�E�� � bL� �� bL� � Hs�m �M�E�� ���

has the Fredholm property as an operator acting in the closures of the subspaces bL��� �
C��M�E���� with respect to the Sobolev norm�

Proof �cf� ��� ���� Let us construct the inverse �up to compact operators� of the initial
���� To this end� consider the symbol

� �D��� � L� �� L��

By virtue of Proposition �� we construct an operator

D� � bL� �� bL�






with this symbol � �D�� � � �D���� Thus� we obtain

D�D � 
 �K� � bL� �� bL�� DD� � 
 �K� � bL� �� bL��

where K��� denote compact operators� Therefore� D� is a regularizer of D� Hence� the
operator D has the Fredholm property� This completes the proof of the theorem�

The homotopy invariance of the index of elliptic operators in subspaces is valid for the
homotopies of the operator D as well as the homotopies of the subspaces bL���� where the
operator acts�

Proposition 	 Let
Dt � ImPt � ImQt

be a smooth family of elliptic operators in subspaces �i�e� a family of operators fDtg and
families of projections fPtg � fQtg which are smooth in the operator norm�� Then the
index of operators Dt remains constant

ind �Dt� ImPt� ImQt� � Const�

Proof � The proof is based on a reduction of the family Dt with varying subspaces to a
family in �xed subspaces� We start with the following Lemma�

Lemma � The projections Pt in a smooth one�parameter family of projections fPtg are
equivalent� More precisely� there is a family of invertible operators fUtg such that

Pt � UtP�U
��
t �

Proof of Lemma 
� The family Ut is de�ned as the solution of the Cauchy problem

�

Ut�
h �

Pt� Pt

i
Ut� U� � Id�

The desired property of the family is veri�ed directly�

Proof of Proposition �� Denote by Ut and Vt the families of invertibles corresponding to
the families of projection Pt and Qt� In this way

Dt � ImPt � ImQt

is equivalent to the operator

V ��
t DtUt � ImP� � ImQ�

in the subspaces independent of the parameter t� The usual homotopy invariance of the
index shows that the index of operators V ��

t DtUt remains the same� Consequently� the
index of Dt is also constant�

Remark � The index of elliptic operators in subspaces is not determined by the principal
symbol�

�



Indeed� consider a pair of �nite�dimensional vector spaces bL��� � C� �M�E���� and an
arbitrary operator D � bL� � bL�� The principal symbol of D is zero

��E� � �� � � ��E��

while the index is
ind

�
D� bL�� bL�

�
� dim bL� � dim bL�

and it can take arbitrary values�

� Subspaces with parity conditions


� On the cotangent bundle T �M of the manifold M � consider the involution

� � T �M �� T �M� � �x� �� � �x���� �
De�nition � A subspace bL � C� �M�E� is called even �odd� with respect to the invo�
lution �� if its principal symbol L is invariant �antiinvariant� under the involution�

L � ��L� �L � ��L � ��E�� �
�

Here both equalities are understood as coincidences of subbundles in the ambient ��E�
Any bundle L satisfying �
� is called even �odd� bundle�

Proposition � Let A be a di�erential operator satisfying conditions of Proposition ��
Then the spectral subspace bL��A� is even or odd according to the parity of order of A�

Proof � The principal symbol of a di�erential operator satis�es the equality

��� �A� � ��
�ordA � �A� �

Hence� by Proposition � we obtain the desired�

L� �A� � ��L� �A� � or L� �A�� ��L� �A� � ��E�

Example � The Hardy space from Example 
 is odd�

Example � The space of closed di�erential forms

bL � kerd� d � �k �M�� �k�� �M�

as well as the space of exact forms

bL� � Imd� d � �k�� �M� � �k �M�

on a compact closed manifold are even subspaces with coinciding principal symbols� In�
deed� bL is the spectral subspace of an elliptic self�adjoint operator of the second order

d� � �d� bL � bL� �d� � �d� �

�



�where � is the adjoint of the exterior di�erential d�� while the subspace bL� di�ers from bL
by a �nite�dimensional subspace bL � bL� � �kerd � ker ��

by de Rham�s theorem�

Ranks of even bundles can take arbitrary values� However� the rank of an odd bundle
can not be arbitrary�

Remark � The dimension of an odd bundle L � ��E on a manifold M of dimension n
satis�es the relation�

n� 
 � �k
n� 
 � �k � 


�
� dimL is a multiple of �k��� ���

Indeed� denote by
pL � ��E � ��E

the projection on L along the complementary subbundle ��L� The matrix�valued function

�pL � 


is an odd function on the sphere Sn��

�pL ����� 
 � 
� �pL ��� �

The conclusion ��� follows from the paper �
��� where it is shown that an odd function on
the sphere with values in invertible matrices satis�es ����

Denote by dEven �M� � dOdd �M�� abelian semigroups of even �odd� subspaces with
respect to direct sums�

De�nition � Two subspaces bL� and bL� are called stably homotopic� if direct sumsbL� � bL� and bL� � bL� are homotopic for some pseudodi�erential subspace bL��

Consider the semigroups of classes of stably homotopic even or odd subspaces� The
corresponding Grothendieck groups are denoted by K

� dEven �M�
�
and K

� dOdd �M�
�
�

�� For even and odd subspaces� we de�ne a functional� which is a generalization of
dimension for �nite�dimensional vector spaces� To this end� we de�ne homomorphisms

Z
i� K

� dEven �M�
�
� Z

i� K
� dOdd �M�

�
� ���

The former maps a natural number n to a �nite�dimensional vector space of the same
dimension �this subspace is even�� For n negative� we put i �n� � �i ��n� �

We de�ne i in the case of odd subspaces by the formula

i �n� �
hbL� n

i
�
hbLi � ���

where bL � C� �M�E� is an arbitrary odd subspace� while bL�n � C� �M�E� is the sum
of bL and an n�dimensional subspace in its complement� The di�erence ��� is independent
of the choice of bL�

�



De�nition 
 Any additive functional

d � K
� dEven �M�

�
or K

� dOdd �M�
�
�� R�

of pseudodi�erential subspaces is called dimension functional� if it satis�es the condition

d �i �n�� � n� �
��

For even subspaces dEven �Modd
�
on odd�dimensional manifolds and odd subspacesdOdd �M ev� on even�dimensional manifolds the following theorem was proved in �
�� 
���

Theorem � There is a unique dimension functional

d � K
� dEven�Modd

��
� R�

d � K
� dOdd �M ev�

�
�� R�

which satis	es the complement property

d
�bL�� d

�bL�� � �� �

�

Here bL� denotes the orthogonal complement of bL�
Proof �

A� Let us �rst prove the theorem for even subspaces�
The symbol of an even subspace bL is a vector bundle on the cosphere space S�M �

This bundle is invariant under the involution �� Hence� the following mapping is de�ned

K
� dEven �Modd

��
j�� K �P �M� �hbLi 	� �L� �

�
��

here P �M denotes the projectivization S�M�� of the cosphere bundle with respect to the
involution �� The following proposition is the main ingredient of the proof�

Proposition � There is an exact sequence of groups

� �� Z
i�� K

� dEven �Modd
��

j�� K �P �M� �� �� �
	�

Proof of Proposition ��

� The mapping j is epimorphic� since an arbitrary vector bundle � � Vect �P �M� can

be realized as an even subbundle

��� � CN � Vect �S�M� � � � S�M � P �M�

Therefore� there is an even subspace bL with symbol L� Consequently�

j
hbLi � ��� �


�



�� Now we prove the exactness of the sequence in the second term� ker j � Im i�
Suppose that

j
�hbLi� �C� �M�F ��

�
� � �
��

for an even subspace bL � C� �M�E�� Let us show that the subspace bL is homotopic to
the space of sections C� �M�F �� up to a �nite�dimensional defect�

Condition �
�� yields a vector bundle isomorphism

L
��� ��F� � � S�M �M�

which is even with respect to the cotangent variables � �x���� � � �x� ��� Consider an
elliptic operator in �sub�spaces

bL b��� C� �M�F � �

We may assume the invertibility of b�� Otherwise� we can modify bL by a �nite�dimensional
subspace� Let us de�ne the homotopy connecting

bL � ImP � C� �M�E � F � to C� �M�F � � ImPF � C� �M�E � F � �

by virtue of the homotopy of projections

P� � C� �M�E � F �� C� �M�E � F � �

P� � P cos� �� PF sin� �� cos� sin�
�
P b���PF � PF b�P� �

The subspaces bL� � ImP� rotate during the homotopy from bL� � bL towards bL�	� �
C� �M�F � with the help of the isomorphism b�� This establishes the exactness of the
sequence in the second term�

	� We verify� �nally� that the mapping

i � Z �� K
� dEven�Modd

��
on an odd�dimensional manifold is injective� Consider the converse i �n� � � for an n � ��

By the de�nition of the Grothendieck group K
� dEven �Modd

��
� it follows that for some

even subspace bL there is a homotopy of even subspaces

bL and bL� n�

where n denotes an n�dimensional subspace in the complement of bL� Consider the corre�
sponding homotopy of orthogonal projections Pt

ImP� � bL� ImP� � bL� n�

By virtue of Lemma 
� the family of projections de�nes the family of invertibles Ut

Pt � UtP�U
��
t � �
��







The principal symbols of Ut are even� since this property is valid for the projections Pt�
Consider the following elliptic operator in subspaces

P� � ImP� �� ImP��

Its index is� obviously� �n� On the other hand� substituting �
�� in the last formula� we
obtain an equivalent elliptic endomorphism

P�U
��
� � ImP� �� ImP��

This operator is analogous to generalized Toeplitz operators �e�g� see ����� The index
computation for endomorphisms in subspaces reduces to the index computation of the
usual elliptic operators by the algebraic formula

ind
�
P�U

��
� � ImP�� ImP�

�
� ind

�
P�U

��
� P� � �
 � P��

�
�

However� the operator P�U
��
� P� � �
� P�� has index zero� since it is de�ned on an odd�

dimensional manifold and its principal symbol is even� Thus� we obtain the desired

n � ind �P� � ImP� �� ImP�� � ind
�
P�U

��
� P� � �
� P��

�
� ��

This completes the proof of Proposition ��
The complement property �

� implies that the dimension functional is zero on the

space of vector bundle sections

d �C� �M�E�� � ��

The groups K
� dEven �Modd

��
�K �P �M� � contain the subgroups generated by vector bun�

dles�

K �M�
p��� K �P �M� � K �M�


�� K
� dEven �Modd

��
�

p � P �M �M �E� 	� �C� �M�E�� �

These mappings are injective� the inverse of p� can be de�ned by means of a nonsingular
vector �eld on odd�dimensional M� Therefore� the following exact sequence is valid

� � Z
i� K

� dEven�Modd
��

�K �M�
j� K �P �M� �K �M� � � � �

�

The quotient K �P �M� �K �M� is a torsion group �see Appendix� where we show that the
orders of its elements are powers of two�� The tensor product of the sequence �

� with

the ring of dyadic numbers Z
h
�
�

i
gives an isomorphism

Z
�



�

�
i���

n
K
� dEven �Modd

��
�K �M�

o

 Z

�



�

�
� �
��

Hence� the dimension functional

d � K
� dEven �Modd

��
�� R�


�



satisfying the complement property� is unique and equal to the inverse mapping

d � �i
 
��� � K
� dEven�Modd

��
� Z

�



�

�
of the embedding i�

B� In the odd case we de�ne the mapping �

K
� dOdd �M ev�

�
j�� K �M� �hbLi � bL � C� �M�E� 	� �E� �

�
��

Proposition 
 The sequence

� �� Z
i�� K

� dOdd �M ev�
�

j�� K �M� �� � �
��

is exact modulo ��torsion� More precisely� ker i � �� while the groups ker j�Im i� cokerj �
K �M� �Im j consist of elements of orders equal to powers of two�

Proof of Proposition ��

� Let us verify that the cokernel of the mapping

j � K
� dOdd �M ev�

�
�� K �M�

is a ��torsion group� To this end� it su�ces to prove that an arbitrary bundle E �
Vect �M�� for a su�ciently large number N � has a decomposition into the sum of two odd
subspaces

C�
�
M� �NE

�
� bL� bL��

We start with the case of a trivial bundle�
We embed M into Euclidean space of some dimension N � The cotangent bundle

embeds into the trivial bundle
T �M � � � RN � ����

where � denotes the normal bundle to M in RN � Let Cl
�
CN

�
be the Cli�ord algebra

of the space CN �e�g�� see �
	��� Then CN as well as RN act on the space Cl
�
CN

�
�

dimCl
�
CN

�
� �N by Cli�ord multiplication� Moreover� embedding ���� de�nes the

vector bundle homomorphism

T �M
cl� End

�
Cl
�
CN

��
�

induced by the Cli�ord multiplication� Consider the covariant di�erential� � d
 
�N in
the trivial bundle with �bre Cl

�
CN

�
� Let us de�ne the self�adjoint Dirac�type operator

A � C�
�
M�Cl

�
CN

��
�� C�

�
M�T �M 
 Cl

�
CN

��
cl� C�

�
M�Cl

�
CN

��
�

�There is no direct analogy of the projectivization construction ���
 for odd symbols� For example�
the rank of an odd subbundle can not take arbitrary values� see Remark ��


	



Its nonnegative spectral subspace is odd and the desired decomposition holds

�NC� �M� � C�
�
M�Cl

�
CN

��
� bL� �A�� bL�� �A� �

A decomposition for an arbitrary bundle E � Vect�M� is obtained by means of a tensor
product with the decomposition just described�

�� We verify the exactness of the sequence in the second term� ker j � Im i�
Suppose that a pair of subspaces satis�es the equality

j
�hbL�

i
�
hbL�

i�
� ��

bL� � C� �M�E� � bL� � C� �M�F �� By de�nition of the mapping j this implies that E
and F are �stably� isomorphic

E 
� F�

We must prove that for some N odd subspaces �N bL��� � C� �M�E� are homotopic�
modulo a �nite�dimensional subspace� We construct the desired homotopy of the principal
symbols of the subspaces in the following two lemmata�

Lemma � The symbol L � ��E of an odd subspace on an even�dimensional manifold
admits a vector bundle isomorphism

�NL 
 �N��L

on S�M for some natural number N � Furthermore� there is an even isomorphism

� � �N��E � �N��E�

transforming one bundle into another
 this isomorphism can be chosen such that

��� � � � K� �P �M� �

Corollary � The symbols �NL� �N��L of odd subspaces are homotopic�

Indeed� the equality ��� � � yields a homotopy �t of the homomorphism � to unity�
Hence� the bundles are deformed according to the formula �t�NL �they remain odd during
the homotopy��
Proof of Lemma �� We show in the Appendix that the natural projection S�M �� P �M
of the cosphere bundle onto its projectivization induces an isomorphism in K�theory
�modulo ��torsion�

K� �P �M� � K� �S�M� �

Consequently� for some N we obtain
h
�NL

i
�
h
�N��L

i
� This proves the �rst part of the

lemma�
Consider an arbitrary isomorphism

� � �NL� �N��L�


�



We extend it to the whole space �N��E � �NL in accordance with the decomposition

e� � �N��E � �NL� �N��L� �N��L � �NL � �N��E

by the formula

e���� � � ��� � � ���� �

The desired even isomorphism is given by the formula

e� � e��� � �N����E � �N����E�

It is homotopic to identity and sends �N��L to �N����L� Lemma � is proved�

Lemma � The subbundles

�N �L� � ��L�� and �N �L� � ��L�� � ��
�
�N��E

�
��
�

are homotopic�

Proof � Denote by p� q the projections on subbundles L���� Suppose that the projections
act along complementary subbundles ��L���� Consider the following vector bundle endo�
morphism

� �
��E ��E
� �� �
��E ��E

�

��

�
qp� �
� q� �
� p� �
� q� p� q �
 � p�
q �
 � p� � �
� q� p qp� �
� q� �
� p�

	
�

�
q 
 � q


� q q

	�
p 
� p


� p p

	
�

The former representation shows that � is even� while the latter �as a composition of
operators transposing the subspaces� shows that

��� � � � K� �S�M� �

i�e� this operator is homotopic to identity� Meanwhile in the Appendix we show that the
kernel of the mapping

K� �P �M� �� K� �S�M�

induced by the natural projection� consists of elements of orders �N � Thus� the subbundles
��
� are homotopic� This completes the proof of Lemma 	�

By virtue of Lemma � any pair of odd bundles L��� � ��E de�nes homotopies

�N��L��� � �NL��� � �NL��� 
 �NL��� � �N��L��� � �N �L��� � ��L���� �

while Lemma 	 yields a homotopy of subbundles ��
�� Therefore the bundles �NL��� are
homotopic� The following proposition completes the proof of point ���


�



Lemma � Consider a homotopy Lt of symbols of subspaces and a pair of subspaces bL�

and bL� corresponding to L� and L�� Then these subspaces de	ne equal elements of the
group K

� dOdd �M ev�
�
modulo the subgroup Im i� generated by 	nite�dimensional vector

spaces�

Proof � Indeed� consider a family of pseudodi�erential projections Pt with principal sym�
bols projecting on Lt such that bL��� � ImP���� The desired family can be constructed by
virtue of Proposition 
� In the general case this family is piecewise smooth� see �
�� In
addition� the projection Pt changes by a �nite�dimensional projection at the discontinuity
points� In other words� the subspaces bL��� are homotopic modulo a �nite�dimensional
vector space� This completes the proof of the lemma�

Now we show that in the case of odd subspaces the mapping ���

i � Z �� K
� dOdd �M ev�

�
is injective on even�dimensional manifolds� The proof is similar to the corresponding proof
of Lemma �� The family of invertible operators Ut has even principal symbols as before

� �Ut� �x���� � � �Ut� �x� �� �

Let us show that in the case of odd subspaces the index of a Toeplitz type operator

P�U
��
� � ImP� �� ImP�� ImP� � bL

is zero� The index is again computed by the formula

ind
�
P�U

��
� � ImP�� ImP�

�
� ind

�
P�U

��
� P� � �
 � P��

�
�

Operator P�U
��
� P� � �
� P�� has the following principal symbol

�
�
U��
�

�



L
� 

�L�

Consider also the symbol ��
�
�
�
U��
�

�



L
� 

�L

�
� The indices of operators corresponding

to these symbols are equal� since the involution �� on an even�dimensional manifold
induces the identity map modulo torsion in K�theory �see Appendix�� On the other
hand�

��
�
�
�
U��
�

�



L
� 

�L

�
� �

�
U��
�

�




�L

� 
L�

Hence� the sum of the two symbols is equal to

�
�
U��
�

�



L
� 

�L

M
��
�
�
�
U��
�

�



L
� 

�L

�
� �

�
U��
�

�M

�

We obtain� in particular� the desired equality of the index

�ind
�
P�U

��
� P� � �
 � P��

�
� indU��

� � ��

This completes the proof of Proposition ��







Proposition � The sequence �
�� admits the following splitting

j � � K�M�� K
� dOdd �M ev�

�

 Z

�



�

�
�i�e� jj � � Id�� The mapping sends a vector bundle E � Vect �M� to a decomposition of

the space of sections C�
�
M� �NE

�
into a direct sum of odd subspaces

j� �E� �
hbL� bL�i
 


�N��
� C�

�
M� �NE

�
� bL� bL�� ����

Proof � The element

j� �E� �
hbL� bL�i
 


�N��
� K

� dOdd �M ev�
�

 Z

�



�

�
� for C�

�
M� �NE

�
� bL� bL�

is independent of the choice of an odd subspace in C�
�
M� �NE

�
� since another odd

subspace bL� � C�
�
M� �NE

�
� by virtue of Lemma 	� satis�es the equality

�N
�
hbL� bL�i � �N

�
hbL� � bL�� i �

Thus� the mapping j� is well de�ned� The desired property jj� � Id follows immediately
from the de�nition�

Proposition � is proved�
It follows from Propositions � and � that� modulo ��torsion� the mapping i de�nes an

isomorphism

Z
�



�

�
i���

�
K
� dOdd �M ev�

�

 Z

�



�

��
�
j �K �M� 
 Z

�



�

��
� ��	�

As a consequence� the dimension functional

d � K
� dOdd �M ev�

�
�� R�

satisfying the complement property is unique and is equal to the inverse mapping of the
injection i

d � �i
 
��� � K
� dOdd �M ev�

�
� Z

�



�

�
�

This completes the proof of the theorem�

Remark � Property �
�� can be equivalently expressed in terms of the relative index
���� ����� for two subspaces bL��� with coinciding principal symbols� the following formula
is valid

d
�bL�

�
� d

�bL�

�
� ind

�
P� � bL� � bL�

�
�where the subspace bL� is determined by projection P�� while the operator P� � bL� � bL�

has the Fredholm property��


�



Remark � The dimension functional of subspaces can be expressed in terms of the
Atiyah�Patodi�Singer ��invariant �
�� More precisely� the following theorem is valid�

Theorem � �see �
�� 
��� Let A be an elliptic self�adjoint di�erential operator� For its
nonnegative spectral subspace bL� �A� the following formula is valid

d
�bL� �A�

�
� � �A� � ����

provided the order of the operator and the dimension of the manifold have opposite parities�

� The homotopy classi	cation of elliptic operators

in subspaces

Throughout the remaining sections we consider elliptic operators

D � bL� �� bL�

acting in subspaces with parity conditions �De�nition 
�

bL��� � dEven �M� or dOdd �M� �

Operators of the form bL�
Id�� bL�

are called trivial�

De�nition � Elliptic operators D� and D� are called stably homotopic � if for some trivial
operators D��D

�
� the direct sums D� �D� and D� �D�

� are homotopic�

Denote by Ellev	odd �M� an abelian group of stable homotopy classes of elliptic opera�
tors in subspaces with parity conditions� A similar group for the usual elliptic operators
is denoted by Ell �M� �

It turns out that for an elliptic operator in subspaces with parity conditions one can
de�ne an elliptic operator

fD � C� �M�F�� �� C� �M�F��

in spaces of sections of vector bundles� More precisely� in the case of odd subspacesbL��� � dOdd �M�� this operator has principal symbol

��fD� � L� � ��L� �� L� � ��L�

equal to
�
�fD� � � �D� � ��� �D� �


�



In the even case bL��� � dEven �M� � this operator is an endomorphism

fD � C� �M�E�� �� C� �M�E�� � ����

with the principal symbol ��fD�

��fD� � L� � L�� �� L� � L��

equal to
�
�fD� � ���� �D���� � �D� � 
�

When the parity of the subspaces is opposite to the parity of dimension of the manifold�
the operator D � bL� �� bL� is determined up to homotopy by the operator fD and the
value of the dimension functional d of the subspaces bL����

Theorem � �homotopy classi�cation of operators in subspaces�� For elliptic operators
in pseudodi�erential subspaces the following isomorphism of groups is valid

Ellev	odd
�
Modd	ev

�

 Z

h
�
�

i
��� Ell

�
Modd	ev

�

 Z

h
�
�

i
� Z

h
�
�

i
�h

D � bL� �� bL�

i
	�

hfDi
 �
� �

�
d
�bL�

�
� d

�bL�

��
�

��
�

Remark 	 It follows from ��
� that the groups

Ellev	odd �M� and Ell �M�� Z

are isomorphic modulo ��torsion�

Proof� We construct the inverse mapping

�� � Ell �M�
 Z
�



�

�
� Z

�



�

�
� Ellev	odd �M�
 Z

�



�

�
� ����

A� Let us consider even subspaces� In this case the mapping �� is induced on the �rst
term by the inclusion of the usual elliptic operators in the set of elliptic operators in even
subspaces�

�� ��D�� �� � �D� � D � C� �M�E�� C� �M�F � � ����

The mapping on the second term is de�ned by the formula

�� ��� k� � �k � �� � ����

where k � � denotes the operator equal to zero� it is de�ned on a subspace of dimension
k� This zero operator acts in the zero�dimensional space� Let us verify that �� is the
inverse of ��

First� consider the composition � � ��� Its second component

Z
�



�

�
� Z

�



�

�


�



is the identity map by the de�nition of the dimension functional d �see �
���� By virtue
of ����� the �rst component has the form


� ��

�
� Ell �M�
 Z

�



�

�
�� Ell �M� 
 Z

�



�

�
�

The homotopy classi�cation of usual elliptic operators �	�

Ell �M� � K �T �M�

together with Proposition 
� �see Appendix� imply that the mapping �
� ��� �� on an
odd�dimensional manifold is equal to identity� Thus� we obtain � � �� � Id�

Now� we prove the surjectivity of ��� Let

D � bL� �� bL�

be an elliptic operator in even subspaces� We claim that this operator can be reduced to
some usual elliptic operator� modulo an operator� acting in �nite�dimensional spaces�

The isomorphism �
�� yields for some N a homotopy of the direct sums of sub�

spaces �N bL��� � C�
�
M� �NE���

�
to spaces of sections of vector bundles� modulo �nite�

dimensional subspaces� By Lemma 
 we have the families of invertible operators

Ut� Vt � C
�
�
M� �NE���

�
�� C�

�
M� �NE���

�
�

realizing the homotopies of the subspaces

U� � 
� V� � 


U�

�
�N bL�

�
� C� �M�E�

�� � V�
�
�N bL�

�
� C� �M�E�

�� �

Consider the following homotopy of elliptic operators in subspaces

VtDU
��
t � Ut

�
�N bL�

�
�� Vt

�
�N bL�

�
�

It connects �ND at t � � to the usual elliptic operator at t � 


V�DU
��
� � C� �M�E�

�� �� C� �M�E�
�� �

Thus �� is surjective� The homotopy classi�cation in the case of even subspaces is ob�
tained�

B� The major steps of the proof of the homotopy classi�cation for odd subspaces are
similar to the even case just described�

The inverse mapping �� for odd subspaces is de�ned on the second component �see
����� as follows

�� ��� k� �
hbL� k � bLi �

��



Here bL is an odd subspace� while bL� k � bL is the projection on bL� Let us de�ne �� on
the �rst term according to the formula

�� � Ell �M� 
 Z
h
�
�

i
�� Ellodd �M�
 Z

h
�
�

i
�D � C� �M�E��� C� �M�E��� 	�

h
�ND � bL� � bL�� � bL� � bL�� i
 �

�N
�

�	��

in terms of a decomposition into a sum of odd subspaces �see �����

C�
�
M� �NE���

�
� bL��� � bL�����

The map is well de�ned� i�e�� it is independent of the choice of a decomposition�
A straightforward computation shows that ��� is equal to


 � ��

�
� 
 � Ell �M� 
 Z

�



�

�
� Z

�



�

�
� Ell �M� 
 Z

�



�

�
� Z

�



�

�
�

Taking into account that the manifold is even�dimensional� we obtain by the results of
Appendix that this is the identity mapping�

We shall show that �� is surjective� Consider an elliptic operator in odd subspaces

D � bL� �� bL��

We must prove that it can be reduced to an operator of the form �	��� modulo an operator
acting in �nite�dimensional spaces�

For some natural N isomorphism ��	� yields the homotopy of the subspaces �N bL��� �
C�

�
M� �NE���

�
�modulo �nite�dimensional vector spaces� to the direct sums of odd sub�

spaces bL���� � bL������ Similar to the previous proof� the homotopies of subspaces can be
lifted to homotopies of elliptic operators acting in the subspaces� Therefore� the direct
sum �ND of the initial operator is homotopic to an operator of the form �	���

Thus� �� is surjective� This establishes the homotopy classi�cation of elliptic operators
in odd subspaces�

The theorem is proved�


 Index theorem

Let us de�ne the index homomorphism on the group Ell �M�� Z

ind� � Ell �M� � Z �� Z
�D� � k 	� indD � k�

Theorem 	 �index theorem� Let D be an elliptic operator in subspaces with parity con�
ditions

�D� � Ellev	odd
�
Modd	ev

�
�

The following index formula is valid

indD � ind�� �D� �

�




Remark � In other words� the index of an elliptic operator in subspaces

D � bL� � bL�

is expressed by the formula

ind
�
D� bL�� bL�

�
�




�
indfD � d

�bL�

�
� d

�bL�

�
� �	
�

Proof� The homotopy classi�cation of elliptic operators in subspaces with parity conditions
�Theorem �� yields the equality

�N �D� � �N��� �D�

for some N � Thus
indD � ind��� �D� �

It is not hard to check �see ���������� that �� preserves the index�

ind � �� � ind� � Ell �M�� Z �� Z�

As a consequence� we obtain the index formula

indD � ind�� �D� �

Theorem is proved�

Example � Consider a self�adjoint elliptic operator from Example 	

A � d� � �d � �� �M� �� �� �M�

on an odd�dimensional manifold M � The principal symbol of A is

� �A� � � � �c � �c���
where �c denotes the interior product with respect to Riemannian metric by the covector
�� In particular� the symbol of the spectral subspace bL� �A� at a point � �� � is the line
generated by the covector � itself� Therefore� even bundle L� �A� de�nes the so�called
tautological line bundle on the projectivization P �M � The tautological bundle is well
known to be nontrivial� However� L� �A� has a natural trivialization on the �co�sphere
bundle

� � L� �A� �� C�

� �x� �� �� � ��� �� �

where ��� �� denotes the scalar product of two proportional vectors� The ��invariant of A
was calculated in the paper �

�

� �A� � dimker �d� � �d�j���M	 � dimker �d� � �d�j���M	 � dimH� �M� � dimH� �M� �

��



Thus� the index formula for any elliptic operator

D � bL� �A� �� C� �M�

has the form

ind
�
D� bL� �A� � C� �M�

�
�




�
indfD � dimH� �M� � dimH� �M� �

where the elliptic operator fD has the principal symbol de�ned by the following formula

�
�fD� �x� �� � � �D� �x� �� �� �D� �x������� � ��C � ��C�

The index of scalar operators on a manifold of dimension dimM � 	 is trivial� To obtain
a nontrivial index one can consider matrix operators�

Appendix� Action of antipodal involution inK�theory

On an even�dimensional manifold M consider the following involution of the cotangent
bundle

� � T �M �� T �M� � �x� �� � �x���� �
Denote by P �M the quotient space of the spheres with respect to the action of the
involution �� It is a �bre bundle with real projective spaces as �bres� There are the
following natural projections connecting M � P �M � S�M

S�M
��� P �M

p��M�

Proposition �� �


� The mapping � induces involution in K�theory� this involution modulo ��torsion is
equal to ��
�dimM �

�� � K� �T �M�
 Z
�



�

�
�� K� �T �M�
 Z

�



�

�
� �� � ��
�dimM �

If M is a manifold with boundary� then the involution �� has this property also on
the group K� �T � �Mn
M�� �

�� On an even�dimensional M the projection S�M
�� P �M induces an isomorphism

modulo ��torsion

K� �P �M�
 Z
�



�

�
� K� �S�M�
 Z

�



�

�
�

	� On an odd�dimensional manifold the projection P �M
p�M induces an isomorphism

modulo ��torsion

K� �M� 
 Z
�



�

�
� K� �P �M�
 Z

�



�

�
�

�	



Proof of these statements is an application of the Mayer�Vietoris principle ���� The Mayer�
Vietoris principle makes it possible to reduce the veri�cation of the above properties on
the entire manifold M to a similar check over a point�

� Let us check properties 
�	 for the restriction of the mappings on the �bre over an
arbitrary point x �M of the base�

K� �T �xM�

��� K� �T �xM� �

K� �P �
xM�

���� K� �S�xM� �

K� �fxg� p��� K� �P �
xM� �

In the �rst case we obtain

T �xM � RdimM � K�
�
RdimM

�
� Z�

the involution � preserves �reverses� the orientation of RdimM together with the parity of
dimension of M � Hence� we obtain the desired� �� � ��
�dimM

�
In the second case we consider an even�dimensionalM and the projection � � S�n�� �

RP �n��� K�groups of spheres and projective spaces are well known �e�g�� see �
���

K�
�
RP �n��

�
� Z � Z�n� K�

�
S�n��

�
� Z�

K�
�
RP �n��

�
� Z� K�

�
S�n��

�
� Z�

The �rst summand in K� corresponds to the dimension of vector bundles� while the
projection � in K� groups acts as the multiplication by two

�� � K�
�
RP �n��

�
� Z �� K� �S�n��� � Z

n 	�� �n�

In the last �third� case of an odd�dimensional M � we consider the projection p � RP �n �
pt� We have

K�
�
RP �n

�
� Z � Z�n� K� �pt� � Z�

K�
�
RP �n

�
� �� K� �pt� � ��

Both components Z denote the dimensions of vector bundles� Therefore� property 	 is
satis�ed over a point�

�� We claim that the following assertion is valid� suppose that the properties 
�	 are
satis�ed for two open subsets U� V � M and for their intersection U � V � Then these
properties are valid for the union U � V �

In the �rst case we write out a part of theMayer�Vietoris exact sequence� corresponding

to the inclusions U
T
V

i� U t V j� U
S
V�

K��� �T � �U
T
V ��

�� K� �T � �U
S
V ��

j�� K� �T �U��K� �T �V �
� �� � �� ������

K��� �T � �U
T
V ��

�� K� �T � �U
S
V ��

j�� K� �T �U��K� �T �V � �

��



Suppose that the left and the right involutions in the diagram are equal to ��
�dimM

�modulo ��torsion�� By a diagram chasing argument one deduces that the mapping ��

in the center also satis�es property 
� For example� on an even�dimensional manifold for
x � K� �T � �U

S
V �� we get

j� ���x� x� � �� ��x� x � ���y� ��y � y� � ���x� x� � �

�in this computation factors �N are omitted for brevity��
The last two cases are treated similarly� For example� the projection � � S�M � P �M �

corresponding to odd�dimensional M � acts on the Mayer�Vietoris exact sequence

� � �� K� �P � �U
S
V ��� K� �P � �U t V ��� K� �P � �U

T
V ��� � � �

� �� ��� � ��
� � �� K� �S� �U

S
V ��� K� �S� �U t V ��� K� �S� �U

T
V ��� � � �

By ��lemma the mapping �� on the left is an isomorphism modulo ��torsion�
The property concerning the group K� �T � �Mn
M�� follows from the exact sequence

of the pair T �M j
M � T �M

� K��� �T �M j
M�
 Z
h
�
�

i
� K� �T � �Mn
M��
 Z

h
�
�

i
� K� �T �M�
 Z

h
�
�

i
�

� ��
�dimM � � � ��
�dimM

� K��� �T �M j
M�
 Z
h
�
�

i
� K� �T � �Mn
M��
 Z

h
�
�

i
� K� �T �M�
 Z

h
�
�

i
�

which carries the action of the involution ��

	� Consider a good �see ���� �nite covering fU�g of the manifold M by contractible open
sets� Over any U� the properties 
�	 are valid by the �rst section of the proof� Let us
consider all subsets in fU�g �

Passing from the coverings consisting of a single element to the covering of the whole
manifold M and applying the assertion from the second part of the proof� we obtain the
desired properties for the entire manifold M �

This completes the proof of Proposition 
��

Corollary � On an odd�dimensional manifold the index of an elliptic operator with even
or odd principal symbol is zero�

Indeed� the symbol � of such operator satis�es

����� � ��� � K �T �M� �

On the other hand� modulo ��torsion we have

�� ��� � � ���

by Proposition 
�� Consequently� ��� is a torsion element and its index is zero�

Example 	 On the manifold M � RP �n� n � 
 one can show that

K�
�
T �RP �n

�
� Z�n�

while the involution �� is nontrivial

�� � �
 � K�
�
T �RP �n

�
� K�

�
T �RP �n

�
�

��
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