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Introduction

In the present paper we construct the theory of elliptic operators acting in subspaces
determined by pseudodifferential projections.

The classical elliptic theory deals with elliptic operators in Sobolev spaces. The main
results are the Fredholm property of elliptic operators (on a closed manifold or a manifold
with boundary) and an index formula for such problems. Unfortunately, for a number
of applications the theory of elliptic operators in Sobolev spaces is not sufficient. Let
us consider an example. In the theory of boundary value problems, an elliptic operator
may not admit well-posed (Fredholm) boundary value problems in the Sobolev spaces. In
particular, this is the case for some fundamental geometric operators (Dirac and Hirze-
bruch operators, etc.). Indeed, Atiyah and Bott [2] pointed out that an operator admits
a Fredholm boundary value problem if and only if its principal symbol satisfies a cer-
tain condition. The above-mentioned geometric operators violate this condition. Thus,
the following question arises: is it possible to construct an elliptic theory for operators
violating the Atiyah—Bott condition? The answer is "yes”. Namely, it turns out that
an arbitrary elliptic operator admits a well-posed boundary value problem in Sobolev
subspaces, rather than spaces. This is due to the absence of the Fredholm property in
Sobolev spaces for non-Atiyah—Bott operators (the cokernel is infinite-dimensional). If
we take the boundary values in a subspace of the Sobolev space, then the corresponding
problem becomes well-posed [20], [16] (see also [6]). Boundary value problems for gen-
eral elliptic pseudodifferential operators were constructed in a recent paper [19] in the
framework of Boutet de Monvel-type algebra. This observation naturally leads to the
construction of the theory of elliptic operators in subspaces of Sobolev spaces.

It turns out that such class of subspaces is related to pseudodifferential projections,
and it is possible to prove the finiteness theorem on a compact manifold with or without



boundary and carry out the index computation. We point out that to compute the index
of an elliptic operator in subspaces, it is necessary to consider not only its principal
symbol but also the subspaces where the operator acts. Earlier, the authors introduced
a numerical functional defined on the set of subspaces subject to the so-called parity
conditions for the sake of index computation. This functional takes dyadic values. We
proved a simple and elegant index formula [17, 18] in terms of this functional. The
functional is closely related to the n-invariant [1] of elliptic operators. Namely, under
the parity conditions, the p-invariant of an operator A coincides with the value of the
functional on the nonnegative spectral subspace of this operator. This equality and the
above-mentioned index formula allowed solving an important problem, posed by P.Gilkey,
of computing the fractional part of the n-invariant in topological terms [15]. The solution
to this problem is of theoretical interest and also has important applications in different
areas of algebraic topology, for example, in the theory of pin bordisms.

The paper is organized as follows. In the first section, we discuss subspaces defined
by pseudodifferential projections, introduce symbols of subspaces and present examples.
In the second section, we consider operators in such subspaces and introduce the notion
of ellipticity. Here we prove the Fredholm property for elliptic operators and discuss
properties of the index of elliptic operators in subspaces. Fven and odd subspaces are
introduced in Section 3. We show that these are related to spectral subspaces of differential
self-adjoint operators of even or odd order, respectively. The dimension functional is
defined for even and odd subspaces. The index theorem for elliptic operators in subspaces
is obtained in Section 5. We conclude the paper with an appendix, where the relevant
computations in K-theory are given.

The authors are grateful to Vladimir Nazaikinskii for advice and numerous fruitful
discussions, which were of great use in the preparation of the paper.

1 Subspaces, determined by pseudodifferential pro-
jections

Let M be a smooth manifold and F a vector bundle on M.

Definition 1 A linear subspace L C O (M, E) is called pseudodifferential if there is a
pseudodifferential projection

P:C*(M,FE) = C*(M,FE)
of order zero that defines this subspace

~

L =ImP.

Definition 2 The symbol of a pseudodifferential subspace is the subbundle L C #7*F,
m:S*M — M, determined by the projection P according to the formula

L=Imo(P)Cn"E € Vect (S™M).



The symbol of a subspace is a smooth vector bundle independent of the choice of projection

P on L.

Proposition 1 An arbitrary smooth subbundle I C w*F is the symbol for some subspace

LCC>(M,E).

Proof. We prove the proposition by constructing a pseudodifferential projection with the
principal symbol projecting on the bundle L.

Denote by o (P) the orthogonal projection onto the subbundle L with respect to a
metric on . Let Fy be a self-adjoint pseudodifferential operator of order zero with the
principal symbol o (P). The desired projection P can be defined via the Cauchy-type
integral .

P:i-/’u%—nrwx (1)
2m
[A=1|=¢
It is assumed that the number ¢ in (1) is chosen such that the circle |A — 1| =¢,0 <e < 1
contains no eigenvalues of the operator F,. This proves the proposition.

Example 1 Consider the Hardy space
L CC®(SY
of boundary values of functions holomorphic in the unit disk
DccC, 0D=S"

A Fourier series calculation shows that the Hardy space coincides with the spectral sub-
space of the elliptic self-adjoint operator A = —id/dy on the circle S*, corresponding to
nonnegative eigenvalues. The projection on this subspace is given by the formula

1 d
PItz) = %rk?—lo/%

Its principal symbol equals (e.g., see [14], Chapter 16)

L,

EICE R A

—1.

Hence, the symbol of the Hardy space is equal to

C =
Ly¢ =Tmo (P)(p,§) = { 0, gz El.

The Hardy space is the spectral subspace of a self-adjoint operator. We show in the next
proposition that in the general case the spectral subspaces are pseudodifferential.



Proposition 2 Let A be an elliptic self-adjoint operator of nonnegative order on the
manifold M. Then the subspace z_|_(A), generated by the eigenvectors of A, corresponding
to nonnegative eigenvalues, is pseudodifferential and its symbol Ly (A) is equal to the
nonnegative spectral subbundle, corresponding to the principal symbol o (A) :

Ly (4) = Ly (0/(4)).

Proof. It can be assumed that A is invertible (otherwise we replace it by A + &; for
e sufficiently small, the spectral subspace remains the same). In this case the spectral
projection Py onto Li(A) has the form

|A|+ A
P, = Al =V A2,
+ 2|A| 9 | |

By virtue of the work of Seeley [21], the operator |A| is pseudodifferential. Consequently,
the projection P, is pseudodifferential with the principal symbol equal to

o (Al +0(A)
200 (A)]

o(Py) =

i.e. o (Py) projects on the nonnegative spectral subbundle of the principal symbol of A,
as desired.

Proposition 3 The orthogonal complement of a pseudodifferential subspace is also pseu-

dodifferential.

Proof. Denote by P an arbitrary pseudodifferential projection on L. Then the following
equality holds o
L=L;2PP —1Id).

To conclude the proof, it remains to apply Proposition 4 to the self-adjoint operator
2PP* — Id.

We refer the reader to the paper [5]! for other methods of defining pseudodifferential
subspaces.

2 Elliptic operators in subspaces

Consider two pseudodifferential subspaces ELQ C C® (M, E;12) and a pseudodifferential
operator

D :C®(M,Ey) — C™ (M, E),

of order m, acting in the ambient spaces. Suppose also that this operator respects the
subspaces:

DL, C L. (2)

Tn this paper the authors call pseudodifferential subspaces ”admissible”.



Definition 3 The restriction of D
D : El — EQ (3)
is called operator of order m, acting in subspaces.

The restriction of the principal symbol o (D) to the subbundle L; defines the homomor-
phism
o(D): L1 — Ly (4)

of bundles over S*M. Indeed, in terms of the projections P; 5 on ELQ condition (2) takes
the form P,DP, = DP;. A similar equality for the principal symbols yields (4).

Definition 4 Homomorphism (4) is called the principal symbol of operator in subspaces.

Proposition 4 An arbitrary bundle homomorphism (4) is the principal symbol for some
operator in subspaces.

Proof. Consider an arbitrary pseudodifferential operator
DO : COO(M, El) — COO(M, EQ)

with the principal symbol o (Dg) equal to o (D) on L C n*E; and arbitrary on the
complementary subbundle. The operator

D = P,Dy, for Ly=ImP,
is the desired pseudodifferential operator in subspaces El, L, with symbol (4).

Definition 5 An operator in subspaces is called elliptic, if its symbol (4) is a vector
bundle isomorphism.

Theorem 1 FElliptic operator D of order m in subspaces
D:H*(M,E))D Ly —s Ly C H™™ (M, E) (5)

has the Fredholm property as an operator acting in the closures of the subspaces ELQ C
C(M, Ey 2) with respect to the Sobolev norm.

Proof (cf. [5, 9]). Let us construct the inverse (up to compact operators) of the initial
(5). To this end, consider the symbol

o (D)™ Ly — Ly,
By virtue of Proposition 4, we construct an operator

D/§z2—>z1



with this symbol o (D') = o (D)~". Thus, we obtain
D/D:1—|—I(liz1—>z1, DD/:1—|—[(2§EQ—>EQ,

where K3 denote compact operators. Therefore, D)’ is a regularizer of D. Hence, the
operator D has the Fredholm property. This completes the proof of the theorem.

The homotopy invariance of the index of elliptic operators in subspaces is valid for the
homotopies of the operator D as well as the homotopies of the subspaces ELQ, where the
operator acts.

Proposition 5 Let
Dt : ImPt — ImQt

be a smooth family of elliptic operators in subspaces (i.e. a family of operators {D;} and
families of projections {P,} ,{Q:} which are smooth in the operator norm). Then the
index of operators Dy remains constant

ind (D¢, Im P;, Im @) = Const.

Proof. The proof is based on a reduction of the family D; with varying subspaces to a
family in fixed subspaces. We start with the following Lemma.

Lemma 1 The projections P, in a smooth one-parameter family of projections {P;} are
equivalent. More precisely, there is a family of invertible operators {U;} such that

Pt — UtP()Ut_l.
Proof of Lemma 1. The family U; is defined as the solution of the Cauchy problem
Ut: [Pt,Pt} Ut, UO — [d

The desired property of the family is verified directly.

Proof of Proposition 5. Denote by U; and V; the families of invertibles corresponding to
the families of projection P, and (). In this way

Dt : ImPt — ImQt
is equivalent to the operator
Vt_lDtUt :Im Py — Im Qg

in the subspaces independent of the parameter ¢. The usual homotopy invariance of the
index shows that the index of operators V,”' DU, remains the same. Consequently, the
index of Dy is also constant.

Remark 1 The index of elliptic operators in subspaces is not determined by the principal
symbol.



Indeed, consider a pair of finite-dimensional vector spaces ELQ C C* (M, Fy3) and an
arbitrary operator D : Ly — L,. The principal symbol of D is zero

T D0 0C b,

while the index is o R R
ind (D, Ly, L,) = dim L, — dim L,

and it can take arbitrary values.

3 Subspaces with parity conditions

1. On the cotangent bundle T*M of the manifold M, consider the involution
a:T"M — T"M, o(x,&)=(x,=£).

Definition 6 A subspace [ C O™ (M, E) is called even (odd) with respect to the invo-
lution «, if its principal symbol L is invariant (antiinvariant) under the involution:

L=ao"L, (L&a"L=1"F). (6)

Here both equalities are understood as coincidences of subbundles in the ambient 7*FE.

Any bundle L satisfying (6) is called even (odd) bundle.

Proposition 6 Let A be a differential operator satisfying conditions of Proposition 2.
Then the spectral subspace Ly (A) is even or odd according to the parity of order of A.

Proof. The principal symbol of a differential operator satisfies the equality
oo (A) = (1) o (A).
Hence, by Proposition 2 we obtain the desired:
Li(A)=a"Li(A), or Li(A)da™Ly(A)=1"FE.
Example 2 The Hardy space from Example 1 is odd.
Example 3 The space of closed differential forms
L=kerd, d:A"(M)— A*'(M)

as well as the space of exact forms

~

L'=Tmd, d:AN""(M)— A" (M)

on a compact closed manifold are even subspaces with coinciding principal symbols. In-
deed, L is the spectral subspace of an elliptic self-adjoint operator of the second order

d§ —6d, L =L, (ds—éd),

oo



(where ¢ is the adjoint of the exterior differential d), while the subspace L' differs from L
by a finite-dimensional subspace

L=1% (kerd N ker§)
by de Rham’s theorem.

Ranks of even bundles can take arbitrary values. However, the rank of an odd bundle
can not be arbitrary.

Remark 2 The dimension of an odd bundle I, C 7#*F on a manifold M of dimension n
satisfies the relation:

n—1=2%k

1 i : k—1
n—1=2%+1 }:>d1mL is a multiple of 2777, (7)

Indeed, denote by
pr:mE =1k
the projection on L along the complementary subbundle o* L. The matrix-valued function
2pr — 1
is an odd function on the sphere S"~1
2pr (=§) —1=1-2p. (§).

The conclusion (7) follows from the paper [10], where it is shown that an odd function on
the sphere with values in invertible matrices satisfies (7).

Denote by Even (M) (O/d\d (M)) abelian semigroups of even (odd) subspaces with
respect to direct sums.

Definition 7 Two subspaces Ly and L, are called stably homotopic, if  direct sums
L1 e L3 and L2 e L3 are homotopic for some pseudodifferential subspace L3

Consider the semigroups of classes of stably homotopic even or odd subspaces. The

corresponding Grothendieck groups are denoted by K (E:/En (M)) and K (O/d\d (M)) :

2. For even and odd subspaces, we define a functional, which is a generalization of
dimension for finite-dimensional vector spaces. To this end, we define homomorphisms

Z % K (Even(M)), Z = K (0dd(M)). (8)

The former maps a natural number n to a finite-dimensional vector space of the same
dimension (this subspace is even). For n negative, we put i (n) = —i(—n).
We define ¢ in the case of odd subspaces by the formula

i(n)= {z—l—n} — {E}, (9)
where L ¢ O (M, E) is an arbitrary odd subspace, while L+ncC(C® (M, E) is the sum

of I and an n-dimensional subspace in its complement. The difference (9) is independent

of the choice of L.



Definition 8 Any additive functional
d: K (Even(M)) or K (Odd(M)) — R,
of pseudodifferential subspaces is called dimension functional, if it satisfies the condition
d(i(n))=n. (10)
For even subspaces Even (MOdd) on odd-dimensional manifolds and odd subspaces
Odd (M) on even-dimensional manifolds the following theorem was proved in [17, 18].
Theorem 2 There is a unique dimension functional
d : K (Even(M*")) - R,
d : K(0dd(M®)) — R.
which satisfies the complement property
d(L)+d(L*) =0. (11)
Here LY denotes the orthogonal complement of L.
Proof.

A. Let us first prove the theorem for even subspaces.
The symbol of an even subspace L is a vector bundle on the cosphere space S*M.
This bundle is invariant under the involution «. Hence, the following mapping is defined

K (Even (M°")) — K (P*M),

] — L], (12)

here P*M denotes the projectivization S*M/« of the cosphere bundle with respect to the
involution «. The following proposition is the main ingredient of the proof.
Proposition 7 There is an exact sequence of groups

0 —+ Z 5 K (Bven (M) s K (P*M) — 0. (13)

Proof of Proposition 7.
1) The mapping j is epimorphic, since an arbitrary vector bundle v € Vect (P*M) can
be realized as an even subbundle

v C ON € Vect (S*M), 7:5 M — P*M.

Therefore, there is an even subspace L with symbol L. Consequently,



2) Now we prove the exactness of the sequence in the second term: kerj C Imu.
Suppose that R
i ([L] = lc= M, py)) =0 (14)

for an even subspace LcCC™ (M, E). Let us show that the subspace L is homotopic to
the space of sections C° (M, F'), up to a finite-dimensional defect.
Condition (14) yields a vector bundle isomorphism

L2 n*F, 7:5"M — M,
which is even with respect to the cotangent variables o (z,—§) = o (x,£). Consider an
elliptic operator in (sub)spaces
L2 C%(M,F).

We may assume the invertibility of . Otherwise, we can modify L by a finite-dimensional
subspace. Let us define the homotopy connecting

~

L=ImPCC*(M,E®F)toC”(M,F)=ImPr CC*(M,E& F),
by virtue of the homotopy of projections
P, : C*(ME®F)=-C*(M,Ea® F),
P, = Pcos’¢+ Prsin®p 4 cosgsinp (Pﬁ_IPF + PF3P) .
The subspaces E@ = Im P, rotate during the homotopy from Lo = L towards Em =
C* (M, F) with the help of the isomorphism &. This establishes the exactness of the

sequence in the second term.
3) We verify, finally, that the mapping

R/ 1(’(E§§En,(A4°dd))

on an odd-dimensional manifold is injective. Consider the converse i (n) = 0 for an n > 0.
By the definition of the Grothendieck group K (Even (MOdd)) , 1t follows that for some

even subspace L there is a homotopy of even subspaces

L and L +n,

where n denotes an n-dimensional subspace in the complement of L. Consider the corre-
sponding homotopy of orthogonal projections P

ImPy=1L, ImP,=L+n.
By virtue of Lemma 1, the family of projections defines the family of invertibles U;

P = URU". (15)

11



The principal symbols of U; are even, since this property is valid for the projections P;.
Consider the following elliptic operator in subspaces

Pl:ImP0—>ImP1.

Its index is, obviously, —n. On the other hand, substituting (15) in the last formula, we
obtain an equivalent elliptic endomorphism

POUI_I:ImPO—>ImP0.

This operator is analogous to generalized Toeplitz operators (e.g. see [4]). The index
computation for endomorphisms in subspaces reduces to the index computation of the
usual elliptic operators by the algebraic formula

ind (Poly", Tm Py, Im Po) = ind (Pl Po + (1 = Py)) .

However, the operator PoU; ' Py + (1 — Py) has index zero, since it is defined on an odd-
dimensional manifold and its principal symbol is even. Thus, we obtain the desired

n=ind (P :Im Py — Im P;) = ind (POUI_IPO + (1 - Po)) = 0.

This completes the proof of Proposition 7.
The complement property (11) implies that the dimension functional is zero on the
space of vector bundle sections

d(C* (M, E)) = 0.

The groups K (E:/En (MOdd)) , K (P*M), contain the subgroups generated by vector bun-
dles:

K (M) 2N K (P*M), K (M) - K (Even (M®™)),
p:P*M = M [E]  — [C> (M, E)].

These mappings are injective: the inverse of p* can be defined by means of a nonsingular
vector field on odd-dimensional M. Therefore, the following exact sequence is valid

0 — Z 5 K (Even(M*“))/K (M) % K(P*M)/K(M) — 0. (16)

The quotient K (P*M) /K (M) is a torsion group (see Appendix, where we show that the
orders of its elements are powers of two). The tensor product of the sequence (16) with

the ring of dyadic numbers Z B} gives an isomorphism

i fq0 (o odd - 1
7 H SR (Bven (M) K (M)} & 7 H . (17)
Hence, the dimension functional

d: K (Even (M*")) — R,

12



satisfying the complement property, is unique and equal to the inverse mapping

d=(i®1)"": K (Even (M*")) - z [%]
of the embedding z.

B. In the odd case we define the mapping *

K (0dd (M) - K(M),

I (18)
L].Lcc=(ME) —  [£].
Proposition 8 The sequence
0 — Z — K (Odd (M™)) 45 K (M) — 0 (19)

is exact modulo 2-torsion. More precisely, kerv = 0, while the groups ker j/Im1, cokerj =
K (M) /Imj consist of elements of orders equal to powers of two.

Proof of Proposition 8.
1) Let us verify that the cokernel of the mapping

jt K (0dd(M*)) — K (M)

is a 2-torsion group. To this end, it suffices to prove that an arbitrary bundle F €
Vect (M), for a sufficiently large number N, has a decomposition into the sum of two odd
subspaces

> (M2VE) = L& Lt
We start with the case of a trivial bundle.

We embed M into Euclidean space of some dimension N. The cotangent bundle
embeds into the trivial bundle

"M @& v =R", (20)
where v denotes the normal bundle to M in RY. Let CI (CN) be the Clifford algebra
of the space CV (e.g., see [13]). Then CV as well as R" act on the space Cl (CN),

dim Cl1 (CN) = 2N by Clifford multiplication. Moreover, embedding (20) defines the
vector bundle homomorphism

T*M % End (C1(CN)) |

induced by the Clifford multiplication. Consider the covariant differential 57 = d @ 1y~ in
the trivial bundle with fibre CI (CN). Let us define the self-adjoint Dirac-type operator

A= (M, CL{CN)) % > (M 1°M @ CL(CN)) & ¢ (M,CL(cN)).

2There is no direct analogy of the projectivization construction (12) for odd symbols. For example,
the rank of an odd subbundle can not take arbitrary values, see Remark 2.

13



Its nonnegative spectral subspace is odd and the desired decomposition holds
2V O (M) ~ € (M, CL(CN)) = Ly (A) & Lt (A).

A decomposition for an arbitrary bundle E € Vect(M) is obtained by means of a tensor
product with the decomposition just described.

2) We verify the exactness of the sequence in the second term: kerj C Imi.

Suppose that a pair of subspaces satisfies the equality

(1] - []) =0

Ly C C™ (M, E), L, C C~ (M, F'). By definition of the mapping j this implies that £
and F' are (stably) isomorphic
L=F

We must prove that for some N odd subspaces ZNELQ C C* (M, F) are homotopic,
modulo a finite-dimensional subspace. We construct the desired homotopy of the principal
symbols of the subspaces in the following two lemmata.

Lemma 2 The symbol L. C ©m*F of an odd subspace on an even-dimensional manifold
admits a vector bundle isomorphism

VL ~ 2N L
on S*M for some natural number N. Furthermore, there is an even isomorphism
o2Vl — 2N B,
transforming one bundle into another; this isomorphism can be chosen such that
[0c]=0¢€ K'(P*M).
Corollary 1 The symbols 2V L, 2V o* L of odd subspaces are homotopic.

Indeed, the equality [o] = 0 yields a homotopy o; of the homomorphism o to unity.
Hence, the bundles are deformed according to the formula ;2" L (they remain odd during
the homotopy).

Proof of Lemma 2. We show in the Appendix that the natural projection S*M — P*M
of the cosphere bundle onto its projectivization induces an isomorphism in K-theory
(modulo 2-torsion)

K*(P*M) = K" (S§*M).

Consequently, for some N we obtain {ZNL} = {QNQ*L} . This proves the first part of the
lemma.
Consider an arbitrary isomorphism

o NI 5 aNo* L.

14



We extend it to the whole space 2¥7*E O 2V L in accordance with the decomposition
2V E=2"La2Va L - 2Va L @2V =21k

by the formula

5(6) = 0 (§) &0 (—6).
The desired even isomorphism is given by the formula

Foo 2V g - 2N
It is homotopic to identity and sends 2¥+' L to 2V*'a* L. Lemma 2 is proved.
Lemma 3 The subbundles
2V (Ly@o'Ly) and 2V (Ly@a’Ly) Cn* (2VHE) (21)

are homotopic.

Proof. Denote by p, ¢ the projections on subbundles L; ;. Suppose that the projections
act along complementary subbundles o*L; ;. Consider the following vector bundle endo-

morphism
o o
oc:. & — © ,
o o

o[t U= =p) (A=a)p+q—-p)\_[ ¢ 1-g p o l-p)
q(l=p)+ (1 —q)p qp+(1—q)(1—p) l—q q L—p p

The former representation shows that o is even, while the latter (as a composition of

operators transposing the subspaces) shows that

[o]=0¢€ K'(S*M),

i.e. this operator is homotopic to identity. Meanwhile in the Appendix we show that the
kernel of the mapping
K'(P*M) — K'(S*M)

induced by the natural projection, consists of elements of orders 2. Thus, the subbundles
(21) are homotopic. This completes the proof of Lemma 3.
By virtue of Lemma 2 any pair of odd bundles L; ; C 7*E defines homotopies

2N-HLLz = 2NL1,2 S 2NL1,2 ~ 2NL1,2 S QNOé*Ll,z =2V (L12® "Ly 3),

while Lemma 3 yields a homotopy of subbundles (21). Therefore the bundles 2V L, , are
homotopic. The following proposition completes the proof of point 2).

15



Lemma 4 Consider a homotopy L, of symbols of subspaces and a pair of subspaces Lo
and Ly corresponding to Lo and Ly. Then these subspaces define equal elements of the
group K (Odd (Mev)g modulo the subgroup Imzu, generated by finite-dimensional vector
spaces.

Proof. Indeed, consider a family of pseudodifferential projections P, with principal sym-
bols projecting on L; such that 2071 = Im Py ;. The desired family can be constructed by
virtue of Proposition 1. In the general case this family is piecewise smooth, see (1). In
addition, the projection P, changes by a finite-dimensional projection at the discontinuity
points. In other words, the subspaces EOJ are homotopic modulo a finite-dimensional
vector space. This completes the proof of the lemma.

Now we show that in the case of odd subspaces the mapping (8)
i:Z— K (0dd(M™))

is injective on even-dimensional manifolds. The proof is similar to the corresponding proof
of Lemma 7. The family of invertible operators U; has even principal symbols as before

o (Ut) (l‘, _5) =0 (Ut) (l’, 5) :
Let us show that in the case of odd subspaces the index of a Toeplitz type operator

~

POUI_1 ImFPy —ImFy, ImPy=1L
is zero. The index is again computed by the formula
ind (Poly", Im Py, Im Py) = ind (RoUT' Py + (1 = 1)) .
Operator PoU; ' Py + (1 — Py) has the following principal symbol

o (Ul_l) ‘L @ lo+r.

Consider also the symbol a* (0‘ (Ul_l) ‘L b 1a*L) . The indices of operators corresponding
to these symbols are equal, since the involution o on an even-dimensional manifold
induces the identity map modulo torsion in K-theory (see Appendix). On the other
hand,

a*L @ 1L'

o (o (Ui)], & 1ees) = o (UT)

Hence, the sum of the two symbols is equal to

o (Ufl)‘L e la*L@a* (0‘ (Ufl)‘L T 1a*L) ~ g (Ul_l) @1.

We obtain, in particular, the desired equality of the index
2ind (PoUT Py + (1 = Py)) = indU" = 0.

This completes the proof of Proposition 8.

16



Proposition 9 The sequence (19) admits the following splitting

— 1
i K(M) = K (0dd(M™)) @ 2 H
(i.e. jj' = 1d). The mapping sends a vector bundle E € Vect (M) to a decomposition of

the space of sections C'* (M, ZNE) into a direct sum of odd subspaces

A s 1

JE=[Lelt]e v O (M,2VE) =La L". (22)

Proof. The element

FIE = [L a1 © o € K (0dd (M™)) @ 7 [%] . for O (M,2VE) = L& Lt

2N+1

is independent of the choice of an odd subspace in C'* (M, ZNE), since another odd
subspace Ly cC= (M, ZNE), by virtue of Lemma 3, satisfies the equality

oN' {E@ EL} — o’ {El P Eﬂ .

Thus, the mapping ;' is well defined. The desired property jj’ = Id follows immediately
from the definition.

Proposition 9 is proved.

It follows from Propositions 8 and 9 that, modulo 2-torsion, the mapping ¢ defines an
isomorphism

17 — 1 , 1
7 [5] o) {K (Odd (M) @ 7 [5”/ {J’K(M) ®Z [5]} (23)
As a consequence, the dimension functional
d: K (0dd(M™)) — R,

satisfying the complement property is unique and is equal to the inverse mapping of the
injection 1
— 1
d=(io )" K (0dd(M™)) = Z [5] .
This completes the proof of the theorem.

Remark 3 Property (10) can be equivalently expressed in terms of the relative index
[8], [22]: for two subspaces ;o with coinciding principal symbols, the following formula
is valid

d (Zl) —d (Zz) — ind (P2 Ly — 22)

(where the subspace L, is determined by projection P,, while the operator P : Ly = L,
has the Fredholm property).
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Remark 4 The dimension functional of subspaces can be expressed in terms of the
Atiyah-Patodi-Singer n-invariant [1]. More precisely, the following theorem is valid.

Theorem 3 (see [17, 18]) Let A be an elliptic self-adjoint differential operator. For its
nonnegative spectral subspace Ly (A) the following formula is valid

d(Ly(A)) =n(A), (24)

provided the order of the operator and the dimension of the manifold have opposite parities.

4 The homotopy classification of elliptic operators
in subspaces

Throughout the remaining sections we consider elliptic operators
D : zl — EQ

acting in subspaces with parity conditions (Definition 6)

Lis € Even (M) or Odd (M),

Operators of the form
Ly 2% I,
are called trivial.

Definition 9 Elliptic operators D and D, are called stably homotopic , if for some trivial
operators D3, D5 the direct sums Dy & D3 and Dy & D are homotopic.

Denote by El1¢v/4 (M) an abelian group of stable homotopy classes of elliptic opera-
tors in subspaces with parity conditions. A similar group for the usual elliptic operators
is denoted by Ell (M) .

It turns out that for an elliptic operator in subspaces with parity conditions one can
define an elliptic operator

D:C® (M, Fy) — C% (M, F)

in spaces of sections of vector bundles. More precisely, in the case of odd subspaces
L12 € Odd (M), this operator has principal symbol

0'(5) : Ll D Oé*Ll — L2 D OK*LQ
equal to

ol (5) =o(D)Ba"o(D).
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In the even case ELQ € Even (M), this operator is an endomorphism
D:C®(M,Ey) — C* (M, Ey), (25)
with the principal symbol 0'(5)
o(D): Ly & Ly — Ly @ Lt

equal to N
o (D) =[a"a(D)] " o(D) & 1.

When the parity of the subspaces is opposite to the parity of dimension of the manifold,
the operator D : Ly —» L, is determined up to homotopy by the operator D and the
value of the dimension functional d of the subspaces LLQ

Theorem 4 (homotopy classification of operators in subspaces). For elliptic operators
in pseudodifferential subspaces the following isomorphism of groups is valid

E]lev/odd (Modd/eu) @7 H X, Rl (Modd/eu) A H ® 7 H :

il L] e [Blete(@)-d@).
Remark 5 It follows from (26) that the groups
EN®/24 (M) and EIl (M) & Z
are isomorphic modulo 2-torsion.
Proof. We construct the inverse mapping
Y EL(M) © 7 E] ® 7 [%] s EBI (M) @ 7 E] . (27)

A. Let us consider even subspaces. In this case the mapping \’ is induced on the first
term by the inclusion of the usual elliptic operators in the set of elliptic operators in even
subspaces:

V(IDI&0) = [D],  D:C=(M,E) = C= (M, F). (25)
The mapping on the second term is defined by the formula
X (0ak)=[k—0], (29)

where k — 0 denotes the operator equal to zero, it is defined on a subspace of dimension
k. This zero operator acts in the zero-dimensional space. Let us verify that vy’ is the
inverse of y.

First, consider the composition y o y’. Its second component

7[5] = 7[5
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is the identity map by the definition of the dimension functional d (see (10)). By virtue
of (25), the first component has the form

*

LEN(M) @ Z E] L EIN(M) o 7 E] .

]l -«

2

The homotopy classification of usual elliptic operators [3]
El(M)~ K(T"M)

together with Proposition 10 (see Appendix) imply that the mapping (1 —a*) /2 on an
odd-dimensional manifold is equal to identity. Thus, we obtain y o ' = Id.
Now, we prove the surjectivity of y'. Let

D:zl—>zg

be an elliptic operator in even subspaces. We claim that this operator can be reduced to
some usual elliptic operator, modulo an operator, acting in finite-dimensional spaces.
The isomorphism (17) yields for some N a homotopy of the direct sums of sub-

spaces QNELQ C O™ (M, ZNELQ) to spaces of sections of vector bundles, modulo finite-
dimensional subspaces. By Lemma 1 we have the families of invertible operators

Ut, ‘/t O™ (M, QNELQ) — O (M, QNELQ) R
realizing the homotopies of the subspaces

Uy = 1, Ww=1
Up (2VLy) = € (M, E]) Vi (28 L2) = O (M, E) .

Consider the following homotopy of elliptic operators in subspaces
VDU U (28Ly) — Vi (2V10).
It connects 2V D at t = 0 to the usual elliptic operator at t = 1
ViDUT': C® (M, E}) — C® (M, E}) .

Thus Y’ is surjective. The homotopy classification in the case of even subspaces is ob-
tained.

B. The major steps of the proof of the homotopy classification for odd subspaces are
similar to the even case just described.

The inverse mapping x’ for odd subspaces is defined on the second component (see

(27)) as follows
XN(0&k) =[L+k—1L].
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Here L is an odd subspace, while L+k — L is the projection on L. Let us define X’ on
the first term according to the formula

V' EIL(M) @ 7 [4] o B (M) © 7 [

S o (30)
(D0 (M, By) = O (M, )] v [2ND 2 Lo Lt = L@ L] @ gk

in terms of a decomposition into a sum of odd subspaces (see (22))
COO (M, QNELQ) — ELQ @ ziz

The map is well defined, i.e., it is independent of the choice of a decomposition.
A straightforward computation shows that vy’ is equal to

1 1 1 1
&1 El(M) o Z [5] ® 7 [5] Y H ® 7 [5] .
Taking into account that the manifold is even-dimensional, we obtain by the results of
Appendix that this is the identity mapping.

We shall show that x’ is surjective. Consider an elliptic operator in odd subspaces

14+ a*

D:z1—>f/2.

We must prove that it can be reduced to an operator of the form (30), modulo an operator
acting in finite-dimensional spaces.
For some natural N isomorphism (23) yields the homotopy of the subspaces 2V L 5 C

= (M, ZNELQ) (modulo finite-dimensional vector spaces) to the direct sums of odd sub-

spaces E’lz b E'ﬁz Similar to the previous proof, the homotopies of subspaces can be
lifted to homotopies of elliptic operators acting in the subspaces. Therefore, the direct
sum 2V D of the initial operator is homotopic to an operator of the form (30).

Thus, x’ is surjective. This establishes the homotopy classification of elliptic operators
in odd subspaces.

The theorem is proved.

5 Index theorem

Let us define the index homomorphism on the group Ell (M) & Z

ind :El(M)® 72 — A
(D] ® k — indD + k.

Theorem 5 (index theorem) Let D be an elliptic operator in subspaces with parity con-
ditions

[D] c Lplev/edd (Modd/ev) ‘

The following index formula is valid

indD = ind'y [D].
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Remark 6 In other words, the index of an elliptic operator in subspaces
D El — Ez
is expressed by the formula
ind (D, Ly, Ly) = %indﬁ—l— d (L) —d (L) . (31)
Proof. The homotopy classification of elliptic operators in subspaces with parity conditions
(Theorem 4) yields the equality
2V [D] = 2" X'\ [D]

for some N. Thus
indD = indy'x [D] .

It is not hard to check (see (28),(29)) that x’ preserves the index:
indox'=ind : El(M)& Z — Z.
As a consequence, we obtain the index formula
indD = ind"y [D].
Theorem is proved.
Example 4 Consider a self-adjoint elliptic operator from Example 3
A=ds—6&d: AV (M) — A" (M)
on an odd-dimensional manifold M. The principal symbol of A is

o (A)=ENE] —EJEN,

where ¢ denotes the interior product with respect to Riemannian metric by the covector
€. In particular, the symbol of the spectral subspace E+ (A) at a point £ # 0 is the line
generated by the covector ¢ itself. Therefore, even bundle L, (A) defines the so-called
tautological line bundle on the projectivization P*M. The tautological bundle is well
known to be nontrivial. However, L, (A) has a natural trivialization on the (co)sphere

bundle

k:Ly(A)— C,
k@, 6m) = (&),

where (&,7) denotes the scalar product of two proportional vectors. The n-invariant of A
was calculated in the paper [11]

n(A) = dimker (dé§ + 5d)|A1(M) — dimker (d§ + 5d)|A0(M) = dim H' (M) — dim H° (M).
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Thus, the index formula for any elliptic operator
D: Ly (A) — C™ (M)
has the form

— 1 -
ind (D, Ly (4),C* (M) = sindD + dimH* (M) — dim H° (M),

where the elliptic operator D has the principal symbol defined by the following formula
o (D) (2.6) = 7 (D) (.) [0 (D) (¢, ~E)] " : 7°C = 7°C.

The index of scalar operators on a manifold of dimension dimM > 3 is trivial. To obtain
a nontrivial index one can consider matrix operators.

Appendix. Action of antipodal involution in K-theory

On an even-dimensional manifold M consider the following involution of the cotangent
bundle
a:T"M — T"M, ao(z,&)=(x,=¢).

Denote by P*M the quotient space of the spheres with respect to the action of the
involution «. It is a fibre bundle with real projective spaces as fibres. There are the
following natural projections connecting M, P*M, S*M

S*M =5 P*M -5 M.
Proposition 10 .

L. The mapping o induces involution in K-theory, this involulion modulo 2-torsion is
equal to (—1)dlmM :

(—1)fimM

1 1
o K5 (T"M) @ Z H K (TM) @ Z [5] o

If M is a manifold with boundary, then the involution o™ has this property also on
the group K* (T* (M\OM));

2. On an even-dimensional M the projection S*M = P*M induces an isomorphism
modulo 2-torsion

K (P*M) o Z E] LK (STM) @ Z E] ;

3. On an odd-dimensional manifold the projection P*M 5> M induces an isomorphism
modulo 2-torsion

K" (M) @ Z [%] S K(PM) 0 Z [%] .
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Proof of these statements is an application of the Mayer-Vietoris principle [7]. The Mayer-
Vietoris principle makes it possible to reduce the verification of the above properties on
the entire manifold M to a similar check over a point.

1) Let us check properties 1-3 for the restriction of the mappings on the fibre over an
arbitrary point @ € M of the base:

K*(TXM) 25 K*(T7M)
K*(P*M) =5 K*(S*M),
K ({z}) 2 K™ (P2M).
In the first case we obtain
T*M = RdimM7 K* (RdimM) -7,
the involution a preserves (reverses) the orientation of R¥™M together with the parity of

dimension of M. Hence, we obtain the desired: o* = (—1)dimM.

In the second case we consider an even-dimensional M and the projection 7 : §?"+1 —
RP?**!. K-groups of spheres and projective spaces are well known (e.g., see [12])

K (RP*™) = Z& Zy, K°(S$**') =7
K'(RP*™) = 7, K'(5%41) = 2.

The first summand in K° corresponds to the dimension of vector bundles, while the
projection 7 in K groups acts as the multiplication by two

o KU(RPPTY) =2 — KY(SPH) =7

n — 2n.

In the last (third) case of an odd-dimensional M, we consider the projection p : RP*" —
pt. We have

K°(RP™) = Z&Zyp, K°(pt)=Z.

K'(RP™) = 0,  K'(pt)=0.
Both components Z denote the dimensions of vector bundles. Therefore, property 3 is
satisfied over a point.

2) We claim that the following assertion is valid: suppose that the properties 1-3 are
satisfied for two open subsets U,V C M and for their intersection /' N V. Then these
properties are valid for the union U U V.

In the first case we write out a part of the Mayer-Vietoris exact sequence, corresponding

to the inclusions UﬂVéUI_IV& vyv.

Kt (T=(UNV)) S K (T*(Uyv)) 5K (T*U) & K> (T*V)
e’ e la*da®

K+(T=(UNV) S K(T~(wyv) 5 K (TU)e K*(T*V).
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Suppose that the left and the right involutions in the diagram are equal to (—1)dimM

(modulo 2-torsion). By a diagram chasing argument one deduces that the mapping o*
in the center also satisfies property 1. For example, on an even-dimensional manifold for
€ K*(T*(UUV)) we get

Jlar—z)=0=a" v —r ="y, a’y=y=2(a"r—x)=0
(in this computation factors 2V are omitted for brevity).

The last two cases are treated similarly. For example, the projection 7 : S*M — P*M,
corresponding to odd-dimensional M, acts on the Mayer-Vietoris exact sequence

o= K(Pr(UUV)—= K*(P(UUV))—= K*(P(UOV)) —...
b = L
o= KF(ST(UUV)— K*(S*(UUV))—= K (S*(UNV)) —...
By 5-lemma the mapping 7* on the left is an isomorphism modulo 2-torsion.
The property concerning the group K™ (T*(M\0M)) follows from the exact sequence
of the pair T*M|,,, C T*M
— KT M) @ Z L] = K=(T"(M\oM))© Z |}] — K=~(1"M)@ Z |4
! (_1)dimM la ! (_1)dimM
= KT M) © Z[§] = K-(T*(M\oM)) @ Z[4] — K(T"M)@ Z || —

—

which carries the action of the involution a.

3) Consider a good (see [7]) finite covering {Usz} of the manifold M by contractible open
sets. Over any Upg the properties 1-3 are valid by the first section of the proof. Let us
consider all subsets in {Us} .

Passing from the coverings consisting of a single element to the covering of the whole
manifold M and applying the assertion from the second part of the proof, we obtain the
desired properties for the entire manifold M.

This completes the proof of Proposition 10.

Corollary 2 On an odd-dimensional manifold the index of an elliptic operator with even
or odd principal symbol is zero.

Indeed, the symbol o of such operator satisfies
o] =[o] € K (T"M).
On the other hand, modulo 2-torsion we have
o o] = ~[o]
by Proposition 10. Consequently, [o] is a torsion element and its index is zero.
Example 5 On the manifold M = RP?", n > 1 one can show that
K' (T"RP*™) ~ Zyn,

while the involution o is nontrivial

o= —1: K" (T*RP2”) = K1 (T*RP2”) .
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