A Short Introduction to Boutet de Monvel’s Calculus

Elmar Schrohe

ABSTRACT. This paper provides an introduction to Boutet de Monvel’s calculus on the half-space R}

in the framework of a pseudodifferential calculus with operator-valued symbols.

Introduction

The development of the theory of pseudodifferential operators has greatly advanced our understanding
of partial differential equations, and the pseudodifferential calculus has become an indispensable tool in
contemporary analysis, in particular on compact manifolds without boundary.

Boundary value problems cannot be treated directly by pseudodifferential methods. Already in the
sixites, however, first essential steps were taken to provide a similar framework allowing the construction
of parametrices to elliptic elements, cf. e.g. Vishik and Eskin [19].

It was Boutet de Monvel [1] who also brought in the operator-algebraic aspect with his calculus
established in 1971. As he points out, he constructs a relatively small ‘algebra’, containing the elliptic
differential boundary value problems as well as their parametrices. He considers matrices of operators

Coo(XaEl) Coo(XaEQ)
(0.1) A:(PJF;G g) ® — ® .
C>(0X, Fy) C>(0X, F»)

Here X is a manifold with boundary, E,, E> are vector bundles over X, and F}, F; are vector bundles over
0X; each of them might be zero. P is a pseudodifferential operator on the double of X; the subscript +
indicates that the action of Py is defined by extending the function by zero to the full manifold, applying
P, and then restricting the result to X. S is a usual pseudodifferential operator on the boundary. K
and T are generalizations of the potential and trace operators known from the theory of boundary value
problems. The entry G, a so-called singular Green operator, is an operator which is smoothing in the
interior while it acts like a pseudodifferential operator in directions tangential to the boundary. As an
example we may take the difference of two solution operators to (invertible) classical boundary value
problems with the same differential part in the interior but different boundary conditions.

Given an arbitrary pseudodifferential operator P, it is in general not true that Py maps functions
which are smooth up to the boundary to functions with the same property. The mapping property above
will therefore not hold if we admit all pseudodifferential operators. The crucial requirement here is that
the symbol of P has the transmission property, which will be discussed in detail, below. On one hand,
this restricts the class of boundary value problems in the calculus, on the other hand, however, it ensures
that solutions to elliptic equations with smooth data are smooth; it therefore helps to avoid problems
with singularities of solutions at the boundary.

It also is a central point that these operator matrices form an algebra in the following sense: Given
another element of the calculus, say,

, P4,+GI K’ COO(X,E2) COO(X7E3)
A= T! g' : @ - @ )
(09X, Fy) O (8X, Fy)
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the composition A’A is again an operator matrix of the type described above. This is far from being
obvious. Consider, for example, one of the terms arising in the matrix composition, namely the product
P} P, . Except for special cases, it will not coincide with (P'P)y; in fact, the difference L(P', P) =
P{ P, — (P'P), turns out to be a singular Green operator.

The presentation in Boutet de Monvel’s original paper is rather concise. More detailed accounts
were given in the books by Rempel and Schulze [7] and Grubb [3]. The present introduction focuses
on a special aspect: The operators in Boutet de Monvel’s calculus may be regarded as operator-valued
pseudodifferential operators as they were introduced by Schulze, cf. e.g. [17]. This point of view, going
back to an idea of Schulze, was first sketched in the joint paper [11]. It shows the pseudodifferential
spirit of Boutet de Monvel’s construction more clearly than the older descriptions and makes it easier to
understand.

Moreover, this concept has been applied successfully to the analysis of boundary value problems on
singular manifolds, because, in this operator-valued set-up, Boutet de Monvel’s calculus can be combined
very well with pseudodifferential calculi for cone and edge singularities, cf. [11], [12], [13], [14], [15].

I am giving here an essentially complete and self-contained introduction to the calculus on R} in
terms of operator-valued symbol classes satisfying uniform estimates. I have not included a section on
coordinate invariance and the construction of the manifold. For one thing, this allowed me to keep the
exposition short, moreover, these constructions are rather standard, and there is no new aspect to be
developed. The material for this article is taken from [8], where more details can be found.

1. Symbol Spaces

1.1 GENERAL NOTATION. In the sequel, H*(R?),s € R, will denote the usual Sobolev space on R?.

For s = (51, s2) € R* we will write
H(RY) = {(@)~"u s u € H™ (RY)};
here (z) = (1 + |z|*)/2.

S(R?) is the Schwartz space of all rapidly decreasing functions on R?. For a Fréchet space E, S(R?, E)
is the vector-valued analog. The dual spaces are S'(R?) and S'(R?, E) = L(S(R?), E), respectively. The
Fourier transform

F:SR!E) = S(R!E)

will in general be indicated by a hat: For u € S(R?, E)

(€)= (Fuw)© = (2m) " [ e HEum)ydn, g e
Given a distribution u on R?, we write r*u for its restriction to Rf . We define

H*RL) = {rfu:ue H'RY)}, seR%
SRL) = {rfu:ue SR}
Hg (Ki) denotes the space of all v in H*(R?) which are supported in Ki. We note that
S(R% ) = proj — lim HA(RY), S'(RL) =ind — limg, 4 H3(RY).

81,82 —>00

1.2 GROUP ACTIONS. A strongly continuous group action on a Banach space E is a family x = {kj :
A € Ry} of isomorphisms in £(E) such that kak, = kx, and the mapping A — kye is continuous for
every e € E. For all the above Sobolev spaces on R? and RY we shall use the group action defined on
functions by

(1.1) (kau) (@) = A %u(Az).
It extends to distributions by (kxu)(p) = u(kx-19),9 € C§°. On E = C,1 € N, we use the trivial group

action k) = id. Sums of spaces of the above kind will be endowed with the sum of the group actions.

LEMMA 1.3. There are constants ¢ and M such that

kalle(my < ¢ max{A, A~}
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Proof. This follows easily from the well-known statement for additive semigroups.
1.4 OPERATOR-VALUED SYMBOLS. Let E, F' be Banach spaces with strongly continuous group actions
k and &, respectively. Let a € C*°(R? x R? x R?, L(E, F)) and p € R. We shall write a € S#(R? x R? x
R?; E, F) provided that, for all multi-indices «, 8, , there is a constant C' = C(«, 8, v) with
1%y Dy Dy DY aly, §,m)k iyl e,y < C ()11,

If a is independent of y or § we shall write a € S#(R? x R?; E, F).
For E = F = C we recover the definition of the symbol class S}'((R? x R? x R?).

1.5 EXAMPLE: TRACE OPERATORS. Let v; : S(R) — C be defined by
f— lim &9 = £
vif = lim 0 f(t) = £(0).

The trace theorem for Sobolev spaces ensures that v; extends to an element of L(H? (R ), C) provided
that o1 > j + % We can also view «; as an operator-valued symbol independent of the variables y and
n; we then have

v; € S92 (R? x RY; H? (R, ),C) :
Recalling that the group action on H?(Ry) is given by (1.1) while on C we choose the identity, we only

have to check that o
ik llecre ®y),0 = O(n)?*2).

This is immediate, since

ol [(m)= F(mt)] = ()2 (3] ) ()

1.6 EXAMPLE: ACTION IN THE NORMAL DIRECTION. Let a € S{'((R" xR"), u € R. For fixed (z',¢’),
the function a(z’,-,&’,-) is an element of S{',(R x R). For every s € R? it therefore induces a bounded
linear operator 7

op, a=op, a(z',z,,&, &) H°(R) — Ho~(O)(R).
The subscript x,, indicates that the action is with respect to the variable x, and the covariable &, only.
We then have

(1.2) Kery-110D 4l ) = 0D 4 0 (& 2n/ (€) € (€ E0)
For u € S(R),
K(gry-1 [0D ., a](K(eryu) ()
- / e & /€ () a(a! wn/ (€)1 € E0)En ] (€))dEn;

the substitution 7,, = &,/ ({’) then yields the assertion. The theorem, below, shows that op, a is an
operator-valued symbol in the sense of 1.4:

THEOREM 1.7. For a € S{'((R"* x R*) and 0 € R* we have
op, a€ SHR"! x R" HO(R), HO~ MO (R)).
Proof. Given multi-indices «, 8, we know from 1.6 that we have to estimate

sup [| (€)' kg1 [0p v, (D D)l o, o=t o)

= sup[[(€) " op.., (DE D) (' onf (€ €60 (€D e ,me-ceon
1.77 r
Since Dg, Df,a is of order p — || we may assume that o = § = 0. Now
Op 5, (@', w0/ (€') €6 (€)) s HO(R) - H7~WO(R)
is continuous, and a bound for its norm is given by the suprema

sup {|Dg, D2, {a(a',@a/ (€ €', 6 (€NH(E) ™" s 2n6n € R

for a finite number of derivatives. Since each of them is O({¢')") the proof is complete. N
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As a consequence we easily obtain order-reducing operators for the full space situation.

COROLLARY 1.8. For real p the symbol m € S{((R" x R") given by r*(£) = (£)" induces the
operator-valued symbol

op,, ™ € SHR! x R HO(R), HO- WO (R)), o € R
REMARK 1.9. Definition 1.4 extends to projective and inductive limits. Let E and F be Banach

spaces with group actions. If F} <= F; <> ... and F; < E3 — ... are sequences of Banach spaces with
the same group action and F' = proj — lim F}, E = ind — lim; E, then we let

SHR! xRY x RY; E,F) = proj—lim,S*(R! x R! x R?; E, F},)
SHR? xR x R E,F) = proj— lim, S*(R? x R? x R?; Ey, F)
SHR? x R x R, B, F) = proj—limy ,S*(R? x R? x RY; Ey, Fy)

In particular, it makes sense to speak of S#(R? x R? x R?; S'(R;),S(Ry)), S#(R? x R? x R?; S' (R, ), C),
and S*(R? x R? x R?;C,S(R4)).

We write S™(...) =, S*(...).

THEOREM 1.10. Given a; € S (R? x R? x RY; E, F),j =0,1,2,..., there is a symbol a € S*(R? x
R? x R?; E, F) such that a ~ > a;. As usual, the equivalence relation ~ is defined by the fact that for
every J

a-Y a;€S" IR xR! x R E, F).
isJ

Moreover, a is unique modulo S~ (R? x R? x R?; E, F).

The proof follows the standard argument. <

DEFINITION 1.11. A symbol a € SH(]R%Q xR? xR?; E, F) is said to be classical, if it has an asymptotic
expansion a ~ Z?io a; with a; € S#7(R? x R? x R?; E, F) satisfying the homogeneity relation
(13) a](y;ﬂ;/\ﬂ) = Auijk)\ aj(?;’;ﬂ:n) Rx-1
forall A > 1,|n| > R with a suitable constant R. We write a € S%(R? xR? xR?; E, F). For E = CF, F = C'

we recover the standard notion.

The symbols «; in 1.5 for example are homogeneous of degree j 4+ 1/2 in the sense of (1.3). The
lemma, below, is straightforward to prove.

LEMMA 1.12. Let a € SH(R? x R? x R%; E, F),b € S*(R! x RY x RY; F,G).
(a) D,‘;‘DgD;a € Se-lel(Re x RY x RY; E, F) for all multi-indices «, 3, 7.
(b) The pointwise composition (ba)(y,,n) yields an element ba € SFTA(R? x R x R?; E,G).
DEFINITION 1.13. For a € S#(R? x R? x R?; E, F'), the pseudodifferential operator
opa:SRY,E) = SR, F)
is defined by
[op alu(y // W=Dna(y, g, mu() didn;  y € RY.

Here dn = (27)~9dn. If a is independent of §, this reduces to [op alu(y) = (27)~%/2 [ e¥"a(y,n)a(n) dn;
in this case we call a a left symbol for op a. If a is independent of y, then

[op alu(y) // W=D a(g, n)u(y) dj dn,

and a is called a right symbol.

THEOREM 1.14. Let a € SH(R? x R? x RY; E, F). Then there is a (unique) left symbol ar, and a
(unique) right symbol ar for opa.

Givena € S*(RYxRY; E, F) and b € SF(R! xRY; F,G) there is a (left) symbol c € SFTH(RI xR?; E, G)
such that

opboopa =opec.

We have the asymptotic expansion ¢ ~ Y, = D5b(y,n)dsaly,n).
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Proof. The proof of the first part is obtained by following the construction in Kumano-go, [6]. For the
second part we choose a right symbol ag for opa. Then
opboopa =opboopar =opc

with ¢(y,9,n) = b(y,n)ar(g,n). Switching to the left symbol ¢ of op ¢ we obtain the assertion. q

1.15 Duavrity. Let (E_, Ey, E1) be a triple of Hilbert spaces. We assume that all are embedded in
a common vector space V and that Ey N Ey N E_ is dense in E4 as well as in Ey. Moreover we assuine
that there is a continuous, non-degenerate sesquilinear form (-,-)g : By x E_ — C which coincides with
the inner product (-,-)g of Ey on (Ex N Ey) x (E_ N Ep). We ask that, via (-,-)g, we may identify E;
with the dual of E_ and vice versa, and that

lels_ = sup |(f,e)el, fle, = sup [(f )zl
flle, =1 llel|lz_ =1
furnish equivalent norms on F_ and E., respectively. Suppose there is a group action x on V' which has
strongly continuous restrictions to each of the spaces, unitary on Ey, i.e., (kxe, f)g = (e,ky-1f)g for
e, f € Ey. Then
(K')\e:f)E:(eaK')\*lf)Ea 86E+7f€E—7

since the identity holds on the dense set (E+ N Ey) x (E_ N Ep). In other words, the action s on Ey is
dual to the action x on E_ and vice versa.

Typical examples for the above situation are given by the triples

(2 (R), L2 (R), H7 (R)) and (Hq°(By), L(Ry), H(R.), o € B,

Let (F_, Fy, F'y) be an analogous triple of Hilbert spaces with group action &, and let a € S#(R? x
R? x R?; E_, F_). We define a* by a*(y,9,n) = a(g,y,n)* € L(Fy, E}), where the last asterisk denotes
the adjoint operator with respect to the sesquilinear forms (-,-)g and (-,-)p:

(a(g,y,n)" f,e)e = (f,a(g,y,me)r, ecE_,feF,.

It is not difficult to check that a* € S*(R? x R? x R?; Fly, E. ).

Moreover, we may introduce a continuous non-degenerate sesquilinear form

(,)sw : SR, Ey) x S(RY,E-) = C

by (u,v)ss = [(u(y),v(y))edy. Analogously we define (-, )s,

The symbol a* induces a continuous mapping opa* : S(R?, Fy) — S(R?, Ey). This is the unique
operator satisfying

([opa®Ju,v)s, = (u,[opajv)s,.

1.16 WEDGE SOBOLEV SPACES. Let E be a Banach space with a group action x. The wedge Sobolev

space W?(R?, E), s € R, is the completion of S(R?, E) with respect to the norm

HW%WMDZ/W%MWAMW%W-

W?(R?, E) is a subset of S'(R?, £) and a Hilbert space with the natural inner product. For o € R?, s € R,
the dual space of W*(R?, H? (R} )) is W*(R?, H; °(R4)) and vice versa. The dual of W*(R?, H? (R)) is
W—5(R?, H °(R)).

For s € R?, we can define

WH(RS, E) = {{y)~*u: u € W™ (R, E)}.

We then obtain in particular, cf. [9, Lemma 1.8, Corollary 1.10]:
81,82,0'170'24)00WS (Rq ’ Ha— (R‘I’ )) = 8(R3>+1 );
ind — 1y, 55,01, — 0o W* (RY, HY (R+)) = SI(R?i-Jrl ).

proj — lim

LEMMA 1.17. For s € R we have
(a) W(R?,C) = H*(R?).
(b) We(RY, H¥(RF)) = HS(RTTF).

(c) WH(RY, Hy(Ry)) = HE(RL™).
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(d) We(R?, H*(Ry)) = H*(RI).

Proof. (a) is obvious. For (b) note that the behavior of the Fourier transform under dilations yields
1l e, 1o ) = /(77>2S||(n)k/2<7>s(-7:tﬁr-7:y%nu)(77><77>T)||%2(R§) dn
= [ [N Fe Ty, P i
= [[ @ e Fy )7

The statement follows, since ()25 ((n)~17)2% = (n, 7)?°.

(c) follows from (b): Hg(ﬁ‘fl) is the closure of C§°(R{™") in the topology of H*(RI*!). Since
Ce°(RYT) is dense in S(R™, Hi(R;)) and the norms of W*(R?, Hg(R)), W*(R?, H*(R)), and H*(R/t)
coincide on C§°(R™), we obtain the assertion.

(d) results from duality. N

The following theorem was proven by J. Seiler [18, Theorem 3.14].

THEOREM 1.18. Let E, F' be Hilbert spaces and a € S*(R? x R?; E, F). Then
opa: W*(R?, E) - W HR?, F)
is bounded for every s € R.
COROLLARY 1.19. Under the assumptions of Theorem 1.18,
opa: W (R!, E) — W~ (O (RY | F)
is even bounded for every s € R?.

Proof. By interpolation it is sufficient to treat the case so € 2Z. The boundedness of opa : W*(R?, E) —
Ws—(0)(RY | F) is equivalent to the boundedness of

(y)** opa (y)~** s W (RY, E) - W™ —#(RY, F).

Either (y)~ " or (y)~ " is a polynomial; without loss of generality let so > 0. Using the identity [op a, y;] =
op Dy, a we may shift the powers of y from the left to the right hand side. According to 1.18, both op Dya

and 3% (y) "2, || < s2, are bounded operators on the respective spaces, and the assertion follows. q

2. The Transmission Property

It has been pointed out in the introduction that one will have to impose a condition on the pseudo-
differential entry P in (0.1) in order to ensure the stated mapping property. Following Boutet de Monvel
[1], one asks that the symbol of P has the transmission property.

Hormander introduces a similar notion: the transmission condition. An operator on the half-space
R? has it, if it maps functions which are smooth up to the boundary to functions with the same property
[5, Definition 18.2.13]. The difference between both notions is that the transmission property assures the
transmission condition also for the opposite half-space R™ . This is needed in order to obtain a calculus
which is closed under taking adjoints.

For classical pseudodifferential symbols of integer order the transmission condition can be expressed
via homogeneity properties of the terms in the asymptotic expansion, cf. [5, Theorem 18.2.18]; in fact,
this condition also ensures the transmission property, cf. (2.2), below. For non-classical symbols, this is
no longer true, for details see the analysis by Grubb and Hérmander [4]. In [10] it was shown that the
transmission property can be characterized via commutator estimates on wedge Sobolev spaces.

DEFINITION 2.1. Given a function f on R? we denote by e™ f its extension (by zero) to a function
on R”.

Extension by zero also makes sense for distributions u in H*(R% ),s; > —%. For —% <51 < %, etu
then is an element of H*(R"); for s; > 1/2, we clearly have etu € H?(R}) for all o with 01 < 1/2 and

02 = S»2.
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We let
HY = {(e"u) e SR;))
Hy {eu)" :ue S(R)}.

H* and H; are spaces of smooth functions on R, decaying to first order near infinity. By H' we denote
the space of all polynomials. We let

H=H'"@H, ®H', H =H, ®H', Hy=H'®H,.

Parts (b), (c) and (d) of the following proposition provide Paley-Wiener type characterizations of
these spaces.

PROPOSITION 2.2. (a) H*, Hy, H, Hy, and H are algebras.
(b) A function h € C®(R) belongs to HT if and only if it has an analytic extension to the lower
half-plane {Im ¢ < 0}, continuous in {Im < 0}, together with an asymptotic expansion

(2.1) h(¢) ~ > ar(F,
k=1

|{| = oo in {Im ¢ < 0}, which can be differentiated formally.
(c) An analogous statement holds if we replace HY by Hy and {Im ¢ < 0} by {Im( > 0}.
(d) h e C°(R) belongs to Hy if and only if it has an expansion

h~ Y an*
k=1
for |{| = oo in R, which can be differentiated formally.

DEFINITION 2.3. A pseudodifferential symbol p = p(z,y, &) € Sf,o (R™ xR™ xR™) has the transmission
property (at {z,, =y, = 0}) provided that, for all k,1

0, 0% p(a',0,y',0,¢,(€)6n) € St (R x R x RET )&, He,, .

The subscripts z’,y', £, and &, are used only for the moment in order to indicate the variable for which
we have the corresponding property.
We write p € S).(R* x R x R*). If p = p(x, £) is a classical symbol of order p € Z with an asymptotic

expansion
o o]
b~ E DPu—j,
j=0

where p,_; = p,—;(z,£) € S is positively homogeneous of degree p — j in & for €] > 1, i.e.,

pilw,t8) = t'p(z,6),  t>21[¢|> 1
Let us sketch the argument, why p has the transmission property if and only if for all o, &,
(2.2) ok 9gpi(a’,0,0,+1) = (—1)"7l*lp (20,0, -1) :
A Taylor expansion gives

ok, m(@,0,8, (€)Y v) = (€) 0 m(a',0,€'/ (€),v)
= ()| 3 20 8ma 0.0 € + e €0

la]<N

Here, ry(2', &', v) can be estimated in terms of
sup{|0gpi(a',0,0€'/ (€)),v)| : 1Bl = N+ 1,0 < o < 1},
which is O((v)' ™V ™"), uniformly in a',¢'. Moreover,
0% 9gpi(x',0,0,v) =0k 9gpi(',0,0,+1)|v|' =%,

so that, eventually, Proposition 2.2(d) gives the assertion.
The next lemma is obvious:
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LEMMA 2.4. Regularizing symbols always have the transmission property, and so do symbols which

vanish to infinite order at {x,, = 0}. Moreover, all symbols which are polynomial in & have it according
to (2.2).

ExaMpLE 2.5. The symbol (¢) does not have the transmission property. Indeed, since ((¢', (£'}¢,)) =
(€"Y(&,) this would require that v — (v) € H. Writing

on(oe2) - ()

we see that (2.2) is violated.

5 ()

Jj=0

There are symbols with the transmision property of arbitrary order:
EXAMPLE 2.6. Let ¢ € S}'((R* x R*~') and ¢ € S(R). Then

p(x,§) := qz,§)e(n/(€)) € S (R" x R").

Indeed p(a',0,&',(€')&n) = q(2',0,8")p(&) € Sfo(R*™ x R*™") @ H. It is straightforward to check the
symbol estimates for p.

The following results prove the stability of the transmission property under the usual pseudodiffer-
ential constructions.

ProproSITION 2.7. (a) Ifp and q have the transmission property then also all derivatives D?DfD;p,
the product pq, and the left and right symbols py, and pr, respectively.
(b) If pj are symbols of order p — j with the transmission property and p ~ % p;, then p has the
transmission property.
(c) Ifp is elliptic with the transmission property, then every parametriz has the transmission property.

The proofs are straightforward.
The following lemma together with Theorem 2.10, below, shows that there are also order-reducing

symbols for the half-space situation. The construction goes back to Grubb.

LEMMA 2.8. Choose x € S(R) with suppF~'x C R_ and x(0) = 1. For p € Z and a € R with
a >> ||X|lsup (the sup-norm of the first derivative of x), let

(2.3) (€)= (x (afg,>) (€) - ifn)”, feRr.

Then r is an elliptic element in S}, (R" x R™). The same is true for v, =7 .

Proof. The above definition makes sense, since

£n y gn
(i) @0 -i6 ()~ () 0
(€' — & (€ —i& ’
where |r] < [|X/|lsupl&nl(€)"ta™! is small. An application of Example 2.6 shows that r* is an elliptic
symbol of order u. Moreover,

r(€,(€)&n) = (€)Y (x(&n/a) — i&)".
Using Proposition 2.3 it is not difficult to check that x(&,/a) — i, as well as its integer powers belong
to H~. Hence r* has the transmission property.

DEFINITION 2.9. Given s € R?,s; > —%, and a symbol p we define the operator
(2.4) optp: H*(R}) — D'(R})
[op* plu = 1 (op pletu)).
For P = opp we write Py = op™p.

It is obvious that we may replace D'(R’) on the right hand side of (2.4) by H?(R" ), where o, =
min{s;,0} — p, 02 = s2, and p is the order of p.
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THEOREM 2.10. Let o € R?. For the symbols r{ we have:

(a) op,, ri € SH(RP! x R HO(R), HO~ (0 (R)).

(b) opf r € SH(R" ! x R HO(Ry ), HO (WO (Ry)), oy > —1/2.

(c) Let e, : H*(Ry) — H?(R) be an arbitrary extension operator. Then r*[oprtle, € SH(R"! x
R HO(Ry ), HO~(#O) (R, )). The operator is independent of the particular choice of e, .

(d) op,, i € SHR" ! x R =L HS(Ry), HS ™9 (R,)). Note that we use neither restriction nor
extension, for HJ (R, ) — H(R).

(e) For p' € Z we have

1A + 1A
[op,, 4 ]lop,, ] =op, ™"

on each H(Ry). In particular, as operators HJ (R.) — Hg_(”’o) (R,),

lop, ] =op, ri".
(f) For p' € Z we have

opt rJlop " ] =op i rH

on each H° (R, ). Here we tacitly assume that the zero extension et is replaced by an arbitrary
extension operator if o1 < —1/2 or o1 — p' < —1/2. In particular,

lopd r]™  =opf ro".
Proof. (a) follows from Theorem 1.7. For (b) and (c) one makes the following observation: If e : H7 (R} ) —
H?(R) is an arbitrary extension operator, then r*opr” (eu) is independent of the choice of e. Since we
can always find a continuous operator e® : H*(Ry) — H?(R) satisfying fy-1e°k) = €° for the standard
group actions x and & on H*(R,) and H*®(R), respectively, (a) gives the assertion.
(d) For u € H{(Ry),[op, r'](u) has support in Ry. Hence the assertion follows from (a). (e) is
trivial. (f) is first shown for large oy; it then extends to the general case. 4

The following lemma illustrates the effect of the transmission property:

LEMMA 2.11. Let p € Sh.(R® x R™). Forl € N, the definition
(2.5) k@', €') = rtlop,,al(6y)

yields an element k; € SFHAL/2(RP=1 x R*=1:C,S(R,)). Here 6(()1) is the I-th derivative of Dirac’s
distribution at 0, and we consider k; as the operator that associates to a complex number c the function

clop wna]é(()l) on Ry .
Note that k; = 0 if p is a polynomial.

Proof. Take a right symbol pr = pr(z',yn,§) for op, p. Fix a function w € C§°(R) with w(t) = 1 near
t = 0 and write

pR(;UIJ Yn, f)

l .

y .

ﬁw(yn)ainpﬁl(x’: 0, f) + y51+1pRl (wla Yn, f) + (]- - w(yn))pR(wla Yn, f)
i=0 7’

with suitable pg;. The operators associated with the second and the third summand vanish, so we can focus

on the first one. By Proposition 2.7, pg has the transmission property. Hence 8?{” pr(z',0,&,(£NYE,) €

Sio(]Rnf1 x R*1)®,H, and we can write

" 00
0. pr(@',0,6,60) = > sin(@, )R+ Niwbju (@', € )y (6n/ (€1))
k=0 k=0
with sjp € S{‘,g’“(m{n—l x R"™1), {\je}r € 1, and null sequences bj, € Sf'o(R"™" x R*™") hy, €
Hy. The polynomial part gives no contribution to (2.5). Hence it is sufficient to consider a single
term b(z', & )h(&,/ (¢')) under the summation, to show that its contribution to (2.5) is an element of
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SR x R*1;C,S(Ry)), and to check that the semi-norms for this element depend continuously on
those for b and h. Since b is of order p and since yﬁ;(i(()l) = (5) 6(()l_j), it suffices that, for all o € R?,

i gen-1op ,, DER(E/ (€18 - € — H (R
has norm O((¢/)7**7/%). Now Dg h(€n/(€")) is a linear combination of terms of the form

(&n/ (€N RED (€] (€))s(€"),

where s € Slft‘)o‘l(]Rn_1 x R*=1), and 0 < k < k' < |a|. The function v*h¥) is an element in Hy, so we
may focus on the case @ = 0. We observe that

Kien-1005, h(En/ €N = ale) TP FIL, h(En/ €)EN(Ea/ (€))
= o (VT F (@),

with ¢; = (2r)~/2i'. Since rt F~1(hv') is a function in S(R,. ), this gives the desired result. N

THEOREM 2.12. Let a € SE(R* x R?), u € R, and 0 € R?, 01 > —1/2. Then
opj a€S* (R x R H(Ry ), HO WO (Ry ).

Proof. For —1/2 < o1 < 1/2 the assertion is immediate from Theorem 1.7 since then the extension
operator eT : H°(Ry) — H?(R) is continuous. Using interpolation we may assume that o1 € N. We
proceed by induction in 0. Recall that the norm of a function v in H7+(1—#0) (R} ) can be estimated by
its norm in H2~(#0) (R, ) and the norm of 8,, v in H7~(*9 (R, ). We note that 9, etu = etd,, u+u(0)d
for u € H7+(1O)(R). Hence

Or, fop 2, alu = fon, 0, alu + op £, ale* s, u + u(0)r* op.,, ald.
Since Op,, K(ery-1 = €y! K(ery-10z,, We get

10z, kgry-1[0p i alken [ (o +0.0) (R 1), Ho- 000 (R )
< <£I>_1||’€(§’)*1[Op:naxna]n(?)||L(H"+(1>0)(R+),HV*(M>0)(R+))
Hlken-1lop ¥ alsienllcime @ ) me—wo =4)
+ <5'>_1 ||f€<gr>717“+[op xna]50||c(c7Ha—(m0) (R+))”'70"9(5’))||L‘,(H“+(1~0)(R+),(C)'

By induction, all are O((£')"); for the last term apply Lemma 2.11 and Example 1.5. q

3. Symbol Classes for Boutet de Monvel’s Calculus

3.1 THE OPERATOR O; . In the subsequent text we shall denote by 0, the usual derivative considered
as a differential operator on distributions over Ry . We choose this notation in order to distinguish 04
from §; which also acts on distributions on the full line. For o € R?, oy > —1/2,

0y =rT 0t t HO(Ry) » HHO(Ry );
on the other hand, 9, acts on all spaces H? (R ) and defines an (', £')-independent element of S (R"~1 x
R 1 HO(Ry), H~(LO(R,)) for every o € R2.
3.2 BOUNDARY SYMBOLS ON R .
(a) A potential symbol of order m is an element of
(3.1) S™MRE X RTHCSRy)) = () SR xRV C HT (R )).
g ER2

This is a Fréchet space with the topology of the projective limit. The group action is the identity
on C and given by (1.1) on H? (R} ).
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(b) A trace symbol of order m and type zero is an element of

(3:2) S™MR*T xRS (Ry),C) = () S™MRTT xR HY(Ry), O).
ocER2

Again this is a Fréchet space with the projective limit topology.

For 0, > —1/2 the weighted Sobolev space H?(Ry) is embedded in the space HJ(Ry),
7 = (min{o,0},02), using extension by zero. A trace symbol ¢ of order m and type 0 therefore
defines an element of S™(R"~! x R*~!; H? (R, ),C) whenever o1 > —1/2.

A trace symbol of order m and type d € Ny is a sum of operator-valued symbols Z?:o tjai,
where each ¢; is a trace symbol of order m — j and type zero and the summation is in S™(R" ! x
R H°(Ry),C), o1 > d—1/2. We endow the space of trace symbols of order m and type d with
the topology of the non-direct sum of Fréchet spaces, see 3.3, below. Instead of ‘type’, the notion
‘class’ is also used.

(c) A singular Green symbol of order m and type zero is an element of

(3.3) STRT xRS (Ry ), S(Ry))
= (] S™®R' xR HG(Ry), HT(Ry)),

o,TER?

endowed with the Fréchet topology of the projective limit.
A singular Green symbol of order m and type zero furnishes an element of S™(R"~! x

R*1: Ho(Ry),S(Ry)) provided o3 > —1/2. We define the singular Green symbols of order m
and type d as the sums Z?:o gjaj_, where each g; is a singular Green symbol of order m — j and
type zero, and the summation is in S™(R" ! xR*~!; H7(R;),S(R;)), 01 > d—1/2. The resulting
space carries the Fréchet topology of the non-direct sum.

(d) A boundary symbol in Boutet de Monvel’s calculus of order m and type d is an operator-valued
symbol of the form

_(opip+tyg k
(3.4) a—< 4 s)’

where p € S[*(R® x R"), g is a singular Green symbol of order m and type d, k is a potential
symbol of order m, ¢ is a trace symbol of order i and type d, and s € S (R*~! x R*~!). We
saw in 2.12 that

opi p€ SR xR HO(Ry ), HO-MO(Ry)), o1 > —1/2.

Also s € ST (R"! x R*!) = S™(R" ! x R*';C,C) is an operator-valued symbol. A boundary
symbol of order m and type d can therefore be considered an element of

(3.5) SR xR HORL) @ C,HI MO (R C), oy >d—1/2.

We endow the space of boundary symbols of order m and type d with the (Fréchet) topology of
the non-direct sum of the Fréchet spaces involved.

(e) We obtain the notions of regularizing potential, trace, singular Green, and boundary symbols by
taking the intersection of the corresponding spaces over all m.

(f) The definitions in (a), (b), and (c) extend easily to double symbols.

We obtain classical symbol classes by taking S7(...).

(g) Since we eventually want to treat operators acting on sections of vector bundles over compact
manifolds, we shall have to replace the spaces C, S(Ry ), H (R} ), H (R4), S’ (Ry) in general by N-
fold cartesian products for suitable N: CM | S(Ry)™2, etc.. In order to avoid superfluous notation,
we shall not write the IV; unless clarity demands it.

DEFINITION 3.3. Let E, F be Fréchet spaces and suppose both are continuously embedded in the
same Hausdorff vector space. The exterior direct sum E & F is Fréchet and has the closed subspace
N ={(a,—a) : a € ENF}. The non-direct sum of E and F' then is the Fréchet space E+ F := E® F/N.
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DEFINITION 3.4. We call the symbol a in (3.4) a generalized singular Green symbol of order m and
type d, if p = 0. For d = 0, we obtain an element of S (R*~! x R* ;8" (Ry )™M & CN2,S(Ry )N @ CM4)
with suitable NVy,..., Ny € Ny.

The following proposition lays the foundation for Theorem 3.7, below.

PROPOSITION 3.5. Letu € L>(RxR), and suppose that, for j = 1,2, and all k,1 € Ny, the distribution
foiju(xl,:cz) is an element of L>(R x R). Then u € S(R x R).

Proof. For each [ € 2N we have op (1 + &} + &)u € L2(R?). Since 1+ & + &, is an elliptic symbol of order
[, we conclude that u € H®0) (R?) for all I. On the other hand, the assumption with [ = 0 implies that
u € HOF) (R?) for all k£ € N. So it remains to show that

EE (R?) N O (R?)] = S(R?).

Denote by F' the Fréchet space on the left hand side. A system {pj, : k € N} of semi-norms for F' is given
by
pr(w) = | (@) ull2 + | (D) ul| 2.
Clearly, S(R?) is a subset of F. It even is dense: Fix ¢ € C§°(R?) with ¢(0) = 1; let p. = ¢(e'). Given
u € F we have p.u € S(R?); by dominated convergence, p.u — u in F as € — 0.
For u € S(R?), integration by parts and and Cauchy-Schwarz’ inequality imply that

oo D3l = [ (e D3w) (a7 D) do < Cpuo?

provided that k > max{|al,|3|}. Here C is a universal constant depending only on « and 3. Hence z®D?
extends to a continuous operator on F, and F C S(R?). 4

DEFINITION 3.6. We shall write R2 | = Ry x Ry.

The importance of the following theorem lies in the fact that it shows the equivalence of the operator-
valued approach and the standard definition: The estimates in 3.7(i) are those required in the usual
presentation of singular Green operators, cf. e.g. Grubb [3, (2.3.28)].

3.7 THEOREM: SINGULAR GREEN SYMBOL KERNELS. Let m € R and let {g(y,n) : y,n € R? x R?}
be a family of operators L?(R; ) — L2(R.). Then the following are equivalent
(i) Each g(y,n) is an integral operator with a kernel §(y,n;u,v) satisfying the following estimates:
For all k,k',1,l' € Ny, «,f € N, there is a constant ¢ depending on k,k',1,1', a, 3, with
' ' ~ S T Y
lu D ' DY Dy DYy m 0, 0)l| 2z < e ()1

(ii) g€ S™(R? x R1;S'(Ry ), S(Ry)).
(iii) g € S™(R? x R?; L*(R; ), S(R+)) and g* € S™(R? x R?; L*(R; ), S(R+)), where g* = {g(y,n)" :
y,n € R?} is the family of point-wise adjoints.

Proof. (i) = (ii). It is easy to check that K (py=1 D;;‘Dgg(y, 1)Ky is the integral operator with the symbol
kernel

ha,s(y,150,0) = (Dy Dy @) (y, 05 (n) " u ()" 0) (m)

The estimates for § imply that hq. g(y,n; -, -) is a function in S(RZ , ), and all its semi-norms are O((n)m_la‘).
In particular, it induces an operator from S'(R;) to S(R}), and we get (ii).

(ii) = (iii). Trivially, g € S™(R? x R?; L*(R; ), S(R;.)). Moreover, g € S™(R? x R?; HS (R4.), L*(R}.))
for all o € R%. Hence 1.15 shows the asserted property of g*.

(iii) = (i). The operator k,-1g(y, MK : L*(Ry) — S(R;) is continuous. In particular, it is a
Hilbert-Schmidt operator on L?(Ry ) and thus has an integral kernel hy (y,n;-,-) € L*(R% ), and

||h1(y777;'7')||L2(R3_+)) = ||"6(77>—19(?J;77)“(77)||H5(L2(R+))-



A SHORT INTRODUCTION TO BOUTET DE MONVEL’S CALCULUS 13

The last norm is bounded by the norm in £(L*(R; ), H®D (R, )). By a direct calculation, the operator
g(y,n) then has the integral kernel

(3.6) g1y, m5u,v) = haly, m; (n) u, (n) v) (n) -
Correspondingly, the operator /<;<n>_1g*(y, 1)k (y) has the kernel hy(y,n;u,v), and
(3.7) ha(y,m;u,0) = ha(y,m;0,u).

The mapping ukDﬁln(n>_1D7"7‘Dgg(y, Mk L*(Ry) = S(Ry) also is continuous. Therefore,

lu* DY Dy DY (y, 13w, 0)l| 22, = O™ 1),
Using relation (3.7) we also have

[v' DY Dg Dy s (y, 75w, 0)| 2 2, = O™ 1),
Together with Proposition 3.5, these estimates show that

[ DE v' DY DS D8 (y, m5u,0) | gy = O((n)™ ™).
Combining this with (3.6), we obtain (i). N
LeEmMA 3.8. We may replace the estimates in Proposition 3.7(1) by

sup [u*DF o' DY D”‘DB 3y, m;u,v)| < c(n )Hm%al*kﬂcl*lﬂl )
u,v>0

This is a consequence of the following estimates for functions in S(Ry):

(58) suplFOF < 2fllra IDef e,y and
(39) Wl < @7 sp 1+ () 01O
Proof. (3.8) follows from the identity |f(¢) — [7 0:{f(s)f(s)}ds. For (3.9) we note that

17 e < ggg(l FOAOP [0+ o)
N

3.9 THEOREM: POTENTIAL AND TRACE SYMBOL KERNELS. (a) Let m € R and let £ = {k(y,n) :
y,n € R?} be a family of operators in £(C, L(R;)). Then the following are equivalent:

(i) The operators {k(y,n) : y,7 € R’} act on C by multiplication by functions k(y,n;-) satisfying
the following estimates: For all [,1’ € Ny and all multi-indices o, 3 € Nj !, there is a constant c,
depending on [,1’, a, 3, such that

lu' D}, D5 DRy, w3 ) |2z < e (™ 1"

(ii) ke S™(R? x R?;C,S(Ry)), i.e. k is a potential symbol.

(iii) The family k* of point-wise adjoints k* = {k(y,n)* : y,n € R?} is an element of S™(R? x
RY; S'(Ry ), ).
(iv) We may replace the estimates in (a) by

P |UZDZD?D5’~“(?J;77;U)| < e (pyt/Frmolal=tH
(b) A trace symbol ¢t € S™(R? x R?; S'(Ry.),C)) of order m and type zero is given via

ty,n)f = / (y,mu) f(u)du, feSRy),

where # satisfies the estimates in (a.i) or (a.iv).
In particular, potential and trace symbols are dual to each other.

Proof. The equivalence of (i) and (ii) can be shown just as in Proposition 3.6. Furthermore, (ii) and (iii)
are equivalent, since Hy 7 (R4) = H7(Ry ), cf. 1.15. Finally we may use sup-norm estimates by the same
arguments as in Lemma 3.8. <
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EXAMPLE 3.10. In 1.5 we saw that v; € S7+1/2(R*~1 x R*~}; H(R; ),C) whenever oy > j + 1/2.
Let us show that +; is a trace symbol of order j + 1/2 and type j + 1. Indeed, we can write

(3.10) Yof = / ) e &) f(yn)dyn — /0 (00, F(yn)dya,
f € S(Ry). Hence y9 = to + t10+, where

— (¢ = ~unl€) £(y,) )y, d - _ > v (&) £y, )dy,.
tof <s>/0 e f(yn)dy, and b f / £ (yn)dy
In particular,

toren =€) [ et f0d = () (¢ D gy e

so tg € SY2(R* 1 x R*1;S'(R.),C). In the same way t; € S~ Y2(R* ! x R* ;S (R, ),C). Applying
(3.10) to % f we get the desired result by iteration.

REMARK 3.11. It is obvious that there are many different ways to write v; = Z tlal with trace
symbols t; of order I +1/2 — j and type zero.

4. The Analysis of Compositions

We may compose two boundary symbols of orders my, my € Z and types dy,ds € Ny, say

_ < opspi+g ki ) _ < opi P2ty ke )
a; = y s = y

t1 S1 to 52
provided the dimensions of the matrices are compatible. According to Lemma 1.12(b)
ajas € Sm1+m2 (]Rnfl x ]Rnfl : H° (]R-I—)Nl ® (CN2 , Ha'f(m1+m2,0) (M)N;} ® (CN4)

for suitable Ny, ..., N4 supposing o1 > dy—1/2 and o7 —ms > d; —1/2. We can compute the composition

_ < pit+a k ) < P +gs ke )
ajas =
tl S1 tz S92
_ | (or#ap2)t +1U(p1,p2) + 91 g2 + 105 + 9192 +kits pi ke + gike + kis
tips + tigs + sito tiks + s1592 '
We have written p+ instead of opJr pj,j = 1,2, in order to save space, and (p1#,p2)" instead of

op (p1#np2); the notation #,, indicates composition with respect to .
We will show:

(1) U(p1,p2) = P ps — (p1#np2)" is a singular Green symbol of type (ms); = max{ms,0};
ii) plgo is a singular Green symbol of type d;
) g1py is a singular Green symbol of type (my + d;)+ = max{ms + d;,0};
) 9192 is a singular Green symbol of type dy;
) kito is a singular Green symbol of type ds;
) p k2 is a potential symbol;
(vii) g1k2 is a potential symbol;
ii) kis2 is a potential symbol;

) tipg is a trace symbol of type (m2 + di)+;

) t1g2 is a singular Green symbol of type dy;

) s1t2 is a trace symbol of type do;

) ti1ko is a pseudodifferential symbol;

) s182 is a pseudodifferential symbol.

In all cases the order of the respective symbols is m; + ma. When referring to the symbols in (xii)
and (xiii) as ‘pseudodifferential’ we stress that the Banach spaces E, E in the sense of Definition 1.4 are
simply CV2 and CM4, respectively.

We therefore obtain the following result:
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THEOREM 4.1. The point-wise composition aias of two boundary symbols ay and as of orders my and
my and types di and do, respectively, is a boundary symbol of order my +ms and type max{ms +d;y,ds}.
Its pseudodifferential part is p1#Fnp2.

The proof is rather long, and we shall break it up into a sequence of partial results. Let us first deal
with the easy cases, namely (ii), (iv), (v), (vi), (vii), (viii), (x), (xi), (xii), and (xiii). We may assume that
Ni,...,Ny=1. Write g, = Z;'h:o 9107 and g, = Z?io g2;07.. For (ii) note that

da

pige =Y (pf92)07,

=0

where, according to Theorem 2.12 and Lemma 1.12, pi ga; € S™itm2=i(R*—1 x R~ L5 S'(Ry ), S(Ry)).
For (iv) we observe that

(4.1) o € SR x R*', H7(Ry.), H7~UO(R, )

for all o € R?. Then Lemma 1.12 yields the result. The proof of (v), (vi), (vii), (x), and (xii) is analogous.
For (viii), (xi), and (xiii) we recall additionally that s, € S"¢ (R"~' x R*~') = §™2(R"~' x R*~!; C, C).

Compositions (iii) and (ix) are slightly more delicate. Consider (iii), for example: In order to show
that glp;‘ is a singular Green operator we first note that

dypg =110, [0, polet = op [ip2(z,8)&n + Or,p2(w,8)].

Sm2+]

By iteration, 81_;1); = op ¢; for a suitable ¢; € Sy,

d; =0.
Next we shall establish a central point in 4.4, below: For fixed N we may split p, in a ‘differential’
part and one that acts on the H-spaces:

(R™ x R™). So it is no restriction to assume that

N m24

0P, P2 =3 > whsikdk +a

j=0 k=0
with s;; € S™2 KRt x R*71), a € S™2 (R x R*1; HO(R), H7~(m2+.0)(R)) for each o € R?, and
Xpa € S™ (R x R HI(Ry), H "™+ Y([R,)), —-N <o, <0.

Here x4+ denotes multiplication by the characteristic function of Ry . This makes sense: For u in C§° (R} )
and ', ¢ fixed, a(z',¢')u is smooth on R. Multiplication by x, furnishes an element of HJ(R) which
coincides with the one given via restriction to Ry followed by embedding into HJ(R). As we shall
show, x+a(z',€") extends to an element of L(HG (R), Hgf(m“’o) (R,)) and satisfies the required symbol
estimates.

After the above reduction, g; is a singular Green symbol of order m; and type 0, and

N ma2y

gipy = Z (g12],51)0% + g1x 10
]: k=0

Clearly, s;i, induces an element of S™2~#(R*~! x R*~1; H(R;), HS (R+)) and
ol € SR x R HE(Ry), Hy 7 (Ry)),

o € R?. The summation therefore yields a singular Green symbol of order m; + ms, while g;x1a €
Smatmz(Rr—l xR=1: HY(Ry),S(Ry)) for 0y > —N. By Lemma 4.2, below, gip3 therefore is a singular
Green symbol of order m; + my. The type now is ma since we assumed that d; = 0; in the general case
it is (mo + d1)+ by the above consideration.

Also composition (ix) follows from the above representation for op , ps. Statement (i) presents ad-
ditional complications. We shall deal with them below.

First, however, let us state a lemma which was employed in the proof, above. It is easily established.
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LEMMA 4.2. Let d € Ny and g € S™(R* ! x R* Y, HO(Ry), L*(Ry)), o1 > d — 1/2. Suppose that,
for each N € N, we find symbols

gy € ST x B Hy VN @), OV (R, )
with g = Z?:o ngai. Then g is a singular Green symbol of order m and type d.
We now turn to composition (i).
LEMMA 4.3. For h € Hy and all 0 € R? with o1 <0,
X+0P 4, h(n/ (€)) € SR x R HY (R4 ), H (Ry)).

Proof. The crucial point here is the boundedness of x yop, h(&,) : HyN(Ry) —» HyM(Ry), N € N. We let
A = op (14i&,)N. Clearly, A : H)(R,) — Hy ™ (Ry) is an isomorphism with inverse A\=* = op (1+i&,) ",
so it is sufficient to show that

A xpop PIA : G5O (Ry) — Hy ™ (Ry)

extends to a bounded operator on HJ(R,).
Now [op h]A = op, (h(1 + i&,)") = op (ho + po) for some hy € Hy and a polynomial py of degree
< N. The operator At x;0p(ho + po) is easily seen to have a bounded extension to H{ (R ). N

Here is the decomposition result used for (iii) and (ix):

4.4 DECOMPOSING opf p. Let p € S{(R* x R"), m € Z. Fix N € N and a function w € C§°(R)
with w(t) = 1 for ¢ close to zero. Write

N-1

PO = 3 )0, pla!,0,6) + w2, + (1wl (o, €

=0

with the Taylor remainder py. As a consequence of the transmission property, 87 p(z',0,(¢') &,) is an
element of S™(R"~! x R"~!)&,H. Now H = H' ® Hy, so we have 9] p(a',0,&) = >, sk (', )R +
qj(z',€), where the si; are elements of S™ ¥(R"~! x R"!), and ¢; has a representation

(4.2) chm ) hiej(€nf (€1))

with a sequence {Ay;} € I*, and null sequences {cy;} C S{%(R*™! x R*~!) and {hy;} C Ho. We therefore
obtain

N—-1 m 2
op, p = Z—n w(z, sk]8 +a, where
j=0 k=0 !
N— .
(4.3) a = op,, Z w(@n)gj + p w(@n)pn (2, ) + (1 — w(za))p(e, §)

j=0

Obviously, a is an element of S™(R* ' x R*~'; H°(R), H*~(m+9)(R)) for all o € R?. Moreover, we
deduce that x,a € S™(R x Rr=1; HS(Ry), HS ™+ (R,.)) provided that —N < oy < 0. In fact, this
is rather straightforward for the last two terms on the right hand side of (4.3); for the ones under the
summation we employ the representation (4.2) which allows us to focus on a single term. Then we apply
Lemma 4.3.

As explained above, this decomposition of op , p furnishes the statement regarding compositions (iii)

and (ix).

4.5 THE ANALYSIS OF THE LEFTOVER TERM. The leftover term [(p, ¢) arises from the composition
of the boundary symbols associated with two pseudodifferential operators p and g of orders m and m.:

I(p,q) = [op ] pllop q] —rtlop,, pllop, det =rtlop, pl(etr™ —1)op, e’
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We shall show that this is a singular Green symbol of order m; + my and type mai. As in 4.4 we find
s; € STa (R x R*1), 8, € S727F(R™ x R"~!) such that

ma me
0P, p= 80 +a  op,q= 5d; +b
Jj=0 k=0

(with the corresponding notation). In view of the identity
(44) amn€+f = €+amnf + f(0)50
valid for f € S(Ry ), we conclude that

mi1
(45) (Y ssgha) =0
j=0
Therefore I(p, q) = rTa(e™rt — 1)( Y2, 5,0% e + be'). Iterating (4.4) we see that

k—1
of etf=etok f+ 3 FO0 Y.
=0

Hence
meo mo k—1
(etrt = 1) Y 50k et f = =303 s, 0,€)m ()oY
k=0 k=0 [=0
We know from Example 3.10 that 7, is a trace symbol of order 1/2 4+ [ and type | + 1. So we can write
’I’TL271
(4.6) (p.g)= Y kn+rtaletrt —1be,
1=0

where

ma

k= — Z r+a§j(x',0,£')5(()]7l71).
j=l+1
Using (4.5) we may replace a by p. Since §;(z',0,£') € Sf?gij (R~ x R*1) it follows from Lemma 2.11
that k; is a potential symbol of order m; + mo — [ — 1/2, hence k;7y; is a singular Green symbol of order
my + meo and type moy as asserted.
Now let us consider the second summand in (4.6). On C§°(Ry) we have
rta(etr™ — Dbet = —rTae r bet = —(rtae” J)(Jr bet)

where r~ denotes restriction to R_, e~ extension from R_ to R by zero, and J is the reflection operator

Ju(zy,) = u(—x,).
Note that, for u € C§°(Ry) C S(R), be™ is a function in S(R), so that there are no problems with the

compositions.

We shall show that rTae~J and Jr~bet are type zero singular Green operators of orders m and ms
respectively. Let us first analyze rTae~.J. From (4.3) we know that

N-1
:L’]
(4.7 a=op,, < Z ﬁwqj +2Nwpn + (1 - w)p);
i=0 7
here g; is the projection onto Hy of 8£np(:v’, 0,¢',-), and ¥ py is the Taylor remainder; N as well as the
cut-off function w are fixed.
In the argument, below, we shall only need the fact that py € S{"g (R" x R"), which is obvious from
Taylor’s formula. Since (1 —w)p vanishes to arbitrary order at z, = 0 we find an 7 € S{'j (R" x R") with
Npy + (1 —w)p = alr.

Step 1. The operator of multiplication by x4 w is an element of S~ (R* ! x R* " 1; H*(R}.), H° (R}))
for all o € R?: This follows from the identity

ey -1 Thw(@n) ey = (€) adw(@n/ (€))



18 ELMAR SCHROHE

together with the observation that the family {w(-/ (¢')) : €’ € R*"!} is uniformly bounded on H? (R ).
Step 2. rrop, g~ J € S™(R* 1 x R* ;8" (Ry), S(Ry)): Write g; in the form (4.2). Then it is
clearly sufficient to show that
rtop,, h(€/(€))e”J € SR x R S'(Ry ), S(Ry)).
We note that ki -10p, h(&n/(€'))key = op,, h(&), thus it is enough to prove the continuity of

rtlop,, hle”J : S'(Ry) = S(Ry); derivatives can be treated in the same way. The operator op , h has
the integral kernel

k(n, yn) = / il v e (g, ),

so rtfop, hle™J is given via k(zn, —yn) = (F~'h)(z, + yn) on Ri . Since (F'h)|r, € S(R}) we
obtain the assertion.

Steps 1 and 2 imply that the terms under the summation in (4.7) are singular Green operators of
order m; — j and type zero.

Step 3. Fix K € Nand r € S{'} (R x R"). Then r*[op, x}r]e” J defines an element of S~ (R" ! x

n
R HO_(K’K) (R,), H'K)(R, ) provided N is sufficiently large: Let us show that the norm of
K(en-1 rtop,. (wgD?, Df,r)e* Tk eny
-N —
(4.8) = (§)7 rfop,, @ (DEDL) (" an/ (€) € En(€)e )

in £(Hy "SRy, HEF(RL)) is O((€") 5711 1t is clearly no restriction to assume ow = 8 = 0. The
operator in (4.8) then has the integral kernel

k(wn,yn) = (€)Y / @ty )en g N (3! 2, [ (€1, €, €n (€1))dEy

on R% | . This makes sense as an oscillatory integral: We may choose | > (m1 + 1)/2 and regularize it as
a » .
(4.9) /6“ e g (4 ) DT (AL, 1) (@ 0 (€)1 € 6n (€ dn

The integrand then is (ol (z, + ) (€)7 (€', 6 (€)™ ™). In view of the identity (€6, (€) =
(€'Y (&) we see that

k(@n,yn) = O(@h (n +ya) 2 (€)™ Y), 1> (my+1)/2.
For z,,y, < 1 we choose | = N/2 (N is large and may be assumed to be even) and conclude that

k(zn,yn) = O™ ). Otherwise we let 20 > N + 2; then k(zn,yn) is O((@n + yn) > (Y™ ™).
Consequently,

p/ k(@ yn)lden, = O((€)™ ), and

Yyn 20

* m1—N
sup [ an,a)ldsn = OUEY™ ).
z,>0J0

By Schur’s Lemma the norm in £(L2(R,.)) of the operator family in (4.8) is O((¢/)™ V).

We next recall a general fact: We can estimate the norm of an operator T € L(H, (K.K) (R4),
HEK)(R,)) in terms of

(e T 8h ||z, = mom!, LI < K},

and these operators have kernels (—1)%?8;”"’ yfzagnk(xn, Yn) if k is the kernel for T'. We plug this into our
regularized expression (4.9) for k. We shall then have to ask I > (m; + 2K + 1)/2 to make the integral
converge. For N > mj + 2K + 1 we can apply Schur’s lemma as before and we obtain the assertion.
Steps 1, 2, and 3 show that rTae™J is a singular Green operator of order m; and type zero. In
virtually the same way we can treat Jr~bet and prove that it is a singular Green symbol of order ms
and type zero. Altogether we then know that [(p, ¢) is a singular Green symbol of order my + m2 and

type ma.
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REMARK 4.6. If a; and a» are classical, then so is the composition a;as.

5. Operators on the Half-Space

We shall now introduce Boutet de Monvel’s algebra.

5.1 OPERATORS IN BOUTET DE MONVEL’S CALCULUS. Given a boundary symbol a of order m € Z
and type d € Ny as in (3.4) we call A = opa an operator of order m and type d in Boutet de Monvel’s
calculus and write A € Bm’d(ﬁi).

The operator A therefore is a 2 x 2 matrix of operators

6.1 a=(PE 5

We call Py =op*p=op,op jﬂ p the pseudodifferential part of A. The operator G = op g is a so-called
singular Green operator, T' = opt a trace operator, K = op k a potential (or Poisson) operator; S = op s
is the pseudodifferential part on the boundary.

The classical elements in Boutet de Monvel’s calculus are the operators op a, where a is classical in
the sense of 1.11. The notation is B;’Z’d(ﬁi).

We call A a generalized singular Green operator if a is a generalized singular Green symbol as in 3.4.

The intersection [),,c, B™(R}) is the space of regularizing operators of type d.

We endow these spaces with the topology inherited from the topology on the associated boundary
symbols, see 3.2.

REMARK 5.2. The sum in the upper left corner of (5.1) is not direct: Let, for example, P be a
regularizing pseudodifferential operator which has an integral kernel in S(R" x R™). Then it is easy to
see from Theorem 3.7 that P, coincides with a regularzing singular Green operator.

On the other hand, Theorem 5.9, below, shows that singular Green operators are regularizing when
localized to the interior. If we additionally assume P to be classical, we conclude that P, can only coincide
with a singular Green operator, if it is regularizing.

Combining (3.5) with Corollary 1.19 gives the following result.

THEOREM 5.3. An operator A € Bm7d(ﬁi) induces continuous mappings

Wws (]Rnfl , He (]R—F))Ml st(m,O) (]Rnfl , Hcrf(m70) (]R—F))Nl
A: D — ®
Ws(]Rn_l,(C)Mz Ws—(m,O) (]Rn—l,(c)Nz

for all o € R? with oy > d—1/2 and all s € R*.

For unweighted Sobolev spaces the following statement is an immediate corollary of the above theorem
and 1.17(b). The statement for weighted spaces can be obtained by the commutator technique in the proof
of 1.19.

THEOREM 5.4. Let 0 € R2, and A € B™4R’). Then

He (]Ri )M1 Ho—(m,0) (]Rr_r_)N1
A @ — @
HU(]Rnfl)Mz Hzrf(m,O) (]Rnfl)Nz

is bounded for o1 > d —1/2.
COROLLARY 5.5. The operators in 5.4 have continuous restrictions
A:SRYM @ S(R* M2 — S(RY )™M @ S(R* )Nz,
5.6 THEOREM: COMPOSITIONS. Consider two operators
Ap: S(R)M @ SRHM - S(RY)M @ S(R)N2

and
Ay SR @ SR o SRE)M @ SR
with A; € B™4(RY) for 1 =1,2.



20 ELMAR SCHROHE

(a) The composition Ay As is an element of Bmﬁm%d(@i), d = max{my + di,d>}.
(b) The composition is a regularizing operator whenever one of the factors is, and it is a generalized
singular Green operator whenever this is the case for A; or As. In particular, BO’O(KZ) is an

algebra, and B‘”’O(Ki) as well as the generalized singular Green operators are ideals.
(c) A1As is a classical operator if both A1 and As are classical.

Proof. (a) Write A; = op a; with

o = ( opi. M ;F 2?1:0.911'51 ky ) '
ko tii O St
Next choose left symbols for pi1, g15,t15, k1, 51, and choose right symbols for pa, goj, t25, k2, s2 with respect
to the z'-action.
opb(y,mopbr(y',n) = op (be(y,Mbr(F,n))-
So we get the desired result from Theorems 1.14 and 4.1. <q

5.7 THEOREM: ADJOINTS. Let A € Bm’o(ﬁi),m € Z,m < 0. Then the formal adjoint A* of
A:SERYM o S(RHM o S(RY)NM @ S(R )N
with respect to the inner products in L*(R} )™ & L2(R* )Mz and L*(R} )N & L2(R*~*)N2, respectively,
is an element of BWO(RZ). If A=opa with a as in (3.4), then
U R P
t* s* '
Here, g*(z',y',&') = g(y', 2", &))", t* (2, ', &) = k(y', ', &), k(2 0", &) = t(y', 2", )", and s (2", ', ')
= sy, 2, &),
Note that the assertion is no longer true if d or m are positive.

Proof. Let (opp)* = opp* be the formal adjoint of opp with respect to the inner product in L?(R™).
Then the formal adjoint (op *p)* of op *p with respect to the inner product in L?(R?) is given by

(op "p)* =op "p".
Indeed, op *p* is bounded on L?(R, ), since m < 0, and

(r"lopp’letu,v) = ([lopp*leTu,e™v) = (eTu,oppleTv)

= (u,r"[oppleTo).

For the symbol g we first apply 3.7 to see that the pointwise adjoint g(z',y',£')* defines a singular Green
symbol. Next we deduce from 1.15 that the formal adjoint of op g is op g* with ¢g*(z',y', &) = g(y', z',&").
Similarly we see from Theorem 3.9 that the pointwise adjoint of a trace symbol of type zero is a potential
symbol and vice versa; we then employ 1.15.

For s the assertion follows from the standard pseudodifferential calculus or, alternatively, also from
1.15. q

5.8 THEOREM: ASYMPTOTIC EXPANSIONS. Let N € N. Adopting the notation of 5.6 and 5.7 we can
find boundary symbols cy and dy such that
N-1

1
Ardz = Y —op (B (e, €)DYax(’,£) = opey
|a]=0
and
N1y
A= 37 Sop (08 DYa(a’,€)") = opdy.
|a|=0

The symbols cy are of order my + ms — N and type max{msy + d1,d>}, while dy is of order m — N and
type zero.

Proof. This follows from Theorem 1.14. <q
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THEOREM 5.9. Let G be a singular Green operator of order m and type d, T a trace operator of order
m and type d, and let K be a potential operator of order m. Furthermore let € > 0 and ¢ € Cg’o(]R{j_)
vanish for x, < e. Denote, just for the moment, by M, the operator of multiplication by ¢. Then

(a) GM, is a regularizing singular Green operator of type zero.
(b) MG is a regularizing singular Green operator of type d.
() TM, is a regularizing trace operator of type zero.
(d) MyK is a regularizing potential Green operator.
Proof. (a) Tt is no loss of generality to assume the symbols to be scalar. Let px (2, 2,) = p(z', 2,)2, .
Then px € Cp°(R? ), and
GMy=GMyy M,~.

Since M, is an element of S~V (R*~! x ]R”’l;Hg(KJF),Hg_(O’N) (R4)) for each o € R?, the assertion
follows easily.
The arguments for (b), (c), and (d) are analogous. N

We now introduce ellipticity and parametrices. As usual, ellipticity is the property of the symbol (and
the associated operator) that enables us to find an inverse up to an error of order —1, while a parametriz
is an inverse modulo regularizing elements. Both notions are easily seen to be equivalent as a consequence
of the symbolic calculus.

We shall finally state a simpler condition for ellipticity, namely the ellipticity of the interior pseudodif-
ferential symbol together with the uniform invertibility of the boundary symbol with the pseudodifferential
symbol p replaced by the z,-independent symbol py, where po(z', &) = p(z',0,§).

DEFINITION 5.10. Let A € Bmvd(ﬁi) with m € Z,d < my, and A = opa.

(a) We call A elliptic, if there exist boundary symbols b, b, of order —m and type (—m)4 such that
both boundary symbols b;a — I and ab, — I have order —1. Also the boundary symbol a will then
be called elliptic.

We have b; = by — bjab, + bjab, — b, + b,., so b; and b, differ by a symbol of order m — 1 only,
and we may choose b; = b,.. Note that also b; and b, are elliptic. The composition rules imply that
the type of bja — I is m4, while that of ab, — I is (—m).

(b) We shall say that the operator B € B‘m7(_m)+(ﬁi) is a parametriz for A if BA — T and AB — 1
both are regularizing. Their types are m and (—m)y, respectively.

THEOREM 5.11. Let A € Bm’d(ﬁi), d <m4. Then A has a parametriz if and only if it is elliptic.

Proof. If A = opa has a parametrix B = op b, then 5.8 implies that ba — I and ab — I both are boundary
symbols of order —1.

Conversely suppose we find b, b, such that bja — I and ab, — I have order —1. Let B; = op b; and
B, = op b,. We find boundary symbols r; and r, of order —1 and type m4 and (—m)y such that

BA—1=opr, AB,.—I1=opr,.

Indeed, this is immediate from the assumption combined with 5.8. Next choose

b~ Y (—r)#igth and by ~ bt Y (—rp)
=0 =

In this notation, the ‘#’ indicates that we pick a boundary symbol for the corresponding composition,
e.g., op [(=r)#7] = [op (—r)}?. The type of rl#] is m for all j while that of r#/ is (—m), . Finally we carry
out the asymptotic summation modulo regularizing boundary symbols. We let B; = opb;, B, = opb,,

and conclude that
n

BA—I=R € B> (R}) and AB,-I=R, e B >™+(R}).
Hence R ~ R R ~ ~ R
B, = Bl(AB,a - R,a) =B, + R;B, — BiR, = B,
modulo B’m’(’m”(@i). So both B; and B, furnish a parametrix. N

With a little more work, we find the following simpler ellipticity criterion which we shall not prove
here:
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THEOREM 5.12. Let

. ( oprpt+yg k >
t s

be a boundary symbol of order m and type d < my. Let po(x', &) = p(z',0,€) and
0_ ( opipt+g k )
a’ = .
t s

Then a is elliptic if and only if

1. pe SH(R™ x R™) is an elliptic N x N matriz-valued symbol on Ri;

2. a®(z', &) : H™O (R )N oCM' — LR )N oCM is an isomorphism for all =’ and & with |¢'| > 1,

satisfying a® (', &)~ = O((&)™™).

By referring to p as ‘elliptic of order m on KT;_’ we mean thzinthere isaqe SR x R") such that
pq — I and gp — I coincide with a symbol in S;,*(R* x R™) on R, x R".

The key ingredient in the proof is the fact that, according to Theorem 5.9, the non-pseudodifferential
entries of a are regularizing outside a neighborhood of the boundary.

5.13 OUTLOOK. It remains to establish the invariance of the symbol classes under suitable changes of
coordinates in order to introduce Boutet de Monvel’s calculus on manifolds with boundary. I shall omit
this part, since there are no new aspects to be developed, and all techniques are fairly standard.

The results on compositions, adjoints, and mapping properties carry over to the case of operators
acting on sections of vector bundles. In particular, if A is an operator of order m and type d then

Hs(XaEl) Hs_m(XaEQ)
(5.2) A: ® — @
H*(0X, F)) Ho ™(0X, F)

is bounded for each s > —1/2, so that we have the mapping property (0.1). In view of the well-known
imbedding properties of Soboloev spaces on compact manifolds we see immediately that ellipticity implies
the Fredholm property of A in (5.2).

A few more features which might be of interest can be found in the paper [16] which also deals
with weighted symbols on certain non-compact manifolds. In case £; = E; = E and F} = F;, = F,
for example, the algebra B%°(X) of all operators of order and type zero is a Fréchet sub-algebra of the
Banach algebra of all bounded operators on the Hilbert space L*(X, E) ® L*(0X, F). It is closed under
holomorphic functional calculus in several complex variables, hence a pre-C*-algebra and moreover a
U*-algebra in the sense of Gramsch [2].

Using the fact that there exist order-reducing operators in the calculus, cf. Theorem 2.10, one can
show that the calculus is closed under inversion: If the operator A in (5.2) is bijective, then its inverse
is again an element of the calculus. Moreover, ellipticity is not only sufficient but also necessary for the
Fredholm property of A : H™(X,E,) & H™(0X, F;) —» H°(X, E2) & H°(0X, F3).
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