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Abstract

We prove the existence of HP(D)-limit of iterations of double
layer potentials constructed with the use of Hodge parametrix on a
smooth compact manifold X, D being an open connected subset of
X. This limit gives us an orthogonal projection from Sobolev space
HP(D) to a closed subspace of HP(D)-solutions of an elliptic operator
P of order p > 1. Using this result we obtain formulae for Sobolev
solutions to the equation Pu = f in D whenever these solutions
exist. This representation involves the sum of a series whose terms
are iterations of double layer potentials. Similar regularization is
constructed also for a P-Neumann problem in D.

1 Introduction

This paper is based on the following simple observation. Consider an op-
erator equation Au = f with a bounded linear operator A : Hy — H;
in Hilbert spaces Hy, H; and assume that for every u € Hj the following
formula holds true

u=Ilyu—+ Il Au

where II; is a projection from Hj to the kernel of A. Then one can hope
that, under reasonable conditions, the element Il f defines a solution to the
equation Au = f.

It is well known that Hodge theory for partial differential operator P
with injective symbol on a compact manifold X gives an L?-orthogonal
projection to space of solutions to equation Pu = 0 on the whole X. In
this paper using the Hodge theory we construct an orthogonal projection
from Sobolev space H?(D), D being an open connected subset of X and p
being the order of P, to a closed subspace of HP(D)-solutions to equation
Pu=01in D (see Sections 2, 3). Let us briefly sketch some motivations for
this investigation.

First, local solvability for linear partial differential operators with injec-
tive symbol and smooth coefficients is a long standing problem of the theory
of overdetermined systems (see, for instance, [8]). With the use of this re-
sult we succeed in proving a representation formula for HP-solutions to the
equation Pu = f on open subsets of X for an operator P with injective
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symbol whenever these solutions exist (see Section 4). This representation
involves the sum of a series whose terms are iterations of double layer po-
tentials, while solvability of Pu = f is equivalent to the convergence of the
series together with the orthogonality to ker P* (the last one is a trivial
necessary condition).

The second motivation is that this method gives a possibility to con-
struct a similar regularization for a P-Neumann problem (see Sections 5,
6) For the CAUCHY-RIEMANN system P = 0 in C* (n > 1), the double
layer potentials involved in the regularization formulae are the MARTINEL-

LI-BOCHNER integrals. In this case, results similar to ours were obtained
by A.V. ROMANOV [6].

Theorem 1.1 Let D be a bounded domain in C* (n > 1) with a con-
nected boundary 0D of class Ct, and Mu is the Martinelli-Bochner integral
forw € HY (D). Then in the strong operator topology of H' (D) there exists
a limit limy_,oo MY = 11, where 11 is a projection from H*(D) onto the
closed subspace of holomorphic H'(D)-functions.

Using this theorem ROMANOV (see [6]) obtained an explicit formula
for a solution u € H'(D) to the equation Ju = f where D is a pseudo
convex domain with a smooth boundary, and f is a d -closed (0,1)-form
with coefficients in H'(D).

2 Hodge theory on a compact manifold.

Let X be a C*°-manifold with dim X = n, EF and F be smooth C-vector
bundles over X, and do,(E — F') be the vector space of smooth linear
partial differential operators of order < p between the vector bundles E
and F. Let E* be the dual bundle of E, and let (.,.), be a HERMITIAN
metric on E. Then xg : E — E* is defined by < xgv,u >,= (u,v), (where
u, v are sections of E and < .,. >, is the pairing of E and E*). Let A7 be
the bundle of complex valued exterior forms of degree ¢ (¢ = 1,2,...) over
X, and dz be a volume form on X. We denote ‘P € do,(F* — E*) the
transposed operator, and by P* = ' (!P)xx € do,(F — E) the (formal)
adjoint operator for P € do,(E — F) (see, for instance, [8]).

Let Sp(U) stand for the space of weak solutions to the equation Pu =0
on an open set U in X. For every domain (i.e. open connected set) D
in X we will denote L*(E|p) the Hilbert space of all measurable functions
defined on D, for which (u,u)p2s,) = [ (1, u)ede < co. We also denote
by H™(E|p) the SOBOLEV space of distribution sections of £ over D having
weak derivatives in L?(Ep) up to order m and by SF(D) the closed linear
subspace of H™(Ejp) of weak solutions of the equation Pu = 0 in D.



Let T%(X) be the (real) cotangent bundle over the manifold X and o(P)
be the principal symbol of the operator P. From now on we assume that
the symbol o(x,() is injective for all x € X and ¢ € T*(X) \ {0}. Then
the Laplacian A = P*P is an elliptic operator of order 2p on X and there
exists Hodge parametrix for it (see, for example, [8], §8):

Theorem 2.1 There exist pseudodifferential operators K : D'(E) —
C*®(E) and ® : D'(E) — D'(F) such that:

(1) K is the L*-projection on the finite dimensional space Sp(X) having
the kernel K(z,y) = Y, hi(x) ® hi(y)* where {h;} is an orthogonal
basis for Sp(X);

(2) PK = KP* =0 and ®K = K& = 0;

(3) @ is a pseudodifferential operator of order (—2p) and for allu € D'(E)
we have (P*P)®u = u — Ku, ®(P*Pu) = u— Ku.

Then integrating by parts we see that

/ <'P*®(x,y), Puly) >, dy + / < K(z,y),uly) >, dy =u(x), v € X
X X

(2.1)
for every u € HP(E). Consider, for u,v € HP(E), the HERMITIAN form

h(u, v) = /X (Pu, Pv),dz + /X (Ku, Kv),da.

Proposition 2.2 The HERMITIAN form h(-,-) is a scalar product in
HP(E) defining a topology equivalent to the original one. K is the orthogonal
projection with respect to h(.,.) from HP(E) onto S(X). Moreover denoting
by

1f(0) = [ < PWw0). 1) >y dy
X
we obtain h(Tf,u) = [\ (f, Pu)ydx for all f € L*(F), u € H?(E).

Proof. The coefficients of P are C*™ - functions, therefore, Pu € L*(F).
It follows from (2.1) that h(u,u) = 0 implies u = 0 in X. Since (-,+), is a
HERMITIAN metric, h(.,.) is a scalar product on HP(E). Because K is a
smoothing operator we conclude that ||.||gr(g) is not weaker than /h(.,.).

Further, (2.1) and boundedness theorem for pseudodifferential operators
(see [5], 1.2.3.5) imply that there exists a constant ¢; > 0 such that for every

u € H?(E) we have |Jull3,q < o (||Pu||2L2(F) + ||Ku||§lp(E)). Since K is

a projection on a finite dimensional space Sp(X) we see that there exists



a constant ¢o > 0 such that for every u € HP(E) we have ||Ku||%{p(E) <
o ||Ku||i2(E). This proves the equivalence of the topologies.

If f e C®F), u € H?(E) then integrating by parts we deduce that
Tf = ®(P*f). Therefore, due to Theorem 2.1, KT'f = 0 and

(PO(P* f), Pu)ude / (P*PO(P* f), u)ude =

X

W(Tf, u) :/

X

[ o= [ (5.2

X

Now, because C*(F') is dense in L?*(F') we obtain the required statement
on the integral 7T'.
Finally, for u,v € H?(E) we have

h(Ku,v) = h(u,v) — h(T Pu,v) = / (Ku, Kv),dx,
X
i.e. K is a self-adjoint operator with respect to A(.,.) in HP(E) with K* = I,
which was to be proved. O

Proposition 2.3 Let f € L*(F). There exists u € HP(E) satisfying
Pu=f on X if and only if

/ (fy9)edz =0 for all g € ker T (2.2)
X

Moreover, if (2.2) holds then PTf = f on X.

Proof. The necessity of (2.2) follows from Proposition 2.2.

On the other hand, Theorem 2.1 and (2.1) imply that for every f €
L*(F) we have TPTf =T f,i.e (f — PTf) € ker T. Since both f and PT'f
are orthogonal to kerI" we conclude that PTf = f. O

Remark 2.4 It follows from Proposition 2.2 that g € kerT" if and only
if P*g =0 weakly on X, i.e. ker T = S}.(X).

If P is included into some elliptic complex of differential operators on
X, say, {E*, P'}, for vector bundles E' and P’ € do,,(E* — E*') where
P = P then the cohomology of the complex is finite (see, for instance, [8])
and condition (2.2) may be replaced by

P'f =0on X and /(f,g)xdxzofor all g € SY.(X)NS%(X). (2.3)
X



Remark 2.5 Since X is compact manifold and the complex (E*, PY) is
elliptic we see that the “harmonic” space H(X) = Sp.(X)NSY(X) is finite
dimensional.

Actually the Hodge parametrix may be useful on open subsets of X too.
Denote by Gp(.,.) a Green operator for P € do,(E — F)) (see [8], p.82).

Let D be a relatively compact domain (i.e. open connected subset) in
X with smooth boundary. Define the operators T Kp and M by

(Kpu)(z) = /D < K(z,y),uly) >, dy (v € X),

(Mu)(z) = — / Gp('P'(y. D)3, ) u(w) (€ X\0D),

Toha) = [ < PDww). f0) >y dy @eX)  (24)
D
for u € Hp(E|D), f S L2(ED)

By boundedness theorem for pseudodifferential operators (see [5]) and
Stokes’ formula we have

u(z), x €D,

0, r€X\D (2:5)

for every u € H?(Ep). Then the boundedness theorem for pseudodifferen-
tial operators implies that the integrals M, K and T given above define
linear bounded operators M : HP(Ep) — HP(E\p), Kp : H?(E)p) —
HP(E|D) and TD : L2(F]D) — Hp(E‘D)

Example 2.6 Let Y be a relatively compact domain with smooth bo-
undary dY in an open set X C R*, n > 1, and P be an operator with
injective symbol on X. Assume that P*P has a bilateral fundamental solu-
tion on X and let @ is the Green function of the Dirichlet problem for the
elliptic operator P*P in Y. NACINOVICH and SHLAPUNOV [3] constructed a
scalar product hp(.,.) on HP(E|p) defining an equivalent topology and such
that the limit of iterations of double layer potentials limy_,o, M gives the
orthogonal projection to S?(D). They also proved that the integral T f(x)
satisfies hp(Tpf,v) = [, (f, Pv).dx for all f € L?(Fp) and v € HP(E)p).
This case corresponds to the Hodge decomposition for the Dirichlet problem
for P*P in Y with K = 0 (cf. also SCHULZE, SHLAPUNOV, TARKHANOV

[7)-

In the sequel we will prove a similar result for the integrals 7 and M
in our more general situation.



3 Construction of the scalar product hp(.,.).

For our purposes we need information on solvability of the DIRICHLET prob-
lem for the operator A = P*P on a subdomain D of X.
Let U be a neighborhood of 0D in X, and F; (0 < j < p—1) be

vector bundles over U. Fix a Dirichlet system, say, {Bj}g?;é, of boundary

differential operators B; € doj(Ejy — Fj). This means that o(B;)(z, ()
have the maximal ranks for all x € U and vectors ¢ conormal to 9D.

Problem 3.1 Let Gag_lzbj € ®HP~I"Y2(Fjap) and ¢ € L*(Ep). Find

a section ¢ € HP(E)p) such that

{ PPy = ¢ n D;
(Bj)op =¢; (0<j<p—1).
We denote by H{(Ep) the space
H{(Ep) ={ue HP(Ep): Bju=0o0n 0D for 0 <j<p-—1}.

Then H{(E|p) is the closure of D(E|p) in H?(E|p). In the following well-
known statement Zy(D) stands for Sp(D)NHY(Ep) and Zy (D) consists of
sections ¢ € HP(E|p) satisfying [, (¢(x), v(z)).dx = 0 for all v € Zy(D).

Lemma 3.2 Problem 5.1 is solvable if and only if

/ (p,v)dx =0 for all v € Zy(D).
D

It has no more than a finite number of solutions; the difference between two
solutions belongs to Zy(D). Moreover, there exists a constant ¢ > 0 such
that

p—1
[l o) < € <||¢||L2(ED) +) ||¢j||Hp—j—1/2(Fj6D)>
=0

for every solution ¢ € Zy-(D) of Problem 5.1.

Let SPA(X\D) stand for S%. (X \ D) N Z3(X \ D). Using Lemma 3.2
we obtain a linear isomorphism

R-i—
SPA(X\D)3v — @ (Bjv)op € @_y(HPI~V2(Epp)).

Composing (R")~! with the trace operator

R
H*(Ep)3u — @Y (Bju)pp € 5, (H"7"*(Ejsp)).
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we obtain a continuous linear map H?(E|p) > u — S(u) € SPA(X\D).
For v € H?(E|p) we introduce now the following notation:

| u(w), x €D,
Ulu)(e) = { S(u)(z), =€ X\D.

Because (B;S(u))jap = (Bju)jap (0 < j < p—1), we have U(u) € HP(E).

Theorem 3.3 The HERMITIAN form hp(u,v) = h(U(u),U(v)) is a
scalar product in HP(E|p) defining a topology equivalent to the original
one. Moreover the integral Tpf satisfies hp(Tpf,u) = [,(f, Pu).dz for
all f € L*(Fp), u € HY(Ep).

Proof. Proposition 2.2 implies that \/(hp(.,.)) is not weaker than the
standard norm |[|.{[ (s, )-

On the other hand,

oo, u) = WU (), Uw)) < e1 |U(w) 3oy <

2¢1 (ulline,) + 1Sk, ) forall u € H(Ep).
| X\

Now using Lemma 3.2 and continuity of the trace operator we see that there
exist positive constants c3, ¢4 such that

p—1
1S () Fm ey < 8 D IBsullserrage ) < 8 el
7=0

for all u € HP(E)p). This proves the equivalence of the topologies.

Proposition 3.4 For every u,v € H?(E|p), f € L*(Fp)

hD(TDfav) :/(f7 P'U)wdl',
D

ho((M + Kp)u,v) = /

X\D

(PS(u), PS(v)).dx + / (KU (u), KU (v))dx.

X

Proof. Let f € D(Fp). Then T, f € HP(E) (and even in C*(E)). Let
us show that U(T fjp) = T'f. For this we need to check that (Tpf)x\p €
SPA(X\D). However, Tpf = Tf = ®(P*f) and therefore P*PTpf =
P*f — KP*f = P*f on X. Because f € D(Fjp) we see that P*PTpf =0
in X \ D. Since Zy(X \ D) C Z(X) and ®(P*f) is orthogonal to Z(X) we
conclude T fix\p € Z5- (X \ D), as desired.



Further, if u € HP(£p) then Proposition 2.2 implies that

ho(Tpf,u) = h(Tf,U(u)) = /X (f, PU(u))odz = /D (f, Pu)ydz.

Since D(F)p) is dense in L*(Fjp) and the operator T, is bounded, this
formula holds for every v € H?(E)p) and every f € L*(F|p). Finally, (2.5)
implies that

hp((M + Kp)u,v) = hp(u — TpPu,v) =

/X\D(PS(U),PS(U))Idx+/(KU(U),KU(U))wdx‘

X

O
This proves the theorem. 0

Corollary 3.5 The operators TpP : HP(E|p) — HP(E|p) and (M +
Kp) : H?(Ep) — HP(E)p) are bounded linear self-adjoint non-negative
operators with | TpP|| <1, ||M + Kpl| < 1.

Now it is easy to see that Z3-(D) is the orthogonal complement to Zy(D)
in the space H?(E|p) with respect to hp(.,.). Indeed, Zy(D) C Z(X)
because every element u € Zy(D) may be extended by zero from D to X
as a solution to Pu = 0 on X. Then S(u) = 0 for all u € Zy(D) and
hp(u,v) = [ (KU (u), KU(v))dx = [ (u,v) dz.

Corollary 3.5 implies that it is possible to consider iterations (M + Kp)”
and (TpP)” of the integrals (M + Kp) and T P respectively in the Sobolev
space HP(E|p). In the following statement II(X) stands for the orthogonal
(with respect to hp(.,.)) projection to a closed subspace ¥ in HP(E|p).

Corollary 3.6 In the strong operator topology in HP(E)p)
lim (M + Kp)" = II(S%(D)), lim (TpP)” = Il(ker(M + Kp)).
V—00

V—00

In the strong operator topology in L*(F)p)
lim (I — PTp)” = Il(ker(Tp)).

V—00

Proof. It follows from Corollary 3.5 that

lim (M + Kp)* =II(I — Kp — M),  lim (I — PTp)" = ker(PTp),
v—00 V—00

lim (TpP)” = ker(I — TpP)

V—00

in the strong operator topology in H?(E|p) (see, for instance, [3], §2, or [4]
for compact operators). Theorem 3.4 and (2.5) imply that ker(I — TpP) =
ker(M + Kp), ker Tp P = S%.(D) and ker PTp = ker Tp. O
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4 Solvability conditions for equation Pu = f

In this section we will use Corollary 3.6 to investigate solvability of equation
Pu = fin D. In particular, when it is solvable we will obtain an expression
of the solution by means of a series which can be computed from the data.

Corollary 4.1 In the strong operator topology in HP(E)p)

+§: (M + Kp)"(TpP), (4.1)

In the strong operator topology in L*(F)p)
I =T(kerTp) + Y  P(M + Kp)"Tp. (4.3)
n=0

Proof. Formula (2.5) implies that for every v € N

I=(I-PIp)N + NZ_I(I — PTp)"PTp. (4.4)

pn=0
It is easy to see from (2.5) that
(I— PTD)MPTD - P(I— TDP)“TD - P(M+KD)MTD

Then using Theorem 3.6 we can pass to the limit for N — oo in (4.4),
obtaining (4.3). The proof for (4.1) and 4.2) is similar. O

Theorem 4.2 Let f € L*(F|p). There exists w € HP(E) satisfying
Pu=f on D if and only if
(1) the series Rf = ZZOZO(M + Kp)"Ipf converges in HP(E|p);
2) [,(g, [)adz =0 for all g € ker T}.
Moreover, if (1) and (2) hold then PRf = f on D.

Proof. The necessity follows from Theorem 3.3 and Corollary 4.1.

Back, let (1) and (2) hold true. Then Corollary 4.1 implies that f =
> oo P(M + Kp)*Tpf. Because the series Rf converges in H”(E|p) we
conclude that f = PRf. U

Nacinovich and Shlapunov [3] proved such a result for the case considered
in Example 2.6.



Remark 4.3 Corollary 3.6 imply that the solution u = Rf to equation
Pu = f in D belongs to (SL(D))* where (SL(D))* is the orthogonal (with
respect to hp(.,.)) complement of S}.(D) in HP(E|p); it is the unique so-
lution belonging to this subspace. The partial sums Ry f of the series Rf
may be regarded as approximate solutions to equation Pu = f in D. It
easily follows from Corollaries 3.6 and 4.1 that Ry f € (S%(D))* for every
N € N and that limy o0 [|[PRN f — f — (ker Tp) f{|r2(r,) = O for every
feL*Fp).

Remark 4.4 Let us denote by § the extension of g € L*(Fip) from D
to X by zero. Then 0 = Tpg = T§ and therefore ker T is the set of all
functions g from L*(Fp) satisfying P*§ = 0 weakly on X (see Remark 2.4).

If P can be included into an elliptic complex (E*, P?) then condition (2)
in Theorem 4.2 may be replaced by

(2a) P'f =0on D and [, (g, f)zdz =0 for all g € ker T N SP, (D).

Let, as before, {Bj}ﬁ;é be a Dirichlet system of order (p — 1) on 0D,

{C’j}g;é be the Dirichlet system dual to {B;} with respect to Green formula
for the operator P (see, for instance, [9], Lemma 28.3), and let

(D) = {g € L*(F)p) such that P*g =0, P'g =0 in D, weakly satisfying

the boundary conditions (‘C;g)sp =0, 0 < j <p—1}.

We call $H(D) “harmonic” space for complex { E’, P} in D. By the ellipticity
assumptions, H(D) C C®(Fjp). It is not difficult to show that for the
Dolbeault complex this definition of the harmonic space $(D) is equivalent
to the one given in [1]. It is easy to see that kerTp N S%, (D) = H(D).
However the space (D) fails to be finite-dimensional in general (cf. Remark
2.5).

5 Applications to P-NEUMANN problem

In this section we show how Theorem 3.3 can be used to study the P-
NEUMANN problem associated to an elliptic operator P € do,(E — F).

Problem 5.1 Let ¢ € L*(Ep) and ¢; € H97Y22(Fjpp) (0 < j <
p — 1) be given sections. Find ¢» € HP(E|p) such that

PPy = ¢ in D:
'Oy Py = 1h; on 0D
0<j<p—1).
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The equation P*Pi) = ¢ in D has to be understood in the sense of
distributions, while the boundary values are interpreted in the variational

sense : -
/(qﬁ,v)xdx — / Z < (xg;) Bjv, v >, ds(y) =
D oD 755

/D(Pd), Pv),dy for every v € C*(Ep). (5.1)

Proposition 5.2 Let ¢ = 0 and ¢; = 0 for all 0 < j < p—1. Then
Y € HP(Ep) is a solution of Problem 5.1 if and only if ¢ € S%(D).

Proof. Obviously, ¢ € S%(D) is a solution of Problem 5.1 with ¢ = 0 and
;=0 (0 <j <p—1). Conversely, if ¢ is a solution of Problem 5.1 with
¢p=0and ¢, =0 (0 <j <p—1) then TpPt = 0. Hence

Y= (M+ Kp)yp = li_)m (M + Kp)“,
i.e. ¥ € SH(D) (see Corollary 3.6). O
The operator P*P is elliptic with C'*° coefficients, and the ranks of the
symbols of the boundary operators (*C}) are maximal in a neighborhood
of dD. Nevertheless, since, the space S%.(D) is not finite dimensional in

general, Proposition 5.2 shows that Problem 5.1 may be ill-posed.
In the following theorem we set

To(@i)a) = | DZ < (2,9), 05(y) >, ds(y),

V(6)(x) = /D < Bz, 1), dy) >, dy.

Theorem 5.3 Problem 5.1 is solvable if and only if

1) [ (¢, v)eds — [y, < (*p;) Bjv, ¥ >, ds(y) =0
for every v € S%.(D ),

(2) the series

r(9, @) = Yoty (M + Kp)*(V(¢) — T (@)

converges in the HP(E)p)-norm.

If (1) and (2) hold then r(¢, ®;) is a solution to Problem 5.1.

11



Proof. Let Problem 5.1 be solvable and let 1 € H?(E|p) be a solution.
Then V(qﬁ)—%(@lpj) = Tp P, and, due to Corollary 3.6, the series RP) =
(¢, ®1p;) converges in the H?(E|p)-norm.

Conversely, assume that (1) and (2) hold true. Let us prove that the
series (¢, ®1y,) satisfies (5.1). First, we note that

ToPr(,®v;) = (I = (M + Kp))r(¢,@y) = V() — Tp(@¢;).  (5.2)
Using (2.5) we see that for every v € C*°(E|p) and € D we have

v(z) = /D < ®(z,y), P*Pu(y) >, dy+(KDv)(x)—/ Gpp(P(z,y),v(y)).

oD
Then Fubini theorem and (5.2) imply that

/ (Pr(g, @iy, Po)ods = / (T Pr(g, @), P* Pv),dy—
D D

[ G (ToPr(6.00,),0(0) = /D (V(6) — To(@d;), P*Pv),dy—

. Gp-p(V(¢) — Tn(®v;),v(y)) =

p—1
/(¢,U — Kpv)dx —/ Z < *Bj(v— Kpv),; >, dx.
D oD 75

Finally, since Kpv € S%.(D) condition (1) implies that (5.1) holds. O

Of course, if Shapiro-Lopatiskii condition holds true for Problem 5.1
then this problem is a Fredholm one and the series (¢, ®;) converges for
all data ¢ and ;.

For P = 0 in C" a similar formula for solutions to the 0-Neumann
problem was obtained by KYTMANOV (see [2], p.177). In the situation
considered in Example 2.6 such a theorem was proved in [3].

6 Examples

Let P be a homogeneous (I x k)-operator with constant coefficient in R"
(n > 2) having injective symbol of order p > 1. In this case P*P has
the standard fundamental solution ® of convolution type. Then for n >
4p we have the Hodge decomposition in L?(R") with K = 0 and with ®
“vanishing at infinity” (see [9], p. 74). In this case S(u) € [HP(R" \ D)]*
is the solution “vanishing at infinity” to the exterior Dirichlet problem for
P*P and D and we are able to consider the scalar product hp(u,v) =
Jen (PU(0))*(2)(PU (u))(2)dz on [H?(D)]*. Thus this situation corresponds
to compactification of R* with one point at infinity.

12



Example 6.1 Let P be the gradient operator in R*. Then (—P*P)
is the usual Laplace operator in R*, & = ¢, is the standard fundamental
solution to the Laplace operator in R”. The compatibility complex for P is
de Rham complex and Problem 5.1 is the classical Neumann problem. It is
well known to be an elliptic boundary value problem.

Example 6.2 Let P be the Cauchy-Riemann system in C". In this case
(—4P*P) is the usual Laplace operator in R?". The compatibility complex
for P is Dolbeault complex and Problem 5.1 is the -Neumann problem
(see, for instance, [2]). It is well known to be an ill-posed boundary value
problem.
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