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Abstract

We study the approach to the theory of hypergeometric functions in several variables via a

generalization of the Horn system of di�erential equations� A formula for the dimension of

its solution space is given� Using this formula we construct an explicit basis in the space

of holomorphic solutions to the generalized Horn system under some assumptions on its

parameters� These results are applied to the problem of describing the complement of the

amoeba of a rational function� which was posed in �����

�� Introduction

There exist several approaches to the notion of a hypergeometric function depending
on several complex variables� It can be de�ned as the sum of a power series of a
certain form �such series are known as ��series� ��	
� as a solution to a system of
partial di�erential equations �
� ���
� ��
� or as a Mellin�Barnes integral ���
� In the
present paper we study the approach to the theory of hypergeometric functions via a
generalization of the Horn system of di�erential equations� We consider the system of
partial di�erential equations of hypergeometric type
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We use the notation xui � xui�� � � � xuinn � If fuig
n

i�� form the standard basis of the lat�
tice Z

n then the system ��� coincides with a classical system of partial di�erential
equations which goes back to Horn and Mellin �see ���
� x ��� of ��	
 and section ��
of ���
�� It was originally introduced as a natural system of partial di�erential equations
having a given series of hypergeometric type ��	
 as one of its solutions� In the present
paper the system ��� is referred to as the generalized Horn system of hypergeometric
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di�erential equations� We call a function y�x� hypergeometric if it satis�es ��� for some
choice of the polynomials Pi� Qi�

One of the reasons for studying the generalized Horn system is the fact that knowing
the structure of solutions to ��� allows one to investigate the so�called amoeba of the
inverse of a solution to ���� The notion of amoebas was introduced by Gelfand� Kapra�
nov and Zelevinsky �see ���
� Chapter �� x ��� Given a mapping f�x�� its amoeba Af is
the image of the hypersurface f���	� under the map �x�� ���� xn� �� �log jx�j� ���� log jxnj��
To describe the connected components of the complement of Af for a Laurent poly�
nomial f�x� was pointed out in ���
 �see Chapter �� Remark ���	� as a di�cult and
interesting problem� In section � we use the results on the structure of solutions to ���
for computing the number of connected components of the complement of amoebas of
some rational functions� The problem of describing the class of rational hypergeometric
functions was studied in a di�erent setting in ��
� ��
� The de�nition of a hypergeomet�
ric function used in these papers is based on the Gelfand�Kapranov�Zelevinsky system
of di�erential equations �
� ��	
� ���
�

Solutions to ��� are closely related to the notion of a generalized Horn series which
is de�ned as a formal �Laurent� series

y�x� � x�
X
s�Z

n

��s�xs� ���

whose coe�cients ��s� are characterized by the property that ��s � ui� � ��s�Ri�s��
Here Ri�s� are rational functions� We also use notations � � ���� � � � � �n� � C

n� Re �i �
�	� ��� xs � xs�� � � � xsnn � In the case when fuig

n

i�� form the standard basis of Zn we get
the de�nition of the classical Horn series �see ��	
� x �����

In the case of two or more variables the generalized Horn system ��� is in general
not solvable in the class of series ��� without additional assumptions on the polynomi�
als Pi� Qi� In section � we investigate solvability of hypergeometric systems of equations
and describe supports of solutions to the generalized Horn system� The necessary and
su�cient conditions for a formal solution to the system ��� in the class ��� to exist are
given in Theorem ��

In section � we consider the D�module associated with the generalized Horn sys�
tem� We give a formula which allows one to compute the dimension of the space of
holomorphic solutions to ��� at a generic point under some additional assumptions on
the system under study �Theorem ��� We give also an estimate for the dimension of the
solution space of ��� under less restrictive assumptions on the parameters of the system
�Corollary �� The author bene�ted greatly from reading paper ��
 by A� Adolphson
whose ideas are used in section ��

In section � we consider the case when the polynomials Pi� Qi can be factorized
up to polynomials of degree � and construct an explicit basis in the space of holo�
morphic solutions to some systems of the Horn type� We show that in the case when
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Ri�s � uj�Rj�s� � Rj�s � ui�Ri�s�� Qi�s � uj� � Qi�s� and degQi�s� � degPi�s��
i� j � �� � � � � n� i �� j� there exists a basis in the space of holomorphic solutions to ���
consisting of series ��� if the parameters of the system under study are su�ciently
general �Theorem �	��

In section � we apply the results on the generalized Horn system to the problem
of describing the complement of the amoeba of a rational function� We show how
Theorem � can be used for studying Laurent series developments of a rational solution
to ���� A class of rational hypergeometric functions with minimal number of connected
components of the complement of the amoeba is described�

The author is grateful to M� Passare for many fruitful discussions during the work
with this paper and to the Department of Mathematics of Potsdam University for its
hospitality�

�� Supports of solutions to the generalized Horn system

Suppose that the series ��� represents a solution to the system ���� Computing the

action of the operator xuiPi

�
x �
�x

�
�Qi

�
x �
�x

�
on this series we arrive at the following

system of di�erence equations

��s� ui�Qi�s� � � ui� � ��s�Pi�s� ��� i � �� � � � � n� ���

The system ��� is equivalent to ��� as long as we are concerned with those solutions to
the generalized Horn system which admit a series expansion of the form ���� Let Zn��
denote the shift in C

n of the lattice Z
n with respect to the vector �� Without loss of

generality we assume that the polynomials Pi�s�� Qi�s� ui� are relatively prime for all
i � �� � � � � n� In this section we shall describe nontrivial solutions to the system ���
�i�e� those ones which are not equal to zero identically�� While looking for a solution
to ��� which is di�erent from zero on some subset S of Zn we shall assume that the
polynomials Pi�s�� Qi�s�� the set S and the vector � satisfy the condition

jPi�s� ��j� jQi�s� � � ui�j �� 	� ���

for any s � S and for all i � �� � � � � n� That is� for any s � S the equality Pi�s� �� � 	
implies that Qi�s� � � ui� �� 	 and Qi�s� � � ui� � 	 implies Pi�s� �� �� 	�

The system of di�erence equations ��� is in general not solvable without further
restrictions on Pi� Qi� Let Ri�s� denote the rational function Pi�s��Qi�s � ui�� i �
�� ���� n� Increasing the argument s in the ith equation of ��� by uj and multiplying
the obtained equality by the jth equation of ���� we arrive at the relation ��s � ui �
uj����s� � Ri�s� uj�Rj�s�� Analogously� increasing the argument in the jth equation
of ��� by ui and multiplying the result by the ith equation of ���� we arrive at the
equality ��s� ui � uj����s� � Rj�s� ui�Ri�s�� Thus the conditions

Ri�s� uj�Rj�s� � Rj�s� ui�Ri�s�� i� j � �� ���� n ���
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are in general necessary for ��� to be solvable� The conditions ��� will be referred to
as the compatibility conditions for the system ���� Throughout this paper we assume
that the polynomials Pi� Qi de�ning the generalized Horn system ��� satisfy ����

Let U denote the matrix whose rows are the vectors u�� � � � � un� A set S � Z
n is

said to be U�connected if any two points in S can be connected by a polygonal line
with the vectors u�� � � � � un as sides and vertices in S� Let ��s� be a solution to ���� We
de�ne the support of ��s� to be the subset of the lattice Zn where ��s� is di�erent from
zero� A formal series x�

P
s�Z

n ��s�xs is called a formal solution to the system ��� if the
function ��s� satis�es the equations ��� at each point of the lattice Zn� The following
Theorem gives necessary and su�cient conditions for a solution to the system ���
supported in some set S � Z

n to exist�

Theorem � For S � Z
n de�ne

S
�

i � fs � S � s� ui �� Sg� S
��

i � fs �� S � s� ui � Sg� i � �� � � � � n�

Suppose that the conditions ��� are satis�ed on S� Then there exists a solution to the
system ��� supported in S if and only if the following conditions are ful�lled�

Pi�s� ��j
S
�
i
� 	� Qi�s� � � ui�jS��

i
� 	� i � �� � � � � n� ���

Pi�s� ��j
SnS

�
i
�� 	� Qi�s� � � ui�jS �� 	� i � �� � � � � n� ���

Proof Necessity� Let ��s� be a solution to ���� S � supp�� Let s��� � S
�

i� Since
��s���� �� 	 and ��s��� � ui� � 	� it follows from the ith equation of ��� that Pi�s

��� �
�� � 	� Analogously� if s��� � S

��

i then ��s���� � 	� ��s��� � ui� �� 	� which yields
Qi�s

���� �� ui� � 	� This proves the necessity of the conditions ��� for the system ���
to be solvable� To show the necessity of ��� we assume that Pi�s

������ � 	 for s��� � S�
Then the ith equation of ��� together with ��� gives ��s����ui� � 	� which means that
s��� � S

�

i � Next� if Qi�s
������ui� � 	 then it follows from ��� and ��� that ��s���� � 	�

that is� s��� �� S�
Su�ciency� We shall construct a function �S�s� satisfying ��� and supported in S�

Without loss of generality we may assume that the set S is U�connected� Choose
an arbitrary point s��� � S and set �S�s

���� � �� The equations ��� may be viewed
as recurrent relations which allow one to compute the value of �S�s

��� � ui� for any
i � �� � � � � n unless Pi�s

��� � �� � 	 or Qi�s
��� � � � ui� � 	� Repeating this argument�

we can de�ne �S�s� for any s � S since by ��� the polynomial Qi�s� � � ui� does not
vanish on S for any i � �� � � � � n and since the polynomial Pi�s��� vanishes on S

�

i only�
The function �S�s� is well�de�ned since the compatibility conditions ��� are ful�lled�
�These conditions imply that the value of �S�s� at a point s

��� � S obtained by iterating
the equations ��� does not depend on the path connecting s��� and s�����
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Let us de�ne �S�s� to be zero outside S� The function �S�s� satis�es the equa�

tions ��� on Z
n n

�Sn
i���S

�

i � S
��

i �
�

by the construction� This follows since ��s� �

��s � ui� � 	 on Z
n n

�
S � �

Sn
i�� S

��

i �
�
� for any i � �� � � � � n� and since ��s� was

de�ned through the equations ��� on S n
�Sn

i�� S
�

i

�
� The conditions ��� yield that these

equations are also satis�ed on
Sn
i���S

�

i � S
��

i �� which shows that the conditions �������
are su�cient for a solution to ��� supported in S to exist� The proof is complete�

Theorem � will be used in section � for constructing an explicit basis in the space of
holomorphic solutions to the generalized Horn system in the case when degQi � degPi

and Qi�s � uj� � Qi�s�� i� j � �� � � � � n� i �� j� In the next section we compute the
dimension of the space of holomorphic solutions to ��� at a generic point�

�� Holomorphic solutions to the generalized Horn system

Let Gi denote the di�erential operator xuiPi

�
x �
�x

�
� Qi

�
x �
�x

�
� i � �� � � � � n� Let D

be the Weyl algebra in n variables ��
� and de�ne M � D�
Pn

i��DGi to be the
left D�module associated with the system ���� Let R � C �z�� � � � � zn
 and R�x
 �
R�x�� � � � � xn
 � C �x�� � � � � xn� z�� � � � � zn
� We make R�x
 into a left D�module by de�n�
ing the action of �j on R�x
 by

�j �
�

�xj
� zj� ���

Let � � D � R�x
 be the D�linear map de�ned by

��xa�� � � � xann �b�� � � � �bnn � � xa�� � � � xann zb�� � � � zbnn � ��

It is easily checked that � is an isomorphism of D�modules� In this section we establish
some properties of linear operators acting on R�x
� We aim to construct a commutative
family of D�linear operators Wi � R�x
� R�x
� i � �� � � � � n which satisfy the equality
��Gi� � Wi���� The crucial point which requires additional assumptions on the pa�
rameters of the system ��� is the commutativity of the family fWig

n

i�� which is needed
for computing the dimension �as a C�vector space� of the module R�x
�

Pn
i��WiR�x


at a �xed point x���� We construct the operators Wi and show that they commute with
one another under some additional assumptions on the polynomials Qi�s� �Lemma ���
However� no additional assumptions on the polynomials Pi�s� are needed as long as
the compatibility conditions ��� are ful�lled�

Following the spirit of Adolphson ��
 we de�ne operators Di � R�x
 � R�x
 by
setting

Di � zi
�

�zi
� xizi� i � �� � � � � n� ��	�

�



It was pointed out in ��
 that the operators ��	� form a commutative family of D�linear
operators� Let D denote the vector �D�� � � � � Dn�� For any i � �� � � � � n we de�ne oper�
ator ri � R�x
 � R�x
 by ri � z��i Di� This operator commutes with the operators �j
since both Di and the multiplication by z��i commute with �j� Moreover� the opera�
tor ri commutes with rj for all � 	 i� j 	 n and with Dj for i �� j� In the case i � j
we have riDi � ri �Diri�

Remark � A power of the operator xi
�
�xi

admits the following expansion�
�
xi

�
�xi

�k
�Pk

j�� Sj�kx
j
i
�j

�x
j
i

� where Sj�k are the Stirling numbers of the second kind �see ��
� page ���

This allows one to determine the constants h�i�� in the expansion of the operator

xiP
�
x �
�x

�
�Qi

�
x �
�x

�
�
P

� h
�i�
� x�

�i�
� �j�j

�x�
�

The following lemma �which can be applied to a more general family of di�erential
operators than fGig

n

i��� gives D�linear operators Wi � R�x
 � R�x
 which satisfy
��Gi� � Wi����

Lemma � Let m�� � � � � mn � N� and let V �i�
� � j	j 	 mi be polynomials in n variables�

Consider the family of generalized hypergeometric operators

�Gi �
X

j�j�mi

x�V �i�
�

�
x
�

�x

�
� i � �� � � � � n�

Let us de�ne operators �Wi� i � �� � � � � n by

�Wi �
X

j�j�mi

V �i�
� �D�r��

Then �Wi is a D�linear operator on R�x
 satisfying �� �Gi� � �Wi����

Proof The D�linearity of �Wi follows since the operators Di and ri are D�linear� for
all i� j � �� � � � � n� Thus we need to show that for any 	� 
 � N

n
�

�D��
� � � �D�n

n r
��
� � � �r�n

n ���� � �

�
x�
�
x�

�

�x�

���

� � �

�
xn

�

�xn

��n
�

����

and that

�D��
� � � � D�n

n ���� � �

��
x�

�

�x�

���

� � �

�
xn

�

�xn

��n
�
� ����

The equation ���� follows from ���� since Dirj��� � Di�xj� � xjDi��� and ��xjF � �
xj��F � for any di�erential operator F � D� For proving ���� we notice that D�i

i ���
can be written in the form D�i

i ��� �
P�i

k�� ck��ix
k
i z

k
i � Since Di��� � xizi and

Dk��
i ��� � c��kxizi �

kX
j��

�jcj�k � cj���k�x
j
iz

j
i � xk��i zk��i

�



it follows that the constants cj�k are the Stirling numbers Sj�k of the second kind as in
Remark �� Indeed� they are determined by the same recurrent relation with the same
initial condition as Sj�k� Thus we get D�i

i ��� �
P�i

k�� Sk��ix
k
i z

k
i and Remark � gives

D�i
i ��� � �

��
xi

�
�xi

��i�
� The equality ���� follows now from the identities

D��
� � � �D�n

n ��� �
nY
i��

D�i
i ����

�

��
x�

�

�x�

���

� � �

�
xn

�

�xn

��n
�
�

nY
i��

�

��
xi

�

�xi

��i
�
�

which hold for any 	 � N
n
� � The proof is complete�

Thanks to Lemma � we may de�ne operators Wi � Pi�D�rui � Qi�D� such that
for any i � �� � � � � n Wi is a D�linear operator satisfying the identity ��Gi� � Wi����
It follows by the D�linearity of Wi that

Pn
i��WiR�x
 and R�x
�

Pn
i��WiR�x
 can be

considered as left D�modules� The following argument is due to Adolphson �see ��
�
Theorem ��� and Lemma ������

Theorem � The following isomorphism holds true�

M
 R�x


��
� nX
j��

WjR�x


�
A � ����

Proof It follows by D�linearity of the operators Wi that the sum
Pn

j��DGj belongs
to the kernel of the map

D � R�x


��
� nX
j��

WjR�x


�
A � ����

induced by the isomorphism of D�modules � � D � R�x
� To show that this sum
is equal to the kernel it su�ces to prove that for any b � �b�� � � � � bn� � N

n
� � and any

ub�x� � C �x
 there exists � � DWj such that ���� � Wj

�
ub�x�z

b
�
� Let us de�ne � by

� � ub�x�
Qn

i��

�
�
�xi

�bi
Gj� Using D�linearity of Wj and the equality ��Gi� � Wi��� we

obtain

�

�
�ub�x� nY

i��

�
�

�xi

�bi

Gj

�
A � ub�x�

nY
i��

�bii ��Gj� �

ub�x�
nY
i��

�
�

�xi
� zi

�bi

Wj��� � Wj

�
�ub�x� nY

i��

�
�

�xi
� zi

�bi

���

�
A � Wj

�
ub�x�z

b
�
�

�



This shows that
Pn

j��DGj coincides with the kernel of the map ���� and completes
the proof of the Theorem�

In the general case the operators Wi � Pi�D�rui�Qi�D� do not commute since Di

does not commute with ri� However� this family of operators may be shown to be
commutative under some assumptions on the polynomials Qi�s� in the case when the
polynomials Pi�s�� Qi�s� satisfy the compatibility conditions ���� The following Lemma
holds�

Lemma � The operators Wi � Pi�D�rui � Qi�D� commute with one another if and
only if the polynomials Pi�s�� Qi�s� satisfy the compatibility conditions �	� and for any
i� j � �� � � � � n� i �� j� Qi�s� uj� � Qi�s��

Proof Sinceri � z��i �Diz
��
i it follows thatriDi � ri�Diri and thatri commutes

with Dj for i �� j� Hence for any 	 � �	�� � � � � 	n� � N
n
�

riD
��
� � � � D�n

n � D��
� � � � �Di � ���i � � �D�n

n ri� ����

Let Et
i denote the operator which increases the ith argument by t� that is� Et

if�x� �
f�x � tei�� Here feig

n

i�� denotes the standard basis of Zn� It follows from ���� that

riPj�D� � �E�
i Pj��D�ri� ����

For 	 � Z
n let E� denote the composition E��

� � � � � �E�n
n � Using ���� we compute the

commutator of the operators Wi�Wj �

WiWj �WjWi �
�
Pi�D��EuiPj��D�� Pj�D��EujPi��D�

�
rui�uj�

�
�EujQi��D��Qi�D�

�
Pj�D�ruj �

�
Qj�D�� �EuiQj��D�

�
Pi�D�rui� ����

Let us de�ne the grade g�x�z�� of an element x�z� of the ring R�x
 to be 	�
� Notice
that g�Di�x

�z��� � 	 � 
 and that g�ri�x
�z��� � 	 � 
 � ei� for any 	� 
 � N

n
� � The

result of the action of the operator in the right�hand side of ���� on x�z� consists of
three terms whose grades are 	 � 
 � ui � uj� 	 � 
 � uj and 	 � 
 � ui� Thus the
operators Wi�Wj commute if and only if

Qi�D� � �EujQi��D�� i� j � �� � � � � n� i �� j� ����

and
Pi�D��EuiPj��D� � Pj�D��EujPi��D�� i� j � �� � � � � n� ���

It follows from ���� that the condition Qi�s � uj� � Qi�s�� i� j � �� � � � � n� i �� j is
necessary for the family fWig

n

i�� to be commutative� Under this assumption on the
polynomials Qi�s� the compatibility conditions ��� can be written in the form

Pi�s� uj�Pj�s� � Pj�s� ui�Pi�s�� i� j � �� � � � � n

�



and they are therefore equivalent to ���� The proof is complete�

For x��� � C
n let �Ox��� be the D�module of formal power series centered at x����

Let C x��� denote the set of complex numbers C considered as a C �x�� � � � � xn
�module

via the isomorphism C 
 C �x�� � � � � xn
��x� � x
���
� � � � � � xn � x���n �� We use the following

isomorphism �see Proposition ������ in ��
 or ��
� x �� between the space of formal
solutions to M at x��� and the dual space of C x��� �C �x	M

HomD�M� �Ox���� 
 HomC �C x��� �C �x	M� C �� ��	�

This isomorphism holds for any �nitely generated D�module� Using ���� and �xing
the point x � x��� we arrive at the isomorphism

C x��� �C �x	

�
R�x


�
nX
i��

WiR�x


�

 R

�
nX
i��

Wi�x���R� ����

where Wi�x��� are obtained from the operators Wi by setting x � x���� Combining ��	�
with ���� we see that

HomD�M� �Ox���� 
 HomC

�
R

�
nX
i��

Wi�x���R� C

�
�

Thus the following Lemma holds true�

Lemma � The number of linearly independent formal power series solutions to the
system �
� at the point x � x��� is equal to dimC R�

Pn
i��Wi�x���R�

The following Lemma is motivated by the proof of Theorem ��� in ��
�

Lemma 	 Let Li � R � R� i � �� � � � � n be a commutative family of linear opera�
tors such that there exists a regular sequence of homogeneous polynomials f�� � � � � fn
in R with the property Li�h� � fih � �h� where deg �h � deg �fih�� Then R�

Pn
i�� LiR

and R��f�� � � � � fn� are isomorphic as C�vector spaces� Here �f�� � � � � fn� is the ideal
generated by f�� � � � � fn�

Proof Let fh�g��
 represent a C�basis in R��f�� � � � � fn� consisting of homogeneous
polynomials� Let h � R� deg h � k� and let X denote the set of all linear combinations
of fh�g��
�We use induction on k to show that h � X�

Pn
i�� LiR� Since h �

Pn
i�� fivi�P

� c�h� for some v�� � � � � vn � R and c� � C it follows that

h�
nX
i��

Li�vi� � h�
nX
i��

fivi �
nX
i��

�vi �
X
�

c�h� �
nX
i��

�vi�





where deg �
Pn

i�� �vi� � k� By induction
Pn

i�� �vi � X �
Pn

i�� LiR which shows that h �
X�

Pn
i�� LiR� Thus fh�g��
 represents a generating set for the quotient R�

Pn
i�� LiR�

Let us show that fh�g��
 represent a set of linearly independent elements in
R�
Pn

i�� LiR� Let w � X and suppose that w �
Pn

i�� Livi for some vi � R� We show
by induction on k � max

i�������n
deg �fivi� that w � 	� Let vi � v

�

i � v
��

i � where deg �fiv
�

i� � k

and deg �fiv
��

i � � k� Let wk be the homogeneous part of w of degree k� Since fh�g��

are homogeneous it follows that wk � X� Using the equality w �

Pn
i�� Livi we

obtain wk �
Pn

i�� fiv
�

i� Since fh�g��
 represent a basis in R��f�� � � � � fn� we have

X 
Pn

i�� LiRi � f	g� This shows that
Pn

i�� fiv
�

i � 	� By the regularity of the sequence
�f�� � � � � fn� there exists a skew�symmetric set fijg

n

i�j�� of homogeneous polynomials

such that v
�

i �
Pn

j�� ijfj� Let us consider �vi � vi �
Pn

j�� Lj�ij�� Since the family of
the operators fLig

n

i�� is commutative it follows that
Pn

i�j�� LiLj�ij� � 	 and hence

w �
nX
i��

Li�vi� �
nX
i��

Li

�
��vi � nX

j��

Lj�ij�

�
A �

nX
i��

Li��vi��

Since fi
Pn

j�� Lj�ij� and fi
Pn

j�� ijfj are equal up to the terms of degree less than k it
follows that deg fi�vi � k� By induction on k we conclude that w � 	� which completes
the proof of the Lemma�

Since fh�g��
 was shown to be a generating set for R�
Pn

i�� LiR without using
commutativity of the family fLig

n

i��� we obtain the following corollary�

Corollary 
 Let Li � R � R� i � �� � � � � n be a family of linear operators such
that there exists a regular sequence of homogeneous polynomials f�� � � � � fn in R with
the property Li�h� � fih � �h� where deg �h � deg �fih�� Then dimC R�

Pn
i�� LiR 	

dimC R��f�� � � � � fn��

For any di�erential operator P � D� P �
P
j�j�m c��x�

�
�
�x

��
its principal symbol

��P ��x� z� � R�x
 is de�ned by ��P ��x� z� �
P
j�j�m c��x�z

�� Let Hi�x� z� � ��Gi��x� z�
be the principal symbols of the di�erential operators which de�ne the generalized Horn
system ���� Let J � D be the left ideal generated by G�� � � � � Gn� By the de�nition
�see ��
� Chapter �� x �� the characteristic variety char�M� of the generalized Horn
system is given by

char�M� � f�x� z� � C
�n � ��P ��x� z� � 	� for all P � Jg�

Let us de�ne the set UM � C
n by UM � fx � C

n � � z �� 	 such that �x� z� �
Char�M�g� Theorem ��� in ��� Chapter �
 yields that for x��� �� UM

HomD�M� �Ox���� 
 HomD�M�Ox�����

�	



It follows from ���� pages �������
 that the C�dimension of the factor of the ring R
with respect to the ideal generated by the regular sequence of homogeneous polynomials
H��x

���� z�� � � � � Hn�x
���� z� is equal to the product

Qn
i�� degHi�x

���� z�� Since a sequence
of n homogeneous polynomials in n variables is regular if and only if their common
zero is the origin� it follows that UM � � in our setting� Using Lemmas ��� and � we
arrive at the following Theorem�

Theorem � Suppose that the polynomials Pi�s�� Qi�s� satisfy the compatibility condi�
tions �	� and that Qi�s � uj� � Qi�s� for any i� j � �� � � � � n� i �� j� If the principal
symbols H��x

���� z�� � � � � Hn�x
���� z� of the di�erential operators G�� � � � � Gn form a reg�

ular sequence at x��� then the dimension of the space of holomorphic solutions to �
�
at the point x��� is equal to

Qn
i�� degHi�x

���� z��

Using Corollary � we obtain the following result�

Corollary � Suppose that the principal symbols H��x
���� z�� � � � � Hn�x

���� z� of the dif�
ferential operators G�� � � � � Gn form a regular sequence at x���� Then the dimension
of the space of holomorphic solutions to �
� at the point x��� is less than or equal toQn

i�� degHi�x
���� z��

In the next section we� using Theorem �� construct an explicit basis in the space of
holomorphic solutions to the generalized Horn system under the assumption that Pi� Qi

can be represented as products of linear factors and that degQi � deg Pi� i � �� � � � � n�

�� Explicit basis in the solution space of some hypergeometric systems of

the Horn type

Throughout this section we assume that the polynomials Pi�s�� Qi�s� de�ning the gener�
alized Horn system ��� can be factorized up to polynomials of degree one� Suppose that
Pi�s�� Qi�s� satisfy the following conditions� Qi�s � uj� � Qi�s� and degQi � degPi

for any i� j � �� � � � � n� i �� j� In this section we will show how to construct an explicit
basis in the solution space of such a system of partial di�erential equations under some
additional assumptions which are always satis�ed if the parameters of the system under
study are su�ciently general�

Recall that U denotes the matrix whose rows are u�� � � � � un and let UT denote the
transpose of U� Let � � �UT �

��
� let ��s�i denote the ith component of the vector �s

and di � degQi� Under the above conditions the polynomials Qi�s� can be represented
in the form

Qi�s� �
diY
j��

���s�i � 	ij�� i � �� � � � � n� 	ij � C �

��



By the Ore�Sato theorem ���
 �see also x ��� of ��	
 and Part � of ���
� the general
solution to the system of di�erence equations ��� associated with ��� can be written in
the form

��s� � ts�� � � � tsnn

Qp
i�� ��hAi� si � ci�Qn

i��

Qdi
j�� ����s�i � 	ij � ��

��s�� ����

where p � N�� ti� ci � C � Ai � Z
n and ��s� is an arbitrary function satisfying the peri�

odicity conditions ��s � ui� � ��s�� i � �� � � � � n� �Given polynomials Pi� Qi satisfying
the compatibility conditions ���� the parameters p� ti� ci� Ai of the solution ��s� can
be computed explicitly� For a concrete construction of the function ��s� see Part �
of ���
�� The following Theorem holds true�

Theorem �� Suppose that the following conditions are ful�lled�

� For any i� j � �� � � � � n� i �� j it holds Qi�s� uj� � Qi�s� and degQi � degPi�
� The di�erence 	ij �	ik is never equal to a real integer number� for any i � �� � � � � n
and j �� k�
�� For any multi�index I � �i�� � � � � in� with ik � f�� � � � � dkg the product

Qp
i���hAi� si�

ci� never vanishes on the shifted lattice Z
n � �I � where �I � �	�i� � � � � � 	nin��

Then the family consisting of
Qn

i�� di functions

yI�x� � x�I
X

s�Z
n
�KU

ts��I
Qp

i�� ��hAi� s� �Ii � ci�Qn
k��

Qdk
j�� ����s�k � 	kik � 	kj � ��

xs ����

is a basis in the space of holomorphic solutions to the system �
� at any point x �
�C ��n � �C n f	g�n� Here KU is the cone spanned by the vectors u�� � � � � un�

Proof It follows from Theorem � and the assumptions ��� of Theorem �	 that the
series ���� formally satis�es the generalized Horn system ���� Let �k denote the kth
row of �� Since degQi�s� � degPi�s�� i � �� � � � � n it follows by the construction
of the function ���� �see ���
� Part �� that all the components of the vector � �Pp

i��Ai �
Pn

i�� di�i are negative� Thus for any multi�index I the intersection of the
half�space Reh�� si � 	 with the shifted octant KU � �I is a bounded set� Using the
Stirling formula we conclude that the series ���� converges everywhere in �C ��n for any
multi�index I �see also x ��� in ���
��

The series ���� corresponding to di�erent multi�indices I� J are linearly indepen�
dent since by the second assumption of Theorem �	 their initial monomials x�I � x�J

are di�erent� Finally� the conditions of Theorem � are satis�ed in our setting since
the �rst assumption of Theorem �	 yields that the sequence of principal symbols
H��x

���� z�� � � � � Hn�x
���� z� � R of hypergeometric di�erential operators de�ning the

generalized Horn system is regular for x��� � �C ��n� Hence by Theorem � the number of
linearly independent holomorphic solutions to the system under study at a generic point
equals

Qn
i�� di� In this case UM � fx��� � C

n � x
���
� � � � x���n � 	g� Thus the series ����

��



span the space of holomorphic solutions to the system ��� at any point x��� � �C ��n�
The proof is complete�

In the theory developed by Gelfand� Kapranov and Zelevinsky the conditions �
and � of Theorem �	 correspond to the so�called nonresonant case �see �
� x �����
Thus the result on the structure of solutions to the generalized Horn system can be
formulated as follows�

Corollary �� Let x��� � �C ��n and suppose that Qi�s � uj� � Qi�s� and degQi �
degPi for any i� j � �� � � � � n� i �� j� If the parameters of the system �
� are nonresonant
then there exists a basis in the space of holomorphic solutions to �
� near x��� whose
elements are given by series of the form ���

Let us now consider a simple example�

Example � Let u� � ��� 	�� u� � ��� �� and consider the system of equations

	

�

xu�y�x� �
�
x�

�
�x�

� x�
�

�x�

�
y�x��

xu�y�x� �
�
x�

�
�x�

�
y�x��

����

The principal symbols H��x� z�� H��x� z� � R�x
 of the di�erential operators de�ning
the system ���� are given by H��x� z� � �x�z� � x�z�� H��x� z� � �x�z�� By Theo�
rem � the dimension of the solution space of ���� at a generic point is equal to � since
dimC R��H��x� z�� H��x� z�� � � for x�x� �� 	� For computing the solution to ���� ex�
plicitly we choose � � 	 and consider the corresponding system of di�erence equations

�
��s� u���s� � s� � �� � ��s��
��s� u���s� � �� � ��s��

����

The general solution to ���� is given by ��s� � ���s� � s� � ����s� � �������s�� where
��s� is an arbitrary function which is periodic with respect to the vectors u�� u��

There exists only one subset of Z� satisfying the conditions of Theorem �� namely
S � f�s�� s�� � Z

� � s� � s� � 	� s� � 	g� Choosing ��s� � � and using ����� we obtain
the solution to �����

y�x� �
X

s� � s� � ��
s� � �

xs�� x
s�
�

��s� � s� � ����s� � ��
� exp�x�x� � x��� ����

It is straightforward to check that the solution space of ���� is indeed spanned by �����

��



�� Amoebas of rational functions

In this section we use the results on the structure of solutions to the generalized Horn
system for computing the number of Laurent expansions of some rational functions�
This problem is closely related to the notion of the amoeba of a Laurent polynomial�
which was introduced by Gelfand et al� in ���
 �see Chapter �� x ��� Given a Laurent
polynomial f� its amoeba Af is de�ned to be the image of the hypersurface f���	�
under the map �x�� ���� xn� �� �log jx�j� ���� log jxnj�� This name is motivated by the
typical shape of Af with tentacle�like asymptotes going o� to in�nity� The connected
components of the complement of the amoeba are convex and each such component
corresponds to a speci�c Laurent series development with the center at the origin
of the rational function ��f �see ���
� Chapter �� Corollary ����� The problem of
�nding all such Laurent series expansions of a given Laurent polynomial was posed
in ���
 �Chapter �� Remark ���	�� where this problem is referred to as a di�cult and
interesting one�

Let f�x�� ���� xn� �
P

��S a�x
� be a Laurent polynomial� Here S is a �nite subset

of the integer lattice Z
n and each coe�cient a� is a non�zero complex number� The

Newton polytope Nf of the polynomial f is de�ned to be the convex hull in R
n of the

index set S� The following result was obtained in ��
�

Theorem �� Let f be a Laurent polynomial� The number of Laurent series expansions
with the center at the origin of the rational function ��f is at least equal to the number
of vertices of the Newton polytope Nf and at most equal to the number of integer points
in Nf �

In the view of Corollary ��� in Chapter � of ���
� Theorem �� states that the number
of connected components of the complement of the amoeba Af is bounded from below
by the number of vertices of Nf and from above by the number of integer points in Nf �
The lower bound has already been obtained in ���
� In this section we describe a class
of rational functions for which the number of Laurent expansions attains the lower
bound given by Theorem ��� Our main tool is Theorem � which allows one to describe
supports of the Laurent series expansions of a rational function which can be treated
as a solution to a generalized Horn system�

Proposition �� Let u�� ���� un � Z
n be linearly independent vectors� let p � N and let

a�� ���� an � C
� be nonzero complex numbers� For any of the rational functions

y��x� � ��� a�x
u� � � � � � anx

un����

y��x� � ���� a�x
u� � � � � � an��x

un���p � anx
un���

y��x� � ���� a�x
u��p � a�x

u� � � � � � anx
un�

��
�

��



the number of its Laurent expansions with the center at the origin equals n � �� Thus
the lower bound for the number of the connected components of the complement of the
amoeba Ay��

i
is attained for any i � �� �� ��

Proof To make the idea of the proof more transparent we begin with the function y��x�
which is a special case of y��x� and y��x�� Recall that U denotes the matrix whose rows

are u�� ���� un� Let ��ij� � � � �UT �
��

and �i � ��i � � � �� �ni�
�� The function y��x� satis�es the following system of the Horn type

�
B�

a�x
u�

� � �
anx

un

�
CA
�
��x�

�

�x�
� � � �� �nxn

�

�xn
� �

�
y�x� � �

�
B�

x�
�

�x�

� � �
xn

�
�xn

�
CA y�x�� ����

Indeed� after the change of variables xi���� ���� �n� � ���i� �����nin �whose inverse is �i � xui�
the system ���� takes the form

ai�i

�
��

�

���
� � � �� �n

�

��n
� �

�
y��� � �i

�

��i
y���� i � �� ���� n� ����

The function ��� a��� � � � � � an�n�
�� satis�es ���� and therefore the function y��x�

is a solution of ����� By Theorem � the space of holomorphic solutions to ���� has
dimension one at a generic point and hence y��x� is the only solution to this system�
Thus the supports of the Laurent series expansions of y��x� can be found by means of
Theorem �� There exist n� � subsets of the lattice Zn which satisfy the conditions in
Theorem � and can give rise to a Laurent expansion of y��x� with nonempty domain of
convergence� These subsets are S� � fs � Z

n � ��s�i � 	� i � �� ���� ng and Sj � fs �
Z
n � ��s� � � � � � �nsn � � 	 	� ��s�i � 	� i �� jg� j � �� ���� n� Besides S�� ���� Sn there

can exist other subsets of Zn satisfying the conditions in Theorem �� �Such subsets
 penetrate! some of the hyperplanes ��s�i � 	� ��s� � � � � � �nsn � � � 	 without
intersecting them" subsets of this type can only appear if j detU j � ��� However�
none of these additional subsets gives rise to a convergent Laurent series and therefore
does not de�ne an expansion of y��x�� Indeed� in any series with the support in a
 penetrating! subset at least one index of summation necessarily runs from �� to��
Letting all the variables� except for that one which corresponds to this index� be equal
to zero� we obtain a hypergeometric series in one variable� The classical result on
convergence of one�dimensional hypergeometric series �see ��	
� x �� shows that this
series is necessarily divergent� Thus the number of Laurent series developments of y��x�
cannot exceed n��� The Newton polytope of the polynomial ��y��x� has n�� vertices
since the vectors u�� ���� un are linearly independent� Using Theorem �� we conclude
that the number of Laurent series expansions of y��x� equals n � �� Thus the lower
bound for the number of connected components of the amoeba complement is attained�

��



�� Recall that x �
�x

denotes the vector
�
x�

�
�x�

� ���� xn
�

�xn

�T
and let

�
�
�
x �
�x

��
i
denote

the ith component of the vector �
�
x �
�x

�
� Let G be the di�erential operator de�ned by

G �

�
�

�
x
�

�x

��
�

� � � ��

�
�

�
x
�

�x

��
n��

� p

�
�

�
x
�

�x

��
n

� p�

The function y��x� is a solution to the following system of di�erential equations of
hypergeometric type

	

�

aix
uiGy�x� �

�
�
�
x �
�x

��
i
y�x�� i � �� ���� n� ��

anx
un

�
p��Q
j��

�G � j�

�
y�x� �

�
p��Q
j��

�
p
�
�
�
x �
�x

��
n
� j
��

y�x��
���

Indeed� the same monomial change of variables as in the �rst part of the proof re�
duces ��� to the system

	

�

ai�i �Gy�x� � �i
�
�	i
y�x�� i � �� ���� n� ��

an�n

�
p��Q
j��

� �G � j�

�
y�x� �

�
p��Q
j��

�
p�n

�
�	n

� j
��

y�x��
��	�

where �G � ��
�
�	�

� � � � � �n��
�

�	n��
� p�n

�
�	n

� p� The system ��	� is satis�ed by the

function ���� a��� � � � � � an���n���
p � an�n�

��� This shows that y��x� is indeed a so�
lution to ���� Thus the support of a Laurent expansion of y��x� must satisfy the
conditions in Theorem �� Notice that unlike ����� the system ��� can have solu�
tions supported in subsets of the shifted lattice Z

n � � for some � � �	� ��n� Yet�
such subsets are not of interest for us since we are looking for Laurent series de�
velopments of y��x�� The subsets S� � fs � Z

n � ��s�i � 	� i � �� ���� ng and
Sj � fs � Z

n � ��s�� � � � �� ��s�n�� � p��s�n � p 	 	� ��s�i � 	� i �� jg� j � �� ���� n
satisfy the conditions in Theorem �� The same arguments as in the �rst part of the
proof show that no other subsets of Zn satisfying the conditions in Theorem � can
give rise to a convergent Laurent series which represents y��x�� This yields that the
number of expansions of y��x� is at most equal to n � �� The Newton polytope of
the polynomial ��y��x� has n � � vertices since the vectors u�� ���� un are assumed to
be linearly independent� Using Theorem �� we conclude that the number of Laurent
series developments of y��x� equals n � ��

�� Let H be the di�erential operator de�ned by

H � p

�
�

�
x
�

�x

��
�

� � � �� p

�
�

�
x
�

�x

��
n

� p�

��



Using the same change of variables as in the �rst part of the proof� one checks that y��x�
solves the system	


�

a�x
u�
��

�
�
x �
�x

��
�
�H

�
y�x� �

�
�
�
x �
�x

��
�
y�x��

aix
ui �

p
H

�
p��Q
j��

��
�
�
x �
�x

��
�
�H � j

��
y�x� �

�
�
�
x �
�x

��
i

�
p��Q
j��

�H� p � j�

�
y�x�� i � �� ���� n�

����

Analogously to the �rst part of the proof� we apply Theorem � to the system ���� and
conclude that the number of Laurent expansions of y��x� at most equals n��� Thus it
follows from Theorem �� that the number of such expansions equals n � �� The proof
is complete�

Remark � Suppose that the series ��� satis�es a generalized Horn system �this is
equivalent to saying that the polynomials Pi� Qi de�ned by the equalities Pi�s��Qi�s�
ui� � ��s�ui����s� and the support S of ��� satisfy the conditions in Theorem ��� If ���
converges to a rational function g�x� then the number of Laurent series developments
of g�x� can be found by means of Theorem �� The problem of describing the class
of rational hypergeometric functions was studied in ��
 and ��
� Yet� the de�nition of
a hypergeometric function used in these papers is based on the Gelfand�Kapranov�
Zelevinsky system of di�erential equations �
� ��	
� ���
� ��
 rather than the Horn
system�

Example � To show how Theorem � can be used for computing the number of Laurent
series developments of a rational function satisfying a generalized Horn system� we
consider an example which is not a special case of Proposition ��� Let n � �� The
Szeg#o kernel of the domain fz � C

� � jz�j � jz�j � �g is given by the hypergeometric
series
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���� x� � x��
� � �x�x��

� � ����

�See ��
� Chapter �� x ���� This series satis�es the system of equations
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��



There exist three subsets of the lattice Zn which satisfy the conditions in Theorem ��
namely fs � Z

� � s� � 	� s� � 	g� fs � Z
� � s� � 	� s� � s� � � 	 	g� fs � Z

� �
s� � 	� s� � s� � � 	 	g� Using Theorem � we conclude that the number of Laurent
expansions centered at the origin of the Szeg#o kernel ���� at most equals �� The Newton
polytope of the denominator of the rational function ���� is the simplex with the
vertices �	� 	�� ��� 	�� �	� ��� By Theorem �� the number of Laurent series developments
of the Szeg#o kernel at least equals �� Thus the number of Laurent expansions of ���� �or�
equivalently� the number of connected components in the complement of the amoeba
of its denominator� attains its lower bound�

REFERENCES

��� A� Adolphson� Hypergeometric functions and rings generated by monomials� Duke
Math� J� 	
 ������ ��������

��� M� Aigner� Combinatorial Theory� Springer�Verlag� ��	��

�
� L� Aizenberg� Carleman�s Formulas in Complex Analysis� Theory and Applications�
Kluwer Academic Publishers� ���
�

�� J��E� Bj�ork� Rings of Di�erential Operators� North� Holland Mathematical Library� ��	��

��� J��E� Bj�ork� Analytic D�Modules and Applications� Kluwer Academic Publishers� ���
�

��� E� Cattani� C� D�Andrea and A� Dickenstein� The A�hypergeometric system associated

with a monomial curve� Duke Math� J� �� ������� �	����	�

�	� E� Cattani� A� Dickenstein and B� Sturmfels� Rational hypergeometric functions� preprint
������� http���xyz�lanl�gov�abs�math�AG������
��

��� M� Forsberg� M� Passare and A� Tsikh� Laurent Determinants and Arrangements of

Hyperplane Amoebas� Preprint no� � ������� Stockholm University� ISSN �������	�

��� I�M� Gelfand and M�I� Graev� GG�functions and their relation to general hypergeometric

functions� Russian Math� Surveys �� ����	�� �
�����

���� I�M� Gelfand� M�I� Graev and V�S� Retach� General hypergeometric systems of equations

and series of hypergeometric type� Russian Math� Surveys 	 ������� �����

���� I�M� Gelfand� M�I� Graev and V�S� Retach� General gamma functions� exponentials� and

hypergeometric functions� Russian Math� Surveys �
 ������� �����

���� I�M� Gelfand� M�M� Kapranov and A�V� Zelevinsky� Discriminants� Resultants and Mul�

tidimensional Determinants� Birkh�auser� Boston� ����

��



��
� J� Horn� �Uber hypergeometrische Funktionen zweier Ver�anderlicher� Math� Ann� ��	
������ 
����

��� M� Passare� A� Tsikh and O� Zhdanov� A multidimensional Jordan residue lemma with

an application to Mellin�Barnes integrals� Aspects Math� E �� ������ �

����

���� T�M� Sadykov� Systems of partial di�erential equations of hypergeometric type� Licentiate
of philosophy thesis� Stockholm University� ������� ISBN ���	��
��	����

���� M� Sato� Singular orbits of a prehomogeneous vector space and hypergeometric functions�
Nagoya Math� J� ��� ������� ��
�

��	� H�M� Srivastava and P�W� Karlsson� Multiple Gaussian Hypergeometric Series� Ellis
Horwood Limited� �����

���� A�K� Tsikh� Multidimensional Residues and Their Applications� Translations of Mathe�
matical Monographs� ��
� American Mathematical Society� Providence� �����

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF STOCKHOLM

S����� STOCKHOLM

SWEDEN

E�mail� timur�matematik�su�se

�


	0. Introduction
	1. Supports of solutions to the generalized Horn system
	2. Holomorphic solutions to the generalized Horn system
	3. Explicit basis in the solution space of some hypergeometric systems of the Horn type
	4. Amoebas of rational functions
	References

