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Abstract

We prove a theorem on analytic representation of integrable CR
functions on hypersurfaces with singular points. Moreover, the be-
haviour of representing analytic functions near singular points is in-
vestigated. We are aimed at explaining the new effect caused by the
presence of a singularity rather than at treating the problem in full
generality.
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Introduction

We begin by recalling a well-known theorem on analytic representation of CR
functions on a smooth hypersurface, cf. [AH72, Chi75].

Let D be a domain in C*, n > 1, whose Dolbeault cohomology with coef-
ficients in the sheaf of germs of holomorphic functions vanishes at step 1, i.e.,
HY(D,0) = 0. Such is the case, in particular, if D is a domain of holomorphy
in C*.

Suppose that S is a smooth (of class C'') closed orientable hypersurface in
D, dividing D into two open sets Dt and D~. As known, there exists a real-
valued function p € C'(D) such that S = {z € D: p(z) = 0} and Vp|s # 0.
We set

DE = {2 € D: +p(z) > 0}
and orient & as the boundary of D~. Thus, D~ U S is an oriented manifold

with boundary.
As usual, a function f € L{ _(S) is said to be a CR function on S if it

loc

/Sfav:()

for all differential forms v of bidegree (n,n—2) with coefficients of class C*°(D)
and a compact support in D.

satisfies

Theorem 0.1 ([AH72, Chi75]) For any CR function f € L _(S), there
are functions h* holomorphic in D, respectively, such that

f=ht—h™ on S. (0.1)

We write h* € O(D*). More precisely, the equality (0.1) is interpreted as
follows:

1) fSeCHlkecZy,and f € CENS),0 <)< 1, then h* € O (SUDF)

loc loc

and (0.1) is fulfilled at each point of S;

2) if SeCtand f e L (S), p>1, then for each point z° € S there is a

loc

neighbourhood U such that

lim [ (W +er(C)) = h(C = 21(Q))) — F(Q)] dor =0,

0+ Jsnu

where do is the Lebesgue measure on I', and v(() the unit outward
normal vector to § at a point ( € S.
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It is worth pointing out, cf. [Kyt95, Ch. 2], that the boundary behaviour
of h* near the hypersurface S coincides with that of the Bochner-Martinelli

integral M(z) of f,
- [fowe). sevt,

(n — I —
v = U i R g

(2mi)" P |

where

and
d¢ = de A .. ANdG,
d¢[j] = dG A .. ANdC_y NdCyr A ..o N,

The theorem on analytic representation is of crucial importance in the
theory of CR functions, cf. [Khe85, Sto93].

If the hypersurface & bears singularities, we may define the tangential
Cauchy-Riemann conditions only at smooth points of S. Theorem 0.1 is no
longer true for such hypersurfaces even in the case of point singularities, cf.
Section 1.

The purpose of this paper is to bring together two areas in which the prob-
lem of analytic representation can be studied. The first of the two is complex
analysis with its explicit integral formulas which enable one to treat also prob-
lems of piecewise smooth “real” geometry. The important point to note here
is the nature of singularities which are purely “real,” namely conical points,
power-like cusps, etc. The second area is the analysis of pseudodifferential
operators on manifolds with singular points, cf. [RST97]. It introduces rather
specific tools of real analysis in the complex problem, such as special weighted
Sobolev spaces, asymptotics, “regularisation” of operators near singularities,
etc.

Using this approach we describe those locally integrable functions f on a
hypersurface with singular points, which are still representable in the form
(0.1), cf. Section 2. Moreover, we specify the asymptotic behaviour of A% (z)
close to every singular point, cf. Section 4.

No attempt has been made here to develop the theory for hypersurfaces
with higher order singularities, such as “real” edges, corners, etc., and their
“complex” analogues. Rather than do it we are interested in explaining the
new effect caused by the presence of a singularity.

This article was written during the stay of first two authors at the Institute
of Mathematics, University of Potsdam. They gratefully acknowledge several
helpful discussions with Professor B.-W. Schulze during the preparation of the

paper.
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1 Example of a non-representable C'R function

Let D be the unit bidisk in CZ,

D = {ZE (O |Zl| < 17 |22| < 1}7
The origin 0(0,0) is a singular point of S. Indeed, S ={z € D: p(z) =0}
where
p(Z) = 2121 — 2222,

and Vp(z) vanishes at the only point z = O on §. Obviously, this is a conical

point.
Consider the open sets D¥ = {z € D : #£p(z) > 0} and the holomorphic
function |
fz) = P,

away from the planes z; = 0, for 5 = 1,2. The restriction of f is a smooth CR
function on S\ {O}.
Furthermore, we have f € L'(S). To prove this, write

21 = o1+,
Zg = Tyt Y2
and parametrise S by
ry = T COSpy, Ty = T COS Py,
Y1 = T sineq; Yz = T sin,,

where 0 < r <1 and 0 < ¢,y < 2m. Then the Gramian has the form

2 0 0
G = 0 r2 0
0 0 2

whence

do = VdetGdrde des
V2r drdoy des.

1
/|f|da = /—da
s s 7122

1 2m 2m
:\/ﬁ/dr/ dc,ol/ dpo
0 0 0
V3 ()’

It follows that



Analytic Representation of CR Functions 7

is finite, as desired.
Suppose that f meets the conclusion of Theorem 0.1, i.e., f =hT —h~ on
S\ {0}, where h* € O(D?*) are continuous up to S\ {O}. By the Cauchy

theorem in one dimension it follows that

i hi(Z)ledZQZO

while

/ b dz1dze = (27Ti)2
ls11=1/2 2129
[z2]=1/2

is different from zero. The contradiction shows that f can not be represented
as the difference of holomorphic functions on D*.

The main obstruction to such a representation lies in the fact that the
cohomology H'(D \ {0}, O) is non-trivial.

Yet another interpretation of this example consists in the following. The
point O is not removable for the integrable CR functions on S, i.e., for a CR
function f on &\ {0}, the inclusion f € L'(S) does not guarantee in general
that f is a CR function on all of §. In the case of smooth hypersurfaces
S, removable singularities of integrable CR functions are studied in [Jor88],
[Kyt89], [Sto93], [KR95]. As a rule, isolated points are removable. The above
example shows that if 2% is a singular point of S then it can be unremovable
for integrable CR functions.

However, we show that Theorem 0.1 remains still true for some kind sin-
gular points and CR functions having certain growth close to these points.

2 Analytic representation

Consider a hypersurface § in D with one singular point 2°, ie., &\ {z°}
is smooth. Assume moreover that there exist a neighbourhood U of z°, a
neighbourhood V of 0 € C* and a diffeomorphism h: U — V with the property
that

R SNU)={2cV: olx,) = /|22 + |yl]2, 0 <z, <%

where ¢ € [0, "] satisfies ¢(0) = 0 and ¢(x,) > 0 if x,, > 0, and

z; = xj+aw;, J=1,...,n;
o
¥ = (T, Tpo1).

Denote I' = h(S N U) and

I'. = {z¢el': 0<a, <&},
S. = YT,
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for 0 < e < &°
If f e L. (S) then the function

loc
$1(¢) = wois [ M1
/ ©)= VOl(aSE) 98, e

is, by the Fubini theorem, finite for almost all 0 < ¢ < &g, where dw. is the
Lebesgue measure on 9S., and vol(dS.) the area of 9S..

Theorem 2.1 Assume that [ € L{ (S) is a CR function on S\ {2°},
satisfying S;(c) = o(1/¢*" %(¢)) as 0. Then Theorem 0.1 holds for f, more
precisely, we have f = h* —h~™ on S\ {2°}, where h* € O(D*) and the bound-

ary behaviour of h* near S\ {z°} is actually the same as that in Theorem 0.1.

The important point to note here is the condition S;(g) = o(1/¢**2(¢)) as
€0, on f. The “worse” the singularity of S at 2%, the faster p(¢) tends to 0 as
€0, and so the wider the class of functions f meeting the additional condition.
This is a general observation concerning the analysis on manifolds with cusps,

of. [RSTO7].

3 The proof

To prove Theorem 2.1 we may assume without loss of generality that D = U
and h is the identity diffeomorphism. Thus, we have z° = 0, S = I' and
S. =T, for 0 < & <& In this case 9S. is a (2n — 2)-dimensional sphere in
R*~! namely

0S. = {(2",y) e R 1o |2 + [y[* = ¢*(e)}.

Consider the current f[S]%!in D\ {0}. Since f is a CR function on S\ {0},
this current f[S]%! is d-closed, i.e.,  (f[S]°') = 0 in D\ {0}. We next show
that under the conditions of Theorem 2.1 f[S]%! extends to a d-closed current
on all of D.

Lemma 3.1 Let D C RY, N > 2, and let f be a locally integrable function
on S\{0}. If

0

/0 ©54(e) V(o) de < oo,

then f[S] defines a current on all of D in a canonical way .
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Proof. Let us parametrise S by

1 = @(t) sinfy sinfy ... sinfy_3 sinfy_s,
T = @(t) sinfy sinfy ... sinfy_3 cosby_o,
tn_s = @(t) sinfy cosby,
tn_1 = () cosby,
TN = t,
where ¢ € [0,&°%], and 0y,...,0x_y are polar coordinates on the unit sphere

SN_2 in ]RN—I7

01 < 2w
(9]‘ S T

Y

0
0 for y=2,....,N —2.

VAIVAN

Y

If GG is the Gramian of this parametrisation then it a simple matter to check
that
det G = (1 + (c,o'(t))2> (c,o(t))z(N_z) sinfy...sinV "2 0y _,.

Hence the Lebesgue measure do on S is

do = (o(1))N 72 /1 + (¢'(1)2dt A duw, (3.1)

dw being the standard area form on the unit sphere SV=2
For each differential form ¢ of degree N — 1 with smooth coefficients and
compact support in D, we get

|/ng| < c/s|f|d0

= o [ o VIE R [ 1

0

< o [ o sma

where ¢ and C are positive constants depending on § and ¢g. Hence the lemma
follows.

4

Lemma 3.1 shows that under assumptions of Theorem 2.1, f[S]°! is a
current on all of D in a canonical way. In fact, it is of order 0, i.e., extends to
(n,n — 1)-forms with continuous coefficients.

Lemma 3.2 Suppose [ is a locally integrable CR function on S\ {0}.
Then, for almost all € € (0,&°], we have

fov=— fo
S\S. 8S-

whenever v is a differential form of bidegree (n,n — 2) with smooth coefficients
and compact support in D.
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Proof. See [Kyt95, Ch. 2].
O
Having disposed of these preliminary steps, we can now return to the proof
of Theorem 2.1.
By Lemma 3.2,

(0 (f[8]0’1> ,0) = lim fov

for all (n,n — 2)-forms v with smooth coefficients and compact support in D.

Indeed,

v c dew.
| asaf = /855 4
= con1 (9(2))7 S0

where ¢ is a positive constant independent of ¢, and 9,1 the area of the unit
sphere in R**~!, We have used the fact that

vol(0S:) = 02,21 (@(5))271—2 )

As Sy(e) = o(1/¢*2(¢)) when ¢ — 0, the desired equality follows. Thus,
the current f[S]*! is d-closed in D.

The rest of the proof of Theorem 2.1 runs as the proof of Theorem 0.1. We
first recall a d-homotopy formula of [HL75]. Namely, let

F =Y F(0]0%)
7=1
be a vector field in C* whose coefficients are distributions on all of C"*, satis-
fying
—~ JF)
Y =4
T 64
7=1

d being the Dirac delta-function. Then, given any current T' of bidegree (p, q)
with compact support, we have

T'= F#IT + 0 (F#T)

where F'#T stands for the contraction of T by F'.
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Consider B , .
Fi = ¢, zj/1z]7", 7=1,...,m;
T = x/f[s]™,
where ¢, is a suitable constant and y € O, (D) a function equal to 1 in a

polycylindrical neighbourhood U of a point 2% € D. This yields

~(PHT)) = [ OOV, €S, (3.2
s

Since é(xf[S]o’l) = 0 in U, the current F#JT has smooth coefficients in

U and is 0-closed there. By Grothendieck’s lemma, F#JT is 0-exact in U,

i.e., F#JT = Ju for some smooth function u. Hence it follows that
T =20 (F#T + u)

in U. In particular, the function hyy = F#T + w is holomorphic in U \ §. We
write hﬁ for its restriction to D N U.

Approximating D from within by domains U where an analytic representa-
tion hﬁ has already been constructed, and using a familiar process of improving
the convergence of a series, we arrive at an analytic representation A% in the
whole domain D.

Formula (3.2) shows that the difference of boundary values of the functions
hﬁ on & N U coincides with the jump of the Bochner-Martinelli integral on
S NU. Hence, it is equal to u, which completes the proof.

Remark 3.3 As is shown in the proof of Theorem 6.1 of [Kyt95, Ch. 2],
the difference h* — M is a smooth function in D. Therefore, the boundary
behaviour of the functions h™ near the singular point is completely defined by
that of the Bochner-Martinelli integral M(z) of f.

4 Estimates of representing functions

The rest part of the paper is devoted to the study of boundary behaviour of
the Bochner-Martinelli integral near singular points.

Recall that p(z) stands for the defining function of the hypersurface S close
to the singular point O(0,0), i.e.,

plz) = ¢ (xn) = |2)* = |y|*
= ¢ (Rz) — &) = (Sza)°
where 2/ = (21,...,2,-1). We assume that ¢'(x,) > 0 for z,, € (0,£°], and

o(x,) = 2P(x,) near &, = 0, where p is an integer > 1 and ¢(x,,) a continuous

function with ¢(0) # 0.
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Set S.o ={C €D: p(¢) =0, 0 <R <} Given afunction f € LY (S.),

we consider the integral

Py = [ 50 27

, 2€D\S,
S.o ¢ —=[m

where m > 0.
In the sequel we restrict our attention to z € Dt. If Z is the projection of
z to the axis Oz, then

217 < J=” < 1217+ %(12D).

2l GIEY
e (A m

The right-hand side of (4.1) is dominated by a constant C' > 0 independent
of z, for the limit

Hence

i 2D _ o

EECENE

exists and ¢'(z,) € C[0,£°]. Therefore, (4.1) implies that z and Z are actually
equivalent when z — 0.

Since ¢(|z|) = |z]P¢(|z]), the functions ¢(|z]) and ¢(|Z]) are also equivalent
as z — 0. From this we deduce that the estimate of P, (Z) in terms of the
function ¢(|Z]) to be next obtained, will actually be valid for every point
z € Dt.

Let z = Z tend to 0 along Oz,. In this case we have z = (0,...,0,z,),
with «, > 0. Denote (; = 7; + iv;, for j = 1,...,n. Using equality (3.1) for
the measure do we get

&0

Ple) = / (p(r )]V 4 (1)) / <<rn_xn>2fi§|)j§+|v|2>m/2

:/ (‘P(Tn))%_i))z)m/z 11 (¢/())2dr, / f(¢Q)dw.

(70 = 2)? + (0(7

§2n—2

/S2n_2 f(Q)dw = 9,1 S¢(T0),

it follows that

0

(7))

Pl S [ s G

Se(rn)dr, (4.2)
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where ¢ is equal to 0g,—1 times the supremum of /1 + (¢/(7,))? in 7, over
[0,&").

In order to estimate the integral on the right-hand side of (4.2), we need
auxiliary material. Let 77 = 7%(x,) stand for the minimum point of the func-

tion (7, — x,)% + (¢(74))? over 7, € [0,&"].

Lemma 4.1 The following formulas hold:

Ln

xji_fgol_l_ m = 1+ (99/(0))27
R k) sl C2 29 S S
30+ (p(2n))? 1+ (¢(0))?

Proof. At the point of minimum we clearly have x,, — 7° = o(77) ¢'(77),

whence

T @(Zn) (%)
TTL TTL

Since x, — 04 and ¢(0) = 0, it follows that 7(x,) — 0+. Hence we
conclude that

lim n = lim (1 + 99(7;”) 99’(7’;))
T

en—0+ 75(2,,) 2n—0+

= 1+(£'(0))%

n

as desired.

To prove the second formula, we consider separately two cases, namely
©'(0) =0 and '(0) > 0.

If ¢'(0) =0, then

xh—l;rol-l-F =L
plrn)
xi—>0+ olrr) !
whence
B o o ) S (2 (ot Y
304 (o(20))2 =0+ (p(2n))

On the other hand, if ¢©’(0) > 0 then

.ol
lim = lim
Tn—0+ gp(xn) Tn—0+ gp(xn)

I
L+ (#(0))*
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which is due to L’Hospital’s rule. Hence

(mn — 2a)* + (2(72))"

lim = lim

() (v ( )) 1)

00+ (¢(zn))? n—0+ (99
T
- (wn—>0—|— 99 )

T+ (99’(0))2’

which establishes the formula. O
Our next objective is to estimate the integral
< dr

Ts(x) = / , 4.3
©I= )y o+ e 43)

for s € R.

Lemma 4.2 As defined above, the integral I;(x) meets the following esti-
mates:

1) If2<s, then

3) Ifs<1, then

Proof.
1) Let s > 2. Then

| Zs(2)] <

C ‘ dr
S | 2P+ (o) (4.4)
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the constants ¢ and C' being independent of x € (0, £°].
Let us prove that

(r = o) + (o))
SRt (plae = (49)

for all ,7 € (0,e°], where a and A are positive constants independent of
7 and . To this end, set y = ¢(x). Since ¢'(z) > 0 for all x € (0,"], and
o(x) = 2P (x) where 1(0) # 0 and ¢'(x) > 0, the inverse function x = ¢~!(y)

has the form

where 7(0) # 0.

Set {
and
w (VZON
{ y = vy
where w? + y? = 1. Then
(r—2)+(p(7)) _ w4 (plw+ e (y))
(7 —2)* + (e(x))? w? + y?
_ T+ (e + o7 (05)))?
92
(00 + e (99) )
-

which gives

TR as (e ataon) o (0 + 00i00))

the constant A does not depend on 7 and x.
Considering the reverse fraction, we obtain an estimate

(r = 2)* + (p(x))*
(T =)+ (p(7))?

with @ a constant independent of 7 and x. This yields (4.5). Finally, combining
(4.4) and (4.5) we get

<

Y

1
a
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< ¢ ! arctan ’ |
T oa (p(x)pt (x)
< QW !

T oa (plx))t

as desired.

2) Suppose 1 < s < 2. Once again we make use of the estimate (4.5) to
obtain

_ 1 ’ (p(z)~"d
|Is(51?)| - (99(1,))5_1/ T—:I;)2+( ( )) )5/2

= x1> / W_x Gl

(r—a)+ \/(T — )’ + (p(2))?

&0

0

= T 1 log

whence

[log (/% + (@) ~ 7) |
(@)

Is(x) =

when z — 0+. This establishes the formula.
3) If s < 1 then

2ol < mes(e) [0 L

1
A
1 /5 dr
S max EEEEE TR
az’ Az ) Jy |t — x|

and the proof is complete.

O
We are now in a position to prove the main result of this section giving
sharp estimates of the potential P,,(z).

Theorem 4.3 Suppose that f € L'(Sw) and S¢(7,) = O (1/4,9N(Tn)> as
T, — 0+, for some N < 2n — 2.

1) If2n —m < N, then

1
Pate)l =0 (ppremmmmen) @ FI=0
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2) If2n—m—1< N <2n—m, then

|7Dm(2)| —0 ((Lp(“og 99(|Z|)| ) as |2| = 0.

|Z|))N—I—m—2n—|—1

3) If N<2n—m—1, then
|Pn(2)|=0() as |z] = 0.

Proof. Indeed, let us continue the inequality (4.2), thus obtaining

0

B dr

Pulz)l < C (=

P2 / (7 = 20)? + ((7))) 52
= C In-osnt2+m(]2]),

the last integral being introduced by (4.3). To complete the proof it remains
to apply Lemma 4.2.
O

Remark 4.4 [t is easy to see that Theorem 4.3 actually remains valid for
all z € D™

Consider the Bochner-Martinelli integral M(z) of the function f. Since
IM(z)| < ¢ |P2n-1(2)|, with ¢ a constant independent of z, Theorem 4.3 for
m = 2n — 1 implies the following statements.

Corollary 4.5 Under the assumptions of Theorem 4.3, the following esti-
mates hold for z € D\ S:

1) If1 <N, then

1

M=)} =0 <<so<|z|>>N

) as |z| — 0.
2) IfO< N <1, then
7> as |z| — 0.

3) If N <0, then
IM(z)|=0(1) as |z] —0.

Remark 3.3 enables us to apply Corollary 4.5 to highlight the boundary
behaviour of the representing analytic functions h%(z) of Theorem 2.1.
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Corollary 4.6 Let f € L{ (S) be a CR function on S\ {z°} satisfying

loc

Se(e) =0 (1/4,9N(€)> as ¢ — 0, for some N < 2n — 2. Then,
1) Forl < N, we have

1
(e(lz ==~

1= (

) as z — ZO.

2) For0< N <1, we have

B (R AW
& <Z>"O<<so<|z—zo|>>N> o

3) For N <0, we have

hE(2)| =0(1) as z— 2

In particular, the functions h%(z) are of finite order of growth when z — 2°,
provided that so is f.
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