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Abstract: Given a manifold B with conical singularities, we consider
the cone algebra with discrete asymptotics, introduced by Schulze, on a
suitable scale of L,-Sobolev spaces. Ellipticity is proven to be equivalent to
the Fredholm property in these spaces; it turns out to be independent of the
choice of p. We then show that the cone algebra is closed under inversion:
whenever an operator is invertible between the associated Sobolev spaces,
its inverse belongs to the calculus. We use these results to analyze the
behaviour of these operators on L, (B).

Let B be a manifold with conical singularities. By definition, B is a smooth (n + 1)-
dimensional manifold outside a finite set of exceptional points. In a neighborhood of
each point b in this collection, B has the structure of a cone whose cross-section, Xj,
is a smooth compact manifold of dimension n. Following the standard procedure, we
blow up at each b. We obtain locally the cylinder [0,1) x X} and globally a manifold
B with boundary which makes the analysis much more convenient. For simplicity, we
assume that we only have one singularity.

Fixing a positive density on B, we naturally have the notion of L,(B). Choosing a
boundary defining function ¢, the space L,(B) consists of all measurable functions u
on B such that

/ () PE(y)duy) < .

We introduce a class of weighted Mellin L,-Sobolev spaces H,7(B), s,y € R, 1 <p <
00. For s € N they are easily described as the set of all u € H;yloc(int B), for which, in
local coordinates on [0,1) x X,

D2 (19 Fou(t, x) € Ly(%dz),  VEk+]o| <s.

For p = 2 we recover the notation used by Schulze, cf. [30]. Note that L,(B) coincides
with Hg’vp(B) for v, = (n +1)(1/2 — 1/p).

On B we consider the space U,cr C*(B,g) of cone pseudodifferential operators as
introduced by Schulze (the so-called ‘weight-datum’ g encodes information on the
used). An operator A € C*(B,g) induces a continuous mapping

A M (B) — HE P M (B) (0.1)



for every choice of s and p. A basic question one is interested in is the Fredholm
property of A.

The natural analog of the Lo-ellipticity condition is the requirement that (i) the interior
principal symbol is elliptic and that (ii) the principal conormal symbol, namely the
operator family

{oh(A)(2) :Rez =1/2 —~} C L’(HI‘)‘(X),HS(X))

is invertible by a parameter-dependent pseudodifferential operator of order u; the pa-
rameter space here is the line {Rew = 1/2 — y}. It is clear from the standard theory
and the boundedness of A that this condition is sufficient for the Fredholm property in
(0.1) for all s and 1 < p < co. We prove here that it also is necessary.

We conclude that the Fredholm property in (0.1) is independent of both s and p. On the
other hand, it is well-known from the case p = 2 that the Fredholm property depends
on 7. If A is elliptic for one choice of 7, then it is elliptic for all v € R except for
a discrete set without accumulation point. In general, the index will jump in these
points. The same is true for arbitrary p. In particular, the Fredholm spectrum of a
zero order operator on L,(B) will in general depend on p, since -y, varies with p.

We next deduce the spectral invariance of the algebra of zero order cone pseudodiffer-
ential operators in £(H," (B)): Whenever A is invertible on ;" (B) its inverse is an
element of C°(B,g!). As a consequence, the spectrum of A € C%(B,g) in L(H," (B))
is independent of s and p while it will in general depend on «y. Therefore also the
spectrum of A, considered as an operator on L,(B), will depend on p. Using order
reductions, one obtains analogous results for operators of arbitrary order.

The proof of the above statements on the independence of the Fredholm property
and the invertibility on s and p relies on corresponding properties of the parameter-
dependent pseudodifferential operators on a smooth manifold. As a by-product we see
that the algebra of all parameter-dependent pseudodifferential operators of order zero
is a W-algebra in the sense of Gramsch [14].

The results in this paper will be applied to the L,-theory of partial differential equations
on singular spaces. As a first step they will be used in the analysis of resolvents to
differential operators on manifolds with conical singularities [27]. Moreover, they play a
role in the Fredholm theory for edge-degenerate operators and boundary value problems
[26], where one needs to establish the ellipticity of the principal edge symbol as an
operator on an infinite cone.

1 Notation and basics

We fix 1 < p < 0o and let p’ be its dual number, i.e. 1/p+1/p' = 1.

For a Fréchet space E, we let S(R!, E) be the space of rapidly decreasing functions
with values in E.

Throughout the text, (€) = (1+]£]?)Y/2 and (£, \) = (1 + |€]? + |A\]*)Y/2 for £ € R* and
A € A, where A = R! for a certain integer | € Ny.



1.1 Manifolds with conical singularities

In this paper, B is a manifold with conical singularities of dimension n+1. By definition,
B is a locally compact, second countable Hausdorff space, which is a smooth manifold
outside a finite number of points. For each of these so-called conical points, b, there is
a neighborhood U and a smooth compact n-dimensional manifold Xj such that Uy is
homeomorphic to the cone C, = (Ry x X3)/({0} x Xp), the point b being mapped to
the tip of C. We then choose an atlas on B subject to the following conditions:

i) changes of coordinates outside the conical points are smooth,

ii) given two homeomorphisms ¢1, s mapping neighborhoods of a conical point b
to open neighborhoods of the tip of C, the restriction of ¢, o 901_1 to 10, e[ x Xy
(for sufficiently small € > 0) extends to a smooth map on [0, e[ X Xj.

For simplicity we shall assume that there is only one conical point b. We denote the
corresponding cross-section by X. In view of the above extension property of the
coordinate changes, we can identify B\ {b} with the interior of a smooth manifold B
with boundary X, the blow-up of B.

We fix a positive density on B and introduce the associated spaces L,(B), 1 < p < oco.
Moreover, L,(B) is the space of all measurable functions f on B such that |f[Pt" is
integrable for some boundary defining function ¢ on B. Note that this is the choice
suggested by introducing polar coordinates in R**1 \ {0}.

Near 0B we shall often work with a collar neighborhood [0, 1] x X and use coordinates
(t,z),0<t<l,zeX.

1.2 Pseudodifferential operators on compact manifolds

By L*(X;A) we denote the Fréchet space of parameter-dependent pseudodifferential
operators of order ;1 € R on X, whose local symbols satisfy estimates

sup {|DEDYDia(z, & )] (617 | (2,6,0) € R xA} < oo

for all multi-indices «, 3,7. The residual class L™°°(X; A) consists of integral operators
with kernel in S(A,C*°(X x X)). For the subclass of classical operators, denoted by
L(X;A), we require the symbols to allow asymptotic expansions a ~ > a(u—j) With
a(u—j) positively homogeneous of degree p—j in (£, A). With A € L% (X; A) we associate
its homogeneous principal symbol ag(A) € C®((T*X xA) \ 0), a smooth function
homogeneous of degree 1 in the fibers over each =z € X.

If H(X) are the standard Sobolev spaces on X, locally modelled over H;(R") =
op((§) "*)(Ly(R™)), each A € L¥(X) extends to continuous operators A : Hj(X) —
Hp "(X), and in that sense L*(X) — L(Hy(X), H, "(X)) for each s € R.

We shall need the following result on spectral invariance of pseudodifferential operators.
This can be proven with the help of a commutator characterization similarly as in [6]
or [4]. The subscript (cl) indicates that it holds both for classical and non-classical
operators.



1.1 Theorem. For A € Lébd) (X) the following properties are equivalent:
a) A: Hy(X)— Hy "(X) is invertible for some s € R.
b) A: H/(X) = Hy ™(X) is invertible for all t € R and all 1 < q < co.
¢) There exists a B € L(_C;L) (X) such that AB = BA =1 on C>(X).

If the above conditions hold, we call A invertible in Lé‘cl)(X).

1.3 Parameter-dependent pseudodifferential operators

We shall establish the Ljy-spectral invariance property for parameter-dependent oper-
ators of order zero. The proof relies on a technique introduced by Gohberg [11] and
Hoérmander [17].

For y,n € R", s > 0, and fixed 0 < 7 < 1/2 set

[Ss(ymul(e) = P u(sT(x —y)),  u € Ly(R"). (1.1)
1.2 Lemma. S,(y,n) is an isometry with inverse given by

15 (g, mul(s) = s~ Ty 4 5T,
Ifa € S°(R*;R" x A) then
Sy (y,m) op(a) (sA) Ss(y, 1) = op(as(y,m))(N), (1.2)
where as(y,n) € SO(R";R" x \) is defined by
as(y,n;x,&,\) = aly+s "z, sm+ 7€, sN).

For (n,\) #0, s > 1, and all multiindices «, 3,y we have estimates

o+
o 1y 1 . T er-1)(al+ih-r18
|D§ D,\Dxas(yaﬁa%f,AH < Caﬂ"/|(n, >\)||a\+|7|8 . (1'3)

PRrROOF: Note that, by Peetre’s inequality,
c c
(w+w) < (w) < S ()
(v) [v]
for v # 0, and that for s > 1land 0 <o <1
(sTow) < s™ (w).

This together with the usual symbol estimates of a shows the estimate for a,(y,n). The
other statements are elementary. m

1.3 Lemma. Ifu € L,(R"), then S(y,n)u — 0 weakly in L,(R") for s — oo.



PrOOF: We have to show that (Ss(y,n)u,v)r,®n) — 0 for all v € Ly(R"). Since
1Ss(ys Ml c(r,(&r)) =1 we may assume that u,v € C5°(R"). Then

§—00

(S5 (y, mu, v)| < /sm/pIU(sT(%‘ —y)llo(@) de < s o]l L @) lull g, @) = 0.

u
1.4 Lemma. Let a € S°(R*;R" x A) and, for y € R" fixed, let
a=a(y) = liminf |a(y,n, \)|.
|(m,A)| =00
Then there exist 0 # (n,\) € R" x A and a sequence s, — 0o such that
as, (.13, 0) = aly + s 55+ 5EE sk ) T 6= 6(y) (L4)

for all (x,¢), for some (8 with |(| = «.

ProoOF: We find a sequence ((nk, Ak))ken with |(ng, Ag)| — oo such that a(y, ng, Ag) —
B for some ( with |#| = «. By passing to a subsequence, we can assume without loss

925, (3, for some (1, A). With 5, = (7, A0)] we writ

of generality that

|a’5k (y7777 LE,S, >‘) - /B(y)| < |a’sk (y7777 LE,S, >‘) - a’(y7 Sk, Sk>‘)| +
+|a(y7 Sk, Sk>‘) - a(y777k7 Ak)| + |a(y777k7 Ak) - /B(y)|

By the fundamental theorem of calculus and inequality (1.3), the first summand can
be estimated from above by

1 1
" / (Voas,)ysmom,06, V)| do -+ [¢] / (Veas,)(y,m, o, 06, \)] do

—T T— (5) k—
< cs, |x|+csz 1|(77»)\)||€| A o)

A similar argument applies to the second term, the third term converges to zero by
assumption. -

1.5 Lemma. Fixy € R" and let (sg)gen and (n,\) be as in Lemma 1.4. Then

k—o

op(as, (y,m) (s A)u — B(y)u

in L,(R") for each u € L,(R").

PRrROOF: In view of (1.2) and since all Ss(y,n) are isometric, we may assume that
u € C°(R"). Now,

[lop(as, (y,m) (s A)ul(z) — By)u(z) = /6i’”§(ask(y,77;w,§, A) = Bly))a(E) dg.
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Since a € S°(R"; R" x A), the integrand is bounded from above by c|i| and, according

o (1.4), converges pointwise to zero as k — o0o. Lebesgue’s theorem on dominated
convergence therefore shows that the above expression tends to zero for each x € R".
Integration by parts yields

5 [ . 6,3)  B)ale) de
= Y e [ D ) — B de

Y1+v2=Y

for any v € Nj. Therefore,
l[op(as, (v, m)) (s Nul(@) — Bly)u(@)|P < c(z)~ "

and a second application of Lebesgue’s theorem shows the convergence in L,(R"). =

1.6 Theorem. Let A € L°(X;A) and assume the existence of B(\) € L(L,(X)),
A € A, uniformly bounded in A, such that

B(A)A(N) =1—-K(\)
with K(\) € L(L,(X)) compact and K(X) — 0 as |A\| = oo. Then A is parameter-
dependent elliptic.

PRrROOF: Let z € X, x : U — R" a chart around z, and ¢, 1 € C§°(U) with pop1 = ¢1
and ¢; = 1 near z. Then x*(po A(X) 1) = op(a)(A) with a symbol a € SO(R"; R* x A).
It clearly suffices to show the existence of constants C| R > 0 such that

la(y,n, )| = C  V|(n,A)] =R, (1)

where y := x(x). By continuity, such an estimate then automatically holds in a neigh-
borhood of y. If ¢ € C§°(R") with ¢ = 1 near y and (¢ o x)p1 = (o x) = ¢y,
then

Px BN o AN o1 — oy = K(N)p1 — ox B (L = o) AN
Due to the disjoint support of (1—¢g) and ¢; we obtain operator families B()\), K(\) €
L(L,(R™)) having the same properties as B()\) and K (\), respectively, such that

p[B(Nop(a)(A) — 1] = K(N).
Choose 0 # u € C§°(R™) with pu(- —y) = u(- —y). Then

lull,@ry = [1Ss(ys mulln, @ny = l0Ss(y, nullr, @n)
loB(Aop(a)(N)Ss (y, m)u — K (N)Ss(y, n)ull 1, @n)

< 1S5 (g, mop(a) (NS (y, m)ull 1, ey + KNS5 (ys m)ullL, @y (2)
with a constant ¢ > |@B(\ Mz, @ny) > 0. For the second identity note that the

support of S¢(y,n)u shrinks to y as s — oo. Now let 0 # (n,A) and s — oo as in
Lemma 1.4. Then

k—o0

1K (3£A) S, (y, m)ull ey — 0,
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since K (s;A\) — 0for A # 0 and K (0)Ss, (y,7)u — 0 by Lemma 1.3 and the compactness
of K(0). Replacing A by sgA and s by s in (2), and passing to the limit s, — oo,
Lemma 1.5 then implies [|ul|z, &) > c|B(y)|l|ullL, &), ie

Q-

liminf [a(y,n, A)| = |B(y)| =
[(mA)[ =00

This yields (1). "

1.7 Remark. Theorem 1.6 extends to the case of parameter-dependent operators act-
ing on sections in vector bundles over X. The proof is quite the same as before, by
considering

lim inf aly,n, A\)v
o=t B latym, Aol

for v € RY, where L is the fiber dimension.

1.8 Corollary. Suppose A € L?d) (X;A) is pointwise invertible in L(L,(R")) and

A(MN) 7! is uniformly bounded in A € A. Then A~! € L(()Cl)(X; A).

PrOOF: By Proposition 1.6 A is elliptic. Hence there is a parametrix B € L(()cl) (X;5A)
with BA—1 = Ry and AB — 1 = Ry for Ry, Rp € L=®(X; A) = S(A, C®(X x X)).
Solving for A~ yields

A7l =B - R B+ R AT'Rr € Li(X;1),

since RLA 'Rp € L~°(X;A) in view of the assumptions on A. L]

2 The cone algebra on L,-Sobolev spaces

2.1 Pseudodifferential operators based on the Mellin transform

For real o we set I'; = {2 € C | Rez =0}.

2.1 Definition. For v € R let T,(Ry x X) denote the Fréchet space of all ¢ €
C*®(Ry,C*>®(X)) with

sup { 1t/ (1) ()| Clog ) | ¢ € Ry | < o0
for all k,l € Ny and each continuous semi-norm ||| - ||| of C*°(X).

Multiplication by ¢, ¢ € C, induces an isomorphism Ty (Ry x X) = Tyqrec(Ry x X);
this is also true for the map S, : 7,(Ry x X) = S(Rx X) := S(R,C*(X)) defined by

Syp(r) = Y2 ("), (2.1)



We define the (weighted) Mellin transform of ¢ € T, (R x X) by

o dt
Mople) = [ o) G zeTia,

with convergence of the integral in C*®(X). If we write dr = (2m)~'dr, then M, :
Ty(Ry x X) — S(I'y /95—y x X) is an isomorphism with inverse

M o(t) = /t(1/2’7+i7)¢(1/2 — 5y +i7)dr, t > 0.

2.2 Definition. For p € R let ML*(X,R;T'y) consist of all h € C*°(R,., L*(X;T'y))
such that for each continuous semi-norm || - || of L*(X;I',) and each k € Ny

sup {I(¢0) h(t) | | t € Ry } < 0.

With each such symbol h we associate a Mellin operator op],(h) : T,(Ry x X) —
T, (R4 x X) by

lop},;(h)el(t) = / t 2R 1)2 — 4 4 i7) (M) (1/2 —y 4+ i) dr. (2.2)

2.2 Meromorphic Mellin symbols
Let ¢ € C and w € C§°(Ry) with w = 1 near ¢ = 0. Then the function
p(t) = pr(t) =w(t)t ¢ loght, >0,

belongs to 7,(Ry) if and only if Re¢ < 1/2 — . In this case, Myp € S(T'y/5_,)
extends to a meromorphic function with exactly one pole in ¢ of order k£ + 1 that
admits a decomposition

\k
berle) = Muple) = 20+ g(e) (2.3

with an entire function g. Moreover, o —= (xM,p)(o + i) : R = S(R) is continuous
for any (-excision function Y.

2.3 Definition. A set P is called a discrete asymptotic type for Mellin symbols if
P = {(pj,nj,N;) | Rep; = Fo0 for j — Foo, nj € Ny, j € Z},

with finite dimensional subspaces Nj C L~°°(X) of finite rank operators. We also allow
P to be a finite set. Let ncP = {p; | j € Z} and O the empty asymptotic type.

2.4 Definition. With P as in Definition 2.3, the space M}(X) consists of all mero-
morphic functions h : C\ m¢P — L% (X) with poles in p; at most of order n; + 1 that
satisfy:



a) The coefficients of the principal part of h at p; are elements of Nj, i.e. for all
JE€Zand 0 <k <n;

ij,k(h): 3 ook { —pj) n]+1h }‘ € Nj,

2=pj
b) if 4y, k is as in (2.3) and
Z er], W), ks
|Rep;|<N k=0
then v+ hn(y+1i-) : [-N,N] — L!(X;R) is continuous for each N € N.

M }’;(X ) is a Fréchet space if equipped with the projective limit topology under the
maps

I rp, k(h) : ME(X) = Nj,  h hy : M(X) — C([=N, N], L', (X; R)).

2.3 The cone algebra

2.5 Definition. By C2°(B) we denote the Fréchet space of all ¢ € C*°(intB) such
that wp € T, _p/2(Ry x X) for a cut-off function w € C§°([0, 1]).

2.6 Definition. i) Let v € R and © =| — k,0] with k € N. A set Q is called an
asymptotic type with respect to (y,0) if

Q={(glj,L;) | L —y—k<Req; < —v,[; €Ny, j=1,...,N}

for some N € Ny, and with finite dimensional subspaces L; C C*(X). The
projection of Q to the complex plane is denoted by wc(Q, the set of all such
asymptotic types by As(y,©). We write O for the empty asymptotic type.

ii) With Q € As(y,©) as in i) and a fixed cut-off function w € C§°([0,1]) let

N
Eo(B) = {t 30N fuw(t)t 9 loght | f € Lj}.

j=11=0

This is a finite dimensional subspace of C3°(B). Moreover, we set
o(B) = projlim C%_.(B) & £q(B)
which is a Fréchet subspace of C3°(B).

2.7 Definition. For~y,u € R the space Cq(B; (v, 7 —p, ©)) of Green operators consists
of all integral operators G that have a smooth kernel

ka € (C2,,.0(B) 8 C%%(B) N (C2,(B) & C*°, o (B))

9



with asymptotic types Q € As(y —p,0) and Q' € As(—~,©) (depending on G). More
precisely,

Gu(y) = (ka(y,"), W) y() = /Bkc(y,y’)U(y')t(y')” dy',  ue CF(B).

It can be shown, cf. [33], that Green operators equivalently can be characterized by
their mapping properties in corresponding Sobolev spaces (with asymptotics), as stated
below in Theorem 2.14.

Definition 2.8 below, as well as the two subsequent theorems may be found in [7],
Chapter 8.1.4.

2.8 Definition. The cone algebra C*(B; (y,y—p, ©)) of order p with respect to (y,y—
11, ©) is the space of all continuous operators A : C5°(B) — C52 ,(B) of the form

A=wiApyywy + (1 —Q)Q)A,/,(l —(,4)3) + M + G
with functions w; € C§°([0, 1[) that are identically 1 near t = 0, and

i) a Mellin operator Ayy ==+ op"]{/;”/Z(h) with h € C®°(Ry, MA(X)),

i) a pseudodifferential operator A, € L';(2B),

cl

k=l -n/2 .
E Al op?& (hl)}wl with
=0

€ Mp>=(X), mcPNToss_, =0, andy =1 <y <,

iii) a so-called smoothing Mellin operator M = wy {

iv) a Green operator G € Cq(B; (v,v — 1, 9)).
The conormal symbol of A is the element of M, (X) defined by
ol (A)(2) := h(0,2) + ho(2).
2.9 Theorem. The composition of cone operators yields mappings
C*(B; (7,7 — 1,0)) x C¥ (B; (v + ', 7,0)) — CHH (B (v + 1,y — 11, 0)).

The Green operators form an ‘ideal’ with respect to this composition. For the conormal
symbol we obtain

o (AA) (2) = o (A) (2 + )t (A) (2).

2.10 Theorem. If A € C*(B; (v,y — p, ©)), its formal adjoint A* with respect to the
Ly(B)-scalar product is an element of C*(B; (—y + p, —7v,©)). The conormal symbol
of A* is given by

ol (A)(2) = oy (A)(n + 1 — i — 2)",

where * on the right-hand side denotes the pointwise formal adjoint in L!)(X).

10



2.4 Extension to Sobolev spaces

Let {Ui,...,Un} be an open covering of X with charts x; : U; — V; C R", and
¢, %5 € C°(Uy) functions with ¢jeb; = ¢; and 30 ¢ = 1.

2.11 Definition. Let H;"(B) be the closure of C3°(B) with respect to the norm

N 1/2
“UHH;*”(B) = (Z “[Sv—n/2(¢jwu)] o (1 XX;l)H%{g(Rl'M) + [I(1 - w)““%{;(ﬁ@)) )
7=1

where S,_,/, is as in (2.1). Note that different choices of cut-off functions w €
C3°([0, 1)) yield equivalent norms. For an asymptotic type Q) € As(y,©),

Hy o (B) = proj-lim H; " 5(B) @ £q (B)

is a Fréchet subspace of Hy" (B).

2.12 Remark. a) H,”(B) is a Banach space and, in case p = 2, a Hilbert space.

n+l

b) Ifm € Ny thenu € H," * (B) ifand only if (1 —w)u € HJ*(2B) and (t9;)* D;(wu)

€ Ly(Ry x X; %dx) for all k + 1 < m and all differential operators D; on X of
order at most [.

07 .
c) Ly(B) =H,p "/p(]B) with v, = (n + 1)(% _ %)
d) The embedding #," (B) — st;ﬁ, (B) is continuous if s > s', v >+, and compact
ifs>s,v>+".

e) The dual of H,”(B) can be identified with 1, 7(B) via the non-degenerate
sesquilinear pairing

(u,v) = (u,v) g, @) : Hy ' (B) x H;,S’_V(IBB) — C.
The following proposition was shown in [2], Remark 4.2, Proposition 6.8.

2.13 Proposition. Each A € C*(B; (v, — p, ©)) induces continuous operators
A:HyT(B) — H HTTH(B)

for all s € R. Moreover, to each asymptotic type Q € As(vy,©) there exists a Q' €
As(y — p,©) depending on A and @ such that

AHH(B) = Hy 5T (B).
Sometimes it is important to know that Green operators can equivalently be charac-
terized by their mapping properties in the Sobolev spaces rather than by the structure
of their kernels. It is particularly useful that the analogue of the definition for the case
p = 2, namely (2.4) below, yields the same class of operators for each choice of p.

11



2.14 Theorem. An operator G : C5°(B) — C52 ,(B) belongs to Cq(B; (v,v — i, ©))
if and only if G and its adjoint G* extend for each s € R to continuous operators
G:Hy'(B) = CL, o(B), G H T (B) = O, o(B) (2.4)

for appropriate asymptotic types Q € As(y — p,©) and Q' € As(—v, 9).

3 Ellipticity, Fredholm property, and spectral invariance
3.1 Definition. A cone operator A € C*(B; (y,y — p, ©)) is called elliptic, if
i) the homogeneous principal symbol O':Z(A) € C®°(T*(int B) \ 0) does not vanish,
i) the conormal symbol o,(A)(z) € L% (X) is invertible for each z € I‘nTHJY, and

oh (A7t e L;“(X;F%_v).

3.2 Theorem. Let A € C*(B; (y,vy—u,©)) be elliptic. Then there exists a parametriz
B e CH(B;(y — p,7,0)) such that

BA-1 € Cq(B;(v,7,0)), AB-1 € Ca(B;(y —p,y— 1, 0)).

PROOF: The ellipticity condition in Definition 3.1 is (seemingly) stronger than the one
employed by Schulze, cf. Section 3.3; it coincides with that given in [25], Chapter 3.
The usual parametrix construction then yields the assertion. ]

From this theorem and the established mapping properties of Green operators we imme-
diately obtain the following results on the Fredholm property and the elliptic regularity
in the L,-Sobolev spaces.

3.3 Corollary. An elliptic A € C*(B; (vy,y — i, ©)) induces for all s € R Fredholm
operators A : H,7(B) — H, "7 H(B).

PRrROOF: Green operators are compact in the corresponding Sobolev spaces by Remark
2.12.d) and Proposition 2.14. The result now immediately follows from Theorem 3.2.
|

3.4 Corollary. Let A € C*(B; (y,v—u, ©)) beellipticand Au = f withu € H, 7 (B).
a) If f € Hy "7 "*(B) then u € H," (B).

b) If f € H;fQ‘f’v*“(B) for some type Q', then u € H;’E(B) for a certain type @
depending on A and Q'.

PRrOOF: Using a parametrix B, we get w = Bf + Gu for some Green operator G. =
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3.5 Corollary. If A € C*(B;(y,y —p,0)) is elliptic and A5, : Hp" (B) — H, 7 H(B)
denotes the extension of A to the Sobolev spaces, then both ker A} C Cf;OQ( ) (B) and
ind A7 are independent of s and p.

PrOOF: The statement concerning the kernel of A follows from the elliptic regularity.
If A5* the adjoint operator H;s+”’_7+“(B) — 7-[;,5’_7(153), then

ind A; = dim ker A; — dim ker A;*.

Furthermore, A" = (A*); for the formal adjoint A* of A. Applying Theorem 2.10, we
see that A* is also elliptic, hence ker A7* also does not depend on s and p. n

As we shall see in Section 3.4 below, both the Fredholm property and the index of A
on L,(B) will depend on p.

3.1 Necessity of the ellipticity

3.6 Proposition. Let A € C*(B; (y,y — i, 0)), © =] — 1,0] be a Fredholm operator
in L(H,"(B),H, """ "(B)) for some s € R. Then the homogeneous principal symbol
of A does not vanish on T*(int B) \ 0.

PROOF: Since A is a usual pseudodifferential operator in the interior of B, and the cone
Sobolev spaces are modelled over L, away from the boundary of B, the same argument
as in the proof of Theorem 1.6 applies. ]

In the following calculations we identify L,(R; x X; %dx) and Ly(Ry, Ly(X); %)

3.7 Definition. For e >0, 19 € R, and u € Ly(Ry, L,(X); %) define
(Teu)(t) = ult/e),  (Remu)(t) = "7t u(t).

Then T, R. -, : Lp(Ry, Ly(X); %) — Ly(Ry, Ly(X); %) are bijective isometries with
~1

. 71 _ _
inverses T, - =Ty, and R. = Ry /. 7 /e-

3.8 Lemma. Ifu € Ly(Ry, L,(X); &), then T.u — 0 weakly in Ly(Ry, Ly(X); %) as
e — 0.

—0
ProOF: It suffices to show that (T u, U>L2(R+,L2(X);%) =S 0forallu € C°(Ry, Ly(X))
and v € C§°(Ry, Ly (X)), since T, is uniformly bounded in ¢ > 0. But this is true,
since if suppu C [a, b] then supp Tru C [ea, eb] and therefore (Tru,v) = 0 for sufficiently

small ¢. [
3.9 Lemma. Let h € ML°(X,R, ;') NC(Ry, L%(X;Ty)) and ho(z) := h(0,z). Then
T 1 op}\//ﬁ(h) T.u — op}\//lz(hg)u

£

in Ly(Ry, L,(X); %) as ¢ tends to 0, for any u € L,(R, L,(X); %)
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PROOF: Since all T, are isometric, we can assume that u € Cg°(Ry., L,(X)). It is easy
to verify that

T opi/?(h) T. = opi/?(he) with  he(t,z) = h(et, 2).

£

Noting that [[t=""h.(t,iT) Mu(iT)|lL,(x) < C|Mu(it)||r,x) € Li(R;), Lebesgue’s
dominated convergence theorem implies that

op2(h)ul(r) = / T h (¢, i) Mu(it) dr
Gl / 77 ho (im) Mu(ir) dr = [op"/2 (ho)u](t)

in L,(X) pointwise for each ¢ > 0. Integration by parts yields

(log )% [op3/? (he — ho)u)(t) =Y cu / t 7O (he (t,iT) — ho(i7))0F Mu(iT) dr
k+1<2

with universal constants cj;. Therefore
lfop)y” (he — ho)ul (DI ) < ¢ (logt) € Ly(Ry; L),
and a second application of the dominated convergence theorem gives the result. m
3.10 Lemma. Ifh € L°(X;I) and u € L,y(Ry, L,(X); %) then
R_} o Op}\f(h) R, ;yu — h(itp)u
in Ly(Ry, Ly(X); %) if ¢ tends to 0.

PROOF: First observe that for € > 0

R opi/*(h) Ry = opii2(he)  with  he(ir) = h(ieT + imo).

e,m0 O

Then proceed as in the proof of the previous Lemma 3.9. ]

3.11 Lemma. Let h € L°(X;Ty) and suppose that for each u € L,(R, L,(X); ‘ff)

1/2
el (s 2 x)520) < elloPar (MUl e ry it

for some constant c¢ independent of u. Then for each ¢ € L,(X) and all 7 € R the
estimate

lellL,x) < ellhlm)ellL, x)

is valid. In particular, h(iT) € L(L,(X)) is injective and has closed range.
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PROOF: Since R. ;, is an isometry, and due to Lemma 3.10
1/2
lullz, @ o0y < elBeg oy () Reullp, g, 1, ot
e—0

— cllhlmo)ull w1, (x))

for each u € Lp(RjL,Lp(X);%). Choosing v € C§°(R}) with ||U||LP(R+~@) =1 and
E

inserting u = v ® ¢ yields

“‘P“LP(X) = “UHLP(RJ”LP(X) dty <clve h(“’O)SO“Lp (R, Lp(X); %) = c “h(ZTO)SOHLp

3.12 Proposition. Let A € C*(B; (y,y — p,0)), © =] — 1,0] be a Fredholm operator
in L(Hp"(B),Hp "7 7" (B)) for some s € R. Then the conormal symbol is invertible on
Twii . and the inverse belongs to LM (X; FL“—V)‘

2 2

PRrROOF: Step I: To show the pointwise invertibility, it suffices to show that, pointwise,
the conormal symbol is injective and has closed range in L,(X). In fact, suppose we
have verified this. Since with A also the adjoint A* € C“( i (—y +p,—7,0)) is a
Fredholm operator in [,(’H_S-HL’ 7+“(IB%),’H;S’ 7(B)), we then know that oj,(4*)(z)

is injective for each z € FLH or equivalently by Theorem 2.10, o (A4)(2)* is

o
injective for z € I ntl . B2ut+?f ;n operator is injective with closed range, and its
adjoint is injective, then the operator is bijective.

Step 2: By the existence of order reducing cone operators (as they were constructed
for instance in Theorem 2.4.49 of [30]), we can assume that s = p = 0 Conjugation
with an arbitrary smooth function on B, which is positive and equals "3 ~7 near the

boundary, allows us further to assume that A € CO(B; (25}, 21 ©)). Hence, let

A :wop}v/f(h)wo +(1-w)PQl—-w)+G
with P € L°(2B), G € Cu(B (%,i,@)), and h(t,z) = a(t,z) + a(z) with a €
C®(R4, MY (X)) and a € Mp*°(X) some asymptotic type P with 7¢P N Ty = (.
In particular, 09,(A)(z) = h(O z) =

Step 2a: There exist operators B, K
function o € C§°([0, 1]) such that

2
for s
+ho(2).
€ L(Ly(Ry, Ly(X); —)), K compact, and a cut-off

(Bopyy'(h) =)o = K on Ly(Ry, Ly(X); §). (1)
ntl
In fact, there are by assumption By, K; € L’(Hg’ 2 (B)), Ky compact, such that By A —
1 = K. If we choose 0,01 € C*°(]0,1]) with 001 = 0 and ojw; = 0} then
BioytAo+Bi(l—01)Aoc—o0=Kjo.

Now (1 — 01) Ao is a Green operator due to the disjoint supports of (1 — o1) and o.
Thus the second term on the left-hand side is compact and we obtain

o1BiotAo—oc=01Kyo
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with a compact K. Inserting Ao = w op}v/f(h) o + G o yields

o1 Bl o1 Op}éQ(h)U — 0 = 01 (K2 — B1 o1 G)U

This together with Remark 2.12.b) implies (1).
Step 2b: Let u € C§°(Ry, Ly(X)). Since T; is an isometry and by (1),

= [loTzull

= T,
lelly e 2000, dt) ITeull, e, H(X); 0L o (B, Ly (X); L)
1/2
< |IB T W) T.
KT
*l “” R+,LP(X>,‘?>

The second identity is true for sufficiently small ¢, since the support of T, u shrinks to
zero with e. If we pass to the limit ¢ — 0 and use Lemmas 3.8, 3.9, we get the estimate

p (R Ly (X); Ly’

at, < cllopyy* (houll,
i) 7

lall, o,

This estimate extends to u € L,(Ry, L,(X); %). By Lemma 3.11, ho(2) € £(Ly(X)) is
injective and has closed range for each z € ['y.

Step 3: By Steps 1, 2b, and Lemma 3.11, we now know that hy(i7) is invertible for
each 7 and [[ho(¢7) ! £z, (x)) is uniformly bounded in 7. Hence hy' € L°(X;Ty) by
Corollary 1.8. n

3.13 Theorem. A cone operator A € C!(B; (v,y — 1, ©)) is elliptic if and only if it is
a Fredholm operator in L(H," (B), H, "7 “( )) for some s € R.

PRrROOF: Since C*(B; (vy,y — i, ©)) is a subset of C*(B; (y,y — i,] — 1,0])), the result
follows from Propositions 3.6 and 3.12. ]

3.2 Spectral invariance

3.14 Theorem. Let A € C*(B; (y,y — 1, 0)) be invertible as a bounded operator in
L(Hy" (B), Hy "77H#(B)) for some s € R. Then A=t € CH(B; (y — p,7,0)).

PROOF: Since A, in particular, is a Fredholm operator, Theorems 3.13 and 3.2 imply
the existence of a parametrix B € C~#(B; (v — u,7,0)) with

Gr=AB-1 € Ca(B;(y —p,y—1,0)), Gr:=BA-1 € Cq(B;(7,7,0)).
Solving for A™! yields
A' =B - BGr+GLA™'Gp.

By the characterization of Green operators via mapping properties, cf. Theorem 2.14,
the third term on the right-hand side belongs to Cg(B; (y — u,7,©)), hence A~! is an
element of the cone algebra. m

3.15 Corollary. If A € C*(B;(y,v — p,©)) is invertible as an operator Hy,"'(B) —
Hy "7TH(B) for some s € R and 1 < p < oo, then so it is for all s € R and all
1 <p<oo.
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3.3 Other notions of ellipticity

Schulze uses a seemingly weaker definition of ellipticity, cf. for example [29], Definition
1.2.16. For A € C*(B, (y,y — 1, 0)) he asks that

1) UZ(A) is invertible on 7*(int B) \ 0 and, in coordinates (¢,z) € Ry x R® near the
boundary, that t“on(A)(t, x,t~17, &) is invertible up to ¢t = 0 for (7,&) # 0.

2) oh,(A)(z) : H5(X) — H, "(X) is invertible for all z with Rez = % — 4 and
any fixed s € R.

In view of Theorem 1.1, we may replace 2) by

2') oh(A)(2) : Hy(X) — Hp "(X) is invertible for all z with Rez = 21 — v and
any choice of s € Rand 1 < p < o0.

We have the following result:

3.16 Proposition. For A € C*(B, (vy,y —p, ©)) conditions 1) and 2) above are equiv-
alent to conditions i) and ii) in Definition 3.1.

PrOOF: We know from [29], (1.1.142), that, in the notation of Definition 2.8, for small
t>0

thol (A)(t,a,t 17, €) = ol (h)(t, @, B + i, ), (1)

where the right-hand side denotes the parameter-dependent principal symbol of h €
C> (R4, L"(X;Tg)), which in fact does not depend on 3. If A satisfies i) and ii) in
3.1, then 2) also holds. Moreover, as t tends to 0, the right-hand side of (1) approaches
the parameter-dependent principal symbol of the conormal symbol of A, which itself is
invertible by condition ii). Therefore t“af/ﬁ(A) (t,z,t17,€) stays invertible up to ¢t = 0.
If A satisfies 1) and 2), then i) also holds. Since the left-hand side of (1) is invertible
up to t = 0, the conormal symbol U“M(A) € L‘CLl(X;FnTHJY) is parameter-dependent
elliptic. To show ii), we may assume p = 0, which can be achieved by multiplica-
tion with a reduction of orders from L;l“ (X; FTLTH 77). Due to ellipticity, there exists a
parametrix B € L°(X; FnT-l-l_,y) such that R = 1—09,(4)B € L=>°(X; FnT-i-l_,y). In par-
ticular, [|R(2)||z(z,(x)) <1 for Imz| > ¢ sufficiently large. Therefore, [0%,(A)(2)] L =
B(z) >2; R(#)? is uniformly bounded in £(Ly(X)) for [Imz| > c. The continuity of
inversion in £(L2(X)) in connection with 2) then implies the boundedness for all
z € FnT-i-li,Y. Thus we can apply Corollary 1.8 to 0%,(A). This yields ii). "

3.4 Fredholm property and invertibility in L,(B)

We shall consider the Fredholm property respectively the index of a zero order cone
operator A on different L,(B) spaces. Since

Ly(B) =Hy"(B),  yp=m+1)(3-1),
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this amounts to a change of the weight +y,. A priori A cannot be considered on different
L,(B), since there are two obstructions: (i) the Green operators are only defined for
a fixed choice of weight data, (ii) the conormal symbol may have a pole on the line

| RPY o ['z41. Concerning the Green operators we shall see below that we may
2

p
change the weight; as long as we do not interfere with the poles in the asymptotic
types, the Green operators stay defined and furnish the same map on, say, C§°(int B).

3.17 Lemma. Let G € Cg(B; (v,7,0)), © =] —,0], be a Green operator with kernel
in C3%, (B) &, C%, ,, (B) with Q; € As((—1)/v,0), cf. Definition 2.7. Then G extends

to continuous operators G € L(Hy®(B)) for all y — 1 < o < v + ¢ and
g£; = min{k, "T“ — (—l)jfy —Regq, | ¢ € mcQ;}-

PROOF: The only point to note for this statement is that C?°,;. Q; (B) — C°(B) for

0> (=1)y + ¢, and the duality of cone Sobolev spaces, cf. Remark 2.12.e). "

Let us now focus on operators without Green term. Let h € C®°(Ry, M3 (X)) be a
holomorphic zero order Mellin symbol, hg € M;°°(X) for some asymptotic type P, and
Ay € Lgl(int B) a pseudodifferential operator. With these data we associate a family
of cone operators Ay : L,(B) — L,(B) given by

Ay = wy opr’I_nﬂ(h +ho) wi + (1 —wo) Ay (1 — w3),

provided hg has no pole on the vertical line I'nt+1. The residue theorem immediately
p

shows:

3.18 Lemma. A, and A,, coincide on C§°(int B) if and only if hy has no singularity
between the lines I'nt1 and I'nya.
pP1 p2

Let us assume that A, is elliptic for one p, in particular,

o%(4)(z) = h(0,2) + ho(2), 2 €Twm_ .

is invertible. As a matter of fact, cf. [30], Theorem 2.4.20, h(0,z) + ho(z) is then
invertible on I'g for all # € R\ D, where D is a discrete subset of R. More precisely,

o (Ap) = (h(0,) + ho) ™' € Mp(X)

for a certain asymptotic type R. Since —”T‘H < < nT‘H this particularly implies:

3.19 Proposition. If A, : L,(B) = L,(B) is elliptic for some p, then it is elliptic for
all but finitely many 1 < p < o0.

Varying p, the index of A, changes whenever p crosses a ‘non Fredholm point’ according
to the following relative index formula:
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3.20 Theorem. If A, : Ly, (B) — Ly, (B) are elliptic for 1 < p; < ps < 00, then

indA,, —indA4,, = Z M(a%,(A), z).

n+1 n+1
BT <Re z<—p1

Here, for an operator-valued function h that is holomorphic in a punctured neighbor-
hood of z, M (h, z) is the multiplicity of h at z in the sense of Gohberg, Sigal [13].

For certain classes of operators, an index formula thus can be deduced from the Lo-
results by Briining, Seeley [5], Fedosov, Schulze, Tarkhanov [9], Lesch [19], and Schulze,
Shatalov, Sternin [32].

Let us point out that even if 09,(A) has no singularities between the lines I'»41 and

I'n+1, hence Ay, and A, coincide on C§°(int B), the indices ind A, and ind Ap2p1\zvill in
P2

general be different due to the singularities of o%,(A4) 1.

In fact, the above formula is immediate from Corollary 3.5 and the well-known formula
for the change of the index under weight shift, cf. [21], Theorem 6.5, and [28], Section
2.2.3, Theorem 14. We shall illustrate these effects by treating an example. To make
things easier, we consider the one-dimensional case (n = 0). Here we even have a simple
index formula, cf. [8], [20].

3.21 Example. In the following, we view the unit circle B = S' as a manifold with
one conical singularity in 1. We blow up, using the standard argument function, and
obtain B =2 [0, 27]. The space L,(B) then corresponds to Ly([0, 27],dt). The function

ho(z) = (& — 2)~tels—V°

is meromorphic in C with a simple pole in z = 1/2. In fact, it is not difficult to check
that hg € M, where P consists of the single element (1/2,0,C), and that 1 + hg has
no zero in the strip {0 < Rez < 1}. Therefore,

(1+ho) ™t =1—ho(1 +ho)

and ho(1 +ho)~! € M is holomorphic in {0 < Rez < 1}. We define on [0, 27] the
operators

11

A, = 1—wyopy; “(ho(1 + ho) ™Y wy, 1<p<oo,
11

B, = l4wyopy; "(ho)wi, 1<p<oo, p#2.

Here, 1 is the identity map and wp,w; € C§°([0,27() are cut-off functions. In view of
the holomorphy of ho(1+hg) !, the operators A, coincide on Cy(]0, 27]) for 1 < p < oo.
Moreover, A, extends to a bounded operator on L,([0,2x]), and B, has a continuous
extension for p # 2. We have

oy (Ap) = 0 (Bp) =1,  o3(Ap) =1 —ho(1+ho) " = (1+ho) " =03(B,) ",
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and therefore conclude that Ao is not elliptic but Ay, B, are elliptic, hence Fredholm,
for all p # 2. Moreover, A, is a parametrix to B), since

1 1

ApB, =1+wyopy, " (ho(l+ho) ') (1 —wowr) opj,

NI
=

(hU) w1,

and the second term is known to be a Green operator, cf. [30], Lemma 2.3.73. In
particular,
ind A, = —ind B,,.

A result of Eskin, [8] Theorem 15.12, asserts that the index of an operator of the form
1+wpopy,(flwi, f € M, acting on Ly(R, ) is given by the winding number around
zero of 1 + f along the line I'; 5, traversed in the upward direction. Since the index of
1 + wpop),(f)wr on t7Ly(Ry) coincides with the index of ¢t 7(1 4+ wyop},(f)wi)t? =
1+ wpopY;(f(- —7))wi on La(Ry), it is given by the winding number of 1 + f along
Iy /2. From this it is easily seen that the index of By, on L,([0,27]) is given by the
winding number of (1 + hg) along I'; /,,. Tt is straightforward to check that the winding
number of 1 + hy along I'y equals 0 while that along I'; equals 1. By continuity, the
winding number on I'g is 0 for 0 < < 1/2 and —1 for 1/2 < # < 1. Summing up,

. 1, 1<p<2
mdA”_{O, 2<p< @

In particular, ind A, —ind A4,, =1 for all 1 <p; <2 < py < 00, i.e. the index changes
with varying p.

3.22 Theorem. The set of all p such that the operator A, is invertible, is open.

PROOF: Suppose A, is invertible. According to Theorem 3.14 we can write
Al =@oop)i(g + go)wr + (1 — @2)By(1 —@3) + G

with g € COO(@NJF,M(%(X)), go € M (X) for a suitable asymptotic type R, By €
LY (intB), and G € C;(B; (v,7,0)), © =] — 1,0], with asymptotic types @, ', in the
sense of Proposition 2.14. Choose 0 < € < 1 such that the strip

{zeC|2 —q,—e<Rez <2 —v, +¢}
does not contain a singularity of go or hg, respectively, and such that
Req'<"T+1+’yp—6 V¢ €ncqQ, Req<"T+1—fyp—6 Vq € mcQ.
Then A, = A; on C§°(int B). Moreover, A 1|Cg°(int ) extends to a bounded operator
on Ly(B) = HS’% (B) which inverts Ag. n

3.23 Remark. We see from Theorem 3.20 that, in general, the spectrum of A, will
depend on p. If the Fredholm index jumps in a point pg, then, for small €, at most one
of the operators Ay, _. or A, ;. can be invertible.

Acknowledgement: The particular choice of the operator-family (1.1) and the estimate
(1.3) are suggested (for p = 2) by Grieme [16]. A function similar to that in Example
3.21 was used by Schulze in [30], 2.4.47.
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