Pseudodifferential analysis on manifolds with boundary —
a comparison of b-calculus and cone algebra

R. Lauter and J. Seiler

ABSTRACT. We establish a relation between two different approaches to a
complete pseudodifferential analysis of totally characteristic or Fuchs type
operators on compact manifolds with boundary respectively conical singular-
ities: Melrose’s (overblown) b-calculus and Schulze’s cone algebra. Though
quite different in their definition, we show that these two pseudodifferential
calculi basically contain the same operators.

1. Introduction

We compare two different approaches to a pseudodifferential analysis of totally
characteristic or Fuchs type operators on compact manifolds with boundary. Recall
that locally differential operators in this setting are of the form

m
(1.1) e Y agale,y)(20:)" 0

k‘-l—locl:O

with ago € C(Ry x R?™1). Here, (2,y) € Ry x R?~! are local coordinates near
the boundary; the weight 2= sometimes can be omitted. In this context, it is of
interest to characterize the Fredholm operators (in an appropriate scale of weighted
Sobolev spaces) and the solutions to elliptic equations. A natural way to treat these
problems is to construct a pseudodifferential calculus that includes the parametri-
ces of Fredholm operators, where a parametrix is an inverse up to remainders in a
‘small’ residual class within the calculus. Such pseudodifferential calculi for totally
characteristic operators together with a complete symbolic structure have been
developed independently by Melrose [28], [31], Plamenevskij [42], [43], Rempel,
Schulze [45], Schulze [55], [57], and Unterberger [65]. Let us mention that Fuchs
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type operators were also treated by Briining [1], Briining, Seeley [2], Cheeger [3],
Lesch [21], and many others. In this paper, however, we concentrate on the b-
calculus of Melrose and the cone algebra of Schulze. Though the presentation of
these two calculi is quite different, in fact, these classes of operators are almost
the same. Before making this more precise, let us give a brief description of the
main features of the two calculi.

In [28], Melrose observed that important parts of the theory of totally char-
acteristic operators on a compact manifold with boundary can be understood
geometrically. In fact, the Schwartz kernels of totally characteristic or briefly b-
pseudodifferential operators can be characterized on a compact manifold with
corners XZ, that is obtained from the product manifold X? by blowing up the
corner (0X)%. To be more precise, as in the closed case [10], the kernels of b-
pseudodifferential operators in the small calculus are conormal to the (lifted) di-
agonal Ay, and vanish, in addition, to arbitrary order on all boundary faces of X7
not intersecting the submanifold A,. The normal bundle NA; of this b-diagonal
can canonically be identified with the b-tangent bundle ®TX, a smooth vector
bundle whose space of smooth sections coincides with the Lie algebra Vi (7) of
all vector fields on X that are tangent to the boundary, i.e., roughly speaking,
the space of totally characteristic or b-differential operators of order 1. Conse-
quently, the b-tangent bundle plays the same role in the b-calculus as the usual
tangent bundle in the ordinary pseudodifferential calculus on closed manifolds. In
particular, its dual ®7™* X, the b-cotangent bundle, carries the homogeneous princi-
pal symbol for b-pseudodifferential operators. As explained in [31], the b-calculus
provides an appropriate setting for understanding the Atiyah-Patodi-Singer index
theorem, and, in particular, the appearance of the eta-invariant.

Though the small calculus suffices to invert “elliptic” b-pseudodifferential op-
erators up to operators of order —oo, it is not sufficient to get compact remainders
because of non trivial boundary contributions. To obtain compact or even finite-
dimensional remainders one has to admit operators of order —oo with a more
general asymptotic behavior at the faces of X? (and also X?). This leads to the
full calculus \I!Z’fl(X,bQ%) of b-pseudodifferential operators. Here, £ is an index
family describiﬁg the form of the asymptotic behavior. The definitions and basic
results are given in Section 4; for more details we refer to [31] or [36].

Note that for compact remainders, i.e. for a Fredholm theory we do not really
need the full asymptotic information contained in &£, but only a certain degree of
vanishing at the faces. However, this calculus with bounds [31, Section 5.16] is not
the main topic of this paper.

The definition of the b-calculus extends naturally to the more general case of
manifolds with corners [22], [39]. The corresponding algebras of operators of order
zero were investigated in [17], [19], and [37] from a functional analytic point of
view.

It is worth pointing out that the b-caluclus fits into the setting of and is, in
fact, the prototype of a boundary fibration structure where Lie algebras of vector
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fields are used to characterize degenerate behavior on manifolds with boundary
or corners [29], [35]. For the construction of the corresponding pseudodifferential
calculi we refer the reader for instance to [20], [25], [26], [32], [33], [34], [38].

The passage from a manifold with conical singularities to a manifold with
boundary by blowing-up, naturally leads to the consideration of Fuchs-type oper-
ators. An easy example are differential operators on R™ that have the structure
(1.1) if expressed in polar coordinates. Also geometric operators like the Laplace-
Beltrami operator on a manifold with boundary with respect to a conical metric
are of this form (with m = 2).

In [13] Kondrat’ev observed that the solutions to elliptic differential bound-
ary value problems in conical domains have specific asymptotics near the vertex,
which are related to the eigenvalues of resulting boundary value problems on the
cross-section. Pointing out such a global behavior along the base of the cone,
the operators in the cone algebra are described near the singularity in terms of
Mellin pseudodifferential operators with operator-valued symbols. For example,
the Mellin symbol of a Fuchs-type differential operator 1s a polynomial in z € C
and coefficients that are functions with values in the differential operators on
the cross-section. To describe the parametrices, this holomorphic structure is not
sufficient. General operators of the cone algebra are built upon operator-valued
symbols that extend in the covariable meromorphically to the complex plane. It
1s this meromorphic structure that induces the typical asymptotic behavior near
the singularity of the solutions to elliptic equations. As a matter of fact, such sym-
bols can be split into a holomorphic part of full order and a meromorphic part
of order —co. Therefore, the asymptotic information is carried by smoothing cone
operators. If interested only in parametrices modulo compact operators, it suffices
to consider smoothing symbols that only extend holomorphically to small vertical
strips in the plane, cf. for example [6], [61]. The width of these strips corresponds
precisely (after Mellin transform) to the degree of vanishing at the faces of the
kernels in the b-calculus with bounds mentioned above.

Let us mention that the aspect of operator-valued symbols is interesting for
various reasons. In particular, it yields an iterative approach to manifolds with
higher singularities (such as manifolds with edges [50], [51], [54], [61], and mani-
folds with corners [56], [59]), where the operators have symbols with values in op-
erator algebras on less singular spaces. For instance, a manifold with corner is (lo-
cally) a cone over a base, which itself has conical singularities. A general method of
iterating pseudodifferential calculi is discussed in [60]. The use of operator-valued
symbols also allows to obtain analytic index formulas in the spirit of Fedosov,
cf. [6], [7]. Note also that in [40], [53] a characterization of the stable homotopy
classes of elliptic leading symbols is given (in the case of conical singularities).

It has been shown in [16] that the C*-algebras generated by the operators of
order 0 in the small b-calculus coincides with that generated by the cone algebra.
Before, these algebras were studied independently in [15], [23], and [37]. In this
paper, we analyze the relation between the two calculi for arbitray orders more
precisely. As a first result, we show that the small (overblown) b-calculus coincides
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(up to a weight factor) with the space of cone operators having holomorphic Mellin
symbols (Theorem 5.4). The comparison of the full b-calculus with the cone algebra
therefore reduces to operators of order —oo. In fact, the pattern of poles together
with multiplicities is reflected in the asymptotic behavior of the kernels near the
boundary faces of X7, and vice versa (Theorem 5.8, Proposition 5.10, and Corollary
5.15). As a consequence (Theorem 5.17) we obtain for manifolds X with connected
boundary

(1.2)
(X, Q% (7,7 — m,o0)) C y 07U (X, P03) = @7(X, P03, (7,7 — m, 00)),

where & describes the asymptotics of the kernels near the various faces of X7,
and the union is taken over all £ satisfying a certain compatibility relation with
the weight data (y,y — m), cf. (5.12). Moreover, by the subscript w we denote a
slightly enlarged, ‘weak’ version of the cone algebra, introduced in Section 3.

An essential step in the proof of (1.2) is explaining the precise relationship
between the spaces of polyhomogeneous conormal functions (Definition 4.3) and
the spaces with (weak) discrete asymptotics (Definition 3.4) that are used in b-
calculus resp. cone algebra to describe the asymptotic behavior at the boundary
faces. Results for X resp. X? can be found in Corollary 5.6 resp. Theorem 5.8.

We want to point out that the cone algebra can be shown [52] to be spectrally
invariant. This becomes useful, for instance, in characterizing parametrices for
higher singularities, since then ellipticity is just the invertibility of certain operator-
functions taking values in calculi of the lower levels. Spectral invariance for the
b-calculus holds for a slightly restricted subalgebra of the full-calculus.

However, the algebra of operators of order 0 either in the full b-calculus or
in the cone algebra is quite complicated from the point of view of topological al-
gebras — this is discussed in [16] in detail. In particular, it is not known whether
these algebras though spectrally invariant are closed under holomorphic functional
calculus. Nevertheless, it is reasonable to expect f(a) within the same class as a
provided f is not only holomorphic near the LZ-spectrum of a but also near re-
gions corresponding to the boundary symbol (for instance entire functions). This
complicated behavior of totally characteristic operators was the reason for con-
structing in [18] W*-algebras of totally characteristic operators containing and
sharing important C®-properties with b-calculus and cone-algebra. Recall that
T*-algebras introduced by Gramsch in [8] are not only closed under holomorphic
functional calculus in the usual sense but also an appropriate notion for under-
standing smooth and microlocal phenomena in pseudodifferential analysis from a
functional analytic point of view — for general techniques that can be used in this
context we refer the reader to [9], [14], or [24].

The main results of this paper are stated and proved in Section 5. In Section 2
we recall some basic facts on manifolds with corners and conical singularities, we
give a review on the cone algebra in Section 3, and a summary of the b-calculus
in Section 4.
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2. Preliminaries

2.1. Manifolds with corners. The presentation of this subsection is essen-
tially extracted from [31]. For more details on manifolds with corner we refer the
reader to [5], [27], [30], or [35].

Recall [31, Section 2] that a manifold with corners of dimension n is a (con-
nected) n-dimensional, topological manifold Z with boundary together with a
homeomorphism ¢ : 7 B 7 C Myz into a smooth n-dimensional manifold Mz
without boundary such that there exists a finite family g; € C*(Mz), j € J, of
smooth functions satisfying

1.i(Z) = Z =Njesfe; >0}

2. dojlp € Ty Mz, j € Jy :={j € J:0;(p) =0} are linearly independent for

allpe Z.
The C*-structure on Z is given by C*®(7) := ¢*C*(Mz). Such a manifold My
is also said to be an extension of Z, and 1t is straightforward to check that the
C®-structure on 7 is independent of the extension Mz . A manifold with boundary
is a manifold with corners where J can be taken to have one element. The usual
objects of differential topology are defined by pulling-back the corresponding ones
on M.

A subset F' C Z corresponding under i to a component of M;er{g; = 0} for
some I C J with |I| = k is called a (boundary) face of codimension k, and we
write Fy(Z) for the family of all boundary faces of codimension k.

Let us call a smooth function gr : Z — Ry a defining function for the
boundary hyperface F' € F1(Z) provided F = {or = 0} and dgr # 0 at F. Of
course, a defining function for F is not uniquely determined. However, for any two
defining functions gg, ¢ of F there exists 0 < a € C*°(7) with ¢ = agp.

Note that there is also an intrinsic definition of% manifold with corners built
on local coordinates modeled on the spaces R} := @_I_ x R"?~% and the additional
requirement that all boundary faces are embedded — for details we refer to [35].

Naturally associated to a manifold with corners is the Lie-algebra V,(7) of
b-vector fields, i.e. smooth vector fields on Z tangent to all boundary hyperfaces

H € F1(7) of Z. With respect to local coordinates (z,y): 7 D U — @ﬁ_ X RZ"“
near a boundary face of codimension k, a base of Vi (Z)|r over C*°(U) is given
by the vector fields of the form z;0,,, j = 1,... ,k, and 9,,, £ =1,... ,n—k.
Therefore, there exists a smooth vector bundle *7'Z — Z together with a natural
map of vector bundles j° : °T'Z — T'Z such that V,(Z) = j*(C*(Z,°TZ)). The
bundle *T'Z is called the b-tangent bundle. We apply the functor Q% of a-densities
to the b-tangent bundle *T'Z, and get the bundle *Q®(Z) of b-a-densities. A choice
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of local coordinates (x,y) as above determines a trivialization of *Q%(Z)|y by
(a3

o
|42 gy | = d;—1~~~‘f—;dy1~~dyn_k‘

1

The algebra Diffy (Z) of b-differential operators is defined as the enveloping
algebra of the Lie algebra Vi(7); it is a filtered C*(Z)-module. As usual, b-
differential operators acting between sections of vector bundles Fy, Fy — 7 are
given by Difff (Z, Ey, Es) := Diffy (Z) Q¢ (7) C*(Z,Hom (E1, E3)).

For a smooth vector bundle £ — Z we denote by COO(Z, E) the space of all
smooth sections vanishing to infinite order at the boundary faces of Z. The space

. /
of extendible distributions is defined by C~° (X, E) := (COO(Z, E*® 691)) :

Let o : Z — R4 be a defining function of the boundary face ' € F1(Z%),
and g := HFe}'l(Z) or : Z — Ry. Then we call the elements

(2.1) A(Z) = U {ueC™(2) : Vo(Z)"u C o™ L>(Z) for all k € Ny}

conormal functions on Z. By a form of Sobolev’s Lemma, conormal functions are
smooth in the interior Zy :=int 7 of 7.

2.2. Manifolds with conical singularities. A manifold M with conical
singularity m € M is a topological space such that M = M \ {m} is a smooth
manifold, and there exists a compact manifold X with boundary together with a
homeomorphism ¢ : M — X/0X which induces a diffecomorphism from M to the
interior Xy of X. The manifold X is called the stretched manifold associated with
M . In fact, the analysis of the operators of the cone algebra shall be performed on
the stretched manifold X. The definition easily extends to manifolds with a finite
number of conical points; the associated stretched manifold X is again a compact
manifold with boundary. Note that the stretched manifold associated with a man-
ifold with one conical point may coincide with that of another manifold having
various singularities. However, the resulting calculi on the stretched manifold are
slightly different, the one corresponding to the case of one singularity containing
the other.

2.3. The Mellin transform. The Mellin transform is given by

(2.2) PRun /OOO ¥ u(z) df

for appropriate functions (or distributions) on the real half-axis. Natural domains
for the Mellin transform are the spaces

(23) ﬂ(R-l-aF)a PYERa

consisting of smooth functions v : R4y — F with values in a Fréchet space F' such
that 2277 |log2|*|||(x0,) u(x)||| is uniformly bounded in z > 0 for all semi-norms
Il - ||| of F and all k,{ € Ny. Then the Mellin transform induces an isomorphism
M, of T4(R4, F) to the F-valued rapidly decreasing functions on the vertical line

{Rez=1—1~}.
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As an example, if w € C’fo(@+) equals 1 near z = 0, then for { € C and
k € Ng, we have w(z)z~¢(logz)* € 7, (R4) if and only if Re¢ < % — ~. Its Mellin
transform

(2.4) Ve n(2) = My (w(x)a™ (log 2)*)(2)

extends to a meromorphic function with precisely one pole at { of order k + 1,
that decreases rapidly on vertical lines ‘outside’ the pole. The principal part of the
Laurent expansion of ¥  at ¢ is given by (=1)¥k!(z — ¢)~ K+,

2.4. Weighted Sobolev spaces. For a compact manifold X with boundary,
we denote by L?(X, bQ%) the Hilbert space of all square-integrable b-half densities
on X, i.e. the completion of C*° (X, bQ%) with respect to the sesquilinear pairing

— — 00 bt
<l >L2(X7m%).—/xfg for f,g € C(X,70%).

Let oi : X — Ry be a defining function for H € F;(X). For a system by € R,
H € Fi(X), we abbreviate ¢° := HHe}'l(X) Q;IH, and denote by gbLZ(X,bQ%)
the Hilbert space of all f € C_OO(X,bQ%) with o= °f € LZ(X,bQ%). Note that for
b # 0 the Hilbert space structure on ¢°L?(X, bQ%) depends on the choice of the
defining function gg.

Naturally associated to X is the scale of weighted b-Sobolev spaces defined for
m € Ny by [31, (5.42), (5.44)]

oPHN(X, YY) = {1 € o LF(X,P0F) Dy (X, ") C 0P 1P (X, Pah) )

Here a € Diﬂ'gn(X,bQ%) acts on f € gbLZ(X,bQ%) C C_OO(X,bQ%) in the dis-
tributional sense. Since Diffy" is a finitely generated C*°(X)-module, the spaces
o°HM (X, bQ%) are in a non-natural way Hilbert spaces — see [14], [18] for more
details.

For v € R it is useful to consider also the spaces

H™(X,PQ7) = % HI(X,PQ7)
with (by)g = v — 5 for all H € F,(X). By [18, Proposition 2.2.2] and [57,
Theorem 1.1.21] this definition coincides with that given in [57, Definition 1.1.19].

Note that the scale of Sobolev spaces g®H™ (X,bQ%) and H™7 (X,bQ%) can be
extended to all m € R either by duality and interpolation or by defining [41]

oM (X, Pty = { e 07X, "0R) WL (X,P0F) F C o LA(X, P08 |

where Wg?cl(X, bQ%) 1s the space of classical b-pseudodifferential operators defined
in Definition 4.7. Also it is possible to give a definition in terms of local coordinates,
cf. [4, Section 7.1.2]. Note that each scalar product in H*%(X, bQ%) induces a non-
degenerate sesqui-linear pairing

(o0 s HHX,QF) x HOV TV (X,QF) 5 €.
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3. Review on the cone algebra with discrete asymptotics

The cone algebra consists of pseudodifferential operators in the interior of M
that have a specific behavior near the singularity. Passing to the streched manifold
X with a splitting of coordinates near the boundary, the cone operators are —
modulo certain smoothing remainders — Mellin pseudodifferential operators build
upon symbols that extend in the covariable meromorphically to the whole complex
plane. Note that this description does not depend on the choice of the coordinates
as long as the coordinate change extends to a diffecomorphism of X cf. [12] and
also [46]. For simplicity we restrict ourselves to the case of M having only one
conical singularity; this situation includes all basic ideas and the general case of
finitely many singularities is a straightforward extension. Note that the case of
non-connected boundary 90X is not excluded.

Most of the here presented material can be found, for example, in the mono-
graphs [57] and [58], though our presentation uses slightly different notation.
Moreover, to formulate the connection of Melrose’s and Schulze’s approach in a
smooth way, we introduce a ‘weak’ type of the cone algebra.

3.1. Spaces with asymptotics and meromorphic Mellin symbols. In
this subsection let Y be a closed manifold (later, Y plays the role of the boundary
of X). Furthermore, let Oz = Q%(Y) be the complex bundle of %—densities over
Y, and 97 (Y, Q%) be the Fréchet space of classical (or polyhomogeneous) pseu-
dodifferential operators of order m, acting in C* (Y, Q%), the smooth sections of
Oz, U (Y, Q%;}R) is the space of parameter-dependent operators; here, the real
parameter enters (in the local symbol estimates) as an additional covariable.

Note that if ¥ = LﬂleYj consists of several connected components, each
pseudodifferential operator b € U7 (Y, Q%) can be identified — via localizations to
the different components — with a square matrix (bjx); k=1, 1 of operators such
hat b;; € 97 (Y5, Q%) and the off-diagonal elements b;; have kernels in the space
C®(Y; % Yk,ﬂ'TQ% ® 71'3(2%), where 71 and 7y are the projections of Y; x Yj to
the first and second component, respectively. Similar facts hold for the parameter-
dependent class. The off-diagonal elements then depend rapidly decreasing on the
parameter.

DEFINITION 3.1. Let ¢ : Cx - — C be the projection to the first component.
A discrete set P C CxN is called a weak asymptotic type for Mellin symbols if
P = {(p,n,) : p € ncP} and |Rep;| — oo whenever (p;)jen is a sequence in
ncP with |p;| — co. With such a P we associate the space M7, (Y,Q%) of all
meromorphic functions h : C\ m¢P — U7 (Y, Q%) such that for each N € N and

cl
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appropriate elements rp, , € U~°(Y, Q%)

hn(8,7) == h(B +iT) — > >kt k(B +iT)

pemcP, [Rep|<N k=0

is a continuous function of g € [—N, N] with values in 7} (Y, Q%;RT). Here the
¥p are as in (2.4). If, additionally, for each p € n¢P, N, C \I!_OO(Y,Q%) Is a
finite-dimensional subspace of finite rank operators, we say that the set

P ={(p,np,Np) : p € mcP}

is an asymptotic type for Mellin symbols, and we denote by MZ (Y, Q%) the sub-
space of all h € M}, (Y, Q%) with r, € Np. The unique asymptotic type associ-
ated to m¢ P = 0 is denoted by O.

For brevity, we restrict ourselves mostly to the case of asymptotic types; the
obvious modifications for weak asymptotic types are left to the reader. The pro-
jective limit topology under the maps h — hy and h — 7, x(h) turns Mp (Y, Q%)
into a Fréchet space.

According to the above mentioned representation of pseudodifferential oper-
ators in the case ¥ = LﬂleYj, functions of M2 (Y,Q%) have a corresponding
representation as block-matrices of functions. The off-diagonal terms then in fact
have values in the smoothing operators. Therefore, the matrices with entries only
in the (j, k)-th position (j # k) form a subspace of M7 (Y, Q%), denoted by

(3.1) Mp™ (Y, Vi, Q7).

3.2. Mellin pseudodifferential operators. Let Y be a compact manifold
and Ty = {z : Rez = v}. If h € C* (}R{_,Lm(Y;F%_W)), where we identify the
with R, and [||(28,)* h(z)]|| is uniformly bounded in = > 0
_) and all k£ € Ny, then

parameter space I's_,
2

for each continuous semi-norm of ¥ (VT2

2

opP ) = o [ e e, ) (Myu)(2) dz

27 I
3=

o0/t %—’Y‘Hf 1 . /dl‘/
/]Rg/o (;) h(x, 3 v+ i&)u(x )7615’

with convergence of the integral in C* (Y, Q%), defines a continuous operator

opy (h) : To(By, € (Y, Q%)) = T (Ry, € (Y, QF)).

In particular, we may take h from the space C° (R, , Mg, (Y, Q%)), cf. Definition

3.1, provided m¢P N F%—v = 0.
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3.3. Test functions and residual Green operators.
DEFINITION 3.2. For v € R, let us introduce the Fréchet space

%] b % — —kagrmyy b %
C(X,7Qz) kymﬂEND(logg) H™Y(X,Q7),
of. Section 2.4. Because of [log g, Difff" (X,%Qz)] C Difff"~!(X,?Q%), this space
coincides with

{£ € e 12(x,7%) : DIy (X,"Q21)F C (log 0) ¢ L2(X,"2%) Yk, m € Mo |
and does not depend on the choice of the boundary defining function.

The index 7 encodes the flatness of sections at the boundary in the following

sense C5° (X,bQ%) =o"CF (X,bQ%). In particular,
300 bt 00 bt

(3.2) C*(X, 92)27911&67 (X,°Q37).
These spaces will serve as natural domains the cone operators act on. Moreover,
we use them to describe a certain residual class of smoothing cone operators. To
this end, fix a boundary defining function g, let U be a collar neighborhood of §.X
and (z,y) : U = R, x X be coordinates with g(x,y) = x. These coordinates
give an identification of sections of C5° (X, bQ%) supported near the boundary and
functions with support bounded from above in 7;_717_1 (R4, C*(0, Q%)), cf. (2.3).

DEeFINITION 3.3. Let y € R, k € N, and m¢ : C x - — C be the projection on
the first component. A finite set @ = {(¢,,) : ¢ € 7cQ} C Cx Ny is called a weak
asymptotic type with respect to (v, k) if m¢@Q C {5 —v—k < Re(q) < 5 —~}, and
with (¢,1) € @ also (¢ —1,1) € Q provided Req —1 > % —v — k (the latter means
that @ satisfies the so-called shadow condition). The collection of all such sets is
denoted by Asy (v, k). We write O (or sometimes Oy) for the unique asymptotic
type corresponding to mc@ = @ with respect to the weight data (v, k).

DeFINITION 3.4. For Q = {(g,1y) : ¢ € mcQ} € Asy (7, k), let ;Xy’Qyw(X,bQ%)

be the Fréchet subspace of C5°(X, bQ%) consisting of all f such that

lq
(33)  Fow(@) D D faurTlogr) € €, (X,"QF) Ve>0
geme@ =0
with coefficients f,; € C*°(0X, Q%), and w € C°(R4) with w = 1 near z = 0.
If, additionally, for each ¢ € mc@, Ly C Coo(ﬁX,Q%) is a finite-dimensional
subspace, we call
Q= {(Qalqan) tq € WCQ}
an asymptotic type with respect to (v, k) and we denote by C5°%, (X, bQ%) the sub-
space of all f € C%, ,, (X, bQ%) with f,; € Lg. The set of all asymptotic types is

v,Q,w
denoted by As(y, k).



b-CALCULUS AND CONE ALGEBRA 11

In analogy, we can define Sobolev spaces with asymptotics HgW(X, Q%) and
"Hng (X, Q%), which are Fréchet subspaces of H*7 (X, Q%), by requiring the dif-
ference in (3.3) to belong to H* 7V tF=¢(X, Q%) for each positive e.

Similar notations make sense for the case £ = co. Then @ is a (weak) asymp-
totic type with respect to (7, 00) if each @ defined by

TeQr = mcQ@N{5 —v—k <Re(q) < 5 -7}
is a (weak) asymptotic type for (v, k), and the corresponding spaces are introduced
as the projective limit of the spaces with respect to @y, for example,

[ byt o by L
o (X, QQ)ZIQN Qi (X, 7027).

REMARK 3.5. Note that the space ;Xy’Qyw(X,bQ%) does not depend on the

choice of coordinates near the boundary, whereas C3% (X,bQ%) does. However,
passing to another boundary defining function ¢’ and corresponding coordinates,
C;X?Q(X, bQ%) transforms to ;X?Q,(X, bQ%) with an asymptotic type Q' € As(y, k),
which can be calculated explicitly from @, cf. for example [48], Remark 3.2.2. The
same is true for Sobolev spaces with asymptotics.

DEFINITION 3.6. Let 7,4 € R and k¥ € NU {oo}. If @ € As(—v,%) and
Q' € As(v', k) are asymtotic types, then Q:G(X,bQ%, (v,%', k))g.q consists of all
operators G € M er E(HSW(X,bQ%),HS’VI(X,bQ%)) such that

G HY(X,PQ%) = o/ (X,PQF),  GF 1Y (X,PQF) = ¢, o (X, %)

for all real s. Here, * denotes the adjoint in HO’O(X,bQ%) = ngLz(X,bQ%). The
corresponding weak version is denoted by the additional subscript w. The uniuon
over all types @, @’ is denoted by Q:G(X,bQ%, (v,%', k)). Such operators will be
refered to as (weak) Green operators.

There 18 another possibility to characterize Green operators, namely as in-
tegral operators with respect to the H%?(X, bQ%)—scalar product with kernels in
certain spaces with asymptotics. To be precise, if f ® ¢ is a pure tensor with
fe C;XPVQ,(X,Z’Q%) and g € CSOWQ(X,Z’Q%) we can consider the continuous op-
erator u — (g, Woof : HI(X,PQ2) — HS’VI(X,bQ%). This operation can be
extended to the completed m-tensor product. Now it can be shown, cf. [59], [64],
that (G is as in Definition 3.6 if and only if it has a kernel

(3.4) ke € €57 (X, °Q%) B, € 5(X,°03),

where @ is the complex conjugate asymptotic type to @, i.e. @ = {(g,(, 1)},
provided Q = {(q,{, L) }.

The analogous characterization holds for weak Green operators as we shall
show in Subsection 5.3 below.
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3.4. The cone algebra with discrete asymptotics. Recall that we have
fixed a splitting of coordinates (z,y) near the boundary of X, and identified sec-
tions X — Q2 near the boundary with functions on R4 taking values in sections
0X — Q%, cf. Subsection 3.3. This identification will be suppressed from the
notation. Also recall that n denotes the dimension of X.

Let us first introduce the residual cone pseudodifferential operators.

DEFINITION 3.7. Let v,m € R, j € Ny, k € N. Then Qﬁ;jG(X,bQ%, (v,7 —
m, k)) consists of all operators M + G with G € Q:G(X,bQ%, (v,y—m,k)) and a
smoothing Mellin operator
E—j—1 L
M = wo{ Z x_m+j+lopg\}l_7)(hl)}w1,
1=0

where hy € Mp™ (90X, Q7), y—j—1 <5 <=, and the asymptotic types P; satisfy
meP NT =, = 0. Moreover, wo,w; € CZ° (R, ) are identically 1 near = = 0. For
the case k = oo we set
— by L —q b L
¢%+]G(X’ Q:z ) (7’7 - m’oo)) = kQN ¢%+]G(X’ QQ’(%7 - m’k))
Again the corresponding weak versions are signed by the additional subscript w.

DEFINITION 3.8. Let v,m € R, j € Ny, and k € NU {co}. The ‘cone algebra’
emi(X, b3, (v, —m, k)) of order m — j with respect to the data (y,y — m, k)
consists of all continuous operators a : C5°(X, bQ%) — C32, (X, bQ%) of the form

a = wqy x_m'i'jopg\}_%)(h)wl +(l—wy)ay (1 —ws)+M+G,

with a holomorphic Mellin symbol h € C* (@+,M(gn_j(3X,Q%)), a pseudodif-
ferential operator ay € \I!:;_j (Xo,bQ%) on the interior Xg of X, and M + G €
Crrra(X, JoER (v,7y—m, k)). Moreover, the wy,’s are arbitrary functions in C° (R} )
that are identically 1 near # = 0. The corresponding weak versions of the spaces
above are defined accordingly, and marked by an additional index w.

DEFINITION 3.9. For k € NU {00}, we introduce the holomorphic ‘cone alge-
bra’ €™ (X, bz, (v,7—m, k))o as the space of all a € €™ 7 (X, bQs, (v, y—m, k))
of the form

a = wy x_m'i'jopg\}_%)(h)wl +(l-w)ay (1 —ws) +G,
with Green operators G € €¢ (X, Jo (v,y—m, k))oo.

Note that, since no non-trivial asymptotic respectively meromorphic structure
is involved, there is no weak version of the holomorphic algebra.

Using the kernel characterisation of Subsection 3.3 and the identity (3.2),
we see that the Green operators in the class ¢m~J (X,bQ%, (y,y — m,00))o are
precisely the integral operators with kernel in c>® (Xz,bQ%). Furthermore, by

Cauchy’s integral formula, the operator opg\})(h) . (™ (X,bQ%) — C™ (X,bQ%)
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is independent of v € R, provided h € C*(Ry, MZ (90X, Q%)) is a holomorphic
Mellin symbol. Hence, considered as operators in C* (X,bQ%), the cone algebra
emI(X, Jo (v,v — m,0))o does only depend on m — j and not on (y,y —m).

3.5. Symbolic structure and basic properties of the cone algebra.
With each operator a € ¢™ (X,bQ%, (v,v — m, k)) we associate two (principal)
symbols. The first one is the conormal symbol, defined by

(3.5) O'E\T) : Q:m(X,bQ%, (v,y—m,0)) — \I!m(ﬁX,Q%;F%_W) :
a +— (R(0) —|—h0)|1“%

_'Y’

where a 1s as in Definition 3.8. Since, in particular, the cone algebra is a subclass
of the classical pseudodifferential operators on the interior of X we an associate
with each cone operator a the homogeneous principal symbol U(m)(gma) defined
on T"Xp\ Xo. If ¢ : bT*X|XD — T* Xy denotes the inverse of the mapping adjoint
to j® : °T'X — TX, cf. Subsection 2.1, Ufﬂm)(gma) o1 :"T*X|x, \ {0} = C extends

to a smooth, positively homogeneous map Ufﬂmé(a) 2T X \ {0} — C. In other
words, in the coordinates (#,y) near the boundary, the homogeneous principal
symbol of a has the form

Ul(ﬂm) (a)(a:, T, 77) =z

—m

ple,y, xT,n)

with p smooth up to = 0 and positively homogeneous of degree m in (7, 7). Since
positively homogeneous maps on 7% X \ {0} are determined by their values on the
corresponding sphere bundle *S* X, we thus obtain the homogeneous principal
symbol map

(3.6) O (X, QE (7,7 = m, k) = (ST X) a0 ().

Let us now summarize the basic properties of the cone algebra. The composi-
tion of cone operators yields mappings

Qiml_jl(X,bQ%, (y—m,y—m—m' k) x Qim_j(X,bQ%, (v,y—mk)) =
e UHD(X 03, (3,9 = (m = ), b)),
and taking the adjoint with respect to the scalar product in H%?(X, bQ%) yields
mappings
"X, PQE, (y,y — m, k) — €T (X,PQF, (—y + m, —v, k).
Analogous statements hold for the weak and holomorphic classes.

Each element ¢ € €™ (X, bQyz, (v,v — m, k)) induces for each s € R and each
Q) € As(y, k) continuous operators

MOV (X, PQE) - XL PQE), HET(X,PQE) - HE T T (X, P,

with a resulting asymptotic type Q' € As(y — m, k) depending on @ and a. These
operators are Fredholm if and only if the conormal and homogeneous principal
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symbol of a are invertible. In this case a¢ has a parametrix modulo Green oper-
ators. Consequently, we have elliptic regularity in the cone Sobolev spaces (with
asymptotics), i.e. if au = f with an elliptic ¢ and f € Hs_mﬁ_m(X,bQ%) (f €
"HZ)_/m’W_m(X, bQ%)) and u in some H"7 (X, bQ%), then actually u € H*7 (X, bQ%)
(u € HgW(X, bQ%) for a resulting asymptotic type @ depending on a and Q').

The cone algebra €™ (X bQyz, (v,y—m, k)) is spectrally invariant, i.e. if an ele-
ment a of this class is invertible as an operator H*7V (X bQ%) — HETATM(X bQ%)
for some s, the inverse a=! belongs to ¢=™ (X, bQyz, (v —m,v, k)).

REMARK 3.10. From general results on the invertibility of meromorphic Fred-
holm families it can be deduced that if a Mellin symbol in M} (90X, Q%) is invertible
on a vertical line, its inverse automatically has the same structure, cf. [58], Theo-
rem 2.4.20. However, this is not true for symbols of weak type. Hence, for the weak
cone algebra analogous mapping properties are valid, but the invertibility of both
principal symbols is not sufficient to ensure the existence of a parametrix within
the class. In addition, one has to require that, with the above notation, h(0) + hg
is meromorphically invertible within the weak class.

3.6. Further remarks on the cone algebra. We consider the relation of
the cone algebras with respect to finite weight intervals and those for infinite
intervals.

ProrosiTiON 3.11. The following identity is valid:

kQN Q:m_j(XabQ%a (7/7 —m, k)) = Q:m_j(XabQ%a (7/7 —m, OO))

Proor. Obviously the right-hand side is contained in the left one. Now let a
have for each k a representation a = hy + aiz + My + Gy, with the obvious meaning
of notation. Then hy + aiz —(ho + agj) is an element of

QLTI (3,7 —ml 1) 0 (X0, QF) = € (X, "2, (7.9 — m, 20)).

= Grya(X,"Q2, (v, —m, D)
For the ‘=" under the bracket see for instance [4], Chapter 8.1.4, Remark 2. Hence
a— (ho + agj) = (hg + aiz —(ho+ agj)) + My + Gy € Q:ﬁ:_jG(X,bQ%, (y,y —m, k)).

Since this is true for any &, we obtain a = hg + agj modulo QI%:_%(X, bQ%, (v, vy —
m, 0)). O

As a provisional notation, let us introduce Q:ﬁ:_jG(X, bQ%, (v,y=—m,k))o, k €
NU {co}, as the space of operators M + G as in Definition 3.7, but with all A
holomorphic and G € Q:G(X,bQ%, (v,¥ —m,k))o,0. Using these remainders, we
define ¢m—J (X,bQ%, (v,v — m, k))o analogously as in Definition 3.8. For k& < oo
it 1s obvious that this definition coincides with that given in Definition 3.9. This
is also true for k = oo, as we shall show in Proposition 3.13 below.



b-CALCULUS AND CONE ALGEBRA 15

LEMMA 3.12. An operator a belongs to Q:ﬁ:_jG(X, bQs, (y,y=—m,o0))o if and
only if

a = wp xm_jopg\}_%)(hoo) wy mod Qig_j (X, bQ%, (y,y—m,0))o

for a certain ho, € C° (R4, M5 (90X, Q%))

ProoOF. If @ is represented in the described manner, it belongs for each k
to @%:_]G(X, bQ3, (v,v — m, k))o simply by Taylor expansion of h in z at 0. Vice
versa, if a € @%:_]G(X, Jo (y,y—m,0))o there exists a unique sequence (hy)en,
in M5 (0X, Q%) (the lower conormal symbols of @), such that

k—j—1
a=uwp { Z x_m'i'j"'lopg\}l_nT_l)(hl)} w1 mod Qig_j (X, b3, (v,y—m,k))o
1=0

for any k. By Borel theorem, there exists an ho, € C° (R4, M5 (98X, Q%)) such
that hé’o)(o) = [!h; for all [. This h. is as required. O

ProrosiTION 3.13. The following identity is valid:

kQN Q:m_j(XabQ%a (7/7 —m, ]{7))0 = Q:m_] (XabQ%a (7/7 —m, OO))O

ProOOF. Again the right-hand side is contained in the left one. If a belongs to
the left-hand side, then with obvious meaning of notation, a = hy + agj + R with

Re Q:ﬁ:_jG(X, b3, (v,y—m, 0))o by Proposition 3.11. However, by Lemma 3.12,
R can be represented as R = h,, +G with G € Qig_j (X, Jo (y,y—m,o0))o. But
then a = (ho + heo) + agj + G is an element of Qim_j(X,bQ%, (y,y—m,))o. O

4. Review on the (overblown) b-calculus

4.1. Polyhomogeneous conormal functions. We are going to introduce
subspaces of conormal functions that have a certain behavior at the boundary
hyperfaces of Z. To capture this behavior we need the notion of an index set [31,
Definition 5.20].

DEFINITION 4.1. A discrete subset B C Cx Ny is said to be an absolute index
set provided

1. (zj,k;) € E with |(2;,k;)| = co = Re(z;) = o0,
2. (z,k) € FE = (2,£) € E for all £ € Ny with 0 < ¢ < k.
An absolute index set satisfying
3. (2,k) € FE= (z+j,k) € F for all j € Ny,
is called a C*™-index set or simply an index set. For any index set E| let
inf E := min{Re(z) : (2,0) € E}.

An inder family £ for a manifold Z with corners is a map & = (Fg)ger, (2)
that associates to each H € F1(Z) a C*°-index set Fy = £(H).
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We agree to write 0 for the special index set {(¢,0) € C x Ny : £ € Ng}. Fix
G € Fi(Z), and let Eg(H) := 0for G # H € ]-"1( ) and £g(G) = Eg for some
C®-index set F¢. Furthermore, let us denote by CN( ) the space of all N-times
differentiable functions that Vamsh up to order N at .

DEFINITION 4.2. The space Aphg( ) consists of all u € A(Z) for which there
exist a, ; € C*™(Z) with

(4.1) w— 3 0% (log 0¢)*a. » € CY (2)
(z,k)EEg,Re(2)<N

for all N € Ng. The elements of Aphg( ) are called polyhomogeneous at G.

Clearly, the definition does not depend on the choice of the defining function
oc of G. Note that for Eg = 0 we have Agﬁg(Z) = C*(Z) by Taylor’s theorem.
A Fréchet topology on Aphg( ) is given by the CV-topology for the remainders in
(4.1), and the C*(Z)-topology for the coefficients a, ; € C*(Z).

Definition 4.2 can easily be generalized to index families £ = (EF)Fefl(Z)
satisfying

(42) EG¢0andEF7é0:>GﬂF:0.

Indeed, choose a partition of unity ZE(G#O pg =1on Z with suppegNF =0
for all F\G € Fi(7) with E(F) #0, £(G) #0,and F # G.

DEFINITION 4.3. Let £ be an index family with the separation property (4.2).
Then the space Aphg( ) of polyhomogeneous conormal functions with index family
& consists of all u € A(Z) with pgu € Aphg( ) for all G € F1(7Z) with £(G) # 0.
Here £q(F) =0 for G # F and £g(G) = £(G).

The Fréchet topology on the spaces Agﬁg(Z) for G € F1(Z) with £(G) # 0
induces a Fréchet topology on Aphg( ). Let us mention that in the special case
E(H) = 0 any u € Aphg( ) vanishes with all derivatives at H € Fi(Z). This
follows easily from the expansion (4.1).

Since Aphg( ) is a C*(Z)-module, we can define for any smooth vector bundle
F—Z

Aphg( ) Aphg( )®C°°(Z) COO(Z’F)'
Moreover, if £, F, and £ U F are index families for Z satisfying the separation
condition (4.2) then we have [26, (A.10)]

(4.3) A (2 P+ A, (2, F) = ASPT (2, F)

However, later on we need the notion of the extended union of two index sets
E and F. Tt is defined by [31, (5.120)]
(4.4)
EUF .= EUFU{(z, k) e CxNy:3(z,1) € E,3(z,£a) EF 1k =t1 + L2+ 1} .
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In fact, it is possible to define the spaces Aghg(Z) or .Af,hg(Z, F) for arbitrary
index families by induction with respect to the codimension of Z; we refer the
reader to [5], [27], or [35] for the details. Instead, we concentrate on the special
case Z = X? [31, Definition 5.49] where X is a compact manifold with boundary
because this is the only case beyond Definition 4.3 we really need.

Let £, F be index families for X, let (5 )mer, (x) be a partition of unity with
H C supppg and G Nsupppy = B for all G, H € F1(X) with G # H, and let
o : X — Ry be a defining function for H € F;(X). Moreover, let (0, F) be the
index family on X? given by (0, F)(X x H) = F(H) and (0, F)(H x X) =0

DEFINITION 4.4. The space Aﬁ’g}-) (X?) consists of those conormal functions

u € A(X?) for which for any H € F;(X) there exist aii) € "41(7%;:) (X?) satisfying

(4.5) CHu — Z o3y log" opr aii) € C'ﬁ(X,Apfhg(X))
(z,k)EE(H),Re(2)<N

for all N € Ng. Here C.g(X,.A;:hg(X)) is the space of all N-times differentiable

functions X — .Af;hg(X) that vanish up to order N at H.
Let us stress the fact that this definition is independent of the ordering and
invariant under diffeomorphism — for the details we refer the reader to [35]. The

vector valued version can be defined for any smooth vector bundle F — X? by
ASP (x2, F) = AT (X2) @em (x2) €2 (X2, F).

We are now going to consider the behavior of the Mellin transform of conormal
functions Ry x Z — C that are polyhomogeneous at {0} x Z. To get rid of the
problems with the non-compactness of Ry at infinity, we use the diffeomorphism
Ry — (-1,1) : 2 — 17 = % Under this map, the space A¢([—1,1]) with
E({—1}) = F and £({1}) = 0 for some C*-index set E correspond to the space
of smooth functions R — C having the polyhomogeneous conormal expansion
given by F at 0, and vanishing rapidly at co. For a proof of the following charac-
terization we refer to [31, Proposition 5.27] — note that we changed the definition
of the Mellin transform by a factor —i.

ProrosiTION 4.5. Let Z be a compact manifold with corners, E a C* -index
set, and £ the index family for [-1,1] x Z with E{—1} x Z)= E, E{1} x Z) = 0,
and E([-1,1] x H) =0 for all H € F1 (7). Then the Mellin transform

e z—1 dx V147NV dr
Mu:Cx Z — z S = =2 -
u:Cx 73 (zp) /0 xu(x l,p) " /_1<1_T) u(T,p)l_T2

induces an isomorphism from the space A% ([—1,1] x Z) onto the space of all mero-
morphic functions C — C™(Z) having poles of order k+1 only at points —z with
(z,k) € E and satisfying for each large N € N

(4.6)  [[Mu(z,)|levz) < On < |2 >N in |Re(z)| < Cy and [Im(z)| > Cy

for some Cx > 0. Here || - |len(z) is @ norm on the Banach space CN(Z) of all
N -times differentiable functions on 7.
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4.2. The full b-calculus: definition and basic properties. From now on,
let X be a compact manifold of dimension n with boundary 9.X. Recall that by the
Schwartz kernel theorem there is a one-to-one correspondence between continuous
linear operators a : C.OO(X,bQ%) — C_OO(X,bQ%) and their Schwartz kernels
ke € C_Oo(Xz,bQ%). However, to get a convenient description of the Schwartz
kernels of b-pseudodifferential operators on X we have to modify the manifold X?
by blowing up the p-submanifold

B:= U HxHC(0X).
HeF;(X)
For the general concept of blowing up which essentially corresponds to the intro-
duction of polar coordinates we refer the reader to [27], [31], [32], or [35].

PROPOSITION 4.6. Let X? := [X?; B] be the compact manifold with corners
obtained by blowing up X? along the p-submanifold B C (0X)?. Then the blow
down map 32 : X7 — X? induces isomorphisms

(B2)" - €= (x2,bQ3)
(B)« : C*°(X2, Q%)

= Cloo(Xg,bQ%) , and
= (X2 haE).

X2
The lifted diagonal Ay := (52)~1(A\ B) * meets the boundary X} only in the
faces ﬂb(H) = (B2)"YWH x H), H € F1(X), and intersects them transversally.
The submanifold ff* .= UHe}'l(X) ﬂb(H) is called the front face of X7.

Let us label also the other faces of X?. For each boundary face H € Fi(X),

let Ih(H) := (32)-1((H x X)\B) " and th(H) := (32)- (X x H)\ B) *. The
submanifolds Ib := UHe}'l(X) Ib(H) resp. rb := UHe}'l(X) rb(H) are called the
left resp. right boundary of X7.

The important point to note here is that C*°(X?, bQ%) Z (B?).(C™ (Xg,bQ%)),
i.e. there are “more” C*-functions on X7 than on X? which is the flexibility needed
for an appropriate description of the kernels of b-pseudodifferential operators. Let
us denote by k4, € C_Oo(Xg,bQ%) the (lifted) Schwartz kernel corresponding to
a : C'OO(X,bQ%) — C_OO(X,bQ%). For the next definition see [31, Definition
4.29].

DEFINITION 4.7. A continuous linear map a : C (X, bQ%) — C7 (X, bQ%)
belongs to the space Wi, (X,bQ%) of classical, b-pseudodifferential operators of
order m € R provided

ra € {m € (X, 80"0%) s n = 0 at 9XF\ A7} C Cm (X7, P03).

Here I (X2, Ab;bQ%) denotes the space of classical conormal distributions as in-

troduced in [10] — see also [11, Section 18.2]. The spaces Wg?cl(X,bQ%), m € R,
are called the small b-calculus.
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The same definition extends to the case of compact manifolds with corners —
see [22], [39]. Note that the restriction to classical conormal distributions in Defi-
nition 4.7 is not really necessary; however, it guarantees a nice symbolic structure.

Since there is a canonical identification of the conormal bundle N*A, of the
lifted diagonal A, C X7 and the b-cotangent bundle 7= X, the homogeneous
principal symbol for classical conormal distributions [10] (see also [11]) gives for
each m € R a map o™ : Wg?cl(X,bQ%) — SIPIT* X)), where the latter is
the space of smooth functions ®7*X \ {0} — C that are homogeneous of de-
gree m in the fibers. If we choose a defining function g, of the b-cosphere-bundle
b5* X = (*T* X \ {0})/R in the radial compactification of *T™* X | we can identify
shm] (*T* X) with €*(®S*X), and the homogeneous principal symbol induces the
following short exact sequence

1 1, by(m)
0 — U (X, P07) — U, (X,°Q3) T (" X) — 0.
To capture the behavior of b-pseudodifferential operators at the boundary, let
G € F1(X) be a component of the boundary, gg : X — R4 be a defining function
for G, and (")g : v (X, bQ%) — U7 (G, Q%) be the morphism of restricting to
G. The map
1) WP (X,°0%) — ME(G,QF) a— [z — (¢haeg )]

oG

is called the indicial family at G — cf. [31, Proposition 5.3], [18, Proposition 2.3.1].
The homogeneous principal symbol and the indicial family allow to characterize
the Fredholm operators in the small calculus. [36, Theorem 6.17] — see also [22],
[31], [39], or [41].

THEOREM 4.8. Leta € ¥} (X,bQ%), and bg € R, G € F1(X)be an arbitrary
weight system. Then a : C™ (X,bQ%) — (X,bQ%) extends for each s € R to
a bounded operator a : ngg(X,bQ%) — ngg_m(X,bQ%) which 1s Fredholm if
and only if IQGC;(a)(i/\ — bg) : HS(G,Q%) — Hs_m(G,Q%) is invertible for all
AER and all G € Fi(X), and *a™ (a)(¢) # 0 for all { €°5*X.

To understand the nature of the generalized inverses of Fredholm operators
in the small calculus we have to enlarge the small b-calculus by allowing non-
trivial expansions at the left resp. right boundary. For simplicity, let us assume
that the boundary 90X is connected. Then we have Fi(X?) = {Ib, rb, f£°} with
IbNrb = @. Let Ey, resp. Ey, be C*-index sets, and denote by £ the index family

(Em, B, 0) corresponding to the ordering (lb,rb,ﬂb) of F1(X?) — note that &
satisfies the separation property (4.2), and we can define \TI;OO’E(X,bQ%) as the
space of all a : C.OO(X,bQ%) — C™®(X,'Q3) with &, € .Af)hg(Xg,bQ%) [31,
(5.82)], and ¥=°¢ (X, *Q3) as that of all a : C*(X,°Q3) — C~°°(X,%Q3) with
Schwartz kernel k, € A;ﬁ;b’Erb)(Xz, bQ%), where (El, Fyp) is the index family on
X? corresponding to the left 1b = X x X resp. right boundary rb = X x 90X
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of X? [31, p. 198]. We are now ready to define the full b-calculus [31, Definition
5.51].

DEeFINITION 4.9. The full calculus of classical, b-pseudodifferential operators
of order m € R with respect to the index family & = (F,, Fyp) is the space

(A7) TP (X,PQ%) = WL (X,P05) 4+ W) (X, P0E) + U0 (X PR

Note that \I!Z’Z(X,bQ%) is called the full-calculus and not the full-algebra
because composition is not always possible. However, for any two index families
E = (Ew, Fw) and F = (P, Fyp) with inf By, 4+ inf Fip, > 0 we have [31, Theorem
5.53]

WP (X, PR 0 W (X, 00 C w9 (X bty

with G(Ib) = FiUF, and G(rb) = EwUF,. Moreover, a € \I!Z?c’lg (X, bQ%) induces
a bounded operator [31, Theorem 5.34]

b <b,
(4.8) a: ngg(X,bQ%) — gbng_m(X,bQ%) provided b+ inf By > 0,
b’ < inf Ey, .

Ifa € \Ilgncl(X,bQ%) is a Fredholm operator a : ngg”(X,bQ%) — gbLZ(X,bQ%),
then, by7[31, Proposition 5.64], the generalized inverse b of a, i.e. the operator
b : gbLZ(X,bQ%) — ngg”(X,bQ%) inverting a up to the orthogonal projection
onto the kernel and cokernel, belongs to \I!;:;’E(X, bQ%). Here £ is an index family
depending on the roots of the indicial family and b € R.

4.3. The overblown b-calculus. Recall that we defined the b-double space
X7 by blowing up those components of (0.X)? intersecting the diagonal. By blowing
up the whole corner (9X)? we obtain a compact manifold with corners that is
known as the overblown b-double space

53{; 1X3b = [XZ, (3X)2] — X7,

Of course, we have X2 = X7 if 9X is connected. Exactly as in Subsection 4.2 we
can define the corresponding overblown b-pseudodifferential calculus. This calcu-
lus naturally occurs as the range of the b-normal homomorphism in the surgery
calculus [27, Section 4.6]. For simplicity, we restrict ourselves to the definition of
the small calculus.

Let ﬂOb(G x H), G,H € F1(X), be the boundary face of X? obtained by
blowing up the component G x H of (9X)2. Then ff*" := UG,HE}H(X) f£°(G x H)

X2
is called the overblown b-front face, and Ay := (8%)~1(A%\ (0X)?) °* the lifted

diagonal. The blow-down map 32 induces isomorphisms
(8%)% : C*(X%,%Q%) — (€*(X2%,%Q%), and
( gb)* :C_Oo(ngabQ%) - C_OO(XZ’bQ%)’
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and the lift. of the Schwartz kernel k, € C_OO(XZ,bQ%) of a continuous, linear op-
erator a : COO(X,bQ%) — C_OO(X,bQ%) is still denoted by &, € C_Oo(ng,bQ%).

DEeFINITION 4.10. For m € R, we let U7 (X, bQ%) be the space of all contin-
uous linear operators a : C*° (X, bQ%) — C7 (X, bQ%) whose lifted Schwartz ker-
nels k4 belong to I (X%, Ag; bQ%), and vanish with all derivatives at 0.X 2, \ 0.

The elements of ¥7; (X, bQ%) are called classical, overblown b-pseudodifferential
operators of order m.

The space \I!Z}jycl(X,bQ%) is slightly larger than Wg?cl(X,bQ%) because the
additional blow-up in the definition of X2 allows the overblown kernel to have non-
trivial behavior also at the off-diagonal corners. This will be used to identify certain
cone pseudodifferential operators in Section 5.1 that are not in the b-calculus. For
an example of an element in U, (X, bQ%) that is not in U, (X, bQ%), we refer
to [16, Example 5.2].

As for the b-calculus the homogeneous principal symbol for conormal dis-
tributions induces a map “o(™) : U (X,bQ%) — C*®(*S*X). Since *°¢("™) (a)
depends only on the behavior of k, near A, we clearly have 6™ (a) = *o(™) (a)
for all a € U, (X,"Q%) C 7 ,(X,"Q7). For the definition of the indicial family
for the small overblown calculus, let g : X — Ry be a defining function for
GeFR(X), o= HGe}'l(X) oG, and (+)s : \I’%,cl(XabQ%) — W?}(@X,Q%) be the

morphism of restricting to the boundary. Exactly as in the b-case
L W (X,"0%) — MZ(0X, Q%) ta— [z — (¢ag™)s]
1s saild to be the indicial family of a. For a € Wg?cl(X,bQ%) C UL (X,bQ%) we

have I,(a) = diag([ég)(a) : G e F1(X)). With almost the same proof as for the
b-calculus we can characterize those overblown b-pseudodifferential operators that
are Fredholm. For simplicity, let b € R be the multi-weight bg = b.

THEOREM 4.11. Let a € \I!Z}jycl(X,bQ%) and b,s € R be arbitrary. Then a
extends to a bounded operator a : ngg(X,bQ%) — ngg_m(X,bQ%) which is
Fredholm if and only if *°a'™ (a)(¢) # 0 for all ¢ € °S* X, and, for all X € R, the
operator I,(a)(iA —b) : H*(0X, Q%) — H*™™(0X, Q%) is invertible.

Note that for a € ¥*,, (X, bQ%) Cun (X, bQ%) Theorem 4.11 specializes to
Theorem 4.8.

5. Comparison of b-calculus and cone algebra

5.1. The small calculus and the holomorphic cone algebra. As in
Subsection 3.2, let (z,y) : X D U =, Ry x 0X be a collar neighborhood of
the boundary, and choose a defining function ¢ : X — Ry of X with |y = =.
Without loss of generality we can assume ¢ = HHe}'l(X) o where gy + X — Ry
is a defining function for the component H € F;(X) of §X.
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ProPoOsITION 5.1. Fory,m € R, we have
(5.1) WX, PQ3) C W 4 (X,°QF) C "€ (X, Q5 (7,9 — m,))o

ba(m) (a) = bafﬁe( a) and I, = UE‘T)(g_ma) € Mé”(@X,Q%) for all operators
ac \Ijob cl( QE)

PrOOF. An inspection of the proof of [16, Proposition 5.4] shows that the
Proposition holds for a € Wi, (X o Z). If the kernel &, of a € W7} (X,bQ%) Is
supported away from the faces ﬂOb(G x H)for all G, H € F1(X) with G # H, then
we have a € v (X, bQ%)' thus, we can assume that k. is supported in a coordi—
nate patch near ﬂOb(Gx H), G # H, and we have k, = Rq(s, 2,4,y |d5 42 oy dyy’ |
with 7, € S(Ry)0.C° Ry )0 C Ry~ N®RC® Ry~ Y by Definition 4.10, where
we have used the projective coordinates s = %, x, y(€ G), y' (€ H) near ﬂOb(GxH)

and S stands for the space of smooth functions R, — C that vanish with all
derivatives at s = 0 and rapidly for s — oo. Mellin transform with respect to the
variable s yields

ha = Misora € € (By, MG™(G, H, Q%)) C €2 (B, M5™(0X,04)),

Then the Schwartz kernel k,—m, = Eg_ma(x,y, ',y

supported near z,z’ = 0, and satisfies

dxdy—dy‘ of o™™a is

~ m x\ —(pFig) .

ko-malx,y, 2", y) =2 / (—,) ha(w, p+ 1) (y,y')dE
R, ¥

for all 4 € R by the analyticity of A4, i.e. for appropriate cut-off functions w,w,

o "a = wx_mopg\}_%)(h)wl € (X, bz, (v, 7 — m,))o

with bo(™) (a) = bafﬁé(g‘Ma) = 0 and by the definition of the indicial family and
the conormal symbol we have I, = hy(0) = O'E\T)(g_ma) € M5 (G, H, Q%). This
completes the proof. O

We consider now the other inclusion, and identify certain parts of the cone
algebra with elements in the overblown b-calculus. By the very definition of the
latter we certainly have

(2) (1= w)ag (1 — 1) € WP (X,°0%) C w2 (X, b0%)
for all ay € U7 (Xo, Q%) and all cut-off functions w,w; € C°(Ry).

LEMMA 5.2. Forw,ws € C°(Ry), h € CSO(E_F,M@”(@X,Q%)), and any pp € R
we have

(5.3) owr” opg\j “)(h)wo eV (X,bQ%).
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Proor. Let 90X = Lﬂle H; be the decomposition of X into connected com-
ponents, and (h;x)jr=1. . p be the corresponding decomposition for h. In [16,
Proposition 5.1] we have shown

Qmwx—mopg\;_“) (hjyj)(.do € \Ijgﬁ,bcl(X’bQE) g Wg}),cl (XabQE) ’

therefore, it remains to consider h; ; € C*°(Ry, M5 (H;, Hy, Q%)) for j # k. By
a partition of unity we can assume h;j € C°(Ry, O(C,C™ (RZ‘l X RZ,_l))) such
that hjx(z,y, ', v +i€) € C° (R, S(Re, C*° (RZ‘l X RZ,_l))) holds uniformly for
|[v] < R, and supp h; x(z,-,-,2) C L for all 2z € Ry, all z € C, and a fixed compact

i
r—x

o and r = z + x’

set L C RZ‘l X RZ,‘l. We use the singular coordinates 7 =
1
1o

near ﬂOb(Hj x Hy). The Schwartz kernel of a = wopgw “)(hjyk)wo is given by

~

ke = ko(z,y,2',y)

1
2

x\ —(utig) . de  du’
(_/) hj (e, y,y', p+ i€)de ‘_dy—/dy/
r Tz

slefen(s’) |

K

’
xr

1
4T _dr gy dy'|* with

1—-72 r

thus, the lift to X2 has the form rk, = Ko(7,7, ¥, V)

Rl = (GG -m) (F)

1—r7

1+7 LI r .
/R ( ) hj,k(§(1+T),y,y’,ﬂ+l€)d€~
£

1—71

By [16, Lemma 2.1] we know that x, € C®((—1,1) x R} x RZ‘l X ]RZ,_l,bQ%)
vanishes with all derivatives as 7 — %1, 1.e. a € U} (X, bQ%). O

REMARK 5.3. If the boundary JX is not connected, then we do not have
wopg\;_“)(h)wo S\ (X,bQ%) in general, because the kernels corresponding to
the off-diagonal elements of h do not vanish with all derivatives at H; x Hy C X?.
For a concrete example see [16, Example 5.2]. The overblown b-double space X%
resolves this singularity by blowing up additionally the corners H; x H.

THEOREM 5.4. For~v m € R and j € Ny, we have

(5-4) ¢, Q7 (7 = m, 0))o = T (X, Q7).

ProoF. By Proposition 5.1, the left-hand side contains the right-hand side,
whereas a combination of (5.2), Lemma 5.2, and the remark after Definition 3.9
yields the other inclusion. Recall that the left hand side is, in fact, independent of
the weigth data (y,y —m). O
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5.2. Green operators and U~ (X, bQ%). To compare the residual opera-
tors of the cone algebra and the b-calculus, let us introduce C’; (X, F), k € NgU{co},

v € R, F a Fréchet space, as the space of all functions f € C*(X,, F) such that
DIfff (X) € 1% (log o)™ L (Xo, F) V1< k.

This 1s a Fréchet space in a natural way, which does not depend on the choice of
the boundary defining function ¢. If F = C, we omit it from the notation. It is
then straightforward to show:

LEMMA 5.5. For any k € NgU {oo}

Yy, Chpppe (X, F) CCH(X, F) C o Chynoo (X, F).
Recall that C* (X, F) denotes all k-times differentiable functions that vanish up to
order k at the boundary.

COROLLARY 5.6. Let X be a manifold with connected boundary. If E is an
inder set for X, v < 5 +inf £ and

={(~2,k): (z,k) € Fand (2,k) € E=k <k}

then

AB(X,5Q3) = €%, (X,"Q%).

Let us recall that the elements of the completed m-tensor product F° &, F'!
of Fréchet spaces FU F! are precisely of the form Z;o:o /\jfj(o) ® fj(l) with an
O]

absolutely summable scalar sequence (J;);, and sequences (f;

in F!. To have at hand a short notion, let us refer to this as a ‘projective sum’.

); converging to 0

PrOPOSITION 5.7. Let £ and F be index families for X. Then
&F
AT (X7) = AL () O AT (),
Here, the pure tensors are defined by (u @ v)(x,2') = u(x)v(z’), z, 2’ € X.

Proor. For a Fréchet space F', we let Aphg(X; F') denote the space of all func-
tions u smooth in the interior of X with values in F', such that for any (connected)
boundary component 7 € F1(X) and all N € N we can write gpu = ug\l,q) + rEVH)
with

ug\l,q) = Z o7 (log QH)kaii), and r( ) e CN(X F)
(2,k)EEmH,Re 2<N 7

for appropriate a( ) € C*®(X, F). Here (¢p)m is a partition of unity on X with

H C supp g and Gﬂsupp e = B for all boundary surfaces G # H. The topology
(1) and the remainders ()
2,k N

is induced by the coefficients a in a straightforward

way. Since Aﬁ’g (X?)=C>(X, Aphg( )) it is obvious from Definition 4.4, that

AEFN(X2) = A8, (X3 AT, (X)),

phg
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Note that in (4.5) the remainder belongs to Cg rather than CV. However, this
makes no difference, since ¢gu is located away from all boundary surfaces dif-
ferent from H. To Verify the proposition, it is therefore sufficient to show that

Aphg( ) Aphg( ) n F.
Step 1:Let u € Aphg( ) @x F have a representation Zj Aju; f; as a projective

sum with u; € Aphg( ) and f; € F. Inserting pu; = uﬁ{) + r‘ngI\,) as above, we
obtain

CHU = Z 7 (log o) (Zx\]ajzkf])—l—Z/\jr;g\,)fj
(z,k)eEH,Reng J

with a( )k € C*(X). This shows u € A

andCN( )®7TFCCN(X F).

Step 2a: Let u € Aphg( F) and v € R be with v < 3 + inf Ey for all
boundary surfaces H of X. Writeu =) 5 ug\l,q) modulo CN(X, F). We may assume
that each ug\l,q) i1s supported away from any boundary surface different from H.
Therefore, ug\, ) ¢ C° (X, F). Moreover, for any given k € IN we have CN(X, FyC
C’;(X, F) for all sufﬁc1ently large N by Lemma 5.5. This yields

Chg (X, F), since C°(X) @r F = C®(X, F)

k _ oo _ oo =
we N CHX,F) = C7 (X, F) = €7 (X) & F.

The last identity follows from C®° (X, F') = C*°(X) @ F and - via local coordinates
near the boundary — from S(R”, F) = S(R™) ©, F, where § denotes the space of
rapidly decreasing functions.

Step 2b: Let u € Aphg(X' F). Inserting in the above decomposition of u for
a,p € C(X,F) =C®(X )®7TF a projective sum, we get uN c Aphg( ) ® @ F
(without loss of generality, ug\l,q) is supported away from any boundary component
different from ). Then, using Step 2a,

(N) 0o fas
rN o= Z (goHu—uN) ALy (X3 F) CCn(X) B F,
HeF(X)

where £V is defined by EJ(LIN) ={(z,k) € Eg : Rez > N}. Thus, for any N,

u= 3 emu= 30 e € (A5, (X) + CRN (X)) B T
HeF(X) HeF(X)
Since Ny (.Af,hg(X) + ;XEI_N(X)) = Af;hg(X) by Lemma 5.5, this, finally, yields
u € Aphg( &g F. O
THEOREM 5.8. Let the boundary of X be connected, (Eg, E1) be an index set

for X2, where Eqy corresponds to the left boundary X x X and E, to the right
boundary X x 0X. For j =0,1, let v; < (—l)j% +inf E; and @Q; € Asw (v, 00) be
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given by
Q; ={(—z+jn,k): (z,k) € Ej and (2, k') € E; = k' < k}.
Then
\Ij_ooy(EuyEl)(X’ bQE) = Q:G,w (X’ bQE’ (_71’ 70, OO))Q07§1 :

ProoF. By definition, the elements of \I!_Oo’(ED’El)(X, bQ%) are precisely the

integral operators with respect to the LZ(X,bQ%)—scalar product and kernel in
Eo,Ex 1y . _
"41(7hg )(XZ,bQ2), i.e. au(z) = (ka(, ), W pe. .

Now, an operator has an integral kernel x with respect to the scalar product
in LZ(X,bQ%) if and only if it has kernel £(z, z') = o(2') " x(x, 2") with respect
to the scalar product in HO’O(X,bQ%) = g_%LZ(X,bQ%).

The result thus follows from Proposition 5.7, Corollary 5.6, and

Q_n s,oQ,w(XabQE) = so—n,Q(n),w(XabQE)

with Q(n) = {(¢+n,ly) : (¢,4) € Q}. O

Using the simple fact that ¢7€q . (X, bQ3, (7,7, k) = Caw(X, bQ3, (v, v +0o,k)),
it is immediate from the latter theorem, that

(5.5) Cow (X707, (3.7 = m.o0)) = U 07" H U, P08
with the union taken over all index families & = (Ey, F1) with

(5.6) —inf By <y — 5 <inf Eg + j.

5.3. The kernel characterization for weak Green operators. In this
section we shall give the proof of the kernel characterization for weak Green op-
erators, cf. the end of Subsection 3.3. It relies on the following Proposition 5.9,
which can be found for instance in [22; Theorem 2.1] or [35, Proposition 4.14.2].
convenience, we state this result in the terminology used in Section 3. We set

C (X)) = CP(X,C3 (X)) = C°(X) @ C0(X), €= (X% = WEJR C (X7)

—00,—00

and similarly for sections into bQ%(XZ). In fact, the latter space coicides with

A(X?) introduced in (2.1).

PROPOSITION 5.9. Let Q; € As,(y;,00) and a‘g\, = an(Q;), N € N, a se-
quence of differential operators acting on b-half densities on X such that, in local
coordinates near the boundary,

(5.7) a‘g\, = H (x0r + q)'s.
(9,04)€Qj Req> 5 —v; =N

Foru € CSOOOV_OO(XZ,Z’Q%), we have u € C° (X,%Q3) &y €

1, .
~Yo,Q0,w 717Q17W(X’bQ2) Zf
and only if

1
afy, aj, t € O3y g ppn, (X7,7Q%) ¥ Ng, Ny €N,
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where a%; acts on the first variable, and ajl\,1 on the second one. An analogous
result holds for functions of only one variable.

Now let G € Q:Gyw(X,bQ%, (Y0,791,90))Q1.,Q, be a weak Green operator. We
shall show that Gu(z) = (k(z, '), ¥ o with

ke ’nyl,W(X’bQE) ®7" Ciovoyau(XabQE)'

A first observation is that G has a kernel k € CJ] _. (XZ,bQ%) (this can
be deduced from the fact that an operator A € L(L?(R™)) such that A, A* :
L?(R™) — S(R™) has a kernel in S(R?")). Set G(Ng, N1) = aJlVIG(a%,D)*, where
a‘g\,j = an,(Q;) is a sequence of differential operators as in (5.7) and * denotes the
adjoint with respect to the H%Y (X, bQ%)—scalar product. By the latter proposition
and again the above argument, it follows that G/(Ng, N1) has a kernel

k(NO’ Nl) € C$+N1,—'YD+ND (Xza bQE)
But now
(k(No, N1)(z,-),Wo0 = G(No, Ni)u(x) = ay, (k(z, ), (al,)*u)o,0
= (an, k(,-), an, (@) W0 = (ay, ang (Qo)k(x, ), To0

shows that an, (Q1)an, (ao)k = k(Ny, N1). Since this is true for all Ny, Ny, Propo-
sition 5.9 yields the desired property of k.

5.4. Smoothing Mellin operators and \TI;OO’E(X, Q7). Throughout this
subsection the boundary X of X is supposed to be connected. Let us first show
that smoothing Mellin operators belong to the spaces \Ilb_oo’g(X, bQ%). Indeed, for
u,m e R Ly € Ny and a weak asymptotic type P = {(p, n,) : p € m¢ P} satisfying
mcP N T, =0, let the index family & = £(P, 1, £9) for X? be given by

Eb)y = {(-p+Llo+ik)eCxNy:Re(p) < p,i €Ny, 0< k< npt,

E(rb) {(p+1i,k) € CxNy:Re(p) > p,i €N, 0< k< n,}, and

Ef"y = 0.

Note that the weight p is used to divide the set w¢ P of possible poles of the Mellin
symbols into two parts, corresponding to the left resp. the right boundary of X7?.

ProposiTION 5.10. For any h € MEﬁ(@X,Q%) and any two cut-off func-

tions wo,w; € C°(Ry) we have
(5.8) a:= gmwox_muoopg\;_“)(h)wl € \TJ;OO’E(X,bQ%) .

ProOOF. Near 0X x X the Schwartz kernel of a is given by

x)—(u+i§) du da’ 3
x z

k, = wo(x)wl(x/)xzu /]R (—/ h(p+ i€)dé

)
x
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thus, we obtain for the lifted kernel x, with respect to the singular coordinates

2

T= i;ii and » = ¢ + z’ up to the density factor Cil%
(5.9)
r r r 147 ~(utig) )
o = 2o(5 {1+ e (51 = )G+ ) [ b+ i€)de
2 2 2 e \1—7

By the meromorphy of H, : z — (H'T)_Zh(z) € \I!_OO(Y,Q%) for || < 1 we get

1—7

for each N > 0 with 7¢P NTpen = 0

/ HT(z)dz:/ HT(z)dz:FQﬂ'inespHT,
r, IWES Y

where the sum is over all poles p of H, with Re(p) between g and y+ N. The
residues res, f{; are given by

1+ 7\ P& (=1)F W (1+
(510) respHT = (1 — T) Z Thk’p IOg E s

k=0

where hy , € \I!_Oo(ﬁX,Q%) are the coefficients of (z — p)~ 1) in the Laurent

expansion of h at p. On the other hand, we have for any continuous semi-norm ¢
1

on U==(Y,Q3%) = C®(V?,Q7)

—HFN
(5.11) g (/ HT(z)dz) < Const (1 + 7') .
IR - l—r

Because of Ib = {7 = —1} and rb = {r = +1}, a combination of (5.9), (5.10) and
(5.11) completes the proof. O

REMARK 5.11. The decomposition U = R, x X of X near the boundary
induces a tensor decomposition
1
3

dr dr

rl—r2

C((B2)"HU x U),* Q%) = € ([~1,1] x By, )ERC= (Y2, Q7).

If P = {(p,np, Np) : p € mc P} is an asymptotic type, and h € My (0X, Q%), then
the coefficients of g~P+to+? logk o resp. o’t? logk ¢ in the asymptotic expansion of
1

kq at Ib resp. b belong to C°([—1,1] x Ry, Cii dr 5)(@77]\71, , by (5.10).

1—72

COROLLARY 5.12. Let M € €I (X, b3, (v,y—m, k)) be a smoothing Mellin
operator as in Definition 3.8 Then there exists an index family € = (Ew, Fvwp, 0)
for X2 with M € ¢/=™W; *%(X,°Q3%), and (5.6)

ProoF. This is just a combination of (4.3) and Proposition 5.10. O

We are now going to consider the other inclusion. Let v,m € R and R € N be
arbitrary. We start with the following observation.
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LEMMA 5.13. Let a € W, °% (X,°Q3) be arbitrary.
L If €= (0, E,0) with a C*-index set E satisfying inf E > % — ~, then we
have
QR_ma € Q:G,w (Xa bQ%a (PVa T —m, R))OR,Q 3
where @@ € Asy(—7v, R) is the set of all pairs (n — z, k) with (z,k) € E,
Re(2) < § —v+ R, and (2,k') € E only for k' <k.
2. If & = (F,0,0) with a C*®-index set F satisfying inf F > v — % then we
have
Q_maQR S Q:G,w(XabQ%a (7a7 —m, R))Q,OR )
where Q) € Asy(y — m, R) is the set of all (m — z, k) with (z,k) € F,
Re(2) <y =5+ R, and (2, k') € I only if k' < k.

PRrOOF. By (4.8), g := o "a : H*(X,'Q7) — HSI’V_m‘i'R(X,bQ%) for all
5,8 € R, i.e. we have g : HS’V(X,bQ%) — C;”imyoR(X,bQ%); for the adjoint g*,
note that the terms in the asymptotic expansion of the kernel of a* at Ib with

Re(z) < § — v+ R lead to the terms described by @) whereas, by a result similar
to (4.8), the remainders satisfy Hs’m_V(X,bQ%) — 7{5/’_7+R_5(X,b§2%) for all
e > 0; thus, ¢* : HSVW—V(X,bQ%) — CSOWQ(X,Z’Q%). Finally, (b) follows either
by a similar computation or by duality from (a). O

For any j € Ny with j < R, and any index family £ = (E,, Fyp,0) for X7
with
(512) —inErb<’)/_%<inE1b—|—j,

let us denote by P, £ =0,1,...,R— j — 1 the weak asymptotic type for Mellin
symbols given by

P o= {(—z+L4k):(2,k) € En, (2, k') € By =k <k}
U {(Z’k) € L : (Z’k/) € b= K < k’},
and choose 7, € R with y = — j <, <7, and m¢P N Tz2_y, = 0.
ProrosiTiON 5.14. For anya € \TI;OO’E(X, bQ%), there exist cut-off functions

wo,wi €CP(RY), hy € ME:E}(@X,Q%), and G € Q:Gyw(X,bQ%, (v,y—m, R)) such
that

R—j-1 L,
M = w ( Z xj_m"'zopg\}l_T)(hg)) wi+G.
£=0

ProOF. By a partition of unity, it suffices to consider the following cases

(5.13) SUpp Kq nfre = 0,
(5.14) suppky, Nlb = @, and
(5.15) supp ko Ntb = (.
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In case (5.13) we have a € \I!_OO’E(X,bQ%), thus, (5.5) applies, and we obtain
P "a € Q:Gyw(X,bQ%, (v,v — m, R)). Therefore, we can assume that there are
cut-off functions wp,w; € C° (@4_) with wpaw; = a.

In case (5.14), we use the projective coordinates ¢ = %I, z,y,y near rb N ﬂb;
then there exist f, € C°(By)0,C(Ry)0-C (Y2, Q7) with
(5.16)

dt d|*
Rg — Z fz,ktz logkt‘T_

(z,k)EEr,Re(2)<N

€ N (By)0nC (By)BrC™ (Y7, Q7)

for all N € Ny. Here CtN(@+) denotes the space of all N-times differentiable,
compactly supported functions that vanish with all derivatives up to order N at
t = 0. Since &, is smooth up to the front face ¥ = {@ = 0}, Taylor expansion
with respect to x yields

—i-1

R—j
1
Ha(ta$aya y/) = Z E(ﬁﬁﬁa)(taoaya y/) $Z

£=0

1
=R (t,y,y")| 4 42 dy dy’ | 2

1
by [ O ) s 27

=r(t,2,y,y')
Let ay, £=0,1,...,R—j— 1, be the operator corresponding to the kernel

dt dx

(t,z,y,y) — wo(x)wi(te)z'Re(t, y,¥)

By differentiating (5.16) with respect to & we get for £ =0,1,... R—j—1

1+ dr 3 1
(Tayay/) — K¢ —ayay/ dydy/ E-Agr([_lal] XYZabQ2)
1—71 1—172

with & ({=1} x (0X)?) = Ew and &.({1} x (9X)?) = 0. Thus, by Proposition 4.5,

i ZH/ FRl —tecw((axﬁ,m%)

is meromorphic with poles of order k& + 1 only at those z with (—z,k) € Ew
and satisfies (4.6), hence [hy : z —> hy(—2)] € ME:E}(@X,Q%), and the Mellin

inversion formula gives
~ o q n .
Relt) = [ 0T — i),
Re
i.e. the Schwartz kernel k, of ¢/ ~™a, is given up to the density factor by

rooIN L j—m AP 4 $_/ Foekit E _ ;
k2($aya$ay) =T (.do(l‘)wl(l‘ )l‘ - hZ(Q ’YZ‘FZf)dga
Re
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hence ¢/ =" a; = woxj_m*'zopg\}l_%l)(hz)wl for£=0,1,..., R—j—1. 1t remains to
consider ¢/ """ Tap = oF~™ag, where ag € \TI;OO’((D’Erb’O)(X,bQ%) corresponds
to the kernel

(t,z,y,¥) — wol(z)wi(te)kr(t, =, v, ¥') .
Because of (5.12), Lemma 5.13 gives o~ ™+ ap € Q:Gyw(X,bQ%, (v,y — m, R)).
If K, satisfies (5.14), we use the projective coordinates s = %, &, y,y" near

Ib N T, As above, a Taylor expansion with respect to  yields

R—j-1
1
ﬁa(s,x/,y,y/) = E(ﬁﬁ’ﬁa)(saoayay/) (x/)z
£=0 .
=Re(s,y,')| L 5 dy dy’ |2
1 1 L .
—|—m/ (1—t)R J 1(3fﬁa)(s,tx/,y,y')dt (l‘/)R 7.
—i=1)s

=wr(s,5yy')
By Proposition 4.5, up to a density factor, the Mellin transform ﬁz of

o 1l+T dr
(1, 9,9) — ffz(m,y, y') mdydy'
with &({-1} x (0X)?) = Ep and &({1} x (0X)?) = @ is meromorphic, has
poles of order k + 1 at all those z with (—z,k) € En,, and satisfies (4.6); thus,

[he : 2 — zz(z — )] € Mp,,(0X, Q%). Let ag be the operator corresponding to

T AT ([=1,1] x (0X)2,°0%)

the kernel (s,2,y,y') — wo(sz)w; (x’)(x’)z@(s, v, y)

Mellin inversion formula, we obtain for the Schwartz kernel k, of ¢/ ~™a,

1
d—Sd—xldy dy" ° Using the

s x!

k2($a Y, $/a y/)

' x/ %—’Yl—‘e+i§ n
= o uaa)E) [ (2) he( =5+ i,y e
Re \ & 2
' z 5 —ve+ig n
= I]_m+zw0(x)wl($/) / <_) hZ(_ - PYZ + Zga Y, y/)d€ )
Re \ T 2

. . _n-1 ~_
ie ¢ May = woxf_m‘l'zopg\}l 2 )(hz)wl. Let ap € U, Oo’(Elb’m’o)(X,bQ%) be the
operator corresponding to the kernel

[(s,2,9,5) — wolsz')or ()R (s, 2, y,y)] € APRPO(XE Q7))

then the remaining part ¢’ (0~™aef)o™7 belongs to € (X, bQyz, (v,y — m, R))
by [67, Remark 1.2.11] and Lemma 5.13. This completes the proof. O

COROLLARY b5.15. For any index family £ = (Ew, Fyp, 0) with (5.12) we have
for each j € Ny

& (X, PQE) C W (X,PQF (1,7 — m, o0))
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The results of this subsection can be summarized as follows.
THEOREM 5.16. Let v,m € R, and j € Ny be arbitrary. Then we have
O o (X707 (7,9 = m, 00)) = v (W, 0 (X,PQ3) + U8 (X, 00T,
where the union is over all index families £ = (Ew, Fw, 0) satisfying (5.12).

Proo¥. This is just a combination of Theorem 5.8, Corollary 5.12, Corollary
5.15, and Subsection 5.3. O

5.5. Summary. A combination of the results of the previous subsections
now leads to the main result of this paper.

THEOREM 5.17. Let v, m € R, j € Ng be arbitrary, and suppose that the
boundary 0X of X is connected. Then we have

Q:m_j(X,bQ%,(’y,’y—m,OO)) C g Q]—m\IjZ?c—l],E(X’bQ%))
= ng_j(X’bQ%a(vav_maoo))a
where the union is over all index families £ = (E, Fw, 0) satisfying
—inf By <y — % <inf By, + 5.

ProoF. The theorem follows immediately from Theorem 5.4, Theorem 5.8,
and Theorem 5.16. O

Roughly speaking, the main difference between the cone algebra and the full b-
calculus is the additional asymptotic information encoded in the finite-dimensional
subspaces describing the Laurent coefficients of the corresponding meromorphic
functions. Anyway, it is straightforward to include these additional symptotic data
into the definition of the full b-calculus as indicated in Remark 5.11; however, note
that this requires as in the definition of the cone algebra a non-natural choice of a
product decomposition near the boundary. This “strong” version of the b-calculus
coincides then with the cone algebra.

For manifolds with disconnected boundary it has been shown in Theorem 5.4
that a holomorphic version of the cone algebra coincides with the small overblown
b-calculus. An analogue of Theorem 5.17 remains true provided we replace the full
b-calculus \Ilgnc_l]’g(X,bQ%) by the full overblown b-calculus. The details are left
to the reader.
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