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Abstract� We establish a relation between two di�erent approaches to a
complete pseudodi�erential analysis of totally characteristic or Fuchs type
operators on compact manifolds with boundary respectively conical singular�
ities� Melrose�s �overblown� b�calculus and Schulze�s cone algebra� Though
quite di�erent in their de�nition	 we show that these two pseudodi�erential
calculi basically contain the same operators�

�� Introduction

We compare two di�erent approaches to a pseudodi�erential analysis of totally
characteristic or Fuchs type operators on compact manifolds with boundary� Recall
that locally di�erential operators in this setting are of the form

x�m
mX

k�j�j��

ak��x� y��x�x�
k��y�����

with ak� � C��R� �Rn���� Here� �x� y� � R� �Rn�� are local coordinates near
the boundary� the weight x�m sometimes can be omitted� In this context� it is of
interest to characterize the Fredholm operators �in an appropriate scale of weighted
Sobolev spaces� and the solutions to elliptic equations� A natural way to treat these
problems is to construct a pseudodi�erential calculus that includes the parametri	
ces of Fredholm operators� where a parametrix is an inverse up to remainders in a

small� residual class within the calculus� Such pseudodi�erential calculi for totally
characteristic operators together with a complete symbolic structure have been
developed independently by Melrose ���
� ���
� Plamenevskij ���
� ���
� Rempel�
Schulze ���
� Schulze ���
� ���
� and Unterberger �	�
� Let us mention that Fuchs
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type operators were also treated by Br�uning ��
� Br�uning� Seeley ��
� Cheeger ��
�
Lesch ���
� and many others� In this paper� however� we concentrate on the b	
calculus of Melrose and the cone algebra of Schulze� Though the presentation of
these two calculi is quite di�erent� in fact� these classes of operators are almost
the same� Before making this more precise� let us give a brief description of the
main features of the two calculi�

In ���
� Melrose observed that important parts of the theory of totally char	
acteristic operators on a compact manifold with boundary can be understood
geometrically� In fact� the Schwartz kernels of totally characteristic or brie�y b	
pseudodi�erential operators can be characterized on a compact manifold with
corners X�

b � that is obtained from the product manifold X� by blowing up the
corner ��X��� To be more precise� as in the closed case ��

� the kernels of b	
pseudodi�erential operators in the small calculus are conormal to the �lifted� di	
agonal �b� and vanish� in addition� to arbitrary order on all boundary faces of X�

b

not intersecting the submanifold �b� The normal bundle N�b of this b�diagonal
can canonically be identi�ed with the b�tangent bundle bTX� a smooth vector
bundle whose space of smooth sections coincides with the Lie algebra Vb�Z� of
all vector �elds on X that are tangent to the boundary� i�e�� roughly speaking�
the space of totally characteristic or b	di�erential operators of order �� Conse	
quently� the b	tangent bundle plays the same role in the b	calculus as the usual
tangent bundle in the ordinary pseudodi�erential calculus on closed manifolds� In
particular� its dual bT �X� the b�cotangent bundle� carries the homogeneous princi	
pal symbol for b	pseudodi�erential operators� As explained in ���
� the b	calculus
provides an appropriate setting for understanding the Atiyah	Patodi	Singer index
theorem� and� in particular� the appearance of the eta	invariant�

Though the small calculus su�ces to invert �elliptic� b	pseudodi�erential op	
erators up to operators of order ��� it is not su�cient to get compact remainders
because of non trivial boundary contributions� To obtain compact or even �nite	
dimensional remainders one has to admit operators of order �� with a more
general asymptotic behavior at the faces of X�

b �and also X��� This leads to the

full calculus ���Eb�cl�X�
b�

�
� � of b	pseudodi�erential operators� Here� E is an index

family describing the form of the asymptotic behavior� The de�nitions and basic
results are given in Section �� for more details we refer to ���
 or ��	
�

Note that for compact remainders� i�e� for a Fredholm theory we do not really
need the full asymptotic information contained in E � but only a certain degree of
vanishing at the faces� However� this calculus with bounds ���� Section ����
 is not
the main topic of this paper�

The de�nition of the b	calculus extends naturally to the more general case of
manifolds with corners ���
� ���
� The corresponding algebras of operators of order
zero were investigated in ���
� ���
� and ���
 from a functional analytic point of
view�

It is worth pointing out that the b	caluclus �ts into the setting of and is� in
fact� the prototype of a boundary �bration structure where Lie algebras of vector
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�elds are used to characterize degenerate behavior on manifolds with boundary
or corners ���
� ���
� For the construction of the corresponding pseudodi�erential
calculi we refer the reader for instance to ��

� ���
� ��	
� ���
� ���
� ���
� ���
�

The passage from a manifold with conical singularities to a manifold with
boundary by blowing	up� naturally leads to the consideration of Fuchs	type oper	
ators� An easy example are di�erential operators on Rn that have the structure
����� if expressed in polar coordinates� Also geometric operators like the Laplace	
Beltrami operator on a manifold with boundary with respect to a conical metric
are of this form �with m � ���

In ���
 Kondrat�ev observed that the solutions to elliptic di�erential bound	
ary value problems in conical domains have speci�c asymptotics near the vertex�
which are related to the eigenvalues of resulting boundary value problems on the
cross	section� Pointing out such a global behavior along the base of the cone�
the operators in the cone algebra are described near the singularity in terms of
Mellin pseudodi�erential operators with operator	valued symbols� For example�
the Mellin symbol of a Fuchs	type di�erential operator is a polynomial in z � C
and coe�cients that are functions with values in the di�erential operators on
the cross	section� To describe the parametrices� this holomorphic structure is not
su�cient� General operators of the cone algebra are built upon operator	valued
symbols that extend in the covariable meromorphically to the complex plane� It
is this meromorphic structure that induces the typical asymptotic behavior near
the singularity of the solutions to elliptic equations� As a matter of fact� such sym	
bols can be split into a holomorphic part of full order and a meromorphic part
of order ��� Therefore� the asymptotic information is carried by smoothing cone
operators� If interested only in parametrices modulo compact operators� it su�ces
to consider smoothing symbols that only extend holomorphically to small vertical
strips in the plane� cf� for example �	
� �	�
� The width of these strips corresponds
precisely �after Mellin transform� to the degree of vanishing at the faces of the
kernels in the b	calculus with bounds mentioned above�

Let us mention that the aspect of operator	valued symbols is interesting for
various reasons� In particular� it yields an iterative approach to manifolds with
higher singularities �such as manifolds with edges ��

� ���
� ���
� �	�
� and mani	
folds with corners ��	
� ���
�� where the operators have symbols with values in op	
erator algebras on less singular spaces� For instance� a manifold with corner is �lo	
cally� a cone over a base� which itself has conical singularities� A general method of
iterating pseudodi�erential calculi is discussed in �	

� The use of operator	valued
symbols also allows to obtain analytic index formulas in the spirit of Fedosov�
cf� �	
� ��
� Note also that in ��

� ���
 a characterization of the stable homotopy
classes of elliptic leading symbols is given �in the case of conical singularities��

It has been shown in ��	
 that the C�	algebras generated by the operators of
order � in the small b	calculus coincides with that generated by the cone algebra�
Before� these algebras were studied independently in ���
� ���
� and ���
� In this
paper� we analyze the relation between the two calculi for arbitray orders more
precisely� As a �rst result� we show that the small �overblown� b	calculus coincides
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�up to a weight factor� with the space of cone operators having holomorphic Mellin
symbols �Theorem ����� The comparison of the full b	calculus with the cone algebra
therefore reduces to operators of order ��� In fact� the pattern of poles together
with multiplicities is re�ected in the asymptotic behavior of the kernels near the
boundary faces ofX�

b � and vice versa �Theorem ���� Proposition ����� and Corollary
������ As a consequence �Theorem ����� we obtain for manifoldsX with connected
boundary

C
m�X� b�

�
� � ��� � �m���� � �

E
��m�m�E

b �X� b�
�
� � � C

m
w �X� b�

�
� � ��� � �m�����

�����

where E describes the asymptotics of the kernels near the various faces of X�
b �

and the union is taken over all E satisfying a certain compatibility relation with
the weight data ��� � �m�� cf� ������� Moreover� by the subscript w we denote a
slightly enlarged� 
weak� version of the cone algebra� introduced in Section ��

An essential step in the proof of ����� is explaining the precise relationship
between the spaces of polyhomogeneous conormal functions �De�nition ���� and
the spaces with �weak� discrete asymptotics �De�nition ���� that are used in b	
calculus resp� cone algebra to describe the asymptotic behavior at the boundary
faces� Results for X resp� X� can be found in Corollary ��� resp� Theorem ����

We want to point out that the cone algebra can be shown ���
 to be spectrally
invariant� This becomes useful� for instance� in characterizing parametrices for
higher singularities� since then ellipticity is just the invertibility of certain operator	
functions taking values in calculi of the lower levels� Spectral invariance for the
b	calculus holds for a slightly restricted subalgebra of the full	calculus�

However� the algebra of operators of order � either in the full b	calculus or
in the cone algebra is quite complicated from the point of view of topological al	
gebras  this is discussed in ��	
 in detail� In particular� it is not known whether
these algebras though spectrally invariant are closed under holomorphic functional
calculus� Nevertheless� it is reasonable to expect f�a� within the same class as a
provided f is not only holomorphic near the L�	spectrum of a but also near re	
gions corresponding to the boundary symbol �for instance entire functions�� This
complicated behavior of totally characteristic operators was the reason for con	
structing in ���
 ��	algebras of totally characteristic operators containing and
sharing important C�	properties with b	calculus and cone	algebra� Recall that
��	algebras introduced by Gramsch in ��
 are not only closed under holomorphic
functional calculus in the usual sense but also an appropriate notion for under	
standing smooth and microlocal phenomena in pseudodi�erential analysis from a
functional analytic point of view  for general techniques that can be used in this
context we refer the reader to ��
� ���
� or ���
�

The main results of this paper are stated and proved in Section �� In Section �
we recall some basic facts on manifolds with corners and conical singularities� we
give a review on the cone algebra in Section �� and a summary of the b	calculus
in Section ��
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�� Preliminaries

���� Manifolds with corners� The presentation of this subsection is essen	
tially extracted from ���
� For more details on manifolds with corner we refer the
reader to ��
� ���
� ��

� or ���
�

Recall ���� Section �
 that a manifold with corners of dimension n is a �con	
nected� n	dimensional� topological manifold Z with boundary together with a

homeomorphism i ! Z
�
�� eZ � MZ into a smooth n	dimensional manifold MZ

without boundary such that there exists a �nite family �j � C��MZ�� j � J � of
smooth functions satisfying

�� i�Z� � eZ � �j�Jf�j � �g�
�� d�j jp � T �pMZ � j � Jp !� fj � J ! �j�p� � �g are linearly independent for

all p � eZ�
The C�	structure on Z is given by C��Z� !� i�C��MZ�� Such a manifold MZ

is also said to be an extension of Z� and it is straightforward to check that the
C�	structure on Z is independent of the extension MZ � A manifold with boundary
is a manifold with corners where J can be taken to have one element� The usual
objects of di�erential topology are de�ned by pulling	back the corresponding ones
on MZ �

A subset F � Z corresponding under i to a component of �j�If�j � �g for
some I � J with jIj � k is called a �boundary� face of codimension k� and we
write Fk�Z� for the family of all boundary faces of codimension k�

Let us call a smooth function �F ! Z �� R� a de�ning function for the
boundary hyperface F � F��Z� provided F � f�F � �g and d�F 	� � at F � Of
course� a de�ning function for F is not uniquely determined� However� for any two
de�ning functions �F � �

�
F of F there exists � � a � C��Z� with ��F � a�F �

Note that there is also an intrinsic de�nition of a manifold with corners built
on local coordinates modeled on the spaces Rn

k !� R
k

� �R
n�k and the additional

requirement that all boundary faces are embedded  for details we refer to ���
�
Naturally associated to a manifold with corners is the Lie	algebra Vb�Z� of

b�vector �elds� i�e� smooth vector �elds on Z tangent to all boundary hyperfaces

H � F��Z� of Z� With respect to local coordinates �x� y� ! Z 
 U �� R
k

� �R
n�k
y

near a boundary face of codimension k� a base of Vb�Z�jU over C��U � is given
by the vector �elds of the form xj�xj � j � �� � � � � k� and �y� � � � �� � � � � n � k�

Therefore� there exists a smooth vector bundle bTZ �� Z together with a natural
map of vector bundles jb ! bTZ �� TZ such that Vb�Z� � jb�C��Z� bTZ��� The
bundle bTZ is called the b�tangent bundle� We apply the functor �� of 		densities
to the b	tangent bundle bTZ� and get the bundle b���Z� of b�	�densities� A choice
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of local coordinates �x� y� as above determines a trivialization of b���Z�jU by��dx
x
dy
��� �

���dx�x�
� � � dxk

xk
dy� � � �dyn�k

�����
The algebra Di��b�Z� of b�di�erential operators is de�ned as the enveloping

algebra of the Lie algebra Vb�Z�� it is a �ltered C��Z�	module� As usual� b	
di�erential operators acting between sections of vector bundles E�� E� �� Z are
given by Di��b�Z�E�� E�� !� Di��b�Z� �C��Z
 C

��Z�Hom�E�� E����

For a smooth vector bundle E �� Z we denote by "C��Z�E� the space of all
smooth sections vanishing to in�nite order at the boundary faces of Z� The space

of extendible distributions is de�ned by C���X�E� !�
�
"C��Z�E� � b���

��
�

Let �F ! Z �� R� be a de�ning function of the boundary face F � F��Z��
and � !�

Q
F�F��Z


�F ! Z �� R�� Then we call the elements

A�Z� !� �
m�R

�
u � C���Z� ! Vb�Z�

ku � �mL��Z� for all k � N�

�
�����

conormal functions on Z� By a form of Sobolev�s Lemma� conormal functions are
smooth in the interior Z� !� intZ of Z�

���� Manifolds with conical singularities� A manifold M with conical

singularity m � M is a topological space such that fM � M n fmg is a smooth
manifold� and there exists a compact manifold X with boundary together with a

homeomorphism 
 ! M � X��X which induces a di�eomorphism from fM to the
interior X� of X� The manifoldX is called the stretched manifold associated with
M � In fact� the analysis of the operators of the cone algebra shall be performed on
the stretched manifoldX� The de�nition easily extends to manifolds with a �nite
number of conical points� the associated stretched manifoldX is again a compact
manifold with boundary� Note that the stretched manifold associated with a man	
ifold with one conical point may coincide with that of another manifold having
various singularities� However� the resulting calculi on the stretched manifold are
slightly di�erent� the one corresponding to the case of one singularity containing
the other�

���� The Mellin transform� The Mellin transform is given by

z 
�

Z �

�

xzu�x�
dx

x
�����

for appropriate functions �or distributions� on the real half	axis� Natural domains
for the Mellin transform are the spaces

T��R�� F �� � � R������

consisting of smooth functions u ! R� �� F with values in a Fr#echet space F such

that x
�
��� j logxjkjk�x�x�lu�x�kj is uniformly bounded in x � � for all semi	norms

jk � kj of F and all k� l � N�� Then the Mellin transform induces an isomorphism
M� of T��R�� F � to the F 	valued rapidly decreasing functions on the vertical line
fRe z � �

� � �g�
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As an example� if 
 � C�c �R�� equals � near x � �� then for � � C and
k � N�� we have 
�x�x���logx�k � T��R�� if and only if Re � � �

� � �� Its Mellin
transform

���k�z� � M� �
�x�x
���logx�k��z������

extends to a meromorphic function with precisely one pole at � of order k $ ��
that decreases rapidly on vertical lines 
outside� the pole� The principal part of the
Laurent expansion of ���k at � is given by ����kk%�z � ����k��
�

���� Weighted Sobolev spaces� For a compact manifoldX with boundary�
we denote by L��X� b�

�
� � the Hilbert space of all square	integrable b	half densities

on X� i�e� the completion of "C��X� b�
�
� � with respect to the sesquilinear pairing

� f� g �
L��X�b�

�
� 

!�

Z
X

fg for f� g � "C��X� b�
�
� � �

Let �H ! X �� R� be a de�ning function for H � F��X�� For a system bH � R�

H � F��X�� we abbreviate �b !�
Q

H�F��X
 �
bH

H � and denote by �bL��X� b�
�
� �

the Hilbert space of all f � C���X� b�
�
� � with ��bf � L��X� b�

�
� �� Note that for

bH 	� � the Hilbert space structure on �bL��X� b�
�
� � depends on the choice of the

de�ning function �H �
Naturally associated to X is the scale of weighted b�Sobolev spaces de�ned for

m � N� by ���� ������� ������


�bHm
b �X� b�

�
� � !�

n
f � �bL��X� b�

�
� � ! Di�mb �X�

b�
�
� �f � �bL��X� b�

�
� �
o
�

Here a � Di�mb �X�
b�

�
� � acts on f � �bL��X� b�

�
� � � C���X� b�

�
� � in the dis	

tributional sense� Since Di�mb is a �nitely generated C��X�	module� the spaces

�bHm
b �X� b�

�
� � are in a non	natural way Hilbert spaces  see ���
� ���
 for more

details�
For � � R it is useful to consider also the spaces

Hm�� �X� b�
�
� � !� �b�Hm

b �X� b�
�
� �

with �b� �H � � � n
� for all H � F��X�� By ���� Proposition �����
 and ����

Theorem ������
 this de�nition coincides with that given in ���� De�nition �����&
�

Note that the scale of Sobolev spaces �bHm
b �X� b�

�
� � and Hm�� �X� b�

�
� � can be

extended to all m � R either by duality and interpolation or by de�ning ���


�bHm
b �X� b�

�
� � !�

n
f � C���X� b�

�
� � ! �m

b�cl�X�
b�

�
� �f � �bL��X� b�

�
� �
o
�

where �m
b�cl�X�

b�
�
� � is the space of classical b	pseudodi�erential operators de�ned

in De�nition ���� Also it is possible to give a de�nition in terms of local coordinates�
cf� ��� Section �����
� Note that each scalar product in H����X� b�

�
� � induces a non	

degenerate sesqui	linear pairing

h�� �i��� ! H
s���X��

�
� ��H�s����X��

�
� �� C �
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�� Review on the cone algebra with discrete asymptotics

The cone algebra consists of pseudodi�erential operators in the interior of M
that have a speci�c behavior near the singularity� Passing to the streched manifold
X with a splitting of coordinates near the boundary� the cone operators are  
modulo certain smoothing remainders  Mellin pseudodi�erential operators build
upon symbols that extend in the covariable meromorphically to the whole complex
plane� Note that this description does not depend on the choice of the coordinates
as long as the coordinate change extends to a di�eomorphism of X� cf� ���
 and
also ��	
� For simplicity we restrict ourselves to the case of M having only one
conical singularity� this situation includes all basic ideas and the general case of
�nitely many singularities is a straightforward extension� Note that the case of
non	connected boundary �X is not excluded�

Most of the here presented material can be found� for example� in the mono	
graphs ���
 and ���
� though our presentation uses slightly di�erent notation�
Moreover� to formulate the connection of Melrose�s and Schulze�s approach in a
smooth way� we introduce a 
weak� type of the cone algebra�

���� Spaces with asymptotics and meromorphic Mellin symbols� In
this subsection let Y be a closed manifold �later� Y plays the role of the boundary

of X�� Furthermore� let �
�
� � �

�
� �Y � be the complex bundle of �

� 	densities over

Y � and �m
cl �Y��

�
� � be the Fr#echet space of classical �or polyhomogeneous� pseu	

dodi�erential operators of order m� acting in C��Y��
�
� �� the smooth sections of

�
�
� � �m

cl �Y��
�
� �R� is the space of parameter	dependent operators� here� the real

parameter enters �in the local symbol estimates� as an additional covariable�

Note that if Y �
UL

j�� Yj consists of several connected components� each

pseudodi�erential operator b � �m
cl �Y��

�
� � can be identi�ed  via localizations to

the di�erent components  with a square matrix �bjk�j�k������ �L of operators such

hat bjj � �m
cl �Yj ��

�
� � and the o�	diagonal elements bjk have kernels in the space

C��Yj � Yk� �
�
��

�
� � ����

�
� �� where �� and �� are the projections of Yj � Yk to

the �rst and second component� respectively� Similar facts hold for the parameter	
dependent class� The o�	diagonal elements then depend rapidly decreasing on the
parameter�

Definition ���� Let �C ! C �� � C be the projection to the �rst component�
A discrete set P � C �N is called a weak asymptotic type for Mellin symbols if
P � f�p� np� ! p � �CPg and jRe pjj � � whenever �pj�j�Nis a sequence in

�CP with jpjj � �� With such a P we associate the space Mm
P�w�Y��

�
� � of all

meromorphic functions h ! C n �CP � �m
cl �Y��

�
� � such that for each N � N and
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appropriate elements rp�k � ����Y��
�
� �

hN ��� � � !� h�� $ i� ��
X

p��CP� jRe pj�N

npX
k��

rp�k�p�k�� $ i� �

is a continuous function of � � ��N�N 
 with values in �m
cl �Y��

�
� �R��� Here the

�p�k are as in ������ If� additionally� for each p � �CP � Np � ����Y��
�
� � is a

�nite	dimensional subspace of �nite rank operators� we say that the set

P � f�p� np� Np� ! p � �CPg

is an asymptotic type for Mellin symbols� and we denote by Mm
P �Y��

�
� � the sub	

space of all h �Mm
P�w�Y��

�
� � with rp�k � Np� The unique asymptotic type associ	

ated to �CP � � is denoted by O�

For brevity� we restrict ourselves mostly to the case of asymptotic types� the
obvious modi�cations for weak asymptotic types are left to the reader� The pro	
jective limit topology under the maps h 
� hN and h 
� rp�k�h� turns M

m
P �Y��

�
� �

into a Fr#echet space�
According to the above mentioned representation of pseudodi�erential oper	

ators in the case Y �
UP

j�� Yj � functions of Mm
P �Y��

�
� � have a corresponding

representation as block	matrices of functions� The o�	diagonal terms then in fact
have values in the smoothing operators� Therefore� the matrices with entries only
in the �j� k�	th position �j 	� k� form a subspace of M��

P �Y��
�
� �� denoted by

M��
P �Yj � Yk��

�
� �������

���� Mellin pseudodi
erential operators� Let Y be a compact manifold
and '	 � fz ! Re z � �g� If h � C��R�� L

m�Y � ' �
���

��� where we identify the

parameter space ' �
���

with R� and jk�x�x�kh�x�kj is uniformly bounded in x � �

for each continuous semi	norm of �m�Y � ' �
���

� and all k � N�� then

�op��
M �h�u
�x� �
�

��i

Z
� �

���

x�zh�x� z��M�u��z� dz

�

Z
R�

Z �

�

�
x�

x

� �
����i


h�x�
�

�
� � $ i��u�x��

dx�

x�
d�

with convergence of the integral in C��Y��
�
� �� de�nes a continuous operator

op
��

M �h� ! T��R�� C

��Y��
�
� ��� T��R�� C

��Y��
�
� ���

In particular� we may take h from the space C�c �R��M
m
P�w�Y��

�
� ��� cf� De�nition

���� provided �CP � ' �
���

� ��
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���� Test functions and residual Green operators�

Definition ���� For � � R� let us introduce the Fr#echet space

C�� �X� b�
�
� � � �

k�m�N�
�log ���kHm�� �X� b�

�
� ��

cf� Section ���� Because of �log��Di�mb �X� b�
�
� �
 � Di�m��b �X� b�

�
� �� this space

coincides withn
f � �b�L��X� b�

�
� � ! Di�mb �X� b�

�
� �f � �log ���k�b�L��X� b�

�
� � � k�m � N�

o
and does not depend on the choice of the boundary de�ning function�

The index � encodes the �atness of sections at the boundary in the following
sense C�� �X� b�

�
� � � ��C�� �X� b�

�
� �� In particular�

"C��X� b�
�
� � � �

��R
C�� �X� b�

�
� �������

These spaces will serve as natural domains the cone operators act on� Moreover�
we use them to describe a certain residual class of smoothing cone operators� To
this end� �x a boundary de�ning function �� let U be a collar neighborhood of �X

and �x� y� ! U
��
�� R� � �X be coordinates with ��x� y� � x� These coordinates

give an identi�cation of sections of C�� �X� b�
�
� � supported near the boundary and

functions with support bounded from above in T��n��
�

�R�� C�����
�
� ��� cf� ������

Definition ���� Let � � R� k � N� and �C ! C � � � C be the projection on
the �rst component� A �nite set Q � f�q� lp� ! q � �CQg � C�N� is called a weak
asymptotic type with respect to ��� k� if �CQ � fn� � � � k � Re�q� � n

� � �g� and
with �q� l� � Q also �q� �� l� � Q provided Re q� � � n

�
� � � k �the latter means

that Q satis�es the so	called shadow condition�� The collection of all such sets is
denoted by Asw��� k�� We write O �or sometimes Ok� for the unique asymptotic
type corresponding to �CQ � � with respect to the weight data ��� k��

Definition ���� For Q � f�q� lq� ! q � �CQg � Asw��� k�� let C���Q�w�X�
b�

�
� �

be the Fr#echet subspace of C�� �X� b�
�
� � consisting of all f such that

f � 
�x�
X

q��CQ

lqX
l��

fq�l x
�q�logx�l � C���k���X�

b�
�
� � � � � ������

with coe�cients fq�l � C���X��
�
� �� and 
 � C�c �R�� with 
 � � near x � ��

If� additionally� for each q � �CQ� Lq � C���X��
�
� � is a �nite	dimensional

subspace� we call

Q � f�q� lq� Lq� ! q � �CQg

an asymptotic type with respect to ��� k� and we denote by C���Q�X�
b�

�
� � the sub	

space of all f � C���Q�w�X�
b�

�
� � with fq�l � Lq� The set of all asymptotic types is

denoted by As��� k��
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In analogy� we can de�ne Sobolev spaces with asymptotics Hs��
Q �X��

�
� � and

Hs��
Q�w�X��

�
� �� which are Fr#echet subspaces of Hs���X��

�
� �� by requiring the dif	

ference in ����� to belong to Hs���k���X��
�
� � for each positive ��

Similar notations make sense for the case k ��� Then Q is a �weak� asymp	
totic type with respect to ����� if each Qk de�ned by

�CQk � �CQ � fn
�
� � � k � Re�q� � n

�
� �g

is a �weak� asymptotic type for ��� k�� and the corresponding spaces are introduced
as the projective limit of the spaces with respect to Qk� for example�

C���Q�X�
b�

�
� � � �

k�N
C���Qk

�X� b�
�
� ��

Remark ���� Note that the space C���Q�w�X�
b�

�
� � does not depend on the

choice of coordinates near the boundary� whereas C���Q�X�
b�

�
� � does� However�

passing to another boundary de�ning function �� and corresponding coordinates�
C���Q�X�

b�
�
� � transforms to C���Q��X�

b�
�
� � with an asymptotic type Q� � As��� k��

which can be calculated explicitly from Q� cf� for example ���
� Remark ������ The
same is true for Sobolev spaces with asymptotics�

Definition ���� Let �� �� � R and k � N � f�g� If Q � As���� k� and

Q� � As���� k� are asymtotic types� then CG�X� b�
�
� � ��� ��� k��Q��Q consists of all

operators G � �s�RL�Hs���X� b�
�
� ��Hs����X� b�

�
� �� such that

G ! Hs���X� b�
�
� �� C��� �Q��X�

b�
�
� �� G� ! Hs���� �X� b�

�
� �� C����Q�X�

b�
�
� �

for all real s� Here� � denotes the adjoint in H����X� b�
�
� � � �b�L��X� b�

�
� �� The

corresponding weak version is denoted by the additional subscript w� The uniuon
over all types Q� Q� is denoted by CG�X� b�

�
� � ��� ��� k��� Such operators will be

refered to as �weak� Green operators�

There is another possibility to characterize Green operators� namely as in	
tegral operators with respect to the H����X� b�

�
� �	scalar product with kernels in

certain spaces with asymptotics� To be precise� if f � g is a pure tensor with
f � C����Q��X�

b�
�
� � and g � C����Q�X�

b�
�
� � we can consider the continuous op	

erator u 
� hg� ui���f ! Hs���X� b�
�
� � � Hs����X� b�

�
� �� This operation can be

extended to the completed �	tensor product� Now it can be shown� cf� ���
� �	�
�
that G is as in De�nition ��� if and only if it has a kernel

kG � C
�
���Q� �X�

b�
�
� � b�� C

�
���Q

�X� b�
�
� �������

where Q is the complex conjugate asymptotic type to Q� i�e� Q � f�q� l� L�g�
provided Q � f�q� l� L�g�

The analogous characterization holds for weak Green operators as we shall
show in Subsection ��� below�
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���� The cone algebra with discrete asymptotics� Recall that we have
�xed a splitting of coordinates �x� y� near the boundary of X� and identi�ed sec	

tions X � b�
�
� near the boundary with functions on R� taking values in sections

�X � �
�
� � cf� Subsection ���� This identi�cation will be suppressed from the

notation� Also recall that n denotes the dimension of X�
Let us �rst introduce the residual cone pseudodi�erential operators�

Definition ��	� Let ��m � R� j � N�� k � N� Then C
m�j
M�G�X�

b�
�
� � ��� � �

m� k�� consists of all operators M $ G with G � CG�X� b�
�
� � ��� � �m� k�� and a

smoothing Mellin operator

M � 
�

n k�j��X
l��

x�m�j�lop
��l�

n��
� 


M �hl�
o

��

where hl �M��
Pl

��X��
�
� �� �� j� l � �l � �� and the asymptotic types Pl satisfy

�CPl � 'n
���l

� �� Moreover� 
�� 
� � C�c �R�� are identically � near x � �� For
the case k �� we set

C
m�j
M�G�X�

b�
�
� � ��� � �m���� � �

k�N
C
m�j
M�G�X�

b�
�
� � ��� � �m� k���

Again the corresponding weak versions are signed by the additional subscript w�

Definition ��
� Let ��m � R� j � N�� and k � N� f�g� The 
cone algebra�

Cm�j �X� b�
�
� � ��� � �m� k�� of order m� j with respect to the data ��� � �m� k�

consists of all continuous operators a ! C�� �X� b�
�
� �� C���m�X� b�

�
� � of the form

a � 
� x
�m�jop

���n��
� 


M �h�
� $ ��� 
�� a� ��� 
�� $M $ G�

with a holomorphic Mellin symbol h � C��R��M
m�j
O ��X��

�
� ��� a pseudodif	

ferential operator a� � �m�j
cl �X��

b�
�
� � on the interior X� of X� and M $ G �

CM�G�X� b�
�
� � ��� ��m� k��� Moreover� the 
k�s are arbitrary functions in C�c �R��

that are identically � near x � �� The corresponding weak versions of the spaces
above are de�ned accordingly� and marked by an additional index w�

Definition ���� For k � N� f�g� we introduce the holomorphic 
cone alge	

bra� Cm�j �X� b�
�
� � ��� ��m� k��O as the space of all a � C

m�j�X� b�
�
� � ��� ��m� k��

of the form

a � 
� x
�m�jop

���n��
� 


M �h�
� $ �� � 
� a� �� � 
�� $G�

with Green operators G � CG�X� b�
�
� � ��� � �m� k��O�O�

Note that� since no non	trivial asymptotic respectively meromorphic structure
is involved� there is no weak version of the holomorphic algebra�

Using the kernel characterisation of Subsection ��� and the identity ������

we see that the Green operators in the class Cm�j�X� b�
�
� � ��� � � m����O are

precisely the integral operators with kernel in "C��X�� b�
�
� �� Furthermore� by

Cauchy�s integral formula� the operator op��
M �h� ! "C��X� b�
�
� � � "C��X� b�

�
� �
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is independent of � � R� provided h � C��R��M
m
O ��X��

�
� �� is a holomorphic

Mellin symbol� Hence� considered as operators in "C��X� b�
�
� �� the cone algebra

Cm�j�X� b�
�
� � ��� � �m����O does only depend on m� j and not on ��� � �m��

���� Symbolic structure and basic properties of the cone algebra�

With each operator a � Cm�X� b�
�
� � ��� � � m� k�� we associate two �principal�

symbols� The �rst one is the conormal symbol� de�ned by

�
�m

M ! Cm�X� b�

�
� � ��� � �m�(k�� �� �m��X��

�
� � 'n

���
� !�����

a 
�� �h��� $ h��j�n
� ��

�

where a is as in De�nition ���� Since� in particular� the cone algebra is a subclass
of the classical pseudodi�erential operators on the interior of X we an associate

with each cone operator a the homogeneous principal symbol �
�m

� ��ma� de�ned

on T �X� nX�� If � ! bT �XjX� � T �X� denotes the inverse of the mapping adjoint

to jb ! bTX � TX� cf� Subsection ���� �
�m

� ��ma� � � ! bT �XjX� n f�g � C extends

to a smooth� positively homogeneous map �
�m

��C�a� ! bT �X n f�g � C � In other

words� in the coordinates �x� y� near the boundary� the homogeneous principal
symbol of a has the form

�
�m

� �a��x� y� �� �� � x�mp�x� y� x�� ��

with p smooth up to x � � and positively homogeneous of degree m in ��� ��� Since
positively homogeneous maps on bT �X nf�g are determined by their values on the
corresponding sphere bundle bS�X� we thus obtain the homogeneous principal
symbol map

C
m�X� b�

�
� � ��� � �m�(k��� C��bS�X� ! a 
� �

�m

��C �a� ������

Let us now summarize the basic properties of the cone algebra� The composi	
tion of cone operators yields mappings

C
m
��j��X� b�

�
� � �� �m� � �m �m�� k��� C

m�j�X� b�
�
� � ��� � �m� k���

C
m�m���j�j�
�X� b�

�
� � ��� � � �m �m��� k���

and taking the adjoint with respect to the scalar product in H����X� b�
�
� � yields

mappings

C
m�j�X� b�

�
� � ��� � �m� k��� C

m�j�X� b�
�
� � ��� $m���� k���

Analogous statements hold for the weak and holomorphic classes�
Each element a � Cm�X� b�

�
� � ��� � �m� k�� induces for each s � R and each

Q � As��� k� continuous operators

Hs�� �X� b�
�
� ��Hs�m���m�X� b�

�
� �� Hs��

Q �X� b�
�
� ��Hs�m���m

Q� �X� b�
�
� ��

with a resulting asymptotic type Q� � As�� �m� k� depending on Q and a� These
operators are Fredholm if and only if the conormal and homogeneous principal
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symbol of a are invertible� In this case a has a parametrix modulo Green oper	
ators� Consequently� we have elliptic regularity in the cone Sobolev spaces �with

asymptotics�� i�e� if au � f with an elliptic a and f � Hs�m���m�X� b�
�
� � �f �

Hs�m���m
Q� �X� b�

�
� �� and u in some Hr�� �X� b�

�
� �� then actually u � Hs���X� b�

�
� �

�u � Hs��
Q �X� b�

�
� � for a resulting asymptotic type Q depending on a and Q���

The cone algebra Cm�X� b�
�
� � ��� ��m� k�� is spectrally invariant� i�e� if an ele	

ment a of this class is invertible as an operatorHs���X� b�
�
� ��Hs�m���m�X� b�

�
� �

for some s� the inverse a�� belongs to C�m�X� b�
�
� � �� �m� �� k���

Remark ����� From general results on the invertibility of meromorphic Fred	
holm families it can be deduced that if a Mellin symbol inMm

P ��X��
�
� � is invertible

on a vertical line� its inverse automatically has the same structure� cf� ���
� Theo	
rem ������� However� this is not true for symbols of weak type� Hence� for the weak
cone algebra analogous mapping properties are valid� but the invertibility of both
principal symbols is not su�cient to ensure the existence of a parametrix within
the class� In addition� one has to require that� with the above notation� h��� $ h�
is meromorphically invertible within the weak class�

��	� Further remarks on the cone algebra� We consider the relation of
the cone algebras with respect to �nite weight intervals and those for in�nite
intervals�

Proposition ����� The following identity is valid�

�
k�N

C
m�j�X� b�

�
� � ��� � �m� k�� � C

m�j�X� b�
�
� � ��� � �m�����

Proof� Obviously the right	hand side is contained in the left one� Now let a
have for each k a representation a � hk$ak�$Mk$Gk with the obvious meaning

of notation� Then hk $ ak� � �h� $ a��� is an element of

�
l�N

C
m�j�X� b�

�
� � ��� � �m� l�� �����X���

�
� �	 
z �

� C
m�j
M�G�X�

b�
�
� � ��� � �m� l��

� C
m�j
M�G�X�

b�
�
� � ��� � �m�����

For the 
�� under the bracket see for instance ��
� Chapter ������ Remark �� Hence

a� �h� $ a��� � �hk $ ak� � �h� $ a���� $Mk $Gk � C
m�j
M�G�X�

b�
�
� � ��� � �m� k���

Since this is true for any k� we obtain a � h� $ a�� modulo Cm�jM�G�X�
b�

�
� � ��� � �

m�����

As a provisional notation� let us introduce Cm�jM�G�X�
b�

�
� � ��� � �m� k��O� k �

N � f�g� as the space of operators M $ G as in De�nition ���� but with all hl
holomorphic and G � CG�X� b�

�
� � ��� � � m� k��O�O� Using these remainders� we

de�ne C
m�j�X� b�

�
� � ��� � � m� k��O analogously as in De�nition ���� For k � �

it is obvious that this de�nition coincides with that given in De�nition ��&� This
is also true for k ��� as we shall show in Proposition ���� below�
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Lemma ����� An operator a belongs to C
m�j
M�G�X�

b�
�
� � ��� ��m����O if and

only if

a � 
� x
m�jop

���n��
� 


M �h��
� mod C
m�j
G �X� b�

�
� � ��� � �m����O

for a certain h� � C��R��M
��
O ��X��

�
� ���

Proof� If a is represented in the described manner� it belongs for each k

to C
m�j
M�G�X�

b�
�
� � ��� � �m� k��O simply by Taylor expansion of h in x at �� Vice

versa� if a � C
m�j
M�G�X�

b�
�
� � ��� ��m����O there exists a unique sequence �hl�l�N�

in M��
O ��X��

�
� � �the lower conormal symbols of a�� such that

a � 
�

n k�j��X
l��

x�m�j�lop
��l�

n��
� 


M �hl�
o

� mod C

m�j
G �X� b�

�
� � ��� � �m� k��O

for any k� By Borel theorem� there exists an h� � C��R��M
��
O ��X��

�
� �� such

that h
�l

� ��� � l%hl for all l� This h� is as required�

Proposition ����� The following identity is valid�

�
k�N

C
m�j�X� b�

�
� � ��� � �m� k��O � C

m�j �X� b�
�
� � ��� � �m����O�

Proof� Again the right	hand side is contained in the left one� If a belongs to
the left	hand side� then with obvious meaning of notation� a � h� $ a�� $ R with

R � C
m�j
M�G�X�

b�
�
� � ��� ��m����O by Proposition ����� However� by Lemma �����

R can be represented as R � h�$G with G � C
m�j
G �X� b�

�
� � ��� ��m����O� But

then a � �h� $ h�� $ a�� $G is an element of Cm�j�X� b�
�
� � ��� � �m����O�

�� Review on the �overblown� b�calculus

���� Polyhomogeneous conormal functions� We are going to introduce
subspaces of conormal functions that have a certain behavior at the boundary
hyperfaces of Z� To capture this behavior we need the notion of an index set ����
De�nition ����
�

Definition ���� A discrete subset E � C �N� is said to be an absolute index
set provided

�� �zj � kj� � E with j�zj � kj�j � � �� Re�zj����
�� �z� k� � E �� �z� �� � E for all � � N� with � � � � k�

An absolute index set satisfying

�� �z� k� � E �� �z $ j� k� � E for all j � N��

is called a C��index set or simply an index set� For any index set E� let

infE !� minfRe�z� ! �z� �� � Eg �

An index family E for a manifold Z with corners is a map E � �EH�H�F��Z


that associates to each H � F��Z� a C�	index set EH � E�H��
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We agree to write � for the special index set f��� �� � C � N� ! � � N�g� Fix
G � F��Z�� and let EG�H� !� � for G 	� H � F��Z� and EG�G� � EG for some

C�	index set EG� Furthermore� let us denote by "CNG �Z� the space of all N 	times
di�erentiable functions that vanish up to order N at G�

Definition ���� The space AEGphg�Z� consists of all u � A�Z� for which there

exist az�k � C��Z� with

u�
X

�z�k
�EG�Re�z
�N

�zG�log �G�
kaz�k � "CNG �Z������

for all N � N�� The elements of AEGphg�Z� are called polyhomogeneous at G�

Clearly� the de�nition does not depend on the choice of the de�ning function
�G of G� Note that for EG � � we have AEGphg�Z� � C��Z� by Taylor�s theorem�

A Fr#echet topology on AEGphg�Z� is given by the CN 	topology for the remainders in

������ and the C��Z�	topology for the coe�cients az�k � C��Z��
De�nition ��� can easily be generalized to index families E � �EF �F�F��Z


satisfying

EG 	� � and EF 	� � �� G � F � � ������

Indeed� choose a partition of unity
P
E�G
	�� 
G � � on Z with supp
G � F � �

for all F�G � F��Z� with E�F � 	� �� E�G� 	� �� and F 	� G�

Definition ���� Let E be an index family with the separation property ������
Then the space AEphg�Z� of polyhomogeneous conormal functions with index family

E consists of all u � A�Z� with 
Gu � A
EG
phg�Z� for all G � F��Z� with E�G� 	� ��

Here EG�F � � � for G 	� F and EG�G� � E�G��

The Fr#echet topology on the spaces AEG
phg

�Z� for G � F��Z� with E�G� 	� �

induces a Fr#echet topology on AEphg�Z�� Let us mention that in the special case

E�H� � � any u � AEphg�Z� vanishes with all derivatives at H � F��Z�� This

follows easily from the expansion ������
Since AEphg�Z� is a C

��Z�	module� we can de�ne for any smooth vector bundle
F �� Z

AEphg�Z�F � !� AEphg�Z��C��Z
 C
��Z�F � �

Moreover� if E � F � and E � F are index families for Z satisfying the separation
condition ����� then we have ��	� �A����


AEphg�Z�F � $ AFphg�Z�F � � AE
Fphg �Z�F ������

However� later on we need the notion of the extended union of two index sets
E and F � It is de�ned by ���� �������


E�F !� E � F � f�z� k� � C �N� ! ��z� ��� � E� ��z� ��� � F ! k � �� $ �� $ �g �
�����
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In fact� it is possible to de�ne the spaces AEphg�Z� or A
E
phg�Z�F � for arbitrary

index families by induction with respect to the codimension of Z� we refer the
reader to ��
� ���
� or ���
 for the details� Instead� we concentrate on the special
case Z � X� ���� De�nition ���&
 where X is a compact manifold with boundary
because this is the only case beyond De�nition ��� we really need�

Let E � F be index families for X� let �
H �H�F��X
 be a partition of unity with
H � supp
H and G � supp
H � � for all G�H � F��X� with G 	� H� and let
�H ! X �� R� be a de�ning function for H � F��X�� Moreover� let ���F� be the
index family on X� given by ���F��X �H� � F�H� and ���F��H �X� � �

Definition ���� The space A
�E�F

phg �X�� consists of those conormal functions

u � A�X�� for which for any H � F��X� there exist a�H

z�k � A���F


phg �X�� satisfying


Hu�
X

�z�k
�E�H
�Re�z
�N

�zH logk �H a
�H

z�k � "CNH �X�AFphg�X�������

for all N � N�� Here "CNH �X�AFphg�X�� is the space of all N 	times di�erentiable

functions X �� AFphg�X� that vanish up to order N at H�

Let us stress the fact that this de�nition is independent of the ordering and
invariant under di�eomorphism  for the details we refer the reader to ���
� The
vector valued version can be de�ned for any smooth vector bundle F �� X� by

A
�E�F

phg �X�� F � !� A

�E�F

phg �X���C��X�
 C

��X�� F ��
We are now going to consider the behavior of the Mellin transform of conormal

functions R� � Z �� C that are polyhomogeneous at f�g � Z� To get rid of the
problems with the non	compactness of R� at in�nity� we use the di�eomorphism
R� �� ���� �� ! x 
�� � � x��

x�� � Under this map� the space AE����� �
� with

E�f��g� � E and E�f�g� � � for some C�	index set E correspond to the space
of smooth functions R� �� C having the polyhomogeneous conormal expansion
given by E at �� and vanishing rapidly at �� For a proof of the following charac	
terization we refer to ���� Proposition ����
  note that we changed the de�nition
of the Mellin transform by a factor �i�

Proposition ���� Let Z be a compact manifold with corners	 E a C��index
set	 and E the index family for ���� �
�Z with E�f��g�Z� � E	 E�f�g�Z� � �	
and E����� �
�H� � � for all H � F��Z�� Then the Mellin transform

Mu ! C � Z � �z� p� 
��

Z �

�

xzu

�
x� �

x$ �
� p

�
dx

x
� �

Z �

��

�
� $ �

�� �

�z
u��� p�

d�

�� ��

induces an isomorphism from the space AE����� �
�Z� onto the space of all mero�
morphic functions C �� C��Z� having poles of order k$� only at points �z with
�z� k� � E and satisfying for each large N � N

kMu�z� ��kCN �Z
 � CN � jzj ��N in jRe�z�j � CN and jIm�z�j � CN�����

for some CN � �� Here k � kCN �Z
 is a norm on the Banach space CN �Z� of all
N �times di�erentiable functions on Z�
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���� The full b�calculus� de�nition and basic properties� From now on�
let X be a compact manifold of dimension n with boundary �X� Recall that by the
Schwartz kernel theorem there is a one	to	one correspondence between continuous
linear operators a ! "C��X� b�

�
� � �� C���X� b�

�
� � and their Schwartz kernels

ka � C���X�� b�
�
� �� However� to get a convenient description of the Schwartz

kernels of b	pseudodi�erential operators on X we have to modify the manifoldX�

by blowing up the p	submanifold

B !� �
H�F��X


H �H � ��X�� �

For the general concept of blowing up which essentially corresponds to the intro	
duction of polar coordinates we refer the reader to ���
� ���
� ���
� or ���
�

Proposition ���� Let X�
b !� �X��B
 be the compact manifold with corners

obtained by blowing up X� along the p�submanifold B � ��X��� Then the blow
down map ��b ! X�

b �� X� induces isomorphisms

���b �
� ! "C��X�� b�

�
� �

��
�� "C��X�

b �
b�

�
� � 	 and

���b �� ! C
���X�

b �
b�

�
� �

��
�� C���X�� b�

�
� � �

The lifted diagonal �b !� ���
b
����� nB�

X�
b
meets the boundary �X�

b only in the

faces �b�H� !� ���b �
���H � H�	 H � F��X�	 and intersects them transversally�

The submanifold �b !�
S
H�F��X
 �

b�H� is called the front face of X�
b �

Let us label also the other faces of X�
b � For each boundary face H � F��X��

let lb�H� !� ���b �
����H �X� nB�

X�
b
and rb�H� !� ���b �

����X �H� nB�
X�
b
� The

submanifolds lb !�
S
H�F��X
 lb�H� resp� rb !�

S
H�F��X
 rb�H� are called the

left resp� right boundary of X�
b �

The important point to note here is that C��X�� b�
�
� � 	� ���b ���C

��X�
b �

b�
�
� ���

i�e� there are �more� C�	functions onX�
b than onX� which is the �exibility needed

for an appropriate description of the kernels of b	pseudodi�erential operators� Let
us denote by �a � C���X�

b �
b�

�
� � the �lifted� Schwartz kernel corresponding to

a ! "C��X� b�
�
� � �� C���X� b�

�
� �� For the next de�nition see ���� De�nition

����
�

Definition ��	� A continuous linear map a ! "C��X� b�
�
� � �� C���X� b�

�
� �

belongs to the space �m
b�cl�X�

b�
�
� � of classical	 b�pseudodi�erential operators of

order m � R provided

�a �
n
� � Imcl �X

�
b ��b�

b�
�
� � ! � � � at �X�

b n �
b
o
� C���X�

b �
b�

�
� � �

Here Imcl �X
�
b ��b�

b�
�
� � denotes the space of classical conormal distributions as in	

troduced in ��

  see also ���� Section ����
� The spaces �m
b�cl�X�

b�
�
� �� m � R�

are called the small b�calculus�
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The same de�nition extends to the case of compact manifolds with corners  
see ���
� ���
� Note that the restriction to classical conormal distributions in De�	
nition ��� is not really necessary� however� it guarantees a nice symbolic structure�

Since there is a canonical identi�cation of the conormal bundle N��b of the
lifted diagonal �b � X�

b and the b	cotangent bundle bT �X� the homogeneous
principal symbol for classical conormal distributions ��

 �see also ���
� gives for

each m � R a map b��m
 ! �m
b�cl�X�

b�
�
� � �� S�m��bT �X�� where the latter is

the space of smooth functions bT �X n f�g �� C that are homogeneous of de	
gree m in the �bers� If we choose a de�ning function �
 of the b�cosphere�bundle
bS�X !� �bT �X nf�g��R� in the radial compacti�cation of bT �X� we can identify
S�m��bT �X� with C��bS�X�� and the homogeneous principal symbol induces the
following short exact sequence

� �� �m��
b�cl �X� b�

�
� � �� �m

b�cl�X�
b�

�
� �

b
�m�

�� C��bS�X� �� � �

To capture the behavior of b	pseudodi�erential operators at the boundary� let
G � F��X� be a component of the boundary� �G ! X �� R� be a de�ning function

for G� and ���G ! �m
b�cl�X�

b�
�
� � �� �m

cl �G��
�
� � be the morphism of restricting to

G� The map

I�G
�G
! �m

b�cl�X�
b�

�
� � ��Mm

O �G��
�
� � ! a 
�� �z 
�� ��zGa�

�z
G �G


is called the indicial family at G  cf� ���� Proposition ���
� ���� Proposition �����
�
The homogeneous principal symbol and the indicial family allow to characterize
the Fredholm operators in the small calculus� ��	� Theorem ����
  see also ���
�
���
� ���
� or ���
�

Theorem ��
� Let a � �m
b�cl�X�

b�
�
� �	 and bG � R	G � F��X�be an arbitrary

weight system� Then a ! "C��X� b�
�
� � �� "C��X� b�

�
� � extends for each s � R to

a bounded operator a ! �bHs
b �X�

b�
�
� � �� �bHs�m

b �X� b�
�
� � which is Fredholm if

and only if IG�G �a��i� � bG� ! Hs�G��
�
� � �� Hs�m�G��

�
� � is invertible for all

� � R and all G � F��X�	 and b��m
�a���� 	� � for all � � bS�X�

To understand the nature of the generalized inverses of Fredholm operators
in the small calculus we have to enlarge the small b	calculus by allowing non	
trivial expansions at the left resp� right boundary� For simplicity� let us assume
that the boundary �X is connected� Then we have F��X

�
b � � flb� rb��bg with

lb� rb � �� Let Elb resp� Erb be C�	index sets� and denote by E the index family
�Elb� Erb� �� corresponding to the ordering �lb� rb��b� of F��X�

b �  note that E

satis�es the separation property ������ and we can de�ne e����E
b �X� b�

�
� � as the

space of all a ! "C��X� b�
�
� � �� C���X� b�

�
� � with �a � AEphg�X

�
b �

b�
�
� � ����

������
� and ����E �X� b�
�
� � as that of all a ! "C��X� b�

�
� � �� C���X� b�

�
� � with

Schwartz kernel ka � A
�Elb�Erb

phg �X�� b�

�
� �� where �Elb� Erb� is the index family on

X� corresponding to the left lb � �X �X resp� right boundary rb � X � �X
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of X� ���� p� �&�
� We are now ready to de�ne the full b	calculus ���� De�nition
����
�

Definition ���� The full calculus of classical	 b�pseudodi�erential operators
of order m � Rwith respect to the index family E � �Elb� Erb� is the space

�m�E
b�cl �X�

b�
�
� � !� �m

b�cl�X�
b�

�
� � $ e����E

b �X� b�
�
� � $ ����E �X� b�

�
� � ������

Note that ���E
b�cl

�X� b�
�
� � is called the full	calculus and not the full	algebra

because composition is not always possible� However� for any two index families
E � �Elb� Erb� and F � �Flb� Frb� with infErb$inf Flb � � we have ���� Theorem
����


�m�E
b�cl �X�

b�
�
� � ��m��F

b�cl �X� b�
�
� � � �m�m� �G

b�cl �X� b�
�
� �

with G�lb� � Elb�Flb and G�rb� � Erb�Frb� Moreover� a � �m�E
b�cl �X�

b�
�
� � induces

a bounded operator ���� Theorem ����


a ! �bHs
b �X�

b�
�
� � �� �b

�

Hs�m
b �X� b�

�
� � provided

�
�
b
� � b �
b$ infErb � � �
b� � inf Elb �

�����

If a � �m
b�cl�X�

b�
�
� � is a Fredholm operator a ! �bHm

b �X� b�
�
� � �� �bL��X� b�

�
� ��

then� by ���� Proposition ����
� the generalized inverse b of a� i�e� the operator

b ! �bL��X� b�
�
� � �� �bHm

b �X� b�
�
� � inverting a up to the orthogonal projection

onto the kernel and cokernel� belongs to ��m�E
b�cl �X� b�

�
� �� Here E is an index family

depending on the roots of the indicial family and b � R�

���� The overblown b�calculus� Recall that we de�ned the b	double space
X�
b by blowing up those components of ��X�� intersecting the diagonal� By blowing

up the whole corner ��X�� we obtain a compact manifold with corners that is
known as the overblown b�double space

��ob ! X
�
ob !� �X�� ��X��
 �� X� �

Of course� we have X�
ob � X�

b if �X is connected� Exactly as in Subsection ��� we
can de�ne the corresponding overblown b�pseudodi�erential calculus� This calcu	
lus naturally occurs as the range of the b	normal homomorphism in the surgery
calculus ���� Section ���
� For simplicity� we restrict ourselves to the de�nition of
the small calculus�

Let �ob�G � H�� G�H � F��X�� be the boundary face of X�
ob obtained by

blowing up the component G�H of ��X��� Then �ob !�
S
G�H�F��X
 �

ob�G�H�

is called the overblown b�front face� and �ob !� ���ob�
����� n ��X���

X�
ob

the lifted
diagonal� The blow	down map ��ob induces isomorphisms

���ob�
� ! "C��X�� b�

�
� � �� "C��X�

ob�
b�

�
� � � and

���ob�� ! C
���X�

ob�
b�

�
� � �� C���X�� b�

�
� � �
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and the lift of the Schwartz kernel ka � C
���X�� b�

�
� � of a continuous� linear op	

erator a ! "C��X� b�
�
� � �� C���X� b�

�
� � is still denoted by �a � C���X�

ob�
b�

�
� ��

Definition ����� For m � R� we let �m
ob�cl�X�

b�
�
� � be the space of all contin	

uous linear operators a ! "C��X� b�
�
� � �� C���X� b�

�
� � whose lifted Schwartz ker	

nels �a belong to Imcl �X
�
ob��ob�

b�
�
� �� and vanish with all derivatives at �X�

ob n�
ob�

The elements of �m
ob�cl�X�

b�
�
� � are called classical	 overblown b�pseudodi�erential

operators of order m�

The space �m
ob�cl�X�

b�
�
� � is slightly larger than �m

b�cl�X�
b�

�
� � because the

additional blow	up in the de�nition ofX�
ob allows the overblown kernel to have non	

trivial behavior also at the o�	diagonal corners� This will be used to identify certain
cone pseudodi�erential operators in Section ��� that are not in the b	calculus� For
an example of an element in ���ob �X� b�

�
� � that is not in ���b �X� b�

�
� �� we refer

to ��	� Example ���
�
As for the b	calculus the homogeneous principal symbol for conormal dis	

tributions induces a map ob��m
 ! �m
ob�cl�X�

b�
�
� � �� C��bS�X�� Since ob��m
�a�

depends only on the behavior of �a near �ob� we clearly have ob��m
�a� � b��m
�a�

for all a � �m
b�cl�X�

b�
�
� � � �m

ob�cl�X�
b�

�
� �� For the de�nition of the indicial family

for the small overblown calculus� let �G ! X �� R� be a de�ning function for

G � F��X�� � !�
Q

G�F��X
 �G� and ���� ! �m
ob�cl�X�

b�
�
� � �� �m

cl ��X��
�
� � be the

morphism of restricting to the boundary� Exactly as in the b	case

I� ! �
m
ob�cl�X�

b�
�
� � ��Mm

O ��X��
�
� � ! a 
�� �z 
�� ��za��z��


is said to be the indicial family of a� For a � �m
b�cl�X�

b�
�
� � � �m

ob�cl�X�
b�

�
� � we

have I��a� � diag�I
�G

�G �a� ! G � F��X��� With almost the same proof as for the

b	calculus we can characterize those overblown b	pseudodi�erential operators that
are Fredholm� For simplicity� let b � R be the multi	weight bG � b�

Theorem ����� Let a � �m
ob�cl�X�

b�
�
� � and b� s � R be arbitrary� Then a

extends to a bounded operator a ! �bHs
b �X�

b�
�
� � �� �bHs�m

b �X� b�
�
� � which is

Fredholm if and only if ob��m
�a���� 	� � for all � � bS�X	 and	 for all � � R	 the

operator I��a��i� � b� ! Hs��X��
�
� � �� Hs�m��X��

�
� � is invertible�

Note that for a � �m
b�cl�X�

b�
�
� � � �m

ob�cl�X�
b�

�
� � Theorem ���� specializes to

Theorem ����

�� Comparison of b�calculus and cone algebra

���� The small calculus and the holomorphic cone algebra� As in

Subsection ���� let �x� y� ! X 
 U
���� R� � �X be a collar neighborhood of

the boundary� and choose a de�ning function � ! X �� R� of �X with �jU � x�
Without loss of generality we can assume � �

Q
H�F��X
 �H where �H ! X �� R�

is a de�ning function for the component H � F��X� of �X�
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Proposition ���� For ��m � R	 we have

�m
b�cl�X�

b�
�
� � � �m

ob�cl�X�
b�

�
� � � �mCm�X� b�

�
� � ��� � �m����O ������

b��m
�a� � b�
�m

��C ��

�ma� and Ia � �
�m

M ���ma� � Mm

O ��X��
�
� � for all operators

a � �m
ob�cl�X�

b�
�
� ��

Proof� An inspection of the proof of ��	� Proposition ���
 shows that the

Proposition holds for a � �m
b�cl�X�

b�
�
� �� If the kernel �a of a � �m

ob�cl�X�
b�

�
� � is

supported away from the faces �ob�G�H� for all G�H � F��X� with G 	� H� then

we have a � �m
b�cl�X�

b�
�
� �� thus� we can assume that �a is supported in a coordi	

nate patch near �ob�G�H�� G 	� H� and we have �a � b�a�s� x� y� y�� ��dss dx
x
dy dy�

�� ��
with b�a � "S�R��b��C�c �R��b��C�c �Rn��

y �b��C�c �Rn��
y� � by De�nition ����� where

we have used the projective coordinates s � x
x�
� x� y�� G�� y��� H� near �ob�G�H�

and "S stands for the space of smooth functions R� �� C that vanish with all
derivatives at s � � and rapidly for s��� Mellin transform with respect to the
variable s yields

ha � Ms�z�a � C
�
c �R��M

��
O �G�H��

�
� �� � C�c �R��M

��
O ��X��

�
� �� �

Then the Schwartz kernel k��ma � bk��ma�x� y� x
�� y��

���dxx dy dx�x� dy���� �� of ��ma is

supported near x� x� � �� and satis�es

bk��ma�x� y� x
�� y�� � x�m

Z
R�

� x
x�

�����i

 bha�x� �$ i���y� y��d�

for all � � R by the analyticity of ha� i�e� for appropriate cut	o� functions 
� 
�

��ma � 
x�mop
���n��

� 

M �h�
� � C

m�X� b�
�
� � ��� � �m����O

with b��m
�a� � b�
�m

��C��

�Ma� � � and by the de�nition of the indicial family and

the conormal symbol we have Ia � ha��� � �
�m

M ���ma� �M��

O �G�H��
�
� �� This

completes the proof�

We consider now the other inclusion� and identify certain parts of the cone
algebra with elements in the overblown b	calculus� By the very de�nition of the
latter we certainly have

��� 
�a���� 
�� � �m
b�cl�X�

b�
�
� � � �m

ob�cl�X�
b�

�
� ������

for all a� � �m
cl �X���

�
� � and all cut	o� functions 
� 
� � C�c �R���

Lemma ���� For 
� 
� � C�c �R��	 h � C�c �R��M
m
O ��X��

�
� ��	 and any � � R

we have

�m
x�mop
� ����

M �h�
� � �m

ob�cl�X�
b�

�
� � ������
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Proof� Let �X �
UP

j��Hj be the decomposition of �X into connected com	

ponents� and �hj�k�j�k������ �P be the corresponding decomposition for h� In ��	�
Proposition ���
 we have shown

�m
x�mop
� ����

M �hj�j�
� � �m

b�cl�X�
b�

�
� � � �m

ob�cl�X�
b�

�
� � �

therefore� it remains to consider hj�k � C��R��M
��
O �Hj�Hk��

�
� �� for j 	� k� By

a partition of unity we can assume hj�k � C�c �R��O�C � C� �Rn��
y �Rn��

y� ��� such

that hj�k�x� y� y
�� � $ i�� � C��R��S�R
� C��Rn��

y �Rn��
y� ��� holds uniformly for

j�j � R� and supp hj�k�x� �� �� z�� L for all x � R�� all z � C � and a �xed compact

set L � Rn��
y �Rn��

y� � We use the singular coordinates � � x�x�

x�x� and r � x$ x�

near �ob�Hj �Hk�� The Schwartz kernel of a � 
op
� ����

M �hj�k�
� is given by

ka � bka�x� y� x�� y�� ����dxx dy
dx�

x�
dy�
���� ��

� 
�x�
��x
��

Z
R�

� x
x�

�����i

 bhj�k�x� y� y�� �$ i��d�

����dxx dy
dx�

x�
dy�
������ �

thus� the lift to X�
ob has the form �a � b�a��� r� y� y�� ��� d�

����
dr
r
dy dy�

��� �� with

b�a��� r� y� y�� � 
�
r

�
�� $ � ��
��

r

�
��� � ��

�
� $ �

�� �

���
Z
R�

�
� $ �

�� �

�i
 bhj�k�r
�
�� $ � �� y� y�� �$ i��d� �

By ��	� Lemma ���
 we know that �a � C������ �� � R� � Rn��
y � R

n��
y� � b�

�
� �

vanishes with all derivatives as � ���� i�e� a � �m
ob�cl�X�

b�
�
� ��

Remark ���� If the boundary �X is not connected� then we do not have


op
� ����

M �h�
� � �m

b�cl�X�
b�

�
� � in general� because the kernels corresponding to

the o�	diagonal elements of h do not vanish with all derivatives at Hj �Hk � X�
b �

For a concrete example see ��	� Example ���
� The overblown b	double space X�
ob

resolves this singularity by blowing up additionally the corners Hj �Hk�

Theorem ���� For ��m � R and j � N�	 we have

C
m�j�X� b�

�
� � ��� � �m����O � �j�m�m�j

ob�cl �X�
b�

�
� � ������

Proof� By Proposition ���� the left	hand side contains the right	hand side�
whereas a combination of ������ Lemma ���� and the remark after De�nition ��&
yields the other inclusion� Recall that the left hand side is� in fact� independent of
the weigth data ��� � �m��
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���� Green operators and ����E �X� b�
�
� �� To compare the residual opera	

tors of the cone algebra and the b	calculus� let us introduce Ck� �X�F �� k � N��f�g�

� � R� F a Fr#echet space� as the space of all functions f � Ck�X�� F � such that

Di�kb �X�f � ���
n
� �log���lL��X�� F � � l � k�

This is a Fr#echet space in a natural way� which does not depend on the choice of
the boundary de�ning function �� If F � C � we omit it from the notation� It is
then straightforward to show!

Lemma ���� For any k � N�� f�g

�
���

Ckn
��k��

�X�F � � "Ck�X�F � � �
���

Ckn
� �k��

�X�F ��

Recall that "Ck�X�F � denotes all k�times di�erentiable functions that vanish up to
order k at the boundary�

Corollary ���� Let X be a manifold with connected boundary� If E is an
index set for X	 � � n

� $ inf E and

Q � f��z� k� ! �z� k� � E and �z� k�� � E � k� � kg

then

AE
phg�X�

b�
�
� � � C���Q�w�X�

b�
�
� ��

Let us recall that the elements of the completed �	tensor product F � b�� F
�

of Fr#echet spaces F �� F � are precisely of the form
P�

j�� �jf
��

j � f

��

j with an

absolutely summable scalar sequence ��j�j � and sequences �f
�l

j �j converging to �

in F l� To have at hand a short notion� let us refer to this as a 
projective sum��

Proposition ��	� Let E and F be index families for X� Then

A�E�F

phg �X�� � AEphg�X� b�� A

F
phg�X��

Here	 the pure tensors are de�ned by �u� v��x� x�� � u�x�v�x��	 x� x� � X�

Proof� For a Fr#echet space F � we let AEphg�X�F � denote the space of all func	
tions u smooth in the interior of X with values in F � such that for any �connected�

boundary component H � F��X� and all N � N we can write 
Hu � u
�H

N $ r

�H

N

with

u
�H

N �

X
�z�k
�EH�Re z�N

�zH �log�H �ka�H

z�k � and r

�H

N � "CN �X�F �

for appropriate a
�H

z�k � C��X�F �� Here �
H �H is a partition of unity on X with

H � supp
H and G�supp
H � � for all boundary surfaces G 	� H� The topology

is induced by the coe�cients a
�H

z�k and the remainders r

�H

N in a straightforward

way� Since A���F

phg �X�� � C��X�AFphg�X�� it is obvious from De�nition ���� that

A�E�F

phg �X�� � AEphg�X�AFphg�X���
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Note that in ����� the remainder belongs to "CNH rather than "CN � However� this
makes no di�erence� since 
Hu is located away from all boundary surfaces dif	
ferent from H� To verify the proposition� it is therefore su�cient to show that
AEphg�X�F � � AEphg�X� b�� F �

Step �� Let u � AEphg�X� b�� F have a representation
P

j �jujfj as a projective

sum with uj � AEphg�X� and fj � F � Inserting 
Huj � u
�H

j�N $ r

�H

j�N as above� we

obtain


Hu �
X

�z�k
�EH �Re z�N

�zH �log �H �k
�X

j

�ja
�H

j�z�kfj

�
$
X
j

�jr
�H

j�N fj

with a
�H

j�z�k � C

��X�� This shows u � AEphg�X�F �� since C��X� b�� F � C��X�F �

and "CN �X� b�� F � "CN �X�F ��
Step �a� Let u � AEphg�X�F � and � � R be with � � n

� $ inf EH for all

boundary surfaces H ofX� Write u �
P

H u
�H

N modulo "CN �X�F �� We may assume

that each u
�H

N is supported away from any boundary surface di�erent from H�

Therefore� u�H

N � C�� �X�F �� Moreover� for any given k � N we have "CN �X�F � �

Ck� �X�F � for all su�ciently large N by Lemma ���� This yields

u � �
k�N

Ck
� �X�F � � C�� �X�F � � C�� �X� b�� F�

The last identity follows from C��X�F � � C��X� b�� F and  via local coordinates
near the boundary  from S�Rn� F � � S�Rn� b�� F � where S denotes the space of
rapidly decreasing functions�

Step �b� Let u � AEphg�X�F �� Inserting in the above decomposition of u for

az�k � C��X�F � � C��X� b�� F a projective sum� we get u
�H

N � AEphg�X� b�� F

�without loss of generality� u
�H

N is supported away from any boundary component

di�erent from H�� Then� using Step �a�

rN !�
X

H�F��X


�
Hu� u
�H

N � � AE

�N�

phg �X�F � � C���N �X� b�� F�

where E �N
 is de�ned by E
�N

H � f�z� k� � EH ! Re z � Ng� Thus� for any N �

u �
X

H�F��X



Hu �
X

H�F��X


u
�H

N $ rN �

�
AEphg�X� $ C���N �X�

� b�� F�

Since �N

�
AEphg�X� $ C���N �X�

�
� AEphg�X� by Lemma ���� this� �nally� yields

u � AEphg�X� b�� F �

Theorem ��
� Let the boundary of X be connected	 �E�� E�� be an index set
for X�	 where E� corresponds to the left boundary �X � X and E� to the right
boundary X � �X� For j � �� �	 let �j � ����j n� $ inf Ej and Qj � Asw��j ��� be
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given by

Qj � f��z $ jn� k� ! �z� k� � Ej and �z� k�� � Ej � k� � kg �

Then

�����E��E�
�X� b�
�
� � � CG�w�X�

b�
�
� � ����� ������Q��Q�

�

Proof� By de�nition� the elements of �����E��E�
�X� b�
�
� � are precisely the

integral operators with respect to the L��X� b�
�
� �	scalar product and kernel in

A
�E��E�

phg �X�� b�

�
� �� i�e� au�x� � hka�x� ��� uiL� �

Now� an operator has an integral kernel � with respect to the scalar product
in L��X� b�

�
� � if and only if it has kernel )��x� x�� � ��x���n��x� x�� with respect

to the scalar product in H����X� b�
�
� � � ��

n
� L��X� b�

�
� ��

The result thus follows from Proposition ���� Corollary ���� and

��nC���Q�w�X�
b�

�
� � � C���n�Q�n
�w�X�

b�
�
� �

with Q�n� � f�q $ n� lq� ! �q� lq� � Qg�

Using the simple fact that �
CG�w�X� b�
�
� � ��� ��� k�� � CG�w�X� b�

�
� � ��� ��$�� k���

it is immediate from the latter theorem� that

CG�w�X�
b�

�
� � ��� � �m���� � �

E
��m�j����E�X� b�

�
� ������

with the union taken over all index families E � �E�� E�� with

� infE� � � � n
� � inf E� $ j������

���� The kernel characterization for weak Green operators� In this
section we shall give the proof of the kernel characterization for weak Green op	
erators� cf� the end of Subsection ���� It relies on the following Proposition ��&�
which can be found for instance in ���� Theorem ���
 or ���� Proposition ������
�
convenience� we state this result in the terminology used in Section �� We set

C����� �X
�� � C�� �X� C��� �X�� � C�� �X� b�� C

�
�� �X�� C�������X�� � �

��R
C���� �X

��

and similarly for sections into b�
�
� �X��� In fact� the latter space coicides with

A�X�� introduced in ������

Proposition ���� Let Qj � Asw��j ��� and ajN � aN �Qj�	 N � N	 a se�
quence of di�erential operators acting on b�half densities on X such that	 in local
coordinates near the boundary	

ajN �
Y

�q�lq
�Qj �Req�
n
� ��j�N

�x�x $ q�lq ������

For u � C�������X�� b�
�
� �	 we have u � C����Q��w

�X� b�
�
� � b�� C����Q��w

�X� b�
�
� � if

and only if

a�N�
a�N�

u � C����N� ����N�
�X�� b�

�
� � � N�� N� � N�
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where a�N�
acts on the �rst variable	 and a�N�

on the second one� An analogous
result holds for functions of only one variable�

Now let G � CG�w�X� b�
�
� � ���� ������Q��Q� be a weak Green operator� We

shall show that Gu�x� � hk�x� ��� ui��� with

k � C����Q��w
�X� b�

�
� � b�� C

�
����Q�

�X� b�
�
� ��

A �rst observation is that G has a kernel k � C������� �X
�� b�

�
� � �this can

be deduced from the fact that an operator A � L�L��Rn�� such that A�A� !
L��Rn� � S�Rn� has a kernel in S�R�n��� Set G�N�� N�� � a�N�

G�a�N�
��� where

ajNj
� aNj

�Qj� is a sequence of di�erential operators as in ����� and � denotes the

adjoint with respect to the H����X� b�
�
� �	scalar product� By the latter proposition

and again the above argument� it follows that G�N�� N�� has a kernel

k�N�� N�� � C
�
���N������N�

�X�� b�
�
� ��

But now

hk�N�� N���x� ��� ui��� � G�N�� N��u�x� � a�N�
hk�x� ��� �a�N�

��ui���

� ha�N�
k�x� ��� aN��Q��

�ui��� � ha�N�
aN��Q��k�x� ��� ui���

shows that aN��Q��aN��Q��k � k�N�� N��� Since this is true for all N�� N�� Propo	
sition ��& yields the desired property of k�

���� Smoothing Mellin operators and e����E
b

�X� b�
�
� �� Throughout this

subsection the boundary �X of X is supposed to be connected� Let us �rst show

that smoothing Mellin operators belong to the spaces e����E
b �X� b�

�
� �� Indeed� for

��m � R� �� � N� and a weak asymptotic type P � f�p� np� ! p � �CPg satisfying
�CP � '� � �� let the index family E � E�P� �� ��� for X

�
b be given by

E�lb� !� f��p $ �� $ i� k� � C �N� ! Re�p� � �� i � N�� � � k � npg �

E�rb� !� f�p$ i� k� � C �N� ! Re�p� � �� i � N�� � � k � npg � and

E��b� !� � �

Note that the weight � is used to divide the set �CP of possible poles of the Mellin
symbols into two parts� corresponding to the left resp� the right boundary of X�

b �

Proposition ����� For any h � M��
P�w ��X��

�
� � and any two cut�o� func�

tions 
�� 
� � C�c �R�� we have

a !� �m
�x
�m���op

� ����

M �h�
� � e����E

b �X� b�
�
� � ������

Proof� Near �X � �X the Schwartz kernel of a is given by

ka � 
��x�
��x
��x��

Z
R�

� x
x�

�����i


h��$ i��d�

����dxx dx�

x�

������ �
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thus� we obtain for the lifted kernel �a with respect to the singular coordinates

� � x�x�

x�x� and r � x$ x� up to the density factor
���drr d�

����

��� ��

�a � �
��
r

�
�� $ � ��
��

r

�
��� � ���

r

�
�� $ � ����

Z
R�

�
� $ �

�� �

�����i


h��$ i��d� �

���&�

By the meromorphy of H� ! z 
��
�
���
���

��z
h�z� � ����Y��

�
� � for j� j � � we get

for each N � � with �CP � '�
N � �!Z
��

H� �z�dz �

Z
���N

H� �z�dz � ��i
X

respH� �

where the sum is over all poles p of H� with Re�p� between � and � � N � The
residues respH� are given by

respH� �

�
� $ �

�� �

��p npX
k��

����k

k%
hk�p log

k

�
� $ �

�� �

�
�������

where hk�p � �����X��
�
� � are the coe�cients of �z � p���k��
 in the Laurent

expansion of h at p� On the other hand� we have for any continuous semi	norm q

on ����Y��
�
� � � C��Y ���

�
� �

q

�Z
���N

H� �z�dz

�
� Const

�
� $ �

�� �

����N
�������

Because of lb � f� � ��g and rb � f� � $�g� a combination of ���&�� ������ and
������ completes the proof�

Remark ����� The decomposition U �� R� � �X of X near the boundary
induces a tensor decomposition

C�c ����b �
���U � U �� b�

�
� � � C�c ����� �
�R��

����drr d�

�� ��

���� �� �b��C
��Y ���

�
� � �

If P � f�p� np� Np� ! p � �CPg is an asymptotic type� and h �M��
P ��X��

�
� �� then

the coe�cients of ��p����i logk � resp� �p�i logk � in the asymptotic expansion of

�a at lb resp� rb belong to C�c ����� �
�R��
���drr d�

����

����� �b��Np � by �������

Corollary ����� LetM � C
m�j
w �X� b�

�
� � ��� ��m� k�� be a smoothing Mellin

operator as in De�nition ��� Then there exists an index family E � �Elb� Erb� ��

for X�
b with M � �j�m e����E

b �X� b�
�
� �	 and �����

Proof� This is just a combination of ����� and Proposition �����

We are now going to consider the other inclusion� Let ��m � R and R � N be
arbitrary� We start with the following observation�
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Lemma ����� Let a � e����E
b �X� b�

�
� � be arbitrary�

�� If E � ��� E� �� with a C��index set E satisfying infE � n
� � �	 then we

have

�R�ma � CG�w�X�
b�

�
� � ��� � �m�R��OR�Q �

where Q � Asw����R� is the set of all pairs �n � z� k� with �z� k� � E	
Re�z� � n

� � � $ R	 and �z� k�� � E only for k� � k�
�� If E � �F� �� �� with a C��index set F satisfying inf F � � � n

� 	 then we
have

��ma�R � CG�w�X�
b�

�
� � ��� � �m�R��Q�OR �

where Q � Asw�� � m�R� is the set of all �m � z� k� with �z� k� � F 	
Re�z� � � � n

� $ R	 and �z� k�� � F only if k� � k�

Proof� By ������ g !� �R�ma ! Hs���X� b�
�
� � �� Hs����m�R�X� b�

�
� � for all

s� s� � R� i�e� we have g ! Hs���X� b�
�
� � �� C���m�OR

�X� b�
�
� �� for the adjoint g��

note that the terms in the asymptotic expansion of the kernel of a� at lb with
Re�z� � n

� � � $ R lead to the terms described by Q whereas� by a result similar

to ������ the remainders satisfy Hs�m�� �X� b�
�
� � �� Hs�����R���X� b�

�
� � for all

� � �� thus� g� ! Hs�m���X� b�
�
� � �� C����Q�X�

b�
�
� �� Finally� �b� follows either

by a similar computation or by duality from �a��

For any j � N� with j � R� and any index family E � �Elb� Erb� �� for X�
b

with

� inf Erb � � � n
� � inf Elb $ j �������

let us denote by P�� � � �� �� � � � � R� j � � the weak asymptotic type for Mellin
symbols given by

P� !� f��z $ �� k� ! �z� k� � Elb� �z� k
�� � Elb �� k� � kg

� f�z� k� � Erb ! �z� k�� � Erb �� k� � kg �

and choose �� � Rwith � � � � j � �� � �� and �CP� � 'n
����

� ��

Proposition ����� For any a � e����E
b

�X� b�
�
� �	 there exist cut�o� functions


�� 
� � C�c �R��	 h� �M��
P��w

��X��
�
� �	 and G � CG�w�X� b�

�
� � ��� ��m�R�� such

that

�j�ma � 
�

�
R�j��X
���

xj�m��op
����

n��
� 


M �h��

�

� $G �

Proof� By a partition of unity� it su�ces to consider the following cases

supp �a � �b � � �������

supp�a � lb � � � and������

supp �a � rb � � �������
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In case ������ we have a � ����E �X� b�
�
� �� thus� ����� applies� and we obtain

�j�ma � CG�w�X� b�
�
� � ��� � � m�R��� Therefore� we can assume that there are

cut	o� functions 
�� 
� � C�c �R�� with 
�a
� � a�

In case ������� we use the projective coordinates t � x�

x
� x� y� y� near rb � �b�

then there exist fz�k � C�c �R��b��C�c �R��b��C��Y ���
�
� � with

�a �
X

�z�k
�Erb�Re�z
�N

fz�kt
z logk t

����dtt dx

x

���� �� � "CNt �R��b��C
�
c �R��b��C

��Y ���
�
� �

������

for all N � N�� Here "CNt �R�� denotes the space of all N 	times di�erentiable�
compactly supported functions that vanish with all derivatives up to order N at
t � �� Since �a is smooth up to the front face �b � fx � �g� Taylor expansion
with respect to x yields

�a�t� x� y� y
�� �

R�j��X
���

�

�%
���x�a��t� �� y� y

��	 
z �
��b�� �t�y�y�
j dtt dx

x
dy dy�j

�
�

x�

$
�

�R� j � ��%

Z �

�

��� s�R�j����Rx �a��t� sx� y� y
��ds	 
z �

���R �t�x�y�y�


xR�j�

Let a�� � � �� �� � � � � R� j � �� be the operator corresponding to the kernel

�t� x� y� y�� 
�� 
��x�
��tx�x
�b���t� y� y�� ����dtt dxx dy dy�

���� �� �

By di�erentiating ������ with respect to x we get for � � �� �� � � � � R� j � �

��� y� y�� 
�� b���� $ �

�� �
� y� y�

����� d�

�� ��
dy dy�

���� �� � AEr ����� �
� Y �� b�
�
� �

with Er�f��g� ��X��� � Erb and Er�f�g� ��X��� � �� Thus� by Proposition ����

eh� ! z 
�� Z �

�

tzb���t� �� ��dt
t
� C����X��� b�

�
� �

is meromorphic with poles of order k $ � only at those z with ��z� k� � Erb

and satis�es ������ hence �h� ! z 
�� eh���z�
 � M��
P��w

��X��
�
� �� and the Mellin

inversion formula gives

b���t� � Z
R�

t
n
� ����i
h��

n

�
� �� $ i��d� �

i�e� the Schwartz kernel k� of �
j�ma� is given up to the density factor by

k��x� y� x
�� y�� � xj�m
��x�
��x

��x�
Z
R�

�
x�

x

�n
�����i


h��
n

�
� �� $ i��d� �
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hence �j�ma� � 
�x
j�m��op

����
n��
� 


M �h��
� for � � �� �� � � � � R�j��� It remains to

consider �j�m�R�jaR � �R�maR� where aR � e�������Erb��

b �X� b�

�
� � corresponds

to the kernel
�t� x� y� y�� 
�� 
��x�
��tx��R�t� x� y� y

�� �

Because of ������� Lemma ���� gives ��m�RaR � CG�w�X� b�
�
� � ��� � �m�R���

If �a satis�es ������� we use the projective coordinates s � x
x�
� x�� y� y� near

lb� �b� As above� a Taylor expansion with respect to x yields

�a�s� x
�� y� y�� �

R�j��X
���

�

�%
���x��a��s� �� y� y

��	 
z �
��b�� �s�y�y�
jdss dx�

x�
dy dy�j

�
�

�x���

$
�

�R� j � ��%

Z �

�

��� t�R�j����Rx �a��s� tx
�� y� y��dt	 
z �

���R �s�x��y�y�


�x��R�j�

By Proposition ���� up to a density factor� the Mellin transform eh� of
��� y� y�� 
�� b���� $ �

�� �
� y� y��

���� d�

�� ��
dy dy�

���� �� � AEl����� �
� ��X��� b�
�
� �

with El�f��g � ��X��� � Elb and El�f�g � ��X��� � � is meromorphic� has
poles of order k $ � at all those z with ��z� k� � Elb� and satis�es ������ thus�

�h� ! z 
�� eh��z � ��
 � M��
P��w

��X��
�
� �� Let a� be the operator corresponding to

the kernel �s� x�� y� y�� 
�� 
��sx��
��x���x���b���s� y� y�� ���dss dx�

x�
dy dy�

��� �� � Using the

Mellin inversion formula� we obtain for the Schwartz kernel k� of �j�ma�

k��x� y� x
�� y��

� xj�m
��x�
��x
���x���

Z
R�

�
x�

x

�n
�������i


h��
n

�
� �� $ i�� y� y��d�

� xj�m��
��x�
��x
��

Z
R�

�
x�

x

�n
� ����i


h��
n

�
� �� $ i�� y� y��d� �

i�e� �j�ma� � 
�x
j�m��op

����
n��
� 


M �h��
�� Let aR � e�����Elb����

b

�X� b�
�
� � be the

operator corresponding to the kernel

��s� x� y� y�� 
�� 
��sx
��
��x

���R�s� x
�� y� y��
 � A�Elb����
�X�

b �
b�

�
� � �

then the remaining part �j���ma�R���j belongs to CG�w�X� b�
�
� � ��� � � m�R��

by ���� Remark ������
 and Lemma ����� This completes the proof�

Corollary ����� For any index family E � �Elb� Erb� �� with ������ we have
for each j � N�

�j�m e����E
b �X� b�

�
� � � C

m�j
M�G�w�X�

b�
�
� � ��� � �m���� �
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The results of this subsection can be summarized as follows�

Theorem ����� Let ��m � R	 and j � N� be arbitrary� Then we have

C
m�j
M�G�w�X�

b�
�
� � ��� � �m���� � �

E
�j�m

�e����E
b �X� b�

�
� � $ ����E �X� b�

�
� �
�
�

where the union is over all index families E � �Elb� Erb� �� satisfying �������

Proof� This is just a combination of Theorem ���� Corollary ����� Corollary
����� and Subsection ����

���� Summary� A combination of the results of the previous subsections
now leads to the main result of this paper�

Theorem ���	� Let ��m � R	 j � N� be arbitrary	 and suppose that the
boundary �X of X is connected� Then we have

C
m�j �X� b�

�
� � ��� � �m���� � �

E
�j�m�m�j�E

b�cl �X� b�
�
� �
�

� C
m�j
w �X� b�

�
� � ��� � �m���� �

where the union is over all index families E � �Elb� Erb� �� satisfying

� inf Erb � � � n
�
� inf Elb $ j �

Proof� The theorem follows immediately from Theorem ���� Theorem ����
and Theorem �����

Roughly speaking� the main di�erence between the cone algebra and the full b	
calculus is the additional asymptotic information encoded in the �nite	dimensional
subspaces describing the Laurent coe�cients of the corresponding meromorphic
functions� Anyway� it is straightforward to include these additional symptotic data
into the de�nition of the full b	calculus as indicated in Remark ����� however� note
that this requires as in the de�nition of the cone algebra a non	natural choice of a
product decomposition near the boundary� This �strong� version of the b	calculus
coincides then with the cone algebra�

For manifolds with disconnected boundary it has been shown in Theorem ���
that a holomorphic version of the cone algebra coincides with the small overblown
b	calculus� An analogue of Theorem ���� remains true provided we replace the full
b	calculus �m�j�E

b�cl �X� b�
�
� � by the full overblown b	calculus� The details are left

to the reader�
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