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Abstract

The Green formula is proved for boundary value problems (BVPs),
when “basic” operator is arbitrary partial differential operator with
variable matrix coefficients and “boundary” operators are quasi—normal
with vector—coefficients. If the system possesses the fundamental solu-
tion, representation formula for a solution is derived and boundedness
properties of participating layer potentials from function spaces on the
boundary (Besov, Zygmund spaces) into appropriate weighted func-
tion spaces on the inner and the outer domains are established. Some
related problems are discussed in conclusion: traces of functions from
weighted spaces, traces of potential-type functions, Plemelji formulae,
Calderdn projections, restricted smoothness of the underlying surface
and coefficients. The results have essential applications in investiga-
tions of BVPs by the potential method, in apriori estimates and in
asymptotics of solutions.
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Introduction

Let &"’ C R™ be a domain with the smooth boundary 90t = S, Q™ :=
R™MQ+ and U(t) = (14(t),...,va(t)), t € S be the outer unit normal vector
(see Fig.1).

T2

Fig. 1



Let ’yéc denote the trace operators on the boundary:

vyEu(t):=  lim  u(z).
r—1
zeQE tes

We consider a boundary value problem

Az, Dy)u(x) = f(x), r € OF,
(0.1)
vEbu(t) = g;(t), j=0,...,0w—1, teS, w<m,
where A(x, D,) is a partial differential operator with N x N matrix coeffi-
cients
Alx, D)= an(2)dl,  a, € C™(OQF,CVN) (0.2)

| <m

(we call it “basic”) and quasi-normal system of “boundary” operators

b](t7Dt) :| |Z<: b]a(t)atav b]‘a S COO(Sv(CN)v
_mjgm—l, 7=0,...

sw—1

with vector-row coefficients of length N. The GREEN formula

mN—1

/((Au)% —uTAT)dy =+ )

%bjudeS (0.3)
S

is proved (see Theorem 1.6), where A* stands for the formally adjoint op-
erator to (0.1), {bj};n:]g_l is a DIRICHLET system, arbitrary extention of
“boundary” operator system {bj}‘;}:_g; another system {cj};n:]g_l of “bound-
ary” differential operators is then defined uniquely and is a DIRICHLET sys-
tem if and only if the “basic” operator A(z, D) is normal. If the “basic”

operator is normal, it is possible to prescribe parts of both systems {bj}fivo_l

and {cj};n:]\;;,l if they are DIRICHLET systems and find another parts (which
are unique) such that the GREEN formula (0.3) holds.

For a formally self-adjoint operators of even order m = 2 is proved a
simplified GREEN formula (see Theorem (1.7)).

The GREEN formula (0.3) is proved in [Tal, Ta2] for a “rectangular”
system of “basic” operator with ¢ x k matrix coefficients when the principal
symbol is injective (see [LM1, Ch.2, Theorem 6.1] for scalar N = 1 elliptic

operators and [Rol, RS2] for elliptic DOUGLIS—NIRENBERG systems; see also
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the survey [Agl, §4]). All the mentioned investigations in [LM1, Rol, RS2,
Tal, Ta2] are based on local diffeomorphisms which replaces the domain Q*
by the half-space R*. The present approach is direct and applies partial
integration formulae (1.22)—(1.25), which follow from the GAUSS formula on
divergence and the STOKES formula on differential forms. Other important
ingredients are the special GREEN formula with the normal derivatives B; =
0% as “boundary” operators (see Theorem 1.10; similar formulae see in [CP1,
CWT1, Dil, Sel]) and Lemma 4.7, which is a matrix analogue of [LM1, Ch.
2, Lemma 2.1] (see also [RS2, (11)]).

Moreover, the approach is constructive and allows us to write the “bound-
ary” differential operators {cj(x,Dx)};n:]g_l in explicit form (see Theorem
1.11) provided the “boundary” operators {bj(x,Dx)};n:]g_l are fixed. The
algorithm is pure algebraic and invokes only coefficients of the differential
operators A(x, D) and Bj(x, D).

Let us note that only for symbols of operators ¢;(x, D), 7 =0,...,mN —
1, there existed explicit formulae (see [Tal, §8.33]).

Let us assume A(z, D) has the double—sided inverse on the entire space
RTL

A(x,D)Fa(z,D;) =1, Fal(x,D.)A(x,D,)=1,
i.e. the operator has the fundamental solution; then A(x, D,) is elliptic and
(for n > 2) has even order m = ord A = 2{. We “insert” the distributional
SCHWARTZ kernel v.,.(y) = ve(x — y)Ka(z,y) of the fundamental solution
Fa(z,D;) with “cutted—off” singularities on the diagonal set = y into the

GREEN formula (0.3). Sending ¢ — 0 we get a representation of the solution
u(z) to the elliptic equation A(x, D, )u(z) = f(z) in the domain Q%

20—-1

Xot(2)u(z) = No= f(2) & Z VJV§BJU($)7 (0.4)

=0

where yq+ stands for the characteristic function of O C R”. The operators

Nasolo)i= [ [Ratva)] sty = [ Kate.ielu)dy.

(0.5)
V() = % G DOKE(e7)| elr)dS, j=0...2

S

are the volume (NEWTON) and the layer potentials, respectively (see (3.3)—

(3.7)).



The layer potentials Vg, ..., Vo, extend functions defined on the bound-
ary into the domain and their continuity properties have essential applica-
tions in many investigations. Namely, in the potential method (see [CWI,
DNSI1, Gul, KGBBI, Lol, MMTI1, Sel] etc.), in a priori estimates of solu-
tions to BVPs (see [CW1, DNSI, DN1, Gr3, LM1] etc. and Corollary 3.4),
in full asymptotic expansion of solutions to crack—type and mixed BVPs for
elliptic partial differential equations (see [CD2]).

As a particular case of Theorem 3.2 we can formulate the following (see
§1 for the definition of the BESSEL potential H (QF), BEsov By ,(S) and
other spaces).

Joc

Theorem 0.1 Let se R, 1 <p<oo,1<¢g< oo, u; =o0rdC; < ord A =
20. The layer potentials

V, B (S)—H . (QF) (0.6)
are continuous for 3 =0,...,20 — 1.

Theorem 0.1 is proved with the help of Lemma 4.8, which has independent
interest. It allows representation of layer potentials in (0.5) in the form
of volume potentials, i.e. pseudodifferential operators (PsDOs). Here is a
slightly particular case of this lemma.

Lemma 0.2 Let s >0, s ¢ N, k=0,1,..., 1 < p<oo, 1 <¢qg< o0
and A(x,D;) in (0.2) be normal det A(t,&) # 0 for all t € S, |£] = 1,
ord A = m.

For a DIRICHLET system {Bj};n:_ol of “boundary” differential operators of
the order m — 1 with C*®—smooth N x N matriz coefficients there exists a
continuous linear operator

m—1 b —1—7 s—I—m—l—I—lg —_—
P S B — H () (0.7)
such that
~s—14L
’y:s"BﬂDCI) =¢;, APO®c HpJOC T(0F) (0.8)

. R m—1 .
for3=0,....m—1 and arbitrary ® = (o, ..., Pm-1) € j@o Byt =1=7(S).

A similar assertion is proved in [LM1, Ch.2, Theorem 6.1] for the scalar
case (see also [LM1, Ch.2, Lemmata 2.1 and 2.2] and [Hr2, Theorem 1.2.6].

The proof exposed below is carried out for the matrix—operators, is more
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transparent and the spaces are more general (we consider weighted spaces

=" (Q—i) as well).

p,loc
Theorem 0.1 can be derived from the results on PsDOs with the transmis-

sion property (see [Bol, Grl, Gr2, Jo2, RS1] and the survey [BS1, Theorems
2.17, 2.21]). The approach suggested here is different, works for weighted
spaces and seems to be simpler. It has consequences which are perhaps dif-
ficult to obtain within the approach suggested earlier (see e.g. §§ 6.3-6.5
below).

In § 1.1 we discuss the GREEN formula (0.3) and related topics. Namely
we recall definitions of normal operators, DIRICHLET systems of operators
and formal adjoint BVPs (see [LM1]); we define systems of quasi-normal
operators. BVPs with quasi-normal “boundary” operators cover mixed—type
problems of elasticity, diffraction of electromagnetic waves and many other
problems of the mathematical physics. The principal Theorems 1.6 and 1.7
on the GREEN formula are formulated. The proofs are deferred to §§ 5.1, 5.2.
In § 1.2 we prepare tools for the investigation: the GUNTER and the STOKES
tangent derivatives, partial integration formulae on the domain and on the
surface, based on the GAUSS formula on divergence and the STOKES formula
on differential forms (see Lemma 1.8). The special GREEN formula is proved
for arbitrary “basic” operator when “boundary” operators are given by the
normal derivatives B; = 0%. In §1.3 we write the explicit formulae for the

“boundary” operators {c;(z, Dl,)};n:]g_l in the GREEN formula (0.3) when the

extended DIRICHLET system {b;(z, D;)}7" " is fixed (see Theorem 1.11).

=0
In §2 we expose definitions of weighted BESSEL potential H;’];OC(Qi),
Besov B® , (0F) and ZyaMUND Z"H(QF) spaces.

In § 3, based on the GREEN formula, representation of solutions to elliptic
differential equation is derived, provided the “basic” operator has a funda-
mental solution. The result on continuity of layer potentials, participating
in the representation of solutions, and of more general potential-type opera-
tors is formulated (cf. Theorem 0.1). Namely, continuity of layer potentials
is proved from the BESOV spaces on the boundary By (S), B, (S) (includ-
ing the ZYGMUND spaces Z*(S) = B, _(S)) into the appropriate weighted

BESSEL potential H;’f;oc (%) and BEsov IB%;:];JOC (QF) spaces in the outer O~
and inner 2% domains (see Theorem 3.2). In conclusion of the section a pri-
ori estimates for solutions to BVP (0.1) is written when the "basic” operator
is hypoelliptic (see Corollary 3.4 and Remark 3.5).

In § 4 a central auxiliary result—Lemma 4.8 is proved. This result plays
a crucial role in the proof of Theorem 3.2 in § 5.3.

In § 5 we expose the proofs of Theorems 1.6, 1.7 and 3.2.

In §6.1 is proved that generalized layer potentials, representing integral



operators with supersingular kernels on the boundary surface, have correctly
defined traces on the boundary of the domain, interpreted as classical PsDOs.
The assertion is obviously false if a simple layer potential is missing and we
deal with a pure differential operator of non-tangential type; moreover, one
can not apply such operators to functions defined only on the surface.

In §6.2 we extend the trace theorem (see also Theorem 4.6) and the basic
Lemma 4.8 to functions in weighted spaces.

In §6.3 we prove the theorem on the CALDERON projections, related
to the GREEN formula (0.3) and the corresponding layer potentials (0.5).
Namely, the operators Pij = :I:’yéEBjVj for y = 0,...,20 — 1 are proved
to be projections (Pi;j)2 = Pij, Py;+ PXJ = [ in the spaces H(S) and
By (S).

In §6.4 we get the PLEMELJI formulae (the jump relations) for the layer

potentials.

In §6.5 we substantially weaken smoothness restrictions on the boundary
S = 00% of the domain and on coefficients of differential operators. Such
results gain special interest recently due to the progress in the theory of BVPs
for differential equations in a domains with a LIPSCHITZ boundary. Such
investigations are based on results for layer potentials on LIPSCHITZ surfaces
(see [Kel,Ke2, MMP1,MMT1,MT1] and the literature cited therein).

Most of the above-mentioned results on the GREEN formula, layer po-
tentials, the PLEMELJI formulae under minimal restrictions on the bound-
ary manifold and coefficients are known for the second order equations (see
[MMT1, MT1] for recent results). Less is done for higher order equations
(see [CP1, CW1, Dil, Grl, LM1, Rol, Sel]). CALDERON projections were
investigated in [Sel] (see also [CP1, CW1, Grl, Dil]).

Acknowledgement: The author thanks E.Shargorodsky who suggested
the first version of Theorem 2.2 and Lemma 4.8, as well as the results of §6.4.
He also has made many valuable remarks while reading the manuscript.

1 The Green formula and boundary value prob-
lems

1.1. The GREEN formula for quasi-normal BVP. Let OF,
90 = S and #(t) br the same as in Introduction V) and consider a partial

DOptimal smoothness constraints on 9Q = § will be discussed later on in §6.5.



differential operator with N x N matrix coefficients

Az, D,) := Z ao(2)0%, a, € C°(QE, CV*YY, (1.1)
jal<m

The operator
-

A(e.D,) = Y (~1) 0 fan(@)] 1. (1.2)

| <m

where BT denotes the transposed matrix to B, is the formal adjoint to
A(z, D,) with respect to the sesquilinear form

O+

Definition 1.1 (see [LM1, Ch.2, §1.4]). The operator A(x, D;) in (1.1) is
called normal on S if

inf |det Ao(t, 7(t))| £0, t€S, |¢=1, (1.3)

where Ao(x,€) denotes the homogeneous principal symbol of A

Ao(z,6) = Y an(2)(=i€)", € QF, (eR" (1.4)

|o|=m

Condition (1.3) means that the surface S is not characteristic for the
operator A(x, D).
Normal operators contain, as a subclass, elliptic operators on the surface

inf|det Ao(t,£)| #0 forall teS, ¢eS™ (1.5)

where S"~! = {£ € R" : |{| = 1} is the unit sphere in R"; these two
definitions coincide for operators with constant coefficients since the unit
normal vector ©/(¢) runs the entire unit sphere if ¢ ranges through the closed
smooth surface S. In fact, the surface S = 90T is the boundary of the
domain O and thus any connected part of this boundary can be continuously
deformed to the unit sphere. If we suppose that the unit normal, while
ranging through the surface S, leaves some (obviously open) domain on the
unit sphere free, we run into the contradiction.

Let us consider a boundary value problem (BVP in short) with mixed
conditions

A(z, Deu(z) = f(x), v € OF,
(1.6)
vEbju(t) = g;(1), j=0,....0w—-1, teS, w<m,
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where A(xz, D) is a “basic” operator, defined in (1.1) and

bi(t, D) = Y b0, bu € C(S,CY) (1.7)

|or|<m

are “boundary” differential operators with vector-row coefficients of length
N and ordb; =m; <m — 1.

Together with (1.6) we will consider the boundary value problem with
the formal adjoint “basic” operator

A*(x, Dy)v(x) = d(x), r € OF,
(1.8)

’yétCmN_]‘_lv(t) :h]‘(t), j:(),...,w*—l, te S

(see (1.2)); here w* < mN, ordc; = ;5 < m — 1. and ¢;(¢, D;) are some
“boundary” differential operators

(D)= > ¢alh)d7,  ¢a€C(S,CY) (1.9)

|0‘|§M

with vector-row coefficients of length V.

A particular case of BVP (1.6) is the following BVP

A(z, Dy )u(z) = f(z), x € OF,
(1.10)
vEBu(t) = G4(t), j=0,....0—1, te8,

where

B(t, D)) = > bia(t)3, b € C(S,CVN)

are “boundary” operators with N x N matrix coeflicients and ord B, =
mj; < m — 1. The formal adjoint BVP to (1.10) acquires the form

A*(x, Dy)v(x) = d(x), r € OF
(1.11)
YEC,,_v(t) = Hi(t), j=0,....0 1, t€S

(see (1.2)), where ¢* < m and C;(t, D;) are some “boundary” differential
operators

Ci(t, D)= > cult)0,  cja€C™(S,CVN)

|0‘|§M

with ord C; = g5 <m — 1.



BVPs (1.10) encounter e.g. in elasticity, when the displacement (/%
BVP) or the stress (I1* BVP) fields are prescribed. BVPs (1.6) cover as well
mixed problems of elasticity when the normal component of the displacement
and both tangent components of the stress fields (I7/* BVP) or the normal
component of the stress and both tangent components of the displacement

fields (IV* BVP) are prescribed (see [KGBBI1, §§1.8-1.10]).

Definition 1.2 A system {B;(t, D) f;é of differential operators with ma-
triv N x N coefficients is called a DIRICHLET system of order k if all partici-
pating operators are normal on S (see Definition 1.1) and, after renumbering,
ordB;=j,;=0,1,...,k—1.

A system of differential operators {b;(t, Dt)}fivo_l with row—vector coeffi-
cients of length N is quoted to as a DIRICHLET system of the order k if

{b;(t, D)}}55 " = Ho {By(t, D)},

7=0
where {b;(t, Dt)}fivw_l is a DIRICHLET system and Hy is a constant kN x kN
matrix, interchanging rows.

Definition 1.3 A system {b,(¢, Dt)};’:_g is quoted to as a quasi—normal if:

i. the principal homogeneous symbols b;o(t, (1)), 7 =0,...,w—1 evalu-
ated at the normal vectors & = D(t) are linearly independent vector—rows
for allt € S on the boundary;

ii. amount of operators with equal order among bo(t, Dy), ..., by_1(t, Dy)
does not exceeds N.
Lemma 1.4 For arbitrary quasi-normal system of operators {b;(t, Dt)};):_ol,
ordb; < m — 1, there exists a non-unique extension up to a DIRICHLET
system

{B;(t, D)} = Holbi(t, Do)} 5™

of the order m with some constant mN x mN matriz Ho.

Proof. Le us select among “boundary” row—operators {b;(t, D) ‘;’:_01
those with equal orders m; and add to the selected rows new rows of differ-
ential operators of the same order in such a way that the obtained N x N
matrix—operator B; (¢, D;) would have linearly independent rows in the prin-
cipal homogeneous symbol B; (¢, 7(t)), i.e. would be normal. Next we ex-
tend the system {B,(?, Dt)}gzo up to a DIRICHLET system {B,(¢, D;) ;”:_01
of the order m by adding normal operators with missing orders (say, agéf),

E=0+1,...,m—1).
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As the last step we rearrange rows in extended system {b;(¢, D;) ;”:]g_l

with the help of some matrix Hy which has entries 0 and 1 to get a DIRICHLET
system {B;(t, D;) ;”:_01. [

Definition 1.5 (1.8) is called formally adjoint to BVP (1.6) if there exist
two systems of “boundary” differential operators

bi(t, D)= Y b0, et D)= > cralt)],

|| <m lor| <px

b, e € C(S,CY), 4 k=0,....mN—1,

which are extensions of systems {b;(t, Dt)}w:_ and {c;(t, Dy)}. _0_ , such that
the GREEN formula
mN—1
/((Au)% —uTA)dy =+ ) %bjudes (1.12)
o =0 5

holds®) with u,v € C=(QF,CV).

For BVP (1.10) and its formal adjoint (1.11) the GREEN formula (1.12)

acquires the form

/((Au)TU —u' A*v)dy = £ z_: %(Bju)TC—jvdTS, (1.13)

[OF

where “boundary” differential operators {B;(¢, D;) ;”:_01 and {C;(t, Dy) ;”:_01
have N x N matrix coefficients. If (1.8) is formally adjoint to BVP (1.8),
then )

mj+ pu; =m —1, 7=0,....w—1. (1.14)

Since the DIRICHLET systems participating in the GREEN formulae (1.13)

and (1.12) coincide up to rearrangement of rows (cf. (5.1)), we will mostly
adress formula (1.13).

Theorem 1.6 If cither {b;(t, D:)}’ N or {cj(t, D)} N s a fized Di-
RICHLET system of “boundary” opemtors the GREEN formula (1.12) holds,

2)The integral § is used to underline that integration is performed over the closed surface
s
S.
3)(1.14) follows e.g. from the formulae (1.38) for “boundary” operators {C;(t, Dy) ;»n:_ol
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another system (respectively,V*{c;(t, D;)}" =L or {by(t, Dt)}mN ') is de-
fined in a unique way and BVP (1.8) is formally adjoint to (1.6).

The system {c;(t, Dt)}mN ' (the system {c;(t, Dt)}mN ') would be a DI-
RICHLET system if and only if the “basic” operator A(:L' D.) is normal.

If the “basic” operator A(x, D) is normal, w = kN, w* = (m — k)N,
the systems {b;(t, Dy) fivo_l, {cmn—j-1(t, Dt)}(m IN=1 e fized and one of
them is quasi—-normal, the GREEN formula (1. 12) holds if and only if both are
DIRICHLET systems ordb; = ordcyn—j—1 = j (of order k and m — k, re-
spectively). Then the e:z:tended systems {b;(t, Dy)}” N and {c;(t, Di)}i- mN !

in (1.12) are DIRICHLET systems (of order m) and are unique.

Proof is deferred to § 5.1. The first part of the Theorem for scalar N =1
elliptic operators has been proved earlier (see [LM1, Ch. 2, Theorem 2.1})
and for elliptic DOUGLIS-NIRENBERG systems-in [Rol, RS1]. Most general
case, on our knowledge, is considered in [Tal, Ta2], where the “basic” and
“boundary” operators have “rectangular” £ x ¢ matrix coefficients and an
injective principal symbol of the “basic” operator.

It is well-known that if A(x,D,) is scalar (N = 1), elliptic and has
real valued matrix—coefficients (or complex valued coefficients and n > 2)
than it is proper elliptic and has even order ord A(x,Dy) = m = 2/ (see
[LM1, Ch.2, §§1.1]). Although for non-scalar case N = 2,3,... matters are
different (see §6.6), many elliptic systems in applications (e.g. in elasticity,
thermoelasticity, hydrodynamics) have even order. Let us consider some
simplification of the GREEN formula for such systems, especially when the
system is formally self-adjoint.

Assume the operator in (1.1) has even order m = 2{. It can be represented
in the form

Az, Do) = Y (=DM a05(2)0,  aap € C°(QF,CVN)  (115)
ol |51<¢

(representation is not unique) and with it one associates the following sesquilin-
ear form

Awo)i= [ 3 [easlwdfut)) Foluidy, (116)

Qﬂ: |0‘|7|5|§Z

u,v € C5°(QE,CY).

Theorem 1.7 For arbitrary “basic” differential operator (1.15) of the even
order 20 and arbitrary DIRICHLET system {Bj(t,Dt)}ﬁ;é of the order [ of
“boundary” differential operators with matriz N X N coefficients there exists a

12



system {C;(t, Dy) ?;é of “boundary” operators with ord B;+ ord C; = 2(—1
such that

A(u,v) = /(Au)TUdy + z_:/(cju)TB—jvdTS, (1.17)

[OF

u,v € C°(QF,CV).

{C;(t, Dy) ﬁ;é would be a DIRICHLET system if and only if the “basic”
operator A(x, D) is normal.

If A is formally self-adjoint A = A* we get the following simplified
GREEN formula

/[(Au)Tw—uTm dy = ii/ {(cju)TB—jv— (B;u)"Cu|d,S.  (1.18)

ot 7=0

Proof is deferred to § 5.2. For scalar N = 1 elliptic operators a slightly
different proof see in [LM1, Ch. 2, § 2.4].

1.2. Partial integration and the special Green for-
mula. Let us consider “extended” normal derivatives

n

Ose) = Y (@), wER", j=0,1,..., (1.19)

k=1

where V(z) = (1n1(x),...,vu(2)), @ € R" is some C*—smooth vector field
which coincides with the unit normal vector field on & and stabilizes to the
identity in the vicinity of infinity: #(x) = 1 for sufficiently large || > R.

We will apply the GUNTER D; and the STOKES M, ;. derivatives, which
are defined as follows®:

D,:=(Dy,..., D), Dj:=08—vj(2)0pwy=d; -V, Vi=(d,...,0,),

M, = [M ] Mg = vi(2)Op — vp(2)0; = mjp - V. (1.20)

nxn

These derivatives are tangent to S, i.e. the directing vectors ci;(t) and m; (1)
are orthogonal to /(1):

P(t) - d,(t) = D(t) - ma(t) =0, t€S.

'The tangent derivatives D; were introduced in [Gul, §1.3]) while M ; for n = 3 in

KGBB1, Ch.V] (for n > 3 see [BD1]). The derivatives M, are natural entries of the
[ : i
STOKEs formula (1.27).
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Therefore the derivative D; can be applied to a function (¢) defined only
on the boundary &
P+ (1) o+ Mdo(1))

) e Qi PN T AR 1
Djp(t) := lim 3 lim S , p€C(S)

where )\ci;p(t) is the projection of the tangent vector )\ci; (t) onto the surface
S (the projection is correctly defined for small |A| < ¢). Similarly can be
interpreted M, xo(t).

Only n — 1 out of n derivatives Dy,...,D, and out of n? derivatives
My, ..., M, arelinearly independent and the following relations are valid:

n

Dj ::_ZVkMLkv ZVka:()v
h=1 h=1 (1.21)
./\/t]‘Jg = I/]‘Dk — I/kD]‘ 5 M]‘J‘ == 0, Mmk - _Mk,j .

Lemma 1.8 For the partial derivatives 0, (k = 1,...,n), arbitrary “tan-
gent” differential operator

G=Y g@D =Y )Ml et

|| <k BI<k

(see (1.28)~(1.21)) and the normal derivative Oy (see (1.19)) there hold the
formulae

/ (Bu(y)] o (g)dy = + f vel(7) [u(r)]T o(7)d- S / () Do)y . (1.22)

/ (Gu(y)] " o(g)dy = / ()] Groly)dy (1.23)

4.5 = [ )" Ty ooy (1.2

(o5
/E
S

<
S

@
—
_'
<
S
@
S—’
Y
<
I
H_
C”\S\
3
S
\]
P
_'
<
S

\]

S—’

%[GU(T)]T o(r)d.S = %UT(T)W d.;S, (1.25)
;Suhere5) S
G =Y 0l o] = Y Ml ]
|| <k BI<k
5)

It is worth to underline that the formally adjoint operators D}, M ; on the domains

QF (see (1.23)) and the “surface” adjoints (D;)5, (M;x)%s (see (1.26)) are essentially
different, although the difference has lower order (D;)su = Diu+ hju, (Mjr)su =
M;ku + fjku, where h; and f; 5 are functions.
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Dru(x) = —0ju(x) — al;(l,)l/ju(x) ;o Miu(r) = =Owju(z) + djppu(z),
(D))sulx) = =Y wdppu(x) + v;d5u(x), (1.26)
(Mjp)su(x) = =M;pu(z) = My ju(z).

Proof. Formula (1.22) is a direct consequence of the GAUSS formula on
divergence

/aku(y)dy = i%l/k(T)u(T)dTS, E=1,2,...,n
Q S

(see [Dil], [Sil, 4.13(4)]). In fact,

/8ku o(y)dy = /ak dy—/[ (v)] T Oo(y)dy

[OF

" f () ()] o) S — / ()] Do (y)dy

S Q=

To prove (1.24) we apply (1.22) and proceed as follows:

/ [9ﬁ(y)u(y)]T v(y)dy = Z / [ (y)Oku(y)] " v(y)dy
=3 / D) ()0 () dy

It suffices to prove (1.23) only for the generators D;. For this purpose we
apply (1.22), (1.24) and continue as follows:

/[DjU(y)]T@dyz /[@U(y)]T@dy—/ (O u(v)] vily)oly)dy

Q* Q* Q*

15



=+ [ w0 @S - [l Ty F [ (e (el

+/[U(y)]T9§Vj(y)v(y)dy = /[U(y)]TD]*v(y)dy-

Q* Q*

To prove (1.25) we follow [BD1] and note it is sufficient to prove the
formula for the generators D; and M. For this let us recall the STOKES
formula

F M) (1S = Pl Bea)() = () By doS =0, (127
Lk=1,....n.

This formula is well-known for n = 2,3 (see e.g. [Dil, Sil]). In general,
for n = 2,3,..., (1.27) follows from another STOKES formula on external
differential forms

%dw:(), ord w=dimS -1

S
(see [Scl, (VI.7;3], [Cal, Ch.1II,§4.10]). In fact, It is easy to ascertain that

v;dS = (—1)"" Nda,,
mts

(see [Scl, (VI.6;48)] for a detailed proof). With this formula at hand the

integrand in (1.27) can be represented as a total differential

M, udS = (—1)j_1(8ku)/\d:z;m—(—l)k_l(aju) ANdz,, =d ((—1)j+ku/\d:1;m>
: o

m#j m m#j,k

for j > k and we get (1.27). Since My; = — M, My = 0 (see (1.21))
(1.27) is proved for all j,k =1,...n.

From (1.27) we derive the following rule of partial integration for the
generator M,

Ml 7S = § M [T (1o0)] oS = f T (IS

S S

— f T OO S k=0

S

16



where (M) = =M, = My; and (1.25), (1.26) are proved for the genera-
tors M ;. Invoking relations (1.21) we find

n

(Dj)g = - Z( 7.k st Zl/ka vy, + I/]

k=1
which yields (1.25) for another generator D;. ]
Example 1.9 Let
Az, D,) := a;x(2)0;0h, a;r € C(QF,CVN)
7,k=0

be arbitrary second order operator with variable coefficients and consider the
DIRICHLET problem (Au = f in Q* and yiu = g on S) or the NEUMANN

problem (Au= f in OF and Y. a;wjvE0u = g on S). Applying the partial
7,k=0
integration (1.22), we get the GREEN formula (1.13) with

n

Bo(z, D) =1, Bi(e,Dojulz) = Y aju(e)vj(z)dhu(e),

7,k=0
n

Co(x,D;) =1, Cy(x,D)u(z)=— l/k(:zj)aja;k(x)u(x),

for the DIRICHLET problem and with

Bo(z, Dy)u(z) = Z ajp(@)vi(x)Opu(z), Bi(z, D) =1,
Co(x, Dy)u(x) = — l/k(:zj)aja;k(x)u(x), Ci(a,D,) =1,

5,k=0
for the NEUMANN problem.

Thus, the partial integration (see (1.22)) can be used to get the special
GREEN formula for arbitrary “basic” operator (not necessarily elliptic; cf.
the foregoing Example 1.9). But it is not for sure that thus we get normal
“boundary” operators even if the “basic” operator is elliptic. On the other
hand normality of one of two systems of “boundary” operators is necessary to
replace them by arbitrary system of “boundary” operators of our choice (see

17



§5.1). For this purpose we derive the special GREEN formula in Theorem

1.10.
The operator A(x, D,) in (1.1) can be written in the form

m—1

A(x, Dy) = Ao(x, H(x)) 05y + Y Amj(2,Ds) 0y,
7=0
m—1 " 4

=Ao(x, 7(2)) 050y + ) Amjla, Ma )0y, (1.28)

7=0

Ap(z, D)= af (2)D = Ap(z.Dp) = Y ) y(x) MY,

lo|<k 131<k

DI =D D, M= MY M

aeNl, BeN", zeQf, k=1.2,...,m,
where Ag(x,£) is the homogeneous principal symbol (see (1.4)) and the
derivatives Oy (), Dj, M are defined in (1.19)-(1.20).
Theorem 1.10 Let A(x, D) be defined in (1.1) and

m

Bk(t, Dt) = ag(t) 5 Ck(t, Dt) = Z (a;(t))]_k_lAjn_](t,Dt) (129)
j=k+1
m—k—1

Z * ]A;Kn —j—k— l(tvpl‘)v * Zatkyk

Jj=

Then the GREEN formula (1.13) is valid.
Proof. Applying (1.23) and (1.24) we find the following:

/(Au vdy = jzz Z % (05 1A, vdTS—I—/uTEdy

k=0 j= k—l—l ot

m—1
::I:Z% CkvdS—l—/uTEdy.
k=0

O+

The GREEN formula (1.13) for the BVPs (1.10), (1.11) with operators (1.29)

is proved. [

BVP (1.10) with the normal “boundary” operators B, = 95,k =0,...,m—
1, is called the DIRICHLET problem.

18



The GREEN formulae (1.13) with operators (1.29) can be found in [Sel,
(5.3)], [Tvl, Ch.II1, (5.41)], [CW1, (1.5)], [CP1, Dil]. This special formula

is a crucial component of the proof of Theorem 1.6.

1.3. About “boundary” operators in the Green for-
mula. Next we will discuss the problem of finding “boundary” differential
operators {C;(t, D;) ;”:_01 in the GREEN formula (1.13) in explicit form, pro-
vided the DIRICHLET system {B;(¢, D;) ;”:_01 is fixed.

Similar formulae holds, obviously, for the “boundary” differential opera-
tors {c;(t, D) ;”:]g_l in the GREEN formula (1.12).

Since {B;(z, Dx)};n:_ol is a DIRICHLET system, to simplify the represen-
tations formulae hereafter we will suppose (cf. (1.14))

ordB;=j, ordCij=m-1—-j, j=0,...,m—1. (1.30)

Let us introduce, for convenience, the following vector—operators of length

B (2, D,) = {a;;;)l,...,ag(x),l, }T ,

B (z, D,) := {Bo(z, D,),...,B_i(z, D)} | (1.31)
C"(z,D,) = {Co(x,Dy),....,Cp_y(z, D)} ;

applied to a vector—function they produce longer vector—function, e.g.

B (x, Dy)u = {Bj(x, D, )u}7 .

Then the GREEN formula (1.13) acquires the form

/((Au)T T—ul - Av)dy =+ %(EWU)T . Clud, S | (1.32)
Q S

while the representation (1.28)-the form

— T —
A(z,D,) = |A" (2, D,)| D"z D,), (1.33)

A (2 D) = {Ao(x, 7(2)), Ay(2, Dy, .., Ap(2,D2), }

where “-” designates the formal scalar product of vectors. For the DIRICHLET
system B(™ (¢, D;) we introduce the m x m lower—triangular matrix-operator

b(mxm)(%px) =
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8070(1', _)(l')) 0 cee 0
_ BLo(l’,Dls) 8170(1’717(1’)) 0 (1 34)
Bm_Lo(l', Dls) Bm—l,l(wa Dls) tee Bm_Lo(l’, Ij(l’))

with the entries B, x(x, D,) representing “tangent” differential operators of
the order j — k with matrix coefficients from the representations

-1
B;(w, Do) = Bjo(w, 7(2)) 05,y + > Bysl(x, Do)k, (1.35)
k=0

and Bjo(x,§) standing for the principal homogeneous symbol of B;(z, D,)
(j=0,...m—1; cf. (1.28)).

Invertible block matrix—operators of type (1.34) will be referred to as
admissible (cf. [Agl, §4]).

Since the entries of the principal diagonal in (1.34) are non—degenerate
in the vicinity of &

det B;o(x,7(x)) #0, j=0,....m—1

(we remind that the operators B;(¢, D;) are normal), b("*™) (2, D,) is ad-
missible on S:

1

[t ) (2, D,)] " =

Boo(x, () 0 0
_ B, o(z,D,) Bié(m,ﬁ(m)) 0 (1.36)
ﬁm—Lo(%Dx) ﬁm—l,l(xvpx) 8;1—1,0(%’7(5]‘;))

B = —B,;é(:z:,D’(:z;))BM(:I;,Dx)B;(}(x,17(:1;)).

The set of admissible matrix—operators is an algebra: finite sums, prod-
ucts and even the inverse (if it exists) of admissible matrix—operators are
admissible again.

The representations (1.35), in above introduced notations, can be written
in the form

E(m)(l‘, Dx) _ b(mxm)(x,1)90)]3(m)(x7 Dx)_ (1.37)

Theorem 1.11 Let the DIRICHLET system ﬁ(m)(x, D) be fized and conven-
tion (1.30) hold. Then the system CU(x, D,) in the GREEN formula (1.13)

20



(see (1.31)) is found as follows

T

—

G2, 0,) = [ (. D,)] " [(B0) (2, D)
< (A (2, D)8 (1.38)

where <b(me)>; (2,D,) denotes the “surface” adjoint to bU™*™)(z,D,) (see
(1.25), (1.26)), while <A(me)>* (x,D,) is the formally adjoint (see (1.23),

(1.26)) to the following lower—triangular matriz—operator

Ao(z, () 0 0
Ai(x,D,) Ao(x,v(z)) - 0
A(mxm)(%px) — (1.39)
A, o(x,Dy) Ap—s(x,Dy) - 0
Am—l(xvpx) Am—?(xvpx) AO(xvlj(x))

(cf. [Sel, (7Ta)], [Grl]) compiled of “tangent” differential operators of the
representation (1.28) (see also (1.33)), where S, is the skew—identity matrix
of order m:

o o0 -+ 0 1
o o0 -~ 1 0
T R (1.40)
o 1 -~ 0 0
r 0 - 0 0
Proof is a byproduct of the proof of Theorem 1.6 (see § 5.1). [

Remark 1.12 Using representations (1.28) for the “basic” operator and (1.35)
for a "boundary” operator B;(x, D,) with ord B; > m — 1 boundary values
YEB; (1, D)u(t) of a solution to “basic” equation A(x, D,)u = f in (1.10) can
be found if the boundary values of normal derivatives {ﬁag(t)u(t)};;l are

known (or, due to Lemma 4.7, if the datae {’yS—LCj(:L', Dx)u(t)};n:_ol are known

for some DIRICHLET system {C;(x, Dl,)};n:_ol). Details can be found in [Hr2,
§20.1]. Therefore orders of “boundary” operators Bj(x, D,) in (1.10) are
restricted ord By <m — 1.

2 Spaces

We recall definitions and some properties of function spaces from [CD1, Trl,
Tr2], needed for further exposition.
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S(R™) denotes the SCHWARTZ space of all rapidly decaying functions and
S/(R™) — the dual space of tempered distributions. Since the FOURIER trans-
form and its inverse, defined by

Fe(¢) = /ei%(l‘)dw and
Rn | (2.1)
Flyla) = (QW)_n/e_m%(ﬁ)d& r,§ €R”

R
are continuous in both spaces S(R") and S/(R"™), the convolution operator
a(D)p = W2 := F'aFe with a€S'(R"), ¢eS(R") (2.2)

is a continuous transformation from S(R") into S'(R") (see [Dul, DS1]).
The BESSEL potential space H (R”) is defined as a subset of S'(R") and
is endowed with the following norm (see [Trl, Tr2]):

[l E (R™)|] = (D) ul Ly (R")]], where (€)° = (1+[¢[*)7 . (2.3)

For the definition of the BESOV space B} (R") (1 <p < oo, 1 <¢q < o0,
s € R) see [Trl]: the space B; (R") (1 < p < oo, s > 0) coincides with

the trace space ’yﬂ‘{nH;—l—E(Rﬁ_H) (RiT :=R"@R*) and is known also as the
SOBOLEV-SLOBODECKII space W (IR").

The space B (R") for s > 0 coincides with the well known ZYGMUND
space Z°(R"), while for s € R*\ N both B (R") and Z*(R") coincide with
the HOLDER space C*(R").

The space Hy (R ) is defined as the subspace of H (R™) of those functions
¢ € H>(R"), which are supported in the half space supp¢ C m wheareas
H (R ) denotes the quotient space Hy (R%}) = H;(R”)/E;(RE), R” :=R™\
R’ and can be identified with the space of distributions ¢ on R’ which admit
extensions (p € HJ(R"). Therefore r H}(R") = H(R}), where ry = rgy
denotes the restriction to the half-space R’} from R".

The spaces IE;q (R%) and B}  (R%) are defined similarly [Trl, Tr2].

Next we define BESSEL potential spaces with weight, (see [CDI, §1.3],
[Esl, §§23 and 26]).

Let s € R, m € Ny and 1 < p < oo; by H>™ (R”}) we denote the space of
functions (of distributions for s < 0 ) endowed with the norm

lulB™ (R =) JekulH P (R (2.4)

k=0
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Obviously, H°(R") = H2 (R"). The space BS7" (R%) is defined in a similar

way:
[|ul By (R —ZHSL‘ ulBy (R

Let

>Ry = (] B"RY, BERY:= () BrRY (25

m€Ng m€ENp

with an appropriate topology which makes them into FRECHET spaces.

Let M be a compact, C"*~smooth n—dimensional manifold with a smooth
boundary I' := M # 0. The spaces Hy (M), HS (M), By (M), B; (M),
H>™ (M), Hsm(./\/l) By (M) and IB%””(M) can be deﬁned by a partition
of the unity {;/)]} _, subordinated to some covering {¥;}\_, of M and local
coordinate dlffeomorphlsms

EEjiX]‘—>}/j, XJ‘CRZT_.

In particular, for a compact domain 27 C R"™ and non-compact Q= =
n\ of S,m s, m S,m 5,m
R™\ Q" the spaces H» (0%, e (0F), e m o (QF), quloc(ﬂi) etc. are
defined as described above. For compact Q the subscripts com and loc can
be omitted.

From the embedding theorems of SOBOLEV we get that

Hs,oo (Q ) stoo (Q—i) C COO(Q:E) (bUt §Z COO(Q—i)v

p,loc » p,gq,loc
elx)=0(l) as xz€Q7, |z|]—> (2.6)

whatever the parameters s € R and 1 < p < oo are.

Let L(X4, X3) denote the space of all linear bounded operators operating
between the BANACH spaces A : X; — X,

Next two theorems summarize some results on interpolation (see [BLI,
Tr2]), which will be used later on in the paper.

Theorem 2.1 Let Int[Xy, X, denote one of the interpolation methods either
the real [Xy,Xy]g 4 or the complexr (X1,Xy)y (see [BL1, Tr2]). Then

X'=[X, X3, X'=[X{,X]]

imply
L(3, X)  L(X}, X{) 1 L(X}, X2). 1)
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Theorem 2.2 (see [BLI, §§6.2,6.4]). Let

s=vs1+ (1 =9)so, s,%,51€ER, 0<d<1,

1 U 1 -4
-—=—++ ’ 1§p7p07p1 < oo, (28)
P N Po

1 9 1—-49

-=—+ ) 1§Q7q07q1§00

q q1 qo

v
and —:=0 if r = 0. Then
r

(L, (M), H: (M), = HE (M), (2.9)
[EG5 (M), B (M), = B}, (M), (2.10)
(B .o (M), B, ,, (M), = B;, (M), (2.11)

where M = QF C R”™ or M = M is a smooth manifold. B
The same interpolation results (2.9)~(2.11) hold for the spaces H (M) and

By (M) if M has the boundary OM # 0.

Slight modification of the proof allows to prove the foregoing theorem for
weighted spaces H;’k (M), H;’k (M), IB%;:’; (M) and IB%;:’; (M).

Let us agree the following: if we use the notation X (M) (XZW(M)) the
following spaces will be meant:

either H;m(l\\/ll) or B;?(M) (2.12)
(either H;m(l\\/ll) or IB%;Z”(I\\/JI))

with arbitrary 1 < ¢ < oc.

3 Representation of solutions and layer po-
tentials

Throughout the present section we will assume that the differential operator
A(z,D;) in (1.1) is invertible on R” or, in other words, has a fundamental
solution (see [Hr2, §4.4]), which is understood either as the inverse

Fa=A"'(z,D,): C= (R") — D'(R"),

com

Az, D)Fap =FaA(x,D)p=p, € CFOQF),
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or as the distribution SCHWARTZ kernel Ka (2,y) : C5°(R™) — D'(R") of the
operator F o (see [Hr2, Theorem 5.2.1]):

Az, De)Ka(r,y) = d6(z —y) (3.1)

with the DIRAC function §(x).

We will suppose that A(x, D) is elliptic and the order ord A = m = 2/
is even (see §6.6). Then the inverse Fao = Fa(x, D,) is a pseudodifferential
operator® with the symbol from the HORMANDER class S™(Q%, R") (see

g. [EgS1, Hr2, Sbl, Tvl]). This yields the inclusion sing supp Ka= Agn
or, in other notation, Ka € C*((R" @ R") \ Agn).

Moreover, if A(x, D,) is hypoelliptic (see §4.1) a fundamental solution
Fa(z,D,) is PsDO again and solution sing suppKa= Ag» 7 (see [Hrl,
§4.1], [Tvl, Ch.1, Theorem 2.2]).

Since A(x, D,) has a fundamental solution Fa, the adjoint operator

A*(x,D;) in (1.2) has it as well and
Fa: = FTA s ICA*(J}, y) = [ICA(yv x)]'l' ) (32)

where Kax(x,y) is the SCHWARTZ kernel of the fundamental solution F o« of
the adjoint operator.

As a first application of the GREEN formula (1.13) we can get the rep-
resentation of a solution of BVP (1.10). For this purpose let us consider
Ve r(y) = Ye(® —y)Kax(y, x), where Kax(x,y) is the kernel of the fundamen-
tal solution Fax (see (3.2)) and x. € C(R"), x:(z) = 1, xo(x) = 0 for
|z| > e and |z| < £/2, respectively. Inserting v. ,(y) into the GREEN formula
(1.13) and sending ¢ — 0 we find the following

20—-1

Yot (2)u(z) = Noz f(a :EZV]’)/S . oz et (3.3)

Nasele) i= [ [Fatoo)] elwidy = / Kale)e)dy,  (34)

Q* Q*

where gt is the characteristic function of Qf C R" and

0= $ o

S

D )K ax(T, :1;)} ! o(7)d; S

6)See § 4.1 for some elementary information about PsDOs.

) Almost all results of the present Section and further hold valid for hypoelliptic oper-
ators, but operators have not even order m = 2¢. Operators with odd order m = 241
exist among properly elliptic (terminology from [Agl, LM1, Rol]) systems as well (see
§6.6).
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— § [GE DKL) e

= Z a?ICA(xv T)c;—a(T)@(T)dTSv .] = 07 e 726 —1 (35)

|0‘|§M S

(cf. (1.9), (1.11)) are the layer potentials.

Integrals in (3.3)—(3.5) and similar ones later ((3.3) etc.) are understood
as the functionals Ka(z,-), (8?/@@(:1;, -) etc.) with the parameter « € R”
applied to the test function ¢(7) (to ¢l (7)p(7)).

Summing up (3.3) for the domains QF we get

20—-1

u(z) =Fafla —|—ZVBu (3.6)

[0](t) = ~vdv(t) —ysv(t), te€S, zeR"\S=0tUQ",

where [ = Au

and
RM\S

QtnQ-—

Fag(e) = Na-o(e) + Navo(e) = [Kafenleidy  (37)
R
is the fundamental solution of A(x, D).

Pseudodifferential operators a(x, D) and b(x, D) are called local equiva-
lent at zo € R™ (recorded as a(x, D) = b(z, D)) if

infl[x{a(, D) = b(-, D)] |, (R")|| =0, (3.8)

where the infimum is taken over all smooth functions y € C§°(R") equal iden-
tity x(z) =1 in a neighbourhood of o (see [Dul] for elementary properties
of local equivalence).

Lemma 3.1 Assume A(x, D,) is defined in (1.1).

If A(z, D) has constant matriz-coefficients a, = const, the fundamen-
tal solution Fa = Fa(D) exists provided ® det A(D) # 0. In addition, if
det A(&) #0, £ #0, where

A =) an(—i€)*, ¢€R”

| <m

8) Fundamental solutions exist also for operators with analytic coefficients aq () (see

[Jol].
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is the symbol of A(D), the fundamental solution Fa = Fa(D) represents a
convolution
Fa(D) = 7, [A7(6)] (3.9)
The SCHWARTZ kernel of Fa(D) depends on the difference of arguments
Ka(r.y)=Kalr —y).
In general case of non—constant coefficients if A(x, D) has a fundamental

solution Fa : CF(R™) — D'(R™)) for arbitrary xo € R™ there holds the
following local equivalence (cf. (3.8))

Fa ~ Fa, (2o, D,), (3.10)

where the convolution operator F a,(xo, D) is the fundamental solution of the
principal part Ag(xo, D) (see (1.4)) with coefficients frozen at xq (cf. (3.9)).

Proof. All claims, except (3.10), can be found in [Hrl, §§3,4], [Hr2, § 11].
The local equivalence (3.10) follows from the obvious equivalence A(x, D)
~ A(zo, D,) (see [Dul]) and from the elementary property: if operators are
local equivalent and invertible, the inverses are local equivalent as well. =

If A(x, D;) is hypoelliptic and has the fundamental solution, we can only
indicate the symbol of the fundamental solution, which is the symbol of a
parametrix (see §4.1). In particular, the principal symbol of the fundamen-
tal solution coincides with the inverse Aj'(z,€) of the principal symbol of
Az, D,).

If A(x, D;) has constant matrix-coefficients and is not elliptic, the condi-
tion sing supp Ky = Ags might be violated (see [Hr2, §10.2]) which means
that the fundamental solution Fa can not be a pseudodifferential operator.

Let 3 € Nj and consider the following generalized layer potentials

V&)= f [Gr Dk in )] etrias

S
=3 ¢ 2K (2, 7))l (T)p(r)d-S | (3.11)
|0‘|§M5
G(t, D) = Y ca(t)3) ,ca € C(S),
lor|<pe

K (2 y) = (2 — y)°Ka(z,y).
If Go(t,D;) =T and =0

Vip(x):= Vop(z) = %KA(w,T)¢(T)dTS (3.12)

S
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is the single layer potential.

Theorem 3.2 Let f € Ny, s €e R, 1 < p < 00,1 < ¢ < 00, m = 2,
A(z, D,) be elliptic with a fundamental solution K 4(x,y).
The generalized layer potentials

s+20—1—pu+|51+ 3k

Ve BL(S) — H, (0F), (3.13)
5 st2l=1—pt |8+ Lk
Bp,q (S) — IB]D,q,loc (Qi) (314)

with p = ord G < 2{, are continuous for all k =0,1,...,00

The result holds for s > 0 and for 1 < p,q < co. In particular, it holds
for the ZYGMUND spaces (the case p=q = o0):

VY 25(8) — ZeHH sl OF) (3.15)
The proof is deferred to §5.3.
Remark 3.3 [f the operator (1.1) has constant matriz coefficients a,(x) =

const , the restriction p = ord G < 25 m Theorem 3.2 turns out superfluous.
In fact the potential operators V = ak are well defined even for

k > 204|3|. Moreover, a potential- type operator G(x, D, )V (see (3.11) for
G(x, D)) is well defined for arbitrary p = ord G € N and restricted to the
surface ’yéEG(:I;,Dw)V(ﬁ) can be interpreted as a pseudodifferential operator
of the order =20+ 14 p— |3 on S, although has a hypersingular kernel when
=20+ 1+p—|B]>0 (see §6.1).

Corollary 3.4 LetseR, 1 <p< oo, 1 <g< o0, m=20,k=0,1,...
A(z, D,) be elliptic with a fundamental solution.

Then any solution u(x) of the system

Az, Du=f, feHOF), (3.16)

I € B, 2“( ) (or f € Z72KQF) with s — 20 > 0) satisfies a priori
estzmates

5 OQ;

20—-1

ulbst (OF >H<M[Hf|Hs O+ 3 g <S>H],

20—-1

leIB} 1o (2 i)HSM[HﬂBZfﬁf OF|+ ) 1hEd; ulBy, (S )H} (3.17)

=0

20—-1

(Hum&’f(ﬂ—im < M[Hﬂzs-mm—im s Hﬁ%UIZS‘]”“(S)HD |

=0
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Proof follows from Theorem 3.2 and the representation formula (3.3). m

Remark 3.5 If the operator A(x,D,) is hypoelliptic and has not a fun-
damental solution, parametriz Ra(x, D;) can be applied (see § 4.1 below).
Namely, inserting the truncated SCHWARTZ kernel of the parametriz into the

GREEN formulae similarly to (3.3) we get the following representation for
the solution of BVP (1.14):

20—-1

Yot (z)u(x) = Ngs f( :EZV]’)/S o)+ Tu(z), zeQf, (3.18)

where the operator T has order —oo. From Theorem 3.2 and the representa-
tion formula (3.18) we get the following a priori estimate

20—-1

|, (2F )H<M{Hf|Hf; H H+ZH7§9] B, (S

el @) (3.19)

p,loc

for arbitrary m=12... (¢f. (3.17)), which holds for the space B; ***(QF)
and for Z*~3k(QF) (with s — 20 > 0) as well.

Remark 3.6 A priory estimates proved, e.g. in [LMI1, Ch. 2§4] are dif-
ferent. In contrast to (3.19) they contain twice less traces vz 64 u, j =
0,....,m — 1 in the right-hand side. They are applied in [LMI, Ch 285]

to establish the FREDHOLM property of BVP (1.14) provided the SHAPIRO—
LOPATINSKII conditions hold. For this purpose we will apply the potential
method (see a forthcoming paper).

4 Awuxiliary propositions

4.1. On pseudodifferential operators. If the convolution oper-
ator in (2.2) admits the continuous extension

Wy o Ly(R™) — L,y(R"),
we write a € M,(R") and call a(§) a (FOURIER) L,—multiplier. Let
M{(R™) = {{€)"a(é) s a € M,(R")}, vER,
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where (£) is defined in (2.3). It is easy to observe, that the operator
(U S n S—v n
W, I (R™) — (R™)

is continuous if and only if a € M;”)(R”) (cf. e.g. [DS1, CD1]).

If agna € MYS”"“)(R”) forall k =0,...,m, then W? is continuous between
weighted spaces

WO HE (R = HE (R”)
(see [CD1, Theorem 1.6]).

As an example we consider the BESSEL potential operators
Wigyr =(D)" + X>™R") — XJ7(R"),
Wie—iieryyr = r(Dn — (D)0 o X0™(RY) — Xo7™(RY), (4.1)
Wi = (Du+ D)) ¢ Kim(RY) — Xi7(RY) v € R

(cf. (2.12)), where 7y is the restriction operator (from R” to R’ ), while { is ar-
bitrary extension of a function ¢ € X>™(R%) to fp € X>™(R) (a right inverse
to ry) ; although extensions can be chosen differently, applying the restriction
the final result is independent of a choice. In fact, r4 (D, —¢(D"))r_e =0
due to the PALEY—WIENER theorem on the FOURIER transforms of functions
supported on half spaces.

Operators in (4.1) are isomorphisms for arbitrary r € R and the inverse
isomorphisms are (D)~ and (D,, £ i(D"))™" (see e.g. [CD1, §1.3]).

The next theorem is a slight modification of the MIKHLIN-HORMANDER—
LizORKIN multiplier theorem. The proof can be found in [Hr2, Theorem
7.9.5] and [Srl].

Theorem 4.1 If the inequality

Fofa(e)l < M), EeR", 1B < 5] +1, B,

holds for some M >0, then a € ) Méy)(R”). [

1<p<oo

Let a € Méy)(R”). Then the operator
W, i=rya(D) : X3(R?) = X(RY)

is continuous.
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If a symbol a(x,&) depends on the variable z, ¢ € C(R",S'(R")), the
corresponding convolution operator (see (2.2))
a(z, D)p(x) = Wy, yo(x) = (Fiia(z, ) Fysep(y)) (), (4.2)
» € S(R")

is called pseudodifferential. Here C'(€2, B) denotes the set of all continuous

functions a : @ — B. Let MZSS’S_V)(R”, R™) denote the class of symbols a(x, £)
for which the operator in (4.2) extends to a continuous mapping

a(z, D) : H(R") — H™"(R")

and MY (R, R™) .= |J M (R™, R").

s€ER

Theorem 4.2 Let Ny := {0,1,...}. If the estimates

/ 90200 a(e, Olda < M), € € R (4.3)
J

hold for some My > 0 and all o, 8 € N2, |8 < {g} Y1, B<1, then
ae N MY (RR".

1<p<oo

Moreover, if (4.3) holds for all 5, = 0,1,... and |'| < {g} +1, the PsDO
a(z, D) : ™ (R") — ™" (R")

extends continuously for arbitrary m € Ny.

Proof. The first part is proved in [Sh2, Theorems 4.1 and 5.1], while the
second part—in [CD1, Theorems 1.6]. ]

If the estimates
0200 a(x, )| < Copr(€)™, veER, 2€K, (€R", aBeN;

hold for all compact K C QF, we write a € S¥(Q%,R") and call S*(QF, R")
the HORMANDER class. The operator

roea(z, D) X7 (QF) — X070"(QF), seR, 1<p<oo, (4.4)

p,com p,loc

(see (2.12)), where rq is the restriction to @ C R™ and a € S¥(*F,R"), is
continuous.
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The matrix—symbol A(x,{) (and the corresponding operator A(x, D))
is called hypoelliptic A € HS*"(Q* R") = HS;:SO(Qi,R”) if the following
holds:

a) Crrlé]” <oz, &) < Corlé]”, z€K,

b) |[02080(x,6)] o (w,6)] < Copilé] T, €€ RT

for all multiindices o, 3 € N§ and all compact K C QF (see [Hrl, §4.1], [Sb1,
§5]). If hypoelliptic, A(x, D,) has the parametrix

Ra(x, D.)A(x, D) = I-Ty(x,D;), A(x,D;)Ra(x,D,)=1-Tyx,D,),

where the PsDOs Ti(x, D,) and Ty(x, D,) have order —oo, i.e. are contin-
uous from X2 . (QF) into C*(QF).

In [Hr2, §7], [Sb1, § 5] symbol of the parametrices are written explicitely,
expecially for classical PsDOs (see [Sbl, §5.5]). We remind only that the
principal homogeneous symbol of the parametrix coincides with the inverse to

the principal homogeneous symbol of the operator (Ra )pr(2, &) = AN (2, €) =
Ay (=, €).

Corollary 4.3 Let A(x, D,) be hypoelliptic A € HS»"(R",R") with a fun-
damental solution.
The generalized fundamental solution

FOu(r) = / KO (e, yuly)dy

R
(ef. (3.7)) is continuous
F X5 m(RY) — X VRY) (4.5)

(see (2.12)) provided
BeN;, pmseR, melNy,, 1<p<oo.
Proof. The symbol of PsDO F{(D) reads as
Fi(2,€) = (=i0e) "Ra(x,6)

where Ra(x,€) is the symbol of a parametrix Ra(x, D) of the hypoellip-
tic operator A(xz, D,) and Ra €S7"(R",R") (see [Sbl, §5.5]). Therefore
ff) €S IF(R™, R™) and continuity (4.6) follows from Theorem 4.2, [
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Remark 4.4 The generalized volume potentials

Ng@u(:p) = /Kff)(x,y)u(y)dy (4.6)
e
(¢f. (3.6)) are continuous, as usual PsDOs of the order —20 — |[3|, between

spaces

NU) Ko (QF) — X2 0F)

QE * “Spcom p,loc

Since the symbol of these operators are rational functions, they possess the
transmission proiperty and are continuous between spaces

NUL X (QF) — xePHPbr E)

Qf p,com p,loc

(see [BS1, Bol, GHI1, RS1] for details).

Lemma 4.5 Let § = 907 be C>®—smooth and
a(x7§) = al/(x7§) —I_ al/—l(x7§) —I_ ttt —I_ al/—k(x7§) —I_ ttt )
ay_p(x, N6) = N "*a, p(x,6) z2€QF, LR A>0

be a classical N x N matriz-symbol a € S"(QF,R") with v < —1. Let
Ka(x,y) be the SCWARTZ kernel of the corresponding PsDO a(x, D) and

Vap(z) = %Ka(x,r)cp(r)dTS, e OF (4.7)

be the corresponding potential-type operator, i.e. restriction of the domain
of definition of PsDO a(x, D) to the boundary S = 90F.
If v < —1 the traces

vz Vap(t) = as(t, D)p(t) = /Ica(t,r)go(f)de, teS

from the domains QT and Q™ coincide with the direct value of the potential-
type operator (4.7) (i.e. with the full restriction of PsDO a(x, D) to S) and
represent a pseudodifferential operator

as(t, D) : H3™(S) — H~ =17 (S). (4.8)

with the full classical symbol

o0

as(t,€) = Y asuion(t,€). asupk € 8 HS,RY)

k=0
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and the principal symbol
aspr(3(),€) i = as 41 (52(2), ')

T or degt%jj(z)((),x) / dy <%J(x)vj;;1(07$)T(fl,)\)> dr, zeUj.

— 00

Here J..,(t) denotes the JACOBIAN and
g,{] = (det H(ak%]‘, 6l%j)]\(n_1)x(n_1))% with ak%]‘ = (6k%j1, ce ,ak%]‘n)T

denotes the square root of the GRAM determinant of the local (coordinate)
diffeomorphisms s; : U; = V;, j=1,2,...,N of U; CR" 1 to V,; CS.
If v = —1 the direct value of the potential-type operator (4.7)

as(t, D)p(t) := %Ka(t,T)cp(T)dTS, teS

S

on § is a CALDERON-ZYGMUND singular integral operator (i.e. is a PsDO
of the order 0); the integral is understood in the CAUCHY principal value
sence (cf. (6.30) below). The traces ’yéEVa and the direct value as(t, D;) are

related as follows

WEVapll) = Egian(t AD)e(1) +as(t. D)ell). 1€S.  (49)

where V(1) is the outer unit normal vector at t € S and ap(t,§), € € R™,
denotes the homogeneous principal symbol of a(t, D).

Proof, including a detailed description of the lower order terms of asymp-
totic expansion of the symbol of PsDO on the manifold § can be found in
[CD1, § 1.4, Example 2] with two differences. First the proof in [CD1] is
carried out for pure convolution operators with symbols (&) but can be
extended to the case of PsDOs with classical symbols a(x,¢) with minor
modifications. Second for the coefficient in (4.9) there was quoted different
formula from [Esl, (3.26)].

Different proof of (4.9), including the formula for coefficient, can be found
in [MT1, Appendix C]. [

4.2. On traces of functions. Let us recall the following theorem
on traces, which will be generalized later in Theorem 6.4 for weighted spaces.
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Theorem 4.6 The trace operator
Rew = {vEu,vhu, ... ybu},  Abu =, ue CF(OF) (4.10)

1$ a retraction

__ k s—L_
Rk : H;,loc(Qi) — ® prpp (8)7 1 < p < 007
7=0
N k s—L—j
BZSMJJOC(Q:‘:) — ,®0 prqp (8)7 1 S P, q S oo,
]:

provided m € Ng, k < s — 1/p, i.e. is continuous and has a continuous
inverse from the right (a coretraction)

k s—L_4 _
Rlzl : ,®0 prpp ](S) — H]S),loc(Q )7
]:
(4.11)
k s—L_j _
4®0 qup ](S) — B;qloc(Q )
]:
Proof see in [Trl, §2.7.2] ]

The next lemma generalizes [LM1, Ch2, Lemma 2.1], proved there only
for the scalar case (see also [RS2, (11)].

Lemma 4.7 Let
QU(a, Do) 1= {Qulw, D)oo, Qs (2, Do)}
G (z, D,) := {Go(w, D), ..., Gy (2, D)} (4.12)
be two DIRICHLET systems on S. Then
Q(x, D,) = QL™ (2,D,) G (x, D,), (4.13)

where anxm)(x,Dl,) is the admissible matriz and thus invertible (see (4.15),
(4.16), (4.18) below).

Proof. Next representaions are similar to (1.28), (1.33):

Q,(z, D) = Q¥ (2, D,) - DVI(z, D,),

G,(z,D,) = GV (2, D,) - DVtV(2,D,), j=0,....m—1, (4.14)

J
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where
Q;j-l—l)(xv Dx) = {Qj,j($7 Dx)v SRR Q]‘,l(l', Dl’)? Q]‘(l', ﬁ(x))}T ’
Gt (2. D) i= {G(2, De). o G (2, D). G, ()}

Then the lower—triangular matrix—operators

QQQ( ,Ij(l')) 0 . 0 i
g™ (2, D,) = Qio(z, D)  Quolz,v(x)) --- 0

Qr-10(2,Dr) Quo11(2,Dy) -+ Qryo(z.(x)) i
det Qj(x) #0, teS, (4.15)

Goolz, v(x)) 0 0
g oDy = | GBI Geln ) B
Gm—l,O(xv Dx) Gm—l,l(xv Dx) U gm—LO(x'lj(x)) i

detGi(x) £0, te€S, j=0,....m—1 (4.16)
are admissible (see (1.34), (1.36)) and

Q(m)(% D,) = q(me)(%pgg)f)(m)(x? D,),
GOz, D,) = g™ (2, D)D)z, D,). (4.17)

From (4.15)—(4.17) we get (4.13) with the folloving admissible matrix—
operator

Qg (2. D) = g (2. D) [g (@, D)) T (418
(cf. (1.35), (1.37)). .

Lemma 4.8 Let s >0, s ¢ N, 1l <p<oo, 1 <p,qg<ooand A(x,D,) in
(1.1) be a normal (not necessarily elliptic) operator; let further {B;(x, D) ;”:_01
be a DIRICHLET system of the order m — 1.

There exists a continuous linear operator

P j@: Bt (S) — W (OF) (4.19)

p,loc

0

m—1 . s+m— L___
(733 O BE(S) — B (@ ))
]:
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such that

VEB; PO =y;, j=0,1,....m—1, (4.20)
~s—1—|—% —_ ~s—1—|—% —_—
AP®cH, . "(QF) (AP cB . 7(0F) (4.21)

for arbitrary

m—1 . m .
O = (o npma) € 8 B (S) <<I>e ® B;j;m—l—f(S)).

-1
7=0
Proof. Let us recall the following property of the space X;(Qi):
Xe(QF) = {u € XHQE) : Reu = 0} (4.22)

1 1
(cf. (2.12)) which holds under the following constraints —+¢ <y < —+/(+41
P P

(see [Trl] and [Sh1, Lemma 1.15]).
On behalf of (4.22) condition (4.21) can be reformulated as follows

RAP® = {(yEAPO, ... 1LAP®} =0,

1 (4.23)
0<s—k——-<1, keN
P
1
(cf. (4.10)). For 0 < s < — condition (4.23) fall away. The operators
P
Bm+j(x7D90) = ag‘(x)A(val’)v OrdBm-I-j:m—l_jv j:()v"'vk

are normal

Buntjolt, U(1)) = (—i > Vf(t)) Ao(t, (1)) = (i) Ao(t, (1))

det Buyiolt, 7(t)) #0, te8, j=0,....k

and combined with the above DIRICHLET system ﬁ(m)(x, D.) extends to a
new DIRICHLET system B+ (z D,). Then

B0 (g, D) = BRSO (o DB D) (420
and b{(mFE+1)x(m+k+1)) (3 D Y is admissible (see (1.34), (1.36)). On defining
(I)O = (S‘QO ey Pm—1 0 “e 0 ) S mék Bs—l—m—l—j (S) (425)

9 s ¥'m 9 ” 9 =0 p.q ’

(k+1)—times
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we can match conditions (4.20) and (4.23) (which replaces (4.21)) and refor-
mulate the problem as follows: let us look for a continuous linear operator

m+k .
Po: O BHTIN(S) — H

. loc
]:0 p7

T 0F) (4.26)

mtk stmtht s
(7)0: ]@0 Bp:z ! ](S) — Bp,q,loc (Q ))

such that
,}/‘:Sl:ﬁ(m—l—k—l—l)poq)o — b((m+k—|—1)><(m+k+1))(x7Dgg),}é:ﬁ(m—l—k—l—l)poq)o
= bk DXHh D) (2 DR g1 PBo = By . (4.27)

Here we applied that b{m+ktDx(mtk+) (4 D) is a “tangent” differential
operator and R, 1x11 = v DA+ (cf. (4.10)). Thus,

Roshp1 Po®o = [bUmHEHIXtbt) (3 D )17 g

and it remains to apply a coretraction (4.3): the function

- stmtk+E ——
PoBo = Ry pyy [DUHHX e (0 p ) oy e BT (@F) (4.28)
in Bs+m+k+; O%)) solves equation (4.27). [
P,g,loc

Let us consider the following surface d-function

(9 ®ds,v)s = /g(r)’yécv(r)dTS, (4.29)

g€ CX(S), ve Cx(RY.

Obviously, supp (g @ ds) = suppg C S.
Definition (4.29) can be extended to non C'*°-smooth functions. Namely
there holds the following.

Lemma 4.9 Letl <p<oo(1<g<o0),s<0,0eB (S)(pecB (5)).
Then

0 @ds € Hpel (0F), (99 ® b5 € ByoZom m—i)) ,
where p' = p/(p —1).
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Proof. The inclusion ¢ ® ds € ]ﬁ;;é’; (OF) (¢ @ ds € ﬁ;;im (OF)) is
based on the duality and proved in [Esl] (Ly—case) and in [DW1, Gr3, Shl]

(L,—case). For the weighted spaces the result follows because
Op™ - (p@6s) =0 provided k< m,
aTp™ - (e @ds) =ml e @ds by definition, (4.30)

where p = p(z) := dist (2, S), = € OF.
To justify the second definition in (4.30) let v € C*°(R) and define

Afo(t
(o60) = lim S0 AL ABIAL L Aget) 1= 0(1) = 0(0)
Then, obviously,
(0™0,t™v) = mlo(0) = m!(d,v) . [

As a direct application of definition (4.29) we can write the generalized
layer potential (3.11) as a volume potential

VEla) = [ [G Dk 2] (60 o)y
= FUu(p @ ds)(2), e (4.31)

Representation (4.31) has only one shortcoming: ¢ @ ds & X2, (%) for

p,loc

1
5 > Y even for ¢ € C™(S) (i.e. Lemma 4.9 is precise). In fact, locally
S can be interpreted as R*™! and Q% -as R%. Then 1 @ dgn-1 = o) &

X2 (RE) if s > —1/p' (see [Esl] for p =2 and [Trl, Tr2] for 1 < p < o0).

p,loc

5 Proofs

5.1. Proof of Theorem 1.6. It suffices to prove the theorem for par-
ticular case—for BVP (1.10) and the corresponding GREEN formula (1.13).
First we extend the system {b;(t, D;) ‘;’:_01 of “boundary” differential opera-
tors up to a DIRICHLET system

{B(t, D)1 = Ho{b,(t, D)} ™
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of the order m (see Lemma 1.4). If the GREEN formula (1.13) is proved we
get

/((Au)TE —u A*v)dy = iﬂij %(Bju)Tc—jvde

[OF
mN—1

=+ Z %bu cud,S, (5.1)

where {c;(t, D;)}; N =H{C,(t, D)} is a decomposition in rows.
Thus, we can concentrate on BVP (1 10) and the corresponding GREEN
formula (1.13). Moreover, we suppose that the choice is made and ﬁ(m)(x, D)
(see (1.31)) is the fixed DIRICHLET system of the order m — 1. Without re-
stricting generality we can suppose ord B; =j, y =0,...,m — 1; otherwise
we have just to renumber these operators.
In Theorem 1.10 we have already proved the GREEN formula

/ [(Au)'T —uTAxv] dy = i%(f)( )T Gy d,S (5.2)

Q* S

(see (1.32)) with the special operators I_j(m)(x, D) defined in (1.31) and
Gz, D,) := {Go(a, D), ., G (2, D)}

= [(5) (@.0.)] (AT (2,D,)8,. (5.3)

(see (1.29)) with formally self-adjoint skew identity matrix S* = S,, (see
(1.40)) and the formally adjoint matrix—operator <A(me)>* (x,D,) to (1.39).

= {8;}?:_01 is a DIRICHLET systems.
Due to Lemma 4.7

DU(t, Dy) = (b)) (1,D)] B, D), teS (5.4)

(see (1.36)). Inserting (5.4) into (5.2), taking into account (5.3) and applying
the partial integration formula (1.25) we get

/[ dey_j:%ﬁ ™o d, S
S

[OF




=+ %(ﬁ(m)u)T LGy d,8 (5.5)
S

where (_j(m)(x,Dx) are defined by (1.38) and are unique. Due to this for-
mula the operators Ci(t, D), k = 0,1,...,m — 1 are normal iff the matrix
A (t,7(t)) on the main diagonal of the block-matrix (A(mxm)(:p,Dw))* is
invertible for all ¢t € S | i.e. iff the “basic” operator A(x, D,) is normal (see
Definition 1.1).

If the DIRICHLET system {C; (¢, D;) ;”:_01 is fixed (instead of {B;(¢, D;) ;”:_01),
the proof proceeds similarly with a single difference-instead of A(x, D,) the
proof starts with the formally adjoint operator A*(x, D).

Now let us suppose the “basic” operator is normal and the systems
{b;(t, Dy) f;é and {C,,—;_1(t, D) ;”:_Ok_l are fixed.

If one of them is a DIRICHLET system (of order k or m — k, respectively,),
we extend it up to a DIRICHLET system {B; o(¢, D;) ;”:_01 (or{C;o(t, Dy) ;”:_01)
of order m and write the GREEN formula (1.13) (see (5.5)). Next we replace
the system {C,,—;j_10(t, D:) ;”:_Ok_l, ord Cp_j_10 = ] (or {B,o(t, D) f;é,
ord B;o = j; see (1.14), (1.30)) by the fixed system {C,,_;_1(¢, D;) ;”:_Ok_l
(by {B,(t, D;) f;é) with the help of a matrix [c((m_k)x((m_k))(t, Dt)] " trans-
posed to an admissible”) (an admissible matrix 6" (¢, D;), respectivelyl; see
Lemma 4.7) and leave another part of the system unchanged. Then connec-
tion between entire systems has the form

CU (1, Dy) = mxm) (1, D)C™ (L, Dy)
(BY (1, Dy) = bmxm (¢, DYB(E, Dy))

where the participating block—matrices are defined as follows

Iy, 0
(mXm) —
¢ (t, D) = { 0 [elm=R1xtn=m g D,)]" ]

<b<mxm>(t,:/>t): [b(kxk)ét,pt) 0 D

where [, denotes the identity matrix of order ell.

91t is easy to ascertain that connection between DIRICHLET systems with diminishing

orders is established by a transposed (and therefore upper triangular) admissible matrix;
see Lemma 4.7.
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Inserting the obtained representations into the GREEN formula we find

[ (s by =+ f BT T

Q* S

= i%(ﬁg%f clmxm) Gm) .S = i% "Emds.
S

S

Due to the structure of the connection matrix c(mxm)(t, D;) the first part of
the transformed system B(™) .= [c(me)]T ﬁém) resists the transformation
and coincides with the one {B;(¢, Dt)}f;é fixed at the begining.

Similarly, if the system {B; (¢, D;) f;é is changed, the second part of the

transformed system Cim .= [b(me)]T (_jém) in the GREEN formula resists
the transformation and coincides with the second part {C,,_;_1({, Dt)}] ek
of the system fixed at the begining.

As for uniqueness of the full systems {B;(t, D;)}"= Yand {C;(¢, Dy)}™ i b
although we choose arbitrary extention of one system at the begining, an-
other system is defined uniquely (see the first part of the Theorem) and the
operators chosen arbitrarily are replaced by new ones, which are unique; we
might have doubts only about second half of the system which are extensions
of a fixed DIRICHLET system up to a DIRICHLET system of order m. But
uniqueness of this part becomes evident if we reverse the choice of system
subject to extension.

Assume {b;(t, D;)}; RN (or {epy_;i(t Dt)}(T_k)N_l) is not a DIRICHLET

t VAGS] 7=0
system. Then (see Deﬁmtlon 1.2):

i. if linear independence of rows is missing the GREEN formula (1.14) can
not be valid because by the first part of the Theorem both systems of
“boundary” operators must be DIRICHLET systems;

ii. if one or several orders are missing, then the structure of the connection
matrix ("™ (¢, Dy) (of B (1, D;), respectively) does not allows to
maintain fixed parts of “boundary” systems in the GREEN formula. g

5.2. Proof of Theorem 1.7. Let us apply representation (1.28);

18]
boo(2)d!y + > baysi—i(e. D)%, (5.6)
j=1

bso(z) = 175(:1;) = 1/151( )Vﬁ"(:p)
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Inserting (5.6) into (1.16) and applying (1.23), (1.24) we proceed as follows:

|51
A= [ 3 fanatel0gut]” Y bas P00
ax lellsl<e
|51 e
= Z/[b?um—j(yvDy)%ﬁ(l‘)aﬁ(y)] 0 (y)dy
lal |81<E =0 5y
:Z { / DFIC (r, DYu(n)] O o(7)d,S
- / {( 1105, Ci Dy>u<y>f@dy] (5.7
=3 [ Costr D Do = [ (AL, D utw)] o)y

Thus, we get the GREEN formula (1.17) with special “boundary” opera-
tors C; = Cy; and B; = 6] (] =0,...,0 —1). Now we can apply (5.4)
with m = ¢ and replace {8] _0 in (5 7) by another DIRICHLET system
{B,} ‘5 (see (5.5)), which glves us the claimed formula (1.17).

For the system {Cj}ﬁ;é the formula, similar to (1.38), can be derived.
Based on this formulae, similarly to the foregoing case (see §5.1) can be
proved that {C; }?;é is a DIRICHLET system if and only if A(x, D,) is normal.

If A is formally self-adjoint A = A* then A(u,v) = A(v,u) and from
(1.17) written for pairs u,v and v,u we get the simplified GREEN formula
(1.18). .

5.3. Proof of Theorem 3.2. Due to Theorem 1.6 we can sup-
pose that the GREEN formula (1.13) holds and let {C;(x, D )}% " be the
DIRICHLET system, participating in the formula (1.13). Wlthout restricting
generality ord C; =2/ — ord B; — 1 =20 —j — 1 (see (1.14)).

Due to Lemma 4.7
m
G(val’) = ZGM—](xvpl’)C%—]—l(val’)7 (58)
7=0

Gk(:zj,Dl,):cha( DY, e k=12, 4.

|| <k
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Then (see Lemma 1.8)

# T
ZSCOEDY f |Gy (1, Do E v (7, DK (2, 7)| - p(7)deS
J=0 S

]
- f ECu 1 (r, DKL) (G )5(7. Do) (1), S
S

and it suffices to prove the theorem for the generalized layer potentials

;
Vo(z) = f AEC(r, DK, 1) 9(7)d-S = (@ 65)(a),
S

() : @) ' n
Faila) = / 5 CiT, DK (2, 7)| d(y)dy, v €Q (5.9)
(9

(see (3.5), (4.31)). Let us consider the symbol of the PsDO Ffffi:

Ff}(x,f) = (—iag)ﬁfA(:z;,f) |:C]‘($,§):|T 7 j:f} c S—2€+]—|ﬁ|(Rn7Rn)

(see Corollary 4.3), where Fa(x,§) is the symbol of the fundamental solution
of the operator A(x, D).
IfoecB (S)pcB, (S)) and s <0, then

1

~G— =

¢ @6s € Hy.2h (QF) <¢ 9 65 € Byalom ((Ti)) :

where p' = p/(p — 1). From (5.9) and (4.4) we derive the continuity results

(3.13), (3.14).
Next we take s > 0, s € N. Defining the operator

’P]‘QO::P\I/]‘, \I/]'::(O,...,O,Q0,0,...,O),
where ¢ stands at j-th place and P is from Lemma 4.8 (see (4.12), (4.14))
we get
5 —mj — s+2U—14 5 ——
P BERTTNS) — HLL(OF),
(5.10)

s+2é—1+1; N

B;:zzé_mj_l(s) — IB}U,q,loc (Q )7
IBP, =0, k#j IBP, =1
Vs Bk ) Js Ys B/ )
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APy BITVTNS) — (),

p,loc

(5.11)
+1 =T

s4+20—my—1 ~s5—1
prq (S) — Bp,q,loc (Q )
Let us consider vgﬁx)(y) = Xelz — y)lefz(y,x), where Kax(z,y) is the
kernel of the fundamental solution Fa«(z, D;) and y. € C*(R"), x.(x) = 1,
X=(2) =0 for || > ¢ and |z| < £/2, respectively. Inserting

v(y)=v(y), u="Pip, peBIM(S) (peBlM(S))

into the GREEN formula (1.13) and sending ¢ — 0, similarly to (3.3) we find
the following

+ VI o(a) = YU (0)Pio(x) — NOLAP;o(2)

- / ¢ (1)@ — )P (TK A (2. 9)E (1) Prp(y)dy (5.12)

aty<24 Q
0#a<p

(see (4.6) for Ng@), where ¢ 5., ¢, € C™(R"), and X(f)(:zj) =0 for 3 # 0,

oy
() = yale), @ € OF (j=0,...,20—1).
Applying Remark 4.4 and Lemma 4.8 from (5.12) we derive the following
continuity

s+20—m; — s+ 20—y~ 1B+ L
VO BTN ).
(5.13)
s Z—mj— 5+2Z_M]—1+|ﬁ|+1% _
BT THS) — By (@F).
Since mj; + p; = 20 — 1 (see (1.14)) (5.13) implies the continuity
8 . 42y 1B
\/; ) : E%%p(é;) — EﬂpJoc (S2 )7
(5.14)
. e [
Bp,q (S) — Bp,q,locu (Q ) J = 0, e ,2£ —1 R
provided
s>2—p®—1, s#£20—m;+k, kcN, (5.15)

p° i=min{po, ..., fae_1}.
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(5.14), in its turn, implies the continuity

s4+20—p1; —1-|—|ﬁ|-|—%,k S

B s
V; ) : Bp,p(s) — Hp,loc (Qi)7
(5.16)
i s+20—pu; —1+|Bl+ 3ok =
Bp,q (S) — IB]D,q,loc (Qi) 9

because 3, = 0,1,--- is arbitrary integer in (5.14) and ka;ﬁ) = VAR

J

in local coordinates, in which p*(z) := [dist (z,S)]* = =F.
Continuity (3.13) and (3.14) for the cases s < 0 and (5.15) is proved. The
missing cases are filled in with the interpolation (2.9)—(2.11). ]

6 Consequences and related results

6.1. Traces of generalized potentials on the boundary.
Let A(x,D,) in (1.1) be an elliptic differential operator with even order
m = 2{ and with a fundamental solution Fa = Fa(z, D). Ka(x,y) will

denote the corresponding SCHWARTZ kernel.
Let us consider a Potential-type operator

Vg)c(x,Dx) = B($7D$)V(ﬁ)C(t,Dt)7 v Qi7 teS =00t (6.1)

where VI 3 € NZ is a generalized single layer potential
V() = %/cf@(x,r)@(T)M (6.2)

(cf. (3.12), (3.11)) and

B(z,D,) = Y ba(2)d, b, € C(OQECVN) 20,

o] <m
6.3
CUD) = Y @D cectS ), res Y
o] <p
are some differential operators of orders m,u = 0,1,---. C(¢,D;) is a tangent

differential operator and can be restricted to the boundary & (see (1.20)-
(1.21)).

Theorem 6.1 Let e Ny, s e R, 1 <p<oo,1 <qg< oo, myp e Ng.
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The potential-type operators

8 s s+20—1—m—u+|Bl+ 5.k
V(e Dy) ¢ BL(S) — H

p,loc

(QF), (6.4)

s s+20—1—m— u+|ﬁ|+ k
Bp,q (8) Bp q,loc

(QF) (6.5)

are continuous for all k =0,1,..
The tracess ’yéEVB C(:L', D) e:mst and represent classical pseudodifferential
operators with symbols

N
VAL =Y V() + Vi an(t,E), tES, E€R™,  (6.6)
k=0
gBC N1 € S—2€+1+m+u—|ﬁ|—N—1(8)7

where N € Ny @s arbitrary and V}fc)’k(t,f) are homogeneous of order —2( +
l+m+pu—|68—k(k=0,1,---,N).

The result holds for s > 0 and 1 < p,q < oo. In particular, it holds for
the ZYGMUND spaces (the case p=q= 00):

V(e Dy) : Z3(S) — Ze Tt gF), (6.7)

Proof. Continuity in (6.4), (6.5) and (6.7) follow from Theorem 3.2 and

we shall concentrate on the traces vz Vg )C(:L' D).

Without restricting generality we can suppose C(x, D) = [ because com-
position of classical PsDOs is classical.

Representing B(x, D,) similarly to (1.28)

ZBZZk l’D ak
k=0

where B (z,D,) is a tangent differential operator of the order k, we find

=Y B (@, D)V (2, D.),
k=0
V(2. D,) = V(ag()m)(x,Dgc) = 05, VO (z,D,). (6.8)

If &k =0,1,---,20 — 1 the generalized potentials \Nflgﬁ)(x, D,) are PsDOs

due to Lemma 4.5: the restriction 73 V( )(:1;, D.) is a well defined classical
PsDO on §.
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Let us consider the representation

20—-1

Az, Do) = Ao, (@) 030 + Y Ase sl Do), (6.9)

k=0

(cf. (1.28)), where Ag(x,§) is the principal symbol of A(x, D,) (cf. (1.13))
and
A, D) =) a;)Dy, t€S j=0,1,...,20—1

o <j

are tangent differential operators. Since Ka(x,y) is the kernel of the funda-
mental solution, we get

)

= (z —y)’ Az, D,)Ka(x,y) + E(z, D.)Ka(z,y)

= (z = y)"8(z — y) + E(z, D.)Ka(z,y)

= dip100(z —y) + E(z, Do)Ka(w,y) (6.10)
(cf. (3.1) and (6.9)), where

0, if 5=0,
E(z,D,) = 21

> Boropor(2,D0)0y . i B#0

and ord E; =j. On the other hand, by invoking (6.9), we find

Az, D)K (2, y) = Ao(x, 7(2)) 0%, K (2, )

.y
v

20—1
T Z Z Garpn(, Dx)aif(x)inQ)(x, y)
k=0 ~v<p
= djplod(z —y) + E(z, Da)Ka(z,y). (6.11)

Now we recall that A(x, D,) is elliptic, which implies det Ag(x, 7(x)) # 0
in the neighbourhood of the boundary S (see (1.5)). This ensures solvability
of equation (6.11) and we find:

63@)@@(% y) = 5|5|70 (S(l‘ - y) [.Ao(l', 17(3;))]_1

20—-1

{
+3°N BEY, (2, D)0k K (2,y) (6.12)

k=0 v<p
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Applying the mathematical induction and invoking (6.12) we obtain the
representation

20—1
m 153 m
Om oK () = DN HYY, (2, D)0, KW (2,y) (6.13)
k=0 v<p

for arbitrary m = 20,20 +1,--- .
Representation (6.13), inserted into (6.8), shows that all generalized po-

tentials \Nflgﬁ)(x, D) possess traces on S which are classical PsDOs (see [CD1,
§ 1, Example 2]). [

Remark 6.2 The representation (6.12) for 8 = 0 is well known in the liter-
ature and was exploited e.g. in [KGBBI, §6.7] and in [Nal].

Remark 6.3 In the definition of potential-type operators Vg)c(x,Dx) in
(6.1) the operator C(t,Dy) can be replaced by arbitrary classical pseudodiffer-
ential operator on the boundary S.

6.2. The trace theorem for weighted spaces. Next Theorem
generalizes Theorem 4.6.

Theorem 6.4 The trace operator
R . + 1 k J o :I:a] (1 Q—i
pUi= {Y5 U, Vs, ., Ysut,  Ysu =5 Pu, ue C5T(QF)

1$ a retraction

_ E o s—Ll_
Ry H;:;ZC(Q ) — ,®0 By," ](8)7
]:
(6.14)
s,m OF k ST~
IBp:q,loc((2 ) — ®0 Bp,q ](8)7
]:

1
provided 1 < p,q < oo, m € Ny, k < s— — and has a coretraction.
p

We will expose two different proofs of this assertion.

Proof 1. If m = 1,2,... continuity of the trace operator (6.14) follows
directly from Theorem 4.6 since H)’. (0F) and B (QF) are subspaces of
e, .(QF) and of B?

p,loc D,q,loc

(QF), respectively.
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To construct a continuous coretraction R;' we use the representation
formulae (3.6), setting there Au(x) = 0:

[N

-1

Ry (vsul(e) = u(z) =} {[Ver;Bjlu(e) = [V;Beyu(z)}  (6.15)

J

Il
=]

for z € QY UQ~. Now the continuity of R, follows from Theorem 3.2.

Proof 2. Let us dwell on the case of the half-spaces * = R" and k = 0,
because the cases k # 0 and of arbitrary domains Q% are treated as in [Trl,
Theorem 2.7.2, Steps 6-7] and [Trl, Theorem 3.3.3].

Let us recall an alternative definition of (equivalent) norms in the spaces

By ,(R") and HP (R") = ,(R"™):

lolBs,, (R = | {29 F e},

o (Lp(R") ]

By, (R = | {2 F ' Fe}

(see [Trl, §§2.3.1,2.5.6], where

(R, 4| (6.16)

X; € Cg°(R"), suppyo C {x € R" : |x] <2},
supp y; C {:1; eR™ : 271 < |z| < 2j+1} , ixj(:z;) =1
In [Trl, §2.3.1, Step 5] the coretraction Ry' is defined as follows
Ry (e’ ) 22 ST O s Fy o], (6.07)

where
pi(An) =(279X,), JEN, o9 € C(R),

supp to € (0,1), suppv € (1.2),  F'o(0) = F 4 (0) =

Then F~14;(0) = 2/ which yields (Ry'¢)(2',0) = ¢(2',0). We proceed as
in [Trl, §2.7.2—(30)]:

s+m+L

meRo ‘P|qu (Rn)H <G

{2 L, (=000 ()

T o (0) Fyon )]

i=0

£ (Ly(R") |
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o0

£ (L,(R") |

{2 E L U O F L s (@) Fyoo )] |

i=0

< Coll {F TG F e} 2y |l (Lp(RM) || = [l B, (RT)]]

where (™) (1) := 8{”;/}@) Similarly we find
e R BT (R < G {29 F 7 Fe ) o | Lo(RT, 6
< Cs[op[HE (R™)]]. "

Corollary 6.5 Let s > 0, s € N, 1 < p < oo (1 < p,¢g < o0) and

A(x, D) in (1.1) be a normal (not recessarily elliptic) operator; let further

{B;(z, Dx)};”:_ol be a DIRICHLET system of the order m (see Definition 1.2).
For arbitrary k € Ny there exists a continuous linear operator

m—1 s — i — s+m— 1—|— N
p(k) : ]@0 Bp:; ! 1(8) — Hp loc

(QF)

(M S B I(S) — B 7 ’“<ﬂ*>)
J=0 '

D,q,loc
such that
VEBPMO =i j=0,1,...,m— 1,
~s—14 10k 5 4LE ——
AP ><I>eH e T(OF) (AP® B, .. (0F))

for arbitrary
m—1 i ]
S = (po,...,0m-1) € 4®0 B;:;m—]—l(s) (q) c B;Zm_]_l(SD ‘
]:
Proof: applies Theorem 6.4 and proceeds as in Lemma 4.8. -

6.3. The Calderon projections. Throughout this subsection
it is assumed that conditions of Theorem 1.6 hold and the GREEN formula
(1.13) is valid. Let

5+]+

HZ’*(Aﬁ)::{ﬁwaeﬂ F(OF). Alr.D,)p o},

(6.13)

s+ -I-
BT (A, S) = {ﬁBW e By (OF), Ale, D)y :0}
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forj=0,...,20 -1, seR, 1<p<oo, 1<qg< o0, where’y‘écu denote
the traces (see Introduction).

Theorem 6.6 There hold the following decompositions

H:(S) = Hi~ (A, S) & HiF (A, S),
(6.19)
B, ,(S) =B, (A,S) @ Byf (A,S),

0>~ (A, S) N ]I-]I;""(A,S) =0, B, (A,S)N IB%;:;’(A,S) = (6.20)
and the corresponding CALDERON projections

Py, ¢ H(S) — H:*(A,S),
(6.21)
B (S) — BiE(A,S)

are defined as follows
PL. = £9#B,V, for j=0,...,20—1. (6.22)

Proof (see [Sel, Lemmata 5 and 6] for a simpler case). We will prove
(6.19)—(6.20) for the BESOV space. For the BESSEL potential spaces we have
to prove only the continuity property (6.21) while others (including (6.22))
follow due to the embedding B, (S) C H}(S)for1l <r <p < oo,1 < ¢ < o0,
s € R.

First we note that Pij are PsDOs of the order 0 (see Lemma 4.5). Con-
tinuity (6.21) follows from usual boundedness of PsDOs (see e.g. Theorem
4.2) if we would have the inclusions

Im Pj;j CH*(A,S) CH(S),

N (6.23)
Im PA,j C B;i:l (A7S) C B;,q(s) >

where Im Pij denotes the image in appropriate spaces. Inclusions (6.23)
follows because AV ;p(z)=0for 2 € Q- UQT and j =0,...,20 — 1.
Inserting u = P, f = Au = AP (cf. (5.10), (5.11)) into (3.3) we get

20—-1

Xa+ Pip(z) = Nar APjo(z) + Y ViBiPig() (6.24)

k=0

= Nq+AP;jp(x) + Vp(z), 7=0,....,20—-1, ze€Q UQT.
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Since the first summand in (6.24) and its derivatives are continuous across
the surface &

(7597 N+ APjp)(t) = (W7 N+ APjp)(t) t€S, a€Ng,
by invoking (5.10), (5.11) we get
(3B Vo)1) — (1 Bi Vo)1) = BiPjp(t) = drjep(t) (6.25)
where j, k= 0,---,2( — 1. The obtained formulae (6.25) yields
PLip+PRiw=13B;Vie —15B;Vie =9, ¢eB (5).  (6.26)

By virtue of (6.21) this proves (6.19).

To prove (6.20) (for the BESOV spaces) let us apply formula (6.24), writ-
ten for the homogeneous equation f = Au = AP;p = 0 and a similar one
for the outer domain 27:

Yo Pjeo(z) = £V p(z), j=0,...,20—-1, 2€Q UQT.

Taking the sum, applying the operator B; and invoking (5.10), (5.11) we find
the representation of a function ¢ € BY'7 (A, S) N By (A, S):

ple) =B;Vilpl(z), j=0,....20-1, z€Q UQ". (6.27)

where [p](t) := 72 ¢(t) — v5¢(t). Thus [¢](t) = 0 on S implies ¢(z) = 0 for
all v € R™
From (6.20), (6.23) and (6.26) there follows that Pij are projections:

(Pii,j)2 = Pi,j (Pij + Pj‘i,j) = Pi,j'

Example 6.7 . If in Example 1.9 we take the LAPLACIAN A(x, D, )u(x) =
Au(z) = 0 in the plane domains O* C R? (see (1.1)), the spaces H> (S) and

A ) . . . ah :
Bp_’q (S) are decomposed into the spaces of harmonic functions in Q% and in

6.4. The Plemelji formulae for layer potentials. Let

V;i(t, Di)e(t) := %Bj(t,Dt) {Ck(T, DK A(t,7) ! o(7)d; S (6.28)
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for y = 0,...,20 — 1 denote the direct value of the potential-type operator
B,V on the surface t € S (see (3.5)). According to Theorems 3.2 and 6.1

V1 is a pseudodifferential operator and

Vie + H(S) — H7 TS, 629
By, (S) — B T HNS)

is continuous provided 1 < p < 0o, 1 < g < o0, s € R (1 < p < o0,
1 <g<oo,s>0).

We have already explained in §6.1 what is meant under this operator
when the order is positive ord V;, = my+pux—2(4+1 > 0. Since ord V;; =0
(see (1.14)) V;; becomes an usual CALDERON-ZYGMUND singular integral
operator and the integral in (6.28) is understood in the CAUCHY principal
value sence:

Vit Die(t) =

— lim Bja,[n)[cjoglxyng(ur) o(1)d,S,  (6.30)

e—0
S\8(t,¢)

where S(t,¢) := S (¢,¢)NS is the portion of the surface S inside the sphere
Sn=1(¢,e) with radius & centered at ¢ € §. Then V;; is continuous in the
spaces H>(S) and B} (S) (see (6.29)).

Theorem 6.8 Let BVP (1.11) be formally adjoint to (1.10) and the GREEN
formula (1.13) hold.
For the traces ’yéEBij there hold the following PLEMELJI formulae

(75 Bj(x, Do) Vip)(t) = (73 Bj(w, Do) Vi) (1) for k#j, (6.31)
(v&Bj(x, Do) V;p)(t) = i%@(t) +Vii(t, Die(t), tes, (6.32)

koj=0,...20—1, ¢eH(S)

Proof. (6.31) follows from (6.25).

Let ¢ € S be the projection of € OF i.e. x € Fi/(t) (we remind that
the normal 7(t) is outer, directed into 7).

The potential-type operator

V,p(r) = f Kja(z.z — 1)p(r)d,S .
5 (6.33)

- T
Kja(z,x —y) :=Bj(z, D) |Cj(1, DK A(2,y)| ., z,y€Q*
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has a CALDERON-ZYGMUND kernel (is of order 0 if restricted to S):
Kia € CPR"@R"\ Agn), (6.34)
Ka(z,z—y)| < Mol —y|'™", r,y e R", ax#y. (6.35)
Then the truncated potential-type operator

Vij-ela) = % Kialz,x =7)p(r)d-S, >0 (6.36)
S\S(te)

(see (6.30)) has C*°-smooth kernel (see (6.34)) and
lim (15 V3,.9) (1) = im(73V7,.9)(1). (6.37)
Due to the definition (6.30) and to the continuity property (6.37),

(36 Bj(2. Da) Vi) (1) = (Vii(t, De)e) (1) + lim (75 V00) (1), (6.38)

Vieolo) = PRoaless = 1S, a e, g e C7(S).
S(t,e)

Since ¢ > 0 is sufficiently small there exists a diffeomorphism
ot Soltye) — S(tye), s(2)) = (2, g()) € S(t,e) C S,
o= (1. tat) € Solt,e) C R (6.39)
gty=teS., (Bg)t)=0, k=1,....n—1

and So(t,¢) is the projection of the piece S(t,¢) onto the tangent plane R}~
to § at ¢ € S. By changing the variable 7 = »(y'), v’ € So(t,¢) in the
integral (6.38) we find the following

Veple) = f Kz — se(y))Goly e () ey

Rn—-1

e —t] <2, x¢&So(te),

where Y. is the the characteristic function of the piece Sy(¢,¢) C R"™! and

G.y') = VIgrad g(y')P + 1 =1+ O(ly' — 1) (6.40)

is the GRAM determinant (see [Scl, §IV.10.38], [Sil, §3.6]).
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Next we note that
V(i) = f Kia, e — ooy Ndy +o(1)  (6.41)
Rn—l

as ¢ — 0 uniformly for # € R™ in the vicinity of Sy(t, ).
In fact, the remainder kernel

Kiale,y) = Kjale, o = x(y)Gy) - Kjalz, 2 —y)
is weak singular
Koal(z.y)] < Mile—y[*™",  zyeR", z#y. (6.42)
(cf. (6.34); see (6.37) and [CD1, §1.4]) and it is almost obvious that
li f K alave = 110 el ) ol ), =0
50 1 6

for arbitrary ¢ € C*(S). By the same rasons

V;.o(x %K]Axx—y)dy +o(l) as e€—0, (6.43)

So(t €

because p((y")) — #(0)] < Maly' — 1]

If in the definition of the kernel K; a(x, 2 — y’) in (6.33) the differential
operators B;(x, D), C;(x, D;) and A(x, D,) are replaced by their principal
parts B;o(t, D), C,o(t, D) and Ag(t, D,.), respectively, the remainder ker-
nel is weak singular and admits an estimate similar to (6.42). Therefore, as

n (6.43),
V.o(x):= p(t) % Kioa(z,x —y)dy' +0o(1) as &—0, (6.44)
So(t:e)
where the kernel is homogeneous of order 1 — n:
Kioa(r,Az) = A""K,0a(x,2), z,z€R™, z#0. (6.45)
We can simplify the integral (6.44) further:

1. First we replace the domain of integration Sy(t, ) by the ball |y’ —t| <
e, ¥ € R™"!; these domains have difference of the order ¢ and the
difference is estimated as o(1).
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2. Next it is possible, freezing coefficients at ty € S as ¢ — 0, to consider a
pure convolution kernel ;g a(to, x —y’) which is translation invariant;
the remainder has weak singularity and contributes o(1) in (6.44).

3. Due to the described simplifications the domain of integration |y’ —t| <
e can be translated (shifted) to the origin and stretched up to the unit
ball |y'| < 1; the integral is invariant with respect to translation and
dilation (stretching).

Finally, taking the traces, we get the following
(VEVie0) (1) i= Fco p(t) +o(1) as ¢—0. (6.46)

where the signs “4” are due to traces, which approach different faces of the
surface; the integral

co 1= f¢KQQA@my3@/

ly'|<1

1
is independent of ¢ > 0 and ¢, € S. Invoking (6.26) we find ¢, = 5" Now
(6.38) and (6.46) yield (6.32). [

Remark 6.9 Applyed to the operator Bj(x, D)V, (4.9) gives

(EBy (. Vi) (1) = £ 0ot 4 V(1. D)) 1S, (647)
where co(t) = iB;(t,v(t))N;;(t,0(t)) and N;;(t,0(t)) is the symbol of the

pseudodifferential operator on R”™

Njole Delt) = [ B D) [C DIk R e)] oty (648

Rn

associated with the potential operator V;; in (6.30). From (6.26) we find
Co(t) =1.

It is possible to find the symbol B;(t,7(t))N; (¢, 7(t)) directly by invoking
(1.38).

6.5. On smoothness of solutions and coefficients. It is
possible to relax substantially smoothness requirements on coefficients and on

the boundary imposed in §2. We need only to ensure invariant definition of
9+m L 9L
the relevant spaces H,” * 7(S), B,,* 7(S) etc. and continuity of operator
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(1.1) and of its formal adjoint (1.2) in appropriate spaces. For more refined
results for the second order equations on domains with LIPSCHITZ boundary
we quote [MMT1, MT1] and the literature cited therein.

Let the boundary 99 = § be C'“-smooth.

If integers w, lo, ..., l,, and coefficients a,(x) of the operator A(x, D,) in
(1.1) satisfy the following conditions

1
w> 19+%—— >0, a, € Clal(R",CVXN), (6.49)
p
>|19+%—k| for 19—%20,
m
l,{ =0 for 19—|—?—k20, v—— <0, (6.50)
>k—19—% for 19+%—k<0
m_ o

"(S), B,, > 7(S) are well-

2 (OF) exist and the operators

for all £ = 0,1,...,m, then the spaces Hzi

m 1

defined, the traces Bz:l;?_;(S) iIB%

pqloc

A(x7Dl’) : Hp loc (Qi) — Hp loc (Q )7
4% of -3 ox
IB}D,q,loc((2 ) — B OC(Q ) (651)

are continuous.
m

In fact, let ¥ — — > 0. Since 0% € H loc
H

2
o loc ol (OF) C H (Qi) for a, € C'TZlR? CVN) . o] < m (we
remind that a multlphcatlon oprator al is continuous in Hy (L), By (L)
provided a € C*(L) and p > v; see [Trl, Corollary 2.8.2]).

Nowletﬂ—%<0 Ifﬁ—l—@—|0z|>0wehaveaa99€leoc Qi)
Lp1oe(0F) and a, 0% € L,1,.(0F) C H (Qi) for a, E C(R", CNXN),
If ¥ + % — la| < 0, then a,0% € ]I-]I oo o (QF) C H (Qi) for a, €

Cled=9=3(R", CN*N) | |a| < m. This yields the boundedness result (6.51).
Condition (6.50) can be slightly improved, provided the condition w >

e |(Qi) we get a,0%p €

Joc

loc

Joc

1 1
19—|—@——>0holds:ifs—l—@—l——ZOands—@<0wecantake
2 p 2 ' p 2
co € (%) for 19—|—%—|0z|>g, ﬁ—%g(), (6.52)

/,L::max{—ﬂ—@—|—|oz|—l—ﬁ,19—@}.
2 p 2
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In fact, under conditions (6.52) and ¢ € H§+%(Qi) we get 0% €

p,loc

szo?_w(ﬂ—i) C CQH%_M_%—I'E(Q—*) for a small ¢ > 0. Therefore a,0% €
_ g_m
Hz,loc(Qi) C ]I-]Ip,loc2 (Q )
1
Under conditions (6.49) and (6.50) Lemma 4.8 with s = ¢ — % ——>0
P

1
(which implies ¥ > % + — and w > m) remain valid.

Theorem 3.2 can also be extended, based on Lemma 4.8 with relaxed
smoothness constraints. These results we leave for forthcoming publications.

6.6. Concluding Remarks. As we have already mentioned if
A(x,D;) in (1.1) is scalar (N = 1), elliptic and has real valued matrix—
coefficients (or complex valued coefficients and n > 2) than it is proper

elliptic and has even order ord A(x,Dy) = m = 2/ (see [LM1, Ch.2, §§1.1]).

For non—scalar case N = 2,3,... matters are different. The operator

103 —10y — Oy >

A(D,) = ( oo, it (6.53)

is elliptic

A9 =( g5 M) et =l £0 o €20

and has order 1.

Let us consider BVP (1.10) with elliptic “basic” operator A(z, D), ord A=
m, with quasi-normal “boundary” operators bo(x, D), ..., by_1(x, D,) and
the following constraints:

1
weH(QF), fel ™QF), seR,1<poo, 3—];>m—1. (6.54)

The FREDHOLM properties and solvability of BVP (1.10) is completely
dependent on the factorization of the “lifted” principal homogeneous symbol

Ay, €)= (A= i€/ )™ Ao{t, €' + A (1)), (6.55)
tesS, £eT(t,S), YeR,

where 7(¢,8):=4{¢ e R" : & -J(t) =0} is the tangent space to S at t € S
and Ag(x, €) is the principal homogeneous symbol of A(x, D) (see (1.4)).
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The symbol A()(, ', A) admits the following factorization
A+ ||
A —il¢']

Ay (1€ 0) = A_(,€,\) ( ) DAL E N, (6.56)

teS, £eTt,S), 2eR,

where AZ(¢,¢,)) and AL(t,¢,\) are rational, uniformly bounded (with
derivatives) and have analytic continuation in the lower Im A < 0 and the
upper Im A > 0 complex half-planes, respectively (see [Dul, Esl, Lo2, Shl]
and most recent [CD1, §1.7]). The factors A in (6.56) does not influence
the FREDHOLM and solvability properties of equation and we are left with
the middle factor. This leads locally to the prgblem of invertibility of PsDO
N

i\ —_I_ z||§|| in the space H) (R}) (details
see e.g. in [CD1, §1.7], [Esl, Sh1]). If m = 2 this PsDO has kernel which is
eliminated by the SCHAPIRO—LOPATINSKII condition; this condition in the
scalar case N =1 can be written as follows

det[by(t, &, \)lasn £0, teS, €eT(,S), (657

(of convolution) with the symbol

where A{,..., AL _, are all roots of the Polynomial equation Aq(t, &, A) = 0,
ImA > 0 (see e.g. [LMI1, Rol] and [EgS1, Ch.2, §2]). As we see the amount
of boundary conditions in BVP (1.10) in the scalar case coincides with %

and is independent of the space where BVP is considered.
For the matrix case conditions are formulated in terms of unique solvabil-
ity of the initial boundary value problem for ordinary differential equations

(see [Agl, Esl, Hr2, Rol]). If “basic” operator in BVP (1.10) has even order

(see (6.53), there arise problem: the values of parameters

1 1
— — =1nt — 6.58
S ; meger—l—2 ( )

are critical and BVP (1.10) under constraints (6.54) is not FREDHOLM (A(x, D)
has non—closed range; see [CD1, §1.5]). If (6.58) is not the case, the amount
of boundary conditions w in (1.10) also depends on the space parameters

s — —. The details will be discussed in further publications.
p
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