An Algebra of Boundary Value Problems Not
Requiring Shapiro-Lopatinskij Conditions

B.—W. Schulze

Abstract

We construct an algebra of pseudo—differential boundary value problems that
contains the classical Shapiro—Lopatinskij elliptic problems as well as all differen-
tial elliptic problems of Dirac type with APS boundary conditions, together with
their parametrices. Global pseudo—differential projections on the boundary are
used to define ellipticity and to show the Fredholm property in suitable scales

of spaces.
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Introduction

The ellipticity of a boundary value problem consists of both (i) the ellipticity of a
given (say differential) operator A on a manifold X with boundary ¥ (here C*°) and
(ii) the ellipticity of boundary conditions. Classical elliptic boundary value problems
are given in the form

Au=fon X, Tu=gonY, (0.0.1)

where T' = {r’ﬁ, .. .,r’fN} Is a vector of trace operators, each component of which

is the composition of a differential operator with 1/, the restriction to Y. When

X is compact, the column matrix A = (?) represents a continuous operator A :
1

(X)) - H M X)® {@j\f:l H*~#i=2(Y)} between appropiate Sobolev spaces; here
p=ordA, pu; = ordfj. The Shapiro-Lopatinskij condition for 7" with respect to



A is equivalent to the Fredholm property of A (for sufficiently large real s), and
the index ind A is independent of s. Elliptic boundary value problems of this class
can be embedded as operators in an algebra B(X) of pseudo-differential boundary
value problems with (pseudo—differential) trace and potential conditions; cf. Boutet
de Monvel [4]. Each element A € B(X) then has a principal symbol o(A) consisting
of two components (o4 (A), 05(A)). The interior component oy (A)(z, ) is the usual
homogeneous principal symbol of the operator A on X, for (z,£) € T*X \ 0, and
o5(A)(y,n) is the (operator-valued, “twisted”) homogeneous boundary symbol of A,
for (y,n) € T*Y \ 0. This latter component is a block-matrix family of operators;
the upper left corner of this matrix is o5(A)(y, ) plus a so—called “Green summand,”
and this sum acts in Sobolev spaces on R, the inner normal to the boundary. The
ellipticity of A in the algebra B(X) is precisely the bijectivity of both components of
Aj; that of o5(.A) is just the Shapiro-Lopatinskij condition, referred to here as the SL
condition.

The class B(X) of (block—matrix) operators solves the problem of completing the
set of differential boundary value problems into a pseudo—differential algebra that
contains the parametrices of SL elliptic elements and in which an analogue of the
Atiyah—Singer index theorem holds. Boutet de Monvel [4] proved the index theorem
in his algebra and thereby extended a corresponding theorem of Atiyah and Bott [1]
for elliptic differential boundary value problems.

It is well known that there exist elliptic differential operators A on X that are
not upper left corners of certain SL elliptic elements A € B(X). In other words, for
such A there do not exist SL elliptic boundary conditions. Dirac operators and many
other geometric operators belong to this category.

Let A be an elliptic differential operator and consider the boundary symbol
oa(A)(y,n) for (y,n) € S*Y, where S*Y is the cosphere bundle induced by 7T*Y
with the projection 7 : S*Y — Y. The boundary symbol o5(A)(y,n) : H*(R4) —
H*~#(IR,) is a family of Fredholm operators for real s—ord A > — % (Kernels and cok-
ernels are independent of s). This gives us an index element indg«y 05(A4) € K(S*Y)
(with K () denoting the K—group on the space in the brackets). A necessary and
sufficient condition for the existence of SL elliptic conditions to A is the relation
indg+y 05(A) € 77 K(Y); for this, see Atiyah and Bott [1], Boutet de Monvel [4].

When this latter relation is not satisfied, the well-known machinery of the Atiyah-
Patodi-Singer (APS) boundary conditions is often of great assistance. These are
given in terms of certain global pseudo—differential projections on Y and have been
elaborated for a wide class of elliptic differential operators. The index theory in
this case connects the global data on the boundary with n-invariants of associated
operators on Y'; cf. [3] or [17], as well as the references cited there.

Related boundary value problems have also been treated in several papers with a
geometric orientation. These are mainly devoted, however, to homogeneous problems
Au = f, Pu= 0 for first order elliptic operators A that have the form A = 9;+ A’ near
the boundary Y, where A’ is a self~adjoint operator on Y, ¢ the normal variable, and
P the spectral projection to the eigenspace belonging to the non—negative eigenvalues
of A’. For this work cf. Gilkey and Smith [9], Booss-Bavnbek and Wojciechowski [3],
or Briining and Lesch [6] and the references there.

Non-homogeneous elliptic problems Au = f, Bu = g for arbitrary elliptic differen-
tial operators A and suitable generalisations B of APS conditions have been studied
in the author’s joint papers with Nazaikinskij, Sternin and Shatalov [20], [21]. Index
theory for this class of problems is formulated in Savin and Sternin [26], [27] in terms
of a certain dimension function on subspaces of Sobolev spaces that are images of



pseudo—differential projections on the boundary. This program is continued in joint
work with Nazaikinskij, Savin and Sternin [24], [25], [19].

The main objective of the present paper is to complete the set of all elliptic differen-
tial boundary value problems of the above type to a new algebra of pseudo—differential
boundary value problems that contains the parametrices of elliptic elements. (We
call it an algebra, though compositions only belong to the structure when bundle and
projection data of factors are compatible; in this sense we employ a similar termi-
nology as it is customary in the standard pseudo—differential calculus of boundary
value problems.) This will be a calculus of block matrix operators, where the upper
left corners are the same as in B(X), namely (classical) pseudo—differential operators
with the transmission property, plus Green operators. In particular, we shall see that
each such operator that is elliptic with respect to oy admits elliptic conditions in
the new algebra. We employ corresponding scales of spaces, in fact subspaces of the
standard Sobolev spaces, for which ellipticity entails the Fredholm property, cf. [21],
[20]. The subspaces are defined as the ranges of pseudo—differential projections on
the boundary; in particular, Calderén—Seeley projections are of this type. Our new
algebra S(X) contains a subalgebra 7 (V) of (generalisations of) Toeplitz operators
consisting of the lower right corners of the block matrices in S(X). Special operators
of this kind are studied in Boutet de Monvel [5].

The present theory also includes an analogue of the classical reduction of elliptic
boundary value problems in §(X) to the boundary, under which the resulting reduced
operators are elliptic in 7 (V). We also establish a formula that connects the index of
elliptic elements in S(X) within our algebra with the index both of elliptic operators
in 7(Y) and of standard ones on 2X, the double of X, as arise in the study of
transmission problems.

The author thanks M. Korey, T. Krainer and J. Seiler, all of the University of
Potsdam for useful remarks on the manuscript.

1 Operators on manifolds with boundary

1.1 The symbols of boundary value problems

Boundary value problems for pseudo—differential operators on a C'*® manifold X with
C® boundary Y are generated by parametrices (or inverses) of elliptic differential
boundary value problems. Let Vect(-) be the set of all smooth complex vector bundles
on a C'™ manifold in the brackets. Consider an elliptic differential operator

A:C®(X,E) = C®(X, F) (1.1.1)

in spaces of C* sections of F, F' € Vect(X).
A boundary value problem for A is traditionally regarded as an operator

C(X,F)
A= (f;) LC%(X,E) > 000(619/ o (1.1.2)

for a G € Vect(Y), where T : C®(X, E) — C™(Y, () is a trace operator that defines
the boundary conditions in the problem Au = f, Tu = g.

In the simplest case 1" is a column matrix of operators 7; = r’fj, j=1,...,N,
with the restriction r'u = u|y and differential operators f7 OV E) = C=(V, é])



in a collar neighbourhood V' of Y, with vector bundles éj on V and GG = @j\f:l Gj,
G; =Gsly.

The smooth complex vector bundles that arise are assumed to be equipped with
Hermitian metrics. On X and Y we fix Riemannian metrics such that V' corresponds
to [0, 1) x Y in the product metric. The canonical projections of the cotangent bundles
minus zero sections are denoted by 7x : T"X \0 = X and ny : T"Y \ 0 = V),
respectively.

Let oy(A) : a% E — 7% F be the homogeneous principal symbol of A of order
p = ord A, which is a map oy (A)(z,€) : C* — C! for each (x,£) € T*X \ 0, where
k and [ are the fibre dimensions of £ and I, respectively. Locally near Y for x =
(t,y) € Ry x Q, Q C R™! open, with the covariables £ = (7,7), we get an operator
family, parametrised by (y,n) € T*Q\ 0,

oo(A)(y, 1) = oy (A)(0,y, De,n) : S(By) © CF — S(Ry) @ €' (1.1.3)

for S(Ry) = S(R”Ku with the Schwartz space S(R). Globally on Y the system
(1.1.3) represents a homomorphism

co(A) Ty S(Ry) @ B! — 7y S(Ry) @ F, (1.1.4)

E'" = Ely, F' = Fly, called the homogeneous principal boundary symbol of A.
Similarly the operators T; give rise to operator families

oo(Ty) 73 S(Fy) © B! — 73 S(Fy) @ Gy,
j=1,...,N. After composition with the operator r’ of restriction to the boundary
(t = 0) we obtain the boundary symbol of the trace operator 7"

O'a(T) = (O’arj)jzly.“y]\f : F;S(@_F) ® E - F;G,

where ¢5(T};) = r’aa(fj).
We call

(1.1.5)

the (homogeneous principal) boundary symbol and oy (A) = oy (A4) the (homogeneous
principal) interior symbol of A.

Ellipticity of a boundary value problem A requires (by definition) the ellipticity
of A in the usual sense, namely that oy (A4) : 75X E — 7% F is an isomorphism. The
meaning of ellipticity (with respect to A) of boundary conditions is not a priori clear.
In traditional boundary value problems (e.g., the Dirichlet or Neumann problem for
the Laplace operator), ellipticity is guaranteed by the Shapiro-Lopatinskij condition,
which is precisely the bijectivity of (1.1.5). However, it is well-known that there are
elliptic differential operators A that do not possess SL elliptic boundary conditions,
i.e., operators for which no corresponding 7" and (' can be chosen to make (1.1.5)
bijective. Examples include the Cauchy—Riemann operator in any smooth domain in
the complex plane, Dirac operators on C'*® manifolds with C'™ boundaries (in even
dimensions) and many other interesting geometric operators.

In fact, there 1s a topological obstruction whose presence or absence determines
wether or not an elliptic operator A admits SL elliptic boundary conditions, cf. Seeley



[34], Atiyah and Bott [1], Boutet de Monvel [4]. Let us briefly recall this condition.
Denote by S*Y the unit sphere bundle of Y induced by 7T*Y, with the projection
71 S*Y = Y. Assume for simplicity that ¥ is compact (otherwise we could consider
any compact subsets K of V). If A is elliptic, the restriction of (1.1.4) to S*Y is a
family of Fredholm operators parametrised by the compact space S*Y. If we wish to
work with Hilbert spaces, we can replace (1.1.4) by

oo(A) :miH (Ry) @ B' - i H H(RY) @ F'

where the Sobolev spaces in question are defined by H*(Ry) = H*(R)|g,, for any
sufficiently large s such that, say, s — pu > —%. (The specific choice of s is not
essential; kernels and cokernels are independent of s and coincide with those of the
restrictions of the operators to the Schwartz spaces.) There is then an index element
indg+y 05(A) € K(S*Y), and an elliptic operator A admits SL elliptic boundary
conditions if and only if indg«y 05(A4) € 77 K(Y).

The operators of the form (1.1.2) belong to an algebra of block matrices

C(X,E) C®(X,F)
(P;G g) SR SO (1.1.6)
oY, Jm) (Y, )

Here P is a pseudo—differential operator on X with the transmission property with
respect to Y, and (G, S and C are Green, trace, and potential operators, respectively.
The last component R is a pseudo—differential operator on Y, acting between sections
of vector bundles J~ J* € Vect(Y). Such an algebra has been studied by Boutet
de Monvel [4], cf. also the books of Rempel and Schulze [22], and Grubb [14]. For
simplicity we consider the case of classical operators of integer order. By applying
suitable elliptic pseudo—differential operators on ¥ we may (and will) assume that all
orders are equal, say p € Z. By definition, Green and trace operators have a type
d € N, cf. the notation below.

The space of all operators (1.1.6) of order p and type d is denoted by B*4(X; E,
F;J~,J%) and the space of upper left corners in the block matrices by B#%(X; E, F).
The latter space belongs to L (int X; E, F/), the set of all classical pseudo-differential
operators of order pin int X (acting between sections in |, F' € Vect(X)) with smooth
(up to the boundary) local left symbols. More precisely, B#4(X; E, F') is a subspace
of all operators in L% (int X; £, F') having the transmission property with respect to
Y.

Each A € B*4(X; E, F;J~,J*%) induces continuous operators

H*(X,E)  H*=HX,F)
A & = @ (1.1.7)
He(Y,J=)  H=#(Y,J¥)

foralls e R, s—d > —%; here H*(X, F), ..., are the Sobolev spaces of distributional
sections in the corresponding bundles. (Recall that X is assumed to be compact.)
Notice that the orders of local “scalar” amplitude functions of the operators G, C', S
are not p but shifted by 1 or %, though the operator—-valued symbols in the description
below have precisely the order p.

Let (1.1.2) be a boundary value problem for an elliptic differential operator A with
SL elliptic boundary conditions, i.e., where (1.1.5) is an isomorphism. Composing .A

from the left by a reduction of orders we get an operator A= (é g) (1741), here



R is a diagonal matrix of elliptic operators R; € LZ{ Y;G;,G5), v = p— ordfj —
% that induce isomorphisms R; : H*(Y,G;) — H* 7V (Y,G;) for all s € R. For
simplicity we denote the operator .4 again by A; this is then an elliptic element
A € BHY(X;E,F;0,G). (The argument 0 indicates the bundle of fibre dimension
zero.) Boutet de Monvel [4] showed that .4 has a parametrix P € B=#°(X; E, F; G, 0),
in the sense that the smoothing remainders AP —Z, PA — 7 are compact in Sobolev
spaces. (Explicit definitions are given below.)

More generally, operators A in B#4(X; E, F;J~,JT) are characterised (modulo
compact operators) by a pair of principal symbols o(A) = (oy(A),c5(A)), namely
interior and boundary symbols. Ellipticity of A means bijectivity of both the first
component on 7% X \ 0 and of the second on 7Y \ 0 (the SL condition). Each elliptic
operator A € B*4(X; E,F;J~,J%) has a parametrix P = B~#¢(X; F, E; Jt,J7),
for e = (d — p) T, with ¢t = max(p,0), ¢ € R, and

oy (P) = op(A)",  0a(P) =0a(A)7".

The union of all B#4(X; E, F;J~,Jt) over B, F € Vect(X), J=,Jt € Vect(Y)
is denoted by B*4(X), (u,d) € Z x N. Algebraic operations are defined when the
bundles fit together. Let

ENB~YX; B, F; -, J%) (1.1.8)
be the set of all A € B*4(X; E, F;J~,Jt) that are elliptic with respect to o(-) =
(y (), o5(-)) and

Elly, B4(X; E, F) (1.1.9)

the set of all A € B*%(X; FE, F) that are elliptic with respect to oy(-). Then, if
we denote by (SL) Elly, B*%(X; E, F) the space of upper left corners of elements in
(1.1.8), we have a proper inclusion

(SL) Elly B**(X; E, F) C Elly B“*(X; E, F).
As noted in the beginning there is also a proper inclusion
(SL) Elly, Diff*(X; E, F) C Elly, Diff*(X; E, F),

for each order u € N. Here Diff*(X; | F') is the space of all differential operators of
order p on X with smooth coefficients up to ¥ = 90X, acting in the corresponding
spaces of sections, Ell, denotes the elliptic elements, and (SL) Ell,, those which admit
Shapiro-Lopatinskij elliptic boundary conditions.

The examination of these boundary value problems leads to an important ques-
tion: Does there exist an algebra S(X) = |, , S*4(X) of block matrix oper-
ators that generalises B(X) = U, 4 B#4(X) in such a way that each element
A € Elly Diff*(X; E, F) (or more generally each A € Elly B*%(X; E, F)) can be
completed by “elliptic boundary conditions” to an operator A € S(X) that has a

parametrix in the new algebra. The affirmative answer is given in Sections 1.4 and
2.1 below.

1.2 Pseudo—differential and Green operators

Our algebra S(X) =J, 4 S*4(X) will be defined as a set of block matrix operators
A = (A;); j=1,2 with B(X) C S(X) and

u.l.c. B(X) =u.l.c. §(X),



where u.l. c. indicates the corresponding spaces of upper left corners A;;. In contrast
to (1.1.7) the operators A € S(X) will be continuous maps

H*(X,E) H*""X,F)
A & = ® , (1.2.1)
P(Y,LY) P*R(Y,L7)

where

P*(Y,LY)C H*(Y,J™), P*"M(Y,L7)C H**(Y,J*)

are closed subspaces, for certain J~, J* € Vect(Y), related to prescribed sub—bundles
L* of 7}, J* and pseudo—differential projections P* : H*(Y, J%) — P*(Y, Li). Pre-
cise definitions are given below. In order to develop the calculus, we prepare further
material on the spaces B*4(X; E F), E,F € Vect(X), that constitute u.l.c. B(X).
First we have the space B=°"(X; E, F) of smoothing operators of type 0; its elements
C:C®(X,E) = C®(X, F) are nothing other than operators with C'* kernels up to
the boundary. Moreover, the space B~°*4(X; E| F) of smoothing operators of type
d € N is defined to be the set of all C' = ijo C; D7 where DJ are arbitrary elements
in Diﬁj(X;E,E) and C; € B=>%(X; F, F). The space Bg’o(X;E,F) of all Green
operators of order v and type zero 1s defined to be the set of all Gy + C for arbitrary
C € B=>%X; E, F) and smoothing operators (y on int X, that are locally near YV’
in coordinates (t,y) € Ry x Q, Q C R"! open, of the form of pseudo—differential
operators along  with operator-valued symbols ¢(y, ), namely

C5° (. S(E4)) 3 uly) — Op, (9)uly) = / / 0 Mgy mu(y’) dyf dn
for

g(y, 77) € SZI(Q X Rn_l; LZ(R+) ® Ck,S(@+) ® Cl)’
g (y,n) € SH(Qx R L L (Ry) o CL S(Ry) @ CF).

Here k and [ are the fibre dimensions of £ and F', respectively. Details on pseudo—
differential operators with operator—valued symbols in this context may be found in
Schulze [30], Section 2.2.2, or [32], Section 1.3 (see also [32], Section 4.2.3). The
present definition of the Green operators from [29], Theorem 3.1, is equivalent to the
original one in [4]. Moreover, Bg’d(X; E| F), the space of all Green operators of order
1 and type d is defined to be the set of all

d
G=> Gu;D+C (1.2.2)

7=0

for arbitrary G,_; € Bg_j’o(X;E,F), D€ Diﬂj(X;E,E), C € B~=4X;E,F).
Finally, B#%(X; E, F) is defined to be the set of all operators P + ( for arbitrary
G e Bg’d(X; E,F) and P € L (int X; E, F), where in local coordinates « = (t,y) €
R4 x  near Y the operator P has the form r* Op,(p)e™ for a symbol p(z,&) €
SE(Ry x Q x R") @ C! @ C* with the transmission property at t = 0. Here et is the
operator extending functions on Ry x Q by zero to R x £ and rt is the restriction
operator from R x Q to R, x Q. Each A € B*%(X; E, F) has a homogeneous principal

symbol oy (A) : 5% E — 7% F, given by oy (A) = 0y (P) for A = P+ . Further there



is the homogeneous principal boundary symbol of A that is locally for (y,n) € T*Q\0
of the form

7o(A)(y,n) = 10y (P)(0,y, D, n)et + 0a(G)(y, n),
with oy (P)(0,y, De, n)u(t) = [f ei(t_tl)Taw(P)(O, y, 7, u(t’) dt'dr and

O'a(G)(y, 77) = Z Ua(Gu—j)(y’ 77)0-#1 (Dj)(o’ Yy, Dy, 77)’ (1'2'3)

7=0

with o5(Gu—;)(y, 1) being the homogeneous principal part of the classical operator—
valued symbol of G,_; in the representation (1.2.2) above.

(A decomposition like 1.2.3 is not unique, in contrast to the operator function
o5(G)(y,n) itself; throughout this paper multiplications of operator functions are
interpreted as pointwise compositions, also indicated by o.) Globally we get a homo-
morphism

05(A) : TES(Ry) @ B — 75 S(Ry) @ F/
or
oo(A) vy H°(Ry) @ B — 7y H7F(R4) @ F (1.2.4)

for (sufficiently large) s € R, my : T*Y \ 0 — Y. (Clearly homomorphisms in
this connection are understood in the standard fibre bundle sense, here with the
corresponding infinite-dimensional fibres and invariance of local representations under
transition maps that are inherited from the bundles £/ and F’; for simplicity we always
refer to an atlas near Y that keeps the normal variable ¢ fixed.) We also consider the
restriction

oo(A) :miH (Ry) @ B' - i H H(RY) @ F' (1.2.5)

to the cosphere bundle S*Y with the projection m : S*Y — Y. Each operator
A€ BMY(X; E, F) then induces continuous operators

AN (X, E) = H "X, F)
forallseR, s >d— % We need the following result on reductions of orders:

Theorem 1.2.1 Let E be a vector bundle on X. To every u € Z there exists an
element R* = RH(E) € BM°(X; E, E) which induces isomorphisms

RE:HY (X, E) — H*~"(X, B) (1.2.6)
for all s € R where (R*)~' € B~*"(X; E, ).

The statement of Theorem 1.2.1 for all real s is first published in Grubb [12].
Reductions of orders for Sobolev spaces on a manifold with boundary exist in different
versions, cf. Boutet de Monvel [4], Section 5, Rempel and Schulze [23], Section 3.3,
Eskin [7], Lemma4.6. The method of [4] (that works for s > p* — %, u* = max(y, 0))
can be formulated in terms of a symbol with the transmission property (x(&){(n)—ir)*
with a suitable choice of a function x. Grubb uses (x(£)(n) — ir)* with a minus
function x in 7 which implies the desired behaviour for all s (see also [7] for that
point).

Let us now briefly recall the definition of the full algebra B(X). This is the
union of spaces B4 (X; E, F;J~,J%) over (u,d) € Z x N and E,F € Vect(X),
J=,Jt € Vect(Y) (for more details, cf. [32]). Let us set

b= (E,F;J",J%).



The difference between B*%(X;b) and B*4(X; E, F), the space of upper left cor-
ners, lies only in a subclass Bé’d(X; b) of block matrix operators that is defined as
follows. First the space B~°°(X;b) of smoothing operators of type 0 consists of
operators C®° (X, F) & C*(Y,J™) — C®(X,F) & C*(Y,JT) whose entries have
C® kernels (smooth up to the boundary in the arguments on X). Moreover, the
space B~°4(X;b) of smoothing operators of type d is defined to be the set of all
C= Co—l—z;l:l C; (%j 8) for arbitrary DJ € Diﬁj(X; E,E)and C; € B~ X; E, F).
Further BéO(X; b) is the set of all Gy + C for C € B=°>%(X; b) and operators Gy that
are smoothing in # € int X, y € Y and have in local coordinates (¢,y) € Ry x Q near
Y the form of pseudo—differential operators

Op,(9) : C5°(2, (S(B4) © CF) @ CV-) —» C(Q, (S(By) @ C') @ C'F)

along Q with operator—valued symbols. In this definition N4 denotes the fibre dimen-
sions of J*, where

g(y,n) € SHOQx R (L (Ry) @ CF) & CV- (S(By) @ C') @ CV4),
9 (y,m) € SHQ xR (L*(Ry) @ C') @ CY*  (S(Ry) @ CF) @ CV-).

Moreover, for b = (E,F;J~,J*%) the space Bé’d(X;b) is defined to consist of all
operators

d .
G=Gu+> Guj (l())] 8) +C (1.2.7)
j=1

for arbitrary G,_; € Bé_j’o(X;b), 0<j<d DieDifd(X;E E), Ce B >4X;b).
Notice that Bg’d(X; EF) = u.l.c.Bé’d(X; b). Every G € Bé’d(X; b) has a homoge-
neous principal symbol o4(G), locally defined by

a@)(a:1) = 0a(Gy) o) + Y o G n) (PG

j=1

with 05(Gu—;)(y,n) being the homogeneous principal part of the classical operator—
valued symbol of G,,_;, 0 < j < d. Now B#4(X;b) is the space of all operators of the

form
P 0
o (F e
for arbitrary P € B#4(X; E, F) and G = (Gi;)i j=12 € Bé’d(X; b). We then set

i =euip) o= (7 1) +eold)

and o(A) = (64 (A),0s(A)). Globally, the boundary symbol o5(A) of A is a homo-

morphism

S(Ry)® F S(Ry)® F’
oo(A) 7y ® — 7y ® ,
J~ Jt
Ry 0 B () o F
0'3(./4):71';‘/( ® )—)ﬂ';‘/( ® )
J~ Jt

for (sufficiently large) s € R. The following result is well-known, cf. [4], [22], [14]:



Theorem 1.2.2 Let A € B*4X; Ey, F;Jo,Jt) and B € BV¢(X; E, Eo;J ™, Jo).
Then for h = max(d + v, e) the product AB € B2 (X, E,F;J~,JT), where the
symbol

o(AB) = o(A)o(B)

1s formed by componentwise multiplication.

1.3 Boundary symbols

We now develop the boundary symbol calculus for operators A € B*4(X;E, F)
without referring to Shapiro—Lopatinskij conditions in the elliptic case. In other
words we admit arbitrary operators A € B*%(X;E, F), elliptic with respect to
oy, l.e., where oy(A) : 7% E — 7% F is an isomorphism. In this context (1.2.5)
is a family of Fredholm operators for each sufficiently large s. In fact, ps(y,n) :=
r"’a;l(A)(O, y, Dy,mlet cay HS 7 H(Ry) @ F' — 7y H*(R4) @ E' is a family of opera-
tors with
po(y,m) o oo (A)(y,n) = 1+ c(y,n)

for some family of Green operators, that is, ¢(y,n) = 65(C)(y, ) for a Green operator
C of order 0 and type h = max(—u,d). (Compare Theorem 1.2.2 above.) Since
e(y,n) : H*(R4) @ By — H*(R4) ® Ey is compact for every s > h — %, the operator
o5(A)(y, n) is Fredholm for every (y,n) € T*Y \ 0. We then obtain an index element

inds+y 05(A) € K(S*Y) (1.3.1)
that is independent of the choice of s. Moreover, since oa(G)(y,7) : H*(Ry) @ By —
H*~"R4) ® Ey is compact for every G € Bg’d(X; E,F) (for s >d— %), we have

indg-y O'a(A + G) = indg+y O'a(A)

for (elliptic with respect to o) A € B#4(X; E, F) and G € Bg’d(X; EF).

In the following considerations we often employ the Schwartz space S(@+) instead
of Sobolev spaces on R 1, though our operator families extend to appropriate Sobolev
spaces of sufficiently large smoothness.

Lemma 1.3.1 Let A € B*4(X; E| F) be elliptic with respect to oy. Then there exists
an isomorphism

— F;S(@_F)@E/ F;S(@_F)@F/
a= ("6(;4) A ) : @ — @ (1.3.2)
A ¢ L- L+

for suitable L=, LT € Vect(T*Y \ 0), where (1.3.2) is homogeneous in the sense

-1
K 0 K 0
a(y,dn) = ¢* (06 id“) a(y,n) (06 idL_) (1.3.3)

Jor (rsu)(t) = $u(8t), w e S(Ey) @ By, 6 € By, (y.m) € TV \ 0.

If we consider o5(A4) on S*Y we can easily construct an isomorphism in block
matrix form where

indS*Y O'a(A) = [L+

swy]—[L~

sy ] (1.3.4)
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In the present context we wish the entries A* in a similar form as in the standard
boundary symbol calculus for Boutet de Monvel’s algebra. Then, having A* on S*Y,
we get corresponding operator families on 7Y \ 0 by homogeneous extensions.

Using the fact that cokernels and kernels of (1.2.4) for elliptic A can be represented
by vectors of elements in S(@+), the operator functions A=, A1 can be chosen as
sections in tensor products

(i SEN @ F) o (L) and  LF @ (xS @ B,

respectively. In other words, A™ acts on a vector in L;, via the pairing with a
corresponding element in (L, , )" and thus maps to (S(Ry) @ F")y.p, while At acts
via the pairing of functions by the scalar product in L?(R ), fibrewise for each (y,n) €
T*Y \ 0 represented as

k’ (o)
{ /Uj(t,y, MLty m) dt} :
=07 m=1,...,lt

J

Here (/\;'m (t,y,m)) JEL ok is the value of the section AT over y, n with respect to
m=1,...,1

chosen trivialisations of LT and E’, with [T and k being the fibre dimensions of LT

and E', respectively. The argument from (7} S(R4) @ E')y, is represented by the

vector (ui(t, 4, 1), .., ux(t,y,7)).

In other words, the proof of Lemma 1.3.1 is analogous to the construction of
elliptic boundary symbols using an elliptic operator A € B#¢(X; F, F') in the context
of [4] (concerning an explicit proof, cf., for instance, [32], Proposition 4.3.45). These
considerations only employ (1.2.4) as a Fredholm homomorphism, together with the
homogeneous extension to 7*Y \ 0, but does not use the condition indg+y c5(A) €
71 K(Y). Therefore, the bundles L* € Vect(T*Y \ 0) that arise in the block matrix
(1.3.2) are not necessarily lifted versions of the bundles J* on Y. Boundary symbols
in the sense of [4] are characterised by L¥ = n}, J* for certain J* € Vect(Y). Clearly,
in the general case, the bundles L* can be regarded as sub—bundles of liftings M* =
Ty J* for certain J* € Vect(Y). To achieve this, it suffices to choose complementary
bundles (L*)* in trivial bundles (7*Y \ 0) x C"* for suitable m4 ; then we may set
JE =Y x s,

Remark 1.3.2 In the case dimY = 1, where the cosphere bundle S*Y splits into two
copies Y_ and Yy of Y, the bundles L* € Vect(S*Y) (or similarly € Vect(T*Y\0)) are
admitted to be of different fibre dimensions over the corresponding plus or minus parts.
We talk about subbundles of w7 J (or w} J) for J € Vect(Y) also in this situation.
In particular, there is a natural decomposition w3 J = L™ @& LT, where LE are the
restrictions of w§.J to the £ parts of T*Y \ 0. Clearly, they are not pull-backs of
bundles on' Y .

Let J* be arbitrary bundles on Y such that L* are sub-bundles of M* = Ty J*.
Choose projections p* : M* — L* that are C™ in (y,m) € T*Y'\ 0 and homogeneous
of order zero in 7, i.e., p*(y,dn) = p(y,n) for all (y,n) € T*Y \ 0 and all § > 0. Tt is
well-known that pi(y, n) can be regarded as the homogeneous principal symbols of
pseudo—differential operators

PE LYy, g%, J%).
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The possible choices of such projections have been characterised in Gramsch [11] in a
very general framework. Special choices of P* to p* can explicitly be written in terms
of suitable integrals, using the holomorphic functional calculus for pseudo—differential
operators, cf. Section 2.4 below. Examples are the Calderén—Seeley projections, cf.
Seeley [34], Birman and Solomjak [2], or Wojciechowski [36].

Our class of general pseudo—differential boundary value problems will be denoted
by

SH(X;w), (p,d) € Zx N, (1.3.5)

where the symbol v = (E, F;(J~, L™, P7),(J*, LT, Pt)) abbreviates the data en-
tering into the above discussion. The components of v are as follows:

(i) E,F € Vect(X),
ii) sub-bundles LE € Vect(T*Y \ 0) of lifted bundles M* = 7%, J* for given J* €
(ii) Y g
Vect(Y),
iii) pseudo-differential projections P* € L% (Y; J*, J*) whose homogeneous prin-
cl g
cipal symbols are projections p* : M* — L*.

To develop a calculus we introduce the boundary symbols of operators in (1.3.5).
Denote by
T Sy Ve (1.3.6)
the embeddings as sub—bundles, homogeneous of order zero in the sense r*(y, An) =
rE(y,n) for all (y,n) € T*Y \ 0, A € Ry. Then p*r* =idp+ and r¥p* = p*.

Definition 1.3.3 The space 058" (X;v) of boundary symbols is the set of all oper-
ator families

— F;‘;S(@_F) ®El F;‘;S(@_F) ®F/
a A
a= </\+ ) : P — D (1.3.7)
¢ - Lt

that are C* in (y,n) € T*Y \ 0 and homogeneous in n of order y (in the sense of
relation (1.3.7)). Here a = o5(A) for arbitrary A € B*»*(X; E, F) and

AT =ptaoy(T), AT =oa(K)rT, o=ptos(Q)r” (1.3.8)

for arbitrary elements

0 K _
(T Q) eBHUX, B F; T, JY).

Notice that the specific choices of the projections P* do not affect the op-
erator families (1.3.7). Given an a € ¢5S8*94(X;v) with upper left corner a €
oo BHA(X; B, F) we set oy (a) = oy(a).

Theorem 1.3.4 a € 058*4(X;v), b € 058V°(X;w) for p,v € Z, d,e €N and
v = (EO,F;(JO,LO,PO),(J+,L+,P+)),
w = (B, Eo;(J7, L7, P7), (Jo, Lo, 1))
implies ab € 05 S*T " (X;v 0o w) for
h =max(v +d,e), vow= (E,F;(J ,L™,P7),(JT, Lt PT)),

and we have oy(ab) = oy(a)oy (D).
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Proof. By assumption there are elements

A= (A [‘) € BHA(X; Bo, F; Jo, J*),

T Q
B H Ve —
BI(S R)EB’(X;E,EQ;J ,Jo)

such that for @ = (ai;)i j=1,2, b = (bij)i j=1,2 we have

a1 = o03(A), aja = o5(K)ro, as1 = ptoa(T), ass = ptos(Q)ro,
bi1 = 05(B), b1y =0s(H)r™, as = pooa(S), byy = pooa(R)r™,
with projections po : My — Lo, pt : MT — Lt and embeddings ro : Lo — Mo,
LT =M~ Writeab=c = (Cij)iyj:Lz.
We have ropy = pg @ myJo — myJo which is the homogeneous principal symbol
of order zero of a pseudo—differential operator Py € L%(Y'; Jy, Jo). From the rules for

the composition of boundary symbols in standard pseudo—differential boundary value
problems, i.e., of the class B(X), we get the following relations

(A)os(B) + 05 (K)ropooa(S)

= 0o(AB + K PyS),

c12 = 05(A)oa(H)r™ + oa(K)ropoca(R)r™
=o0s(AH + KPyR)r™,

co1 = ptos(T)oa(B) + ptos(Q)ropoca(S)
:p"'O'a(TB—I—QPo ),

90 =ptos(T)oos(H)r™ + pTos(Q)ropoos(R)r™

(

= p+0'a TH+ QPOR)

€11 = 03

where

AB+ KPS AH+ KPR
TB+QP,S TH+ QPR

) e BN (X B R T T,

Thus ab € 758#1""(X;v o w). Note, in particular, that K PyS is a Green operator
in BHYA (XS EF), e, oy (K PyS) = 0. From the symbol rules in boundary value
problems we get oy (AB) = oy (A)oy(B). This completes the proof of the theorem.

O

1.4 The algebra of boundary value problems

The operators P* induce continuous projections in H:(Y, Ji) for all s € R. Accord-
ingly, we set

P(Y, L) = {g = Ptu: we H(Y,J%)}  for LT = (JE IF PY).
These are closed subspaces of H*(Y, J%). Denote by
RE . P*(Y,LY) = H (Y, J%)

the canonical embeddings; the relevant degree of Sobolev smoothness s € R will be
clear in each concrete case, so we do not indicate it explicitly, neither for P* nor for

R*.
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Given vector bundles E, F € Vect(X), J~,Jt € Vect(Y) and sub-bundles L* of
W;Ji we set
v=(E F, L™, L")  for LT = (J % P%). (1.4.1)

Here P* ¢ LYY J*, Ji) are pseudo—differential projections with homogeneous prin-
cipal symbols of order zero p : Ty J* — L* which project to the sub-bundles.

Definition 1.4.1 Define S#%(X;v) to be the space of all operators of the form
N KR- (X, E) H = MX,F)
A= PHT PHQR- : ) — S , (1.4.2)
Ps(Y,L™) P*=H(Y,L%)

(u,d)EZxN,sER,s>d—%, where

- A K
A= (T Q) € B“4(X;b) (1.4.3)
forb=(E,F;J~,J%).
Let us write R
A=PtAR™ (1.4.4)
for Pt = ((1) P0+), R™ = ((1) RO_ ) Then we get a well-defined principal symbol

o(A) = (oy(A), 55(A))
with the interior symbol oy (A) = oy (A) = 04 (A) and the boundary symbol
O'a(.A) = O'a('P-l—)O'a(A)O'a(R_),

for oo(P1) = (épo+ ), os(R™) = ((1) TO_ ), where o5(A) is the boundary symbol of A
in the sense of the class B*4(X;b).

Remark 1.4.2 By definition there is an isomorphism
St (X;v) = {;l € BH4(X;b) : A=ptip- for some A € B44(X;b)}, (1.4.5)

or, equivalently, S%4(X;v) = B*%(X;b)/ ~, where | ~ denotes the quotient map
with respect to the equivalence relation A ~ Ay & PTAP = PYAP in
B#4(X;b). To study the properties of operators (1.4.2) it suffices to represent A
i the form
. H(X,B)  H*H(X,F)
A=PtAP~: & - & (1.4.6)
HE(Y,J™)  HSH(Y,J*)

where the specific choice Of.%I 15 unessential.

Relation (1.4.5) is compatible with the behaviour of boundary symbols in the
sense of S#4(X;v) and B*4(X;b), respectively. This allows us to treat the embed-
ding operators R~ formally as operators with symbols structure. In the following
considerations we prefer to employ embeddings, though everything can be translated
to relations with projections.
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Proposition 1.4.3 Let A;, A5 € S#4(X;v) and suppose o(A1) = o(As). Then
C = Ay — Ay is compact as an operator

H*(X,E)  H*"HX,F)

c: & = ® (1.4.7)
P(Y,L™) P*=A(Y,L")

1
Jor every s > d — 3.

Proof. Let us represent .A; in the form .Zli, i = 1,2, cf. (1.4.6). Then o(A;) =

o(As) implies o(A;) = o(As) in the sense of corresponding pairs of principal symbols
in B#4(X;b). From the corresponding known result for operators in this class we
conclude that
. H(X,E) H (X, F)
Al — Az D — )

HS(Y,J™) H (Y, J%)

is a compact operator. It follows that the restriction to H*(X, E)@® P*(Y, L") is also
compact. This restriction maps to H*~#(X, F) @& P*~#(Y,L*"). Thus A; — A, itself
is compact in the sense of (1.4.7). O

In particular, the operators in S™°%4(X;v) = ﬂu S*4(X;v) are compact for all
1

Theorem 1.4.4 Let A € S*%(X;v) and B € 8°(X;w). Suppose that p,v € 7,
d,e €N, and v, w are as in Theorem 1.2.2. Then the product AB € SFV"(X;vow),
for b = max(v + d, €), and we have (with componentwise multiplication)

o(AB) = o(A)a(B).

This theorem is an immediate consequence of Theorem 1.2.2 above.
Consider an operator A € B*%(X;b) for b= (E, F;J~,J*) and fix the data J*,
LE, PEin v, cf. (1.4.1). Set

w=(E,F;K~,K%) for K* = (J% K* Q%)
where Kt = ker p* and Q* = 1 — P, Then we can form the spaces
PV K®) = {f = QFu s we (Y, T5)),
with the canonical embeddings P*(Y, Ki) — H*(Y,J*). By definition we then have
H:(Y,J%) = P*(Y,L%) @ P*(Y, K*%).
Parallel to A = PT AR~ we have the operator B = QT AS™ for Ot = (é Q0+),

S = ((1) SO_ ), and call B complementary to A (or A complementary to B). Then

B e 84X w).
To every A; € S#4(X;v;) v; = (E;, Fy; L7, L) for arbitrary Ll?t = (Jii, LZ:»E, Pii),
¢t = 1,2, we can define the direct sum

A1 e A, € S“’d(X;lu @ vs)
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in the sense of block matrices, where
v1 @ vy = (B @ o, 1@ oy Ly © Ly LT @ L)

for Lli @ LE = (Jli & Jzi, Lli & in,Pl‘" & Pzi) In particular, if we take 4; = A €
SH(X;wv), Ay = B € 8#4(X;w) with the above v, w, where B is complementary to
A, then we get

AoBeB*(X,b)forb=(Ea E, FoF;J7,J%).

Let us now consider adjoints of operators A € S“°(X;w), v = (F, F; L™, L"),
with respect to the fixed scalar products in the spaces

HYX,E)o H(Y,J7), HYX,F)e H(Y,J)

and the induced ones in the subspaces defined by the projections P*. (Recall that we
fixed Riemannian metrics on X and Y and Hermitian metrics in the bundles.) The
projections P : HO(Y, J%) — HO(Y, J%) give rise to adjoints P¥* € LY (Y; J*, J*)
that coincide with P* in the case of orthogonal projections. On account of the
projection property, PE*PE* = PE* the operators P%* can be interpreted as
embeddings RT* : im P*>* — HO(Y, J*), or, more generally, as RT* : P*(Y, Li’*) —
H*(Y,J%) for all s € R, where
L:I:,* — (J:I: impi’*,Pi’*).
In the space 05S*°(X;w) for v = (E, F; L™, L") we can form the adjoint by the
rule . .
@ A+ Ty S(Ry) @ 1 Ty S(Ry) @ £
a* = (A_’* Q* ) : b — ©®
() L)
where the upper left corner ¢* has its usual meaning (as in the notation of Definition
1.3.3), while the other three components are given by

AT =p T os(K)Y, AT* = gy (T)r 7, o = p o (Q) .

Here 05(K)*, 05(T)*, 05(Q)* are taken in ¢sB*°(X;FE, F;J~,JT) and r™*
Lt®) - J* is the embedding of LT () = imp**.
Proposition 1.4.5 Let A € S"9(X;v) for v = (E,F;L™,LY). Then A* €
SYYX;v*) forv* = (F,E; LT L™%), and

o(A%) = o(A)".
(The adjoints are understood to be taken in the corresponding symbol spaces).

The proof is an obvious consequence of the definition of the space §%°(X;wv) and
of the fact that adjoints of operators in B®%(X; E, F;J~,JT) belong to the space
BOO(X; FoE; T 7).

Remark 1.4.6 The operator space S**(X;v), v = (E,F; L™, L"), induces a space
of operators on the boundary, TH*(Y;l), Il = (L™, L*%) that appear as right lower
corners

PYQR™ : P*(Y,L™) — P*~*(Y, L")
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of (1.4.2), cf. Section 2.2 below. While our notation S*(X;v) is derived from the
role of Seeley projectors in special standard operators, that for TH(Y;1) is motivated
by Toeplitz operators. In fact, classical Toeplitz operators on (say) the unit circle
Y = S in C belong to T°(S';1) for an evident choice of I, namely, I = (L™, L")
for L= = LY = (J, LT, P*) for J = 73 C with the trivial line bundle C on Y = S',
LT as in Remark 1.3.2 above, and Pt the orthogonal projection of L?(S') to the
subspace of all w € L?(S') spanned by {z* : k € N} (which is the Hardy space
and equals P°(S*, L™) = P°(S', L™) in our general notation). Moreover, the gener-
alised Toeplitz operators in the sense of Boutet de Monvel [5] are of type TH(Y';1) for
appropriate Y and l.

Intuitively, S**(X;v) is a “Toeplitz—variant” of the algebra B*4(X;v) of pseudo—
differential boundary value problems.

2 Elliptic boundary value problems

2.1 Ellipticity

Definition 2.1.1 An operator A € 8% (X;v) for (u,d) € ZxN,v = (E, F; L™, L"),
L* = (J*, L%, P*), is called elliptic if the mappings

oy(A) : i E — ax F

and . .
F;S(R.F)@El F;S(R.F)@F/
ca(A) : ® — ®
L~ Lt

are both isomorphisms.

We say that an operator B € S™#¢(X;v~!) forsomee € Nand v~! = (F, E; LT, L)
Is a parametrix of A if

BA-T eS8 % X;v), AB-I¢c8 > (X;v,) (2.1.1)

for certain dy,d, € Nand v; = (B, E; L™, L™), v, = (F, F; LY, LT).

Given J € Vect(Y) and L € Vect(T*Y \ 0), where L is a subbundle of 7} J and
p: 7y J — L a projection, homogeneous of order zero in the covariables n # 0, we
say that an operator P € L% (Y;J, J) is associated with L, if P is a projection and p
its homogeneous principal symbol.

Theorem 2.1.2 Let A € S#4(X;v) be an elliptic operator where v = (E, F; L™ L)
and LT = (J*, L%, PY). Then there exists an elliptic operator B € SH4(X;w) for
w=(F,E;M~ M), M* = (O, M* Q*) with L= e Mt =Lt & M~ =CN for
some N € N such that A® B is elliptic in B#4(X;b) forb=(E®F,Fo E;CN V).

Proof. Set A = u.l.c..A which belongs to B*%(X; E, F) and is elliptic with respect
to oy . By construction the boundary symbol
oo(A) : i H*(RL) @ B - mfH*(Ry) @ F/
represents a family of Fredholm operators on S*Y'; the specific choice of s > d — %
is unessential. Choose any B € B*%(X; F, E) that is elliptic with respect to oy such
that
indS*y O'a(B) = — indS*y O'a(A)
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holds. There are many ways to find such operators B. For the special case p =d =10
we can form the adjoint B = A* that belongs to BY%(X; F, E) (adjoints always refer
to corresponding L?-scalar products). In fact, we then have o5(A*A) = 05(A)*05(A)
which is self-adjoint in L#(R}) @ E’ and have indg+y 05(A*A) = 0 = ind s (A4)* +
ind o5(A). For arbitrary p and d we first observe that d can be ignored, since d is only
involved in a Green summand that is compact on the level of boundary symbols and
hence does not contribute to the index element on $*Y. From Theorem 1.2.1 we have
an order reducing element R € B*°(X; E, E) for every E € Vect(X), i.e., isomor-
phisms H*(X, E) — H*"#(X, E) for all s (it is employed in this proof for s > p* — %)
The operator R% is SL—elliptic without additional boundary conditions; in particu-
lar, we have indg+y o5(RY%) = 0). Setting Ag = ARZ" for p > 0, Ay = Rp"A
for p < 0 we get Ag € BY%(X;E,F) where indg+y 05(A) = indg+y o5(Ao).
Using indgs+y 09(A;) = —indg+y o9(Ag) it suffices to set B = R A% because
indg+y 05(A5) = inds+y Rf +indos(Af) = ind os(Af). By virtue of relation (1.3.1)
we have indg+y 05(B) = [L™ |s+y, Lt |s+v] = [M " |s+y, Mt|s+y], where M* denote
complementing bundles of L¥ in a trivial bundle CV. From Lemma 1.3.1, applied
to B and to the bundles M* € Vect(T*Y \ 0), and from the constructions of the
preceding section we get an elliptic operator B € $#%(X;w). Choosing QF as the
complementary projections to PF the operator A @ B belongs to B#4(X;b) and is
elliptic. O

Note that Grubb and Seeley [15] used a similar idea to embed an elliptic boundary
value problem with projection into a standard one by means of the adjoint operator
and the complementing projection.

Theorem 2.1.3 Let A € S#4(X,v) be elliptic, v = (E, F; L™, L*). Then

H*(X,E) H*""X,F)
A & = ® (2.1.2)
P(Y,L7) P*R(Y,L%)

is a Fredholm operator for each s € R, with s > max(y,d) — % Moreover, A has a
parametriz B € S~H¢(X;v™1) for v™! = (F,E; LT L7) and e = (d — p)*. More
precisely, (2.1.1) holds for di = max(u,d) and d, = (d — p)*, and we have

o(B) = o(A)~? (2.1.3)
(with componentwise inversion).

Proof. According to Theorems 2.1.2 there is an elliptic operator A+ € §#4(X; w)
such that A := A @ AL is elliptic in B#4(X;b). Applying a known result on elliptic
operators in Boutet de Monvel’s algebra we find a parametrix B e B~ (X; b_l)
for e = (d — p)* where BA -1 ¢ B> (X;e), AB-1T € B4 (X ¢) for ¢ =
(BE® F;CY CY) and d; = max(y,d), d, = (d — p)T. Tt is now sufficient to set
B =P~ BR* with operators P~ and R+ of analogous meaning as in relation (1.4.4),
here, associated with the data L™ and L™, respectively. O

Corollary 2.1.4 Under the conditions of Theorem 2.1.3 we have elliptic regularity of
solutions in the following sense. Suppose that Au = f € H*=*X, F) @ P*~*(Y, L")
and that w € H-°(X,E) @ P~(Y,L™). Thenu € H*(X,E)® P*(Y,L™). This

reqularity holds for all real s > d — % satisfying s — p > (d — p)* — %
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In fact, since .4 has a parametrix B € ST#¢(X;v~1), for the composition we get
BAu = Bf € H*(X,E) @ P*(Y,L"). As BA =7 +C for C € S—m*wd) (X v;),
then u=—Cu+ Bf € H*(X,E) & P*(Y,L™).

Lemma 2.1.5 Let E € Vect(X), L = (J,L,P) for L € Vect(T*Y \ 0), and J €
Vect(Y'), where L is a sub-bundle of n5,J and P € L%(Y;J,J) is associated with L.
Then for every finite-dimensional subspace V.C H® (X, EY® P (Y, L) the orthogonal
projection Py HY(X,E)® H°(Y,J) = V (orthogonal with respect to the scalar
product in HY(X, E) & H%(Y,J)) induces an element Py € S™%X;v) for v =
(E,E;L,L), ie.,

1 0y5 (1 O oo
Py = (0 7?) Py (0 R) €S X;v) (2.1.4)
for P=(L2) and R = (} 3) with the embedding R : P*(Y,L) — H*(Y, J).
Proof. We can choose Py as an element in B=°>(X; E, E; J, J) by setting

N

Pyu= Z(u, v;)v;

j=1
for N = dimV, with an orthogonal base v1,...,vx in V. This gives us (2.1.4). O

If an operator A € 8*4(X;wv) in the notation of Theorem 2.1.3 is regarded as a
map (2.1.2) for each given s, we also write ker; A, im; A, coker; A for the respective
kernels, images, cokernels, etc.

Theorem 2.1.6 Let A € S#4(X;v) forv = (E,F; L™, L"), L* = (J*, LE, pt),
be elliptic. Then (in the notation of Theorem 2.1.3) there erists a parametriz B €
S™He(X; v~ 1Y) such that the remainders

C=1I-BA and C, =7 - AB (2.1.5)

are projections, where C; projects to kers A and C, to a complement of ims A, for each
s €R withs > d— %, s—p>(d—p)t— % In particular, ker A, coker A (and hence
ind A) are independent of s.

Proof. First it is clear that ker; A is a finite-dimensional subspace of H> (X, E) &
P>(Y,L7). In fact, since A has a parametrix By € S™»¢(X;v~!), the rela-
tions Au = 0, v € H*(X,E) & P*(Y,L™) imply BoAu = (Z + C)u = 0 for an
C € S—oomax(nd) (X)), and hence u € H®(X,E) @ P®(Y,L™). Let V = kerg A
and form Py € §~°%(X;v,), according to Lemma 2.1.5. Then By = (Z — Py )By is
also a parametrix of A in §7#¢(X;v~1) (because By is of type e = (d — u)* we have
e = max(—p, e) for the type of By).

The kernel of B is a finite-dimensional subspace W in H>® (X, F) & P> (Y, L").
Let Pw be a projection in the sense of Lemma 2.1.5. Then Bz = B1(Z — Pw) maps
a complement of W injectively to a complement of V. Now W can be decomposed
into a direct sum W = Wy @ W1, where Wi = img A N W. We then find a subspace
Uy C H®(X,E)® P (Y, L™) with Uy Nkerg A = {0}, such that A induces a bijection
Ui — Wi. Let D : Wy — U; be its inverse, and form the operator D = DPyw,. Then
B = Bs + D is another parametrix of A which has just the desired property. But this
implies that C; projects to kers A and C, to a complement of im; A for all admitted
s € R. Thus kernel, cokernel and index of A are independent of s. O
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2.2 Reduction to the boundary

The operator algebra S(X) of general boundary value problems contains the subalge-
bra of right lower corners. Ellipticity and index are also interesting in that subalgebra.
Given the datal = (L™, L™) for L* = (J*, L%, P*) we denote by T#(Y;1) the space
of all operators of the form

A=PYAR™ . P*(Y,L™) = P*~*(Y, L")

with P, R~ from Definition 1.4.1 and A € LE(Y;J~,JT). Symbols and composition
results in this operator class are direct consequences of those in S(X). Tt is, of course,
not essential here that y is an integer. Ellipticity of an operator A € T#(Y';1) simply
means that

proy(Ayr™ L = Ly
is an isomorphism, cf. the notation of Definition 1.3.3. A corollary of Theorems 2.1.3
and 2.1.6 is that an elliptic A € 7#(Y;1) induces Fredholm operators

A:PS(Y,L7) — P*#(Y, L"),

where ker A, coker A, ind A are independent of s, and that there is a parametrix
B e T-Hy;1I™Y, I"t = (L*,L™). Consider the case in which J = J~ = Jt
and L = L= = LT, but for which P~ and P*t are arbitrary. Then P~ — P7T is
a compact operator, because P~ and P% have the same principal symbols. The
relative index ind(P~, PT) is then defined as the index of the Fredholm operator
PT :im P~ — im PT (we realise the operators, for instance, in H°(Y, J) = L*(Y, J)),
and ind(P~,P%) = —ind(P*,P™). If A e TO(Y;J,J) is the identity modulo a
compact operator, we have A = PTR™ € 7°(Y; L™, L") for L* = (J, L, P*) and
ind A = ind(P~, P*). Now let D € B#4(X; E,F) be an (o) elliptic operator for
which we have two elliptic boundary value problems

D
-Ai = Su,d Xa i)
(1) € sxion
v; = (F,F;0,L;) for Ly = (J, L;, P;), i = 1,2. The sub-bundles Ly, Ly of 73, J are
of course, 1somorphic, but they may be different, including the projections Py, Ps.
According to Theorem 2.1.3 there are parametrices B; € §™#°(X; v;l), t=1,2. Set
B2 = (B2, S2) and consider the composition

AL By — (DB2 DSQ)

B T.S (2.2.1)

Then we have DBy = 1 and DS = 0 modulo compact operators, and 715, €
TO(Y; Lo, Ly) is elliptic.

Theorem 2.2.1 We have

ind A; —ind Az = ind(7353). (2.2.2)
Proof. We haveind Ay = —ind Bs, so the assertion is a direct consequence of (2.2.1).
O

Remark 2.2.2 Assume L1 = Ly and T, = P;T for the same T, i = 1,2. Then, as a
consequence of the observations above, we have

ind A; —ind As = ind(Ps, Py).
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Similarly to classical boundary value problems the operator 7152 may be regarded
as the reduction of the boundary conditions 7} to the boundary, by means of a second
elliptic boundary value problem A4, for the same elliptic operator D. In this sense
(2.2.2) is an analogue of the Agranovich-Dynin formula. Also for elliptic operators
A; € 8#4(X;v;), i =1,2, in general, with u.l.c..4; = u.l.c. Ay there is a reduction
to the boundary; the corresponding algebraic manipulations are similar to those in
the book [22], pages 252-254 and left to the reader.

2.3 Transmission operators

Let X = X4 and X_ be compact C° manifolds with C*° boundaries, dim X} =
dim X_. Assume that M is a closed compact C'* manifold with X1 C M such that

X,UX_=M, X nX_=VY

where Y = 0X4. An example for such a situation is M = 2X, the double of X
where two copies of X are glued together along ¥ = 0X. Given an elliptic operator
S € LE(M;V,W) for V,W € Vect(M) we can ask for relations to elliptic bound-
ary value problems for Sy = S|x, € Li(int Xo; Vi, Wa), Vi = Vx,, Wi = W]x,.
This problem leads to a number of difficulties. The operators St do not automatically
have the transmission property with respect to Y. According to the orientation of this
paper we assume that Si have the transmission property, though this may appear
rather restrictive under the point of view of all possible operators .S € L (M; V, W).
The general case can be treated in the framework of the edge pseudo-differential ma-
chinery, especially concerning the analytic characterisation of transmission operators
for arbitrary S, cf. [30], Section 2.1.10. Here, we are interested in expressions con-
necting the index of elliptic operators S with indices of boundary value problems for
S+ as they are always possible in the sense of Section 2.1, provided the transmission
property is fulfilled. Note that we may always reach elliptic symbols with the trans-
mission property, starting with arbitrary ones, by a stable homotopy through elliptic
symbols.

Denote by r* the operators of restriction from M to int X4 and by e* the oper-
ators of extension by zero from int Xy to M. Given an S € LY (M;V, W) with the
transmission property with respect to Y,

S:HY (M, V)= H7HM, W),
we can form the operators
rESet  HH(Xg, Vi) — H7H( Xy, Wy) (2.3.1)

and

rESe® L HY(Xg, V) — H ™M (Xg, Wa), (2.3.2)

for s > —%. The operators (2.3.1) belong to B#%(X4; Vi, Wy) while (2.3.2) have C™
kernels because of the pseudo-locality of S| though near Y they are singular. In the
case M = 2X we can define the reflection diffeomorphisms ¢ : X4 — X+ that map
an x € X4 to the corresponding point on X¢ (recall that X and X_ are copies of
the same X). In this case we have

rtSe”e* e*r™Set € BEY (X4 Vi, Wy, (2.3.3)
r=Sete™ e rtSe” € BEY(X_; V., WL). (2.3.4)
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Relations of the latter kind that are valid in analogous for for arbitrary M are
systematically employed in Myshkis [18] and proved in detail in Grubb [12]. Concern-
ing more general results in this direction, cf. Eskin [7], Lemma 15.3, or Schulze [32],
Remark 4.1.25.

For notational convenience we assume that M = 2.X in the sequel. The extension
of the results to the general case is straightforward and left to the reader.

First let 4 = 0 and denote the H%-spaces also by L?. The ellipticity of S €
LY(M;V, W) is equivalent to the Fredholm property of the operator

S LA (M, V) — L*(M, W)

or of

DO I & — & .
r~SeT r~Se LAX_, V) LA(X_,W_)

This is equivalent to the Fredholm property of

<r+Se+ r"’Se_) LH(X4, Vy)  LA(Xy W5

LX(X,E) L*X,F)
& - @ . (2.3.5)

LAX,E)  LA(X, F)

S — rtSet rtSe~¢e* )
T \efrSet  g*r~Se ¢

In the last mapping X = X, F =V,, F = W,. Note that we can write
g* 17 Se"e* =11 (e*5e*)et = 1t (e, 9)et,

where ¢, is the operator push—forward under the (involutive) diffecomorphism e. Given
a bundle H on a space we also write 2H = H @ H. The Fredholm property of
(2.3.5) means that S € B®%(X;2F,2F) is elliptic; the Shapiro-Lopatinskij condition
1s automatically satisfied, without additional trace or potential entries with respect
to Y. In other words

05(S): 1y S(Ry) @ 2E" — 73 S(Ry) @ 2F'
is an isomorphism, my : 7Y \ 0 = Y, or, equivalently,
0o(S): Ty L} (Ry) @ 2B — 7y LA (Ry) @ 2F' (2.3.6)
1s an isomorphism. Now
oa(rTSeme*), op(c* ™ Set) i L LRy @ B — mp LA (Ry) @ F'

are compact—operator—valued, since these entries are of Green type, cf. (2.3.3), (2.3.4).
Thus, restricting (2.3.6) to S*Y, we get

inds.y 05(S) = inds.y o5(rtSet) +indg.y o5(rt (e*S)et) = 0.

We can also consider the boundary symbol of r=Se™ with respect to X_ (if nec-
essary, we denote by 75 (+) the boundary symbols with respect to the x—sides). We
have

0o,(—y(r7SeT) iy LA (R_) © BN — wy L*(R2) © F.
It is clear that then
indg-y 0'37(+)(r+ (e+5)eT) = indguy 0a,(—)(r7Se™).

Thus we proved the following result:
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Proposition 2.3.1 Let S € LY (M;V, W) be an operator with the transmission prop-
erty with respect to'Y. Then

inds+y 0'37(+)(I'+Se+) = —indgsy 05 (—y(r7 Se™).

Next consider an arbitrary operator T € L% (M ; V, W) with the transmission prop-
erty with respect to Y. (Recall that this condition is symmetric with respect to the
minus or the plus side of V). Thus we get Ty = rtTet € B#Y(X,;V, Wy) and

T_ =r~Te™ € BHY(X_;V_,W_). Composing
Tyt (X4, Vi) = L2 (X4, Wy

from the right with an order reduction R=#(Vy) : L3(X4,V4) — HH(X4, V), cf.
Theorem 1.2.1, we obtain T4 R=#(Vy) € B»(X4; V4, Wy ) and

indg+y 0'37(+)(T+R_“(V+)) = indg+y 0'37(+)(T+). (2.3.7)

The operator T4 R™#(Vy) can also be interpreted as rtSet for an operator S €
LY(M;V, W) with the transmission property. For this S we then have

inds+y 0y, (—y(r7Se”) = inds+y 05 () (1) — pu[rt B

where F/ = Vl]y and m : 5*Y — Y. Thus, using Proposition 2.3.1 and the fact that
(2.3.7) equals ind g~y 0'37(+)(I'+Se+), we get the following theorem:

Theorem 2.3.2 Let T € LY\(M;V,W) be an operator with the transmission prop-
erty with respect to Y and which 1is elliptic with respect to oy. Set Ty = rtTet.
Then the boundary symbols 05 (+y(1x) of Tk, understood in the sense of the classes

B (X4 Ve, Wy) satisfy the relation
inds+y 0y (4)(T4) = —indgey 05 -y (T-) + p[r] E'].

Note that when T is an elliptic differential operator of order p the assertion of
Theorem 2.3.2 has a relation to well-known facts about Calderén—Seeley projectors
associated with T'. For an elliptic differential operator the boundary symbols

7o) (T2) o) - S(Ey) © Y = S(By) @ F,
7o, (T )y m) - SE) 0 By SE) 0 1y,

E = Vl|y, F = W]y, are surjective for all (y,n) € T*Y \ 0, and the kernels are
isomorphic to sub-bundles L* of 73.J for J = E' & ... @ E' (¢ summands), i.e.,
indg«y Ua,(:t)(T:I:) = [L:t S$+v]-

Set Lt = (J, L%, P%), where the projections P* € LY%(Y;J,J) are associated
with L*, and suppose that Pt + P~ = 1. Then we have

H*(Y,J) = P*(Y,LT) @ P*(Y,L™) (2.3.8)

for each s € R. Let vy = (Vi,Wi;O,Li) for 0 = (0,0,0) and choose elliptic
operators

T
T+ = ( i) € SMH(Xysv4);
By

recall the definition By = Piéi for trace operators Bi in the sense of
BRH(Xy; Ve, We;0,J). (These may be, for instance, standard differential bound-
ary operators composed with suitable reductions of orders on the boundary.)
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In view of the ellipticity we have the following Fredholm operators

T:HY(M,V) — L*(M, W) (2.3.9)
and
L Xy, Wy)
Te:  HY (XL, Vy) = 5%, . (2.3.10)
PO(Y, LY)

We want to derive a relation between their indices. To this end, consider the following
diagram

0—— H* (M, V) —— H¥ (X4, Vi) @ H*(X_, Vo) —— L2(Y, J) ——0

|7 Tl [ . (2.3.11)

y b [ LX+Wy) LA W)\ 4
0—— L (M, W)+ o 53] ® — LY, J)~—0
Po(v,Lt) Po°(Y,L7)

The maps ¢ and j are defined as follows:

u—1

. . —utk+1
i) =ulx, ulx_,  jluy dus) = PAFTT (g — 1P ul),
k=0

for v5 f = Df fly,, with Df being the derivative in normal direction to Y and |y,
the restriction to Y from the & side. The symbol A%, € LY (Y; E', E') denotes an
order reduction that induces isomorphisms H*(Y, E') — H*77(Y, E') for all s € .
The map a is the canonical embedding, where we use (2.3.8) for s = 0; the map b is
the canonical projection, where we use L?(M, W) = L*(X4, Wy )& L3(X_,W_), and

T=T+87-, L=LyDL_, (2.3.12)
where L4 € S™*%(X4;v1') are parametrices of T1. Finally, we set
R=joLoa: L*(Y,J)— L*(Y,J), (2.3.13)

which is an elliptic pseudo—differential operator on Y and, as such, Fredholm.

The rows of the diagram (2.3.11) are then exact and we have T'=bo7 o4. All in
all, the assumptions of an abstract well-known lemma (see, e.g., Rempel and Schulze
[22], Section 3.1.1.3) on indices of Fredholm operators are thus fulfilled so that the
following conclusion is valid.

Theorem 2.3.3 With the notation of (2.3.12) and (2.3.13),
ind7 =ind 7 4 ind R.

2.4 Pseudo—differential projections

This section has the character of an appendix. We give an explicit construction
of pseudo—differential projections to corresponding principal symbols. The result is
known, but we believe it may useful for the reader to see a brief proof.

Let M be a closed compact €' manifold with the space L’} (M; E, F) of classical
pseudo—differential operators of order pu, acting between distributional sections of
vector bundles E and F on M. Recall that the homogeneous principal symbol of order
p of an operator A € LY (M; E, F) is a bundle homomorphism oy (4) : 7*E — 7*F
where 7 : T*M \ 0 — 0.
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Theorem 2.4.1 Lel p : m*E — n*E, E € Vect(M), be a projection, i.e., p> = p,
with p(x, A) = p(x, &) for all (x,&) € T*M\0, A € Ry. Then there exists an element
P e L%(M;E, E) with P2 = P and oy (P) = p.

Moreover, if p = p? satisfies the condition p = p*, there is a choice of P = P? ¢
LY(M; E,E) with oy(P) = p and P = P*.

The adjoint of p refers to a given Hermitian metric in £ and the adjoint of P to a
fixed scalar product in the space L%(M, E), with respect to a Riemannian metric on
M and the Hermitian metric in E.

Let I be a (complex) Hilbert space, L({H) the space of linear continuous operators,
K (H) the subspace of compact operators in H, L(H)/K(H) the Calkin algebra, and
7 L(H)— L(H)/K(H) the canonical map.

Lemma 2.4.2 Let p € L(H)/K(H) be an element with p? = p and choose any
Q € L(H) with 7Q = p. Then the spectrum o) (Q) of Q has the property that

ocm)(Q) N (C\ ({0} U{1}))
18 discrete.

Proof. First observe that p? = p implies ooy (p) C{0FU{1}. In fact, for A €
C\ ({0}U{1}) =: U there exists (Ae —p) ™t = s1-p+ 1 (e—p), where e € L(H)/K(H)
is the identity, e = 7 I for the identity I € L(H). Now U A= A —Q € L(H) is a
holomorphic Fredholm family in U, and A/ —@ is invertiblein £(H) for [A| > (|Q|| ¢ (-
A well-known invertibility result on holomorphic Fredholm families (a proof may be
found in [28], Section 2.2.5) implies that AT — @ is invertible for all A € U \ D for
a certain discrete subset D (i.e., D is countable and D N K finite for every compact

subset K C U). O

Proof of Theorem 2.4.1. Lemma 2.4.2 implies that there exists a 0 < § < 1 such
that the circle C5 := {A: |[A = 1| = é} does not intersect o) (Q). We set

1 -1
P .= o (/\[ — Q) dA. (2.4.1)
Cs

Then P? = P, and we have P € L% (M; E, F) as a consequence of the holomorphic
functional calculus for L% (M; E, F). Moreover, we have

1
i ) ¢

Cs
1 1 1 1
_{%/—/\_1d/\}p+{%/xd/\}(6—p).
Cs C

8

oy(P) = e — p)~tdA

The second summand on the right hand side vanishes, while the first one equals p by
the Residue theorem.

To prove the second part of Theorem 2.4.1 we suppose p = p*. Then, if P, = P2 €
LY%(M; E|E) is any choice with oy (Py) = p, also Q := PPy € LY (M; E, E) satisfies
0y (Q) = p*p = p* = p. For Q we have Q@ = @* > 0. Let 5 be the spectral measure
of Q. Then the projection P € LY (M;E, E) defined by formula (2.4.1) equals the
spectral projection

7](35(1) N O'L:(L2(M7E))(Q)) for B; = {/\ eC: |/\ — 1| < (5}
In particular, we have P = P* = P2 and oy(P) = p as above. O
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Remark 2.4.3 The above construction of projections has a more general functional
analytic background. If ¥ 1s a Fréchet operator algebra with a given ideal T, there is
a lifting of idempotent elements of W/T to idempotent elements in ¥, provided some
natural assumptions on the operator algebra are satisfied, c¢f. Gramsch [10]. In par-
ticular, for W = L%(M;E,E) and T = Lc_ll(M;E,E) the space W/T is isomorphic
to the space of homogeneous symbols of order zero. The general theory gives a char-
acterisation of the space of all idempotent elements P € L% (M; E, E) that belong to
the connected component of a given idempotent Py € LY (M; E, E) and have the same
homogeneous principal symbol as Py. The result says that all those P have the form
GP.G™', where G varies over the connected component of the identity in the group
I+ Kev!l: Ke Lc_ll(M; E,E)}, where W1 is the group of invertible elements
of LY(M; E, E).
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