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0 Introduction

The present paper deals with homotopy classification issues for elliptic operators on
manifolds with conical singularities. Informative classifications and, accordingly, infor-
mative index formulas emerge for the case in which the principal symbol of the conormal
symbol (e.g., see [1]) is subjected to constraints of a special form, for example, has cer-
tain symmetries.! Then the classification splits into summands corresponding to the
principal symbol and the conormal symbol, and the index formula can essentially be
obtained from the Atiyah—Singer theorem applied to the principal symbol (the contri-
bution of the interior) and the relative index theorem (the contribution of the singular

!Unfortunately, the homotopy classification of all elliptic operators on manifolds with singulari-
ties 1s such that the corresponding most general index formula for elliptic operators D is necessary
tautological:

indg (D) = ind4 (D).



points). In this paper we do not touch the index formulas themselves, and we refer the
reader to, say, [2, 3] for that matter.

We establish necessary and sufficient classification splitting conditions in terms of
the spectral flow of a periodic family of conormal symbols (for spectral boundary value
problems, similar splitting conditions for the index formula were obtained in [4]) and
describe the classification both for the case in which these conditions are satisfied and
for the case in which they are violated. Next, we present simple sufficient symmetry
type conditions under which the classification splits and give more specific classification
formulas under these conditions.

1 Preliminaries

1.1 Elliptic operators on manifolds with singularities

All relevant definitions pertaining to manifolds with singularities and pseudodifferential
operators on such manifolds can be found, e.g., in the monograph [1] (cf. also [5]). We
consider a compact manifold M with conical singularities, and by 2 we denote the
base of the corresponding cone. (If there are several conical points, we treat them as a
single point with base () having several connected components. Furthermore, M will
be identified with its stretched manifold, which is a ¢'*° manifold with C'** boundary
).) Without loss of generality, we consider only zero-order pseudodifferential operators
in weighted Sobolev spaces with the weight line Im p = 0. These spaces will be denoted
by H*(M) or H*(M, E); the latter form is used if we need to indicate the vector bundle
explicitly. We consider only classical pseudodifferential operators, so that the principal
symbol has an asymptotic expansion into a sum of functions homogeneous of orders
0,—1,—2,... with respect to the cotangent variables.

The case of manifolds with conical singularities is different from the case of smooth
compact manifolds without singularities in that the class of a given pseudodifferential
operator D modulo compact operators (that is, an element of the Calkin algebra) is
determined by a pair of symbols rather than one symbol, namely, by the principal
symbol o(D), which is a function on the compressed cotangent bundle T*M (see [6,
1]) outside the zero section, and the conormal symbol o.(D). The conormal symbol
is a one-parameter operator family in the spaces H*(€); this family is defined and
analytically depends on the parameter p in some neighborhood |[Im p| < ¢ of the weight
line. More precisely, it is a pseudodifferential operator with parameter p on ), where
the parameter ranges in the above-indicated strip. Treated as a pseudodifferential
operator with parameter, the conormal symbol, in turn, has a principal symbol, which
will be denoted by o(o.(D)) and called the principal conormal symbol and which is a
homogeneous function of the variables (&, p) on (1T*Q x R)\{0}, where £ is the variable
in the fibers of T*Q, p € R, and {0} is the zero section {p = 0,& = 0} of the vector



bundle T*Q x R over ).

The principal and conormal symbols of an operator D satisfy the consistency con-

dition
o(oe(D)) = o(D)logen (1)
under the natural identification T7*Q x R ~ 9(T*M).

One of the main theorems of elliptic theory, namely, the finiteness theorem (e.g.,
see [1]) states that a pseudodifferential operator D on M is Fredholm in the Sobolev
spaces H*(M) if and only if it is elliptic in the following sense:

1°. The principal symbol (D) is invertible T*M\{0}.

2°. The conormal symbol o.(D) is (boundedly) invertible in the Sobolev spaces
H*(Q) for all p € R (that is, for all p lying on the weight line).

Under the first condition, we say that the symbol o(D) is elliptic. Under the second
condition, we say that o.(D) is elliptic. It follows from condition (1) that if o(D) is
elliptic, then o.(D) is a family of operators on  elliptic with parameter p in the
sense of Agranovich—Vishik [7] in a sufficiently narrow strip containing the weight line
Imp = 0. For brevity, in this case we say that D and o.(D) are formally elliptic. If
o.(D) is formally elliptic, then the ellipticity condition 2° can a priori be violated at
at most finitely many points (poles of the finitely meromorphic family a.(D)™*(p) on
the weight line).

In what follows we need some simple properties of pseudodifferential operators on
manifolds with singularities.

Proposition 1 For any principal and conormal symbols satisfying the consistency con-
dition (1), there exists a pseudodifferential operator on M with these symbols. If the
symbols continuously (resp., smoothly) depend on additional parameters, then the pseu-
dodifferential operator can also be chosen to depend on these parameters continuously
(smoothly).

The proof can be obtained by standard techniques related to partitions of unity.

Let a be a given elliptic symbol on T*M\{0}. A trivial extension of a is a symbol
of the form a & 7y, where v : K, — F5 is a bundle isomorphism over M and 7 :
T*M — M is the natural projection.

Proposition 2 Let a;, t € [0,1], be a family of elliptic symbols on T*M\{0} contin-
wously depending on the parameter t. Then, possibly after a trivial extension and a
substitution t = f(7) in the homotopy parameter, this family can be lifted to a contin-
wous family of elliptic pseudodifferential operators on M with principal symbols a;,.

The proof will be given in § 5.
We shall also use further properties of elliptic pseudodifferential operators on M;
they will be stated below, together with relevant references.
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1.2 The spectral flow of a family of conormal symbols

The definitions and theorems given in this subsection pertain to the generalization,
given in [3] (see also [8]), of the notion of spectral flow [9] to the case of arbitrary
conormal symbols (as to polynomial symbols, e.g., see [4]).

Definition 1 Let D(p) be a formally elliptic conormal symbol on a closed manifold
Q, and let py be a singular point of D(p), that is, a pole of the family D~!(p). The
multiplicity of poy is the integer

o) = mpim) = Trace Res { 074 2512} )

In what follows we consider only conormal symbols holomorphic in some strip
|Im p| < e around the weight line Imp = 0.

Let Di(p), t € [0,1], be a continuous family of conormal symbols. Then for any
sufficiently small § > 0 there exists a partition 0 = t; < t; < ... <ty = 1 of the interval
[0,1] and numbers v; € (—e,e), i =1,..., N, v1 = v = =4, such that for ¢t € [t,_1, 1]
the operator D;(p) is invertible on the weight line Imp =,. For j =1,..., N — 1, let
piks k= 1,..., N;, be the poles of the conormal symbol D, (p) in the strip between the
weight lines Imp = v; and Imp = v;1;. We set

NlN]

Z :|:th p]k (3)

=1

Bl

J=1

[44

where the sign “+7 is taken for 7,41 < 7; and the sign “—" otherwise.

Definition and Theorem 2 (a) For sufficiently small § > 0, the number g(d) is
independent of &, the partition ty,...,tx_1, and the numbers v,,...,yn_1. We set

St{D} & g(5), (4)

(6 > 0 is sufficiently small) and refer to this number as the spectral flow of the family
D,.

(b) The spectral flow is a homotopy invariant of the family Dy with fixed endpoints
and is also invariant under deformations of the family for which Do(p) and Di(p)
always remain invertible on the weight line Imp = 0.

The main properties of spectral flow are expressed by the following three theorems.



Theorem 1 Let Di(p), t € (—o0,00), be a family of conormal symbols that smoothly
depends on t and exponentially stabilizes ast — oo to some conormal symbols Dy (p)
invertible on the weight line Imp = 0. Then

sf {D;} = —ind D, (—@'%) : (5)

where Dy (—i%) is treated as an elliptic operator in the Sobolev spaces H* () x R) with
weight exponent 0 on the infinite cylinder ) x R,.

Theorem 2 Let Dy(p), t € 57, be a smooth periodic family of conormal symbols. Then

sf {D;} = —ind D, (—@'%) : (6)

where the right-hand side is the index of the elliptic operator on Q x S1 generated by
the family D;.

The proofs of Theorems 1 and 2 can be found in [3].

Theorem 3 (a relative index formula) Let M be a manifold with conical singu-
larities, Py and Py elliptic operators in the Sobolev spaces H*(M), and Py a homotopy
between Py and Py in the class of formally elliptic operators, that is, operators with
elliptic principal symbols. Next, let Dy(p) = o.(FP;) be the conormal symbol of P;. Then

ind Py —ind P, = sf {D;}.

The proof will be given in § 5.

2 The classification of the set of all elliptic opera-
tors

2.1 The reduced classification

Prior to studying the general classification of elliptic operators on a manifold M with
conical singularities, it is useful to find out how the reduced classification, that is, the
classification of operators with given principal symbol, looks like. Thus, let an elliptic
principal symbol a be given. We choose some elliptic operator A of order zero with
principal symbol o(A) = a.



Lemma 1 Fuvery elliptic operator D of order zero with principal symbol o(D) = a has
the form
D=NA+Q,

where ) is a compact operator and N is an elliptic operator with unit principal symbol.

The proof readily follows from the calculus of pseudodifferential operators on M
(the principal and conormal symbols of a product of operators are equal to the products
of the respective symbols of the factors); see [1].

Lemma 1 shows that the reduced homotopy classification of elliptic pseudodifferen-
tial operators on M is just the homotopy classification of operators with unit principal
symbol. In turn, this classification is obviously equivalent to the classification of el-
liptic conormal symbols with unit principal symbol.? We identify the group of stable
homotopy equivalence classes of elliptic operators on M with unit principal symbol and
the group of stable homotopy equivalence classes of conormal symbols on ) with unit
principal symbol and denote either of these groups by ().

Theorem 4 The group ®o(Q) is isomorphic to Z. Furthermore, one of the two possible
isomorphisms

X Bo() o Z (7)

is given by the formula

Mla(p)]) = st {ta(p) + (1 = 1) £}, (8)

where [a(p)] € ®o(Q) is the stable homotopy equivalence class of an elliptic conormal
symbol a(p) with principal symbol o(a(p)) = 1 and F is the identily operator (the
constant family).

Proof. Let us first prove that &y ~ Z. Let a(p) be an elliptic conormal symbol
with unit principal symbol. Consider the family

tE+ (1 —t)a(p), tel0,1].

Arguing as in the proof of Proposition 2 (see Subsection 5.1), we see that, possibly
after a trivial extension of a(p) and a change of the homotopy parameter, we can find
a smooth family b(p) of finite rank operators decaying at infinity and such that the
operator

tE 4 (1 —t)(a(p) + b(p))

20f course, here we speak only of homotopies in which the principal symbol always remains
constant.




is invertible for all p € R and ¢ € [0, 1]. Now the homotopy

a:(p) = a(p)[tE + (1 — t)(alp) + b(p))] ™

in the class of elliptic conormal symbols takes a(p) to

a(p)(a(p) + b(p))™" =1 —"0b(p)(al(p) + b(p))™" =1+ T(p),

where T'(p) is finite rank. Since T'(p) decays as p — +oo, we can view 1 + T'(p) as a
continuous mapping from S! into the set of invertible operators in a finite-dimensional
space, and now the desired assertion follows from the fact that

m(GL(n,C)) = Z.

Next, the mapping (7) is well-defined by formula (8). Indeed, let

Since a;(p) is elliptic for all ¢, it follows that sf{a;} = 0. Next, the family
th(p) + (1— 1)
is homotopic to the concatenation of the families

al(p),  ta(p)+ (1 —1)E,

and by Definition and Theorem 2, (b), we see that
st {tb(p) + (1 =) E} = st {as} + sf {ta(p) + (1 —t)E} = sf {ta(p) + (1 = t)E}.

Let us prove that the mapping (7) is an epimorphism. Let {e;}32; be an orthonormal
basis of smooth functions in L*(), and let P, be the orthogonal projection on e;. We
set

alp)=1+ P (ew(p) — 1) \

where
p

op) = [ vip)dp



and ¥ (p) is a function analytic in some strip containing the real axis, rapidly decaying
as Rep — +oo, and such that

o(p) = [ bip)dp=2r.

Since €¢(?) — 1 rapidly decays in the same strip as Rep — oo, it follows that a(p) is
an elliptic conormal symbol with o(a(p)) = 1, and straightforward verification shows
that

sf{ta(p)+ (1 —t)E} = 1.
It remains to note that any epimorphism Z — Z is an isomorphism. The proof of the
theorem is complete. a

2.2 The general classification

Now we can consider the usual stable homotopy classification of all elliptic pseudodif-
ferential operators on M. Let Ell(M) be the set of stable homotopy equivalence classes
of elliptic pseudodifferential operators on M. We equip Ell(M) with the structure of
an abelian group induced by the direct sum of operators. Then the following theorems

hold.
Theorem 5 The mapping
x: El(M)— K(I"M)& Z (9)

given by the formula
[D] = ([o(D)], ind D), (10)
where [o(D)] € K(T*M) is the element specified by the difference construction [10] and

ind D is the analytical index of the operator D, is an isomorphism of groups.

Here T*M is the compressed cotangent bundle, and K is the K-functor with com-
pact supports.

Theorem 6 For a manifold M with conical singularities, there is no isomorphism
T EI(M) = Gy @ Gy (11)

on the direct sum of any groups Gy and Gy such that X1([D]) depends only on [o(D)]
and X2([D]) depends only on o.(D). Moreover, the stable homotopy equivalence class
of an operator D is not determined by the pair [o(D)], o.(D).

We do not give a separate proof of Theorems 5 and 6, since these theorems are a
special case of more general classification results proved below in § 3. The theorems
themselves serve as the motivation of our subsequent considerations.
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3 Splitting classifications

3.1 Homotopies and equivalence classes of elliptic pseudod-
ifferential operators

Theorems 5 and 6 show that, generally speaking, there is no “good” homotopy clas-

sification of all elliptic operators on a manifold with singularities. Hence, instead of

EI(M), we consider subtler groups whose construction involves restrictions of a special

form imposed on the operators and/or allowed homotopies. We deal only with restric-

tions specified in terms of the principal conormal symbol. By definition, an elliptic
principal conormal symbol is a bundle isomorphism?

a: B — 7" E,,
where F| and Fs are vector bundles over ) and
m: ST x R)\{0}) —

is the natural projection (here by S(F\{0}) we denote the sphere bundle associated
with a vector bundle F').
Let X be some set of principal conormal symbols with the following properties:

(i
(ii
(iii
(iv

Obviously, in the set of sets ¥ satisfying conditions (i)—(iv) there is a maximal
element ¥ and a minimal element X; the set ¥ consists of all principal conormal
symbols, and X consists of symbols of the form 7*«, where « is a bundle isomorphism

) if @: Ey — FEy is a bundle isomorphism over €, then m*a € ¥;
) if a € X, then ¢! € X;

) ifa,be X, then a® b€ X

) if a,b € ¥ and the product ab is defined, then ab € ¥.

over ).

We choose some set ¥ with properties (i)—(iv) and refer to elements of it as admis-
sible symbols.

Next, let I' be some set of continuous families {a },¢[0,1] of principal conormal symbols
with the following properties:

(v) if {a;} € ', then a;, € ¥ for any ¢ € [0, 1];

(vi) if @ € ¥, then the family a; = a, t € [0, 1], belongs to I

3We do not use nonelliptic symbols, and for brevity we omit the adjective “elliptic” in what follows.

10



(vii) if {ay}iep,1) is a continuous family of bundle isomorphisms over 0, then {7*a;} €

F.

?

(viii) if {as}, {6} € T, then {a;'}, {a; ® b} € T
(ix) if {a:}, {b:} € I" and the product a:b; is defined, then {a:b;} € I’;

(x) if {a¢},{b:} € I and a1 = by, then {(aUb);}I', where the concatenation {(aUb):}
of the families a; and b, is defined by the formula

A4, t - [0, 1/2],
Ll b), =
(aLiB) { bat—1, t€[1/2,1];

(xi) if {a;} € I, f: [0,1] — [0,1] is a continuous mapping, and b, = ay(), then
{b} €T.

We choose some set I' with properties (v)—(xi) and refer to elements of it as admis-
sible conormal homotopies.

Remarks.
(a) Properties (i)—(xi) are natural if we intend to use ¥ and I' in the definition of
stable homotopy equivalence classes.
b) Properties (v)—(vi) are the compatibility conditions for 3 and T
p p y
(c) For given ¥, a trivial example of I' can be constructed as follows:

I'={{a:}|as € ¥ Vt €[0,1], a; is a continuous family}.

The pair (3,T') thus obtained will be denoted merely by .
(d) For a given ¥, we can construct a pair (X/,I") as follows: ¥ = ¥ consists of all
conormal symbols, and

I'" = {{a;} | a, is a continuous family and aa;' € ¥ V¢ €[0,1]}.

This pair (X/,1”) will be called the “dual” pair of ¥ and will be denoted by ¥*. One
can readily verify that ¥* satisfies conditions (i)—(xi). (We do not define the notion of
a dual pair for an arbitrary pair (¥,1).)

Let us now give a definition of the set of stable homotopy equivalence classes of
elliptic pseudodifferential operators on M associated with a pair (X, I').

Definition 3 By Elly r(M) we denote the quotient of the set of elliptic pseudodiffer-
ential operators D of order zero on M with principal conormal symbols o(D(p)) € X
modulo the following equivalence relation: Dy ~~ D, if there are isomorphisms (3; and
(3, of vector bundles over M such that 3 & Dy is homotopic to 3, & D5 in the class of
elliptic operators on M, and moreover, the principal conormal symbol of the homotopy
belongs to I'.

11



Proposition 3 (a) Definition 3 is consistent. In other words, / is indeed an equiva-
lence relation.
(b) The direct sum of operators induces the structure of an abelian group on the set
Ellgr(M). B
(c) For (3,I') = X we have Elly r(M) = Ellg(M).
)

(d) The analytzcal index of an operator induces a well-defined homomorphism
ind : Ellxr(M) — 7.

Proof. We only outline the proof, which closely follows that of the corresponding
fact in ordinary elliptic theory [10].

(a) The symmetricity, reflexivity, and transitivity of a follow from (xi), (vi), and
(x), respectively, with regard to (vi), (viii), and (i).

(b) Obviously, the direct sum preserves the equivalence relation ~. Next, for a,b €

Y the family
it s 7t it s 7t
c_(C082 81n2)(a 0)(COS2 —sm2)
, =
s 7t it s 7t it
—sin 5+ cos 5 0 b sin 5 cos 5

satisfies the condition
a 0 b 0
CO prnd 5 cl prnd
0 b 0 «a

and is, by virtue of (vi)—(ix), an admissible conormal homotopy, whence we can readily
find that A® B ~ B ® A whenever A and B are admissible operators. Moreover, if
A'is a given admissible operator and B is an elliptic operator with principal symbol
o(A)™!, then AB = N is an operator with unit principal symbol. Let N be the class
of N in ®4(Q), and let N; € N—'. Then ABN, ~ 1, so that Elly (M) is an abelian
group.

Assertions (c¢) and (d) are obvious. The proof of the theorem is complete. O

Let us introduce yet another groups associated with the pair ¥, I". Namely, we
denote the set of stable homotopy equivalence classes of admissible principal symbols
by Kxp(T*M), the set of stable homotopy equivalence classes of admissible principal
conormal symbols by Ky p(9T*M), and the set of stable homotopy equivalence classes
of conormal symbols with admissible principal symbols by Cox r(€) (in all three cases,
only homotopies consistent with I' are used in the definition of homotopy equivalence).

Theorem 7 (a) Kyp(T*M), Ky p(0T*M) and Coxr(Q) are abelian groups (the ad-
dition in all cases is induced by the direct sum of representatives of the corresponding
classes).

12



(b) The diagram
0 —— &y(Q) —— Ellg (M) —2—~ Ksp(T"M) —— 0

| 6 i (12)

0 —— B(Q) —— Cogr(Q) —2~ Kygp(dT*M) — 0,

commutes. Here the mappings o are induced by corresponding principal symbols, the
mapping ¢ in the upper row is induced by the mapping that takes each conormal symbol
to an operator with unit principal symbol and with this conormal symbol, the mapping
1 in the lower row is induced by the embedding of conormal symbols with unit principal
symbol in general conormal symbols, o. is induced by the passage to the conormal
symbol, and j is induced by the restriction to the boundary of the compressed cotangent
bundle.

(c¢) The upper row in diagram (12) is exact, and the lower row is a complex and is
exact in all terms except possibly for the first.

Proof. All assertions of the theorem are a direct consequence of the corresponding
definitions, except the exactness. To prove that the upper row is exact, we note that
by Theorems 3 and 4, with regard for the obvious fact that the index of the identity

operator is zero, one has
ind (i(a)) = Ma), a € Bo(Q),

where A is the isomorphism (7). Thus, A™' oind is a left inverse of 7, and the sequence
is thereby exact in the first term. Exactness in the second term is obvious for both
rows. Exactness in the third term follows from Proposition 2 (for the second row, more
precisely, from the construction in the proof of that proposition).

The proof of the theorem is complete. a

Corollary 1 (the “universal” classification”) The mapping
XN=NXsr: Ellsr(M) = Ksp(T"M) & ©0(9)

given by the formula
[D] = ([o(D)], A~ (ind D))

is an isomorphism of groups.

Indeed, we have seen from the proof that the mapping A~! o ind splits the upper
row of (12). Note that we obtain Theorem 5 as a special case.

13



Remark 1 The classification provided by Corollary 1, as well as the special case of
it given by Theorem 5, has the following disadvantage: the second component of the
mapping X depends both on the principal and the conormal symbol. In the following
subsection we study conditions under which there exist splitting classifications, that is,
classifications in which each of the components depends on only one component of the
symbolic information.

3.2 Necessary and sufficient conditions for the existence of
a splitting classification

In this subsection we prove the following theorem.

Theorem 8 (a) Let A C Q be an arbitrary subring of the ring Q) of rationals. The
following condition is necessary for the existence of an isomorphism

X=Xa®xp: Ellsgr(M)®A— A® B

of A-modules such that x4 depends only on the principal symbol and xg depends only
on the conormal symbol, that is, x4 = foo and yp = foo. for some homomorphisms

f : [(E,F(T*M) QA — A, g COZI(Q) ®A— B.

Condition (SF) For any periodic admissible homotopy {A;} of conormal

symbols (that is, a periodic family of conormal symbol such that {o(A:)}
e€l'), one has st{A;} = 0.

(b) Suppose that condition(SF) is satisfied, and let A C Q) be a subring such that
Ksr(0T*M) @ A is a projective A-module. Then there exists a mapping

g: Cosr(Q) @A = ®(Q) @A
such that
(0,g900.): Ellsr(M) @A = (Ksr(M) @A) & (9o(2) @A)
is an isomorphism of A-modules.

Proof. Condition (SF) is equivalent to the special case of it in which Ag is the
identity operator. Indeed, without loss of generality we can assume that Ay is invertible,
and then

sf{A} =sf{A, A},

14



where the new family already satisfies the desired condition. Let us prove (a). Let
condition (SF) be violated, and let { A;} be a periodic family of conormal symbols with
Ao = Ay = 1 for which sf{A;} # 0. On the manifold M we consider two operators
Do and D; such that Dy = 1, the conormal symbol of D; is equal to unity, and
the principal symbol o(Dy) is equal to 1 everywhere except for a collar neighborhood
U~ 9T*M x[0,1) of the boundary 0T*M in T'M, where it is equal to o(As), t € [0,1)
(under the natural identification OT*M ~ T*Q x R). By applying the relative index
theorem 3, we see that

ind Dy = ind Do + sf{A;} # ind Dy,
and hence [Dg] # [D1] in Ellg r(M). On the other hand,

[o(Do)] = [o(Dy)] in Kyr(M)
oe(Do) = oo(Dy),

whence we see that the isomorphism indicated in the theorem cannot exist, and more-
over, the class of the operator D in Elly (M) is not uniquely determined by the classes
of its principal and conormal symbols.

Now let us prove (b). Note that condition (SF) is equivalent to the exactness of the
second row in (12). (Recall, that by Theorem 7, it suffices to verify the exactness in
the first term.) Now if Ky r(0T*M) @ A is a projective module, then, after tensorizing
diagram (12) by A, we see that the second row splits. In other words, there is a mapping

g: Coxr(Q) @A = () @A

that is a left inverse of . But then the mapping g o o. splits the upper row, which
completes the proof of the theorem. a

Remark 2 In assertion (b) of the theorem, one can always take A = (). On the other
hand, we need not necessarily require that Kx r(0T*M)@ A be projective. All we need
is that the lower row in (12) splits after tensorizing by A.

4 Sufficient conditions for splitting

4.1 General symmetry conditions

It follows from Theorem 8 that to provide the existence of a splitting classification, we
must ensure that the spectral flow is zero for any admissible periodic family of conormal
symbols. We shall only deal with the situation in which I' contains all homotopies with
principal symbols in ¥ and, according to the remark in § 3.1, omit the letter I'. Note
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that the general conditions we write out in this section are transferred automatically
to the dual pair X*.
Thus, we shall describe sets ¥ of a special form.
Let
P: T"AXxR —=-T"Q xR

be an orientation-preserving automorphism of the vector bundle 7*Q x R — § (the
fiber of this bundle over a point w € € is the vector space T2 x R). We specify ¥ = ¥,
as the set of symbols a = a(w, &, p) elliptic with parameter p € R on (T*Q x R)\{0}
such that the symmetry condition

(¢*a)(w7 gvp) = a(w, 57 _p)

is satisfied (or, equivalently,
Fta = a, (13)

where (3 is the mapping p — —p, which reverses the orientation).

Theorem 9 Condition (SF) is satisfied for admissible symbols and homotopies speci-
fied by the set 3.

Proof. Let {A;} be a periodic family of conormal symbols with principal symbols
a; = o(A;) € ¥y. By Theorem 2,

sf{A;} = —ind A, (—@'%) = —ind A,

where the right-hand side is the index of an elliptic operator on Q x S!. Let us express
this index by the cohomological Atiyah—Singer formula:

ind A = (ch[o(A)] 7" Td(T(Q x S*) @ C), [17(Q x $1)]), (14)

where

T (0 % Sl) —5 0 x St

is the natural projection. The cohomology classes occurring on the right-hand side
in (14) are invariant with respect to the orientation-reversing mapping $*1*, whence
it follows that ind A = 0 (cf. [4]). The proof of the theorem is complete. O

Remarks.

1) We can generalize the above construction to include automorphisms

P: T"AXxR —=-T"Q xR
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over a diffeomorphism

a: ! = Q

of the base €} and to consider symmetry conditions of the form

G % a = oyaos,

where o and o5 are automorphisms of the bundles between which the conormal symbol
a acts. (Confer [2], where index formulas were considered under a similar condition.)

2) Condition (13) includes the following special cases:
(i) symmetry under the reflection p — —pj
(ii) symmetry under the reflection ¢ — —¢ for odd-dimensional (2;
(iii) symmetry under the reflection (£, p) — (=&, —p) for even-dimensional §).

Thus, in all these cases there is an invariant homotopy classification.

4.2 Example

It is of interest to consider any cases in which one can explicitly describe the mapping
g: Coxr(Q) @A = () @A (15)

specifying the homotopy classification in assertion (b) of Theorem 8. The following
proposition gives an appropriate example.

Proposition 4 Suppose that ¢ is homotopic to the identity, and moreover, the homo-
topy commutes with 3, that is, there is a continuous family of bundle automorphisms

P, T xR —=T"Q x R,
such that 1o = 1d, 1 = ¢, and

VB, = o

for all 7 € [0,1]. Then the following assertions hold.

(a) For any a € X, the symbol Xa belongs to ¥ for all T € [0, 1].

(b) Let [A] € Cos(p), and let A,(p) be a family of conormal symbols satisfying the
following conditions:

o(A) = vio(Ad).



The mapping (15) given by the formula

1
o5 1) = A (s} (16
splits the lower row in diagram (12).
Proof. Suppose that [A(p)] € ®o(12), that is, o(A) = 1. Then

AAP)]) = =A([A(=p)]),

which readily follows from formula (8) and the definition of the spectral flow (under
the substitution p — —p, all residues change their signs). We take A, to be the
concatenation of the families

ta(p) + (L=1)E, (1 —t)a(—p) +1E;
then, with regard for the preceding, we have
sf{A} = 2A([A]),
which completes the proof. 0

Example 1 In particular, the assumptions of Proposition 4 are satisfied by the auto-
morphism ¢ = 1. In this case, ¥ is the set of symbols symmetric with respect to the
reflection p — —p. Formula (16) in this case can be rewritten in the form

A[A)] @ 1) = ZH{IAR) + (1~ DA(—p)

(see [3], where this expression was used in an index formula).

5 Proof of technical results

5.1 Proof of Proposition 2

We consider a continuous family D, of pseudodifferential operators on M with principal
symbols a;. The corresponding conormal symbols, generally speaking, need not be
invertible. However, they can be made invertible by an appropriate choice of weights
on subintervals of the interval [0, 1] (see Fig. 1 and the definition of the spectral flow).

Joining the horizontal segments by vertical ones as shown in Fig. 1, we arrive at
a new operator family, say D., where 7 € [0,1] is the coordinate along the polygonal

18



Figure 1: o.(D;) is invertible on the horizontal segments

line, with the following property: there are at most finitely many points (7;,p;), j =

L,...,N, ; €10,1], p; € R, where the family o.(D,)(p) is not invertible. We wish to
make o.(D;)(p) invertible. This can be done as follows. Let

N
N; = Kero.(Dy,))(p;), n;=dimN;, n=> n;.

=1
Now let {e}32, be a smooth basis in the space L*(f2), and let
pit Nj— LA(Q)
be an isometric isomorphism onto the subspace generated by the vectors

ni+...+n;
{ek}k:nl BRI

Furthermore, let £; and F, be the bundles in whose sections the conormal symbols
act, and suppose that

P; is the orthogonal projection on N;,

R is the linear span of the vectors {ex}i_;.

We define a mapping
Q)+ L0, B) = LA(Q, ) &

by the formula

u = (oo(D-(p))u, x(p) D ¢ Pju),
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where y(p) is a function that does not vanish for p € R, is analytic in a narrow strip
near the real line, and is rapidly decaying as Rep — +oo. Clearly, for all p € R we
have

Ker@,(p) ={0} and dim Coker@,(p) = n.

Moreover, the cokernel Coker Q;(p) can be identified with the orthogonal complement
of Im @, (p), which is a subspace of dimension n in C*(Q, F) & R. Indeed,

(ImQ,(p))" = Ker Q,(p)*,

and any element
(v,w) € (Im Q- (p))”

satisfies the equation

o (Dr(p)v = =x(p) (X i Py) w.

The right-hand side is C'*°, and so v is '™ as a solution of an elliptic equation with
smooth right-hand side. For each p € R, let

Z(p) = (Zi(p), Z2(p)) : R—=CT(Q,E)® R

be an isomorphism onto this subspace. We can assume that Z(p) rapidly tends to (0, 1)
as p — oo, since for large |p| the subspace Im Q. (p) rapidly tends to L*(Q, E) & 0.
We define a mapping

Q-(p): LA E)@® L*(Q) = LY, E) @ L*(Q)
by setting
(u,v) = Q(p)u+ Z(p)Prv + (1 — Pr)v,

where Pp is the orthogonal projection on R in L*(2). This mapping can be represented
in the matrix form as

a.(D(p)) Z\(p)Pr { ouDa(p)) 0
(x(p)quij 1—|—(Z2(p)—1)PR)_( 0 1)+<1>,

where @ is smoothing and rapidly decaying at infinity. By taking the convolution of
@T(p) with the Fourier transform of a rapidly decaying function ¢ (et), ¢ (0) = 1, we
obtain a conormal symbol, which will be denoted by the same letter. For sufficiently
small e, this conormal symbol is invertible (elliptic) for all 7, and

U(@T(p)) = Qy(r) S 17

where ¢t = f(7) is the projection of the broken line in Fig. 1 on the t-axis.
This completes the proof of Proposition 2.
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5.2 Proof of Theorem 3

Let t1,...,tny—1 and 7y,...,vn be the numbers used in the definition of the spectral
flow of the family D;. We can assume that v; = vy = 0, since the families Dy(p) and
D1(p) are invertible on the weight line Imp = 0. Let us consider continuous families
of elliptic operators

Qi(t), tE[tj—1,1]
on M with principal symbols
o(Q;(t)) = o(P)

and conormal symbols

0(Qi(1) = Dulp+ %), j=1,...N. (17)

We can assume that
QI(O) = PO and QN(l) = Pl-

Then
N-1

ind Po —ind P1 == Z (md Q]‘(t]‘) —ind Q]‘+1(t]‘)), (18)

j=1
since the index of each of the Q;(¢) is independent of ¢t € [t;_1,¢;]. However, the
operators Q;11(¢;) and Q;(t;) have the same principal symbols, whereas their conormal
symbols differ only by the shift by i(v;41 —7;) in the complex p-plane. By applying the
standard relative index theorem for the change of the weight line (e.g., see [2]), we find

N
that the corresponding term on the right-hand side in (18) is equal to + i mp,, (pik)
k=1

(in the notation adopted in (3)), whence the assertion of the theorem readily follows.
O
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