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Abstract
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Introduction

The present paper deals with the theory of boundary value problems for elliptic equations
The well�known Shapiro�Lopatinskii condition �eg� see �
�� describes the class of elliptic
boundary value problems� ie� problems de�ning Fredholm operators in Sobolev spaces
On the other hand� this condition represents the obstruction to the existence of well�posed
�Fredholm� boundary value problems for elliptic operators on manifolds with boundary
Moreover� from the topological point of view� the Shapiro�Lopatinskii condition guar�
antees the existence of a homotopy of the homogeneous principal symbol of the given
elliptic operator to a symbol independent of the cotangent variables in a neighborhood of
the boundary This restatement of the Shapiro�Lopatinskii condition was found by Atiyah
and Bott ��� and is often called the Atiyah�Bott condition From the analytical point of
view� the Shapiro�Lopatinskii condition permits one to reduce a boundary value problem
to a zero�order elliptic operator that is a bundle homomorphism in a neighborhood of
the boundary A reduction of this kind is fundamental for the homotopy classi�cation
of elliptic boundary value problems and for the derivation of the corresponding index
formula
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As was already pointed out� not all operators on a manifold with boundary admit
well�posed classical boundary value problems The theory of boundary value problems
for general elliptic operators �which need not satisfy the Atiyah�Bott condition� was
constructed in ���� In this theory� the violation of the Shapiro�Lopatinskii�Atiyah�Bott
condition does not allow one to reduce an elliptic boundary value problem to a zero�order
operator Nonetheless� the reduction is possible if the boundary value problem possesses
certain symmetries In this case� it is also possible to give a homotopy classi�cation of
elliptic boundary value problems with symmetries and obtain an index formula

Let us describe the contents of the paper in more detail

The �rst part of the paper deals with classical boundary value problems The main
result here is the homotopy classi�cation of boundary value problems More precisely�
it is shown that a boundary value problem satisfying the Shapiro�Lopatinskii condition
admits a reduction to a zero�order operator that requires no boundary conditions� ie�
there is an isomorphism

�m � Ellm �M� �� Ell� �M�

of the group of stably homotopic elliptic boundary value problems for operators of order
m � 
 and a similar group for zero�order operators Furthermore� the operators of order
zero are classi�ed� in the same way as in elliptic theory on closed manifolds� by their
principal symbols

� � Ell� �M� �� K �T � �Mn�M�� �

where K �T � �Mn�M�� is the K�group with compact supports In this section of the
paper we follow H�ormander �
�� who realized the topological method due to Atiyah�Bott
��� by explicit homotopies of boundary value problems We point out that H�ormander�s
homotopies of classical boundary value problems do not use the complete Boutet de
Monvel algebra ��� This permits one to obtain the homotopy classi�cation of boundary
value problems and the corresponding index formula and simultaneously prove the Atiyah�
Bott theorem on the obstruction to the existence of classical boundary value problems

In the second part of the paper� we consider boundary value problems ��� for operators
that do not satisfy the Shapiro�Lopatinskii�Atiyah�Bott condition These boundary value
problems have the form��� Du � f� u � Hs �M�E� � f � Hs�m �M�F � �

Bjm���M u � g� g � ImP � H� ��M�G� �
�
�

where B is a boundary operator with range contained in the range ImP of a pseudod�
i�erential projection P in the Sobolev space on the boundary of M and jm���M is the
composition of the jet of order m� 
 and the restriction to the boundary �M  In view
of the Atiyah�Bott obstruction� the boundary value problem �
�� cannot be reduced to
an operator of order zero However� an arbitrary elliptic boundary value problem can be

�In this connection� we note the book ��� by Booss and Wojciechowski� where� in particular� the
theory of boundary value problems is constructed for operators similar to the Dirac operator� which is
an important geometric operator that does not satisfy the Atiyah�Bott condition�
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reduced in this case to the so�called spectral boundary value problem ��� �� for a �rst�order
operator

Further simpli�cation of the boundary value problem is possible under additional
assumptions on the subspace de�ned by the pseudodi�erential projection on the right�
hand side in �
� An example of such assumptions is given by parity conditions imposed on
the principal symbol of the projection �see ��� ��� Precise de�nitions will be given below�
and for now we only mention that these conditions can be reformulated as conditions under
which the operator D of the boundary value problem extends to the double of the manifold
with boundary in a symmetric way This restatement shows that the parity condition is a
generalization of the Atiyah�Bott condition� which guarantees the existence of a homotopy
of the principal symbol of the operator to the identity symbol in a neighborhood of the
boundary �and� of course� the possibility of extension to the double�

Under the above�mentioned parity conditions� the stable homotopy classi�cation mod�
ulo ��torsion is obtained for elliptic boundary value problems It has the form

Ellev�odd �M��M�� Z

�



�

�
� K �T � �Mn�M��� Z

�



�

�
� Z

�



�

�
� ���

where the �rst term in the sum is determined by the principal symbol of the boundary
value problem and the second component is given by the value of a functional d on the
set of subspaces de�ned by pseudodi�erential projections �this functional was de�ned in
��� ��� The functional d is equal to the Atiyah�Patodi�Singer spectral ��invariant ��� of
an admissible self�adjoint operator for the case in which the subspace in question is the
nonnegative spectral subspace of that operator �
	� ��

The index formula for boundary value problems with parity conditions ��� �� readily
follows from the homotopy classi�cation ��� in a natural way

The authors are grateful to V E Nazaikinskii for numerous useful discussions The
results of the paper were reported at the international conference �Workshop in Partial
Di�erential Equations�� July 
���� Potsdam� Germany and also at the conference �Jean
Leray 
����� August 
���� Karlskrona�Ronneby� Sweden

� Classical boundary value problems

��� Basic de�nitions

Let M be a compact smooth manifold with boundary X � �M and

D � Hs �M�E� �� Hs�m �M�F �

an elliptic di�erential operator of order m � 
 acting in Sobolev spaces of sections of
vector bundles E�F over M  The operator D is not Fredholm� since its kernel kerD is
in�nite�dimensional To de�ne a Fredholm operator� let us equip D with some boundary
conditions To this end� we choose a collar neighborhood U � X 	 �	� 
� �M of X with

�



normal coordinate t � �	� 
� Consider jets of order m� 
 in the normal direction to the
boundary composed with the operator of restriction to the boundary

jm��X u �
�
ujX � �i �

�t
u
���
X
� � � � �

�
�i �

�t

	m��
u

����
X



�

jm��X � Hs �M�E��
Lm��

k�� H
s�����k �X� EjX� �

A classical boundary value problem for D is a system of equations of the form��� Du � f� u � Hs �M�E� � f � Hs�m �M�F � �

Bjm��X u � g� g � H� �X�G� �
���

where

B �
m��M
k��

Hs�����k �X� EjX� �� H� �X�G� ���

is a pseudodi�erential operator on the boundary� the orders of its components and the
indices of Sobolev spaces in ��� are supposed to be compatible in a natural way �eg�
see �
�� For brevity� the boundary value problem �D�B� will sometimes be denoted by
D�

On the cotangent sphere bundle S�X of X� we consider the vector bundle

L� �D� � ��Em� � � S�X � X�

whose �ber over a point �x� 	� � S�X is the subspace of initial data of bounded solutions
of the ordinary di�erential equation


 �D�

�
x� 	� 	���i

d

dt

�
u �t� � 	� �x� 	�� � S�X�

with constant coe�cients on the half�line ft � 	g The complementary subbundle corre�
sponding to solutions bounded as t��
 is denoted by L� �D� The subbundles L� �D�
are obviously determined by the restriction of the principal symbol of D to the boundary

The restriction

L� �D�
��B�
�� ��G ���

of the principal symbol of the boundary operator B to the subbundle L� �D� � ��Em is
called the boundary symbol of classical boundary value problem �D�B�

The boundary value problem �D�B� is said to be elliptic if its boundary symbol is an
isomorphism of vector bundles

Proposition � �eg� see �
�� The boundary value problem ��� has the Fredholm property
if and only if it is elliptic�

The ellipticity condition ��� imposes an essential restriction on the bundle L� �D�� for
the existence of an elliptic boundary value problem for D� it is necessary that this bundle
be isomorphic to a bundle lifted from X� the choice of a speci�c lifting ��� determines the

�



boundary conditions Atiyah and Bott ��� noted that this condition can be restated in
terms of the principal symbol of D in the following form� the restriction of 
 �D� to X is
stably homotopic to the symbol of a multiplication operator� that is�


 �D� �x� 	� 	� � 
� �x� � ���

or� in terms of K�theory�

�
 �D�� � Im

K �T � �Mn�M��

��
�� K �T �M�

�
� � � T �M � T �M� T �M jX �

Furthermore� the choice of a boundary condition determines a certain homotopy of the
form ���� which speci�es an element

�
 �D�B�� � K �T � �Mn�M�� �

It turns out �see Section �� that this element classi�es the boundary value problem �D�B�
up to stable homotopy equivalence

In the next section� we carry out the homotopy classi�cation of elliptic boundary value
problems To this end� we have to enlarge the class of operators for which boundary value
problems will be posed Namely� we deal with elliptic operators D on a manifold M with
boundary X which satisfy the following conditions


 In a small neighborhood X 	 �	� ��� of the boundary� D has the form

D �
mX
k��

Dk �t�

�
�i

�

�t

�m�k
� ���

where theDk �t� are smooth families of pseudodi�erential operators onX� ordDk �t� �
k� such that D� �t� consists of isomorphisms of vector bundles By identifying the
vector bundles in which D acts with the help of this isomorphism in a neighborhood
of the boundary� we can assume that the coe�cient D� �t� is the identity operator�

� Outside the collar neighborhood X	�	� 
� of the boundary� D is a pseudodi�erential
operator of order m�

� In the domain X	��� 
��D is a pseudodi�erential operator with continuous symbol�

�see �

� or �
�� 
��

For this class of operators� boundary value problems can be posed in the same way
as above The de�nition of the subbundles L� �D� and the ellipticity condition remain
valid

�We are forced to consider operators with continuous symbols� since in the case of pseudodi�erential
coe�cients Dk �t� � ���� the symbol of D is not smooth in general�

�



��� Example

Let us consider an example of a boundary value problem for operators of the form ���
On a manifold M � we consider a bundle E and a decomposition of this bundle in a

neighborhood of the boundary X into the sum of two subbundles

EjUX � E� � E�� ���

For the bundles E�jX � let us take elliptic �rst�order operators �� with principal symbol
j	�j � We also choose a �rst�order operator �M on M with principal symbol j	j which acts
in the bundle E In accordance with the decomposition ���� let us consider the following
�rst�order elliptic operator in a neighborhood of the boundary�

D� �

�
�i

�

�t
� i��

�
�

�
i
�

�t
� i��

�
� C� �UX � E�� C� �UX � E� � ���

The relation
L� �D�� � 	 � ��E�� � � S�X � X�

shows that the boundary condition

u�jX � g � C��X�E�� for u � �u�� u�� � C� �UX� E� � E�� �
	�

de�nes an elliptic boundary value problem for the operator ��� Let us extend D� to the
interior of the manifold Consider a cuto� function � on M � 	 � � �t� � 
�that is equal to

 for 	 � t � 
�� and is zero for t � ���� The desired extension of the operator is given
by the formula

D� � � �t�

��
�i

�

�t
� i��

�
�

�
i
�

�t
� i��

��
� �
� � �t�� i�M � �

�

The boundary value problem for the operator D� with the boundary condition �
	� is
denoted by D� It is well�known �eg� see �
� or ���� that this boundary value problem has
index zero This follows� for example� from the observation that the family of boundary
value problems

D� � ip

is an elliptic family in the half�plane Re p � 	 in the sense of Agranovich�Vishik �
�� Con�
sequently� it is invertible for su�ciently large values of the parameter p�The invertibility
of the family D� � ip can be shown directly �see �
��

If one of the bundles E� coincides with the entire E� then the corresponding operator
D� is denoted by D� or D�� For example� the operator D� does not contain boundary
conditions

�



� The homotopy classi�cation of boundary value

problems

��� Classi�cation of operators of order zero

In the class of elliptic operators on manifolds with boundary introduced in the end of the
previous section� operators of order zero play an important role� since these operators do
not require boundary conditions

The abelian group of stable homotopy classes of elliptic zero�order operators is denoted
by Ell� �M�

An elliptic operator D of order zero is a bundle isomorphism in a neighborhood of the
boundary of M �see ����� hence� its principal symbol de�nes an element of K�theory with
compact supports�

�
 �D�� � K �T � �Mn�M�� �

Thus� we have the homomorphism

� � Ell� �M� �� K �T � �Mn�M�� �

�D� � �
 �D�� �
�
��

The following theorem gives the homotopy classi�cation of elliptic operators of order zero

Theorem � The mapping �
�� is an isomorphism of abelian groups�

Proof� Let us construct the inverse mapping

�� � K �T � �Mn�M�� �� Ell� �M� �

By virtue of the natural isomorphism�

K �T � �Mn�M�� � K �B�M��B�M� �

the group K �T � �Mn�M�� is the group of stable homotopy classes of elliptic symbols on
M independent of the cotangent variables in a neighborhood of X The mapping �� is
given by the formula

�� �
� � �b
� � Ell� �M� �

where b
 is an elliptic pseudodi�erential operator of order zero on M with principal symbol

 such that near the boundary b
 is a bundle homomorphism It can be shown that �� is
the inverse of �� This proves the theorem

�B�M is the unit coball bundle of M �with respect to some Riemannian metric�� and �B�M �
S�M � B�M j

�M
is its boundary�

�



��� Order reduction� from order one to order zero

In contrast with zero�order operators considered earlier� operators of order one in general
require boundary conditions Nevertheless� the homotopy classi�cation is the same in
both cases

De�nition � Boundary value problems D� and D� for operators of order one are said
to be stably homotopic if for some operators D� and D�

�
�see Example 
�� the elliptic

boundary value problems
D� �D� and D� �D

�

�

are homotopic

The abelian group of stable homotopy classes of elliptic boundary value problems for
operators of order one will be denoted by Ell� �M�

Theorem � The order�increasing mapping

	D� � Ell� �M� �� Ell� �M� �
��

induced by the composition with D� is an isomorphism of abelian groups�

Remark � In the proof of the theorem� we give an explicit formula for the inverse order
reduction mapping

�� � �	D��
�� � Ell� �M� �� Ell� �M� �

Proof� Consider a boundary value problem �D�B� for a �rst�order elliptic operator

� First� we construct a homotopy of the restriction of D to the boundary X together
with a homotopy of the boundary condition B such that the boundary value problem is
deformed to the model form ���� �
	� According to ���� the operator D on the boundary
is equal to

D � 

�
�

�t
�A

�
�

where  is an isomorphism of the vector bundles E and F  The ellipticity ofD is equivalent
to the absence of pure imaginary eigenvalues of the principal symbol of A for j	�j � 
�

STEP 
 Let P be a pseudodi�erential operator on X with principal symbol equal
to the projection on the subbundle L� �D� along the complementary bundle L� �D�
Consider the following homotopy with parameter � � �	� 
��

D�

� � 

�
�

�t
� �
 � � �A� ��X ��P � 
�

�
� �
��

This homotopy takes the eigenvalues of the symbol 
 �A�� to �
 according to the formula

�
� � �� � � sign��

�



while the subspaces L� �D�
� � do not change As a consequence� the operators D� always

remain elliptic The homotopy �
�� does not change the boundary symbol

L� �D�

� �
��B�
� ��G�

STEP � Let us embed the bundle G of boundary values in a trivial bundle CN � G
and denote by PG the projection on sections of G in the space C�

�
X�E �CN

	
 Consider

the following homotopy of almost�projections with parameter � � �	� �����

P� � P cos��� PG sin� �� cos� sin�
�
BP �B��PG

	
� �
��

The almost�projections act in the direct sum C�
�
X�E �CN

	
 In this homotopy� the

bundle de�ned by the projection 
 �P�� is the rotation by the angle � of the subbundle

L� �D� � ��
�
E �CN

	
towards the subbundle Im
 �PG� � ��G with the help of the

isomorphism 
 �B� � This homotopy de�nes the homotopy of operators

D�

� � 

�
�

�t
� �X ��P� � 
�

�
�
��

and the homotopy of boundary conditions

B� � C�

�
X� EjX �CN

	
�� C� �X�G� � C�

�
X� EjX �CN

	
�

B� � cos�BP � sin�PG�

�
��

For the �nal value of the parameter� � � ���� we obtain

D�

��� � 
�
�
�t

� �X ��PG � 
�
	
�

B��� � PG � C�
�
X� EjX �CN

	
�� C� �X�G� �

which coincides with the model operator D� up to an isomorphism of vector bundles

�� The two homotopies �
�� and �
��� �
�� of the restriction of the boundary value problem
to the boundary can be lifted to a homotopy of boundary value problems To this end�
we consider a cuto� function � � M � R that is equal to one in a neighborhood of the
boundary of M and is zero outside the domain X 	 �	� 
��� The composition of the
homotopies �
�� and �
�� is denoted for brevity by �D�

� � B��� � � �	� 
� Let us attach a
�nite cylinder to the manifold M �see Fig 
��

M � � ��
� 	�	X �M�

The operator D can be extended to this manifold� on the cylinder ��
� 	�	X� it is de�ned
by the homotopy D�

�t The required lifting of the homotopy �D�

� � B�� to a homotopy of
boundary value problems �D� � B� � on M is de�ned by the formula

D� �t� x� � D �t� � �t� �� x� � � � �	� 
� � �
��


	



Figure 
� The operator D on the manifold M � � ���
� 	�	 �M� �M

Thus� the boundary value problem �D�B� is now deformed to a boundary value prob�
lem �D�� B�� that coincides near the boundary with the model problem D�� Hence� we
have de�ned the zero�order elliptic operatorh

D��
�
� �D�� B��

i
� Ell� �M� �

It can be veri�ed that this construction de�nes a homomorphism of groups

�� � Ell
� �M� �� Ell� �M� �

�D�B� ��
h
D��
�
� �D�� B��

i
�

Indeed� this construction is uniquely determined� it takes direct sums of boundary value
problems to sums of the corresponding elements� the model operators are taken to zero�
�nally� the construction is homotopy invariant It follows from the de�nition of stable
homotopies for boundary value problems that this mapping is the inverse of the order�
increasing mapping �
�� This establishes the reduction of classical boundary value prob�
lems of order one to operators of order zero The theorem is thereby proved

��� Order reduction� from an arbitrary order to order one

De�nition � Elliptic boundary value problems D� and D� of order m � �are said to
be stably homotopic if for some model operators D� and D�

� there exists a homotopy
between the boundary value problems

D� �D�D
m��
� and D� �D

�

�D
m��
� �







The group of stable homotopy classes of boundary value problems for operators of
order m is denoted by Ellm �M�

Theorem � The mapping

�	D��
m�� � Ell� �M� �� Ellm �M� �

which increases the order by m� 
� is an isomorphism of abelian groups�

Proof� Consider a boundary value problem �D�B� for an operator D of order m� The
direct sum

�D�B��
m��M
�

Dm
� �
��

de�nes the same element in the group Ellm �M� as the original problem �D�B� Let
us construct a homotopy of the boundary value problem �
�� to the composition of a
boundary value problem for an operator of order one and the operator Dm��

� � As in the
proof of Theorem � �see �
���� it su�ces to construct the corresponding homotopy of the
restriction of D to the boundary together with the boundary conditions

Let us represent D in the form

D �
mX
k��

Dk

�
�i

�

�t
� i�X

�k �
�i

�

�t
� i�X

�m�k
�

mX
k��

DkD
k
�D

m�k
� �

where �X is again a �rst�order operator with principal symbol j	�j and the Dk are zero�
order pseudodi�erential operators on X By virtue of condition ���� we can assume that
the sum

mX
k��

Dk

is equal to the identity operator Consider the operator homotopy

D�

� �

�BBBBBBB�

D � �mD�D
m
� � �mD �m��D�D

m
� � � � �Dm��D

m
� � �DmD�D

m��
�

��D�D
m��
� Dm

� � � � 	
	 ��D�D

m��
� � � � 	

� � � � � �
   � � �

	 	 � � � Dm
�

�CCCCCCCA �

At the initial point � � 	� we have

D�

��� � D �
m��M
�

Dm
� �

On the other hand� at � � 
 we obtain the factorization required in the theorem�

D�

��� �

�BBB�
D�D� D�D� � � � Dm��D� �DmD�

�D� D� 	 	
	 �D� D� � � �
	 	 � � � D�

�CCCA �mDm��
� �


�



The coe�cient of
�
�i �

�t

	m
in the operator D�

� is equal to the composition

D�

�m �

�BBB�

 �m�� �D� � � � ��Dm� � � � � �Dm�� �Dm�
	 
 � � � 	
	 	 
 � � �
	 	 � � � 


�CCCA �
�BBB�


 	 � � � 	
�� 
 � � � 	
	 �� 
 � � �
	 	 � � � 


�CCCA �

Thus� for the operators
D� � �D�

�m�
��
D�

�

the corresponding coe�cient is equal to unity Let us show that the operator D� is elliptic
for � � �	� 
� To this end� we compute the subspace L� �D� �

Consider a bounded solution

U � �U� �t� � U� �t� � � � � � Um�� �t�� � t� �
�

of the equation


 �D� �

�
x� 	���i

d

dt

�
U � 	� for j	�j � 
� ��	�

Equation ��	� can be replaced by an equivalent equation with the symbol of the op�
erator D�

�  The bounded function U is a solution of an ordinary di�erential equation
with constant coe�cients� hence� its derivatives are also bounded The componentwise
representation of ��	� gives the system���������

�
 � �m�
 �D�
�
�i d

dt

	
U� �

�
�i d

dt
� i
	m

�d��mU� � � � �� dm���Um����

��
�
�i d

dt
� i
	m�� �

�i d
dt
� i
	
dmUm�� � 	��

�i d
dt
� i
	m

Uj � �
�
�i d

dt
� i
	m�� �

�i d
dt
� i

	
Uj��� 	 � j � m

��
�

�the dj are the principal symbols of the operators Dj� The equation�
�i

d

dt
� i

�
u � 	

on the half�line ft � 	g has only a trivial bounded solution Hence� the operator �id�dt�i
can be canceled in ��
� in all equations except for the �rst Consequently��

�i
d

dt
� i

�
Uj � �

�
�i

d

dt
� i

�
Uj���

Substituting these relations into one another� we obtain�
�i

d

dt
� i

�j
Uj � � j

�
�i

d

dt
� i

�j
U��


�



It follows that the �rst equation in ��
� is reduced to the requirement


 �D�

�
�i

d

dt

�
U� � 	� ����

We conclude that the operator D� is indeed elliptic� since equation ���� has no solutions
bounded on the entire line

Hence� we have obtained the following description of the bundle L� �D� �� the projec�
tion on the �rst term in the sum

E �
m��M
�

E
pr
�� E

induces an isomorphism of vector bundles

L� �D� �
pr
�� L� �D� �

the preimage of an element u � L� �D� under this mapping is given by the formula

U � �U�� � � � � Um��� � ����

U� � u��
�i

d

dt
� i

�j
Uj � � j

�
�i

d

dt
� i

�j
U��

Let us decompose the operator of boundary conditions in the same way as D�

Bjm��X �
m��X
k��

Bk

�
�i

�

�t
� i�X

�k �
�i

�

�t
� i�X

�m���k ������
t��

�

This implies that the boundary condition

Bjm��X � pr � C�

�
M�E �

m��M
�

E

�
� C� �X�G�

has a factorization� on the subspace L� �D����� by virtue of ����� we have


 �B� jm��X � pr � 
 �B �� jX �

�
�i

d

dt
� i

�m��
� where �
 �B�� jX�U �

m��X
k��

bkUk �	� �

That is why the homotopy of boundary value problems

�D� � B � pr� � � � �	� 
� � ����

connects the initial problem �
�� with the composition of a boundary value problem for
a �rst�order operator and the operator Dm��

� �

�D���� B � pr� � �D�� B�� �mDm��
� � ����


�



One can show that the correspondence between the boundary value problems �D�B�
and �D�� B �� for operators of order one induces a mapping

��m � Ellm �M� �� Ell� �M� �

Let us check that this mapping is the inverse of the mapping 	Dm��
� � Indeed� the homo�

topy ���� shows that the group Ellm �M� is generated by compositions of operators �����
ie by the range of the mapping 	Dm��

� � Hence� this mapping is onto Let us prove that

��m �
�
	Dm��

�

	
� Id�

Indeed� for an elliptic boundary value problem �D�� B�� � Dm��
� of order m� the matrix

of the operator D� in the homotopy ���� is a product of two triangular matrices with
constant diagonal entries �with respect to the parameter � of the homotopy� Thus� this
homotopy is trivial� ie� homotopic to a constant homotopy

Theorem � is thereby proved

��	 Main theorems

The above results on the homotopy classi�cation of boundary value problems of �xed
order are summarized in the following theorems

Theorem � �the Atiyah�Bott obstruction to the existence of elliptic boundary value
problems� For an elliptic operator D on a manifold M with boundary X� the following
conditions are equivalent�


 The operator D stably� i�e� up to the direct sum with an operator of the form
Dm��

� D� �cf� De�nitions �� �	� admits an elliptic boundary value problem


� The following inclusion holds�

�L� �D�� � ��K �X� � � � S�X � X�

� The restriction 
 �D�jX of the principal symbol of the operator to the boundaryX is
stably homotopic to the symbol of a multiplication operator �

� j� �
 �D�� � 	 for j� � K �T �M��K �T �X 	R� � K� �T �X� � where j � T �M jX �
T �M is the inclusion

Proof The equivalence of conditions 
� and �� follows from the de�nition of ellipticity for
boundary value problems The equivalence of �� and �� is a consequence of the de�nition
of the group K �T �X 	R� in terms of the di�erence construction

Let us check the equivalence of conditions �� and �� By virtue of homotopies con�
structed in Theorems � and �� it can be assumed that the operator D in a neighborhood
of the boundary has the form

D �
�

�t
� �X ��P � 
� � ����


�



For the operator ����� the following formula is valid�

j� �
 �D�� � � �L� �D�� � � � K �S�X�� K� �T �X� �

The kernel of the homomorphism � coincides with the subgroup ��K �X� � K �S�X� �
��
This implies the equivalence of �� and �� The theorem is thereby proved

Theorem � �the homotopy classi�cation of elliptic boundary value problems� Form � 
�
there is an isomorphism of groups

�m � Ellm �M� �� Ell� �M�

that is the inverse of the order�increasing mapping

	Dm
� � Ell� �M� �� Ellm �M� �

Moreover� the following symbol isomorphism holds�

� � Ell� �M� �� K �T � �Mn�M�� �

Corollary � For elliptic boundary value problems D� one has the equation

indD � ind�m �D� � m � 
�

and the index formula
indD � p	 �
 �D�� � ����

where
p � M � pt

and
�
 �D�� � K �T � �Mn�M��

for an operator D of order zero representing �m�D��

Proof� The mapping �m preserves the index by de�nition Equation ���� is a special case
of the �excision� property of the index �see �

��

Corollary � �cobordism invariance of the index� Let M be a compact manifold with
boundary X� We denote the natural inclusion mapping by

j � X ��M�

Consider the induced mapping

j� � K� �T �M� � K �T �X�

in K�theory� If an elliptic operator D over X satis�es the inclusion

�
 �D�� � Im j��

then
indD � 	�


�



Proof� The desired statement follows from the commutative diagram

K� �T �M� � K �T �X� � K �T � �Mn�M��
� � �

Ell �X�
�
� Ell� �M� �

Here the upper row is induced by the exact sequence of the triple

S�M � �B�M � B�M�

� stands for the di�erence construction on the �closed� manifold X� and the mapping �
takes each elliptic operator

B � C�
�
X�CN

	
� C� �X�G�

to the boundary value problem��� D�u � f� u� f � C�

�
M�CN

	
�

BjXu � g� g � C� �X�G� �

� Boundary value problems for general elliptic equa�

tions

��� Spectral boundary value problems

For an arbitrary elliptic operator D� which in general does not satisfy the Atiyah�Bott
condition �see Theorem � in the previous section�� boundary value problems of the fol�
lowing form were introduced in ������� Du � f� u � Hs �M�E� � f � Hs�m �M�F � �

Bjm��X u � g� g � ImP � H� �X�G� �
����

where the subspace ImP is the range of a pseudodi�erential projection P of order zero
in a Sobolev space on the boundary It was also shown in ��� that the boundary value
problem ���� is Fredholm if and only if it is elliptic� ie� its boundary symbol


 �B� � L� �D�� Im
 �P �

is a bundle isomorphism This class of boundary value problems does not carry obstruc�
tions of the Atiyah�Bott type� since for an arbitrary elliptic operator D there exists a
so�called spectral boundary value problem� which has the Fredholm property ���
Example The spectral boundary value problem for an operator of order one�

Let D be a �rst�order elliptic operator In a neighborhood of the boundary� it has the
form

D �  �t�

�
�

�t
�A

�
�


�



where �t� is a bundle isomorphism The ellipticity of D implies that the principal symbol

 �A� �x� 	�� has no pure imaginary eigenvalues for j	�j � 
� Thus� the family

ip�A

is elliptic in the sense of Agranovich�Vishik in some sector containing the real line
fp � Rg It was proved in ��� that the spectral projection P� of the operator A on the
subspace corresponding to spectral points with nonnegative real parts along the corre�
sponding negative subspace is a pseudodi�erential projection Its principal symbol 
 �P��
is equal to the nonnegative spectral projection for the principal symbol of A�


 �P� �A�� � P�
 �A� � ����

De�nition � The spectral boundary value problem �cf ���� for the operator D is the
system of equations of the form��� Du � f� u � Hs �M�E� � f � Hs�� �M�F � �

P� ujX � g� g � ImP��
��	�

This boundary value problem has the Fredholm property� since Eq ���� implies that
its boundary symbol is the identity mapping

ImP�
 �A�
Id
�� Im
 �P�� � L� �D� � ImP�
 �A� �

��� The reduction theorem

The group of stably homotopic boundary value problems ���� for operators of orderm � 

will be denoted by Ellm �M��M�� and the group of stably homotopic spectral boundary
value problems for �rst�order operators will be denoted by Spec �M��M� � Here homo�
topies are families of boundary value problems ���� such that D� B� and P continuously
depend on the parameter and the trivial problems used in stabilization are the same as
in the case of classical boundary value problems� ie� have the form D�D

m��
� 

The violation of the Atiyah�Bott condition makes it impossible to reduce boundary
value problems to zero�order operators Nevertheless� the homotopies of the classical
theory� described in Section �� can be generalized to the present situation They result in
the following theorems

Theorem 
 A boundary value problem for an operator of order m � � can be reduced to
a �rst�order boundary value problem� In other words� there is an isomorphism of groups

Ellm �M��M� �� Ell� �M��M�

that is the inverse of the order�increasing mapping

	Dm��
� � Ell� �M��M� �� Ellm �M��M� �


�



Theorem 	 A boundary value problem for a �rst�order operator can be reduced to a
spectral boundary value problem� In other words� there is an isomorphism of groups

Ell� �M��M� �� Spec �M��M� �

The proof of Theorem � coincides with that of the similar theorem �Theorem �� for
classical boundary value problems� since the formulas given there do not take into account
the classical type of boundary value problems

Proof of Theorem � Consider the boundary value problem ���� The �rst homotopy
�
�� in the proof of Theorem � can be generalized without changes Let us substitute
the pseudodi�erential projection P that de�nes the boundary values into the rotation
homotopy �
�� instead of PG In the end of the homotopy �
��� �
��� we obtain the
spectral boundary value problem

D�

��� � 
�
�
�t

� �X ��P � 
�
	
�

B��� � P � C�

�
X� EjX �CN

	
�� ImP � C�

�
X� EjX �CN

	
�

Thus� an arbitrary �rst�order boundary value problem can be reduced to a spectral bound�
ary value problem whose spectral subspace coincides with the subspace of boundary values
of the initial problem This proves the theorem

In the general case� the reduction of a boundary value problem to an operator of order
zero is impossible by the Atiyah�Bott condition In the next section� we discuss a class
of boundary value problems for which the Atiyah�Bott condition is satis�ed rationally
The reduction to classical boundary value problems is carried out �also rationally� in this
case

� Boundary value problems in even and odd sub�

spaces

	�� Parity conditions

On the cotangent bundle of the manifold M � we consider the antipodal involution

� � T �M �� T �M�� �x� 	� � �x��	� �

De�nition � A pseudodi�erential projection P of order zero is said to be even �odd� if
its homogeneous principal symbol on the sphere bundle S�M is invariant �antiinvariant�
with respect to the involution ��

��
 �P � � 
 �P � or 
 �P � � ��
 �P � � 
�


�



To a spectral boundary value problem �D�P � with a �rst�order operator D and an
even �odd� projection P � one can assign a classical boundary value problem To this end�
let us denote by ��D and ��D�� �rst�order elliptic operators with principal symbols equal
to ��
 �D� and ��
�� �D�� respectively� on the sphere bundle S�M  In the even case� the
operator D � ��D admits the elliptic classical boundary value problem��� Du � f�� ��Dv � f��

P ujX � �
 � P � vjX � g� g � C� �X� EjX� �
��
�

Likewise� in the odd case we have the boundary value problem��� Du � f�� ��D��v � f��

P ujX � �
 � P � vjX � g� g � C� �X� EjX� �
����

In the passage from the spectral boundary value problem �D�P � to the classical bound�
ary value problem ��
� or ����� the dimension of the manifold M must be taken into ac�
count The following proposition shows that if the parity of the boundary value problem
is opposite to the parity of dimM � then the boundary value problems ��
� and ���� de�ne
��torsion elements in the group Ell� �M� � K�T ��M n �M��

Proposition � �� The mapping � induces an involution in K�theory Modulo ��
torsion� this involution is equal to ��
�dimM �

�� � K� �T �M�� Z

�



�

�
�� K� �T �M� �Z

�



�

�
� �� � ��
�dimM �

The involution �� has this property also on the group K� �T � �Mn�M�� �

�� For an even�dimensional manifold M � the projection S�M � P �M induces an iso�
morphism �modulo ��torsion�

K� �P �M�� Z

�



�

�
� K� �S�M�� Z

�



�

�
�here P �M � S�M�� is the corresponding projective cotangent sphere bundle�

�� On an odd�dimensional manifold� the projection P �M � M induces an isomor�
phism �modulo ��torsion�

K� �M� �Z

�



�

�
� K� �P �M�� Z

�



�

�
�

Proof� Let us apply the Mayer�Vietoris principle �
��

� Let us check properties 
�� for the restriction of the mappings to the �ber over a point
x of the base M of the corresponding bundles�

K� �T �xM� �� K� �T �xM� �

K� �P �

xM� � K� �S�xM� �

K� �fxg� � K� �P �

xM� �

�	



In the �rst case� we have

T �xM � RdimM � K�
�
RdimM

	
� Z�

The involution � preserves �or reverses� the orientation of the space RdimM depending on
the parity of dimension of M  Hence� we obtain the desired identity �� � ��
�dimM �

In the second case� for an even�dimensional manifold M we consider the projection
� � S�n�� � RP�n�� The K�groups of spheres and projective spaces are well�known
�eg� see �
����

K�
�
RP�n��

	
� Z� Z�n� K�

�
S�n��

	
� Z�

K�
�
RP�n��

	
� Z� K�

�
S�n��

	
� Z�

The �rst term in the groups K� is given by the dimension of vector bundles� while the
projection � induces the multiplication by � mapping on the groups K��

�� � K�
�
RP�n��

	
� Z �� K� �S�n��� � Z�

n �� �n�

In the third case� on an odd�dimensional M we consider the projection RP�n � pt� The
relevant K�groups are

K�
�
RP�n

	
� Z� Z�n� K� �pt� � Z�

K�
�
RP�n��

	
� 	� K� �pt� � 	�

Both components Z correspond to the dimension of vector bundles Thus� property � is
also satis�ed over a point
�� By the Mayer�Vietoris principle� we have to verify the following assertion� if properties

�� are satis�ed over open subsets U� V � M and their intersection U � V� then these
properties hold over the union U � V 

In the �rst case� let us write out a part of the Mayer�Vietoris exact sequence

K��� �T � �U
T
V �� � K� �T � �U

S
V �� � K� �T �U��K� �T �V �

� �� � �� ������

K��� �T � �U
T
V �� � K� �T � �U

S
V �� � K� �T �U��K� �T �V � �

A diagram chase shows that the mapping �� in the middle satis�es property 

The second and the third cases can be treated in a similar way For example� on

an even�dimensional M � the projection � � S�M � P �M acts on the Mayer�Vietoris
sequences

� � � � K� �P � �U
S
V ��� K� �P � �U t V ��� K� �P � �U

T
V ��� � � �

� �� ��� � ��

� � � � K� �S� �U
S
V ��� K� �S� �U t V ��� K� �S� �U

T
V ��� � � �

�




By the �ve lemma� the mapping �� on the left is an isomorphism modulo ��torsion
The statement concerning the group K� �T � �Mn�M�� follows from the exact sequence

of the pair T �M jX � T �M on which �� acts�

� K��� �T �M jX�� Z
h
�
�

i
� K� �T � �Mn�M��� Z

h
�
�

i
� K� �T �M� � Z

h
�
�

i
�

� ��
�dimM � � � ��
�dimM

� K��� �T �M jX�� Z
h
�
�

i
� K� �T � �Mn�M��� Z

h
�
�

i
� K� �T �M� � Z

h
�
�

i
�

This completes the proof of Proposition �

Thus� in what follows we consider boundary value problems with even projections P
on even�dimensional manifolds and odd projections on odd�dimensional manifolds

	�� The classi�cation of boundary value problems with even

projections

The boundary value problem ��	� in subspaces cannot be classi�ed in terms of the classical
boundary value problem ��
� or ���� even under the above parity restrictions The point
is that a classical boundary value problem is de�ned� up to a homotopy� by its principal
symbol� while the boundary value problem ��	� is not determined by the principal symbol
Indeed� by adding �nite�dimensional spaces to ImP � we obtain boundary value problems
with the same principal symbol but with di�erent index� which shows that they are not
homotopic to the original problem

It is shown in ��� �� that the subspaces de�ned by even �odd� pseudodi�erential projec�
tions have the homotopy invariant described in the following theorem Let us denote the
semigroups of subspaces de�ned by even �odd� pseudodi�erential projections by dEven �X�
and dOdd �X�� respectively

Theorem � ��� �� There is a unique homotopy invariant functional d

d � dEven �Xodd
	
� Z

�



�

�
� or d � dOdd �Xev�� Z

�



�

�
�

with the following properties�


 �invariance�

d
�
ImUPU��

	
� d �ImP �

for invertible pseudodierential operators Uwith even principal symbol � ��
 �U� �

 �U��

� �relative index �
d �ImP�� � d �ImP�� � ind �P�� P�� �

where ind�P�� P�� � ind�P� � ImP� � ImP�� is the relative index of projections with
equal principal symbols �
���

��



� �complement�
d �ImP � � d �Im �
� P �� � 	�

The group of stably homotopic spectral boundary value problems with even projections
P is denoted by Ellev �M��M� � It turns out that the classical boundary value problem ��
�
and the invariant d of the subspace of right�hand sides already classify spectral boundary
value problems modulo ��torsion

Theorem � On an even�dimensional manifold M � the mapping

� � Ellev �M��M� � Z
h
�
�

i
� Ell� �M�� Z

h
�
�

i
� Z

h
�
�

i
�

�D�P � ��
�
�D � ��D� � �

�
� d �ImP �

	
is an isomorphism of abelian groups�

Proof� Let us de�ne the inverse mapping

�� � Ell� �M� � Z

�



�

�
�Z

�



�

�
� Ellev �M��M�� Z

�



�

�
�

On the �rst term it is induced by the embedding of classical boundary value problems in
boundary value problems with even projections� while on the second term it is given by
the formula

��
�
	�

k

�N

�
�




�N
�D�� k� �

where �D�� k� stands for the spectral boundary value problem for the operator D� with
a �nite�dimensional spectral projection of rank k� Let us verify that �� is the inverse of ��

The second component of the composition � � ��

Z

�



�

�
� Z

�



�

�
is the identity mapping by property �� of the functional d� The �rst component is equal
to

�� � 


�
� Ell� �M� �Z

�



�

�
�� Ell� �M� � Z

�



�

�
�

which� by virtue of the isomorphism

Ell� �M� � K �T � �Mn�M��

and Proposition �� item 
� is the identity mapping
The assertion of the theorem can now be derived from the following lemma

Lemma � The homomorphism �� is an epimorphism�

��



Proof� Consider an arbitrary spectral boundary value problem �D�P � with even projection
P  Proposition �� item � implies that the sum of �N copies of the subbundle Im
 �P � �
��E is homotopic in the class of even subbundles to a bundle ��G� G � E�N � lifted from
the base X We denote the corresponding homotopy of projections by 
 �Pt��


 �Pt� � �
�E�N �� ��E�N � t � �	� 
� �


 �P�� � �N
 �P � � Im
 �P�� � ��G�

Consider a covering homotopy of pseudodi�erential projections Pt such that P� � �NP�
The symbol of P� is equal to the symbol of projection PG on the space C� �X�G� �
C� �X�E� of sections of bundle G� Hence� the homotopy classi�cation of projections with
the same principal symbols �
�� shows that P� is homotopic to a projection di�ering from
PG by a �nite rank projection We can assume that the homotopy Pt already gives such
a projection at t � 


The homotopy of projections Pt extends to a homotopy of spectral boundary value
problems

�Dt� Pt� � D� � �ND

by formula �
�� The spectral boundary value problem �D�� P�� then lies in the range of
the mapping �� given by

�� ��D�� PG� ��ind �PG� P��� � �D�� P�� �

This proves the lemma The theorem is thereby proved

	�� The classi�cation of boundary value problems with odd

projections

Let us generalize the de�nition of spectral boundary value problems with odd projections
We consider spectral boundary value problems such that the symbol of the projection P
is the sum of a constant symbol with respect to the cotangent variables and an odd
projection Let us also identify spectral boundary value problems of the form�

D�u � f�� D�v � f��
P ujX � g�� �
� P � vjX � g�

����

with odd projection P with the corresponding classical boundary value problems�
D�u � f�� D�v � f��
P ujX � �
� P � vjX � g�

����

The abelian group of stable homotopy classes of such spectral boundary value problems
will be denoted by Ellodd �M��M� In the following theorem� the stable homotopy clas�
si�cation modulo ��torsion is established for spectral boundary value problems with odd
projections

��



Theorem �� On an odd�dimensional manifold M � the mapping

� � Ellodd �M��M� �Z
h
�
�

i
� Ell� �M� � Z

h
�
�

i
� Z

h
�
�

i
�

�D�P � ��
�
�D � ��D���� �

�
� d �ImP �

	
is an isomorphism of abelian groups�

Proof� Let us de�ne the inverse mapping

�� � Ell� �M� �Z

�



�

�
� Z

�



�

�
� Ellodd �M��M� �Z

�



�

�
�

On the �rst summand it is induced by the embedding of classical boundary value problems
in the class of boundary value problems with odd projections� and on the second summand
it is given� just as in the previous theorem� by the formula

��
�
	�

k

�N

�
�




�N
�D�� k� �

The second component of the composition � � ��

Z

�



�

�
� Z

�



�

�
is equal to the identity mapping� while the �rst component is


� ��

�
� Ell� �M�� Z

�



�

�
�� Ell� �M�� Z

�



�

�
�

and� by virtue of the isomorphism

Ell� �M� � K �T � �Mn�M��

and Proposition �� item 
� it is equal to the identity mapping
The following lemma completes the proof of the theorem

Lemma � The homomorphism �� is an epimorphism�

Proof� Consider the spectral boundary value problem �D�P � with an odd projection P�
Just as in the proof of Lemma 
� we only need to construct a homotopy of the principal
symbol of P to a projection independent of the cotangent variables By virtue of the
identi�cation ����� ����� it su�ces to construct a homotopy of the principal symbol of the
projection to a direct sum p � �
� p�� where p is an odd projection

It was proved in ��� that for some N there exists an even isomorphism

u � �N�� EjX � �N�� EjX � � � S�X � X�

��



that takes the projection �N
 �P � to the complementary projection �N �
 � 
 �P �� More�
over� this isomorphism de�nes the zero element in the group K� �S�X� It follows from
Proposition �� item � that for su�ciently large N the isomorphism u is homotopic to the
identity in the class of even isomorphisms Let us denote a homotopy of this type by ut�
t � �	� 
�� u� � 
� The desired homotopy of projections is given by the formula


 �Pt� � �N
 �P � � ut�
N
 �P �u��t �


 �P�� � �N��
 �P � � 
 �P�� � �N �
 �P �� �
� 
 �P ��� �

The lemma and the theorem are thereby proved

Corollary � ��� �� Spectral boundary value problems Ellev�odd �M��M� with parity con�
ditions have the following homotopy classi�cation modulo ��torsion�

Ellev�odd �M��M�� Z

�



�

�
� K �T ��M n �M��� Z

�



�

�
�Z

�



�

�
�

The index formula

ind �D�P � �



�
ind

�
D � ��D��

	
� d �ImP � ����

is valid�

Indeed� let us consider both sides of the index formula as homomorphisms of the group
Ellev�odd �M��M� into Z

h
�
�

i
 By Theorems � and 
	� the groups Ellev�odd �M��M� are

rationally generated by classical boundary value problems and boundary value problems
with �nite�dimensional spectral subspaces On both types of generators� the two parts of
the index formula ���� coincide This proves the index formula
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