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Abstract

We describe Fredholm boundary value problems for di�erential equations in
domains with intersecting cuspidal edges on the boundary�
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Introduction

The main aim of this paper is the Fredholm theory of elliptic boundary value
problems in domains with intersecting cuspidal edges on the boundary�

We consider a domain D in Rn�� whose boundary �D is a C� submanifold
of Rn�� outside of a set of �singular points� S � �D� We shall sometimes
write sing �D for S� We assume that S is the union of a 
nite number of one�
dimensional cuspidal edges E�� � � �� � � � � N � The edges E� themselves can
have a 
nite number of cuspidal points at which they meet each other� Thus�
any point of the intersection of edges is a cuspidal �perhaps� conical� point of
the boundary� the cross�section �link� of D near the point being a compact
manifold B of dimension n with a 
nite set of cuspidal points on the boundary
�B�

Boundary value problems in domains with isolated singular points on the
boundary were studied by many authors� The classical work here is that by
Kondrat�ev �Kon���� For a recent account of the theory and the complete
bibliography we refer the reader to �MKR��� and �RST����

The paper of Feigin �Fei��� was the starting point of our investigation
on boundary value problems in domains with smooth cuspidal edges on the
boundary� cf� �RST�	�� The geometry gives rise to a natural class of typi�
cal operators� Under an ellipticity condition� the Fredholm property of these
operators can be described in �naive� weighted Sobolev spaces�

Yet another approach to analysis on manifolds with cuspidal edges is de�
veloped in �ST���� It goes back as far as �Sch���� and completes the results of
�RST�	� in the case of operators with rather singular �coe�cients��

Domains with edges on the boundary intersecting at non�zero angles belong
to the next step in the hierarchy of manifolds with singularities that consists
of manifolds with corners� These arise in various ways� Constructions leading
to manifolds with corners include the desingularisation of singular varieties
�blow�up� and the compacti
cation of non�compact spaces� Stability under
products is of primary importance� enough alone to justify the detailed study
of manifolds with corners� because of the Schwartz kernel theorem�

In the literature there are several approaches to the analysis on manifolds
with corners� We mention three of them�

The 
rst approach is worked out by Maz�ya and Plamenevskii �MP���� It

�
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usually applies to boundary value problems for di�erential equations though
generalisations to di�erential analysis on compact closed manifolds with cor�
ners are straightforward�

In a number of papers of Plamenevskii and Senichkin� cf� for instance
�PS���� the spectra of C��algebras of pseudodi�erential operators on manifolds
with intersecting edges on the boundary ��polyhedrons�� are studied� Thus�
the authors restrict themselves to operators with homogeneous symbols of
order � acting in L� �spaces�

The second approach is due to Melrose �Mel	�� Mel���� It deals with so�
called b�pseudodi�erential operators on manifolds with corners� While origi�
nating from geometry this theory does not apply� however� to many interesting
elliptic operators� e�g�� the Laplace operator in the corner �R��n� n � ��

From the point of view of analysis� the most informative and richest in
content calculus of pseudodi�erential operators on manifolds with corners is
due to Schulze �Sch���� This approach relies on two basic theories� namely�
�coni
cations� and �edgi
cations� of an operator algebra�

The singularities are generated successively by �coni
cations� and �edgi
ca�
tions� of given geometric objects� starting with R� and a C� compact closed
manifold X� The coni
cation of X is then X� � R��X which is thought of
as a cone with base X� the vertex being deleted� The edgi
cation is de
ned
by Rq�X� which is the local model of a wedge�

Now we can pass to further coni
cation R� � Rq �X� which is the local
model of a corner� and so on� This gives rise to evident global de
nitions of
�manifolds� with conical points� edges� corners� etc�

The program is� parallel to the geometric picture� to realise function spaces
and operator algebras with symbolic structures for studying the solvability for
natural classes of di�erential operators on the underlying spaces with singular�
ities� Compared with the situation on smooth manifolds� the calculi on spaces
with singularities require new concepts and a re
ned analysis�

The theory of �Sch��� includes a concept of ellipticity for corner operators
in terms of leading symbols� which is equivalent to the Fredholm property of
those operators�

It is an important feature in the analysis on manifolds with singularities
that for a calculus to be useful� it should be �iterative�� This means that
given a manifold M � possibly with singularities� one can pass step by step
to the treatment of higher singularities by coni
cation and edgi
cation� As
a necessary intermediate tool one requires parameter�dependent versions of
calculi for lower order singularities� The results of the present paper are based
on those of �RST��� RST�	� and develop them�

It is organised as follows� In Chapter � we study boundary value problems
depending on a parameter � � i�� � � R being 
xed� in a domain D � Rn��

with a 
nite number of cuspidal points on the boundary� As function spaces we



Introduction 


take special weighted Sobolev spaces with norms depending on the parameter�
We show conditions for the problem to be invertible for large values of the

parameter� Moreover� we prove that the norm of the inverse operator acting
in the above spaces with parameter is estimated by a constant independent
of � � i�� This is a crucial fact because the problem under consideration
degenerates at the singular points of the boundary� Thus� we deal with a non�
standard theory of boundary value problems depending on a parameter� cf�
Agranovich and Vishik �AV�
��

In Chapter � we treat boundary value problems in cylindrical domains
whose cross�sections are domains with a 
nite set of cuspidal points on the
boundary� We prove that a problem is Fredholm if it is uniformly elliptic
outside of the set of singularities� the edge symbols of �RST�	� are invertible
over smooth parts of the edges� and an additional condition at either of the
two points at in
nity is ful
lled� This latter just amounts to the invertibility
of a family of boundary value problems in the cross�section� parametrised by
�� i��

Chapter � is devoted to boundary value problems in domains D with cusps
on the boundary� the cross�sections �links� having cuspidal points� too� Thus�
�D contains a 
nite number of cuspidal edges of dimension � intersecting at
zero angles� A blow�up process near any point v of the intersection of edges
reduces the problem to that in a cylinder whose cross�section is the link of D
close to v�



Chapter �

Boundary Value Problems with

Parameter

��� Cuspidal singular points

We say that �r� �� is a polar system of coordinates with centre at the origin in
Rn�� if each point x � Rn�� n f�g can be written in the form

x � r S����

for �r� �� � R� � �� where � is a domain in Rn star�shaped with respect to
the origin� and S a di�eomorphism of � to the unit sphere Sn in Rn���

By a canonical oscillating cusp we mean a domain in Rn�� given in the
form

Cx� � fx� � r S���r�f�r�	� � r � R�� 	 � Bg

whereB is a subdomain of �� and f�r�� ��r� are C� functions on R� specifying
the degeneracy and the oscillation of the cusp at x�� respectively�

To exclude the case where Cx� possesses a tangent plane at x
�� we require

f�r� to be bounded near r � �� More precisely� we assume that

�� f�r� 
 � for all r � R��
�� jrjf �j��r�j � cj near r � �� for every j �Z��

From �� and �� it follows that the singularity of ��rf�r� at r � � is not
integrable� Moreover� we may modify f away from any neighbourhood of
r � �� Thus� setting

d�r� �

Z r

r�

d�

�f���

for r 
 �� we get a di�eomorphism of R� onto the entire real axis R� such that
d��r� � ��rf�r��

The following example including both power�like and exponential cusps is
typical for our theory�

�
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Example �
�
� Let

f�r� �

�
�rp exp����rq�� r � ��� ���
���r� r � �������

where p� q � R� Suppose q � �� If q � �� we moreover require p � �� When
appropriately extended to the interval ��� ��� this function bears Properties ��
and ���

�

On the other hand� � � C�
loc�R�� is required to meet the following condi�

tions�

a� infr�R� ��r� 
 ��
b� jD�

d��r�j � c�� for every � �Z�� and
c� lim

r��
Dd��r� � �

where

Dd �
�

d��r�

�

i

�

�r
� �������

As but one example of ��r� satisfying a��c� we show

��r� � ��
�

�
sin�d�r��� ��r��

where � � ��� �� and � is a cut�o� function on R� vanishing near r� � d������
cf� �RST�	��

Pick a cut�o� function ��t� at t � ��� i�e�� any C� function on R� such
that ��t� 	 � for t 
 a and ��t� 	 � for t 
 b� where � 
 a 
 b 
 �� For
� 
 �� set

d
��� �r� � � �� d�r�� �

thus obtaining a cut�o� function at the point r � � on the semi�axis� It is easy
to check that

Dj
d d

��� � �j d�
�
Dj�

�
�

� �
�
�j
�

for all j �Z�� the constant depending on � and j but not on ��
In the sequel D stands for a bounded domain in Rn�� with a 
nite number

of singular points on the boundary� sing �D � fx�� � � � � xNg� We assume that
D n sing �D is a C� manifold with boundary� Moreover� D has a cuspidal
singularity at each point x�� as de
ned above� Thus� D is a canonical oscillating
cusp near x�� and we write f��r� and ���r� for the specifying functions of this
cusp� Set

d��r� �

Z r

r�

d�

�f����
�

for r 
 ��
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��� Admissible di�erential operators

Let we be given a di�erential operator A in D of the form

A �
X
j�j�m

a��x�D
�

the coe�cients a� being C� functions near D n sing �D� We also put some
restrictions on the behaviour of the coe�cients near every point x� � sing �D�
namely

jDGa��x�j � cG�a�� ��d���jx� x�j��jGj �
lim
x�x�

ra��x� � d�� �jx� x�j� � � �������

for all multi�indices G � Zn��
� � the constants cG�a�� being independent of x

near x� in D�
As is shown in �RST�	�� the estimates ������� just amount to saying that

the coe�cients a��x� are slowly varying as x
 x�� i�e��

lim
x�x�

��d���jx� x�j��
�jGj

DGa��x� � �

for all G �Zn��
� n f�g�

Introducing polar coordinates in D �B�x�� �� by

x � ���r� 	�

� x� � r S����r�f��r�	��

with r � ��� �� and 	 � B� � we get for the pull�back ���A of the operator A an
equality

���A � �d���r��
m
X

j�j�j�m

aj���r� 	�D
j
d�
D�

	 � �d���r��
m
R�

where aj�� have explicit expressions through the coe�cients of A� cf� ��������
in �RST�	�� From ������� it follows that

jDJ
d�
DA

	 aj���r� 	�j � cJ�A�aj����
lim
r��

Dd�D
A
	 aj���r� 	� � � �������

for all J �Z� and A �Zn
�� with cJ�A�aj��� a constant independent of r � ��� ��

and 	 � B� � On the other hand� the coe�cients of R� meet stronger conditions
than �������� namely� they are in
nitesimal along with all derivatives as r
��
Therefore� the operator R� has a small norm near r � � in relevant function
spaces�
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Now� by an admissible di�erential operator in D with parameter �� i� we
mean

A��� i�� �
X

k�j�j�m

ak���x� �� � i��kD�
x

where ak���x� satisfy the conditions in the domain D discussed above�

��� Function spaces

Let Cx� be a canonical oscillating cusp� Given any s �Z� and � � R� we de
ne
the spaceHs�
�Cx��

� to be the completion of C� functions in a neighbourhood
of the closure of Cx� vanishing near x

�� with respect to the norm

kukHs���C
x� �

�

�Z
R�

�d��r���

sX

j��

kDj
d �

�uk�Hs�j�B� dm�r�

� �
�

�������

where �� means the pull�back under the coordinates x � x� � r S���r�f�r�	��
Hs�j�B� are the usual Sobolev spaces on the link� and the measure dm is
induced by the Lebesgue measure dt on the real axis under t � d�r�� i�e��
dm�r� � jd��r�jdr�

For each singular point x� � sing �D� we 
x a ball B�x�� �� such that
D�B�x� � �� admits polar coordinates with centre x� and B�x�� ��� � � � � B�xN � ��
are pairwise non�overlapping� Moreover� we choose a cut�o� function with a
support in B�x�� �� which is of the form �����r� � d���� �r�� To this end� it
su�ces to take

a � max
��������N

� d�����

for we can certainly assume� by decreasing � if necessary� that all the d���� are
positive� Set

���� � ��

NX
���

����

regarded as a function over the whole domain D�
Let s � Z� and � � ���� � � � � �N�� with �� � R� We denote by Hs�
�D�

the completion of C� functions in a neighbourhood of D vanishing near every
point x� � with respect to the norm

kukHs���D� � k����ukHs�D� �

NX
���

k����ukHs��� �Cx� ��

By interpolation and duality� this de
nition actually extends to arbitrary real
values s�

�In the notation of �RST���� this is Hs�����Cx��	
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Finally� we write Hs� �
� �
��D� for the space of traces on the smooth part of

�D of all elements in Hs�
�D�� s 
 ����

��� Function spaces depending on a parameter

Suppose s � R�� For any value of the parameter � � i� along the weight line
 � � f� � C � �� � �g� we introduce the space Hs�



�i��Cx�� as the completion
of C� functions near the closure of Cx� vanishing close to x

�� with respect to
the norm

kukHs��
��i�

�C
x� �

�

�Z
R�

�d��r���

X
k�j�s

k�
�

d��r�
�� � i���kDj

d �
�uk�Hs��k�j��B�dm�r�

��
�

�

���
���
When localised away from a neighbourhood of the vertex x�� the spaces

Hs�


�i��Cx�� coincide with the usual Sobolev spaces with parameter � � i�� cf�

Agranovich and Vishik �AV�
��
Having disposed of this preliminary step� we can now de
ne� just as above�

the space Hs�


�i��D� with the norm

kukHs��
��i�

�D� � k����ukHs
��i�

�D� �
NX
���

k����ukHs���
��i�

�Cx� ��

Hs

�i��D� being the usual Sobolev space with parameter �� i�� By interpola�

tion and duality� we extend this scale of spaces to all real s�

��� Local invertibility of boundary value prob�

lems with parameter

In the domain D� we consider a boundary value problem depending on the
parameter �� i�� namely�

A��� i��u � f in D�
Bi��� i��u � ui on �D n sing �D�

�������

where A is an admissible di�erential operator in D and �Bi� a system of ad�
missible di�erential operators in a neighbourhood of �D n sing �D� We denote
m the order of A and mi the order of Bi�

We assign to ������� an operator

A�� � i�� �

�
A��� i��


 r�DBi��� i��

�
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acting as

A��� i�� � Hs�


�i��D�


Hs�m�
�m

�i� �D�





H
s�mi�

�
� �
�mi


�i� ��D�

� �������

where r�D means the restriction to the smooth part of the boundary of D and
s is any integer with s 
 maxmi�

Under the change of variables x � ���r� 	� close to any singular point
x� � �D� the operators A��� i�� and �Bi�� � i��� transform into operators

���A��� i�� � �d���r��
m P

k�j�j�j�m

ak�j���r� 	� ��� i��kDj
d�
D�

	

���Bi�� � i�� � �d���r��
mi

P
k�j�j�j�mi

bi�k�j���r� 	� ��� i��kDj
d�
D�

	

over the semicylinder R��B�� up to �small� remainders which do not a�ect
the local invertibility� The coe�cients ak�j�� and bi�k�j�� are required to satisfy
������� uniformly in 	 � B� �

Put

�d� �A�� � i����x�� r� �� �

	
B


P
k�j�j�j�m

ak�j���r� 	� �� � i��k�jD�
	



P

k�j�j�j�mi

r�B� bi�k�j���r� 	� �� � i��k�jD�
	

�
CA �

for r 
 � small enough and � � R� In this way we obtain what is usually
referred to as the conormal symbol of A��� i�� at the point x�� It is a family
of boundary value problems on the domain B� parametrised by �in general�
complex� ��

�d� �A��� i����x�� r� �� � Hs�B��


Hs�m�B��




Hs�mi�
�
� ��B��

� �������

We say that A��� i�� is a uniformly elliptic boundary value problem with
parameter in D n sing �D if� �� A�� � i�� is a uniformly elliptic di�erential
operator in D n sing �D� and �� the Lopatinskii condition with parameter� cf�
�AV�
�� is ful
lled uniformly at the points of �D n sing �D� The main result of
this chapter is the following theorem�

Theorem �
�
� Suppose that�

�� A��� i�� is a uniformly elliptic boundary value problem with parameter

in D n sing �D�
�� at each point x� � sing �D� the conormal symbol ������� is invertible for

all r � ��� ��� � being small enough� and ��� �� � R�� and

sup
�����	R�

k�d� �A��� i������x�� r� ��k 
��
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Then� there is an R 
 � such that the operator ������� is invertible if j�j 
 R�
and

sup
j
j�R

kA����� i��k 
��

Proof
 Let ���� be a cut�o� function at x�� as constructed in Section ����
and ���� � � �

P
����� From �� and the theory of boundary value problems

with parameter� cf� �AV�
�� it follows that� for any � 
 �� there exist R��� 
 �
and operators

B�L�
��� �� � i���

B�R�
��� �� � i��

with the property that

B
�L�
��� ��� i��A��� i������� � ������

�����A��� i��B
�R�
��� ��� i�� � �����

�����
�

provided j�j 
 R���� where �� � ����� will be determined later� Note that both

B
�L�
��� ��� i�� and B

�R�
��� ��� i�� act as

Hs�m

�i��comp�D n sing �D�





H
s�mi�

�
�


�i��comp��D n sing �D�


 Hs

�i��loc�D n sing �D��

On the other hand� Condition ��� if combined with Corollary 
���� of
�RST�	�� implies that� for every point x� � sing �D� there are � 
 � and
operators

B
�L�
��� �� � i���

B�R�
��� �� � i��

such that
B
�L�
��� ��� i��A��� i������ � �����

����A��� i��B
�R�
��� ��� i�� � �����

�������

We can assume� by decreasing � if necessary� that B�L�
��� ��� i�� and B�R�

��� ��� i��
act as

Hs�m�
�

�i��comp�D � B�x�� ���





H
s�mi�

�
� �
�


�i��comp ��D �B�x�� ���


 Hs�
�

�i��loc�D � B�x�� ����

For every � � �� � � � � N � pick a cut�o� function !���� at x� � as above� such
that

!�������� � !�����
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i�e�� ���� 	 � on the support of !����� Moreover� we can assume� by choosing
�� 
 � small enough� that !���� � � �

P
!���� meets the condition

!��������� � !�����

Set

B�L�
� ��� i�� � B

�L�
��� ��� i��!���� �

NX
���

B�L�
��� ��� i��!�����

for � 
 �� We have

B�L�
� �� � i��A��� i��

� B
�L�
��� �� � i��!����A��� i�� �

NX
���

B�L�
��� �� � i��!����A�� � i��

� B
�L�
��� �� � i��!����A��� i������� �

NX
���

B�L�
��� ��� i��!����A��� i������

� B
�L�
��� �� � i��A��� i��!�����

NX
���

B�L�
��� �� � i��A��� i��!���� �R

�L�
� �� � i���

the remainder R
�L�
� ��� i�� being

B�L�
��� ��� i���!�����A��� i�������� �

NX
���

B�L�
��� �� � i���!�����A��� i��������

It follows that

B�L�
� �� � i��A��� i�� � � �R�L�

� ��� i��� �������

Our next objective is to estimate the norm of the operator R�L�
� �� � i��

in L�Hs�


�i��D��� To this end� we 
rst invoke the standard theory of �AV�
�

showing that

lim

��

k�B�L�
��� �� � i���!�����A��� i��������kL�Hs

��i�
�D�� � �� �������

for any 
xed � 
 � and �� a C� function near D vanishing close to any singular
point x� � Indeed�

k� !�����A��� i��������k � �

�
�

j�j

�
�

the norm being in L�Hs

�i��D��H

s�m

�i� �D�
 �
H

s�mi����

�i� ��D���� while the op�

erator �B�L�
��� �� � i�� is bounded in the spaces with parameter� uniformly in
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� � i�� On the other hand� a straightforward veri
cation shows� for every
� � �� � � � � N � that

lim
���

k�� B
�L�
��� �� � i���!�����A��� i�������kL�Hs���

��i�
�Cx� �� � � �����	�

uniformly in � � R� ���r� being an arbitrary cut�o� function at x� with a
support in B�x�� ��� Indeed� the norm of the operator �!�����A�� � i�������
acting as Hs�
�


�i��Cx� �
 Hs�m�
�

�i� �Cx� �
 �
H

s�mi�����
�

�i� ��Cx� �� is in
nitesimal

as � 
 �� uniformly in � � R� while the operator �� B
�L�
��� �� � i�� is bounded

in the opposite direction� uniformly in � and �� i��
The estimates ������� and �����	� imply that there exist � 
 � and R 
 �

such that

kR�L�
� ��� i��kL�Hs��

��i�
�D�� �

�

�

if j�j 
 R� Hence it follows that the operator A�� � i�� is invertible from the
left provided j�j 
 R�

In the same way we prove that A��� i�� is invertible from the right for j�j
large enough� This completes the proof�

�



Chapter �

Boundary Value Problems in

Cylinders with Wedges

��� Di�erential operators with slowly varying

coe	cients

Suppose D is a bounded domain in Rn�� with a 
nite number of cuspidal
points x�� � � � � xN on the boundary� We write �t� x� for the coordinates in the
in
nite cylinder R�D with cross�section D�

For � � �� � � � � N � denote by E� � R � fx�g the cuspidal edge on the
boundary of R� D induced by the singular point x� of �D� In a cylindrical
neighbourhood of E� the cylinderR�D coincides with the canonical oscillating
wedge W� � R� Cx� � cf� �RST�	� �����

An arbitrary di�erential operator A of order m in R�D can be written in
the form

A �
X

k�j�j�m

ak���t� x�D
k
tD

�
x�

the coe�cients ak�� being C� functions in the cylinder� Moreover� we put the
following restrictions on the coe�cients�

�� ak�� are actually C� functions up to the boundary of R� D away from
the edges �E���

�� jDK
t D

G
x ak���t� x�j � cK�G�ak��� ��d���jx� x�j��jGj close to every edge E� �

i�e�� for all �t� x� � R� �D �B�x�� ����

�� lim
x�x�

rxak���t� x� � d�� �jx� x�j� � �� the limit being achieved uniformly

in t � R�


� when t
 ��� every ak���t� x� has a limit ak������ x� satisfying �� and
���

�
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Note that Condition 
� is imposed for simplicity� In fact� we only need to
require the coe�cients ak���t� x� to be slowly varying� as t
 ���

We say that the operator A is admissible if all the conditions ���
� are
ful
lled�

��� Function spaces in an in
nite cylinder

The cylinder R�D can be thought of as a manifold with two singular points
at t � ��� When treating boundary value problems on R�D we will restrict
our attention to a neighbourhood of t � ��� Therefore� the weighted Sobolev
spaces on R�D to be introduced are intended for the analysis near t � ���
For the global analysis� we should glue them together with analogous spaces
at t � �� in a familiar way�

Given any s �Z� and �� � � R� we denote byHs�
���R�Cx�� the completion
of C� functions in a neighbourhood of the closure of R� Cx� vanishing for
large jtj and close to R� fx�g� with respect to the norm

kukHs�����R	C
x��

�

�ZZ
R	R�

e��t�d���

X
k�j�s

k�
�

d��r�
Dt�

kDj
d�

�uk�Hs��k�j��B� jd
�jdt dm

� �
�

�cf� ������� in �RST�	��� As usual� we make use of duality and interpolation
to extend this scale to all real s�

On the whole cylinder R� D� the spaces Hs�
���R� D� are de
ned with
the help of a suitable partition of unity� namely

�R� ���� �
NX
���

�R� ���� � �

where �R stands for the function on R identically equal to �� Thus� the norm
in Hs�
���R�D� is

kukHs�����R	D� � k��R� �����uke��tHs�R	D��
NX
���

k��R� �����ukHs������W��

where � � ���� � � � � �N ��

Proposition �
�
� Any admissible di�erential operator A of order m on

R�D extends to a bounded mapping Hs�
���R�D� 
 Hs�m�
�m���R�D��

Proof
 This follows from �RST�	� �����
�
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��� Boundary value problems

Consider a boundary value problem in the cylinder R�D��
Au � f in R�D�
Biu � ui on R� ��D n sing �D��

�������

where
A �

P
k�j�j�m

ak���t� x�Dk
tD

�
x�

Bi �
P

k�j�j�mi

bi�k���t� x�Dk
tD

�
x

are admissible di�erential operators in R� D and near R� ��D n sing �D��
respectively�

As usual� we assign to ������� an operator

A �

�
A


 rR	�DBi

�

acting as

A � Hs�
���R�D�


Hs�m�
�m���R�D�




Hs�mi�
�
� �
�mi���R� �D�

� �������

where by rR	�D is meant the restriction to the smooth part of the boundary
of R�D� and s 
 maxmi�

Our concern will be the local invertibility of the operator A at the point at
in
nity t � ��� To this end� we 
x a C� function � on R satisfying ��t� � ��
for t � �� and ��t� � �� for t � �� Set �R�t� � ��t�R�� for R 
 �� We may
regard �R�t� as a function on R� D by tensoring it with �D� the function of
x � D identically equal to ��

Let us now introduce an operator ��A����� �� depending on a parameter
� � �� i� varying over  ��

��A������� i�� �

	
B


P
k�j�j�m

ak������ x� ��� i��kD�
x



P

k�j�j�mi

r�D bi�k������ x� ��� i��kD�
x

�
CA �

By the above� ��A� is said to be the conormal symbol of A at the singular
point t � ��� It is a family of boundary value problems on the domain D
parametrised by ��

��A������� i�� � Hs�
�D�


Hs�m�
�m�D�




Hs�mi�
�
� �
�mi��D�

� �������
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Theorem �
�
� Assume that�

�� ��A������� i�� satis�es the conditions of Theorem ��	��� and

�� ������� is invertible for all � � R�

Then� A is locally invertible at t � ��� i�e�� there exist an R 
 � and operators
B�L�� B�R� such that

B�L�A ��R � �D� � �R � �D�
��R � �D�AB�R� � �R � �D�

�����
�

Proof
 Denote by A���� x�Dt�Dx� the operator of the boundary value
problem inR�D obtained fromA � A�t� x�Dt�Dx� by freezing the coe�cients
at t � ��� Thus� it is de
ned by the operators

A���� x�Dt�Dx� �
P

k�j�j�m

ak������ x�Dk
tD

�
x�

Bi���� x�Dt�Dx� �
P

k�j�j�mi

bi�k������ x�Dk
tD

�
x

in R�D�
From Condition 
� of Section ��� it follows that

lim
R��

k �A�t� x�Dt�Dx��A���� x�Dt�Dx���R � �Dk � ��

lim
R��

k�R � �D �A�t� x�Dt�Dx��A���� x�Dt�Dx�� k � �

where k � k stands for the norm of operators acting as is shown in ��������
Hence we deduce easily that the local invertibility at t � �� of the op�
erator A�t� x�Dt�Dx� is equivalent to that of A���� x�Dt�Dx�� However�
the operator A���� x�Dt�Dx� is translation invariant with respect to the
shifts along the cylinder axis t � R� Therefore� the boundary value prob�
lem A�t� x�Dt�Dx� is locally invertible at the point t � �� if and only if the
operator A���� x�Dt�Dx� is invertible�

Applying the Fourier transform in t � R we reduce A���� x�Dt�Dx� to
the conormal symbol of A at t � �� acting in spaces with parameter�

��A������� i�� � Hs�


�i��D�


Hs�m�
�m

�i� �D�





H
s�mi�

�
� �
�mi


�i� ��D�

�

cf� ��������
Note that� given any 
xed � � i�� the norms in Hs�



�i��D� and Hs�
�D� are
equivalent� Indeed� away from a neighbourhood of singular points this fact is
well known� cf� �AV�
�� On the other hand� close to any singular point x� � �D
the norms of Hs�



�i��D� and Hs�
�D� di�er by an in
nitesimal term provided
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that the support of the cut�o� function �����x� shrinks to x�� cf� ������� and
���
���� Hence� Condition �� of the theorem implies the existence of the inverse
operator

��A��������� i�� �

Hs�m�
�m

�i� �D�





H
s�mi�

�
� �
�mi


�i� ��D�


 Hs�


�i��D��

for each � � R�
The norm of this operator is estimated uniformly in � on intervals of 
nite

length in R� Furthermore� Condition �� yields� by Theorem ������ the existence
of R 
 � such that

k��A��������� i��k � C

for all � � R with j�j 
 R� the constant C being independent of ��
Thus� using the Fourier transform proves the existence of a bounded inverse

operator for A���� x�Dt�Dx�� as desired�
�

Recall� cf� Theorem ������ in �RST���� that in order that ������� be Fred�
holm� for any � � R� it is necessary and su�cient that� for each � � �� � � � � N �
the symbol

�d� ���A������� i����x�� r� �� � Hs�B��


Hs�m�B��




Hs�mi�
�
� ��B��

be invertible for all �r� �� � ��� ���R� and the inverse is bounded uniformly in
r close to r � ��

��� Local principle

Before discussing the Fredholm property of elliptic boundary value problems
in domains with corners� we explain the abstract framework of our approach�

In the �����s Simonenko �Sim��a� Sim��b� proposed the so�called local prin

ciple for investigating whether an operator of local type is Fredholm� This is in
a certain sense analogous to the method of freezing coe�cients� well known to
specialists in partial di�erential equations� With the help of the local principle
he gave a di�erent interpretation of the theory of multidimensional singular
integral equations on smooth compact closed manifolds and treated the case
of compact manifolds with a smooth boundary�

In the latter situation the local principle reduces the study of the Fredholm
property for a multidimensional singular integral equation to the investigation
of invertibility of two types of operators� The 
rst type of operators arising is
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identical to the operators that appear in the case of compact manifolds with�
out boundary� while the second type is an one�dimensional singular integral
operator with a parameter� which can be handled by using the machinery of
the Riemann boundary value problem�

This method turned out to be fruitful in the theory of pseudodi�erential
operators on compact manifolds with a smooth boundary� which was devel�
oped thoroughly enough by Vishik and Eskin �VE���� where the concept of a
factorisation of an elliptic symbol was introduced�

In the �����s the local principle received an algebraic interpretation in
the book of Gokhberg and Krupnik �GK���� and the construction and study
of algebras of multidimensional pseudodi�erential operators and Wiener�Hopf
operators became more preferable to mathematicians from this time�

A third problem arises in the situation when the manifold is piecewise
smooth and has� for example� singular points and edges of di�erent dimensions�
The Fredholm property for a multidimensional pseudodi�erential operator on
a manifold with singularities is equivalent to the invertibility of operators con�
structed from the singularities according to the local principle�

We recall some concepts associated with the local principle in a form we
shall need below�

Let V be a C� �manifold with singularities�� e�g�� a Thom�Mather strati�

ed variety� cf� �GM		�� The points at in
nity of V � if there are any� are also
thought of as being singular�

The concept of a C� manifold with singularities starts by describing a
model object� M � which bears the information on the singularities involved
along with C� structures� As usual� M is embedded to a Euclidean space
RN� and by a C� structure on M is meant that induced from the surrounding
space� Thus� we have a collection of C� functions on M � among them the
so�called cut�o� functions which are identically equal to � near a given point
or set�

By de
nition� each point p � V has a neighbourhood Op homeomorphic to
an open set �p on a model objectMp� Then� we endow V with a C� structure
with singularities close to p if we 
x an equivalence class of homeomorphisms
�hp� with the property that gp � h��p is a C� mapping of �p�

We restrict ourselves to those V which are paracompact and countable
at in
nity� Moreover� in case V is not compact� we require a 
nite covering
�O����N of V by �coordinate neighbourhoods�� This should correspond to a

nite number of di�erent singularities under study�

The model objects M are given in a way which allows one to blow up
every M to a direct product U � ��� �� �B� where U is an open subset of Rq

and B a C� compact manifold with singularities� We call U � ��� �� �B the
stretched model object� Gluing together V close to any singularity with the
corresponding stretched model object yields a C� manifold with corners on



� ��� in Cylinders with Wedges ��

the boundary� V� that is called the stretched manifold associated to V � The
analysis on V takes really place in local coordinates of V�

We may also move � � � to the point at in
nity thus arriving at a manifold
with cylindrical ends�

Typical di�erential operators on V close to a singularity modelled by M
are of the form

A � �D�����
m
X

j�j�k�m

a��k�y� ��

�
�

D����
Dy

�� � �

D����
D�

�k

���
���

where a��k � C�
loc�U � ��� ���Di�m��j�j�k��B��� and the function t � D��� with

non�vanishing derivative on ��� �� comes from geometry of the singularity� A
natural domain of typical operators is the scale of weighted Sobolev spaces
with norms

kukHs�������������Rq	R�	B�

�

	

ZZ

Rq	R�

e��DjD�j��
X

j�j�k�s

k�
�

D�
Dy�

��
�

D�
D��

k��uk�Hs��j�j�k������B�jD
�jq��dyd�

�
A

�
�

�

If D���� is smooth up to � � � and D���� �� �� then we obtain the usual
Sobolev spaces and elliptic problems with data at � � � unless the link B itself
has singularities� In contrast to this situation� the cuspidal geometry is spec�
i
ed by the observation that the function t � D��� tends to �� su�ciently
fast� when �
 ��

Typical di�erential operators give rise to a local pseudodi�erential algebra
on V � It is formed by operators of the form A � op�a�� with speci
cally
degenerated symbols a � a�y� �� on T �U taking their values in a lower order
algebra "m�R��B�w� in the 
bres of V over an edge E � V � U being identi
ed
with a coordinate patch along E� The local algebra "m�U � R� � B�w�
is invariant under natural di�eomorphisms of V near E which preserve the
singular structure of V � Moreover� it is a module over C� functions of compact
support�

The structure of the leading symbols of operators ���
��� does depend on
the nature of the coe�cients a��k�y� �� and the function t � D���� Let us
assume that a��k�y� �� behave well enough when �
 �� in particular� they are
continuous up to � � �� cf� �RST�	�� Over any interior point �y� �� 	�� the
operator A bears principal interior symbol

b�m�A��y� �� 	� !�� !� � �� �
X

j�j�k�m

b�m��j�j�k� �a��k�y� ��� �	� �� !�
�!� k�

here in the compressed form de
ned actually up to � � �� To read o� the
symbol of A along the edge E� we use the Fourier transform in y � U and
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freeze the coe�cients a��k�y� �� at � � �� This results in

�edge�A��y� �� � �D�����
m
X

j�j�k�m

a��k�y� ��

�
�

D����
�

�� � �

D����
D�

�k

acting as Hs����
��������R� � B� 
 Hs�m����
�������m��R� � B�� Were t � D���
�su�ciently good� up to � � �� we would freeze the factor D���� at � � ��
too� thus obtaining an ordinary di�erential operator with constant coe�cients
on R�� cf� Lopatinskii condition� In the general case� we are concerned about
the powers of D����� However� for cuspidal singularities we substitute a new
symbol for �edge�A�� now acting in Sobolev spaces on the link B� This is the
family X

j�j�k�m

a��k�y� �� !�
�!� k

parametrised by !� � Rq and !� �  �� � Finally� if q � �� then the point � � �
corresponds to a corner with link B� Such a singular point contributes to the
collection of leading symbols by the so�called conormal symbol

�D�A���� �� �
mX
k��

ak��� �
k

acting as Hs���
�B� 
 Hs�m���
�m�B�� It is parametrised by � �  �� Let us
emphasise that all the leading symbols are compatible in a natural way and
behave properly under composition of operators and passing to formal adjoints�

Summarising� we conclude that each point p � V contributes to the tuple of
leading symbols of A� written simply ��A��p� q�� In general� this is an operator
family parametrised by q� By the above� ��A��p� q� is obtained from A by
passing to Fourier images and freezing all the coe�cients that vary su�ciently
slowly in the scale of suitable weighted spaces� If ��A��p� q� is a family of
Fredholm mappings� which is often the case for operators A elliptic in the
interior� then a familiar trick is to pose additional conditions along the edges
to guarantee the invertibility of ��A��

For a point p � V � if the symbol ��A��p� q� is invertible in spaces with
parameter q� uniformly in q� then the operator A � op���A�� � R is locally
invertible near p � V � too� because the local norm of R � op�a � ��A�� at p
is small� On the other hand� the uniform boundedness of ��A����p� q� in q is
a consequence of the mere invertibility of ��A��p� q�� for any 
xed q� and the
uniform invertibility of the symbol� for jqj 
 R� this latter being a consequence
of the ellipticity with parameter q�

We now de
ne a pseudodi�erential algebra on the whole manifold V � de�
noted "m�V �w�� by gluing together the local algebras� To this end� we 
x
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a covering Op� p � V � of V by coordinate neighbourhoods with local alge�
bras "m�Op�wp�� We may actually choose a 
nite subcovering O� � Op	� for
� � �� � � � � J � Pick a partition of unity ���� on V � subordinate to this covering�
and a system �� � C�

comp�O�� covering ���� in the sense that ���� � ��� for
every � � �� � � � � J � We introduce "m�V �w� to consist of all operators of the
form

A �
X
�

��A���

where A� � "m�O��w��� They act in weighted Sobolev spaces obtained by
gluing together local spaces�

Hs���
�V � �
X
�

��H
s��	�
	
loc �O���

Thus� both � and � are tuples of real numbers in general� the sum being
understood in the sense of non�direct sums of Fr#echet spaces�

Recall that an operator A � L�Hs���
�V ��Hs�m���
�m�V �� is said to be of
local type if� for any two C� functions �� � on V with disjoint supports� the
operator �A� is compact� Obviously� the operators A � "m�V �w� are of local
type�

The local principle of �Sim��a� Sim��b� establishes the equivalence of the
Fredholm property for an operator A � L�L��V �� of local type and the Fred�
holm property of all its local representatives Ap� p varying over V � It is clear
that there can be as many local representatives as desired� but they are either
all Fredholm or all not Fredholm� In the case when these local representa�
tives are homogeneous operators� they are Fredholm if and only if they are
invertible�

Our approach is a further development of the local principle� It is based on
the following two theorems which hold under much more general assumptions
than our setting here� However� we shall not attempt any proof and bring
these results merely to highlight our method�

Theorem �
�
� Let A � "m�V �w�� and p � V � If the symbol ��A��p� q�
is invertible for all q� then A is locally invertible at the point p�

Proof
 Indeed� the local invertibilitymeans the existence of operators B�L�

and B�R� such that
B�L�A� � ��
�AB�R� � ��

for some cut�o� function � at p� To prove this� we choose a family of cut�o�
functions ��� � 
 �� whose support shrinks to p and whose derivatives behave
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�well� when � 
 �� Write B for the operator associated with the inverse
symbol ��A����p� q�� Then

BA�� � �� � ���BA���

� ��� �� �BA��������

for all � 
 �� with �� 
 � satisfying ����� � ��� If � 
 �� then the norm of
���BA���� tends to zero� Hence it follows that the operator �� ���BA����
is invertible if � is small enough� Setting B�L� � �� � �� �BA�������B yields
the desired local left inverse of A� In the same way we prove the existence of
a right inverse�

�

It is to be expected that the inverse theorem is also valid� i�e�� the local
invertibility of an operator A at p just amounts to the invertibility of the
symbol of A at p� for all v� Thus� we call an operator A elliptic if ��A��p� q� is
invertible at each point p � V � for all v� Our second result reads as follows�

Theorem �
�
� Every elliptic operator A on V induces a Fredholm map


ping Hs���
�V �
 Hs�m���
�m�V �� for each s � R�

Proof
 Since the set of singularities S � V has zero measure� the local
invertibility of A at each point of S actually implies the local invertibility of A
in a neighbourhood of S of small measure� This follows by the same method
as in the proof of Theorem ��
��� Thus� there exist �� 
 � and operators B�L�

��

and B
�R�
�� such that

B
�L�
�� A�� � ���

��AB
�R�
��

� ��

for all � � ��� ���� where �� is a cut�o� function in a collar neighbourhood of
S�

We now proceed by pasting together this local inverse with a parametrix
of A on the smooth part of V � Namely� the usual ellipticity of A away from
the set S on V implies the existence of classical pseudodi�erential operators
Q

�L�
� and Q

�R�
� such that

Q
�L�
� A ��� ��� � ��� ��� �K �

��

�� � ���AQ
�R�
� � ��� ��� �K ��

� �

both K �
� and K ��

� being compact operators� Set

R�L�
� � B

�L�
��
�� �Q�L�

� �� � ����

then

R�L�
� A � B

�L�
�� A�� �Q�L�

� A ��� ��� �B
�L�
�� ���� A� �Q�L�

� ��� ��� A�

� � �K� � S�
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where
K� � K �

� �Q
�L�
� ��� ��� A��

S� � B
�L�
�� ���� A��

It is clear that K� is a compact operator� for each � � ��� ���� Furthermore�
� � S� is invertible� for � 
 � small enough� because

lim
���

k���� A�kL�Hs�����V ��Hs�m�����m�V �� � ��

Hence it follows that �� � S����R
�L�
� is a left regulariser of A if � 
 � is

su�ciently small�
The same reasoning applies to prove the existence of a right regulariser�

which completes the proof�
�

��� Fredholm property

We now turn to the boundary value problem ������� in the in
nite cylinder
R�D�

Following �RST�	� �
������� we introduce a so�called �compressed� symbol
of A along an edge E� � R� fx�g by

�E� �A� �t� r��� �� �

	
B


P
k�j�j�j�m

ak�j���t� r� 	��k�jD�
	



P

j�j�j�mi

r�B� bi�k�j���t� r� 	��
k�jD�

	

�
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for �t� r��� �� � T � �R� ��� ���� It follows that

�E� �A� �t� r��� �� � H
s�B��


Hs�m�B��




Hs�mi������B��
�������

is a C� function on T � �R� ��� ��� taking its values in the space of boundary
value problems on the link B�� cf� ��������

De�nition �
�
� We say that A meets the ellipticity condition at the point

�t� x�� along the edge E� if the mapping ������� is invertible for all r 
 � small

enough� and all ��� �� � R�� and the inverse is bounded uniformly in r and

��� ���

In more detail� the latter condition of De
nition ����� just amounts to
saying that

lim
���

sup
r����
�

������R�

k�E� �A�
�� �t� r��� ��k 
�� �������
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Theorem �
�
� Let the following conditions hold�

�� the boundary value problem A is uniformly elliptic in �R�D� n �E� �

�� A meets the ellipticity condition along every edge E�� � � �� � � � � N �

�� the conormal symbol of A at the corners t � �� is invertible on some

weight lines  �� � cf� ��������

Then� A is a Fredholm operator in the corresponding weighted Sobolev spaces

on R�D�

Proof
 Indeed� Condition �� provides the local invertibility of the operator
A at each point �t� x� � �R�D�n�E�� Condition �� implies� by Corollary 
����
of �RST�	�� the local invertibility of A at each singular point of the edges
E� � � � �� � � � � N � Finally� Condition �� yields� by Theorem ������ the local
invertibility of A at the points at in
nity t � ��� It remains to glue together
the local inverses� thus obtaining a global parametrix of A�

�
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Boundary Value Problems in

Domains with Intersecting

Edges

��� Geometry near a singular point

Consider a point x� � Rn�� belonging to the intersection of one�dimensional
cuspidal edges� Thus� x� is a cuspidal point on the boundary of some poly�
hedral domain D in Rn��� whose link at x� is a domain B � Rn with a 
nite
number of cuspidal points�

We will describe the geometry of D in a polar system of coordinates with
centre x� in much the same way as in Section ���� More precisely� we say that

Cx� � fx� � �S�$���F ���	� � � � R�� 	 � Bg

is a canonical non
smooth cusp if both F ��� and $��� satisfy the conditions
of Section ��� and B �� � bears a 
nite number of cuspidal points on the
boundary� sing �B � f	�� � � � � 	Ng�

By the above� each point 	�� � � �� � � � � N � gives rise to an one�dimensional
edge E� through x� and 	� on the boundary of D� We assume that the singu�
larities of B meet the assumptions of Section ���� hence the theory of �RST�	�
is applicable locally near smooth points of the edges �E� � i�e�� away from the
corners�

Fix any �� � ��� ��� Set

D��� �

Z �

��

d�

�F ���

for � 
 �� Modifying F away from a neighbourhood of � � �� if necessary� we
may actually assume that t � D��� is a di�eomorphism of R� onto the entire

��
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real axis R� satisfying
lim
���

D��� � ���

lim
���

D��� � ���

Changing the variables by t � D��� transforms Cx� to the in
nite cylinder
R�B over B� the corner x� passing to the point at in
nity t � ���

��� Transformation of di�erential operators

Let
A �

X
j�j�m

a��x�D
�
x

be a di�erential operator in a canonical non
smooth cusp Cx� � In the polar
coordinates ���� 	� � x� � �S�$���F ���	� it takes the form

��A � �D�����
m
X

k�j�j�m

ak����� 	�D
k
DD

�
	 �

cf� ���
���� Substituting t � D��� in turn yields a di�erential operator on the
cylinder R�B��

� �D��
��
A �

�
D
��D���t��

�m X
k�j�j�m

ak���D
���t�� 	�Dk

tD
�
	 �

We say that A is admissible ifX
k�j�j�m

ak���D
���t�� 	�Dk

tD
�
	

is an admissible di�erential operator on the cylinder R � B in the sense of
Section ����

On the other hand� the factor �D��D���t���
m
will be handled through suit�

able weighted Sobolev spaces�

��� Function spaces in a canonical corner

Recall that the scale Hs�
���R�B� of weighted Sobolev spaces over the in
nite
cylinder is introduced in Section ���� Here� � � ���� � � � � �N� is a multi�index
of weights corresponding to singular points 	� � �B� respectively� while � � R
corresponds to x��

Now� the space Hs�
�������Cx�� is de
ned to consists of all distributions u on
Cx�� such that �

D
��D���t��

�� �
� �D��

��
u � Hs�
���R�B��
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where � � R�
For s 
 ���� we denote Hs� �

� �
��������Cx�� the space of traces of all functions
u � Hs�
�������Cx�� on the smooth part of �Cx�� endowed with the quotient
topology�

��� Local invertibility of boundary value prob�

lems

Consider a boundary value problem in a canonical non�smooth cusp Cx���
Au � f in Cx��
Biu � ui on �Cx� n �E� �

���
���

where A and �Bi� are admissible di�erential operators in Cx� and near �Cx��
respectively�

Let us assign to ���
��� an operator

A �

�
A


 r�C
x�
Bi

�
acting as

A � Hs�
�������Cx��


Hs�m�
�m������m��Cx��




Hs�mi�
�
�
�
�mi������mi���Cx��

� ���
���

where s 
 maxmi�
As is explained in Section ��
� the local invertibility of the operator ���
���

at x� is controlled by its conormal symbol�

�D�A��x
���� i�� �

	
B


P
k�j�j�m

ak����� 	� �� � i��kD�
	



P

k�j�j�mi

r�B bi�k����� 	� �� � i��kD�
	

�
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This latter is a boundary value problem with parameter � � i� �  � on the
link of Cx� at x

�� namely

�D�A��x
��� � i�� � Hs�
�B�


Hs�m�
�m�B�




Hs�mi�
�
�
�
�mi��B�

� ���
���

Theorem �
�
� If

�� ��A��x��� � i�� ful�lls the conditions of Theorem ��	��� and

�� ���
��� is invertible for all � � R�

then A is locally invertible at the corner x��

Proof
 This is a straightforward consequence of Theorem ������
�
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��� Fredholm property

In this last section we brie%y sketch the Fredholm property of boundary value
problems in a domain D �� Rn�� with a 
nite number of cuspidal edges on
the boundary� intersecting at possibly zero angles� We continue to write E� �
� � �� � � � � N � for the edges� and we assume that they meet each other at a

nite number of points� called corners�

In the domain D� we consider a boundary value problem with data on the
smooth part of �D� namely�

Au � f in D�
Biu � ui on �D n sing �D�

�������

A being an admissible di�erential operator inD and �Bi� a system of admissible
di�erential operators near �D n sing �D� Let m stand for the order of A and
mi for that of Bi�

We now apply the standard reasoning� cf� Section ��
� to introduce weight�
ed Sobolev spaces Hs�
�������D� in D as well as the corresponding spaces on the
boundary �D�

We specify ������� as an operator

A �

�
A


 r�DBi

�

acting as

A � Hs�
�������D�


Hs�m�
�m������m��D�




Hs�mi�
�
� �
�mi������mi���D�

� �������

where s is any integer with s 
 maxmi�

Theorem �
�
� Let the following conditions be ful�lled�

�� the boundary value problem A is uniformly elliptic in D n �E� �

�� A meets the ellipticity condition along every edge E�� � � �� � � � � N �

�� the conormal symbol of A at each corner is invertible� as is required in

Theorem ������

Then� ������� is a Fredholm operator�

Proof
 This follows from Corollary 
���� of �RST�	� and Theorem ��
��
by the same method as in the proof of Theorem ��
���

�
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