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Abstract

In ���� Bohr proved that there is an r � ��� �� such that if a power
series converges in the unit disk and its sum has modulus less than �
then� for jzj � r� the sum of absolute values of its terms is again less
than �	 Recently analogous results were obtained for functions of several
variables	 The aim of this paper is to comprehend the theorem of Bohr
in the context of solutions to second order elliptic equations meeting
the maximum principle	
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� Preliminaries

It was in the spirit of function theory of the beginning of this century that
Bohr �Boh��� published the following theorem�

Theorem �
� There exists r � �	� �
 with the property that if a power

series
P�

��� c�z
� converges in the unit disk and its sum has modulus less than

�� then
P�

��� jc�z�j � � for all jzj � r�

We don�t know any motivation of Bohr�s result but very classical subjects
and coe�cient estimates muchmore precise than the Cauchy inequalities� Per
haps� this called on such mathematicians as M� Riesz� I� Shur and F� Wiener
who put Theorem ��� in �nal form by showing that one can take r � ��� and
this constant cannot be improved�
We call the best constant r in Theorem ��� �i�e�� ���
 the Bohr radius� If

regarded as a homothety coe�cient� this concept extends easily to domains
in C n � Let us review some of the recent generalisations of Bohr�s theorem to
functions of several complex variables�
Given a complete Reinhardt domain D in C n � we denote by R�D
 the

largest nonnegative number r with the property that if a power series
P

� c�z
�

converges in D and its sum has modulus less than �� then P� jc�z�j � � in
the homothety rD� Here� the sums are over all multiindices � � ���� � � � � �n

of nonnegative integers� z � �z�� � � � � zn
 is the tuple of complex variables� and
z� � z��� � � � z�nn � In �BKh��� the following result is proved in case D is the unit
polydisk

Un � fz � C n � jzjj � �� j � �� � � � � ng�

Theorem �
� For n � �� one has

�

�
p
n
� R�Un
 �

�
p
log np
n

�

We see from Theorem ��� that R�Un
 � 	 when n � �� If D is the
hypercone C � fz � C n � jz�j� � � �� jznj � �g� the situation is quite di�erent�
cf� �Aiz		��

Theorem �
� The following estimates are true�

�

� �
p
e
� R�C
 � �

�
�

Moreover� if z� �� ����
C� then there exists a series
P

�
c�z

� converging in C
and such that jP

�
c�z

�j � � is valid there� but
P

�
jc�z�j � � fails at the point

z��
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For further estimates of R�D
 in domains fz � C n � jz�jp� � � �� jznjp � �g�
� � p � �� we refer the reader to �Boa���� for other generalisations of Bohr�s
theorem cf� �DR����
We now discuss yet another natural multidimensional analogue of Bohr�s

theorem� Let r�D
 stand for the largest r � 	 such that if a power se
ries

P
�
c�z

� converges in D and its sum has modulus less than �� thenP
�
suprD jc�z�j � �� rD being the homothety of D� The following result

is contained in �Aiz		��

Theorem �
� For any bounded complete Reinhardt domain D in C n � the

inequality holds

� � n

r
�

�
� r�D
�

It is worth pointing out that this constant is near to the best one for the
hypercone C�
For holomorphic functions with positive real part� there is another result

equivalent to Bohr�s theorem� cf� �AAD��b��

Theorem �
� If a function f�z
 �
P�

��� c�z
� has positive real part in the

unit disk and f�	
 � 	� then
P�

��� jc�z�j � �f�	
 for all jzj � ��� and the

constant ��� cannot be improved�

The coincidence of the constants in Theorems ��� and ��� is not acciden
tal� as is shown in �AAD��b�� These constants also coincide for holomorphic
functions on complex manifolds�
In �AAD��a� the existence of a Bohr phenomenon is proved in Hol�M
� the

space of holomorphic functions on a complex manifoldM �

Theorem �
� If �f�
��������� is a basis in Hol�M
 satisfying

�
 f� � ��
�
 all the functions f� � � � �� �� � � �� vanish at a point z� �M �

then there exist a neighbourhood U of z� and a compact set K 	M � such that�

for all f � Hol�M
 with f �
P�

��� c�f� �

�X
���

sup
U

jc�f�j � sup
K

jf j�

In other words� in this case we meet a Bohr phenomenon in M with Bohr
radius r�M
� the more so with Bohr radius R�M
�
Though the proofs make essential use of the algebra structure of holomor

phic functions� the underlying fact seems to be nothing but the maximum
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principle� More precisely� we need a substitute of Harnack�s inequality� e�g�
�Eva��� ������� which reads that� given a continuous function f in a domain
D 	 Rn with values in Rk� such that f�x�
 � 	 for some x� � D� the supremum
of jf j over any set 	 		 D is dominated by the supremum of f itself over D�
This amounts to saying that for every set 	 		 D there is a constant c � 	
such that

sup
�

jf � f�x�
j � c sup
D

�
f � f�x�


�
� ����


the inequality being uniform in f belonging to an appropriate function class
and x� � 	�
In this paper we show that� for bases in nuclear function spaces� the esti

mate ����
 always implies a Bohr phenomenon�
The paper is organised as follows� In Section � we brie�y discuss Bohr�s

phenomenon in Hilbert spaces with reproducing kernels� the functions obeying
����
�
Many function classes of mathematical physics meet ����
� among them are

harmonic� separately harmonic and pluriharmonic functions� In Sections �
� we will be concerned with evaluating the Bohr radii for these classes of
functions� The important point to note here is explicit formulas for the Bohr
radii for harmonic and separately harmonic functions�
Polyharmonic functions fail to ful�l the maximum principle� in Section � it

is shown that no Bohr phenomenon exists for positive polyharmonic functions�
Finally� in Section � we prove that� for second order elliptic equations� the

estimate ����
 reduces to classical Harnack�s inequality� thus implying a Bohr
phenomenon�

� Spaces with reproducing kernels

It seems that an e�ective way of proving Bohr�s phenomenon in concrete cases
is trough establishing some coe�cient estimates for the relevant classes of func
tions� In this section we show coe�cient estimates for expansions in Hilbert
spaces with reproducing kernels�
Let D be a relatively compact domain with C� boundary in Rn� and A a

hypoelliptic operator in D� This means that any distribution f in D satisfying
Af � 	 is actually a C� function�
We assume moreover that for each compact set K 	 D there is a constant

c � 	 such that
sup
K

jf j � c kfkL���D� ����


for all f � C�� �D
 satisfying Af � 	 in D�
Denote by H the Hilbert space obtained by completing the space of all

f � C�� �D
 satisfying Af � 	 in D� with respect to the norm f 
� kfkL���D��
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In this way we obtain what is known as a Hardy space of solutions to Af � 	
in D�
From ����
 we deduce that H is a Hilbert space with reproducing kernel�

Namely� �x an orthonormal basis

�f�
��Zn�

in H� all the elements being smooth up to the boundary� Then� given any
x � D� the series

K�x� y
 �
X
��Zn�

f��x
� f���y


converges in the norm of L��
D
� where f��y
 � f�y
� Moreover� it converges
uniformly in x on compact subsets of D� so that K�x� y
 is actually a C�

function in the product D �D� This function is called the Szeg�o kernel of D
relative to A�
We now suppose that the basis �f�
��Zn� has the following natural proper

ties�

�
 f� is a constant�
�
 jf��x
j � C aj�jjx�x�jj�j for all x � D and � �Zn

�� the constant C being
independent of x and ��

Lemma �
� If f �
P

��Zn� c�f� is a solution to Af � 	 in D satisfying

f � B on the boundary� then

jc�j � s�
D
 sup
D
jf�j
�
B � f�x�


�
����


for all � �� 	� where s�
D
 is the surface area of 
D�
Proof
 Pick � � Zn

� di�erent from zero� Letting ds denote the area
element of 
D� we have

c� �

Z
�D

f��f ds�

Since �f�
��Zn� is an orthogonal system� we getZ
�D

f�� ds � 	

whence

jc�j �
����
Z
�D

f�� �B � f
 ds

����
� sup

�D
jf�j

Z
�D
�B � f
 ds

� sup
�D
jf�j

�
s�
D
B � �

f�
c�

�
�
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the second inequality being due to the fact that B�f � 	 on 
D� Taking into
account that

�

f�
c� �

�

f��
f�x�


� s�
D
 f�x�
�

we arrived at the desired inequality�
�

Coe�cient estimates of the type ����
 are of independent interest� especially
for the expansion of solutions to homogeneous elliptic equations with constant
coe�cients� cf� �Tar��� �����

Theorem �
� There is an r � 	 with the property that if f �
P

��Zn� c�f�
ful�lls jf j � � in D then

P
��Zn� jc�f�j � � in the ball B�x�� r
�

Proof
 Indeed� we can assume without loss of generality that f�x�
 � 	�
for if not we replace f by �f � Then�X

��Zn�
jc�f��x
j � f�x�
 �

X
����

jc�j jf��x
j

� f�x�
 � s�
D

�X

� ���
jf��x
j sup

D
jf�j
��
�� f�x�


�
�

the last inequality being a consequence of Lemma ���� We now invoke Prop
erty �
 of the basis �f�
��Zn� to obtainX

����
jf��x
j sup

D
jf�j � C�

X
� ���

a�j�j
�
dist�x�� 
D
�j�j jx� x�jj�j

� C�

	

X

��Zn�

�
a� dist�x�� 
D
 jx� x�j�j�j � �

�
A

� C�

��
�

� � a� dist�x�� 
D
 jx� x�j
�n

� �
�
�

If x � x� then the righthand side tends monotonically to zero� Hence
there is an r � 	 such that it is less than ��s�
D
 when jx� x�j � r� In fact�
we have

r �
�

a� dist�x�� 
D


	

� � �

n

q
� � �

C�s��D�

�
A �
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Thus� for x � B�x�� r
� we get

X
��Zn�

jc� f��x
j � f�x�
 � ��� f�x�



� ��

as desired�

�

Loosely speaking� the theorem says that Bohr�s phenomenon extends to
bases in Hardy spaces of solutions to elliptic equations of order � �� The
question arises on evaluating the Bohr radius for some concrete bases� We
discuss this problem in the next sections�

� Harmonic functions

To justify our formulation of Bohr�s phenomenon for harmonic functions we
need an analogue of Theorem ���� In the context of realvalued functions it is
fairly simple�

Let � be a vector space of bounded realvalued functions in a domain
D 	 Rn satisfying some relations there� and let � � �� Suppose �f�
��������� is
a basis in �� such that f� � � and all the functions f�� � � �� �� � � �� vanish at
a point x� � D�

Lemma �
� Given any neighbourhood U 	 D of x�� the following asser�

tions are equivalent�

�
 If f �
P�

��� c�f� and jf j � � in D� then P�
��� jc�f�j � � in U �

�
 If f �
P�

��� c�f� and f � 	 in D� then P�
��� jc�f�j � �f�x�
 in U �

Proof
 Suppose �
 holds� and f �
P�

��� c�f� is a positive bounded func
tion in D� Choose a constant k � 	 with the property that 	 � kf � � in D�
and set F � �� kf � Then F � � satis�es jF j � � in D� Since

F � �� � kc�
�
�X
���

kc�f� �

it follows by �
 that

j�� kc�j�
�X
���

jkc�f� j � �
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in U � Hence

�X
���

jc�f�j � �

k

�
�j�� kc�j�

�X
���

jkc�f� j
 � �jkc�j � j�� kc�j

�

�
�

k
�� � kc� � j� � kc�j


� �c�

in U � as desired�
Conversely� let �
 be valid� and let f �

P�
��� c�f� satisfy jf j � � in D�

We can certainly assume that c� � 	� for if not� we replace f by �f � Set
F � �� f � then F � � ful�lls 	 � F � � in D� As

F � �� � c�
�
�X
���

c�f��

we deduce by �
 that

j�� c�j�
�X
���

jc�f� j � ��� � c�


in U � Hence it follows that
�X
���

jc�f� j � �j�� c�j�
�X
���

jc�f� j
 � �jc�j � j�� c�j


� ��� � c�
 � �c� � ��� c�



� �

in U � which completes the proof�
�

Let B � fx � Rn � jxj � �g be the unit ball in Rn� On the sphere 
B we
have an orthonormal basis of spherical harmonics �Yk�j��

� where j�j � �� the
degree of Yk�j is equal to k� and� given any k � Z�� the index j varies from �
to 	�n� k
 �cf� �SW���
� For example�

	�n� k
 �

�
n� k � �

k

�
�
�
n� k � �
k � �

�

if k � ��
Any spherical harmonics Yk�j��
 is the restriction to 
B of a homogeneous

harmonic polynomial Yk�j�x
 in Rn�

Yk�j�x
 � jxjk Yk�j
�
x

jxj
�
�
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These polynomials form a basis in Har�B
� the space of harmonic functions in
B� Each function f � Har�B
 expands as a series

f�x
 �
�X
k��

��n�k�X
j��

ck�j Yk�j�x
 ����


in B which converges uniformly on compact subsets of B�
By a Bohr radius for harmonic functions in B we will mean the largest

number r � 	 with the property that if f � Har�B
 expands as ����
 and
jf j � � in B� then

�X
k��

��n�k�X
j��

jck�j Yk�j�x
j � �

in the ball Br � fx � Rn � jxj � rg� We denote this radius by RHar�B
�

Theorem �
� As de�ned above� RHar�B
 is equal to the root of the equa�

tion
� � r

�� � r
n��
� �� ����


lying in the interval �	� �
�

Proof
 According to Lemma ���� RHar�B
 is equal to the largest num
ber r � 	 such that if f is a positive bounded harmonic function in B with
expansion ����
� then

�X
k��

��n�k�X
j��

jck�j Yk�j�x
j � � c��� Y��� ����


for all x � Br�
Note that Z

�B

ds � �n���

where ds is the area form of 
B and �n�� the area of the unit sphere in Rn�
Hence

Y�����
 �
�p
�n��

�

and so ����
 implies

f�	
 �
c���p
�n��

�

Further� we have

ck�j � lim
r����

Z
�Br

f�x
Yk�j�x
 dsr
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where dsr is the area element of 
Br� Using the mean value theorem for
harmonic functions we get

��n�k�X
j��

jck�jj� �

��n�k�X
j��

lim
r����

�Z
�Br

f�x
Yk�j�x
 dsr

��

�
��n�k�X
j��

lim
r����

�Z
�Br

f�x
 dsr

Z
�Br

f�x
 �Yk�j�x


� dsr

�

� lim
r����

Z
�Br

f�x
 dsr lim
r����

Z
�Br

f�x


��n�k�X
j��

jYk�j�x
j� dsr

� lim
r����

Z
�Br

f�x
 dsr lim
r����

Z
�Br

f�x
 rkZk dsr

� Zk

�
lim

r����

Z
�Br

f�x
 dsr

��

� Zk c��� �n���

Zk being surface zonal harmonics� cf� �SW����

For further estimates we need an expansion of the Poisson kernel �x� y

by the zonal harmonics

Zk��� �
 �

��n�k�X
j��

Yk�j��
Yk�j ��


where j�j � � and j�j � �� In this notation� we have Zk � Zk��� �
 for all
k �Z�� Moreover�

�r�� �
 �
�

�n��

� � r�

jr� � �jn

�
�X
k��

rk Zk��� �


�
�X
k��

rk Zk��� �
�

cf� �SW���� Thus�

�X
k��

��n�k�X
j��

jck�j Yk�j�r�
j � c���p
�n��

�
�X
k��

rk
��n�k�X
j��

jck�jj jYk�j��
j
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� c���p
�n��

�
�X
k��

rk

vuut��n�k�X
j��

jck�jj�
vuut��n�k�X

j��

jYk�j��
j�

� c���p
�n��

� c���
p
�n��

�X
k��

rk Zk

�
c���p
�n��

� c���
p
�n��

�
�

�n��

� � r�

�� � r
n
� �

�n��

�

�
c���p
�n��

� � r

�� � r
n��
�

Hence it follows that RHar�B
 is not less than the root of the equation ����

lying in the interval �	� �
� It is a simple matter to check that ����
 has a
unique root in �	� �
�

Conversely� the Poisson kernel

�x� ��
 �
�

�n��

� � jxj�
jx� ��jn �

where �� � ���
p
n� � � � � ��

p
n
� gives us an extremal function� Indeed� it is

harmonic and positive in B� After the homothety x 
� �x� 	 � � � �� the
function ��x� ��
 is bounded in B� and �	� ��
 � ���n��� Moreover�

��x� ��
 �
�X
k��

��n�k�X
j��

Yk�j��x
Yk�j��
�


�
�X
k��

��n�k�X
j��

�kYk�j��
�
Yk�j�x
�

i�e�� in this case ck�j � �kYk�j���
� Setting x � r�� yields

�X
k��

��n�k�X
j��

j�kYk�j���
j jYk�j�r��
j �
�X
k��

��r
k
��n�k�X
j��

�
Yk�j��

�

��

�
�

�n��

� � �r

��� �r
n��
�

Hence we conclude that if �r is the root of ����
 in the interval �	� �
� then
the inequality ����
 fails� To �nish the proof it remains to pass to the limit
when �� ��

�
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Note that if n � � then RHar�B
 � ���� which agrees with the classical
Bohr radius� Furthermore�

RHar�B
 �
��p�	



if n � ��

RHar�B
 � �� �

r
�
� �
q

��
��� �

�

� �
q

�
��
p

��
���

if n � ��

One can still write down RHar�B
 in radicals for n � �� however� the
formula is cumbersome� We just mention an asymptotic formula of RHar�B

when n��� namely

RHar�B
 �
log �

n
�O

�
�

n�

�
� ����


� Separately harmonic functions

By a separately harmonic function in a domain D 	 C n is meant any function
f harmonic in every variable zj � xj�ixn�j� j � �� � � � � n� i�e�� 
�f�
zj
�zj � 	
in D�
Let D � Un be the unit polydisk� Each function f separately harmonic in

Un can be represented in any smaller polydisk rUn� 	 � r � �� by the multiple
Poisson integral where the integration is over the ndimensional skeleton of
rUn� i�e�� sr � fz � C n � jzjj � r� j � �� � � � � ng� Expanding every Poisson
kernel as a power series in zj and �zj� we obtain easily a basis in the space of
functions separately harmonic in Un� endowed with the topology of uniform
convergence on compact subsets of Un� This is ��� w�

I 
 where I varies over
all ntuples consisting of � �there are �n such tuples
� and � varies over all
multiindices in Zn

�� Write I � �i�� � � � � in
� then wI � �wI��� � � � � wI�n
 where
wI�j � zj� if ij � ��� and wI�j � �zj� if ij � ��� Under this notation� we
have w�

I � w��
I�� � � � w

�n
I�n� and any function f�z� �z
 separately harmonic in Un

expands as a series

f�z� �z
 � c� �
X
����

X
I

c��Iw
�
I ����


where

c��I � lim
r����

�

���
n

Z
sr

f�z� �z
 �w�
I

dz

z
�

By a Bohr radius for functions separately harmonic in Un we mean the
largest number r � 	 with the property that if f expands as ����
 and jf j � �
in Un� then

jc�j�
X
����

X
I

jc��I w�
I j � � ����


in the polydisk rUn� We denote this radius by RSHar�Un
�
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Theorem �
�

RSHar�U
n
 �

�
�
n � �
�

�
n � �

�

Proof
 By Lemma ���� RSHar�Un
 is equal to the largest number r � 	
such that if f is a positive bounded separately harmonic function in Un with
expansion ����
� then

c� �
X
����

X
I

jc��Iw�
I j � � c�

for all z � rUn�
If f�z� �z
 � 	 then we get� using the mean value theorem for the skeleton

sr�

jc��Ij � lim
r����

�

���
n

Z
sr

f�z� �z
 j �w�
I j
����dzz
����

� lim
r����

rj�j
�

���
n

Z
sr

f�z� �z


����dzz
����

� f�	


� c�

for all � and I� Furthermore� if z � rUn� then

c� �
X
����

X
I

jc��Iw�
I j � c� � c�

X
� ���

X
I

rj�j

� c�

�
� � �

�X
j��

rj

�n

� c�

�
� � r

� � r

�n

whence

RSHar�U
n
 � �

�
n � �
�

�
n � �

�

Conversely� the Poisson kernel in the complex variable zj can be written in
the form

�

��

� � jzjj�
j�� zjj� �

the second point being � � �� Given any �xed 	 � � � �� we consider the
function

f�z� �z
 �
�

���
n

nY
j��

� � j�zjj�
j� � �zjj�
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which is separately harmonic� positive and bounded in Un� For this function�
we have

c��I �
�

���
n
�j�j

for all � and I� If z � sr then

c� �
X
����

X
I

jc��Iw�
I j �

�

���
n

�
� � �

�r

�� �r

�n

�
�

���
n

�
� � �r

� � �r

�n

�

Letting �� �� we deduce that

RSHar�U
n
 � �

�
n � �
�

�
n � �

�

which completes the proof�
�

Note that RSHar�U
 � ��� which agrees with the harmonic Bohr radius of
U �
It is easy to show an asymptotic formula for RSHar�Un
 when n � ��

namely

RSHar�U
n
 �

log �

�n
�O

�
�

n�

�
� ����


cf� ����
� One must take into account that the real dimension of Un is �n�
hence the asymptotic formulas for the �harmonic� Bohr radius of the ball B in
R�n and the �separately harmonic� Bohr radius of the polydisk Un coincide�
Let D be a complete Reinhardt domain in C n � We de�ne the Bohr radius

RSHar�D
 to be the largest number r � 	 such that if f�z� �z
 expands as ����

and jf�z� �z
j � � for all z � D� then ����
 is ful�lled in the homothety rD�
Since D is the union of polydisks� we arrive at the following consequence of
Theorem ����

Corollary �
� For any complete Reinhardt domain D 	 C n � it follows

that

RSHar�D
 � �
�
n � �
�

�
n � �

�

Theorem ��� and ��� gain in interest if we realise that the corresponding
Bohr radii in these theorems are computed explicitly� Till now mere estimates
of various Bohr radii were known in all cases� except for the classical Bohr
theorem and the equivalent assertion for holomorphic functions with positive
real part in the unit disk�
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The proofs of these theorems give more� namely explicit inequalities for
positive harmonic functions� Since Zk � 	�n� k
��n��� cf� �SW���� the proof
of Theorem ��� contains an estimate of the root mean square of the coe�cients
in the expansion over the basis by homogeneous harmonic polynomials of the
same degree� sP��n�k�

j�� jck�jj�
	�n� k


� c���

for all k � Z�� On the other hand� the proof of Theorem ��� makes use of
the inequality jc��I j � c�� for each � and I� It is the inequalities that are
the key tool of evaluating the Bohr radii for various function classes� They are
analogues of the classical Carath�eodory inequality �Car	��� which states that if
f�z
 expands as a series

P�
��� c�z

� in the unit disk and �f�z
 � 	� �f�	
 � 	�
then jc�j � �c� for all ��

� Pluriharmonic functions

By pluriharmonic functions are meant real parts of holomorphic functions of
several complex variables� The coincidence of RHar�U
 with the classical Bohr
radius ��� is not accidental� Let �f�
��������� be a basis in the space of holo
morphic functions in a domain D 	 C n with the natural topology of uniform
convergence on compact subsets of D� We assume that f� � � and all the other
functions f� vanish at a �xed point z� � D� Then

�
�� f� � �f�

�
���������

form a basis

in the space of pluriharmonic functions in D� Any such function expands as a
series

F �z
 � C� �
�X
���

�
C�f� � �C�

�f�
�

����


which converges uniformly on compact sets in D� the coe�cients C� and �C�

being conjugate to each other�

Theorem �
� Given any neighbourhood U 	 D of z�� the following asser�

tions are equivalent�

�
 If F is a positive pluriharmonic function in D with expansion ����
� then
C� � �

P�
��� jC�f� j � �F �z�
 in U �

�
 If f �
P�

��� c�f� is a holomorphic function with positive real part in D
and �f�z�
 � 	� then P�

��� jc�f� j � �f�z�
 in U �

Proof
 The proof is straightforward� Each pluriharmonic function F has
the form �f � �f 
��� where f is holomorphic� Under the above assumption� we
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have

F �	
 � f�	
�

C� �
c�
�
�

whence the desired conclusion follows�

�

Theorem ��� implies that all estimates of Bohr radii for holomorphic func
tions of �BKh���� �Aiz		�� �Aiz���� �AAD��a�� �AAD��b�� �Boa���� �DR��� dis
cussed in Section � remain valid for Bohr radii of pluriharmonic functions in
the same domains�

� Polyharmonic functions

Recall that by a polyharmonic function in a domain D 	 Rn is meant any
function f satisfying  Nf � 	 in D� where N � �� For such functions� there
is no Bohr phenomenon� Indeed� consider the function family � � c jxj��N���
in the unit ball B� parametrised by a positive constant c� All the functions
are polyharmonic and positive� Moreover� � and jxj��N��� enter into a simplest
basis in the space of polyharmonic functions in B� Were the Bohr phenomenon
available� one had ��c jxj��N��� � � in a ball rB� for each c � 	� This amounts
to saying that

jxj �
�
�

c

� �
��N���

for all jxj � r� which contradicts to the fact that the right hand side is in
�nitesimal when c���

� Solutions of elliptic equations

The preceding section shows that the Bohr phenomenon does not extend to
solutions of elliptic equations of order larger than �� Moreover� it is not valid
even for second order elliptic equations that do not meet the maximum prin
ciple� Indeed� � � c jzj�� c � 	� is a family of positive solutions to the elliptic
equation �
�
�z
�f � 	 in the unit disk U 	 C �the solutions are known as
bianalytic functions
� Since � and jzj� enter into a simplest basis in the space
of bianalytic functions in U � we may repeat the same reasoning as that in
Section ��

Thus� we restrict ourselves to second order elliptic equation Af � 	 in a
domain D 	 Rn whose solutions verify the maximum principle� As is known�
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e�g� �Eva��� ����� A should be of the form

A � �
nX

i�j��

ai�j�x


�


xi
xj
�

nX
i��

ai�x





xi
� a�x
�

the coe�cients being C� realvalued functions in D satisfying ai�j � aj�i� for
each i� j � �� � � � � n� and a � 	 in D� To ensure that � � Sol�D
 we actually
require a � 	 in D�
We continue to write Sol�D
 for the space of all functions f satisfying

Af � 	 in D� By Weil�s lemma� any �reasonable� solution of Af � 	 is
actually a C� function in D� Moreover� any �reasonable� topology in the
space Sol�D
 coincides with that induced by the embedding into C��D
� cf�
�Tar��� �����
For a set K 		 D� we put

kfkK � sup
K

jf�x
j

where f � Sol�D
� The system of seminorms kfkK� K 		 D� de�nes the
topology of uniform convergence on compact subsets of D� When regarded
with this topology� Sol�D
 is a nuclear Fr�echet space� e�g� �MV����
A sequence �f�
��������� of functions in Sol�D
 is said to be a basis in this

space if for each solution f � Sol�D
 there is a unique sequence of numbers c�
such that f �

P�
��� c�f� � where the series converges uniformly on any compact

subset of D�

Lemma �
� If �f�
��������� is a basis in the space Sol�D
 then for each

U 		 D there exist K 		 D and C � 	 such that� given any f �
P�

��� c�f�
in Sol�D
� we have

�X
���

jc� j kf�kU � C kfkK �

Proof
 This result is a straightforward consequence of the theorem on ab
soluteness of bases in nuclear spaces proved in �DM�	�� cf� also Theorem �����
in �MV����

�

Certainly� the generic situation is when U 		 K� which can be assumed
without loss of generality�

Lemma �
� For each point x� � D and set 	 		 D� there is a constant

c � 	 such that whenever f � Sol�D
 and f�x�
 � 	 we have

sup
�

jf j � c sup
D

f�



�	 L� Aizenberg and N� Tarkhanov

Proof
 We can assume� by enlarging 	 if necessary� that 	 is connected and
contains x�� Choose a domain U 		 D such that 	 	 U � Suppose f � Sol�D

vanishes at x�� Set

inf
�
f � �m��

sup
�

f � M�

and
inf
U
f � �mU �

sup
U

f � MU �

so that all the m�� M� and mU � MU are nonnegative� Then

�m� � f�x
 � M� for all x � 	�
�mU � f�x
 � MU for all x � U�

Consider the function

u�x
 �MU � f�x


in U � It is a simple matter to see that u is a nonnegative solution to Au � 	
in U � and

inf
�
u � MU �M��

sup
�

u � MU �m��

According to Harnack�s inequality� e�g� �Eva��� ������� there exists a con
stant c depending only on 	 and the coe�cients of A� such that

MU �m� � c �MU �M�
 �

Hence

sup
�

jf j � M� �m�

� MU �m�

� c �MU �M�


� c MU

� c sup
D

f�

as desired�
�

As we will shortly learn� Lemmas ��� and ��� already imply a Bohr phe
nomenon for solutions of Af � 	� While the �rst of the two extends easily
to solutions of general hypoelliptic equations� the second one is a �ne result
on the geometry of graph hypersurfaces of solutions to second order elliptic
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equations� Indeed� an equivalent formulation of Lemma ��� is that for each set
	 		 D there is a constant c � 	 depending only on 	� such that whenever
f � Sol�D
 we have

f�x�
� inf
�
f � c

�
sup
D

f � f�x�


�

for all x� � 	� To see this it is su�cient to apply Lemma ��� to the functions
f�x
� f�x�
� Setting t � ���� � c
 yields

f�x�
 � t inf
�
f � �� � t
 sup

D
f ����


for all x� � 	� where t � �	� �
 is independent of f � Sol�D
� The inequality
����
 speci�es the geometry of the hypersurface y � f�x
 in Rn�� through the
rigid constant t�

Example �
� Take D � B�	� R
� R � �� and 	 � B�	� �
� x� � 	� For the
family of harmonic functions

f�x
 �
�

��
log
�
�x� � a
� � x��

�
in D� a � R� the inequality ����
 reduces to

a

a� � �
�
� �

R

a

�c

�

for all a � R�
�

Having disposed of these preliminary steps� we can now extend Theorem ���
to solutions of Af � 	�

Theorem �
� If �f�
��������� is a basis in Sol�D
 satisfying

�
 f� � ��
�
 all the functions f� � � � �� �� � � �� vanish at a point x� � D�

then there exist a neighbourhood U of x� and a compact set K 	 D� such that�

for any f � Sol�D
 with f �P�
��� c�f��

�X
���

sup
U

jc�f�j � sup
K

jf j�
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Proof
 According to the GrothendieckPietsch criterion for nuclearity� e�g�
Theorem ����� of �MV���� for every set U 		 D there is a set � 		 D such
that �X

���

kf�kU
kf�k� ��� ����


Set Br � fx � Rn � jx�x�j � rg� for r � 	� Since f��x�
 � 	 for all � � ��
we have kf�kBr � 	 when r� 	� Thus� from ����
 it follows that

sup
���

kf�kBr
kf�k� � 	 ����


as r� 	� � corresponding to Br	�
On the other hand� Lemma ��� implies that for any � 		 D there are

	 		 D and C � 	 with the property that� given any f �
P�

��� c�f� in
Sol�D
� we have

�X
���

jc� j kf�k� � C kfk�� ����


Fix r� � 	 such that Br	 		 D� choose � 		 D such that ����
 holds�
and �nd 	 		 D so that ����
 holds� Finally� choose a compact set K 	 D
whose interior contains 	� By Lemma ���� there exists a constant c � 	 with
the property that

kf � f�x�
k� � c sup
K

�
f � f�x�


�
����


for all f � Sol�D
�
Now suppose f � Sol�D
� We may assume without loss of generality that

c� � f�x�
 � 	� since otherwise we multiply f by ��� Then it follows from
����
 and ����
 that

�X
���

jc�j kf�k� � C kf � f�x�
k�

� C c sup
K

�
f � f�x�


�
�

By ����
 we can choose r � r� such that

sup
���

kf�kBr
kf�k� � �

C c
�

then

�X
���

sup
Br

jc�f�j � f�x�
 �
�X
���

jc�j kf�k�
�kf�kBr
kf�k�

�
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� f�x�
 � C c sup
K

�
f � f�x�


�
sup
���

kf�kBr
kf�k�

� sup
K

f

� sup
K

jf j�

Hence we obtain the statement with U � Br�
�

In �AAD��a� Remark ���� it is shown that if the space Sol�D
 has a basis
then it has also a basis satisfying the hypotheses of Theorem ���� While the
proof is given for holomorphic functions� the same arguments still work for the
space Sol�D
�
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