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Introduction

We study elliptic operators in subspaces de
ned by pseudodi�erential projections�
more precisely� even pseudodi�erential projections� Such projections appear already
in classical boundary value problems� Indeed� when we reduce an elliptic boundary
value problem to the boundary� the corresponding operator acts in subspaces de
ned
by pseudodi�erential projections� Moreover� projections prove to be very helpful in
the construction of a Fredholm theory for elliptic operators violating the well�known
Atiyah�Bott condition �	�� It is shown in �
� that such a theory can be constructed
in subspaces de
ned as the ranges of pseudodi�erential projections in Sobolev spaces�
These results actually go back to the classical Hardy spaces in which �and only in
which� valid Fredholm theory for the Cauchy�Riemann operator can be constructed�
The class of even projections is an important class of pseudodi�erential projections�
The precise de
nition will be given later� but for now we point out that in the subspaces
de
ned by such projections we not only prove the 
niteness theorem� but also present
the corresponding index formula�

The most essential and fundamental distinction of elliptic theory in subspaces de�

ned by pseudodi�erential projections from a similar theory in Sobolev spaces is as
follows� Although the ellipticity condition� just as in the classical case� is expressed
in terms of the principal symbols of the main operator and the projections� the index
of an elliptic operator in subspaces is determined by neither the principal nor even
the complete symbols� This results in the necessity to give some numerical charac�
teristic of pseudodi�erential projections or� which is the same� of the subspaces they






de
ne� One can obtain such a numerical characteristic� playing in a certain sense the
role of the dimension of a projection �in the 
nite�dimensional case it is equal to the
rank of the projection�� at least in the class of even projections� This notion is un�
doubtedly fundamental in our theory� In these terms we obtain an index formula in
the situation of compact manifolds without boundary as well as for general boundary
value problems� The relation between the notion of �dimension� and the ��invariant
of Atiyah�Patodi�Singer ��� is established�

The paper is organized as follows�
In the 
rst section� we consider subspaces de
ned as the ranges of pseudodi�eren�

tial projections on an odd�dimesional compact manifold M without boundary�� More
precisely� we assume that the projection is even� in the sense that its principal symbol
is an even function with respect to the cotangent variables�

It turns out that in the class of such subspaces there exists a uniquely de
ned �up
to a normalization� analog of the notion of dimension of a 
nite�dimensional vector
space �i�e�� a homotopy invariant additive functional�� Every normalization is a choice
of dimensions for spaces of sections of vector bundles over M �

Even projections have the following property� the group of stable homotopy classes
of even projections is rationally generated by elements that di�er from the projections
on spaces of sections of vector bundles on M by 
nite rank operators� This statement
is actually a consequence of the fact that the obstruction to the stable homotopy of
projections �modulo 
nite rank operators� lies in the group K �P �M� �K �M� �here P �M
is the projectivization of the cosphere bundle�� which is a torsion group�

In the second section we study elliptic operators acting in subspaces de
ned by
pseudodi�erential projections�

D � H� �� H�� H��� � ImP����

Namely� we show that the index of elliptic operators of this form is represented as a sum
of two homotopy invariant terms� one of which is determined by the principal symbol of
the operator D �and is a homotopy invariant of the principal symbol of the problem��
while the second term is determined only by the subspaces where the operator D acts
and is a homotopy invariant of the subspaces�

Let us note that there is no decomposition of this kind in the class of all elliptic
operators� It can be shown that here� as well as in the theory of spectral boundary
value problems �see ��� ���� there is an obstruction to such a decomposition� which
is closely related to the spectral �ows of periodic families of operators �see Sec� 	��
That is why� to obtain an index formula� one must necessarily take narrower classes of
operators�

�Let us note that all our constructions are determined by the subspaces themselves and are inde�
pendent of the choice of projections onto them�

�



In Sections �� �� and � we give an application of the theory to boundary value
problems� The general boundary value problems �
� are considered in Sec� �� They
have he form �

Du � f�
Bu � g � ImP�

�	�

where D is an elliptic di�erential operator on a smooth manifold M with boundary
�M � B is a boundary operator� and P is some pseudodi�erential projection on �M �
This class of boundary value problems� on the one hand� contains all classical boundary
value problems with the Lopatinskii condition �e�g�� see ����� On the other hand� for
any elliptic operator D there exists a Fredholm boundary value problem in this class�
In this section all the necessary de
nitions are given� Examples are presented�

Sections � and � deal with the index computation for general boundary value prob�
lems� In Sec� � the problem is reduced to a certain spectral boundary value problem
���� In a collar neighborhood of the boundary with the normal coordinate t� it has the
form � �

�
�t
�A �t�

�
u � f�

P uj�M � g � ImP�
�
�

where A ��� is a pseudodi�erential operator on the boundary� whose homogeneous
principal symbol on the bundle of cotangent spheres to the boundary is equal to

� �A ���� � 
� �P �� 	�

The reduction is understood in the sense that the corresponding Fredholm operators
have the same indices�

In Sec� � the class of even boundary value problems on an even�dimensionalmanifold
M is considered� These are boundary value problems of the form �	� with an even
projection P � Under this condition� we obtain the following index formula for the
spectral boundary value problem �
��

ind �D�P � �
	



indt

�
�
�
�D
��
� d �P � � ���

where �� �D� is the elliptic symbol on the double ofM obtained by �continuously� gluing
the symbols ��D� ��� and ��D� ���� � and d�P � is the above�mentioned dimension
functional for the trivial normalization� Let us note that� by virtue of the reduction
carried out in the 
rst part of the paper� formula ��� solves the index problem for
general boundary value problems �	� in the case of even projections P�

The third application of the introduced notion of d�dimension is related to the
��invariant of Atiyah�Patodi�Singer ���� Namely� the invariant d of an even pseudod�
i�erential projection is closely connected with the theory of ��invariants of self�adjoint

�



elliptic operators of even order on odd�dimensional manifolds� More precisely� the ��
invariant of an admissible operator ��� �see also Sec� �� in this case is equal to the
introduced �dimension� of its nonnegative spectral subspace for the trivial normaliza�
tion� It follows that the fractional parts of the �dimension� and of the ��invariant
de
ne a homomorphism

K �P �M� �K �M� �� Z

�
	




�
mod Z�

By virtue of this identi
cation� the index formula ��� can be interpreted as an analog of
the Atiyah�Patodi�Singer formula ���� As a corollary to the index formula in subspaces�
we obtain �see Corollary 	� a topological expression for the fractional part of the ��
invariant on the subgroup

kerf	� � K �P �M� �K�M� �� K �S�M� �K�M�g � 	 � S�M � P �M�

While the index formula for even boundary value problems shows the cobordism in�
variance of the fractional part of the doubled ��invariant �see Corollaries 
 and ��� it
turns out that in both cases the ��invariant has at most 
 in the denominator or is
even an integer� Nevertheless� the problem of the nontriviality of this fractional part
remains open�

In the last section of the paper we consider several examples�
The authors are grateful to Prof� A� S� Mishchenko for a number of valuable re�

marks he made when this work was reported at his seminar in Moscow State University
in fall 	���� He also suggested to include the applications concerning the bound�
ary value problems� which undoubtedly improved the paper� We would like to thank
V� E� Nazaikinskii for constructive suggestions that helped us improve the original ver�
sion of the paper� Finally� we are grateful to Prof� P� Gilkey� the discussion with whom
on the subject of this paper was extremely useful for us�

� Even pseudodi�erential projections

Let us consider the set Proj �M� of all pseudodi�erential projections of order zero acting
in the spaces of smooth sections of vector bundles on a closed manifold M � In this
set it is impossible to compare the ranks �the dimensions of the range� of projections
as one can do in the case of 
nite�dimensional spaces� More precisely� on the space of
pseudodi�erential projections there does not exist a homotopy invariant �with respect
to the operator L��norm� functional

d � Proj �M� �� Z �or even R or C�

�



that satis
es the �weak� additivity property

d �P � P �� � d �P � � dimImP ��

for an arbitrary projection P � where P � is a 
nite�dimensional projection� Indeed�
assuming the opposite� consider an arbitrary periodic family At of self�adjoint elliptic
operators with a nonzero spectral �ow� Such families exist �e�g�� see �����

Denote the corresponding family of projections on the nonnegative spectral sub�
spaces of the operators At by Pt� From the de
nition of the spectral �ow sfAt as the
net number of eigenvalues of the operators At that pass through zero as the parameter
t varies� we obtain

sfAt � d �P�� � d �P�� �� �� ���

The family At is� however� periodic� Consequently� P� � P� and d �P�� � d �P��� which
contradicts ����

In the remaining part of the section we consider the class of even projections� where
a similar functional can nevertheless be de
ned under the condition that the manifold
M where the projections act is odd�dimensional�

De�nition � A pseudodi�erential projection

P � C� �M�E� �� C� �M�E�

is called even �cf� ���� if its principal homogeneous symbol ��P � satis
es

� �P � �x� �� � � �P � �x���� for all �x� �� � S�M� ���

The set of all even pseudodi�erential projections of order zero is denoted by Even �M� �
Let

P �M � S�M�Z�

be the bundle of projective spaces obtained as the quotient of the cotangent sphere
bundle S�M under the action of the antipodal involution � � ��� The corresponding
projection is denoted by 	 � S�M � P �M� Then the symmetry condition ��� means
that the homogeneous principal symbol � �P � is the pullback of an endomorphism
�� �P � over the projective bundle P �M �

� �P � � 	��� �P � � �� �P � � 	�PE �� 	�PE� ���

where 	P � P �M �M is the natural projection� Note that the Eq� ��� implies that an
even projection determines a vector bundle on the projectivization P �M �

Im���P � � Vect �P �M� � ���

�



Let P��� be pseudodi�erential projections

P��� � C
� �M�E���� �� C� �M�E���� �

Their direct sumP� � P� is the projection

P� � P� �

�
P� �
� P�

�
� C� �M�E� � E�� �� C� �M�E� � E�� �

Let us consider the following stable homotopy equivalence relation on the set
Even �M� of even projections�

De�nition � We say that two projections P��� � Even �M� are equivalent and write
P� � P� if for some even projection P � C� �M�F � �� C� �M�F � there exists a
homotopy of even projections

P� � �� P � �� P� � P

as projections in the ambient space C� �M�E� �E� � F � �

Now consider the Grothendieck group generated by the semigroup Even �M�� �
consisting of classes of equivalent projections�

K �Pev �M��
def
� K �Even �M�� �� � ���

Each even projection P de
nes an element in the group K �Pev �M�� � which we denote
by �P � � It is clear that the mapping q � K �Pev �M�� �� K �P �M� taking each even
pseudodi�erential projection to the range of its principal symbol is a homomorphism
of abelian groups�

The above�mentioned properties of the rank of projections are formalized in the
following de
nition�

De�nition 	 A group homomorphism

d � K �Pev �M�� �� R

is called a dimension if for any 
nite�dimensional projection P we have

d ��P �� � rankP � dimImP�

The following theorem describes all possible dimension functionals�

�



Theorem � The dimensions of even subspaces

d � K �Pev �M�� �� R

are in a one�to�one correspondence with homomorphisms


 � K �M� �� R�

which will be called �normalization homomorphisms�� Moreover� for integer valued
normalizations 
 the dimension d takes rational values whose denominators can contain
only powers of 
�

d � K �Pev �M�� �� Z

�
	




�
�

Proof � Consider the sequence

� �� Z
i
�� K �Pev �M��

q
�� K �P �M� �� �� ���

where the map i is induced by the homomorphism of semigroups

Z� � Even �M� � �

taking each nonnegative number k to the class of a projection of rank k acting� say� in
the space C� �M� � Let us prove that the sequence ��� is exact�

First� we verify that q is an epimorphism� Indeed� an arbitrary vector bundle
� � Vect �P �M� can be realized as a subbundle in some trivial bundle�

� 	 CN � Vect �P �M� �

By lifting this embedding to the cotangent spheres� we obtain

	�� 	 CN � Vect �S�M� �

It is obvious that the orthogonal projection � � � �x� �� on the subbundle 	�� is an
even projection� Consider an arbitrary pseudodi�erential projection P with principal
symbol ��� For the projection P we obtain� by construction�

q ��P �� � ��� � K �P �M� �

�Following ���� we can de�ne P by the formula

P � �
�

	�i

Z
j���j��

��� �I���
d�

where � is an arbitrary pseudodi�erential operator of order zero with principal symbol �� and the
number �� � � � � �� is chosen in a way such that the circle j�� �j � � contains no eigenvalues of ��

�



This proves the exactness of the sequence in the third term�
The triviality of the composition q 
 i is obvious� Let us check the inclusion ker q 	

Im i� Suppose that
q ��P �� �	N �� � �� �	��

where P is an even projection in C� �M�E� � and 	N is the identity in C�
�
M�CN

�
�this does not restrict generality� since an arbitrary element of K �Pev �M�� is repre�
sentable in this form�� Condition �	�� means that �possibly� after adding a trivial pair
�	N �� 	N �� to the pair �P� 	N �� we obtain an isomorphism

Im�� �P � � CN

of vector bundles over P �M � It follows that these bundles are homotopic as subbundles
in the direct sum 	�PE�C

N � Consider an arbitrary homotopy joining them and denote
the corresponding family of projections by

f��tgt���� � ��� � �� �P �� �� ��� � � � 	N �

Im��t 	 	�PE �CN � Vect �P �M� for all t � ��� 	� �

The pullback of this homotopy to the cosphere bundle S�M will be denoted by �t� It
follows from Statement 	 in �	�� that there exists a �continuous� covering homotopy of
pseudodi�erential projections Pt�

� �Pt� � �t�

such that P� � P � � and P� di�ers from �� 	N by a compact operator� Accordingly�
in the group K�Pev�M�� we obtain

�P �� �	N � � �P��� ��� 	N � �

It can be shown �e�g�� see �		�� that projections di�ering by a compact operator are
homotopic up to a 
nite rank projection� For example� in the case of a positive relative
index of projections� ind �P�� �� 	N � � n � � we obtain a homotopy of projections

P� � n � 	N �

where n is a rank n projection in C� �M�E� � For negative ind �P�� �� 	N � � n � ��
we have

P� � � � �	N � ��n�� �

�For projections P�Q with compact di�erence� the relative index is de�ned as the index of the
Fredholm operator Q � ImP � ImQ�

ind �P�Q�
def
� ind �Q � ImP � ImQ� � �ind �P � ImQ� ImP � �

�



where �n� as before� is a projection of rank �n 
 �� In the 
rst case we 
nd that

�P��� ��� 	N � � �n� � i �n�

in the Grothendieck group K �Pev �M��� and in the second case we also have

�P��� ��� 	N � � � ��n� � i �n� �

Let us 
nally verify the exactness of the sequence ��� in the 
rst term� Suppose
that for some n 
 � we have

i �n� � ��

From the de
nition of the Grothendieck group it follows that for some even projection
P � Even �M� there exists a homotopy of even projections

n� P � �� P�

Moreover� without loss of generality� it can be assumed that the projection P is the
unit operator� P � 	N � Let us denote this continuous homotopy of even projections
from n� P to � � P by Pt� We obtain

ind �P�� P�� � n �� �� �		�

Let us show that the fact that the projections Pt are even implies ind �P�� P�� � ��
Indeed� without loss of generality it can be assumed that the family fPtg consists of
orthogonal projections �the space of all projections can be linearly retracted to the
space of orthogonal projections�� and the relative index �		� does not change under
this retraction�� Consider further an arbitrary periodic family fAtgt���� of 
rst�order
self�adjoint pseudodi�erential operators with homogeneous principal symbols on the
cotangent spheres equal to 
� �Pt� � 	 �so that the positive spectral projection of the
principal symbol of the operator At coincides with � �Pt��� The spectral �ow of any
periodic family fAtgt���� can be expressed by the cohomological formula ����� cf� �	
��

sf fAtgt�S� �
D
ch ��� �At��	

�Td �T �M 
C� �
h
S� � S�M

iE
� 	 � S� � S�M �M�

Here the vector bundle �� �At� � Vect �S� � S�M� is generated by the nonnegative
spectral subspaces of the principal symbols � �At� �in our case �� �At� � Im� �Pt���
and Td is Todd class of a vector bundle�

�The pseudodi�erentiality of the orthogonal projection on the subspace ImP for an arbitrary
pseudodi�erential projection P follows from the identity ImP � ImPP � and the self�adjointness of
the operator PP ��

	�



On the oriented manifold S�M the involution �x� �� � �x���� reverses the orien�
tation� while the cohomology class

ch ��� �At��	
�Td �T �M 
C�

is invariant with respect to this involution� Thus� the spectral �ow of the family
fAtgt���� is zero�

sf fAtgt���� � ��

Let us recall that the family of projections Pt is a generalized spectral section �	�� for
the family At� Then� by virtue of one of the de
nitions of the spectral �ow �see �	�� or
�	���� we obtain

sf fAtgt���� � ind �P�� P�� �

Hence�
ind �P�� P�� � ��

which contradicts �		�� The exactness of the sequence ��� is established�
Let us note that in terms of the sequence ��� the problem of describing dimension

homomorphisms d is reduced to the problem of closure of the following diagram to a
commutative one�

Z
i
� K �Pev �M��

� � d
R

�here Z 	 R is the natural inclusion� and the map d is so far unknown�� First� note
that the groups K �Pev �M�� and K �P �M� contain subgroups generated by bundles on
the base M �

K �M� � K �P �M� � K �M�
�
� K �Pev �M�� �

�E� � �	�PE� � �E� �
h
	C��M�E	

i
�

Both maps are monomorphisms �this follows from the existence of a nonsingular vector

eld on an odd�dimensional manifold M�� and moreover� these embeddings commute
with q� Thus� there is a partial splitting of the sequence ����

� � Z�K �M�
i��
� K �Pev �M��

q
� K �P �M� �K �M� � � � �	
�

The quotient K �P �M� �K �M� is by ��� a purely torsion group �and the torsion is only
in powers of 
�� By virtue of the sequence �	
�� this implies that an arbitrary dimension

d � K �Pev �M�� �� R

is uniquely determined by its restriction to the subgroup K �M� �recall that on the

rst term in the sum Z�K �M� the dimension d is already de
ned� see De
nition ���


 � K �M� �� R�

This completes the proof of the theorem�

		



Remark � The dimension d can be viewed as a generalization of the relative index of
projections� since

ind �P�� P�� � d ��P��� �P���

for two even projections P��� with the same principal symbol�

For a more explicit expression for the dimension d ��P �� with the trivial normaliza�
tion 
 � � see Sec� �� where the relation with Gilkey�s ��invariants is established�

� Operators in subspaces� An index formula for

even subspaces

Consider two pseudodi�erential projections

P��� � C
� �M�E���� �� C� �M�E����

of order zero on a manifold M and an mth order pseudodi�erential operator

D � C� �M�E�� �� C� �M�E�� �

Suppose that D acts in the subspaces determined by the projections� that is�

D�ImP�� 	 ImP�� P�DP� � DP��

Then the restriction
D � ImP� �� ImP�

is called an operator acting in subspaces� There is a criterion for the Fredholm property
of operators of this form �see ��� and �
��� Before stating it� let us introduce the notion
of the principal symbol of an operator in subspaces�

De�nition � The principal symbol of the operator

D � ImP� �� ImP��

acting in subspaces� is the homomorphism of vector bundles over S�M given by the
restriction of the principal symbol of the operator D�

� �D� � Im� �P�� �� Im� �P�� �

A symbol is called elliptic if it is an isomorphism� In this case the operator D is also
called elliptic� In these terms� the following statement is valid� the proof is essentially
contained in �
��

	




Proposition � An operator

D � Hs �E�� � ImP� �� ImP� 	 Hs�m �E��

is Fredholm if and only if it is elliptic�

The orders of the Sobolev spaces will be omitted for brevity in what follows�
Let us consider triples �D�P�� P�� representing elliptic operators

D � ImP� �� ImP�

such that P��� are even projections in the sense of De
nition 	� These triples form a
semigroup eLev �M�� Triples of the form �	N � 	N � 	N� are called trivial � Two triples u�
and u� are called equivalent if for some trivial triple u� there exists a homotopy

u� � u� � u� � u��

We consider the Grothendieck group generated by the abelian semigroup of classes of
equivalent triples�

Lev �M�
def
� K

� eLev �M�
�
�
�
�

The index of a triple extends to a homomorphism of abelian groups

inda � Lev �M� �� Z�

Let us de
ne the following two functionals on the group Lev �M��

indt �D�P�� P�� � indt �� �D� � Im� �P��� Im� �P��� �

d �D�P�� P�� � d �P�� P�� �

Consider the mapping

d � Lev �M� �� Z

�
	




�
�

d �D�P�� P��
def
� d ��P��� �P��� � �	��

It is de
ned by the projections P�� P� and is independent of the operator acting between
them� Moreover� the homomorphism �	�� is independent of the normalization 
 �
K �M� �� R� Let us verify the last statement� Without loss of generality� we can
assume that the vector bundles Im���P���� are pullbacks from the manifold M �

Im���P���� � 	�PE����

Moreover� the vector bundles E��� are isomorphic �an isomorphism is given by the
elliptic symbol ��D� lowered to M with the help of a nonsingular vector 
eld on the

	�



Figure 	�

manifold�� Thus� the K�M� components �in the sense of the sequence �	
�� are equal
for the two projections P����

Let us now construct a topological invariant of triples that extends to a homomor�
phism of groups

indt � Lev �M� �� Q�

This invariant is determined by the principal symbol of the operator alone� To this
end� consider the quotient space

ePM � fS�M � ��� 	�� �x���� ��g� �x���� 	�

�see Fig� 	��
This space is an oriented manifold with the structure of a 
ber bundle over the

manifoldM � The 
ber is formed by two odd�dimensional projective spaces with small
disks deleted


P��x � S�xM �
�
��
	




�	
�x���� �� � P��x � S�xM �

�
	



� 	
�	

�x���� 	� �

glued along their common boundary S�xM �
n
�
�

o
�see Fig� 
��

ePM � P�M


S�M

P�M

�The projective space with a hole is a multidimensional analog of the M
obius band� but in our case
it is orientable�

	�



Figure 
�

�the resulting 
ber ePxM is an analog of the Klein bottle�� Consider two natural
projections in the bundles with unit closed interval as a 
ber �see Fig� 
�

P�M �� P �M�

By means of these we can extend the vector bundles Im�� �P���� from the space P �M 	
P�M to the entire P�M � respectively� Then the isomorphism ��D� of these bundles
over the cotangent spheres S�M enables us to glue them� in this way we obtain a vector
bundle over ePM �

� �D�P�� P�� � Vect
� ePM�

� �� �D�P�� P��� � K
� ePM�

�

It is possible to de
ne an analog of the usual �topological� index on the group K
� ePM�

�cf� �	����

indt �D�P�� P�� �
D
ch �� �D�P�� P��� Td �T

�M 
C� �
h ePMiE

� �	��

In this notation we prove the following index formula� which is the main result of
the present paper�

Theorem � Let u � �D�P�� P�� be an elliptic operator acting in the subspaces de	ned
by even pseudodi
erential projections on an odd�dimensional manifold M� Then the
following index formula is valid�

indau � indtu� d �u� � �	��

	�



Proof � The left� and right�hand sides of �	�� de
ne homomorphisms of groups

Lev �M� �� Q�

To prove the coincidence of these homomorphisms� by virtue of the absence of torsion
in the group of rationals� it su�ces to check the equality only on the elements of the
group Lev �M� that rationally generate it� The exactness of the sequence �	
� together
with the fact that the group K �P �M� �K �M� is purely a torsion group imply that
for an arbitrary triple �D�P�� P�� the projections P��� are rationally homotopic �i�e� a
direct sum of the form P��� � � � � � P��� is homotopic� to projections that di�er from
projections on the spaces of sections of vector bundles by 
nite rank projections� Hence�
as the elements rationally generating the group Lev �M�� we can take triples of the form

u �

��
� �
D �

�
� 	E � n�m� 	F

�
�

where E�F � Vect �M� � n and m are 
nite rank projections� and the operator

D � C� �M�E� �� C� �M�F �

is a usual pseudodi�erential operator� Let us show that formula �	�� is true for oper�
ators of this form� Consider the relations

indau � indD � n�m�

d �u� � n�m� d
�h
	C��M�E	

i
�
h
	C��M�F 	

i�
� n�m

�in the second one we use a nonsingular vector 
eld to obtain an isomorphism of the
bundles E and F �� Thus� to check formula �	�� for a triple u� it su�ces to verify that

indD � indt
�
D� 	C��M�E	� 	C��M�F 	

�
� �	��

Let us show that the right�hand side of this formula is a slight modi
cation of the
usual Atiyah�Singer index formula for the operator D� We rewrite the Atiyah�Singer
index formula in the form �see �	���

indD �
D
ch �� �D��	�Td �T �M 
C� �

h eBMiE
� eBM � B�M



S�M

B�M� �	��

where B�M is the unit cotangent ball bundle for the manifold M� Next� consider the
two expressions in �	�� and �	�� as integrals over the respective manifolds of char�
acteristic classes represented via di�erential forms by means of connections in the
corresponding vector bundles� The manifolds eBM and ePM are di�eomorphic in a

	�



neighborhood of S�M �
n
�
�

o
�We note also that these manifolds carry the orientation�

reversing involution
�x� �� t� �� �x���� t�

respecting their parts P� and B�� Consequently� for a connection in a vector bun�
dle � �D�P�� P�� over ePM that is invariant under the involution outside of a certain
neighborhood of the cotangent spheres S�M�f	�
g� there is no contribution to the for�
mula �	�� from the corresponding domains �since the integrands are invariant under an
orientation�reversing involution�� a similar cancellation happens on ePM � The remain�
ing contribution� coming from the integration over a neighborhood of S�M �f	�
g � is
the same for the two formulas� since the integrands coincide pointwise�

Thus� the index formula is proved for the case of projections with unit principal
symbol� Such operators� as was noted above� rationally generate the whole group
Lev�M�� Hence� the index formula� as well as the theorem� is proved for the general
case�

Let us make two important remarks concerning the topological term indt in the
index formula�

Remark � In the de
nition of the group of stably homotopy equivalent triples Lev �M�
we could have gone further by factorizing this group by the triples �P�P� P � with an
arbitrary even projection P � which obviously do not contribute to the index� Let us
denote the resulting group by the same symbol Lev� In this case we must replace
the group K

� ePM�
�where the principal symbol of the problem lies� by the quotient

K
� ePM��

K �P �M�� and the corresponding principal symbol mapping becomes

Lev �M� �� K
� ePM��

K �P �M� �

The last group is an analog of the K�functor corresponding to the di�erence construc�
tion of the usual elliptic theory Kc �T �M� in view of the natural isomorphism

K
� ePM��

K �P �M� � Kc �
pT �M� � where pT �M � P�M



S�M

fT �M � fj�j � 	gg �

�	��
The topological index

Kc �
pT �M� �� Q

is given in this case by the same formula �	���

This statement in fact follows from the isomorphism �	��� which� in turn� is geomet�
rically obvious� the quotient group on the left�hand side is isomorphic to the relative
group

K
� ePM��

K �P �M� � K
� ePM�P�M

�
�

	�



and the noncompact spaces ePM n P�M and pT �M are properly homeomorphic �i�e��
there exists a homeomorphism given by a proper map��

Remark 	 The topological index indt of a triple can be reduced to the topological
index of a usual elliptic operator� Namely� for a triple �D�P�� P�� consider the symbol

� �D��� �x���� � �D� �x� �� � 	 � 	�SE� �� 	�SE�� 	S � S
�M �M�

where the direct sum of symbols is taken with respect to the bundle decomposition

	�SE � Im� �P�� �x� ��� Im �	� � �P�� �x� ��� �

For this symbol we have

indt �D�P�� P�� �
	



indt

�
� �D��� �x���� � �D� �x� ��� 	

�
� �	��

where the right�hand side is the topological index of a usual elliptic operator in spaces�

To prove �	��� we note that at the beginning of this section we could have taken
this formula as a de
nition of indt �D�P�� P��� Furthermore� in the proof of the index
theorem we would have to check that for a �classical�� operator D the expression on
the right�hand side in �	�� is equal to the �topological� index of D� Indeed� in this case
we obtain

indt
�
� �D��� �x���� � �D� �x� ��� 	

�
� indt

�
� �D��� �x����

�
� indt �� �D� �x� ��� �

� �indt �� �D� �x����� � indt �� �D� �x� ��� � 
indt �� �D� �x� ��� � 
indD

�in this chain of equalities only the symbols in the classical sense appear� and indt is
the usual topological index� in the next to the last equality we use the orientation�
reversing involution �x� ��� �x���� on the manifold S�M � and the last equality is the
Atiyah�Singer theorem��

� General boundary value problems

Let us brie�y recall the de
nition of general boundary value problems �
��
Let M be a smooth compact manifold with boundary� Consider an mth�order

elliptic di�erential operator

D � C� �M�E�� C� �M�F �

�That is� acting in spaces of sections on the base�

	�



acting in the spaces of sections of vector bundles overM � For some collar neighborhood
of the boundary with normal coordinate t �the interior of the manifold corresponds to
positive values of t�� consider the jets of sections of the bundle E in the normal direction�

jm���M u �

�
u����

�

�t
u

�����
t��

� � � � �
�m��

�tm��
u

�����
t��

�
� C� �M�E�� C� ��M�Em� �

here
Em � E � E � � � �� E� 
z �

m times

�

A general boundary value problem is a system of equations of the form�
Du � f� u � C� �M�E� � f � C� �M�F � �
Bjm���M u � g � ImP� ImP 	 C� ��M�G� �

�
��

Here the pseudodi�erential operator P

P � C� ��M�G�� C� ��M�G�

is a zero�order projection� P � � P � and the boundary operator B

B � C� ��M�Em�� C� ��M�G�

is also a pseudodi�erential operator whose range is contained in the subspace ImP �
PB � B� The boundary value problem �
�� is denoted by �D�B�P � � The classical
boundary value problems correspond to the special case of the unit projection P � 	
in formula �
���

To state the Fredholm criterion for these boundary value problems� for each point
�x� ��� of the cosphere bundle S��M of the boundary we consider the following ordinary
di�erential equation with constant coe�cients on the line R � t�

� �D�

�
x� ���i

d

dt
� ��
�
u �t� � �

�here � �D� is the principal symbol of D�� Let us denote the subspace of Cauchy data
of solutions that are bounded as t� �� by L��x� ���� Then for an elliptic di�erential
operator D one has the decomposition

Em
x � L� �x� ���

M
L� �x� ��� � �
	�

Moreover� in this case the families L� �x� ��� de
ne smooth vector subbundles

L� 	 	�Em� where 	 � S��M � �M�

	�



Remark � It can be shown that the decomposition �
	� is a necessary and su�cient
condition for the ellipticity of the operator D on the boundary �M �

The following criterion for the Fredholm property of general boundary value prob�
lems �
� holds�

Theorem 	 The boundary value problem �D�B�P � de	nes a Fredholm operator

�
D

Bjm���M

�
� Hs �M�E� �

Hs�m �M�F �L
ImP 	 H� ��M�G�

for s 
 m� 	�
 if and only if the operator D is elliptic and the restriction of the prin�
cipal symbol of the boundary operator B to the subbundle L� de	nes an isomorphism

� �B� � L� �D�� Im� �P � �

It is supposed here that the orders of the components of the operator B with respect to
the jet jm���M are consistent with the indices s� � of Sobolev spaces�

The class of boundary value problems for di�erential operators is too narrow for
making homotopies of elliptic symbols� It turns out that the following simple gen�
eralization of this class enables us to carry out the necessary homotopies� hence� we
can apply topological methods to the index problem for the general boundary value
problems�

In this paper we will use operators which are di�erential with respect to the normal
variable t� Namely� let us consider operators D on the manifoldM that have the form

D �
mX
k��

Ak �t�

�
�i

�

�t

�k
�

�

in a collar neighborhood of the boundary� where Ak �t� are smooth families of pseu�
dodi�erential operators of orders m�k� the operator Am �t� being a homomorphism of
vector bundles� Second� on the entire manifold the operator D must be represented by
the construction of a pseudodi�erential operator with a continuous symbol �see �	����	��
or ����� Let us note that the necessity to consider operators with continuous symbols
stems from the fact that the symbol of the operator �

� already is not smooth in
general��

�This is the well�known problem of nonpseudodi�erentiality of tensor products �see ������ Here it
is� for example� the composition of operators �

�t
and A� �t� �


�



For the operators of the class just de
ned� the general boundary value problems are
posed in just the same way as in the usual classical case �
��� The de
nitions of the
subspaces L� and the criterion for the Fredholm property remain valid �Theorem ���

Let us consider examples of boundary value problems for operators of the form �

��
These special boundary value problems will enable us �in the classical case� to reduce
the index problem to the known case of a closed manifold�

Example � Let a vector bundle E in a neighborhood of the boundary �M be decom�
posed into a sum of two subbundles

EjU�M � E� � E�� �
��

For the two bundlesE�j�M consider 
rst�order elliptic operators  � with the principal
symbols equal to j��j �We also choose a 
rst�order operator  with principal symbol j�j
acting in the bundle E on the entire manifoldM � Let us de
ne� in conformity with the
decomposition �
��� the following elliptic 
rst order operator in a collar neighborhood
of the boundary�

D �

�
�i

�

�t
� i �

�
�

�
�i

�

�t
� i �

�
� C� �U�M � E�� C� �U�M � E� � �
��

For the principal symbol of this operator on the boundary we obtain the equality

L� �D� � �� 	�E��

Hence� the following boundary condition for this operator is elliptic�

u�j�M � g � C���M�E��� for u � �u�� u�� � C� �U�M � E� � E�� � �
��

This operator can be extended to the entire manifold� To this end� consider a smooth
cuto� function 
 on M � � � 
 �t� � 	� which is identically equal to 	 for � � t � 	��
and vanishes for t � 
��� The desired extension is now given� say� by the formula

D � 
 �t�

��
�i

�

�t
� i �

�
�

�
�i

�

�t
� i �

��
� �	� 
 �t�� i � �
��

The operator D with the boundary condition �
�� de
nes an elliptic boundary value
problem� It is well known that this boundary value problem has index zero� This fact
can be proved by noting that the family of boundary value problems

D � ip

is an elliptic family with parameter p in the half�plane Rep 
 � in the sense of
Agranovich�Vishik �	��� Consequently� it is invertible for large values of p� Besides�
the invertibility of the family D � ip can be shown directly �see ����� Correcting the
operator D by a 
nite�dimensional operator� we can suppose that D is invertible itself�


	



In the next section we carry out reductions of boundary value problems� and there it
will be more convenient not to consider an explicit homotopy of the operator D on the
manifoldM � but rather consider a homotopy of its restriction to a small neighborhood
of the boundary� More precisely� we start from homotopies of the form

mX
k��

Ak �t� � �

�
�i

�

�t

�k
�

de
ned for small values of the parameter t� for example� for t � 	� Here � � ��� 	�
is the parameter of the homotopy� It is easy to note that for such a homotopy in a
neighborhood of the boundary� one can construct a homotopy of the operator D on
the entire manifold� The required homotopy of the operator D for t � 	 is constant�
while in the remaining part of the collar neighborhood of the boundary it is equal to
�for the cuto� function 
 �t� from the example discussed above�

D� �
mX
k��

Ak �t� �
 �t��

�
�i

�

�t

�k
�

� From general to spectral boundary value prob�

lems

In the present section we show that the methods of index theory of classical boundary
value problems ��� enable us to reduce a general boundary value problem to a certain
spectral boundary value problem in a canonical way� Moreover� the reduction process
does not a�ect the space of boundary data de
ned by the projection P � We divide the
reduction procedure into several stages�

Let us brie�y comment on the corresponding constructions� Steps 	 and 
 of the
reduction are auxiliary in the sense that here the boundary operator B does not change�
On the third step� which is the basis of the construction� we produce a homotopy of
the boundary operator B to the trivial one�

Step �� Reduction to �rst�order operators

The index problem for the boundary value problem �D�B�P � for an operator of order
m is reduced to a similar problem for a 
rst�order operator by the following theorem�

Theorem � An elliptic boundary value problem �D�B�P �� degD � m� is stably ho�
motopic to the boundary value problem

�D�� B�� P � 
mDm��
� � mDm��

�
def
� Dm��

� � � � ��Dm��
�� 
z �

mtimes

�







where D� is the invertible 	rst�order operator from Example 	 �for the vector bundles
E� � �� E � E�� that does not require boundary conditions and �D�� B�� P � is a bound�
ary value problem for a 	rst order operator� In addition� the projection P is constant
in the homotopy�

Proof � Consider the direct sum of boundary value problems

�D�B�P ��
m��M
�

Dm
� � �
��

Its index coincides with the index of the original problem� since the operator D� is
invertible� Let us represent the operator D in the form

D �
mX
k��

Dk �t�

�
�i

�

�t
� i 

�k �
�i

�

�t
� i 

�m�k
�

mX
k��

Dk �t�D
k
�D

m�k
� �

where  is an operator with principal symbol j��j acting in the vector bundle E in a
neighborhood of the boundary� Consider the following homotopy of operators �in these
matrices� we omit the argument t of the coe�cients Dk �t� for brevity�

D� �

�BBB�
D � �mD � � � � �

� Dm
� � � � �

� � Dm
� � � �

� � � � � Dm
�

�CCCA�
�BBB�

�mD�D
m
� �m��D�D

m
� � � � �Dm��D

m
� � �DmD�D

m��
�

��D�D
m��
� � � � � �

� ��D�D
m��
� � � � � � �

� � � � � �

�CCCA �

At the initial point � � � we have D��� � D �
m��L
�
Dm

� � On the other hand� for � � 	

the factorization required in the theorem is obtained�

D��� �

�BBB�
D� �t�D� D� �t�D� � � � Dm�� �t�D� �Dm �t�D�

�D� D� � �
� �D� D� � � �
� � � � � D�

�CCCA 
mDm��
� �

Let us verify that the operator D� is elliptic for � � ��� 	�� First of all� we calculate
the subspace L� �D� � � Let U � �U� �t� � U� �t� � � � � � Um�� �t�� be a bounded solution as
t� �� of the equation

� �D� �

�
x� ���i

d

dt
� ��
�
U � �� �
��


�



We would like to note that the derivatives of the solution U are bounded too� since it is
a solution of an ordinary di�erential equation �
�� with constant coe�cients� Writing
out this equation componentwise� we obtain the system of equations���������

�	� �m�� �D�
�
�i d

dt

�
U� �

�
�i d

dt
� i

�m
�d��mU� � � � �� dm���Um����

��
�
�i d

dt
� i

�m�� �
�i d

dt
� i

�
dmUm�� � ���

�i d
dt
� i

�m
Uj � �

�
�i d

dt
� i

�m�� �
�i d

dt
� i

�
Uj�� for � � j � m

�
��

�here by dj we denote the principal symbols of the operators Dj����� Since the equation�
�i

d

dt
� i

�
u � �

has no bounded solutions on the half�line� we can cancel this operator in the system
�
�� in all equations except the 
rst one� Hence� we obtain�

�i
d

dt
� i

�
Uj � �

�
�i

d

dt
� i

�
Uj���

Successively substituting these relations into one another� we obtain�
�i

d

dt
� i

�j
Uj � � j

�
�i

d

dt
� i

�j
U��

Taking into account these equations in the 
rst equation in �
��� we 
nd that it is
reduced to the requirement

� �D�

�
�i

d

dt

�
U� � �� ����

This implies the ellipticity of the operator D� � equation ���� on the entire line has no
bounded solutions� i�e� the decomposition �
	� is valid�

Thus� the following description of the subbundle L� �D� � is obtained� The projec�
tion on the 
rst term in the sum

E �
m��M
�

E
pr
�� E

induces an isomorphism of vector bundles

L� �D� �
pr
�� L� �D� �


�



the preimage of an element u � L� �D� under this map is given by the formula

U � �U�� � � � � Um��� � ��	�

U� � u��
�i

d

dt
� i

�j
Uj � � j

�
�i

d

dt
� i

�j
U��

Let us decompose the boundary operator in the same way as the operator D has been
rewritten in the above�

Bjm���M �
m��X
k��

Bk

�
�i

�

�t
� i 

�k �
�i

�

�t
� i 

�m���k������
t��

�

Therefore� the principal symbol of the boundary condition

Bjm���M 
 pr � C�

�
M�E �

m��M
�

E

�
� C� ��M�G�

on the subspace L� �D���� has the factorization �by virtue of ��	��

� �B�� j�M 


�
�i

d

dt
� i

�m��
� where �� �B�� j�M �U �

m��X
k��

bkUk ��� �

Hence� the homotopy
�D� � B 
 pr� P � � � � ��� 	� �

of elliptic boundary value problems connects the initial problem �
�� with the boundary
value problem that is equal to the composition indicated in the theorem�

�D���� B 
 pr� P � � �D�� B�� P � 
mDm��
� �

This completes the proof of the theorem�

Step �� An expression for the operator on the boundary via

the Calder�on projection

At this step we show that a 
rst order operator is reduced in a collar neighborhood of
the boundary to an operator that is uniquely determined by the subbundle L� �D� �

Consider a boundary value problem for the 
rst�order elliptic operator

D � �iA�
�

�t
�A� � C

� �M�E�� C� �M�F � �


�



The coe�cient A� is by assumption an isomorphism of bundles in a neighborhood of
the boundary� With the help of this isomorphism� we identify the bundles E and F�
Then the operator D becomes

D � �i
�

�t
�A�

The ellipticity of D implies that the eigenvalues of the principal symbol of the oper�
ator A for nonzero values of the cotangent variable �� on the boundary have nonzero
imaginary parts� A simple calculation shows that the subbundle L� �D� is generated
by the spectral subspaces of the symbol � �A� with negative imaginary parts of the
eigenvalues� Let us denote the corresponding spectral projection by q�

q � 	�E � 	�E� Imq � L� �D� �

Let us also consider an arbitrary pseudodi�erential operator Q �not necessarily a pro�
jection� with principal symbol q� Such operators are called Calder
on projections for the
operator D �see �����

Consider a linear homotopy of operators

D� � �i
�

�t
� �	 � � �A� i� �
Q� 	� �

where  is an operator with principal symbol equal to j��j � Since the projection q ����
is the spectral projection for the symbol � �A� ���� � we see that the eigenvalues of the
symbol

�	� � �� �A� ����� i� �
q � 	� j��j

are� respectively� equal to �here � is an arbitrary eigenvalue of the symbol � �A��

�	� � �� � i� sign �Im�� �

This implies the ellipticity of the operator D� and the independence of the subbundle
L��D� � of the parameter ��

In this way� we present a homotopy of boundary value problems

�D� � B� P � � � � ��� 	��

As a result� the principal symbol of the operator D obtained is determined on the
boundary by the principal symbol of the Calder!on projection Q

D��� � �i
�

�t
� i �
Q� 	�  � ��
�

At the end of this step� let us consider the orthogonal projection q� onto the subbundle
L� �D� and a pseudodi�erential projection Q� with principal symbol q�� Then a linear
homotopy

�i
�

�t
� i �
 ��Q� � �	� � �Q�� 	�  


�



leads for � � 	 to an operator

�i
�

�t
� i �
Q� � 	�  

with principal symbol uniquely determined by the subbundle L� �D� � Hence� it can be
assumed in what follows that the symbol q of the Calder!on projection is the orthogonal
projection onto the subbundle L��D��

Step �� Reduction of the Calder�on projection to the projection

of the boundary data

In this section we make a homotopy of the operators D and B of the boundary value
problem �D�B�P �� As a result of this homotopy� the boundary operator B is trans�
formed from an operator with principal symbol giving an isomorphism of subbundles

L� �D�
��B	
�� Im� �P �

to the identity operator� The bundle L� �D�� in particular� is deformed into Im� �P � �
Formula ��
� shows that to construct such a homotopy of boundary value problems� it
su�ces to produce a homotopy of the principal symbol of the Calder!on projection q�
as well as of the principal symbol of the boundary operator � �B� � From the theory of
vector bundles it is known that isomorphic subbundles �in our case these are L��D�
and Im��P �� can be deformed into one another as subbundles in the ambient vector
bundle �provided the dimension of this bundle is large enough�� In this particular
situation� let us write down an explicit formula for such a homotopy�

Let us realize the bundle G � Vect ��M� as a subbundle of the trivial CN

G
�
	 CN �

Recall that the boundary data of the boundary value problem lie in the space of sections
of this bundle� ImP 	 C� ��M�G��

Consider the direct sum of boundary value problems

�D�B�P � �D��

where an invertible operator D� is the operator from Example 	 corresponding to the
bundles E� � E � CN � The desired homotopy of subbundles

L� �D� � �� �� Im� �P � 	 	�
�
E �CN

�


�



in this notation is a homotopy of rotation by ��	 with the help of the symbol � �B� �
More precisely� for an angle � � ��� 	�
� we de
ne the subbundle

L� �� � 	 	�
�
E �CN

�
whose 
ber over a point �x� ��� � S��M is generated by vectors of the form

v� � �cos �v� sin �� �B� v� for all v � L� �D� � ����

The homotopy of the principal symbol of the boundary operator B is carried out by
the formula

� �B�� v�
def
� � �B� v�

It is clear from ���� that at the end of the homotopy for � � 	�
 we obtain

L� �	�
� � �� Im� �P � � �
�
B���

�
� Id�

Thus� the operator
�
D���� B���� P

�
de
nes the desired spectral boundary value prob�

lem�
This completes the reduction of a general boundary value problem to the corre�

sponding spectral boundary value problem of the form �
��

	 An index formula for even boundary value prob�

lems

In this section we obtain an index formula for spectral boundary value problems of the
form �
� under the additional assumption that the projection P is even�
 We prove
the index formula by a reduction to a classical boundary value problem� To this end�
let us study the relationship between classical and even boundary value problems�

Consider the Grothendieck group K �Pev �X�� generated by the abelian semigroup
of classes of equivalent even projections �see formula ����� It has the subgroup generated
by unit projections� The corresponding quotient group is denoted by K �Pev �X���K �X� �

A spectral boundary value problem of the form �
� on the manifold M is denoted
by D � �D�P � � Such a boundary value problem is called even if the projection P is
an even projection on the boundary �M� Let us introduce an equivalence relation for
even boundary value problems� Namely� two boundary value problems D� and D� are
called equivalent if there exists an even homotopy

D� �D� � D� �D��

	In combination with the reductions of the previous section� this implies an index formula for
boundary value problems of the general form ��� under the parity condition�


�



where D� is� as in the previous section� an invertible operator from the Example 	
for the choice of bundles E � E�� The Grothendieck group of even boundary value
problems is denoted by K �Dev �M�� � It has the subgroup generated by the classical
boundary value problems from Example 	 for arbitrary vector bundles E on M and
E� on �M � respectively� The quotient group is denoted by

K �Dev �M��� �K ��M��K �M�� � ����

Finally� we need the group

K �D �M��� �K ��M��K �M��

generated by classical boundary value problems �P � 	�� It is obtained by the same
construction as before� with the replacement of the condition that the projection P is
even by the condition P � 	� The resulting quotient group� which is similar to �����
does not require a new notation� since it can be identi
ed with the usual K�group of
vector bundles with compact support

K �D �M��� �K ��M��K �M��
	
� Kc �T

� �Mn�M�� � Kc

�
T �

	

M

�
� ����

Let us recall the de
nition of the map �� First� we use the isomorphisms

Kc �T
� �Mn�M�� � K �B�M�� �B�M�� � � �B�M� � S�M � B�M j�M �

where B�M is the unit ball bundle of the manifoldM� and � �B�M� is its full boundary�

This allows us to identify the elements of the group Kc

�
T �

	

M

�
with the help of the

di�erence construction both with isomorphisms of vector bundles E�F � Vect �M�

� � 	�E � 	�F� 	 � S�M �M� ����

that do not depend on � in a neighborhood of the boundary and with isomorphisms
de
ned everywhere on � �B�M� �

Consider a classical boundary value problem �D� 	� of the form �
�� In a neighbor�
hood of the boundary it can be obviously rewritten as the boundary value problem
from Example 	� Then the homomorphism � is by de
nition equal to

� �D� 	�
def
� � �D� ��� � i
 �t� � ����

for a cuto� function 
 �t� equal to 	 on �M � as above� It follows from �
�� that the
principal symbol ���� is invertible on � �B�M� � It is also not di�cult to construct the
inverse mapping for ��

Kc

�
T �

	

M

�
	�
� K �D �M��� �K ��M��K �M�� � ����


�



To an isomorphism � �see ����� that is independent of � over a neighborhood of the
boundary �M � this map assigns a classical boundary value problem �
� in the following
way� For the symbol � we construct an elliptic 
rst�order pseudodi�erential operator
that has the form

D � � 
  

near the boundary� where � � � �x� is a homomorphism of vector bundles and  has
the principal symbol j�j � It remains to modify the operator D near the boundary� as
it was done in Example 	�

D� � � 


�
�	� 
 �t��  � 
 �t�

�
�
�

�t
�  �

��
�

The operator  � here has the principal symbol j��j � Finally� we de
ne

� � ���
def
� �D�� � K �D �M��� �K ��M��K �M�� �

This is well de
ned� since the operator D� de
nes a Fredholm boundary value problem
without boundary conditions�

Remark � In terms of the isomorphism ���� it is easy to prove the following index
formula for classical boundary value problems of the form �
��

ind �D� 	� � p�� �D� 	� � p �
	

M� pt�

where p� � Kc

�
T �

	

M

�
� K�pt� � Z is the direct image in K�theory�

Proof � Indeed� consider a boundary value problem �D�� 	� on the manifold M that
coincides with the original problem �D� 	� in a neighborhood of the boundary and on
the whole manifold is a boundary value problem from Example 	� Let us examine the
composition

D� � �D
�� 	��� 
 �D� 	� �

Its principal symbol ��D�� is the identity isomorphism over a neighborhood of the
boundary �M � Thus� the index of the operator D� can be computed by the Atiyah�
Singer formula

indD� � p� �� �D��� � �� �D��� � Kc

�
T �

	

M

�
�

The boundary value problem �D�� 	�� however� has index zero and also de
nes the
trivial element in the K�group�

� �D�� 	� � � � Kc

�
T �

	

M

�
�

��



Hence� we obtain the desired formula

ind �D� 	� � indD� � p� �� �D��� � p�� �D� 	� �

Remark � The reductions of the previous section give an isomorphism of the group
���� and the group of stable homotopy classes of classical boundary value problems
�	�� In this way� considering spectral boundary value problems �
�� we make no loss of
generality and cover the general case as well�

The three groups introduced above are related by an exact sequence�

Proposition � The sequence

Kc

�
T �

	

M

�
�
� K �Dev �M��� �K ��M��K �M��



� K �Pev ��M���K ��M� ����

is exact� Here � is induced by the embedding of classical boundary value problems into
even ones and the map � is induced by the forgetful map

�D�P � �� P�

Proof � The equality � 
� � � is obvious� since the projection in the classical boundary
value problem is the unit projection and hence de
nes the trivial element in the group
K �Pev ��M���K ��M� �
Let us now verify the inclusion ker� 	 Im�� Suppose that for an even boundary

value problem �D�P � one has

� �D�P � � � � K �Pev �X���K �X� �

This means that there exists a homotopy of even projections that connects the projec�
tion P and the projection on the space of sections of a vector bundle on �M � denoted
by P � � PC���M�G�	� Let us denote this homotopy by Pt � P� � �� P� � P �� and lift this
homotopy of projections to a homotopy of spectral boundary value problems �Dt� Pt� �
In the Grothendieck group K �Dev �M��� �K ��M��K �M��� we have

�D�P � � �D�� P�� � �
h
D�� 	C���M�G�	

i
�

since the boundary value problem �D�� P�� is classical�
This establishes the exactness of the sequence �����
From now on we assume that the manifoldM is even�dimensional � The third term

in the sequence ���� is simpli
ed in this case� according to �	
�� 
nite�dimensional
projections generate a subgroup in this term that is isomorphic to Z

Z 	 K �Pev �X���K �X� �

�	



and the quotient group

K �Pev �X��� �K �X�� Z� � K �P �X� �K�X�� P �X is the projectivization of S�X�

according to ���� consists of elements of 
nite orders that are powers of 
�
In a similar fashion� in the Grothendieck group of even boundary value problems

there is a subgroup

Z 	 K �Dev �M��� �K ��M��K �M�� �

which is generated by boundary value problems for zero operators with 
nite rank
projections on the right�hand sides� This enables us to re
ne the sequence �����

Kc

�
T �

	

M

�
�
� K �Dev �M��� �K ��M��K �M� �Z�



� K �P � ��M�� �K ��M� �

����
For an even boundary value problem� we de
ne an analog of the topological index

of Atiyah�Singer� Let us consider the double


M
def
� M



�M

M

of the manifoldM � On this manifold we have the �continuous� elliptic symbol

�� �D���� � � �D� ��� � � �D� ���� �

on the 
rst copy of the manifold this symbol is equal to the original symbol ��D�����
and on the second copy it is ��D������ The continuity at the place of gluing follows
from the equality

� �D� ���� ��� � � �D� �������� �

In this notation the following index formula for spectral boundary value problems is
valid�

Theorem �

ind �D�P � �
	



indt

�
�
�
�D
��
� d �P � � ��	�

where d�P � is the dimension of the projection P for the trivial normalization �see
Theorem 	��

Proof � The index of the boundary value problem and the right�hand side of ��	� extend
to homomorphisms of abelian groups� denoted� respectively� by

ind� ind� � K �Dev �M��� �K ��M��K �M�� �� Q�

�




Let us take advantage of the exact sequence ����� We 
rst check that the two homo�
morphisms coincide for the classical boundary value problems� In this case we obtain
d �P � � �� since we have the unit projection and the normalization 
 is taken to be
trivial� Hence� it remains to verify the validity of the index formula for the classical
boundary value problems

ind �D� 	� �
	



indt �� �D� ��� � � �D� ����� � ��
�

By virtue of the isomorphism ����� the left� and right�hand sides of ��
� are homomor�
phisms of groups

Kc

�
T �

	

M

�
�� Q�

The right�hand side of ��
� is decomposed for the classical boundary value problems
into two terms

indt �� �D� ��� � � �D� ����� � indt �� �D� ���� � indt �� �D� ����� �

��D����� ��D����� � Kc

�
T �

	

M

�
�

Let us show that on an even�dimensional manifold the two terms in the last formula
are equal� Indeed� in the cohomological form we obtain

indt �� �D� ����� �
�
ch �� �D� ����� Td �T �M 
�� �

�
T �

	

M

��
� ����

The involution on the space T �M
� �� ��

preserves its orientation� Then from ���� we obtain

indt �� �D� ���� � indt �� �D� ����� �

The equality in ��
� now follows from the index formula for the classical boundary
value problems �see Remark ���

ind �D� 	� � indt �� �D� ���� �

The homomorphisms ind and ind� obviously coincide on the subgroup Z generated
by boundary value problems for operators equal to zero� In this way� the di�erence
ind� ind� descends to a homomorphism of the quotient group

ind� ind� � �K �Dev �M��� �K ��M��K �M� � Z��� Im�� Q�

��



The exactness of the sequence ���� implies Im� � ker�� Let us now note that the
homomorphism � takes values in the torsion group �see the sequence ������ Thus� the
di�erence ind� ind� cannot be nontrivial� since it is de
ned on the group consisting of
elements of a 
nite order�

The index formula is thereby proved�
Operators in subspaces on closed manifolds and boundary value problems on man�

ifolds with boundary studied above are related�
Let D be an operator in subspaces� on a closed manifold M

D � ImP� � ImP�� ImP��� 	 C� �M�E���� � ����

Let us assign an elliptic boundary value problem to this operator�
On the cylinder M � ��� 	�� consider an elliptic 
rst�order operator with constant

coe�cients along the cylinder

D� �
�

�t
� �	 � P��  �	 � P��� P� P� � C

� �M � ��� 	� � E��� C� �M � ��� 	� � E�� �

����
where  is a positive self�adjoint operator of the 
rst order onM with principal symbol
j�j � On the two bases of the cylinder we impose the following boundary conditions� one
boundary condition spectral� while the other is general��

�	� P��u ��� � g � Im �	 � P�� 	 C� �M�E�� �
Du �	� � g� � ImP� 	 C� �M�E�� �

����

Let us note that the ellipticity of the boundary conditions ���� is equivalent to the
ellipticity of the operator in the subspaces �����

Proposition 	 The index of the boundary value problem ����� ���� is equal to the
index of the operator in subspaces �����

Proof � First� it su�ces to prove this proposition for the case in which the projections
P��� are orthogonal� In this situation the operator ���� has the form

D� �
�

�t
�A� A is a self�adjoint operator�

which makes it possible to reduce the proof of the equality of the indices to a direct
calculation �with the help of the eigenfunctions of A�� These calculations are omitted�

��




 Eta invariants and even projections

Following ���� we say that a classical pseudodi�erential operator A of integer positive
order m is admissible if its complete symbol

a �x� �� � am �x� �� � am�� �x� �� � ����

satis
es the parity conditions

a� �x���� � ��	�
�
a� �x� �� � �� �� �� x� � � m�m� 	�m� 
� � � �

�the admissibility of an operator is independent of the choice of a coordinate system
where the complete symbol is considered�� We also recall that the ��function of a
self�adjoint operator A is de
ned as

� �s�A� �
X

��specA

sign� j�j�s �

where the sum is taken over the nonzero eigenvalues of the operator A �with regard to
their multiplicities�� It is well known that for an elliptic self�adjoint operator on an odd�
dimensional manifold the ��invariant of Atiyah�Patodi�Singer ���� which is by de
nition
equal to the value at the origin of the analytic continuation of the ��function� is a 
nite
number� i�e�� the ��function does not have a pole at the origin� Assuming additionally
that A is an admissible operator of even order on an odd�dimensional manifold� one can
claim that the reduction of the ��invariant modulo Z is invariant under deformations
of the operator� while the integer jumps occur as a result of �discontinuous� changes of
the nonnegative spectral subspace of the operator�

Such a homotopy invariance suggests that for this class of operators the ��invariant
of the operator A is completely determined by its nonnegative spectral subspace �this
subspace is� actually� the range of an even projection�� This idea is realized in the
following proposition�

Proposition � Let P�be an even pseudodi
erential projection that is equal to a non�
negative spectral projection for some admissible operator A� Then the dimension of the
projection with the trivial normalization 
 � K�M� � R and the ��invariant of the
operator A are equal�

d �P���
� ��� A� � dimkerA



def
� � �A� �

Proof � The orders of the elements of the group K �P �M� �K�M� are powers of 
�
Hence� �see Sec� 	 and the paper ���� for su�ciently large N the operator 
NA is
homotopic �in the space of admissible self�adjoint elliptic operators� to some operator�

��



denoted by A�� which is equal to a direct sum of a positive and a negative admissible
operator� Hence� we obtain � �A�� � � �see ����� Let us denote an arbitrary homotopy
of this form by At� Recalling that the spectral �ow of the family At through the point
zero is equal to the net number of jumps of the ��invariant� we obtain

�
�

NA

�
� �sfAt�

On the other hand� by considering a spectral section �see �	��� Pt for the family At� we
can show �this is one of the de
nitions of the spectral �ow� that

sfAt � �ind
�

NP�� P�

�
� ind �P��A� � P�� �

The last expression is equal to the d�dimension �see Remark 	�

�ind
�

NP�� P�

�
� ind �P��A� � P�� � �d�


NP�� � d�P��A�� � �d
�

NP�

�
�

We 
nally obtain the desired formula

� �A� �
	


N
�
�

NA

�
�

	


N
d
�

NP�

�
� d �P�� �

Remark 
 An even projection P satis
es the conditions of Proposition � if and only
if it is an admissible operator of order zero itself�

Indeed� the admissibility of the operator A implies the admissibility of its spectral
projection �see ����� To prove the converse statement� let us note that admissible
operators form an algebra� Consider an elliptic operator de
ned by the formula

A � P"P � �	 � P �" �	 � P � �

where " denotes an arbitrary admissible positive self�adjoint operator of order two
with the principal symbol of the Laplacian j�j� � The operator A is exactly the desired
one �i�e� an operator with nonnegative spectral projection equal to P �� This completes
the proof of the remark�

In the paper ���� the topological meaning of the invariant �modZ �i�e� modulo
jumps� was considered� It was noticed that this reduction de
nes a homomorphism

� � K �P �M� �K�M� �� Z

�
	




�
modZ�

By virtue of Proposition �� the obtained index formula for operators in subspaces �	���
when reduced modZ� gives a new formula for the ��invariant�� which we state now as
a corollary�


But not for all elements with principal symbols in the group K �P �M � �

��



Corollary � Let

W � kerf	� � K �P �M� �K�M� �� K �S�M� �K�M�g � 	 � S�M � P �M� ����

Then the fractional part of the ��invariant of the bundle W is the half�integer

� �W � �
	



indt

�
����������� � 	�SF � 	�SF

�
modZ� 	S � S

�M �M�F � Vect �M� �

����
where � is an arbitrary isomorphism of vector bundles 	�W and 	�SF over the cotangent
sphere bundle� which exists by condition �����

The index formula for even boundary value problems leads to a similar formula �cf�
�	����

Corollary � Let �D�B�P � be an even elliptic boundary value problem on the manifold
M � Then the fractional part of the ��invariant of the even bundle Im� �P � is a half�
integer and can be computed by the formula

� �Im� �P �� �
	



indt �� �D� ��� � � �D� �����modZ�

The last statement gives the cobordism invariance� which we state now in terms of
K�theory� Let us recall some constructions from �	
��

Consider the homomorphism

K �S�X� �K �X� �� Kc �T �X � 	� �
W � ImP 	 	�E �� �� � i �
P � 	� j�j� �

����

where E � Vect �X� � 	 � S�X � X is the natural projection and the element

�� � i �
P � 	� j�j� � Kc �T
�X � 	�

is understood in the sense of di�erence construction� i�e� outside of the zero section of
the bundle T �X � 	 it de
nes an isomorphism in the pullback of the bundle E on the
space T �X � 	� It can be shown �see �	
�� that this homomorphism coincides with the
composition

K �S�X� �K �X�
�
� K� �T �X� � Kc �T

�X �R� � ����

where � is induced by the coboundary operator in K�theory� Moreover� the map � is
an isomorphism �for an odd�dimensional manifold X this is easy to show by using a
nonvanishing vector 
eld�� Making use of the identi
cation ���� given by formula �����
we obtain the desired cobordism invariance in the following form�

��



Corollary 	 On the boundary X � �M of a smooth even�dimensional manifold M
consider an even subbundle �W � � K �P �X� �K �X� and its pullback to the bundle of
cotangent spheres�

	� �W � � K �S�X� �K �X� � 	 � S�X � P �X�

Suppose that this extends inside the manifold M � i�e� it lies in the range of the restric�
tion operator

i� � Kc �T �M�� Kc �T �M jX� � T �M jX 	 T �M�
	� �W � � Im i�

for the identi	cation ����� Then the doubled ��invariant of the bundle W is an integer�


� �W �modZ � ��

� Examples

�� On a closed� connected� odd�dimensional� oriented� Riemannian manifold M con�
sider an elliptic self�adjoint di�erential operator of second order acting on exterior
	�forms by the formula

A � d� � �d �  � �M� ��  � �M� �

where d is the usual exterior derivative and � is the adjoint operator� A direct calcula�
tion shows that the principal symbol of the nonnegative spectral projection P for this
operator at a point � �� � is a projection on the line generated by the covector � itself�
In other words� the projection P is an even projection� while the image of the principal
symbol Im�� �P � on each of the projective spaces P �

xM is exactly the tautological line
bundle� which is known to be nontrivial� At the same time� the pullback of this bundle
to the cosphere bundle is already trivial with the natural trivialization

� � Im� �P � �� C�

� �x� �� �� � ��� �� �

where ��� �� is the inner product of two proportional vectors� The calculation made in
the paper ��� shows that in this case

� �A� � dimker �d� � �d�j���M	 � 	 � dimH� �M� � 	�

Hence� for an elliptic operator

D � ImP �� C� �M�

��



acting in the corresponding subspaces� the index formula can be rewritten in the form

ind
�
D�P� PC� �M	

�
� indt

�
� �D� ��� � 	�C� 	�C

�
� dimH� �M�� 	�

where
indt

�
� �D� ��� � 	�C� 	�C

�
is the topological index of a usual elliptic pseudodi�erential operator acting on functions���

�� An operator similar to the one from the previous example is known for the case of
coe�cients in a bundle W � Vect �M� and also for the case of forms of higher degrees�
Namely� consider a vector bundle W with a connection D� The corresponding operator
is de
ned by the formula

A
 	W � DD� �D�D �  k �M�W � ��  k �M�W � �

It is an elliptic self�adjoint operator� Its principal symbol is the tensor product

� �A
 	W � � � �A�
 	W �

In Gilkey�s paper ���� the problem of computation of the fractional part of the ��
invariant for operators of the above type was posed� It follows from the formula �����
for example� that on a parallelizable manifold the fractional part of such operators
acting on 	�forms with coe�cients in an arbitrary bundle W is zero� Indeed� by the
index formula it is equal to half the index of an operator with a constant principal
symbol�

The problem posed by Gilkey asks for an operator with a nonzero fractional part of
the ��invariant� It remains open� In the context of even projections this problem can
be partly restated as follows� is it possible that fractional terms appear in our index
formulas#
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��For dimM � � this index is well known to be zero� In order to obtain a nontrivial index in this
situation� one can consider matrix operators�
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