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Abstract: We consider edge-degenerate families of pseudodifferential boundary value
problems on a semi-infinite cylinder and study the behavior of their push-forwards as the
cylinder is blown up to a cone near infinity. We show that the transformed symbols belong
to a particularly convenient symbol class.

This result has applications in the Fredholm theory of boundary value problems on
manifolds with edges.

Introduction

Pseudodifferential boundary value problems on manifolds with edges form an al-
gebra in which parametrices to elliptic elements can be constructed by inverting
the components of an associated symbol hierarchy. Operators of this kind arise not
only in concrete edge situtations, but also in mixed problems, crack theory, and in
the solvability theory of boundary value problems in corner domains or in configu-
rations with higher order singularities. Pseudodifferential calculi for edge operators
in the boundaryless case have been developed by Mazzeo [4] and Schulze [12, 3].

A crucial step is the inversion of the operator-valued edge symbol. Essentially,
this a family of pseudodifferential boundary value problems on an infinite cone with
boundary, parametrized by the edge covariable which degenerates in a typical way.

Requiring its invertibility is an analog of the Lopatinskij-Shapiro condition for
boundary value problems; the inner normal is here replaced by the cone. Similarly
as in the theory of boundary value problems, invertibility can only be achieved by
imposing additional trace and potential conditions. They have to be included in
the full calculus, similarly as this is done in Boutet de Monvel’s concept.

In order to come close to an inverse for the edge-degenerate family, one has to
perform a careful analysis both near the tip of the cone and on the infinite part.
The analysis near the tip relies on the Mellin calculus for manifolds with conical
singularities; it is a central topic in the paper [10] by the authors.

Here, however, we shall deal with the problems arising from the non-compactness
of the cone at infinity. We show that the special structure of these symbols allows us



to treat them within the framework of the SG-calculus of boundary value problems
introduced by the first author; cf. the papers by Shubin [13] and Parenti [5] for
earlier use of this symbol class in the boundaryless case.

The main result of this note is Theorem 3.10: Under a blow-up of the cylinder,
the pseudodifferential boundary value problems stemming from edge-degenerate
families transform into SG-boundary value problems. The blow-up preserves the
grading of the algebra so that invertibility of the principal usual symbol will allow
an SG-parametrix construction on the infinite part of the cone.

Together with the analysis near the tip this will provide a Fredholm inverse to the
edge-degenerate family arising from an elliptic edge symbol and thus an essential
step in the inversion process for elliptic edge symbols. This in turn is crucial for
the parametrix construction in the edge boundary calculus, cf. [11].

1 Operator-valued Symbols. Sobolev Spaces

Throughout this article let X be an n-dimensional C'*° manifold with boundary
Y = 0X, embedded in an n-dimensional manifold © without boundary. Ei, Es, . ..
are vector bundles over € and Fy, Fs,... vector bundles over Y.

On  we fix a Riemannian metric; moreover we endow the vector bundles with
Hermitian structures so that we can speak of L?-sections.

By 0, we denote an operator coinciding with the normal derivative in a neighbor-
hood of the boundary and vanishing outside a slightly larger neighborhood.

We also fix a function [-] : R® — R, such that [#] > 0 for all z and [z] = ||
for |#| > 1. In connection with pseudodifferential operators, one often uses (z) =
(14 |2]*)*/2. Clearly, there are constants ¢;,cs such that ¢;(z) < [z] < ea(x), so
that both are comparable. This allows us to obtain the usual estimates like Peetre’s
inequality or the fact that [t£] < c¢t[€] for ¢ > 1 and suitable ¢ > 0.

H*(IR™) is the usual Sobolev space on R", while H*(R}) = {ulg= : v € H*(R")}
and H§ (@1) is the set of all u € H*(R™) whose support is contained in @j_

For o = (01,00) € R? we let HO(R%) = {[¢]~7%u :uw € H7*(R")}, and Hg(@j_)
={[z]"2u:u € Hgl(@j_)}; here z is the variable in @j_

Finally, S(R%}) = {U|R3‘r cu € S(R™)}. We have S(R%) = proj — lim, ¢z H? (IR7})

=N

and S'(R%) = ind — limgegr= Hy 7 (R ).

Operator-valued SG-symbols

1.1 Group actions. A strongly continuous group action on a Banach space F is
a family k = {xx : A € Ry} of isomorphisms in £(E) such that ik, = kx, and
the mapping A — ke is continuous for all e € F.

For all the above Sobolev spaces on R™ and R", we will use the group action

(rxf) (x) = X2 F(Ax). (1.1)

This action extends to distributions by sxu(y) = u(kx-1¢).
On £ =T, 1 €N, we use the trivial group action k) = id. Sums of spaces of this
kind will be endowed with the sum of the group actions.



1.2 Operator-valued SG-symbols. Let E, F be Banach spaces with strongly
continuous group actions &, %, let @ € C®(R" x R"® x R* L(E,F)), and p =
(p1, pa, p3) € R3. We shall write a € SG*(R"™ x R? R*; B F) provided that, for all
multi-indices «, 3, 7, there is a constant C' = C'(a, 3,v) with

||y Dy Dy Dy aly, g, ) llece,m) < Clyr 1Ny re—18l e =, -
1.2

We shall simply write SG*, if the arguments are obvious from the context. The
choice of the best constants C' provides a Fréchet topology for SG*. In case a is
independent of § we shall write a € SG#(R™,R*; B, F') with g € R2

Extension to projective and inductive limits: Let E, F be Banach spaces with
group actions. If F} ¢ Fy < ... and F; < Es < ... are sequences of Banach
spaces with the same group action, and ¥ = proj —lim F, £ = ind — lim Fy,
then let SGH(R"™ x R" R*; E, F) = proj — lim, SGH(R" x R" R¥; E, Fy) and define
SGH(R" x R™, R*; F) as well as SGH(R™ x R™ R¥; B F) similarly as projective
limits. We shall use this concept particularly with £ = S'(Ry) and F = S(Ry).

Pseudodifferential operators: For a € SGH(R"xR"™ R"xR!; E| F), the parameter-
dependent pseudodifferential operator op @ with parameter space R is the operator

family {op a(A) : A € R'} defined by

(opa(N))(y) = / Iy, G, N F@)didy, €SB, E),y € B™. -

This reduces to (opa(A)f)(y) = [e¥a(y,n, /\)f(n)dn for symbols that are inde-
pendent of §. Here, f(n) = Fyosnf(n) = [ €77 f(y)dy is the vector-valued Fourier
transform of f, and dn = (27) " %dy.

One obtains a full symbolic calculus for operators with SG-symbols. In par-
ticular: (i) There is asymptotic summation; (ii) an operator with ‘double’ sym-
bol in SGW1#2:13) hag a ‘left’ symbol in SG#1:#2443) and a ‘right’ symbol in
SG(#1,0,patps) (iii) the composition of two SG-pseudodifferential operators is an
SG-operator; its order is the sum of the orders.

1.3 General operator-valued symbols. We use the above notation. For p € R,
we shall say that a € S#(R" x R* R*; B F) if

i1+ D5 D3 Dty s gl < Cli 1.
We then have the above properties replacing SG*, u € R3 or pn € R? by S#, u € R.

1.4 Definition. Let E F be Fréchet spaces and suppose both are continuously
embedded in the same Hausdorft vector space. The exterior direct sum £ @ F 1s
Fréchet and has the closed subspace N’ = {(a,—a) : @ € E N F}. The non-direct
sum of F and F' then is the Fréchet space £+ F := E & F/N.



2 A Boutet de Monvel Type Calculus with Weigh-
ted Symbols

We review the concept of Boutet de Monvel’s calculus with weighted symbols in-
troduced in [6]. More details can be found in [7, 8]. We start with a review of the
relevant spaces and terminology.

2.1 Definition. (a) Given a function f on R’} we denote by et f the function on
R™ which is equal to f on R’} and zero otherwise. In the same way we let ety be
the extension by zero of a function ¢ on X to a function on . By »tf we denote
the restriction of a function f on R™ to R!. Similarly we denote the restriction of
a function ¢ on Q to X by rtg.

(b) Let HY = {(etf) : f € SRy}, Hy = {(e”f) : [ € S(R_)}; the hat -
indicates the Fourier transform on B. H’ denotes the space of all polynomials.
Then define

H=H"®H; o H'

(c) A symbol p € SG#(R™ R" x R') has the SG-transmission property at z, =

T, = 01if, for all k, k' € N,

Dk DY p(a',0,#,0,€,[¢, Nén, A) € SGH (R x RETLRET < RY)Or

Write p € SGE(R™ x R? R x RY). The subscripts indicate the variables with
respect to which the corresponding properties hold.

2.2 Weighted parameter-dependent operators and symbols. A parameter-

dependent SG-operator of order 1 € R? and type d € N in Boutet de Monvel’s
=N . .

calculus on R is a family of operators

S(RY)™ S(RY)™
A(N) : - — - , AeR! (2.4)
S(Rn_l)ml S(Rn—l)mQ

of the form A(\) = ( Pr(A) 0 ) + ijo Opgj(/\)ﬁﬁ: op k(A) where 0, 1s
0 0 Sioopt; (N ops(A) ) '

the normal derivative and
(i) P(-) =op p() with p € SGL.(R™,R" x RY), Py = rt Pet.
(ii) The symbols g;,%;, k, and s belong to the following spaces:
€ SGRUN R RrL i RE SR )M S(RY)™E),
t; € SGr-UO MR- R RE SR )™, C72),

ko€ SGrRr-l R REC™ S(RL)™2), and
s €SGHRNLRML X REC™ O,

9;

We shall write A € ng(@j_;ﬂ%l); moreover, we write A € ngo’d(@j_;ﬂ%l) for a
regularizing parameter-dependent operator of type d, i.e. for an operator in the
. . e £
intersection ﬂuE]RQ ng(@% RY.

The decomposition Py 4+ G is not unique. The topology on ng(@j_;ﬂ%l) and
ngo’d(@j_;ﬂ%l) is that of a non-direct sum of Fréchet spaces.



2.3 Definition. (a) (Erkip & Schrohe [3]) Let © be an n-dimensional manifold
without boundary. Call @ SG-compatible if conditions (SG1) — (SG3) hold.

(SG1) € has a finite covering by coordinate charts: = szle.
(SG2) This cover has a good shrinking.
(SG3)  All the changes of coordinates x satisfy 9%y (x) = O([z]1=%).

The existence of a good shrinking in (SG2) means that £ may also be written as
the union of sets Q7 C Q;, such that there is an e > 0 with B(z, ¢[z]) C x;(£;) for
every x € 1; ().

Clearly, R™ is SG-compatible with its standard coordinates and so is every com-
pact manifold. A more elaborate example will be given in 2.5, below.

Let X be an n-dimensional submanifold of  with boundary X =Y, where Y is
an (n — 1)-dimensional submanifold without boundary. Assume additionally that

(SG4) The functions «; : Q; — R” map X N5 to EZ,Y NQ; to IRY, and
Q; N (A\X) to R2.

(SG5)  There is a Riemannian metric g on £ whose tensor in local coordinates,
gij, satisfies the estimates 9%¢;;(z) = O([x]~%), (9i;)(z)~! = O(1).

We then call the quadruple (2, X,Y, ¢) an SG-manifold with boundary or simply
SG-compatible. A simple example is given by (R™, @Z,R”_l, Euclidean metric).
It is easy to see that pull-backs of the Euclidean metric on «;(£2;) can be patched

together using a partition of unity to yield a metric with property (SG5).

(b) 8(€2) and S(X) denote the spaces of all smooth functions on Q@ and X, re-
spectively, that satisfy the estimates for rapidly decreasing functions in all local
coordinates. All notions are justified by (SG3). Given a vector bundle E over
1 with all transition functions satisfying SG-estimates of order zero (SG-vector

bundles), we define S(Q2, £), S(X, F), H*(Q, E), etc. in the obvious way.

2.4 Boutet de Monvel’s algebra on an SG-manifold. Let Q, {Q;}, X,Y be
as above, let Ey, Es be SG-vector bundles over Q, and let Fy, Fy be SG-vector
bundles over Y. We shall say that a family A = {A(\) : A € R'}

S(X, E1) S(X, E»)
AN - & — D
S(Y, F1) S(Y, Fy)

is an element of ng(X;Rl), 1 €R2 d € Ny, provided that

(1) For every choice of functions ¢, ¢ supported in the same coordinate neighbor-
hood and satisfying zero order SG estimates, the push-forward of AV is an
element of ng(@j_; RY). Here ® and ¥ denote the operators of multiplication
by diag {¢, ¢|y} and diag {u, ¥|y }, respectively.

(i1)  If ¢, ¢ are as before, but the coordinate chart does not intersect the boundary,
then all entries in the matrix (M, A(A)My ). — except for the pseudodiffer-
ential part — are parameter-dependent regularizing.

(iii)  Given two functions ¢, which satisfy the estimates for an SG°-function
in all local coordinates and additionally have disjoint support, the operator
DAV, defined as above, is a parameter-dependent regularizing operator.



Recall that a regularizing operator of type 0 is an integral operator with a kernel

section in (S(X, Eq) @ S(Y, Fz))®7T (S(X, E1) @ S(Y, Fl)) A regularizing operator
of type d is a sum R = ijo R; [%ﬁ H with all R; regularizing of type zero. The

parameter-dependent regularizing operators of type d, denoted by B~°%4(X;R!),
are Schwartz functions on R’ with values in the regularizing elements of type d.

2.5 Example. Let Q,{Q;}, X,Y be as before; assume additionally that Q is
compact, hence so are X and Y. By «; : ; = U; C R" denote the coordinate
maps. We then define the manifold Q= by introducing on £ x R coordinate maps

Xy x B R (e, 1) = ([tks(x),t).

Topologically, 2= = Q x R; intuitively, these coordinates make Q= look like an
outgoing cone with two ends.

It is easily checked that Q= is an SG-compatible manifold. Restricting the coor-
dinate maps to X we obtain X=. This is an SG-manifold with boundary Y= when
endowed with the metric induced from Euclidean space via the x;.

2.6 The standard version of Boutet de Monvel’s calculus. We obtain the
usual version of the calculus, if we ask for uniform boundedness of all z-derivatives
instead of estimating by [2]#2~1°l. More precisely, we shall write A € B“’d(@j_;ﬂ%l)
if A is of the form (2.2) with

p € SE(RYMR?xRY ((ny x ng)-matrix-valued);

gj € SHETIRA-LyRES(R)™ S[RY)™), j=0,....,d
t; € SHRPTLRPLx RES/(RL)M,CM2) j=0,....d
ke SHRrL Rk REC™ S(RL))

s € SHRrTLRr-LxRLOM, O

We then can define operators on open manifolds; we ask that, in local coordinates,
all operators be of the above form.

3 Behavior under Blow-up

3.1 Relation to edge-degenerate boundary value problems. In the Fred-
holm theory of pseudodifferential boundary value problems on manifolds with edges,
we have an analog of the classical Lopatinskij-Shapiro condition, namely the invert-
ibility of the principal edge symbol. Apart from the trace and potential conditions
(which will be taken care of later) this is a family of boundary value problems in
Boutet de Monvel’s algebra on an infinite cone, the so-called model cone. It is
parametrized by the edge-variable (which is omitted here, since it plays a minor
role) and the edge-covariable, 7.

In what follows, ¢ is the axial variable of this cone, T the corresponding covariable;
z 1s the variable along the base X of the cone, & its covariable. Geometrically, the
use of the variables (¢, ) gives the picture of an infinite cylinder. The fact that we
are dealing with a cone is reflected in the degeneracy of the axial covariable: 7 only
appears as t7. Similarly, the edge covariable only comes up in the degenerate form
tn. As in the case of classical boundary value problems, the ¢-variable is ‘frozen’



at the edge, i.e. t = 0, and the edge-covariable n # 0 is fixed. The boundary value
problem therefore depends on ¢ only implicitly, via ¢t7 and 7.

In order to establish the invertibility of the full edge symbol (including trace
and potential conditions) one needs the Fredholm property of this edge-degenerate
family of boundary value problems for each n # 0 on the Sobolev spaces over the
infinite cone. Establishing it splits into two tasks: The analysis near the tip, which
will be performed in [10], and the analysis on the cone near infinity. There the cone
over X coincides with the manifold X=, which is a particularly simple SG-manifold.

What we shall establish in this section is the following: The blow-up which makes
the cylinder X x R the SG ‘double cone’ X* induces a push-forward on the level
of operators which transforms these edge-degenerate families of boundary value
problems into SG-operators, cf. Theorem 3.14. The mapping properties on the
cone Sobolev spaces are therefore immediate. Moreover, the natural grading of the
algebras is preserved: The push-forward of lower order terms is of lower order in
the SG sense. This will play an important role in the construction of a Fredholm
inverse.

We start by computing the behavior of the symbol under the push-forward; the
main technical result is Theorem 3.8, which allows us to deal with all components
in Boutet de Monvel’s calculus at the same time.

3.2 Definition and Lemma. We shall use the diffeomorphism
YR xRy - R x Ry, x(z,t) = ([t]=,1).

Its inverse is given by x~*(y,t) = (y/[t],t). We have

DX_l(y,t) — ( [t]all _yﬁt[lt]/[t]z ) . (35)

We define the function M on @T—l X @T—l by

My, t,g,t) = /0Dx_l(y+0(§—y),t+0(f—t))d0; (3.6)

M is an invertible (n + 1) x (n 4 1)-matrix. For ¢, > 1,

nt=lnfy _ (1 yto(g-y)
M(y,t,g,{):( - I =l o )? d")

by (3.5). Its determinant only depends on ¢ and t. Using the abbreviation

t—1

TE,1) = ———
(&%) Int —Int

we see that, for ¢, ¢ > 1, the inverse of the adjoint is

. ( I 0 )
M_ — 1 +O‘[~— ] 5 (37)
T/, (i/+a(ty—t3)/)2 do 1

and det M~T(t, 1) = T(t,1)".



3.3 Lemma. Letp € C°(Ry x By, SH(R" x R? R*"1+4 B F)). Fixn # 0, and
define p(t,=,t, %, 7,6,m) = p(t,{; 2, %, &, t1,1n).
The symbol of the push-forward x.(opp) is given by

it 6070 =5 (0 B/ 05/ M7 () o) T

For t,1 > 1 this expression simplifies to
P (6Tt g/t TE & +ir i) T(t, )",
_ ~ L yto(g-y) :
Here ¢ = ¢(y,t,9,1) = T(t,1) 0 Troliot))? ~do, and T is as above.
Proof. Let [ € S(}R”‘H) and (y,t) € R"*L. Then

(x«opp)f =opp(X*f)(x"' (1. 1)) (3.8)

//// '[Lm T (t {% %’&tr,m) F(@, D" dy dt dg dr.

Here we made the substitution # = §/[{]. Now we note that

Wi - sl e+ -0 = (o= (4

= (- G0 w0 ().

The integral (3.8) therefore equals

////‘J((y’t)_@’t~ )p(t{_ [a) M_T<t€r)’t”)f(ga{)th[ﬂLn_Td@dchdr.

Now the first assertion follows from (3.7). The second is immediate. g

3.4 Proposition. Let ¢, € CF°(R"™) with disjoint support and w,& € C5°(Ry)
with w(t) = &(t) = 1 for t < 1. Moreover let j € C°(Ry x R+,S“(R” x R? R™ x
Rt [ F)). Fix 0 # n € R4, and define

p(ta $a{a ja Tag) = ﬁ(ta{a €T, jagatTatn)'
Then the push-forward
X (p(@) (1 = w(t))(op , p) (1 — &(1)) B (x)) (3.9)
is an integral operator with a rapidly decreasing kernel taking values in L(E, F).

Proof. We abbreviate F(z,%,t,1) = ¢(x)3(%)(1 —w(t))(1 =& (). Foru € S(R"*Y),
K e Ng with g — K < —n — 1 we have

(p(1 =w)lopp)(1 — &)@)ule,1) =

= //// (e=&)eti(t=)T F(x,i‘ t,Opt, 4, %, & trtn)u(z, 1) dz dt d¢ dr
i(o—3)eti Flx,z,t,t . P
//// Jeti(t=t)r |a£— ~|2K)A§ Pt 6w, 7, & tr,tn)u(F, 1) didtdedr.



The integral exists and we may rewrite (1 — w)(opp)(l — @)¢ as the integral
operator with the kernel k = k(=,t,%,%) given by

! // pilo—m)e+i st TF(x, % t,1)|x — i‘|_2K(A?ﬁ)(t,t~; x, %, &, 7, tn) dédr.
Using integration by parts we conclude that

~q 2N
t—1 ~
t [—t ] lk(z, ¢, 2,0)|

IA

¢y //[g,r,tn]“_ZK_ZN d¢ dr F(x,i‘,t,fﬂx — i‘|_2K

IA

¢ //[5, T]“_K[tn]_K_ZngdTF(x, i‘,t,f)|x — i‘|_2K

RN B # ) | — 7|7

IA

es [tn]

For ¢ > 1 we may estimate [£=] 72V by N[t — #]72" . Moreover, for 1 # 0 we have
[tn] =5 =2 = O([t] = =*7).
Applying Peetre’s inequality and using that ¢, ¢ have compact disjoint support

we deduce that, for arbitrary L, we have
k(. 2,0)] < Cla] " [E]7F [

Differentiation under the integral sign yields the same estimate for the deriva-

tives of k. The ~puNSh—forvvard of k under y is the integral kernel {(y,?,9,1) =

L1 "k(y/[t],t, 9/t],t). Tt is obviously also rapidly decreasing with respect to all
variables. <

In the same way as Proposition 3.4 we can show the following.

3.5 Proposition. Let p,p,w,& be asin 3.4, ¢, € C§°(R™). Fix e > 0. Suppose
¥ is a function in C°(R x R), with ¢(t,t) = 0 for |t —t] < ¢ and ¥(t,t) = 1 for
[t — 1] > 2e.

Then the push-forward (3.9) is an integral operator with a rapidly decreasing
integral kernel taking values in L(FE, F).

In the following, we shall often restrict the variables to the set

S={(yt.o,1,67) L1211 t/1-1] <1/2,]y/t| < C,1g/{| < C}. (3.10)

Note that, on S, we have [t] ~ [t] ~ [y,?] ~ [7,1].

3.6 Lemma. Letc,T be asin 3.2 and 3.3. On the set S, we have
(a) |DfDi~T(t,f)| = O(t'*=Y and T(t,t) > cot for some constant co > 0.
|(E|) |D§‘DngDi~c(y,t, 7,1)| = O(t~121=*=181=1) " The left hand side is zero for |a|+
> 1.
On S, the function ¢ hence satisfies SG-estimates and T' those for SG(%:1.9)

Proof. (a)~ Write T'(t,1) = ts(t/t), where s(r) = (r — 1)/Inr. Clearly, T(t,1) = O(t)
and T'(t,t) > cot. Moreover, (t0:)T(t,t) = t(s(r) — (r@r)s(r))|rzt~/t = O(t); in an

analogous way, one sees that (19;)T = O(t). Since t* Df can be written as a linear



combination of terms of the form (¢D;)7,1 < j < k, we see that tkfolDéT(t,f) =
O(t).

(6) lelw, .5, D) < mas{lyl, |71} J; (¢ + o — 1)~?do = max{lyl |71} @)~ Since
y/t and g/t both are bounded and since T'(¢,t) = O(t), we conclude that ¢ = O(1).
Next we observe that

X -
& i o k1 y+ 0'(3/ - y)
Di Die(y,t,g,t) = Ckl/o (1-0)'c (L + o(l — 1))2+kH do.

The same estimate as above shows that this term is < C' max{|y|, |g/}t~27*~'. Now
(a) and Leibniz’ rule imply the assertion for o« = 8 = 0. In case ||+ |3 = 1, the
integrand is (1 — ¢)f el (¢ 4 o(7 — 1))=27%=! and we conclude as before.

3.7 Lemma. Letn # 0 be fixed. There exist constants C,d > 0, such that
Ot[E, 7] < [TE, c€ + tr,tn) < Ct[¢, 7] on S. (3.11)

Proof. 1f |£, 7] < 1, then the middle term side is > [tn] > e1t > est[€,7]. So
we may assume that |, 7] > 1. We let ¥ = sup|e| + 1 and distinguish the cases
where |7| < 29[€] and |7| > 2v|¢]|, respectively. Note that in the former, we have
|€] > (2 + 1)~ in the latter |7] > 1/2.

For || < 2v|€], the middle term in (3.11) is > ¢3|TE€| > eqt|€] > est[€, 7]. The last
inequality is due to the fact that |¢] > (2y + 1)~!. For |7| > 2v|¢|, we note that

[ 1 [
e + 7] > 7l = |e€] > SIr|+ 51| = 1e] > 51l > eofe, 7]

We thus obtain the estimate from below.

For the second inequality we first note that T' < ¢gt and therefore [T¢] < ¢7t[¢] <
est[é, 7]. Similarly [e€ + ¢7] < co([e€] + [t7]) < e1ot[€, 7]. This yields the estimate
from above. q

3.8 Theorem. Letpe SH(R" x R" R" x RYC E F) peR, let o, p € C5°(R")
and w,& € C§(R;) with w(t) =&(t) =1 fort < 1. Fix n # 0 and define

p(ta L, Tag) = ﬁ(xa iagatTatn)'

Then the push-forward x«(¢(z)(1 — w(t))(op, ,p)(1 — @(t))P(x)) has a symbol in
SG(“’“’O)(}R”H x R R+ [ F) . Its symbol semi-norms can be estimated by
those for p.

Proof. Since w and @ vanish for ¢ <1, we deduce from Lemma 3.3 that the symbol
q=q(y,t,9,1,& 1) of the push-forward is given by

P (y/t, /1T c€+ trtn) (1= w(t))(1 = &) p(y/) @ (/DT [[™"

The compactness of supp ¢ and supp ¢ shows that y/t and §/f may be assumed to
be bounded. Moreover, we may suppose that |t — ¢| is small, since we may multiply
by a function supported near t = ¢, at the expense of an error whose push-forward
is an integral operator with a rapidly decreasing kernel, as we saw in 3.5.

10



In fact, since ¢,7 > 1, we may assume in particular that [t/f — 1| < 1/2. We
therefore only have to establish the symbol estimates on the set S of (3.10), for ¢
vanishes on the complement.

We next note the following identities. In order to save space we shall write (...)
instead of (y/t,g/t, T(t,0)&,c(y,t,7,1)E +11,tn)

Dy (i)} = D))+ (D)) Y 0y ente

Defp(-- )} = D ADuB) () u/t) + (DeB)( )T+ (3.12)

+ (DeB) - ) (Orcrbn +7)+ (Do B i)
De i)} = (D)) + (Dep)(.. ey,
DR} = (D). ).

Here ¢ and &; denote the components of ¢ and £, respectively. The derivatives
with respect to § and ¢ are easily deduced from those. If we restrict the attention
to S, then 3yj cr&y satisfies the estimates for an SG(l’_l)—function, Oreréyr + 7 and
9y Ty, those for a SG9)_function, while t=! and yy /12 satisfy those for an SGO-1)_
function. Also (¢,y) — ¢(y/t) and (¢, ) — (g/t) are SG° functions on S.
According to Lemma 3.7 we may estimate Dy, p(...) by [t]*[¢, 7]* while De, p,

D:p , and Dy, p are O([t]*71[¢, 7]#71). Since [y,t] ~ [t] ~ T~ [t] ~ [§,%] on S, we
obtain the estimate

DgDIDIDS DEDE gy, t, §,1,€,7) = 0([y,t]“—'ﬁ'—k[g,f]—'ﬂ =+, g]u—'a'—’")

provided the total number of derivatives is < 1. The form of the derivatives in (3.12),
however, together with the above observations on the functions d,;ciés, . .. LYk 2
shows that the general result follows in the same way. <

We shall now apply this to boundary value problems in Boutet de Monvel’s
calculus._We consider the half-space @T—l ={(t,z1,... &) 12y, ... By €
R, 2, € Ry}. We shall see that the blow-up induced by x transforms an ordinary
t-independent operator in Boutet de Monvel’s calculus into an SG operator.

3.9 The situation. We let A € B“’d(@j_;RH'q),

~ PL+G K
A= + 1 ~ . 1
( k S) (313

We suppose that P = opxﬁ,é = opiﬁ,fx’ = opil;f,f = op ;1 and S = op ;5. Now
we fix  # 0 and define A € B“’d(@j_-l—l) by

. ( optp+opg opk )
opt ops /J’

where p(ta$aTa€) = ﬁ($a€atTatn)ag(ta$/aTa€/) = §($/a€/atTatn)a cee as(ta$/aTa€/) =
S, & tr,ty). Here, ' = (x1,...,2n0-1), & = (&1, .. .&n1).
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3.10 Theorem. Let A be as in 3.9, wi,wy € CP(Ry),wi(t) = wa(t) = 1 for
t < 1;let p1,92 € CSO(RT_IL_), and ®;, 7 = 1,2, the operator of multiplication by
diag {9, ¥j|rn-1x {01 }- Then the push-forward

B = X*((l — wl)\IflA\Ifz(l - (.dz)) (314)

) —nt1
1s an element of ng(RT— ).

Proof. For each entry of B we may apply Theorem 3.8. We start with the pseu-
dodifferential part. Here we choose £ = F = C. The push-forward then is an
SG-symbol. We still have to check the transmission property. Denoting as in 3.8
the symbol of the push-forward by ¢, we have on .S

DSnDS:LQ(ya ta ga {a gl’ [gl’ T]gna T) |yn:gn:0
(T ((DE, DE ) (9/t, 5/, T€ TIE 7l - (€1, 1€, Tlén + 17, t)

o1 (/1) £2(3/7) T (1= 1 (0)(1 = wa (D).

Yn=Yn=0

We note that ¢, (y,t,9,t) = 0 for y, = g, = 0, so that ¢- (&', [¢', 7]&n) = ¢/ -€', where
¢ =(c1,...,¢n-1)|yn=g.=0. Since p satisfies the transmission property

Dian;ﬁ(l‘, jagla [gl’ Ta n]gn’ T’ 77)|l'n:l~'n:0 = Z A]p](l‘/, j/agla Ta n)h](gn)a

where {A;} € ¢! {p;} is a null sequence in S#(R"~! x R*=1 R"=1 x R1*9) and h;
is a null sequence in H. Therefore

Dian;ﬁ(y/ta g/{a Tgla T[gla T]gna c- (gl’ [gl’ T]gn) + tTa ”7) |yn:i‘7n:0
— . y_/ 37_/ 1ot ) T[f’,T]fn

According to 3.8 the functions

y/ 37/ [y N —n y/ g/ I
pi (5 51 e+ tm ) T 01 (5,0) 0 (%,0) (1= () (1 = o)
belong to SGU#9): they form a null sequence, since we saw in 3.8 that the mapping
is continuous.

We finally deduce from Lemmata 3.11 and 3.12, below, that h;(...) € SG°®. H.
This shows the SG-transmission property for q.

Next consider the push-forward associated with the singular Green symbol g =
ijo §;0%. Focus first on one of the §; € S#=J(R"~L R"*+% S/(R,), S(R4)). We let
E tun over the scale of spaces HZ (R4 ), o € R2 and F over the scale H(R ), and
deduce that the symbol of the corresponding push-forward in (3.14) is an element
of SGWH=In=i)(R" x R R M1+ §/(R,) S(R,)). Since the push-forward of the
normal derivative is tJ,, the argument is complete. <

It remains to establish the two following technical lemmata used above.
3.11 Lemma. Let h € H and f € SG° with |f(x,€)| > ¢> 0. Then
g(x, &, v) = h(f(x,&)v) € SG°O, H.
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Proof. Write h = p+hg with p polynomial and hy € Hy. Then the assertion is trivial
for p. Without loss of generality we may therefore treat the case where h € Ht. The
topology of H* is that inherited from S(R4) via the Fourier transform. Writing
h = (et u)", we have

9(x,&v) = (Fesu(eTu)(s/ f(2,€))) / F(,€).

Since f(x,€)~t € SG it suffices to check that (z,&,s) — (etu)(s/f(x,€)) €
SG°@.8(Ry). This space coincides with S(R;, SG"). Hence we have to check
that for all a, 3, k, k' and s > 0 the estimate

DEDEs* 08 {u(s/ f(x,€))} = O([¢]™1°1[2] =171

holds. We observe that s*8% {u(s/f(x,€))} = fx, &) (s585 w)(s/ f(x,€)). Tt is
therefore sufficient to treat the case k = k' = 0. Now

De;{u(s/f(x,€))} = —(0su)(s/f(x,€)) (2, 6) 70, f(2,8).

An analogous relation holds for z-derivatives. Since f(x,£)™ 28, f(x,£) € SG(=1,0)
the case of higher order derivatives presents no further difficulty. <

3.12 Lemma. On the set S, the function
G(ya ta ga {a ga T) = T[ga T]/[Tga C€ + tTa t77]
is an element of SG°. As before n # 0 is fixed.

Proof. In view of Lemmata 3.6 and 3.7 it is sufficient to show that [T¢, e+t tn] €
SG1.9)  Since we are only interested in the case where t + |€, 7| is large, we may
replace [...] by |...|. Writing ... instead of T¢, ¢£ + i7,tn, we have

—_
~—

ool = 20T e+ ) = O, 7))
ol = [T 00,0 = 01, D),
.| = 000.0,06,0) = O(e, ),
06l = T 0) = O()
o0 = o = o),

By Lemma 3.7 again all first order derivatives satisfy the desired estimates; the task
for checking higher derivatives is the same as before. <

3.13 The manifold case. Let X be closed compact with boundary, and let
A € BH4(X,R9) have entries as in (3.13). We fix 0 # n € RY and define A €
B#4(X x R) by the process in 3.9.

From Theorem 3.10 and Proposition 3.4 we immediately get the following result:

13



3.14 Theorem. Letwi,wy € C°(Ry),wi(t) = wa(t) =1 fort <1, let x, A be as
above. Then the push-forward

X (1 =) A1 = w2))

is an element ofB(S“G’“)’d(XX). Here, X* is as in 2.5.
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