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Abstract

We construct a deformation quantization on an infinite-dimensio-
nal symplectic space of regular connections on an SU(2)-bundle over
a Riemannian surface of genus g > 2. The construction is based on
the normal form thoerem representing the space of connections as a
fibration over a finite-dimensional moduli space of flat connections
whose fibre is a cotangent bundle of the infinite-dimensional gauge
group. We study the reduction with respect to the gauge groupe
both for classical and quantum cases and show that our quantization
commutes with reduction.

AMS subject classification: primary: 58F05; secondary: 81510,
T0H33.
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Introduction

The problem of existence and classification of deformation quantizations
is now completely solved for finite-dimensional Poisson manifolds [1]. In
contrast, in infinite dimensions there is even no satisfactory definition of
deformation quantization. The matter is that the natural dictionary

points functions

functions functionals
summation integration

partial derivatives variational derivatives

utilized to pass from finite-dimensional mechanics to field theory should
be completed by precise description of the class of admissible functionals
(observables).

A formal translation with the help of this dictionary leads to the fol-
lowing definition of x-product on functionals.

Definition 0.1 A x-product is a formal power series defined for any two
admissible functionals F(u(z)), G(u(x))

F«G=Y hCyF,G)
k=0

with the properties

1. the coefficients Cy, are bilinear functionals in variational derivatives of

F and G of order < k,
C[] = FG,
Ci(F,G) — Ci(G,F) = —ih{F,G},

4. extended by linearity, the x-product defines an associative algebra struc-
ture on the space of formal functionals

F(u,h) =Y h*F(u).



Here h is a formal parameter, {F,G} means the Poisson bracket of func-
tionals. The variational derivative of order k
Ok F
du(zy) ... o0u(xy)

is a function, symmetric in z1, ..., xg, defined by the identity

§FF = d—F(u + tou)

t=0

/ /5u (z1)...ou(x k)fsu(xl)-..6u(xk)dx1...dxk.

For k > 1 the variational derivatives are mostly distributions rather than

smooth functions, while the bilinear functionals C} may be ill-defined for

distributions, whence a difficulty comes of defining a class of observables.
Consider, for example, usual local functionals of variational calculus

_ /f(x,u(x),u'(x),u"(x), . )da. (0.1)

They are good enough for classical mechanics because they have smooth
first-order variational derivative, thus, the Poisson bracket is well-defined
for them and is of the same class (for local Poisson brackets). But the higher-
order variational derivatives of (0.1) contain o-functions §(x1—x2) ...0(xk 1—

xy) unless F is linear
- [ f@uiz)ds,

thus, in general, the functionals (0.1) are not admissible for deformation
quantization. Of course, we always have a minimal admissible class consist-
ing of tensors, that is of finite sums of finite products

(fr,u) ... (fr,u)

since variational derivatives of any order are smooth for them, but this class
is too restrictive.

Anyway, passing from classical to quantum mechanics in infinite di-
mensions we have to restrict significantly the set of observables. As a conse-
quence, the class of quantum-mechanical observables is not invariant with
respect to canonical transformations, that is under changes of variables pre-
serving the Poisson bracket. Indeed, even if we start with an invariant class
of classical observables, the restriction to quantum-mechanical observables
may spoil this invariance. For example, the classes of tensors are quite dif-
ferent for different choices of independent variables u(z). Thus, the proper
choice of independent variables may be crucial for deformation quantization.



In this paper we construct a x-product on the space of connections on
an SU(2) vector bundle E over a Riemannian surface X of genus g > 2.
The space M of all connections is a symplectic space with a symplectic form

w= 1/ tréD A6D, (0.2)
2 Jx

where D € M denotes a connection on E and §D its variation. The group
G of automorphisms of E called the gauge group acts on M

g:Dr—>g_1

oDog (0.3)
preserving the symplectic form. The moment map of this action turns out
to be

p(a) = /X tr Ko (0.4)

where a belongs to the Lie algebra G of G and
1
k=dl'+ §[F’ [ (0.5)

is the curvature of D.

The Marsden—Weinstein symplectic reduction [2] may be applied to
this action. The zero level set My C M of the moment map consists of all
connections 0 which are flat, that is K = 0 for them. The group G preserves
My, and the orbit space

B = M,/G (0.6)

turns out to be a finite-dimensional manifold (with singularities) called mod-
uli space of flat connections.

The functionals (0.4) are Hamiltonians of the infinitesimal gauge action,
and we would like our admissible set of quantizable functionals to contain
all of them. Moreover, we would like the relation

{ulon), pla)} = /Xtr klon, ao] = p([on, az)) (0.7)

which holds for the classical moment map to admit the corresponding quan-
tum analog

(), fi(a2)] = —ihii([ay, az]). (0.8)

In other words, we would like to quantize the classical moment map.

In finite-dimensional case we know [3] that the reduction commutes
with the canonical G-invariant quantization, that is the following diagram
iIs commutative

A 2 A4
I b (0.9)
R % R



Here A is the algebra of classical observables, R is the reduced algebra con-
sisting of functions on the reduced manifold B, ()4 and )z mean canonical
G-invariant deformation quantizations of these algebras. The vertical ar-
rows mean reductions: classical (left) and quantum (right).

Now, in the infinite-dimensional case the left part of the diagram (0.9)
is known. A crucial fact is that the reduced manifold B (the moduli space of
flat connections) is finite-dimensional. Thus, the lower part of the diagram
(0.9) is also known since for finite- dimensional manifolds there is a canonical
deformation quantization. Moreover, whatever the algebra A should be, the
quantum reduction is also defined, provided the moment map is quantized,
so we know the right part of the diagram (0.9). It remains to reconstruct
the quantization map @) to fill the diagram to a commutative one.

Our construction of deformation quantization is based on a special
choice of independent variables given by the so-called normal form theo-
rem. In the finite-dimensional space it is well-known [4], here we prove it
for the space of connections. Roughly speaking, this theorem allows one to
consider all the functionals (0.4) as independent variables. More precisely,
it gives a representation of M as a fibering over B with a fiber F' = G x G*.
Thus, the quantization procedure consists of two steps:

1. quantization of the fiber resulting in a bundle Ap over B whose fibres
are algebras of quantum observables on F,

2. a canonical deformation quantization of the finite-dimensional mani-
fold B with coefficients in the bundle Ap.

For a finite-dimensional Lie group G a *-product on G x G* = T*(G)
was constructed in [5]. In our case G is an infinite-dimensional Lie group,
nevertheless a modification of this construction works. As for the second
step, it goes similarly to the finite-dimensional case (cf. [6, Theorem 6.5.1],
[7]). Our algebra of quantum observables is by definition the result of these
two steps, so commutativity of the diagram (0.9) is an almost tautological
assertion.

Let us briefly describe the content of the paper. Trying to make it self-
contained, we consider in section 1 standard geometrical facts concerning
connections, flat connections and their moduli spaces. The most impor-
tant is the regularity (irreducibility) condition. In section 2 we prove the
normal form theorem for regular connections with sufficiently small curva-
ture. In section 3 the quantization procedure is exposed including quantum
reduction.

In conclusion we would like to mention a large paper [8] where geometric
quantization on moduli spaces is considered in detail from the point of view
of symplectic reduction.

Acknowledgement. It is a great pleasure for me to thank my col-
league Professor N.N. Tarkhanov for fruitful discussions. In particular, for
his suggestion to use Holder spaces instead of Sobolev ones.



1 The Geometry of Connections

Let X be a Riemannian surface of genus g > 2. We consider connections
on SU(2) vector bundle E over X. Since the structure group SU(2) is
connected and simply connected, the bundle £ is trivial, so any section s
may be treated as a column vector-function

= (5) &

and any connection on the bundle £ has the form
Ds=ds+1T's (1.2)

where d is the usual differential and T’ € C*(X, su(2) ® A') is a 1-form on
X with values in the Lie algebra su(2). The curvature of the connection D
is defined by (0.5). This is a 2-form on X with values in su(2).

Let M denote the space of all connections (1.2), My C M the space
of flat connections (k = 0). Treating the infinite-dimensional geometrical
objcts we always deal with their restrictions to some finite-dimensional pa-
rameter space A. By 6D = 0I' we denote the differential (variation) with
respect to A € A. It is convenient to treat 0I' as a differential 2-form on
X x A. We have two anticommuting defferentials on X x A: d with respect
to x € X and 0 with respect to A € A, so differential forms on X x A have
double grading. Thus, 6" is a (1,1)-form on X x A. There is a symplectic
form on M given by (0.2) or

wzl/ tr 6" A oL (1.3)
2 J)x

Note, that ST’ AT is a (2, 2)-form on X x A, so we may integrate it partially
over X obtaining a 2-form on A, which is closed and non-degenerate. For
partial integration we need to fix the order of differentials: we assume that
first go dx and then dA.

Definition 1.1 A gauge group G is the group of automorphisms of the
bundle E.

Thus, g € G is given by a function g(z) € C*°(X,SU(2)). The cor-
responding Lie algebra G is the algebra of functions a(z) € C*°(X, su(2)),
the commutator [a, b] is defined point-wise. The dual space G* consists of
su(2)-valued 2-forms & and the pairing is given by

(& a) = /Xtrfa.

The gauge group acts from the right on the space of connections: for
any D € M any g € G defines a new connection g(D) by

g(D)s =g~ 'D(gs) =ds+ (9 'Tg + g 'dg)s. (1.4)



Clearly,
g: Kk g Ky, (1.5)

thus, the subspace M, is invariant.

Lemma 1.2 The action (1.4) preserves the form w and its moment map
is
p(a) :/ tr ka (1.6)
X
foraeg.

Proof. For fixed g(z) € G we have (g *dg) = 0, so G acts on varia-
tions 01" by conjugation:
g:0l — g 1lg. (1.7)

Since the trace is not affected by conjugations, the invariance of w is evident.
For a € G the infinitesimal action corresponding to

g: T g Mg+ g tdg
is
a:T'— [, a] + da = Da.
Let V, be the correspondinfg vector field on M, so that
i(Va)oT = Da.

Then we have

i(Vo)w = /tr Da Aol = — /tr aD(oT).
But
D(0T) = d(T) + [, 6T] = —6(dT + I'?) = —6k.
Thus, for fixed a € G

i(%)wz/}(traémzé(/}(tra/@),

which means that V, is a Hamiltonian vector field and the functional

p(a) :/Xtra/@

is the corresponding Hamiltonian.
O
The Marsden-Weinstein reduction consists of two steps: the restriction
to the zero level set of the moment map and then the projection to the orbit
space. From (1.6) it is seen immediately that p(a) = 0 for any a € G implies
k = 0, so the level set ;= 0 is the subspace My C M of flat connections. In



the sequel we use the symbols 0,y for flat connections to distinguish them
from general ones. We know that the gauge group acts on M, the orbit
space B = M, /G is called the moduli space of flat connections.

To describe the space B, we consider the monodromies of a flat con-
nection 0. Given a cycle C on X and a connection (not necessarily flat),
the monodromy T'(C) is the isomorphism of the fiber E,, at a base point
xo € X defined by the parallel transport along the closed curve C. For a
flat connection the monodromy depends on the homotopy class of C' only.
Thus, all the monodromies of a flat connection 0 define a homomorphism
of the fundamental group 7 (X) into SU(2). The group m (X) is generated
by the canonical cycles a;,b;, i =1,2..., g satisfying the only relation (see

e.g. [9])
9
Hb;laglbiai == ]_,
=1

hence the monodromies are defined by 2¢g matrices

satisfying the relation
9
[[B7'A7'BiAi =1. (1.9)
i=1

Clearly, this matrices are defined up to conjugations by a matrix U € SU(2)
corresponding to a change of frames in E, .

Definition 1.3 A flat connection 0 is called regular if al least for one i
the monodromies A;, B; do not commute:

B MATIB A # 1. (1.10)

We denote by M the space of regular flat connections and by B9 =
M;® /G the corresponding moduli space.

Theorem 1.4 The moduli space B™ of reqular flat connections is a
smooth manifold of dimension 6(g — 1).

Proof. Passing to the universal covering X , we would have for any flat
connection 0 a family of parallel frames of the bundle FE lifted to X. These

frames are defined by a matrix function U(X) satisfying
dU +~+U = 0. (1.11)
By the definition of the monodromy we have

U(ic) = UE)T(c) (1.12)
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for any ¢ € m(X) acting from the right on = € X. Vice versa, any family
of matrices U(Z) on X satisfying (1.12) defines a flat connection 9 = d +
with

Y= —dUU"!

on X which is invariant under the action of 7y, the matrices T(c) in (1.12)
being the monodromies of 0. The action (1.4) of the gauge group on the
space of flat connections corresponds to the adjoint action on U(Z);

g:U@) = g~ (@)U(@)g(x),

giving for monodromies

g:T(c) = g *(zo)T(c)g(wo).

Therefore two flat connections belong to the same orbit of the gauge group
if their monodromies coincide (up to conjugation).

For a given representation 7" of the group 7 (X) the family U(z) satisfy-
ing (1.12) may be constructed using a standard description of a fundamental
domain II C X (see e.g. [9]). Taking 7 € X arbitrarily, we set

U(zoc) =T(c).

The cycle a; lifted to X with the initial point T gives an edge [Ty, Toa;] C X
and we define U(7) for = € [T, Tpa;] taking any curve in SU(2) connecting
1 with T'(a;) = A;. For other liftings T € [Top, Toa;p] we set

U(z)=U(zp )T (p) (1.13)

(here p~"! € [Ty, Tpa]). Similarly, we proceed with the b-cycles. The liftings
of canonical cycles define a 7 (X)-invariant subdivision of X into fundamen-
tal domains. Taking one of them, we obtain a polygon II whose successive
edges are the liftings of the cycles

-1 -1 -1 -1
ar, b, ay by . ag,bg a0

The relation (1.9) ensures that the functions U(7) already defined on edges
give a cycle 0l — SU(2) which may be contracted since SU(2) is simply
connected. This gives a function U(z) in the interior of II. Any other
fundamental domain IT" has the form Ilc¢ for some ¢ € 71 (X) and we set

U(z) = U(ze T (c).

This definition is consistent due to (1.9) and we obtain a function U(%)
on the whole X satisfying (1.12). It remains to apply a m (X)-invariant
smoothing procedure to obtain a smooth function U(Z).

Thus, we have proved that the moduli space of flat connections is a
compact topological space consisting of conjugacy classes of unitary ma-
trices A;, B;, @ = 1,2...,¢ satisfying (1.9). Now, consider regular flat
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connections. Supposing that A;B; # By A;, we may reduce these matrices
uniquely to the form

a= ()= () (1.1

with 0 < ¢ < 7 and 3 real positive, |a?| + 3% = 1. Then

o1 [T —1)  af(e*® —1)
ABATE = ( —af(e e — 1) 1+ f(e %0 - 1) ) (1)

Any unitary matrix

A= ( 1:%“ 1Jbra ) € SU(2) (1.16)

with Ra < 0 may be uniquely represented in the form (1.15) taking

m
p=arga+t € (0,7);

1/2 b
0= <%> ;o oa= Eﬂ' (1.17)

It means that for matrices sufficiently close to a given regular ones with
non-commuting A;, By we may take Ay, By, ..., Ay, By arbitrarily and find
Ay, By from (1.17). Since dim SU(2) = 3, we obtain 6(¢g — 1) independent
real parameters giving a coordinate chart for the manifold B"Y.
OJ
The regularity property for flat connections admits another character-
ization which may be generalized to any connection, not necessarily flat.
To this end we introduce the Laplace operators associated to a given flat
connection 0. Consider differential forms on X with values in su(2). For a
given Riemannian metric ds? = f|dz|?, f > 0, where z = x + iy is a local
complex parameter, define the Hodge operator x by

xa=a" fde Ndy = —afdr Ndy; xadz N\dy = a7 = _%
xa(adz + bdy) = a*dy — b*dx = —ady + bdx

where a,b are functions with values in su(2), a* = —a means hermitian

conjugation. Then we have a positive definite scalar product on forms

(a,ﬂ):/Xtra/\*ﬂ. (1.18)

For su(2)-valued differential forms on X the differential 0 is defined by

da = da + [, al. (1.19)
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Its adjoint with respect to the scalar product (1.18) is equal to 0* = — * 0%
For flat connections we have 9% = (9*)? = 0, so the Laplace operator on
su(2)-valued differential forms may be defined in a usual way

A = (04 0%)* = 00" + 0%0.
Actually, we have three operators
Ay =0"0; AL =00"4+00; Ay =00"=xApx
on 0,1 and 2-forms.

Lemma 1.5 If 0 is a reqular flat connection, then the operators Ay and
A, are invertible.

Proof. It is sufficient to consider Ag. Show that Ker Ay = 0. Let u be
a harmonic su(2)-valued function, that is Ju = 0. Passing to the universal
covering X and using parallel frames U(x), we may write

ou = Ud(U ulU)U ' =0,
so that U 'ull = const on X or
u(z) = U(z)cU(2) (1.20)

where ¢ € su(2) is a constant matrix. To define a function on X, it must
be invariant with respect to the action of 7 (X). It means that for any

monodromy 1’
Tl =e.

Reducing ¢ # 0 to the diagonal form diag {ip, —ip}, pu > 0, we see that
all the monodromies must be diagonal matrices which contradicts to the
assumption that 0 is a regular connection, hence ¢ = 0. The spectrum of
Ay is discrete, so A, ! is a bounded operator in L2
O
Thus, for regular flat connections the operator d : A° — A! has a
left inverse Aj'0* = (0°0)~'0* while 0 : A' — A? has a right inverse
O*Ay' = 9%(00*)~'. Moreover, the operators dA;'0* and 0*A;'0 on A!
are orthogonal projectors in L?(X, A' ® su(2)) giving the Hodge decompo-
sition, that is A, '0* projects L? onto the subspace of exact forms, while
9*A, 10 projects L? onto the subspace of coexact forms. The complemen-
tary orthogonal projector

p=1-0"A'0—0A,'0" (1.21)

maps L*(X,A! ® su(2)) onto a finite-dimensional subspace of harmonic
forms.

In other words, we have a family of elliptic operators 04+0* on a manifold
My of regular flat connections. The cokernels of these operators are trivial,
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so their kernels defined by the projector p give us the index bundle of 9+ 0*
over My“. The index of 9+ 0* is independent of a particular flat connection
0 (not necessarily regular), so we obtain taking 0 = d

dimp =ind (04 0") =ind (d+d*) = 2(g — 1) dim su(2) = 6(9 — 1). (1.22)

Lemma 1.6 The tangent bundle T'B"9 of the moduli manifold B™ is
the bundle p of harmonic forms.

Proof. Consider a regular flat connection 0 = d + . We have
dy++*=0

since the curvature x(0) = 0. Taking variations and using that d and §
anticommute, we obtain

—déy+ Sy ANy +y Aoy =—-0(0y) =0

for a variation 0 of a flat connection. In other words, the tangent space
to My at a "point” 0 € My consists of 0-closed 1-forms 07. To obtain
TB™9, we must take the quotient of the space of 0-closed forms by the
infinitesimal action of the gauge group. Taking ¢ =14 a, a € G, we get
from (1.4)

0y = va — ay + da = Oa.

This means that the variation vy corresponding to the infinitesimal action
of the gauge group are precisely a 0-exact 1-form. The cohomology space
Kerd/Im 0 may be identified by the Hodge theorem with the space of 0-
harmonic forms, proving the lemma.
O
In view of this lemma the expression (1.22) is nothing but the dimension
of B" given by Theorem 1.4.

Finally, we introduce the following definition.

Definition 1.7 A connection D (not necessarily flat) is called regular if
the operator DD* on 2-forms is invertible.

The operator
D'D=—xDxD =xDD"x

on 0-forms is automatically invertible for regular connections. We denote
by M7"9 C M the space of regular connections. Lemma 1.5 implies that for
flat connections definitions 1.3 and 1.7 are equivalent, so My“ C M™Y.
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2 The Normal Form Theorem

We will consider su(2)-valued differential forms on X in Holder spaces
C", r >0, r € Z. The Holder spaces (versus Sobolev ones) have a nice
property: for any u; € C"', us € C" we have

urug € C™, rg = min{ry, r}

and
[uruzllry < Clluallr [[usllr, - (2.1)

For this reason the Holder spaces are more appropriate for non-linear prob-
lems. On the contrary, the action of classical pseudo-differential operators
on a compact manifold is more complicated in Holder spaces then in the
Sobolev ones. We will need the following result (see e.g. [10]): a classi-
cal pseudo-differential operator P of order m acts continuously from C” to
C™=™ provided both r,r — m are positive and non-integer, that is

[Pullr—m < Cllull,- (2:2)

Saying that « is a small form we mean the smallness of its Holder norm
||a]| for some fixed positive non-integer r.

The purpose of this section is the following normal form thorem (cf.
[4])-

Theorem 2.1 There exists a continuous one-to-one correspondence
F:(0,§) — D (2.3)

between regular connections D = d+1, I' e C", r > 1, r &€ Z with a
small curvature k(D) € C™™', and pairs (0, &) where 0 = d+, v € C"
is a reqular flat connection and € € C™! is a small two-form. The map
(2.3) is equivariant with respect to the usual action of the gauge group on
connections D and 0 and the adjoint action & — g 1&g on .

The symplectic form (0.2) on M"Y is pulled back by (2.3) to the form

wo = F'w = 1/ tr5*y/\5’y+5/ tr£(9%0) 10" (57). (2.4)
2 J)x b

Before proving we would like to make some comments. Roughly speak-
ing, the theorem gives a representation

M9 = M{* x G*

similar to that in a finite-dimensional case (cf., e.g. [3]). More precisely, this
representation is valid for a small neighbourhood of M in M consisting
of connctions with sufficiently small curvature. On the right-hand side one
should take a sufficiently small neighbourhood of 0 € G* (rather than the
whole G*).
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Further, the space M;®“ is a principal G-bundle over B"*Y (Theorem
1.4) and the expression (9*9) '0*(dv) may be considered as a connection
one-form on the principal bundle. Indeed, if V, is a vector field on M"Y
corresponding to the infinitesimal action of a € G then i(V,)dy = 0a, thus

i(V2)(0°9) 10" (67) = —(0"9) 10" (da) = —a. (2.5)

The first term in (2.4) may be considered as a symplectic form on
the base B™Y (the Marsden-Weinstein reduced form). Indeed, for a flat
connection 0 = d + vy the form ¢+ is 0-closed and its exact component does
not affect the integral while its harmonic component defines a form on B"%Y
according to Lemma 1.6.

The moment map for the symplectic form wy has an extremely simple
form. Indeed, using (2.5), we obtain

iV ) = —5i(V7) / b £(0°9) 10" (67) = 6 / tr £,
X X
so that p(0,€) = &.

Proof of Theorem 2.1. The proof is divided into several lemmas.

Lemma 2.2 Any reqular connection D having sufficiently small curva-
ture may be uniquely represented in the form

D=0+T (2.6)

where 0 is a regular flat connection and I is a 0-coezact 1-form with values
in su(2).

Proof. If we have (2.6), then taking curvatures we get
k(D) = Kk(9) + T + T2

For a flat connection 0 we have k(J) = 0, so the last equation may be
rewritten in the form

ol = k — I'?

where k = (D). Applying to both sides the operator 9*(09*) ! and using
that 0*(00%)~'0 is the projector to coexact forms, we obtain

[ =0*(00") *(k — T'?). (2.7)

The flat connection 0 may by eliminated from (2.7) as 0 = D —I'. On
sections of Hom (E, F) it acts as

d=D+adl'=D-1T,-].
This leads to a non-linear equation for I'

I = (D —adD)*((D — adT)(D — ad [)*) "} (s — T'?). (2.8)
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of the form
['=A(T) (2.9)

with a non-linear operator A given by the right-hand side of (2.8). We
will show that Equation (2.8) has a unique sulution I' € C", r > 1, r € Z
provided the curvature k € C"! has sufficiently small norm |||, ;. To this
end we show that the operator A(I') is a contraction in some ball ||I'|| < ¢
in C".

Lemma 2.3 There exists an € > 0 such that the operator
P'=((D-adl)(D—adl)*)~':C"! — C"t!
is uniformly bounded in the ball |T||, <e, r>1, r ¢&Z.
Proof. Consider

P=(D—-adl)(D—adl")* = DD* — D(adI")* — (adI")D 4 (ad ") (ad I")*
= (DD*)"* {1 — (DD*) " "*(D(adT)* + (adT)D
—(adT)(ad T)*)(DD*)~2} (DD*)'/2. (2.10)

Thus,
P—l — (DD*)_1/2(1 - Q)—I(DD*)—I/Z

where
Q = (DD*) " Y3(D(adT)* 4 (adT)D — (adT')(ad T')*)(DD*) Y2, (2.11)

The operator (DD*)~'/2 acts boundedly from C"! to C" and from C" to
C"*! since it is a classical pseudo-differential operator of order —1 and r > 1
is not integer. It remains to prove that

1-Q:C" = C"

has a uniformly bounded inverse which will follow from the norm estimate
|Q|| < 1/2. Consider for example the first summand in (2.11)

(DD*) Y2D(adT)(DD*) /2.
For a 2-form v € C" we have
U= (DD*) Y2ueCtccr

and
[v]l; < Cillull,.

Next, if ||I'[|, < & then

[(ad T)ol| = [[[T', v][| < Co[[T[J:[Jv]lr < Cselfv]],
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Finally, since (DD*)~"2D has order 0, it acts continuously in C”, so
|(DD*) 'DadTv||, < Cyelul],.

Similar estimates are valid for other summands in (2.11). This leads to the
following norm estimate of the operator ()

QI < Cse,

proving the lemma.
U
The previous lemma shows that the operator A(I") given by the right-
hand side of (2.8) is defined correctly on the sphere ||I'|| < ¢ in C) (for a
fixed k € C"71).

Lemma 2.4 There exists €1 > 0 such that for any k € C™™' with
|&||r—1 < 7 the operator
' — A()

maps the sphere ||I'||, < ey into itself.

Proof. Supposing that ; < €, so that we may use Lemma 2.3, let us
estimate the norm || A(T)]|, for k € C"! with ||x||,_1 < & and T € C" with
IC||» < €1. We have

%[l < Il < CHIITI < Ched

and
|k = T2,y < (1+C)ef.

Next, by Lemma 2.3
1P (s = T [lrr < [[PHI(1+ Cr)et < Cret. (2.12)
Finally, the norm of the operator
(D —adl)*: C"" — C"
is uniformly bounded if ||I'||, < 1, so that
[AMD)[l; < Caef.

Choosing ¢; such that C3e; < 1, we would have ||A(T)||, < €, proving the
lemma.

O
Finally, show that A is a contraction, that is

JA(T)) — A(T)]- < qf|Ty = Tyf,
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with ¢ < 1, on the sphere ||I'|| < &, provided ¢; is small enough. Using the
relation

1
ALy =Ty Al, = §[F1+F2,F1 —FQ] e C"
we have an estimate
07 = T3]l < Csen||ITy — el

The operator (D — adl'y)*P~'(I'y) is uniformly bounded in C", so for the
third summand in (2.10) we have the norm estimate Cgey||I'y — ['3||,. Gath-
ering all the three estimates, we obtain

|A(L1) — A(D2) ||y < (Cae? + Caet + Cse) [y — T,

The factor ¢ = Cye? + Cye? + Csey is less then 1 for £; small enough. This
completes the proof of Lemma 2.2.
U
Conversely, a solution I' of (2.8) defines a connection @ = D —I' which
is necessarily flat. Indeed, in terms of 0 we may rewrite (2.8) in the form
(2.7). Applying 0 to both sides of (2.7), we get

ol = k(D) — T2,

On the other hand, taking the curvatures of both sides of the equation
D =0+ 7T yields
k(D) = k(d) + OT + T2

implying x(9) = 0.
The symplectic form w in new coordinates (2.6) becomes

1 1
w:5/tr57/\(57+/tr5f‘/\57+i/trdf‘/\df‘ (2.13)

where 7 is a connection 1-form for the flat connection 0 (so that 0 = d + )
and [' = 0*b is a coexact form with sufficiently small norm ||T'||,. Note, that
representation (2.6) is equivariant with respect to G -action on connections
D and 0 and adjoint action on I'

g: =g 'Ty.

Our next goal is to find other coordinates (Jp,I'y) and a non-linear
operator

(av F) = f(aO; FO)

equivariant under the G -action transforming w to the form

Wp = %/tré@o VAN 680 + /tr 51—‘0 A 5’)/0 (214)
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This may be done precisely as in the finite-dimensional case using Wein-
stein’s arguments (see e.g. [6]). To this end introduce a family of symplectic
forms

1 t
wt:§/tr67A5'y+/trdFA57+§/tr5F/\(5F, (2.15)

and a time-dependent vector field V; = (V;, V;I') on the space of pairs (9, )
consisting of a flat regular connection 0 and a coexact form [' = 0*b in such
a way that

i(V)wy + /trF A 6T = 0. (2.16)

Note that the form

Y= % / tr ' A O
has the property
0
ot
Having found the vector field, we solve a differential equation

0p = —wy.

y=Vyy, =Vl (2.17)
with the initial condition

(7 Dli=o = (70, T0)-

The solution defines a flow

fe: (70, To) = (7, 1)

such that
fiwe = wo. (2.18)
Indeed,
d Ow ,
it =5 (st 1) = sr0600a ) =0

Here Ly, means the Lie derivative
Ly, = 61(Vi) +i(Vp)6.

Taking ¢t = 1 in (2.18), we obtain the desired transformation reducing the
symplectic form w = w; to wy. The infinite-dimensional specific is essential
only when solving Equations (2.16) and (2.17) in Hélder spaces.

Consider first Equation (2.16). For w; given by (2.15) this equation
takes the form

1
/tr(Vt’y+ Vil) A 67 + /tr (‘/ﬁ+tvﬂ+ §F> AOL=0.  (2.19)
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Here 0 = d + 7 is a regular flat connection and I' = 0*b = — * 0 % b is a
coexact form. Because of the flatness, we have 9(0v) = 9(V;y) = 0.
For a given 1-form a

/tr a/\(SI‘:/tr a N §(0°b)

:/tr *a/\[&y,*b]—/tr a A 0 (6b)
:/tr[*b,*a]/\&y—l—/tr J0%a N db,

so that (2.19) becomes

1
/tr (%7+WF+ [*b,* (W+MF+§F>D 0y

1
+/tr 0" <Vw +tVil + §F> A db = 0. (2.20)

Since db may be any 2-form (with sufficiently small Holder norm in C"*+1)
and since OI' = 0 we conclude from (2.20)

8" (Viy + tV,T) = 0, (2.21)

so that the second term in (2.20) vanishes identically. Now, since dv in the
first term of (2.20) may be any closed form, we conclude that

1
Viv+ VI + [*b, * (Vt’y +tVil + §F>} =0X (2.22)

that is the form on the left-hand side is exact.
We first study the solvability of the system (2.22). Let

P=09(3"9) 9", Q=009 10

be projectors onto exact and coexact 1-forms. Being pseudo-differential
operators of order 0 they act boundedly in any Holder space C", r > 0, r ¢
Z. We will consider flat connections 0 € My for which these projectors
are uniformly bounded in C" with some fixed r > 0, r & Z.

Lemma 2.5 Let ||P||,||Q] < C for P,Q considered as operators in C"
and ||U||, < & with ¢ sufficiently small. Then for any t € [0, 1] the system
(2.21), (2.22) has a unique solution Vi, ViI' satisfying the estimate

Verllr + VTl < Cre®. (2.23)
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Proof. Let us apply @ to both sides of (2.22). Since the form V7 is
closed, we have Q(V;) = 0, the same is true for the form X on the right
-hand side. Now,

RV = Q(0"Vib — [¥Vyry, xb])
= 0"Vib — Q[¥Viry, #b
= Vil + (1 = Q)[*Viy, xb].

Thus, we obtain
1
Vil = (1= Q)[xb,xVi7] — @ [*b, * (VW + VI + EFH : (2.24)

Next we apply 1—P to both sides of (2.22). By (2.21) the form V;y+tV,I'
is closed, so
(1—P)(Viy +tVil') = Viy + tV,I.

On the other hand

(1= P)Viy = (1 = P)(8"Vib — [+Viy, *B])
= 9'Vib — (1 — P)[+Viy, #b] = ViT + P[sVyy, #b].

Thus, using that (1 — P)0X = 0, we obtain
1
Viv+ Vil — (1 — t)P[xb, xV;y] + (1 — P) {*b, * <Vﬁ +tViI' + §F>] =0,

or substituting (2.24)

Viy = (1 =P = (1 = Q))[xb, ¥Vi7]
1
- <1 - P-Q) [*b, w(Viy +tVil + §F>} . (2.25)
The system (2.24), (2.25) with respect to unknowns A = (V;, V;I') has

a standard form
A=KA+ B (2.26)

where K is a linear operator in C" with a small norm since
18]l = [1(80") 'L ||» < Co|IT[l; < Cae.

The constant term B is the projection of the vector [«b, '] onto coexact
forms (in (2.24)) and onto harmonic forms (in (2.25)). Thus,

16, Tl < Cse?,

and the same estimate is valid for the solution. From (2.25) it follows
0(Vyy) = 0 since the right-hand side is, clearly, closed. So, the system
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(2.24), (2.25) is equivalent to the original system (2.21), (2.22) with an
additional condition 0(V;y) = 0.
O
We now turn to the system (2.17) of ordinary differential equations in
Holder spaces and prove its unique solvability. The treatment is similar to
that in finite-dimensional vector spaces, so we omit standard details. We
rewrite the system in an integral form

o0 =w+ [ Alr y(r)dr (2.27)

where y(t) = (y(¢),'(t)) is considered as a function on the interval ¢ € [0, 1]
with values in C" and A = (V7, VT) is a non-linear operator

A=(1-K)'B

satisfying (2.26). Here K is a linear operator in C” and B € C", they both
depend on y(t). If [|y(t) — yo|| < € with £ small enough, then from the
explicit expressions for K and B from (2.24), (2.25) we have estimates

IK]l < Cre,  ||B|r < Coe®.

Moreover, the Frechét differential of A(t,y) with respect to y admits an
estimate
ldyA(t, y)| < Cse.

In a standard way these estimates imply that the right-hand side of (2.27)
is a contraction on the space of continuous functions y(t), ¢ € [0,1] with
values in C" with the norm max; ||y(t)||,, provided ¢ is small enough, so the
unique solvability follows.

We are able now to complete the proof of Theorem 2.1. To find a desired
representation (0, &) of the regular connection D we first represent it in the
form D = 0+1T, I' = 0*b by Lemma 2.2 Then using Lemma 2.5 and solving
ordinary differential equations, we find another pair (g, I'g) with T'g = Jbg
and a map

(0o, [p) — (0,1)

which pulls back the form

1 1
w:—/tr&y/\&y—i—/tr(SF/\(S’y—i-—/tréF/\(SF
2 Jx X 2 Jx

to
1
woz—/tr 570/\5’yg+5/tr [od70.
2 )x X

All these maps are equivariant by construction. The form wy may be reduced
to (2.4) if we put [y = 95(0p0;) '€ (in the final expression we drop the
subscripts 0).

O



23

3 Quantization

In this section which is divided into three subsections we perform a quanti-
zation program in the spirit of [6]. In general, the canonical geometrical con-
struction of deformation quantization is meaningless in infinite dimensions,
the Abelian connection needed for quantization does not exist. However,
for the space of connections M"® the quantization program of [6] is possible
because the non-trivial part of the program deals with a finite-dimensional
manifold B".
We use the representation

M9 = My x G*

given by the normal form theorem and the symplectic form (2.4). Since M;*?
is a fibration over B™® with a fibre GG, the space M"Y becomes a fibration
over B"® with a fibre F' = G x G*. At the first step we construct an algebra
Ap of quantum observables on the fibre F. We simply use the explicit
formulas from [5] checking that they have sense in infinite-dimensional case
after restriction to a suitable class of functionals. At the second step we
consider canonical quantization on a finite-dimensional manifold B"®9 with
coefficients in the bundle Ap. The result of these two steps is by definition
the algebra of quantum observables on M"Y,

So, let us consider a coordinate chart U; C B with local coordinates
2t ..., 2%", and let 0; be a family of flat connections on X depending on
parameters z!,...,2%", so that 0; defines a section of the principal bundle
Mg — B9 over U;. Any flat connection 0 over U; may be represented
in the form = g7' 0 9; o g where g = g(z) € G. A functional A(D) for
D € M"™9 may be written as

A(D) = A(9,§) = Ag " 000 9,€) = a;(2,9, ). (3.1)

Fixing z € U; in (3.1), we obtain a functional on F' = G' x G*, the fibre of a
fibration M"Y — B"9. Along with the two-form & € G* we will consider a
two-form n = g€g~! € G*.

3.1 Quantization of the Fibre

Taking fixed functions a,b € G define linear functionals *

(& a) = /Xtrﬁa (3.2)

(n,b) = (g€g~",b) = (€, 97 "bg). (3.3)

'Tn the finite-dimensional case the functionals (3.3) are finite linear combinations of
the functionals (3.2) and vice versa. Thus, it is sufficient to use either (3.2) or (3.3). In
infinite dimensions we need both of them.




24

The functionals (3.2) are Hamiltonian functionals for the right action of the
group G, that is

((6.0), F(9. 0} = 5 F 96,976,y (34

In particular,
{(€,a), (€, )} = (&, [a, b]) (3-5)
{(&,a), (n, )} = 0. (3.6)

Next,

{(n.b), f(9)} = {(€. 9 'bg). f(9)}

d . d
== (g )| = = f(e"9)

= , (3.7)

t=0

so that (n, b) is the Hamiltonian functional for the infinitesimal left action
of the group G. Using (3.6) and (3.7), we obtain

{<mb>,f(g,€)}— = F(€"9,9)], (3.8)

in particular,

d 1
{<n7 b>7 <777 C>} = % <€7 g 16 tbcetbg> ‘t:O
= (&9 e, blg) = —(n, [b, ])- (3.9)
Now, as a first step to quantization we consider an associative algebra gener-

ated by (¢, a), (n,b) with commutation relation similar to (3.5), (3.6), (3.9),
namely

[(§; a), (&, )] = —ih(&, |a, b]) (3.10)
[(n, @), (n,0)] = ih{n, [a, b]) (3.11)
[(§; a), (n,0)] = 0. (3.12)

In other words, the linear functionals (£, a), (n,b) form an infinite-dimensio-
nal Lie algebra defined by commutators (3.10)—(3.12), and we take its uni-
versal enveloping algebra . The product o in the algebra ¢/ may be trans-
ported to a *-product on polynomials (tensors) in (&, a), (1, b) using sym-
metric ordering. To this end, for any monomial

= (& ar) (& am) (0, amia) - (s Gmyn)

define an element @(A) € U by

p(A) = (m +n) , Z £, a;,)0...0( a;,) o (n, aim+1> o...o(n, aim+n>
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where the sum runs over all permutations(iy,. .., &m, imit, - - -, bmin). Lhe
map ¢ gives a linear isomorphism between polynomials and the elements of
U (the Poincare-Birkhoff-Witt theorem), and we set

Ax B = ¢~ (p(A4) 0 p(B)). (3.13)

This construction was used in [5] to define a *-product on T*G in a finite-
dimensional case. We need to generalize it for a larger class of functionals.

Let P(y1,Y2,---,Yn) be an analytic function, that is a power series
converging in a polydisc |y1| < R,...,|yn] < R. Then for a,...,a,,€ G
the functional

P((n,a1), -, (n, an)) (3.14)

is defined for sufficiently small ) such that |(n, a;)| < R. In particular, these
conditions are fulfilled if the L?-norm of n = g€¢~! is small enough. Since

(n,m) = (g€~ " 9€g™") = (£,€)

this is equivalent to the smallness of the L?-norm of £.

Lemma 3.1 Let
P = P(<77: ai>7 ) <777 an>)

Q = Q((W; b1>7 ) <n7 bm>)
be two functionals of the type (3.14), Then the formula

1 o\ [0\’ 1
_N" L pape (2 (2 2
P ;a!mp © (at> (&) exp{ 7 U
CH(ih(tiar + ... +tpay), th(miby + ... + Tbp) ) H,o . (3.15)

gives an extension of the x -product (3.13).
Here CH means the non-linear terms in the Campbell-Hausdorff for-
mula

CH(a,b) = o, b+ 1o b0+ 1olan o8] + ..

Proof. For the linear form exp(n, ta) = (n,t1a; + ...+ tya,) its k-th
power is equal to its k-th power in the algebra U, that is

(n,ta)* = (n,ta) o (n,ta)o...o0 (n,taz.

-

~”

k

It implies that exp(n,ta) coincides with the exponential function with re-
spect to o-product in the algebra G. Given another linear functional

(n,7b) = (n, by + ..., +Timbm),
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we obtain

exp(n, ta) o exp(n, 7b)
= exp{(n,ta) + (n,7b) + CH((n, ta)(n,7b))}

By the Campbell-Hausdorff formula in the algebra ¢/. But

[(n,ta), (n, Tb>] = ih(n, [ta, 7D])
- —%@7, lihta, ihTh]),

thus

(

—~

, (1, 70))

1, ta)
n, CH (ihta,ih7b)).

{

CH

SR

Finally,

exp(n, ta) o exp(n, Tb)

= exp(n, ta + Tb) exp {—3

h(n, CH (ihta, ith))} : (3.16)

Let first P, ) be polynomials. Applying to both sides of (3.16) a differential
operator

0 0 0 0 0 0
P(5)e(s) =P a)e(om o)

and putting ¢ = 7 = 0, we obtain on the left-hand side P({n,a)) * Q({n, b))
since

0
(n, a1) o exp(n, tay = pTs exp(n, ta).

On the right-hand side we treat the exponential functions with respect to

the usual commutative product. Applying P (%) Q (i), we use the Leibniz

rule o
0 0
P(2)o(2) s
) B 11/8\*/8)\
_ @ (9o (2 L (9 [9
_azﬂp (m)Q (&) fla!ﬂ! <8t> <aT> 2
and

P@ (%) Q° ((%) exp (n,ta+T7b)|,_._,
= P ((n,a))Q" ((n,b)).
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Thus, we have proved (3.15) for polynomials. But the right-hand side of
(3.15) is meaningful for analytical functions P and @ (as a formal expan-
sion in powers of h). The properties of the x-product follow for analytical

functions since they are valid for polynomials.
O

Remark 3.2 A similar formula may be obtained for functionals depend-
ing on (&, a) or for mixed functionals depending on (£, a) and (n,b). The
only difference consists in the Campbell-Hausdort formula for different Lie
algebras corresponding to the commutation relations (3.10)—(3.12). For ex-
ample,

P((€, a)) * Q((n,0)) = P({§, @) Q((n, b))
because of (3.12).

Our next step is to include in the algebra of observables functionals
depending on g € G. We wish the following relations to be satisfied:

A(g) * B(g) = A(g)B(g) (3.17)

Alg) * PUE ), (1,5)) = Alg) P((E, a), (n, 1)) (3.18)

(6. ), Alg)] = —ih{(€,0), Al9)} = ~ih A (ge)],,  (319)
(1.0, A@)] = ~ih{{m.a), Al0)} = ~ih A (%), (320)

Using these equations and reasoning similarly to lemma 3.1, we may extend
the x-product

P((¢, a), (n,b)) = Alg)

for functionals P which are analytical functions in

<€a1>7 et <57 an>7 <777 b1> vt <777bm>'

As for A(g), it may be a quite general functional. The only condition is

that the function

A(eTl,b1+...+Tmbm t1a1+...+tnan)

ge
be smooth in 7,¢ in a neighborhood of t = 7 = 0.
Lemma 3.3 Let
P(<€7 a’>) = P(<€7 CL1>, sy <§7 a’n>)

be an analytical function in the variables (€, a) = ((§,a1),...,(&,a,)). Then
the relations (3.18), (3.19) imply the following formula

P({€.a)) x A(g)
=§:§ﬁ“%@ﬂ»<%>-Awéﬁmwﬂto (3:21)

compatible with the natural * -product for polynomials P.
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Proof. Similarly to lemma 3.1 we use again the crucial observation
concerning the exponential function exp(€, a), namely, it is defined by the
same power series for both products: the usual commutative product and
the o-product in the algebra /. This implies

exp(£, ta) * Alg) = A(ge ™) exp (£, ta),

Applying to both sides a differential operator P (%) where P is a poly-
nomial, we come to (3.21). Now, the right-hand side of this formula is

meaningful for analytical functions P also. This proves the lemma.
OJ

Remark 3.4 Similarly,
P((n,0)) = Alg)

S (3) ac oo o @)

and the obvious generalization may be written for mixed analytic functions
P((¢, a), (n,b)).

We summarize the considerations of this subsection as a theorem.

Theorem 3.5 There exists a *-product on functionals ®(g,&) of the
type
®(g,¢) = A(g)P((§, ), (9€97",0)) (3.23)

where P is an analytical function.

Proof. Consider two functionals
®1(g,8) = Ai(g)Pr := Ai(g) * P
Qy(g,&) = Az(g) P := As(g) * Pa.

Then we set
(1)1*(1)2:A1(g)*P1*A2(g)*P2

and use first lemma 3.3 to compute

P+ As(g) =Y Aalg, h) P :
=" Aalg.h) = P
Next, we use lemma 3.1 to compute Pl(o‘) x P,. The result is of the form
By Dy =Y Ai(g)Aalg, h)(PLV 5 Py)

which is again a formal expansion in powers of h whose coefficients are
functionals of the type (3.23).
O
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3.2 Quantization of the Moduli Space

Consider a fibering 7 : My* — B"9. Let O; C B™ be a coordinate chart
with local coordinates z = (2',...,2%"). Let 9; = 0;(z) be a family of flat
connections depending on a parameter z € O; giving a section of the fibering
over O;, That is 70;(z) = z.

Any functional ®(D) defined on regular connections D with sufficiently
small curvature may be written by the normal form theorem as

(D) = 2(9,¢)

where 0 is a regular flat connection and £ € G* is a two-form on X with
values in su(2). If 0 lies over O, that is 70 = z € O;, the connection 0 has
a representation @ = g ! o 9;(z) o g, so, our functional becomes

P(0,8) = ®(g ' 00;(2) 09, :=ai(z,9,¢). (3.24)

For another local section 0;(#) in a local chart O; € B" the same functional
®(0, &) gives another representation

aj(z,9,€) = d(g7to 0j(z) 0 g,&).

In O; N O; where 0;(2) = g;j(2) o 0;(2) o g;i(2) these local representations
satisfy the transition rule

ai(2,9,§) = aj(zagji(z)gaf)- (3.25)

Thus, any functional ®(0, ) may be treated as a section of a bundle over
B9 whose fibres consist of functionals a(g,£) on F' = G x G*. Taking
a(g, &) from the class considered in the preceding subsection:

a(g, &) = A(g)P((€,a), (€, 9 'bg)), (3.26)

we obtain a bundle over B denoted by K. Its sections are given by
local representations a;(z, g, &) of the form (3.26) and transition rules (3.25)
(clearly, the form (3.26) is invariant under transition rules). The fibres K,
may be considered as algebras with respect to the % -product of the preceding
subsection. This x-product is also invariant under transition rules (3.25),
thus, the space of sections C*°(B"%Y, K') becomes an algebra with respect to
the fibrewise * -product.

The bundle K may be equipped with a connection defined by the fol-
lowing local expression

0

h[(n, (0;0;) 107 (60y)), ai]. (3.27)

vai(zagag) - 5ai(zag7€) +

The geometrical meaning of (3.27) may be clarified using definition (3.24)
of the local representation a;(z, g, &) of the functional ®(9, ). Denoting by
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v a vector field on the base B"9 consider

Vaas = vay + i0) (0, (07071 3/(60)),

i

= va; — h[<777 (070,)7'0 — i* (v9))), ;]
= ia.(ZJrvt 9, &) + ia,(z e—(@:@»*la:(vai)tg £)
dt ) Y — dt 1\ <) ) —

We have made use of (3.20). Now, by (3.24) we may rewrite the last ex-
pression in the form

%<I>(g‘le(8i*8i)‘lf’?(”f’”t 0 0;(2 + vt) 0 =PI €

t=0
L (g (0, + 001 — 0,(0;0)70; (10)1)g. €

t=0

This is nothing but the derivation of the functional ®(0, &) along the horizon-
tal lifting vy of the vector field v on B9 to M;“Y defined as the harmonic
component of

U= gil(vai)ga

that is
Vhor = U — p0 =0 — 0(8"0) 0. (3.28)

Note that vy, does not depend on the choice of the lifting v because the
ambiguety is of the form de whose harmonic component is equal to 0.

We thus are at a starting point for ”deformation quantization with
twisted coefficients” considered in the book [6]. Indeed, we have a coefficient
bundle K over a finite-dimensional symplectic manifold B"* whose fibres K,
are algebras with respect to the fibrewise x-product. There is a connection
V on K preserving the fibrewise x -product:

i

— Sa;
Va a+h

[%7 ai]
with K -valued local connection one-forms
vi = (n, (0;9;) "5 (60;)) (3.29)

The only difference is that the fibres K, are x-product algebras on an
infinite-dimensional manifold F = G x G*. This, however, does not matter
and the quantization procedure of [6, Theorem 6.5.1] may be carried out
(it is important that the base is finite-dimensional). We expose here this
construction for the sake of completeness and to convince the reader that
infinite-dimensionality of fibres is really irrelevant.

We start with the Weyl algebras bundle W = W(B™9, K) over B™Y
with coefficients in K, or, more generally, with differential forms on B"®Y
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with values in WW. The sections of the bundle W ® A are of the form

o0
a= Z hkakil_,_ipjl,_,jq(z)uil R TC P NN VL (3.30)
k,p=0
Here z = (2',...,2*) € B, u = (u',...,u*) € T,B", h is a formal

parameter. We prescribe degrees: degu’ = 1, degh = 2 and order the
terms of the formal series (3.30) by their total degree p+2k. The coefficients
Qkiy..ipji1...jq (#) aTe tensors on B symmetric in 4, . .., 7, and antisymmetric
in ji,...,J, with values in the algebra Ap (x-product algebra on the fibre
F = G x G* constructed in the subsection 3.1). We will also use a shorter
notation

a=a(z,u,0z,h) = Z W g, 0. 5(2)u*62"", (3.31)

k,|a|=0

where o = (v, ..., Q9,), B =(01,..., ) are multiindices with §; =0, 1.
A product on W ® A denoted by o is defined as

aob =" hayas(2)biqye(2) (W 0 u?)62" A5,

Here a_(2)b._(z) means a x-product on a fibre K, = Ap and

ih ;. 0 0
u®ou” = exp (——w” ) uu,_, -

2 Ou' Ovl
Let 0° be a symplectic connection on the manifold B™ (the connection
coefficients I';j; in the Darboux local coordinates are completely symmetric).
Along with the connection V on the coefficient bundle K the connection 0°
defines a connection dy on the bundle W(B"™, K) = W(B") @ K. The
local expression for Oy is

Owa = Va+ % [iFijkuZujdxk, a]

11 o
=da+ % [if‘ijkulu]dmk -, a]

where 7 is a local one-form (3.29) and § means a differential with respect
to z.

Lemma 3.6 For any section a € C® (B9, W)

8% = %[R + (n, k), ] (3.32)
where .
R = ZRijkluiujdajk A dat, (3.33)

Rijki being the curvature tensor of the symplectic connection 0°, and

where p; means a projection on the harmonic one-forms with respect to 0;.
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Proof. Since I' = 1/20,u'v/dz* and v = (n, (0;0;) 197 (00;)) com-

mute, we have
v 1 i

Opya=— |60 + =" + 0y + 7, al .
wa n + 5 + oy + h’y , @
The terms o' + ¢/hI'? give the curvature form R in (3.32).
Denoting (9;9;) 7107 (60;) by A, we obtain using (3.11)

Ly, (]

i
) —~? = Py
v+ (1,6X) 57

1
Next, suppressing the subscript ¢« and using the relation 0* = — % 0%,
we write
SA = —(070)™" * adyy * (60)
+(0%0) ! x adsy x 0(0*0) *0*(60)
+(0%0) 0% ads5(0*0) *0*(60)
= —(070)"" %[00, xp(00)]
+(9%0) to*[60, (0*0) 10" (09)).

Further,
[\, A] = (070) 710" [0, A]
(0*0) to*[0(9*0) t0*(60), (0*0) *0*(§0)].

| Dol =

Thus,
5A — %[A, A = —(8°0)~ + [60, #p(60)]

+(0*0) *0*[p(60), (0*0) 19*(60)].

The second summand may be rewritten as
—(8°9) " * [p(50), (9°0) 0" (50)]
= —(0°0)"" * [xp(00), 0(0*0) 10" (60)]

since the form xp(00) is a harmonic one. Finally,

1
OA =N A = (070)7" + [+p(00), p(90)],
proving the lemma
O
As described in [6], we need to construct an Abelian connection Dy on

the bundle W (B", K). We look for it in the form

1
Dy, = Owa + E[s, al (3.35)
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where s is a globally defined one-form on B"® with values in K.
Applying Dy, twice and using Lemma 3.6, we obtain

Diya = %[OWS + %82 + R+ (n, k), al.

The property D%, = 0 (Abelian property) will be satisfied if we set

Ow s + %82 + R+ (n,k) = —w (3.36)

where 1
w = iwijézi A6
is the symplectic form on B"®. We extract the leading term of s (of degree

1) writing -
s = wiu'0L(n)d2" +r (3.37)

with degr > 2. Substituting in (3.36), we have

wiB ()0 (7)02% A 82 = w2k A 62
+(n, krt) 62" A 62 (3.38)

where kg, are the entries of curvature form (3.34)
1
k= —Kkp0z" A 62

Introducing the matrices Q with the entries w;;, ©(n) with the entries 67 (1)
and K with the entries Ky, rewrite (3.38) in the form

O'(n)QO(n) = Q + (1, K).
This equation has a unique solution
O(n) = (1+ Q7 (n, K))"? (3.39)

satisfying the relation
0'Q =00, (3.40)

provided the entries (1, k;;) are small enough.
Now, substitute (3.37) into (3.36) and obtain the following equation for
r 9 .
i j ro_ ()
0;(n)dz" A i = Ar + 77 + B (3.41)
where A is a linear operator not raising degrees and degr > 2. The explicit
expressions for A and B are quite cumbersome:
or 0

Ar = Oyr + 05(n)62" A B 0% ()62’ o 5

+%Wik[0j(77)5zja r]o u
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B=-w—-R~-(nk)— %(Wijei(n)(szk) o (wy;07,(n)8z"),

but they are irrelevant for the sequel.
Let us denote the operator on the left-hand side of (3.41) by 6,

Or = 0(n)62" A

J

and introduce an operator * by

0 r = ui (%) T.

Then the following theorem holds (cf. [6, Theorem 6.5.1]).

Theorem 3.7 Equation (3.41) has a unique solution, such that
0*r =0 (3.42)

Proof. First we would like to invert the operator #. We have 6? =
(6*)*> = 0, so it is natural to consider the Laplacian A = 06* + 6*0. On
tensors

Upg = Qi oipjir.da (mu' .. u820 AL A 520 (3.43)

Aay, has the same form (3.43) with coefficients

9;1 (U)ai...ipjl...jq(n) +..F gfp (W)ail...ijl...jq(n)

+05, (M) aiy iy (M) + - + 05, Qs -ipj...i(1) (3.44)
If the matrix ©(n) is sufficiently close to identity, so that ||#(n) — 1| < 1,
then (3.44) implies

A
=~ <1

A -1
Al -1 (4 pa 1
st (1 ()

exsists for p+ ¢ > 0. We define an operator §~! by

so that

0 apg = A, 0%, p+q>0
and
9_10,00 =0.

Now, applying 0! to both sides of (3.41) and using that 6*r = 0, we
obtain an equation

r=01B+ Ar + %7‘2)

which can be solved by iterations.
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Having constructed the Abelian connection on the bundle W(B"/ K),
we define the corresponding quantization () as a linear map from sections
of K to flat sections of W (B9, K). Thus, @ = QQa means that

Dwya=0; al,_,=a. (3.45)

Theorem 3.8 For anya € C®(K) there erists a unique sectiona € C™
satisfying (3.45).

Proof. The condition Dy/a = 0 is equivalent to
Yo = 0a + Aa + %[rﬁ]
where # and A are the same as before. Applying 67!, we get
G=a+0" <8E+AE+ %[r,ﬁ]) :

so the iterations give a unique solution.

3.3 Quantum Reduction

In this subsection we describe once more the algebras of classical and quan-
tum observables and consider the reduction procedure for both algebras.

The Poisson-Lie algebra of classical observables consists of functionals
®(D) on regular connections D with sufficiently small curvature (in a C”
norm with » > 0, z ¢ Z). The functionals ®(D) are supposed to be
smooth in the sense that their variations admit a representation by varia-
tional derivatives:

d 0P

where 6@/ D is a smooth su(r) -valued one-form on X called the variational
derivative of ®. The action of the gauge group G is defined by

g:®(D)— ®(gtoDoyg). (3.46)
The Poisson bracket is
o, 00,
b, D) = tr — A —
(@@} = [ r S5 ASE

The action (3.46) is Hamiltonian with the moment map

u(e) = (5(D), ) = /X tr w(D)e
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where (D) is the curvature of D and s € G is an su(2) -valued function on
X.

The normal form theorem (Theorem 2.1) gives a representation of D
by a pair 0,& where 0 is a regular flat connection and ¢ is a su(2)-valid
2-form with the action of GG

9:(0,8) = (g7 0doyg, g7'¢g)
whose moment map is
p(e) = (&, e).

The functionals ®(D) become functionals on pairs ®(0,&). Further, over a
coordinate neighborhood U; of the moduli space B with local coordinates

z = (2',...,2*) any flat connection may be written as = g~ ' 0 9;(z) o g

where 0;(z) is a section of a principal bundle Mj® — B™9 over U;. So, our
functional ®(0, ) may be written in the form

®(9,€) = a(z,9,¢) (3.47)
with the action of v € G
v:a(z,g,€)— a(z,gv,v ). (3.48)

The classical reduction in terms of the algebra A of classical observables
consists of two steps. First we define a subalgebra Ay C A of G -invariant
functionals using local representations (3.47), (3.48). We introduce a new
2-form 1 = g€g~! which is clearly G-invariant and rewrite the functional
(3.47) in the form

a(z,9,€) = a(z,9,97'1g) = b(2,9,7) (3.49)

with the action of G

v:b(z,9,m) = bz, gv,n). (3.50)

From (3.50) it follows that G -invariant functionals are those which are in-
dependent of ¢ in any local representation (3.49). Thus, the subalgebra A,
consists of functionals with the local representation of the form

Ay = {b(z,m) = b2, 9697 ")} (3.51)

The next step is to restrict the functionals (3.51) to the zero level set of
the moment map. So, we put & = 0 in (3.51) which is equivalent to n = 0.
We thus obtain a homomorphism 7 : Ay — R

7 :b(z,n) — b(z,0) (3.52)

to the reduced Poisson-Lie algebra R.
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The algebra A of quantum obsevables has also a local description given
by Theorem 3.8. So, any @ € A is a section of the Weyl algebras bundle
W (B9, K) with coefficients in the bundle K, the section @ is flat with
respect to the Abelian connection Dy, constructed in Theorem 3.7. Recall
that a section a € C*®°(W(B"9,K)) over a local chart U € B"™ has the
form

a(z,u,g,f,h): Z hkaka(zagag)ua

k,|a|=0

where z € U, u € T,B" and ay, are functionals of the form

Ao = A(Zag)P(gan)

where n = g€¢g~! and P is an analytical function in a finite set of variables

<§7 a’1>7 s <§7 a’m>; <n7 am+1>7 s <777 a’m+n>
with ay,...,amn € G. For a section a(z, g,&, h) € C°(K) we denote by

a=7a(z,u,g9,&h):=Qa¢€ A
a flat section of W(B", K) such that
a|'u,:0 = a.

The gauge group G acts on the coefficient bundle K and W (B"Y, K).
For a € C*(W (B9, K)) this action reads:

v:a(z,u,g,&h) — alz,u, gv, v v, h). (3.53)

Similar to the classical case we denote by 7 the restriction of sections
to £ =n=20. So,

Ta = ale_,
for a € C*(K) or a € C*(W (B, K)).

Now, we introduce two subbundles Ky C K and K; C K, and the
corresponding subbundles W(B"™9, Ky) C W(B"9, K) and W (B™, K ) C
W(B™, Ky). The first subbundle K consists of G -invariants of K. The
same considerations as in the classical case show that the sections of K| are
functionals depending on 7 only:

C>(Ko) ={a(z,9,&,h) = b(z,n, h)}

and
C*(W(B"™, Ko)) = {a(z,u,9,&, h) = b(z,u,n,h)}.

The second subbundle K; C K is the kernel of the map m, thus
C*(K,;) = {b(z,n,h) : b(2,0,h) =0}

and
C*(W(B™,Ky;)) = {b(z,u,n,h) : b(z,u,0,h) =0}.
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Lemma 3.9 The subbundles K; € Ky and W(B"™9, K;) C W(B", K,)
are two-sided ideals.

Proof. It is sufficient to consider two sections of Ky of the form

a(z,n) = A(2)P(n), b(z,n) = B(2)Q(n).

Then
axb=A(2)B(z)(P(n) * Q(n))

where P x @) is given by (3.15). The explicit form of (3.15) implies that the
higher-order terms vanish at n =0 |, so

P(n) * Q(n)l,=g = P(MQn)],= - (3.54)

Thus, if ma or b is equal to zero, then by (3.54) 7(a * b) = 0.

O
In other words, the map 7 defines bundle homomorphisms
Ky — C(h) = K[]/KJ
w: W(B™, Ky) — W(B"™) (3.55)

where C(h) means a trivial bundle over B whose fibres are formal power
series in h with constant coefficients, W (B"*Y) means the Weyl algebras bun-
dle over B" with scalar coefficients. Consider now the Abelian connection

Dwa = dsa + %[’y + wi 0 (Mu'd2* + 1, a) (3.56)

on W(B", K). From the explicit construction it follows that r = r(n) de-
pends on z and 7 only, so Dy is G-invariant. It implies that the quantization
map () is also G-invariant, that is

v(Qa) = Q(va)

where v € G and the action of v is given by (3.53). As an immediate
consequence we have the following lemma.

Lemma 3.10 The subalgebra 121\0 cA of G-invariant flat sections coin-
cides with the image of C*°(Ky) under the quantization map:

Ay = Q(C™(Ky)).

The proof is straightforward.
Finally, we study the relations between the Abelian connection (3.56)
and the map (3.55). We write Dy in the form:

Dya = dwa + %[a, a] = 0sa + %[7+a, al
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where .
o = w0 (n)u'oz* +r.
The form o satisfies the normalization condition
9*0' = wijﬁiuiuj + 0* =0

since 6*r = 0 by construction and the matrix wijﬂ‘,i is skew-symmetric. De-
note by 7(Dy/) a connection on the bundle W (B"*) with scalar coefficients
obtained by substitution n = 0 into the connection one-form v 4 o. Since
7y = 0 we obtain

(rDw)a = dsa + %[71’0, al.

Lemma 3.11 The connection w(Dy) is a standard Abelian connection

on the bundle W (B"9).

Proof. The form r is uniquely defined by two conditions:
i
h
0*c =0

(see Theorem 3.2). Since 7 is a homomorphism and 7y = 0 we get

Os(v+0) + (v +0)° = —w,

d(mo) + %(WU)2 = —w,

0*(no) = 0.
But o
o = wiu'6’ +7r
since 05(0) = &;. It means that 7 satisfies the usual conditions for the
standard Abelian connection on W (B"%) which define 7r uniquely.
O

Now, we may complete the reduction procedure in the quantum case.

Define the reduced quantum algebra as a quotient
R=A,/T=nA,

where .J is the kernel of the map 7. Then we have the following reduction
theorem.

Theorem 3.12 The algebra R coincides with the algebra of flat sections
of W(B"9) with respect to the Abelian connection mDyy.

Proof. Leta € 21\0. Applying 7 to both sides of the equation Dya = 0
and using that 7 is a homomorphism, we get

7(Dwa) = (rDw)ma = 0.

Thus, 7a € C*°(W(B")) is a flat section with respect to m(Dy). O
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