THE HEAT CONTENT ASYMPTOTICS
FOR VARIABLE GEOMETRIES

P. GILKEY

ABSTRACT. We study the heat content asymptotics on a compact manifold with
boundary defined by a time dependent family of operators of Laplace type.

Let M be a compact Riemannian manifold with smooth boundary M. We
denote the Riemannian measures on M and on M by dx and dy. Let Dg be an
operator of Laplace type on the space of smooth sections C*°(V') to a vector bundle
over M. There exists a unique connection V on V' and a unique endomorphism F

of V so that
Dy = —{Trace V* + E}.

(If Dy = Ag, then the connection V is flat and E = 0). We assume given a
decomposition of the boundary M as the disjoint union of two closed sets C'p
and C'n. We consider the boundary operator

Bu = u|cp, & (Um + Su)|oy-

Here u.y, is the inward unit normal covariant derivative of u and S is an auxiliary
endomorphism of V. This formalism permits us to treat both Robin and Dirich-
let boundary conditions. Let ¢ give the initial temperature distribution of the
manifold and let u(x;t) = ug p,(x;t) be the temperature distribution for ¢t > 0;

(0¢ + Do)u =0, Bu =0, and u|=¢ = ¢.

Let p be a smooth section to the dual bundle V* giving the specific heat of the
manifold. Then the total energy content of the manifold is given by:

B(#, Do, p)(t) == /M<U(:1:;t),,o(x)>d:1;.

Version W14v3i.tex printed 13 November 1998

1991 Mathematics Subject Classification. 58G25.

Key words and phrases. heat content asymptotics, time dependent metric.

Research of P. Gilkey partially supported by the ESI (Austria), and by the MPI (Germany)

Typeset by ApS-TEX



2 P. GILKEY

In this expression, (-,-) denotes the natural pairing between V and V*. Ast | 0
there is an asymptotic series of the form

ﬁ(qvaOvp)(t) ~ Z tn/zﬁn(qvaOvp)

n>0

There exist invariants which are locally computable so that

Bu(6. Do p) = /M Y (6, Do, p)dz + /a 26, Do)y

These are the heat content asymptotics which describe the short time heat flow
defined by the problem.

Let D, V, and B be the adjoint operators on the dual bundle V*. Let indices
i and j range from 1 to m and index a local orthonormal frame field {¢;} for the
tangent bundle of M; on the boundary, we normalize the frame so that e,, is the
inward unit normal and let indices a, b, and ¢ range from 1 to m — 1 and index the
induced orthonormal frame for the tangent bundle of the boundary. We adopt the
Einstein convention and sum over repeated indices. Let *;” and ‘:” denote multiple
covariant differentiation with respect to the Levi-Civita connections of M and of
OM. Let R be the Riemann curvature tensor, let R be the scalar curvature, and
let L be the second fundamental form defined by the metric go. Let € be the
curvature of the connection V. The following result follows from computations
performed in [1, 3, 9]; we refer to [6, 7, 12, 13, 14, 15] for related work.

Theorem 1. With the notation established above, we have:
(1) Bo(¢, Do, p) = [ 1 {¢:p)
(2) Bi(9, Do, -2~ l/zfc (&, p)dy.
(3) B2(¢, Do, — [ (Do, p)da -I-fCD Laa®,p) — (&, pym) tdy
+[ .y (BS, p)dy
(4) 53(¢7D0, —277_1/2ch Qb mm7p> §<¢7P;mm> - <¢:a7,0:a>
+(Eé,p) = 5 Laalbim: p) = 3 Laal®d, pim) + ((f5 LaaLos = §LavLab
+§ Ramam) b, p)ydy +3 22712 [ (Bo. Bp)dy.
(5) Ba(¢, Do, p) = lfM D¢, Dp) ‘|‘ch D¢)m,p>+ 7 (o, (DP) )
~1(LaaD,p) = $(Laad, Dp) + (5 Bim — f5LarLasLec + g LarLacLye
— g RambmLab + 75 RasctLac + 35 Rim + 15 Lab ab)®: P) — $Lav(P:as pv)
—3{Qam®:a,P) + £{(Qam®, poa) Yy + [ o {—=3(Bb, Dp)
5D, Bf2) + (35 + §Laa)Bé, Bp)dy.

p) =
p) =
(B¢
p) =
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Remark 2. If D = —(¢""0,0, + A*0, + B) is an operator of Laplace type, then
(see [10]) the connection 1 form w of V and the endomorphism E are given by
ws = %g,,(;(A” +g*°T,5"), and
E=0b—¢""(0ywy +wyw, —wsI'y,7).

Although the assumption that the underlying geometry is autonomous is natural
in many situations, there are some physical situations in which the geometry is
time dependent; the Universe evolves with time for example. If C'y is empty, then
one can consider a time dependent boundary where the metric is autonomous.
Since the underlying topology is not changed, this problem is equivalent to one
where the boundary is fixed but the metric is varied.

We consider a time dependent family of operators of Laplace type:

Dt —DO‘I’Z {grz] vv ‘I’frz( )vz‘l’gr(x)}

r>0

(We expand relative to a frame for the tangent bundle which is orthogonal with
respect to the original metric gg). Let u = ug p be the temperature distribution
defined by the equations:

(0t + Dy)u =0, Bu=0 and ulj=o = ¢
Let 8 and (3,, be the associated heat content function and heat content asymptotics:

B(¢, D, p)(t) == [y ulwst)p(a;t)de ~ 32,50 Buld, D, p)t"/2,

We expand the spec1ﬁc heat p(; t) = Eo<k<ko pi(2)t* + O(t*) in a Taylor series.
Then it is immediate that B

Bal@,Dyp) = Y Bilé,Dspi).
2k+f=n

Consequently, we assume that p = p(x) henceforth is autonomous. The following
is the main theorem of this paper. It gives the new terms which appear in the
asymptotic expansion when Laplacian is time dependent.

Theorem 3.

( ) ﬁo(qva P
2 ﬁl(qvap

60 qvaovp

( )
ﬁl(ﬁbaDo,P)-
( )-
( )

) =
(2) ) =
(3) Ba2(, D, p) = B2(9, Do, p
(4) Bs(¢, D, p) = B3(¢, Do, p) + ﬁch G1,mmopdy.
(5) Bi(o, D, p) = Ba(é, Do, p) — 5 [1,{G1.i;0:i; + Fr1,i0: + E1 0} pda
+ fCD (16 G1,mmym — igl,mmLaa — %fl,m)qb/) —%gl,amﬁb:a/)

‘|‘%g1,mmp,m¢}dy - %fCN gl,mmpBdey
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Remark. In this paper, we deal with homogeneous boundary conditions and zero
heat source. However, the methods developed in [5] can easily be adapted to study
variable geometry with inhomogeneous boundary conditions and non-trivial heat
source.

We devote the remainder of this paper to the proof of Theorem 3. We begin
with a technical Lemma involving products. We say that the structures split if
M = My x My where M, is closed, if ¢ = @192, if p = p1p2, and if Dy = Dy 1+ Do ;.
Then u = uyuz so B(¢p, D, p)(t) = B(p1, D1, p1)(t) - B(¢2, D2, p2)(t). This shows

Lemma 4. If the structures split, then

Bu($,D,p) = Y Bil¢r, D1, p1)Be(d2, Da, pa).

k+f=n

There exist local invariants 3 and 32" which are bilinear in the covariant
derivatives of the functions ¢ and p with coefficients which are invariant expressions
in the covariant derivatives of the tensors L, S, R, Q, E, £, F, and G so that:

Bn(é,D,p) = [, BM(6, D, p)da + [,,, BIM (6, D, p)dy.

We assign weight 0 to ¢ and p; we assign weight 1 to L and 5; we assign weight
2 to R, Q, and E; we assign weight 2k to Gj; we assign weight 2k + 1 to Fy;
we assign weight 2k 4+ 2 to &. We increase the weight by 1 for every explicit
covariant derivative. We established the following result in the autonomous case
using dimensional analysis; the same argument extends immediately to the time
dependent case so we omit details.

Lemma 5. The local invariants BY are homogeneous of weight n and the local
invariants B9 are homogeneous of weight n — 1.

We use Lemma 5 to determine the general form of the invariants 3, for n <4.

Lemma 6. Let p = p(x). Then there exist universal constants so that

(1) Bo(¢.D,p) = Bo(e, Do, p).
(2) Bi(¢.D,p) = Bi(, Do, p).
(3) Baf .p) = B2(0, Do, p) + [ {a1G1 00}
(4) B5(6.D..p) = 5(6. Do, ) + foo, (a2 Graa + e Gt mm )0}y
+ ch {(a3 G100 + PGt mm)op}dy.
(5) Ba(@, D, p) = Ba(d, Do, p) + [1;{(asGn iisjj + asGr ijsij + asGr,iiGr
+a6G1,ijG1,ij + a7G2,4i)p + asGy iid.5; + agF1 50 + a13G1 i1 Ed
+(b1G1 jjii + 02G1 ijij ) Osi + €2G1 iP5 + ceE1d + doFi idy Fpda

¢, D
¢, D

3
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+ Jo {01651 aa®imp + 11G1,0aP.m + 1561 a0 Losdp
-I-(aﬁgl,aas + C%Vgl,mms)qb/)
‘|‘(b;];Vg1,aa;m + bivgl,am:a + bévgl,abLab)Qb/)
-I-C;];Vgl,mmqb;mp + Civgl,mmqbp;m + Cévgl,mmLaaﬁbP
+d3 Gt mmim pd + A G1 ambiap + A5 Fi,mdp}dy

+ Jo, {01661 0abimp + a1 G1 aadpim + 1561 a0 Lindp
-I-(b;?gl,aa;m + bfgl,am;a + b5Dgl,abLab)¢,0
-I-C;?gl,mmqb;mp + Cfgl,mmqb/);m + C5Dgl,mmLaa¢,0
-I-d;?gl,mm;mﬁb/) + dfgl,amﬁb:aﬂ‘ + d5D.7'—1,m¢P}dy'

Proof. We use Weyl’s theorem [16] on the invariants of the orthogonal group to
express these invariants in terms of contractions of indices. We integrate by parts
to exchange derivatives at the cost of introducing additional boundary terms to
normalize the interior integrands so no covariant derivatives of p are present. Simi-
larly, we integrate by parts on the boundary to normalize the boundary integrands
so no tangential covariant derivatives of p are present. We write down a suitable
spanning set and apply Lemma 5 to see that the (3, for n <4 have the form given
in Lemma 6 where the constants a-priori depend on the dimension of the manifold.

Let (M, Do, ¢2, p2) be given. Let M; be the circle S with the usual periodic
parameter y. Let Dy = —65 and ¢; = 1. Then u; = 1 and thus we have that
B(p1,D1,p1) = fMl p1dy,. We use Lemma 4 to see

ﬁn(qvavlo) = fMl pldwl : ﬁn(¢27D27p2)'

It now follows that the coefficients which appear in Lemma 6 are independent of
the dimension and are universal constants. [

The lack of commutativity in the vector valued case does not play a role in these
expressions; we restrict henceforth therefore to the scalar setting. To simplify the
notation, let 5,(¢, D, p) = Bn(é,D,p) — Bu(¢, Do, p). We begin the proof of

Theorem 3 by determining some of the constants in Lemma 6.
Lemma 7.
(1) B3(6, D, p) = 575 Jcy Grmmpdy.
(2) Ba(¢, D, p) = =5 [y {G1,ijb5ij + E1} pda
+ Je A= 191 mmLaadp + 591, mmpmd}dy — 5 [ GimmpBody
+ [y o Fridipde + [ 14T G1 mmmdp + PG am@:ap + dE Fi mdp}dy
+ Jo AdY Gt mmimpd + A7 G1 ambiap + dF Fimdpldy.
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Proof. Step 1: We apply Lemma 4. Let (Ms, ¢2, D2, p3) be arbitrary. Let

M; =TF:= 8 x ... xS, let ¢; =1, and let
Dy = Ay + ) ,5017(Gri ViV + FriVi).

Since Dy ;¢1 =0, u; =1 and 3, = 0 for n > 0. Thus

Bn(@2, D1 + Do, pip2) = Bo(1, D1, p1)Bn(92, D2, p2).

In particular 3, is independent of the tensors F; ; and Gy ;; for 7,7 < k. This
shows the following relations hold:

Consequently the higher order Taylor coefficients &,, F, ;, and G, ;; do not play a
role in the computation of 3, if n < 4 and if r > 2. We may therefore restrict to
first order deformations of the Laplacian A henceforth and set

E=&, Fi=Fii Gij =01,

Step 2: Let M := T* x [0,1], let y, be the periodic parameters on the torus for
1 <a <k, and let z € [0,1] be the normal parameter. Let f,;(z) be functions
which are close in the '™ topology to the Kronecker symbol §,; and let

ds® := fap(2)dy® o dy® + d=?
define the Laplacian Ag. Let ¢ = ¢(z) and let ug = uy o, be defined by the trivial
variation; ug only depends on the normal parameter z. We take a variation where
E=0,F,=0,and G, =0. Therefore:

(Gi;ViVj+ FVi+ Eu=0
5o ug, p = ug. Thus 3 is independent of the remaining F and G variables and

0="0by =by =0 =02 =0b) =bP =0 =0bP.

Step 3: Let s = s(t) :=¢e' — 1; s = ¢ '0; and s(0) = 0. Consider the conformal
deformation Dy = €' Dy. Let ug := ug p, and let u(x;t) = ug(x;s(t)). Then:

(0t + Dy)u = et(as + Do)ug =0, Bu =0, and u|;=¢ = ug|s=0 = ¢.
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Consequently uy p(t) = ug p,(s(t)) and 5(¢, D, p)(t) = B(¢, Do, p)(s(t)). We have

Sl

=17 + 13 L Ot), s =t 4 L2 L O),
=17+ O(t2), > =1+ 0(£).

S

[SI[

S

We equate coefficients of ¢ in the asymptotic expansions

En tnﬁn(qb,D,p) ~ ﬁ(qb,D,p)(t) = ﬁ(gb,Do,p)(S(t)) ~ En tnﬁn(qb?DO?p)S(t)n

and use Theorem 1 to derive the relationships:

B3(, D, p) = 11(¢, Do, p) = —5= Jo, pdy
B4(¢. D, p) = 352(¢, Do, p)
= 5 Ju(sii + Bo)pdr + 5 o, p($m + S6)dy
+ 5 Jo, {5 Laatp — pmd}dy.
In this setting, we have £ = —FE, F = 0, and VG = —gg. We may therefore
complete the proof of the Lemma by deriving the relationships:

N D 1 1 N 1 D

¢ = 07 € = 2/’ €2 = —35, €3 = —35, C3 = 07

N D 1 N D 1 1 N 1

¢g =0, ¢ =35,¢ =0,¢5=—3,¢6=—3, ¢ =—3. 0

We continue the proof of Theorem 3 by determining additional coefficients:
Lemma 8. We have @(qb,D,p) = —% Jo 161,005 + E10 + Fridsitpda
_% fCN gl,mm(BQb)pdy ‘I’fCD{%gl,mmgbp;m - igl,mmLaagbp
‘|‘d3Dg1,mm;m¢/0 - %gl,amqb:ap - %fl,mqbp}dy'

Proof. Through out the proof of this Lemma, we shall let M := S! x [0, 1] with
the flat metric and usual parameters (y, z). Let Ag := —65 — 3? be the associated
Laplacian.

Step 1: We use gauge invariance to determine the coefficients do, and d¥. For

feC>®(M),let Dy := Ag + f and let
D, ::etf(at + Do)e_tf — 0y =Ny + Qtf;ivi + tf;“‘ — tzf;zi.

Here V; = 0;. We take pure Dirichlet boundary conditions so Cny = (. Let
ug := ug,p and let u := e ug. We compute:

(8 + Di)u = €7 (9, + Do)ug = 0, Bu =0, and uli=0 = uo|i=o = ¢.
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Consequently u = ug p so 8(¢, D, p) = [, e ugp. Therefore

64(¢7D7p) = ﬁ4(¢,po,p) + ﬁ2(¢7D07f10) + %ﬁo(qb,Do,fzp).

We have 2 =0 and E = —f for Dy. We use Theorem 1 to see that

Bo(0, Do, f2p) = [y FPopda
Ba2(p, Do, fp) = — fM fo(Do + flo — ch o(fp)mdy
By <¢,Do, =1 [u{(Do+ £)d - (Ao + f)plda
+ o, (3((A0 + £))imp + 36((D0 + £)p)im — 5 F-mop)dy.

We have Dy = Ag. We use Theorem 1 to compute (4(d, Ag, p) and to see that:

B4(¢, D, p) =3 i F(@Dop — pAog)da
+ Jo {3 fbmp — 2 fopim — £ Fmpd}dy.

We use the Green’s formula [, (Ao —pAga)dz = ch (B — By ) to see that

fM f(@Dop — pAog)dr = fM{P(AO(fﬁb) — fAo¢) }d
+ ch {fopim — p(fé)im tdy.

Consequently
Bi(¢, D, p) = 3 [, {(=2Fi¢i — Fusd)p}da — 2 s Jo, Fmpody.
Since Fy; = 2f.; and & = f.;;, we have
ce=—21,dy=—1 anddP = -3

Step 2: We take pure Neumann boundary conditions. Let
D :=Ag+ atd.0y + btzag + ¢d,.
Let ¢ = ¢(y) depend only on the tangential variable and let ug = ug a,. Then
(0t + D)ug = 0, Bug =0, and ug|i=0 = ¢
Consequently ug p = wg. This implies that 54(gb, D, p) =0 so:

0=dYf =d¥ =dl.
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Step 3: We take pure Dirichlet boundary conditions. Let
D= e_\/__lone\/__ly =Ag —2v-19, + L.

Let wg = uy p; this function is independent of the angular parameter y and only

depends on the normal parameter z. We use Remark 2 to compute w, = /—1,
w; =0,2=0,and E=0. Let p = p(y). We use Theorem 1 to see

Bi(1,D, eV Wp) =1 [ (Ag+1)(eVT¥p) =1 [, e¥V"Tu,
:ﬁ4(€\/_y,A0,,0).

Let u := e\/__lyuo and let Dy := Ag +t0,0. — /—1t0.. Then
(8 + Dy)u = (9 + No)eY Wug + 9. (ug)(8y — vV—1)e¥ ™1 =0.
Let ¢ := eV=1Y_ Then Up D =U = e\/__lyuo SO
54(6\/__1‘117177/)) = (4(1,D, e\/__ly/))-
We show that dP = d and complete the proof by computing:

0 =B4(e¥V ™1, D, p) — Bu(1,D, eV~ 1p)
:54(6\/__1y7D710) - 64(6\/__1y7A0710)
=V=1 [, eV/=(d} — dP)p(y)dy. O

To complete the proof of Theorem 3, it only remains to evaluate the coefficient
d?. This is a one dimensional problem. Let M := [0,1]. We make a change of
variables on the manifold M x [0, 0) to evaluate the coefficient of d¥ that mixes
up the space and time variables. Let

7=z 4 t22, ti=t,
dz = (14 2tz)dz + 22dt, dt = dt,
0: = (1+2tz)719,, 07 = 0y — 22(1 4+ 2t2)710..

Let D := —6§ + 220:. Let

D :=0; + D — 9,
= 22(1+2t2)710, — (1 +2t2)720?
+2t(1 +2t2) 720, + (2 +t2%)?(1 + 2t2) 10,
=Ng + t{4207 + (22° +2)0.} + O(t?).



10 P. GILKEY

Let ¢ = 1, let p be identically 1 near z = 0, let p be identically 0 near z = 1,
and let p(z:t) := p(z + tz%). We impose Dirichlet boundary conditions; they are
preserved by this coordinate transformation. Since p is zero away from the left
hand edge of the interval, the principal of not feeling the boundary shows we can
neglect the right hand edge. Thus

ﬁu¢7D(§;t~) = pug p(z;t) + E(z,1)
where the error £ vanishes to infinite order in ¢t as t | 0. Consequently, we have:
ﬁ(qbvﬁv fo (bDZt ()dZ
:fo u¢7D( zt)p(z 4tz (14 2tz)dz + O(t3)
= 7 w5 () + 72 + L))
(14 2tz)dz 4+ O(t )
=316, D)0 + 1300, D. /2 + 2550
£ 28(6,D, L2+ 20 5)(8) + O(8)
We expand both sides and compare the powers of #? to see that:
ﬁ‘l(lv 157 ﬁ) = ﬁ‘l(lv D7 15) + ﬁ2(17 D7 10/22 + 2216) + ﬁo(lv D7 %ﬁ//24 + 210/23)‘

We have Dy = Ag, Gum = 42, and F,, = 22% + 2. Recall that p is identically 1
near 0. We use Lemma 8 to compute 3,(1,D,-):

ﬁ4<1,D,ﬁ>=/C (4dP — 3)pp

ﬁz(l,D,ﬁ’22+2zﬁ):/c (—2)0

Bo(1,D,3p" +2p'2%) =0
B4(1. D) = o, (49 = % —2)0
The operator D is autonomous. It is not self-adjoint so we must use a bit of

care in applying Theorem 1. We use the formulas of remark 2. We complete the
proof of Theorem 3 by computing:

= 02 4+220;, D*=—0? —3%20: — 2z

wm(~l~)) = —%22, wm(D*) = 522
E(D)=2—1s, E(D*) —9: oz L

Consequently, we compute that
64 vaD /0 fc 22/0 ;m¢+ (g),mﬁqb}
This yields the relation

—1+4+4=4dP -2 -250dP =L. O
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