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Introduction

Partial differential equations on closed manifolds with cuspidal singularities were
investigated by Schulze and Tarkhanov in [7].

Let X be a C°° compact manifold and R the set Ry U {0}. Denote by
(z1,...,2,) local coordinates on X and by ¢ the coordinate on R .

Close to a cuspidal singularity, a linear differential operator has the following
form:

P(a,t,Dp, D) = (') D ameale,t, Dy) (ﬁDt) ,  meN, (1)

0<adm

where §(2) is a diffeomorphism of R onto R, such that ¢’(¢t) < 0 for allt € R,
and the coefficients an,—o(2,t, Dy) are smooth up to ¢t = 0 [7].

In case &'(t) is equal —t=*~! near ¢t = 0, with k = 0,1,..., the equality
(1) gives typical differential operators on manifolds with power-like cusps. For
the particular value & = 0, we get the general form of linear operators in a
neighbourhood of a conical singularity (so-called Fuchs-type operators).

Our purpose 1s to study the elliptic equations

(ﬁpt)mu-p Z (e, t, D) (ﬁDt)au:f(t) (2)

0<a<m—1



and to derive asymptotic formulas for solutions under reasonable assumptions
on the coefficients an,— (2,1, Dy).

In this paper we will assume that the coefficients are just functions of ¢t with
complex values. The general case where the coefficients are differential operators
on X will be investigated in a forthcoming paper.

On the other hand, we will consider a more general situation. We will require
throughout this work that the limits of the functions ay(?), ..., am(t) exist when
t — 0. The situation of cusps will appear as a particular case of the previous
one.

It is more convenient to make the change of variables s = §(t) to reduce (2)
to the equation

Dt Y bals) Diu= £(s) (3)

0<a<m—1

and to describe afterwards the asymptotic behaviour of the solution u when
§ — +00.

Under this form, we can apply some results of Maz’ya and Plamenevskii [4]
and Plamenevskii [5] about asymptotics for solutions of differential equations.

The solutions of (3) are considered in some weighted spaces of functions
which show that the solution of the homogeneous equation is smooth every-
where, except at the cuspidal point.

In fact, via a special change of variable we reduce the above equation to a
linear system

DU — A(s)U = F (4)

and we derive asymptotic formulas for the solution U(s). We will denote by A
the limit of the matrix-valued function A(s) as s tends to infinity.

Roughly speaking, Section 1 presents the necessary material to apply The-
orem 3.1 of [5]. Some of the results we give here have analogues in [4] or [5].
However, since our situation is more explicit, we preferred — when we had the
occasion — to proceed in a different manner.

It is worth noting that Subsection 1.3 is devoted to the concept of eigenchains
and their meaning in our situation. We also give the relationship between
the smoothness of the entries of the matrix A(s) and the smoothness of the
eigenchains.

In Subsection 2.1 we derive asymptotics for the solution U(s) of (4) when
U(s) belongs to some weighted Sobolev space Wy, 4, v € R.

If —~ does not coincide with the imaginary part of one of the eigenvalues of
the matrix A, this problem is quite classical and the proof is given in Proposi-
tion 2.1.

On the other hand, if the line A = —~ contains some eigenvalues of A, the
situation becomes more difficult. In this case we derive two different asymptotic
formulas for the solution U(s). The first of the two is given by Proposition 2.2;
it uses a “modified” version of Proposition 2.1. As for the second one, we apply
Theorem 3.1 of Plamenevskii [5].

Note that instead of the lines SA = ¢ we could consider those given by the
equation A = ¢, since both contain only a finite number of eigenvalues of A.

In Subsection 2.2 we explain through the change of variable s = §(¢) how to
apply the results of Subsection 2.1 to differential equations defined in a neigh-
bourhood of the origin. The coefficients are reguired to meet some reasonable
conditions near ¢ = (. Subsection 2.3 treats the case of coefficients smooth up



to ¢ = 0. It 1s proved in this situation that any solution of the homogeneous
equation is the sum of several canonical singular terms and a function which
behaves better close to the singularity ¢ = 0. In particular, asymptotic formulas
for solutions of Fuchs-type equations are derived.

The author would like to express his gratitude to Prof. B. W. Schulze and
Prof. N. Tarkhanov for giving him the occasion to realise this work within their
group.

He also would like to thank Michael Korey and Thomas Krainer for the
discussions that he had with them in Potsdam.

1 Some preliminary results

In this section we establish a number of results thanks to which Proposition 2.3
will be an immediate consequence of Theorem 3.1 of Plamenevskii [5]. In pre-
senting them we follow Maz’ya and Plamenevskii [4], except the third part where
we give another point of view.

1.1 Differential equations with constant coefficients

Consider the equation

m—1

. 1d

P(D,)=D7" m—iDIu=f, Dy = ——, 1.1

(Ds) su+;a jDu=f ids (1.1)

for s € R, where a1, ..., a,, are some complex numbers and a,, # 0. Denote by

P(A) the polynomial
m—1
PA) = A"+ > N

7=0

Since the operator P(D;) is elliptic, there exists # > 0 such that
ST < e [PV for all || > 7. (1.2)
g=0

Let us introduce the space Wy, - of functions of s with the norm

m
- .
<u>72n,v:/6 e g | Dlul|” ds.
K =0

We first assume that f € Wy, and consider equation (1.1) in the space
Wi -
Thanks to the change of variables

U = U,
Um—1 = Dsupm + a1um, (1.3)
u; = Dsuz + am—1Um
equation (1.1) is reduced to the system
DU — AU = F(s), sER, (1.4)



where U = (uy, ..., um), F = (f,0,...,0), and A is the following matrix:
0 0 ... 0 —am
1 0 0 —Um-—1
A= 0 1 0 —am_2
0 0 e 1 —ay

Let us note that to reduce the equation (1.1) to the system (1.4), we could ap-
ply the usual change of variables in which the successive derivatives of a solution
are regarded as new unknowns. When the coefficients a1, ..., a,, are differential
operators, the usual change of variables - unlike to the change of variables that
we use - fails to have an important property, namely the boundedness (in the
terminology of [2]) of the matrix A.

We shall also introduce the spaces W, , and V1 4 of vector-valued func-
tions with the norms

2 —2vs
WwIe,., = / 25 [ 37 Dtu | +

m—1

J
ZZID?UHZ ds,
Jj=1 ¢=0

q=0
m j—1
NENE ., = / SOS i)
& j=14¢=0

respectively.

Lemma 1.1 Let v # —v,, k = 1,...,n, where v, are the imaginary parts of
the eigenvalues of the matrix A. Then, equation (1.4) has a unique solution
U € Wi, for any right-hand side F = (f1,..., fm) € Vm—1,4. Moreover, we
have

101 < € Py o
with ¢ a constant independent of F', and the solution is given by

/+00 iy
V27 co—iy

where F(/\) is the Fourier transform of F(s).

U(s) e (A= AT\ dA

Proof. First, we apply the Fourier-Laplace transform to the system (1.4),

1 .
N = — | e"?*U(s)ds, IA=7.
)= = [ U y
The change of variables (1.3) yields

AU+ Aty = fla

AU — U1 + Gm—ji1tm = [, for 2<j<m.
By iteration, we arrive at the formulas

-1

q
Aqaj + (Z Clm_j+kAq_k) Upy — aj—q — fj—k /\q—k—l’

k=1 0

=}

B
I



the first formula being valid for ¢ =1,...,5 — 1.
Taking into account the estimate (1.2) and the above relations, we obtain
easily

m m—1
(S0 ) ool 52
q=0 j=1
7 m—1j—1

m—1
n—1 n ~
e [Pl + D0 DA+ [ D0 D lamenl ) ]
j=1 n= 1

1 n=0

Jj=
m—1 B ) m—2 )
< er [PWim|+ea Y AT +es |am—j | IAF ] Jtim|

j=1 7=0
m
~ 1
e 3 G
j=1

the constant ¢4 being independent of A varying over any line in the complex
plane where P(X) # 0. Hence it follows that

m—1 7
2 — —
UL lee T DIu s+ Y D e DIy
7j=1 ¢g=0

m m—1 j
= ZIIZCk EDE (e )7 + Z ZIIZCﬁvq"“Df(e‘Ww)Iliz
q=0 = i=1 ¢g=0 k=0
m m—1 j ——— 2
ko (2k ; k12| s
<3S T e + 50 303 M
q=0 k=0 j=1 q=0k=0
m m—1 j
2 2 . N
= [ {06+ Bt = 2+ 32 Doel + hlaste - i)l* | de
R\ g=0 j=1¢=0
+o0o—ivy m m—1 J
< const(7) / Z|/\|2q|u~m|2+ ZZ|/\|2q|dj|2 d\
—oo—iy q=0 7j=1 g=0
2
+oo—ivy m=1 j
< const(7) / (Z |/\|‘1) |t | + Z Z|/\|q|u]| dA
—oco—1%y j=1 ¢=0
< const [IIFIIE, ..

where the constant does not depend on F'.
This implies that the solution U belongs to the space W, , and has the form

+oo—iy
U(s) =

_E/_ A= ATy



as desired.
O
Let T be a real number and let nr(s) be an infinitely differentiable non-
negative function such that np(s) = 0 for s < T and nr(s) = 1 for s > T + 1.
The following lemma is useful in the sequel. It is a particular case of Lemma 2.3

of [4].

Lemma 1.2 Let F'(s) be a vector-valued function defined on (T, +00) and such
that ne "' €V, .+ for some 'yi € (=i, —Ys—1)- Let U(s) be a solution of the

1y
equation
D,U(s) — AU(s) = F(s), s>T, (1.5)
such that n7U € Wy, 4, where v € (—'yk,'yl). Then nrU belongs to the space
W .
m,y

1.2 Differential equations with variable coefficients

Consider the equation with variable coefficients

m—1
P(s,Ds) = DPu+ > am—;(s)Diu= f(s), s R (1.6)
7=0
The coefficients a;(s), j = 1, ..., m, are assumed to be continuous complex-valued

functions of s € R, satisfying

s_l_lffﬁooaj(t):aj’ j=1..m, (1.7)
where ay, ..., ap, are constant and a,, # 0.
We shall reduce (1.6) to a first order system. This equation can be written
as
m—1
P(s, Do)u(s) = Dl'u(s) + > DI (bmoju) (s) = f(s), s€ER,
7=0
where

bi(s) = a;(s) + oj1Dsa;_1(s) + ...+ ajyj_lD‘g_lal(s)

and «; 5 are some numbers.
In fact (1.6) is equivalent to the system of equations

{ ui(s) = Diujpi(s) +bm—j(s)un(s), j=1,...,m—1,
Dsui(s) = —=bm(s)um(s) + f(s).

We are going to consider the system

DU — A(s)U = F(s), seR, (1.8)
where F'(s) = (f1(s), ..., fm(s)) and
0 0 ... 0 =—by
1 0 ... 0 —=bn-
A =1 0o 1 0 —baos |- (1.9)
00 1 b



If F'(s) = (f(s),0,...,0), equation (1.6) is equivalent to this system.
Moreover, a solution U of (1.8) belongs to Wy, , if and only if the corre-
sponding solution u of (1.6) belongs to Wi, .

Lemma 1.3 If, for all s € (—o0, +00),

| DI (b;(s) —a;)| <4, g=0,....,m—j; j=1..m,

where & is a sufficiently small positive constant, then the system (1.8) has a
unique solution U € Wy, 4, for each right-hand side F' € Vp,_1 4 with v €
(=, =Vh-1)-

Proof. The system (1.8) can be written as
U—(Dy— A (A(s) —A) U = (D, — A" F,

where the operator (Ds; — A)~! is defined in Lemma 1.1. We further obtain

1HA4G) = ) U1
m j—1
= [ S S DI (s = b 5] ) s
i j=14¢=0
m j—1 q

= / TN TN Y G DI (amga-j — bnga—j(5)) DS un|* ds
R

j=149=0 k=0
m j-1 ¢

cd? / e ZZ|ZDfum|2ds
R

j=1¢=0 k=0

IA

2 2
< CF U
where C'is a positive constant independent of § and U. It means that
14(5) = Allyg, sy, . < VT8
Since ¢ is sufficiently small, we can choose it such that

1D = Ay o AGS) = Al Ly, <L

Hence we deduce that equation (1.8) has a unique solution in W,, .

Proposition 1.4 Let the following conditions hold:

1. lim |D%(b;j(s) —a;)| =0, forq=0,...m—jand j=1,...,m;

s—+00

2. F(s) 1s a vector-valued function on (T, +00), such that npF' € V,,_, .+ for
some 'yi € (=i, —Yr-1)-

If moreover v € (—'yk,'yl) and U(s) is a solution of the equation
DU — A(s)U = F(s), s>T,
such that noU € Wy, , then npU belongs to meryl.

For the proof, see Lemma 3.2 of Maz’ya and Plamenevskii [4].



1.3 Spectral decomposition

In this section we assume that the functions b;(s), j = 0, ..., m, and the complex
numbers a;, j =0, ..., m, satisfy the conditions of Proposition 1.4.

Denote by A1(s), ..., Ar(s) the eigenvalues of the matrix A(s) and by a1, ..., a7
their multiplicities, respectively. We assume that these multiplicities do not
depend on s, and we denote by (A—A(s))~! - when it makes sense - the resolvent
of A(s).

Let T; be a closed Jordan curve around the eigenvalue A;(s) of A(s). We
define the spectral projection associated to A;(s) by the matrix

E@p:ifA(A_A@»*dx

2m

It is well-known that (A — A(s))~! can be written in the form

a;—1

(A —A(s E:X:O—&@D%Aﬂﬂﬁ—&@ﬂfﬂ,

with (A(s) — A(s)])® = I, the identity matrix.
Let us denote by
(A(s) = M(s)D) o, o (A(s) = Ni(s)D) v, w

a basis of the kernel of the morphism (A(s) — A(s)I)®* and by ¢ (s) the vectors

¢i(s) = (A(s) = N(s) D) F, k=0, a—1.
This set of vectors is called an eigenchain corresponding to the eigenvalue A;(s).
Let 1/)2“_1(5) be an orthogonal vector to the family (qSZ(s))k:O o I

means that
(¥e,-1(5), 84 (5)) = 0= 1,0-1-k,
where J; i 1s the Kronecker symbol.
Denote by wgl_l_k(s), j=0,...,a; — 1, the vectors given by
D n(8) = (A%(s) = () D) Yo (s), k=0, ai—1,
where A*(s) is the adjoint matrix of A(s) and X;(s) is the conjugate of X;(s).
Note that
(0k (), Vam1-0(8) = ((As) = Ni(3)]) D (5), ¥, i (5))
(f/’k 1(s), 1/)04,—l(5)>

= (Sii(9), ve,_1(9))
= O

Hence the set {1/)04 _1(s), ,1/)6(5)} is an orthogonal system to the system of

vectors (¢k( ))kzo,...,oc,—l



Since the operator P; maps a vector-valued function F' = (f1, ..., fm) into a

linear combination of vectors ¢ (s), ..., (/)fxl_l(s), it is easily verified that
a;—1—-N
N i i
(As) = MDY PF = 3 chs) di(s). (1.10
k=0

The coefficients ci (s) depend of course on F. '
Therefore, if we multiply the equality (1.10) by the vector ¥¢ _,_(s), we
get

ck(s) = ((A(s) = N(s) )N IR, (A%(5) = Ai(8) 1)t k-1 (5))
= ((A(s) = M) DN RE, 0l _j_o(5))
= (7, 1/)24,_1—1@—N(5)) :
Now consider the problem
AU — A(s)U = F(s), s>1T, (1.11)
where A(s) is the matrix (1.9) and T is sufficiently large.
Note that the eigenvalues of A(s) are exactly the roots of the polynomial

m—1

P(s, ) = A"+ > bj(s) M.

7=0

Since a,, # 0, the value A = 0 is regular for both the operators (A — A)~! and
(A — A(s))~L. Furthermore, any eigenvalue );(s) of A(s) is bounded below by
a non-negative constant. Thus, there exists 0 < ¢ < 1 such that

[Ai(s)] > ¢ forall s>T.

Consider now the polynomial

m—-1 .
D(s’/\) —\n-1 + Z %bm_]’(s) /\j_l.
j:l
We have
m—-1 .
ID(s, M) = /e S L b i(s) (Afe) T
j=1 m
m—1 . ) )
> e (P = S0 L b ()] i el
j:l m
m—1
> /e
where



It follows that

m | Aie|™ !
2m

Cml|

L+ Ni/e|+ .. 4 | hife|™ !

IA

IA

(5, Ad)l.

Now, if we differentiate the equation P(s, A;(s)) = 0 with respect to s, we
obtain

m—1
D(s,\i) DeXi(s) = — Z Dibm_j(s) A
j:O

whence
9 m—1 m—1
DG < oy (13 Wefel ) (3 1Dsbn—s(s) )
7=0 7=0
2
< o1 SuP |Dsb;(s)].

j=1,...m
The second derivative of P(s, A;(s)) = 0 gives

m D(s, A;) D?AZ’(S)

=~ (mlm = DA Y 50— b () ) (D))

ZgDsbm] XTHY D ( szbm]
Proceeding as above, we get

DAL < o s ID0EEE s 1020)])

m—1 j=1,...m-1

Y H sup D bj(s)I™,

nimi+nasmo=2 i= 1‘7 L..,m

IA

the constant C' being independent of s.
In fact, the derivative of order p with respect to s of the eigenvalue A;(s)
satisfy the equality

m D(S, /\z) D?/\Z(S)
- > (D2 X ()™ . (D=1 A ()= PP (s)

a1+ oy —1Bu—1+Bu=p

where P(ﬁ“)(s) 1s a polynomial of order at most m — 1 and whose coefficients
involve derivatives of order 3, of b;(s). By the same argument we get

|DEX; (s)] < C ou(s), p=1... m,

where
I

JOEREED SR | USROS

nimi+..+namy=u i=1J= 1M

10



Let h be a vector independent of s, such that (A(s) — /\i(s)f)a’_lh #0
where o; is the multiplicity of \;(s). Denote by ¢¢ (s) the vectors

oL (s) = (A(s) — Ni(s) D)™ ™5 b, F=0,.,0i—1.
By the above estimate, the vector ¢% _,(s) = (A(s) — Ai(s)I) h satisfies

¢ [[D¢ (A(s) = A) ||
C o,(s).

| DY 6o (5)] <
<

If £k = a; — 3, we have
I
Di @y, s(s) =D Cf DI (A(s) = Ai(s)) D790, _(s),

and so

DY —s(s)] < e D ni(s) ona(s)

nitnz=p

< Couls).
Repeating this argument, we obtain
| Db (s)] < C ou(s),
thus arriving at the following lemma.

Lemma 1.5 Consider the problem \U — A(s)U = F(s), for s > T, where A(s)
is the matriz (1.9) and T is sufficiently large. Let A;(s) be an eigenvalue of A(s)
to which there corresponds the eigenchain

oh(s), d1(s), ..., dh,_1(5), 1<i<I.

Assume that the conditions on the coefficients b;(s) of Proposition 1.4 hold.
Then we have the estimates

IDEX(s)] < Coouls), i=1,...1; p=
[DEdi(s)] < Coouls), i=1,..1; k

2 Asymptotic behaviour of solutions

We begin this section with the study of the asymptotic behaviour of solutions of
equation (2.1). The results we obtain will be applied - via a change of variable
- to get asymptotics for the solutions of equation (2.2). Hence the asymptotic
behaviour of solutions of elliptic equations close to a cusp (see Corollary 2.8)
will follow as a consequence of the above results.

2.1 Asymptotics for s — +oo

Let us consider the equation

DU — A(s)U =0, s>1T; (2.1)

11



we confine ourselves to solutions U satisfying n7U € Wy, ..

We have two situations. The first of the two is when the lines A = —v and
SA = —p limiting the strip —y < SA < —pu do not involve any eigenvalue of the
matrix A. The second situation appears if one of the above lines contains an
eigenvalue of A. In this case we will derive two different asymptotic formulas
for the solution U(s). The first one contains eigenvalues of the limiting matrix
A while the second one involves eigenvalues of the perturbed matrix A(s).

Proposition 2.1 Assume that:
1. Condition 1 of Proposition 1.4 is fulfilled.

2. N eigenvalues Ay, ..., AN (counting the multiplicities) to which correspond
the eigenchains ¢}, k =0,...,a; —1; 0 =1,..., N, are located in the strip

-y < SN < — .
3. There are no eigenvalues of the matriz A on the lines SA = —v and
SA = —pu.

Then, any solution U(s) of the equation D;U — A(s)U = 0, s > T, such that
nrU € Wi, can be written as

N ao;—1la;—1-ka;—1-k Z)\s C n_l)(AZ) (is)l .

where N7 7 € Wi 4.
Proof. We first consider the equation
D,U—-AU =F

where F'is a function with support in R.

Assume that in the strip —y < SA; < —p there exist only N eigenvalues
A1, ..., Axy of A with multiplicities aq, ..., ay, respectively. Assume also that
there are no eigenvalues of A on the lines A = —y and S\ = —p.

If F belongs to the space V,_1 , (and therefore to Vi,_1 +), then the solution
U of our equation is unique in each of the spaces Wy, , and W, ,. Moreover,
the Fourier transform F()\) of F(s) is analytic in the strip —y < SA < —pu.
Using the Cauchy formula, we get

Foo—iy |~
U(s) = / e (N — AT F(N) dA
— 00 —1y
X —iy ) 5
= lim e (A= AT (N dA

X—+o0 —X—iy

—X—ip X—ip X—iy
lim / +/ +/ + R
X =400 —X—iy —X—ip X—iu

+oo—ip
/ e (A=A PN AN+ R

—00—1 [

- 5l 5l 3

2

where R stands for the sum of the residues of the function e**s (A—A)~t F(/\)
in the strip —y < YA < —p (cf. Fig. 1).

12



A

Fig. 1: The contour of integration.

Since the singularities of the function e'**(\ — A)_lﬁ(/\) are only the poles
of (A\— A)~1 ie., the eigenvalues Ay, ..., Ay, it follows that

Res (e”‘s(/\ — A)_lﬁ(/\)) [r=»x,
a;—1a;—1—k

~ (w _1 (a — 1) Z Z G (/\_/\i)a’_l_k)(m_l) Ix=x,
k=0 1=

a;i—la;—1—ka;—1— k i (n=1) )( )l
i

|
;
Q/;
=
i
INg
Ngr
ﬁ
3
|

Hence,

Var Jooi
We now consider the equation
DU — A(s)U =0, s> 1T,
and we introduce the function V = npU. This new function fulfills the equation

D,V —A(s)V = F, selR,

where F' = (Dsnr) U is a function with compact support.
Assume that V € W,, , and rewrite the above equation as

D,V — AV = (A(s) — A)V + F.

13



Since both F and (A(s) —A)V belong to the space V,,_1 ., it follows from what
has already been proved that the solution U can be represented in the form

a;—1la;—1-ka;—1-k i

al s (Ch (n=0) i) (is)t i
B3 AN Gy

1 k=0 =0 n=l

where n77 € Wy, ;. This completes the proof.
O
Now, assume for simplicity that only the line A = —p contains an eigenvalue
of the matrix A. In this case, Proposition 2.1 can be applied but in a slightly
different form.

Proposition 2.2 Assume that:

1. Condition 1 of Proposition 1.4 is fulfilled.

2. N eigenvalues Ay, ..., AN (counting the multiplicities) to which correspond
the eigenchains ¢}, k =0,...,a; —1; 0 =1,..., N, are located in the strip
-y < SN < — .

3. There is only one eigenvalue A1 of the matriz A on the line S\ = —p.

Then, any solution U(s) of the equation D;U — A(s)U = 0, s > T, such that
nrU € Wi, u, can be written as

N a;—1a;—1-ka;—1-k

i (m=D().\ (sc) ) ant1—1 . p
Z Z Z Z ixes (G l)(!/\l) (ZZS!) %_i_emwls Z ch (ZZ?

i=1 k=0 = n= k=0
+ Z(s),
where np ((Ds — AN41)*VH Z) € Wi, and co, . .., Capyy—1 are some constant
vectors.
Proof. Assume that the line SA = —p involves an eigenvalue Anyq of

multiplicity any1 of A and consider the functions
q/)k(s)zskeMN'Hs, OSkSOzN_H—l.

Let 75(/\) be the polynomial (A — Ay41)*N+'. Denote by P(D;) the linear
differential operator with constant coefficients, whose order is a1 and which
vanishes on all the functions ¢ (s). This operator P(D;) can be represented by

P(Ds) = (Ds—=Angr)*¥H
QAN41
= 3 CEv (SAwp) O DL
a=0

Consider now the equation
DU — AU = F, seR,

where F'is a function with a support in R .

14



Assume that Ay, ..., Ay are N eigenvalues of A of multiplicities aq, ..., ay,
respectively, lying in the strip —y < S\; < —p. Assume also for simplicity that
there are no eigenvalues of A on the line A = —~.

If we apply the Fourier transform to the above equation, it gives

PU = PU
(A = Ang1) ¥+ (A= A4)7

where the resolvent (A — A)~! has the form given in Subsection 1.3.

Note that the function (A=Ag,, )V T (A—A)~! is meromorphic as (A—A) ™!
but the point Ay41 1s now regular. Following the proof of Proposition 2.1, we
get

+oo—iy

P(DOU(s) = Jﬁ/ |

NP (A=A F(A) dx
foo—ip

+ Z Res (6“575(/\)(/\ - A)—lﬁ(A)) e,

i=1

NP (A= A)THE(N) dx

Res (e“s(/\ “Avgr) (A= A)—lﬁ(A)) =,
— (Dy — An41) Res (e“s(/\ - A)—lﬁ(A)) o,
1t follows that

Res (e“s POY (A= A7 FO)) hos,

N a;—la;—l-ka;—1-k )\s c n—l) A\ is)! ;
(ZZ Z Z Z l)(! )(1!) ’“)

Hence
= Y P=0 () (is)
P(D,)U(s) = P(Dy) (Z Z Z em,s( k()n_l)(!/\ ) (“) 2)
P(Ds)Z(s).

Since the functions
Z'k

E(f)k(s), k’:O,...,OzN_H—l,

span the space of solutions of the equation P(D;)u = 0, we get

N a;—la;—1-ka;—1-k an41—1 . k

)\scf,'c (n=1) Ai) (es)" nars
D I M e

i=1 k=0 [=0 n=

+ Z(s),

15



where np (P(Ds)Z) € Win,u, and co, . . ., Cayy, are some constant vectors.
O
As mentioned, we are going to give yet another result about asymptotics of
solutions of equation (2.1) when one of the lines limiting the strip —y < QA <
—u contains an eigenvalue of A.

The results of Section 1 show that the following proposition is a consequence
of Theorem 3.1 of Plamenevskii [5].

Proposition 2.3 Let the following conditions hold:

1. On the line S\ = —~;, there s one eigenvalue A\g = 0 —1y; of the matriz A
and only one eigenvalue \;(s) (to which corresponds the eigenchain ¢, (s),
k=1,..,0a;, — 1) of the matriz A(s) tends to it as s = +oo, the integer
a; being independent of s.

2. lim €(s) =0, forq=0,...,m, where e;(s) = max |D2(b;(s) — a;)].

s——+o00 Jj=1,.

+oo
3. fs 1(s)ds < o0 and fs ( ()+0'())d5<oo, where r 1s equal

to 1, if Ao ts simple, and ozl — 1, if Ao is multiple.

If U(s) is a solution of the system DU — A(s)U =0, s > T, such that npU €
W v, for v € (—vi, —vi—1), then

U(s) = exp (z/s /\i(ﬁ)dﬁ) (Oil (p(ii)_l_k(s) + 0(1)) (/)2(8) + W(s)) ,

T k=0

where neW € Wy 4 and Pk(i)(s) denotes a polynomial of degree k whose coeffi-
cients depend on the solution U(s).

2.2 Applications

Consider the differential equation

(ﬁpt)mw S apalt) (ﬁDt)au:f(t), 1<1, (22)

0<a<m—1

where 6(t) is a smooth real-valued function on the interval (0,1], such that
d(t) = +oo ast = 0 and §'(¢) < 0 for t € (0,1].

The coefficients ay(t),. .., am(t) are assumed to be continuous up to ¢t = 0.
We denote by ay, ..., a, their values at ¢ = 0. Without loss of generality we
can assume that a,, # 0.

As mentioned, such differential equations appear in the analysis on mani-
folds with singular points. The derivative §’(¢) is determined close to ¢ = 0
by geometry of singularities. It in turn determines the function d(¢) up to a
constant, and it is a property of “real” singularities that §(0+) = co. The last
condition is necessary in order that 6(t) could be extended to a diffeomerphism
of R onto the whole real axis R. Such is the case, in particular, if the derivative
d’(t) does change the sign for small ¢t > 0.

16



Example 2.4 Let p(t) = —t*T! for t € (0,1], where & > 0. Choose any C*°
function ¢(¢) on R4 with negative values, such that

R e (0,1];
W)—{ 1, if te[2,400).

Set

todo
515:/—, teR,,
Ll AT +

where ¢5 > 0 is a fixed real number. Note that §(f) — 400 as ¢ — 0, and
d(t) = —o0 as t = 4oo. Moreover, 6'(t) = 1/¢(¢) is negative for all ¢+ € R,
hence the function ¢ — J(¢) defines a diffeomorphism between R and R.

|

The change of variable ¢t = §~1(s) yields

sginoo(aaoé_l)(s) = dg,

D (aa0d=Y) (s) = (ﬁ Dtaa) (571(s)) .

Hence, to derive asymptotic formulas for solutions of equation (2.2) when ¢ — 0,
we just need to apply the above change of variable and reduce the equation (2.2)
to the form (1.6) which has been already investigated.
To simplify notation, we let D; stand for the singular derivative occurring
in (2.2), i.e.,
1

Dt = WDt

Theorem 2.5 Assume that:
1. tlir%|D? (bj(t) —a;)| =0, forq = 0,...m—j and j = 1,...,m, where
—
bi(t) = aj(t) + a1 Dsaj 1 (1) + ...+ aj ;1D i 2).

2. N eigenvalues Ay, ..., An (counting the multiplicities) of A, to which cor-
respond the eigenchains ¢}, k =0,...,a; —1; ¢ =1,..., N, are located in
the strip —y < S\ < —pt.

3. There are no eigenvalues of the matriz A on the lines SA = —v and
SA = —pu.

Then, any solution U(t) of the equation DU — A({)U = 0, t < 1, such that
nrU (871 (s)) € Wi can be written as

U)=y Yooy e ()" () GI0)

i=1 k=0 =0 n=l{ (n - l)' !

where nrZ (871 (5)) € Win -

If the lines limiting the strip —y < SA < —pu meet the eigenvalues of the
matrix A, Theorem 2.5 needs a slight modification (cf. Proposition 2.2).

17



Corollary 2.6 Assume that:
1. tlir% ID{ (b;(t) —a;)| =0, forq=0,...m—jand j=1,...,m.
—
2. N eigenvalues Ay, ..., AN (counting the multiplicities) of the matriz A, to
which correspond the eigenchains ¢, k = 0,...,0, —1; ¢ = 1,..., N, are

located in the strip —y < S < —p.

3. There is only one eigenvalue A1 of the matriz A on the line S\ = —p.

Then, any solution U(t) of the equation DU — A(X)U = 0, t < 1, such that
nrU(871(s)) € Wiy, can be written as

U(t)
N a1 ai-1-k a;-1-k i \(n—l) ) 5 ! apnp—1 5 k
_ ixio(e) ()" A) (6(6) i inneps(e) (16())
=22 2 2 Y TR TR Dk
i=1 k=0 =0 n=l k=0
+ Z(1),
where np (Dy — An41)*V 41 2) (671(s)) € Winu, and cq, ..., Capyy—1 are some

constant vectors.
Using again the change of variable ¢t = §=1(s), we obtain the following con-
sequence of Proposition 2.3. Set

1

FOESEED DI | T O

nimi+..4nymy=p Z.lezl,...,m—
Theorem 2.7 Let the following conditions hold:

1. On the line S\ = —~;, there is one eigenvalue Ay = T—1; of the matriz A
and only one eigenvalue \;(t) (to which corresponds the eigenchain ¢ (t),
k=1,...,0; — 1) of the matriz A(t) tends to it as t — 0, the integer oy
being independent of t.

2. tlir%eq(t) =0, for g =0,...,m, where ¢;(t) = max |D{(b;(t) — a;)|.
—

j=1,....m

1 1
3. [(8(0)* e (t)dd(t) < oo and [(8(¢))*" (eg(t) + Ug(t)) dd(t) < oo, where r
0 0
1s equal to 1, if Ao is simple, and a; — 1, if Ay is multiple.
IfU(t) is a solution of DeU —A(t)U =0, t < 1, satisfying nrU (671(s)) € W+,
for vy € (=i, —Yi—1), then

a;—1

¢ . ,

U(t) = exp ( / Aiw)déw)) (Z (P, (60) +0(1)) 8} (1) + W(t)) ,
1 k=0

where nrW (6§71 (s)) € Wy and Pk(i)(s) denotes a polynomial of degree k whose

coefficients depend on the solution U (t).
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2.8 The case of ' coefficients

In this part we are going to derive asymptotic formulas for solutions of the
equation (2.2) when the coefficients a;(t),...,am(t) are smooth up to ¢ = 0.
Let us mention once again that such equations appear when we study linear
differential operators close to cuspidal singularities.

By assumption, the derivatives of arbitrary order of a;(t) are continuous up
to t = 0, and consequently the functions D{*a;(t) are bounded on the interval
[0, 1].

Moreover,

bi(t) —  a;(0) =aj,
D{ (bj(t) —a;) — 0

when ¢ tends to 0, for all ¢ = 0,...,m—j and j = 1,...,m. It follows that the
first condition of Theorem 2.5 is fulfilled. Hence Theorem 2.5 and Corollary 2.6
can be (simultaneously) rewritten in as follows.

Corollary 2.8 Assume that:
1. The coefficients a1(t), ..., am(t) are smooth up tot = 0.

2. N eigenvalues Ay, ..., AN (counting the multiplicities) of the matriz A, to

which correspond the eigenchains (/)2, k=0..,0—1;¢=1,....N, are
located in the strip —y < S < —p.
3. There is only one eigenvalue A1 of the matriz A on the line S\ = —pu.

Then, any solution U(t) of the equation DU — A({)U = 0, t < 1, such that
nrU(671(5)) € Win i, can be written as

U(t)
N a1 a—1-k a;—1-k i(n apnp—1 .
_ Z eiAzé(t) (Ck‘)( _l)( Z) (26( )) ¢ +e Z>‘N+1 ( )ick (Z(S(t))k
; (n—1)! k!
i=1 k=0 [=0 n=I[ k=0
+ Z(1),
where nr (Dy — An41)*V+ 2) (871 () € Winu, and cq, . . ., Canyi—1 ATE s0ME
constant vectors. If there are no eigenvalues of A on the line S\ = —pu, the
vectors co, .. ., Cayy,—1 vanish and the function Z is such that nrZ(871(s)) €
Win, -
If 6(t) = —logt, we have Dy = —tD;, i.e.,, (2.2) is a Fuchs-type equation.

Hence, the asymptotic formula given in Theorem 2.5 is similar to the formula
obtained by Kondrat’ev in [3], i.e.,

N a;—1la;—1-ka;—1-k

c (n=0()\;) (—ilo
=YY Y X e CRE

i=1 k=0 I=0

It also possible to derive asymptotics involving the eigenvalues of the ma-
trix A(¢), for solutions of Fuchs-type equations. In fact, the integrals given in
Theorem 2.7 converge because

. 1/2 2r
tlglét (logt)™ = 0.

19



In this case, we have

U(t) = exp (—i / t Aiég) de) (Z (P (=togt) +0(1)) 6} (1) + W(t)) :

k=0

Remark 2.9 Unfortunately, when §(t) is given by Erample 2.4 and k > 0,
the mentioned integrals do not converge any more and Theorem 2.7 cannot be
applied.
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