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Introduction

Partial di�erential equations on closed manifolds with cuspidal singularities were
investigated by Schulze and Tarkhanov in ���

Let X be a C� compact manifold and �R� the set R� � f
g� Denote by
�x�� ���� xn� local coordinates on X and by t the coordinate on �R��

Close to a cuspidal singularity� a linear di�erential operator has the following
form�

P �x� t�Dx� Dt� � ����t��
m

X
����m

am���x� t�Dx�

�
�

���t�
Dt

��
� m � N� ���

where ��t� is a di�eomorphism of R� onto R� such that ���t� � 
 for all t � R��
and the coe�cients am���x� t�Dx� are smooth up to t � 
 ���

In case ���t� is equal �t�k�� near t � 
� with k � 
� �� � � �� the equality
��� gives typical di�erential operators on manifolds with power�like cusps� For
the particular value k � 
� we get the general form of linear operators in a
neighbourhood of a conical singularity �so�called Fuchs�type operators��

Our purpose is to study the elliptic equations�
�

���t�
Dt

�m
u 	

X
����m��

am���x� t�Dx�

�
�

���t�
Dt

��
u � f�t� ���

�



and to derive asymptotic formulas for solutions under reasonable assumptions
on the coe�cients am���x� t�Dx��

In this paper we will assume that the coe�cients are just functions of t with
complex values� The general case where the coe�cients are di�erential operators
on X will be investigated in a forthcoming paper�

On the other hand� we will consider a more general situation� We will require
throughout this work that the limits of the functions a��t�� ���� am�t� exist when
t �� 
� The situation of cusps will appear as a particular case of the previous
one�

It is more convenient to make the change of variables s � ��t� to reduce ���
to the equation

Dm
s u 	

X
����m��

bm���s�D�
s u � f�s� ���

and to describe afterwards the asymptotic behaviour of the solution u when
s �� 	��

Under this form� we can apply some results of Maz�ya and Plamenevskii ��
and Plamenevskii �� about asymptotics for solutions of di�erential equations�

The solutions of ��� are considered in some weighted spaces of functions
which show that the solution of the homogeneous equation is smooth every�
where� except at the cuspidal point�

In fact� via a special change of variable we reduce the above equation to a
linear system

DsU �A�s�U � F ���

and we derive asymptotic formulas for the solution U �s�� We will denote by A
the limit of the matrix�valued function A�s� as s tends to in�nity�

Roughly speaking� Section � presents the necessary material to apply The�
orem ��� of ��� Some of the results we give here have analogues in �� or ���
However� since our situation is more explicit� we preferred � when we had the
occasion � to proceed in a di�erent manner�

It is worth noting that Subsection ��� is devoted to the concept of eigenchains
and their meaning in our situation� We also give the relationship between
the smoothness of the entries of the matrix A�s� and the smoothness of the
eigenchains�

In Subsection ��� we derive asymptotics for the solution U �s� of ��� when
U �s� belongs to some weighted Sobolev space Wm�� � � � R�

If �� does not coincide with the imaginary part of one of the eigenvalues of
the matrix A� this problem is quite classical and the proof is given in Proposi�
tion ����

On the other hand� if the line �� � �� contains some eigenvalues of A� the
situation becomes more di�cult� In this case we derive two di�erent asymptotic
formulas for the solution U �s�� The �rst of the two is given by Proposition ����
it uses a �modi�ed� version of Proposition ���� As for the second one� we apply
Theorem ��� of Plamenevskii ���

Note that instead of the lines �� � c we could consider those given by the
equation �� � c� since both contain only a �nite number of eigenvalues of A�

In Subsection ��� we explain through the change of variable s � ��t� how to
apply the results of Subsection ��� to di�erential equations de�ned in a neigh�
bourhood of the origin� The coe�cients are reguired to meet some reasonable
conditions near t � 
� Subsection ��� treats the case of coe�cients smooth up

�



to t � 
� It is proved in this situation that any solution of the homogeneous
equation is the sum of several canonical singular terms and a function which
behaves better close to the singularity t � 
� In particular� asymptotic formulas
for solutions of Fuchs�type equations are derived�

The author would like to express his gratitude to Prof� B� W� Schulze and
Prof� N� Tarkhanov for giving him the occasion to realise this work within their
group�

He also would like to thank Michael Korey and Thomas Krainer for the
discussions that he had with them in Potsdam�

� Some preliminary results

In this section we establish a number of results thanks to which Proposition ���
will be an immediate consequence of Theorem ��� of Plamenevskii ��� In pre�
senting them we follow Maz�ya and Plamenevskii ��� except the third part where
we give another point of view�

��� Di�erential equations with constant coe�cients

Consider the equation

P �Ds� � Dm
s u 	

m��X
j��

am�jD
j
su � f� Ds �

�

i

d

ds
� �����

for s � R� where a�� ���� am are some complex numbers and am �� 
� Denote by
P ��� the polynomial

P ��� � �m 	
m��X
j��

am�j�
j �

Since the operator P �Ds� is elliptic� there exists r � 
 such that

mX
q��

j�jq 	 c jP ���j for all j�j � r� �����

Let us introduce the space Wm�� of functions of s with the norm

� u ��
m�� �

Z
R

e���s
mX
j��

jDj
suj

�
ds�

We �rst assume that f � W��� � and consider equation ����� in the space
Wm�� �

Thanks to the change of variables

u � um�
um�� � Dsum 	 a�um�

� � � � � � � � �
u� � Dsu� 	 am��um

�����

equation ����� is reduced to the system

DsU � AU � F �s�� s � R� �����

�



where U � �u�� ���� um�� F � �f� 
� ���� 
�� and A is the following matrix�

A �

�BBBB�

 
 � � � 
 �am
� 
 � � � 
 �am��

 � � � � 
 �am��
� � � � � � � � � � � � � � �

 
 � � � � �a�

�CCCCA �

Let us note that to reduce the equation ����� to the system ������ we could ap�
ply the usual change of variables in which the successive derivatives of a solution
are regarded as new unknowns� When the coe�cients a�� ���� am are di�erential
operators� the usual change of variables � unlike to the change of variables that
we use � fails to have an important property� namely the boundedness �in the
terminology of ��� of the matrix A�

We shall also introduce the spaces Wm�� and Vm���� of vector�valued func�
tions with the norms

jjU jj�m�� �

Z
R

e���s

�� mX
q��

jDq
sumj� 	

m��X
j��

jX
q��

jDq
sujj�

�A ds�

jjjF jjj�m���� �

Z
R

e���s

�� mX
j��

j��X
q��

jDq
sfj j�

�A ds�

respectively�

Lemma ��� Let � �� ��k� k � �� ���� n� where �k are the imaginary parts of
the eigenvalues of the matrix A� Then� equation ����� has a unique solution
U � Wm�� for any right�hand side F � �f�� ���� fm� � Vm���� � Moreover� we
have

jjU jjm�� 	 c jjjF jjjm���� �
with c a constant independent of F � and the solution is given by

U �s� �
�p
�	

Z ���i�

���i�

ei�s �� �A��� �F ��� d�

where �F ��� is the Fourier transform of F �s��

Proof� First� we apply the Fourier�Laplace transform to the system ������

�U ��� �
�p
�	

Z
R

e�i�s U �s� ds� �� � ��

The change of variables ����� yields

� �u� 	 am �um � �f��

� �uj � �uj�� 	 am�j�� �um � �fj � for � 	 j 	 m�

By iteration� we arrive at the formulas

�q�uj 	

�
qX

k��

am�j�k�
q�k

�
�um � �uj�q �

q��X
k��

�fj�k �
q�k���

�



�j�uj 	

�
jX

k��

am�j�k�
j�k

�
�um �

j��X
k��

�fj�k �
j�k���

P ����um �
mX
k��

�fk �
k���

the �rst formula being valid for q � �� � � � � j � ��
Taking into account the estimate ����� and the above relations� we obtain

easily�
mX
q��

j�jq
�
j�umj	

m��X
j��

j�jj j�ujj

	 c� jP ����umj	
m��X
j��

jX
n��

j �fnj j�jn�� 	

��m��X
j��

j��X
n��

jam�nj j�jn
�A j�umj

	 c� jP ����umj	 c�

m��X
j��

j �fjj j�jj�� 	 c�

��m��X
j��

jam�j j j�jj
�A j�umj

	 c�

mX
j��

j �fj j j�jj���

the constant c� being independent of � varying over any line in the complex
plane where P ��� �� 
� Hence it follows that

jjU jj�m�� �
mX
q��

jje��sDq
sumjj

�

L� 	
m��X
j��

jX
q��

jje��sDq
sujjj

�

L�

�
mX
q��

jj
qX

k��

Ck
q �

q�kDk
s �e��sum�jj�L� 	

m��X
j��

jX
q��

jj
qX

k��

Ck
q �

q�kDk
s �e��suj�jj�L�

	
mX
q��

qX
k��

Ck
q j�jq�kj
j�kjj�e��sumjj

�

L� 	
m��X
j��

jX
q��

qX
k��

Ck
q j�jq�kj
j�kjj�e��sujjj

�

L�

�

Z
R

�� mX
q��

�j
j� 	 j�j�qj �um�
 � i��j� 	
m��X
j��

jX
q��

�j
j� 	 j�j�q j �uj�
 � i��j�
�A d


	 const���

Z ���i�

���i�

�� mX
q��

j�j�qj �umj� 	
m��X
j��

jX
q��

j�j�qj �ujj�
�A d�

	 const���

Z ���i�

���i�

��� mX
q��

j�jq
�
j �umj	

m��X
j��

jX
q��

j�jqj �ujj
�A�

d�

	 const jjjF jjj�m���� �
where the constant does not depend on F �

This implies that the solution U belongs to the space Wm�� and has the form

U �s� �
�p
�	

Z ���i�

���i�

ei�s ��� A��� �F ��� d��

�



as desired�
�

Let T be a real number and let �T �s� be an in�nitely di�erentiable non�
negative function such that �T �s� � 
 for s � T and �T �s� � � for s � T 	 ��
The following lemma is useful in the sequel� It is a particular case of Lemma ���
of ���

Lemma ��� Let F �s� be a vector�valued function de�ned on �T�	�� and such
that �TF � Vm����� for some �

� � ���k���k���� Let U �s� be a solution of the
equation

DsU �s� �AU �s� � F �s�� s � T� �����

such that �TU � Wm�� � where � � ���k� ���� Then �TU belongs to the space
Wm��

� �

��� Di�erential equations with variable coe�cients

Consider the equation with variable coe�cients

P �s�Ds� � Dm
s u 	

m��X
j��

am�j�s�D
j
su � f�s�� s � R� �����

The coe�cients aj�s�� j � �� ����m� are assumed to be continuous complex�valued
functions of s � R� satisfying

lim
s����

aj�t� � aj � j � �� ����m� �����

where a�� ���� am are constant and am �� 
�
We shall reduce ����� to a �rst order system� This equation can be written

as

P �s�Ds�u�s� � Dm
s u�s� 	

m��X
j��

Dj
s �bm�ju� �s� � f�s�� s � R�

where
bj�s� � aj�s� 	 �j��Dsaj���s� 	 � � �	 �j�j��D

j��
s a��s�

and �j�k are some numbers�
In fact ����� is equivalent to the system of equations	

uj�s� � Dsuj���s� 	 bm�j�s�um�s�� j � �� ����m� ��
Dsu��s� � �bm�s�um�s� 	 f�s��

We are going to consider the system

DsU �A�s�U � F �s�� s � R� �����

where F �s� � �f��s�� ���� fm�s�� and

A�s� �

�BBBB�

 
 � � � 
 �bm
� 
 � � � 
 �bm��

 � � � � 
 �bm��
� � � � � � � � � � � � � � �

 
 � � � � �b�

�CCCCA � �����

�



If F �s� � �f�s�� 
� ���� 
�� equation ����� is equivalent to this system�
Moreover� a solution U of ����� belongs to Wm�� if and only if the corre�

sponding solution u of ����� belongs to Wm�� �

Lemma ��� If� for all s � ����	���

jDq
s �bj�s� � aj� j 	 �� q � 
� ����m� j� j � �� ����m�

where � is a su�ciently small positive constant� then the system ����� has a
unique solution U � Wm�� � for each right�hand side F � Vm���� with � �
���k���k����

Proof� The system ����� can be written as

U � �Ds � A��� �A�s� �A�U � �Ds � A��� F�

where the operator �Ds � A��� is de�ned in Lemma ���� We further obtain

jjj �A�s� �A�U jjj�m����

�

Z
R

e���s
mX
j��

j��X
q��

jDq
s ��am���j � bm���j�s��um� j�ds

�

Z
R

e���s
mX
j��

j��X
q��

j
qX

k��

Ck
q D

q�k
s �am���j � bm���j�s��D

k
sumj� ds

	 c ��
Z
R

e���s
mX
j��

j��X
q��

j
qX

k��

Dk
sumj� ds

	 C �� jjU jj�m�� �

where C is a positive constant independent of � and U � It means that

jjA�s�� AjjWm���Vm����
	
p
C ��

Since � is su�ciently small� we can choose it such that

jj�Ds � A���jjVm�����Wm��
jjA�s� �AjjWm���Vm����

� ��

Hence we deduce that equation ����� has a unique solution in Wm�� �
�

Proposition ��� Let the following conditions hold�

�� lim
s���

jDq
s �bj�s� � aj� j � 
� for q � 
� ����m� j and j � �� ����m�

�� F �s� is a vector�valued function on �T�	��� such that �TF � Vm����� for
some �

� � ���k ���k����
If moreover � � ���k� �� � and U �s� is a solution of the equation

DsU � A�s�U � F �s�� s � T�

such that �TU � Wm�� � then �TU belongs to Wm��
� �

For the proof� see Lemma ��� of Maz�ya and Plamenevskii ���

�



��� Spectral decomposition

In this section we assume that the functions bj�s�� j � 
� ����m� and the complex
numbers aj� j � 
� ����m� satisfy the conditions of Proposition ����

Denote by ���s�� ���� �I�s� the eigenvalues of the matrixA�s� and by ��� ���� �I
their multiplicities� respectively� We assume that these multiplicities do not
depend on s� and we denote by ���A�s���� � when it makes sense � the resolvent
of A�s��

Let �i be a closed Jordan curve around the eigenvalue �i�s� of A�s�� We
de�ne the spectral projection associated to �i�s� by the matrix

Pi�s� �
�

�	i

Z
�i

�� �A�s���� d��

It is well�known that ��� A�s���� can be written in the form

�� �A�s���� �
IX

i��

�i��X
k��

�� � �i�s��
�k��

�A�s� � �i�s�I�
k
Pi�

with �A�s� � ��s�I�� � I� the identity matrix�
Let us denote by

�A�s� � �i�s�I�
�i�� v� � � � � �A�s� � �i�s�I� v� v

a basis of the kernel of the morphism �A�s� � ��s�I��i and by ik�s� the vectors

ik�s� � �A�s� � �i�s�I��i���k v� k � 
� ���� �i� ��

This set of vectors is called an eigenchain corresponding to the eigenvalue �i�s��
Let �i�i���s� be an orthogonal vector to the family



ik�s�

�
k��������i��

� It

means that 

�i�i���s�� 

i
k�s�

�
� ��i����i���k�

where �i�k is the Kronecker symbol�
Denote by �i�i���k�s�� j � 
� ���� �i� �� the vectors given by

�i�i���k�s� �


A��s�� ��i�s�I

�j
��i���s�� k � 
� ���� �i� ��

where A��s� is the adjoint matrix of A�s� and ��i�s� is the conjugate of �i�s��
Note that 


ik�s�� �i�i���l�s�
�

�


�A�s� � �i�s�I�ik�s�� �i�i�l�s�

�
�



ik���s�� �

i
�i�l�s�

�
� ���

�


ik�l�s�� �

i
�i���s�

�
� �k�l�

Hence the set
�
�i�i���s�� ���� �

i
��s�


is an orthogonal system to the system of

vectors


ik�s�

�
k��������i��

�

�



Since the operator Pi maps a vector�valued function F � �f�� ���� fm� into a
linear combination of vectors i��s�� ���� 

i
�i���s�� it is easily veri�ed that

�A�s� � �i�s�I�N PiF �
�i���NX

k��

cik�s�ik�s�� ����
�

The coe�cients cik�s� depend of course on F �
Therefore� if we multiply the equality ����
� by the vector �i�i�k���s�� we

get

cik�s� �


�A�s� � �i�s�I�N��PiF� �A��s� � ��i�s�I��i�i�k���s�

�
�



�A�s� � �i�s�I�N��PiF� �

i
�i�k���s�

�
� ���

�


F� �i�i���k�N�s�

�
�

Now consider the problem

�U � A�s�U � F �s�� s � T� ������

where A�s� is the matrix ����� and T is su�ciently large�
Note that the eigenvalues of A�s� are exactly the roots of the polynomial

P �s� �� � �m 	
m��X
j��

bm�j�s��
j �

Since am �� 
� the value � � 
 is regular for both the operators �� � A��� and
�� � A�s����� Furthermore� any eigenvalue �i�s� of A�s� is bounded below by
a non�negative constant� Thus� there exists 
 � c � � such that

j�i�s�j � c for all s � T�

Consider now the polynomial

D�s� �� � �m�� 	
m��X
j��

j

m
bm�j�s��

j���

We have

jD�s� �i�j � cm�� j ��i�c�m�� 	
m��X
j��

j

m
cm�j bm�j�s� ��i�c�

j�� j


 cm��

��j�i�cjm�� � m��X
j��

j

m
cm�j jbm�j�s�j j�i�cjj��

�A

 cm��

�
j�i�cjm�� �

where

c � min

�
��

�

�m � ��M

�
�

M � sup
j�������m��
s�	T���


jbj�s�j�

�



It follows that

� 	 j�i�cj	 � � �	 j�i�cjm�� 	 m j�icjm��

	 �m

cm��
jD�s� �i�j�

Now� if we di�erentiate the equation P �s� �i�s�� � 
 with respect to s� we
obtain

m D�s� �i�Ds�i�s� � �
m��X
j��

Dsbm�j�s��
j
i

whence

jDs�i�s�j 	 �

cm��
� ��

m��X
j��

j�i�cjj � �
m��X
j��

jDsbm�j�s�j j�ijj �

	 �

cm��
sup

j�������m
jDsbj�s�j�

The second derivative of P �s� �i�s�� � 
 gives

m D�s� �i�D
�
s�i�s�

� � �m�m � ���m��i 	
m��X
j��

j�j � �� bm�j�s��
j��
i � �Ds�i�s��

�

� �
m��X
j��

j Dsbm�j�s��
j��
i �Ds�i�s� �

m��X
j��

D�
sbm�j�s��

j
i �

Proceeding as above� we get

jD�
s�i�s�j 	 C

�
sup

j�������m��
jDsbj�s�j� 	 sup

j�������m��
jD�

sbj�s�j
�

	 C
X

n�m��n�m���

�Y
i��

sup
j�������m��

jDni
s bj�s�jmi �

the constant C being independent of s�
In fact� the derivative of order � with respect to s of the eigenvalue �i�s�

satisfy the equality

m D�s� �i�D
�
s �i�s�

�
X

����������������������

�D��
s �i�s��

�� � � � �D����
s �i�s��

���� P 	��
�s�

where P 	��
�s� is a polynomial of order at most m � � and whose coe�cients
involve derivatives of order �� of bj�s�� By the same argument we get

jD�
s�i�s�j 	 C ���s�� � � �� � � � �m�

where

���s� �
X

n�m������n�m���

�Y
i��

sup
j�������m��

jDni
s bj�s�jmi �

�




Let h be a vector independent of s� such that �A�s� � �i�s�I��i�� h �� 

where �i is the multiplicity of �i�s�� Denote by ik�s� the vectors

ik�s� � �A�s� � �i�s�I��i���k h� j � 
� ���� �i� ��

By the above estimate� the vector i�i���s� � �A�s� � �i�s�I� h satis�es

jD�
s 

i
�i��

�s�j 	 c jjD�
s �A�s� � A� jj

	 C ���s��

If k � �i � �� we have

D�
s 

i
�i���s� �

�X
j��

C�
j D

j
s �A�s� � �i�s��D

��j
s i�i���s��

and so

jD�
s 

i
�i���s�j 	 c

X
n��n���

�n��s� �n��s�

	 C ���s��

Repeating this argument� we obtain

jD�
s 

i
k�s�j 	 C ���s��

thus arriving at the following lemma�

Lemma ��� Consider the problem �U �A�s�U � F �s�� for s � T � where A�s�
is the matrix ����� and T is su�ciently large� Let �i�s� be an eigenvalue of A�s�
to which there corresponds the eigenchain

i��s�� 
i
��s�� � � � � 

i
�i���s�� � 	 i 	 I�

Assume that the conditions on the coe�cients bj�s� of Proposition 	�
 hold�
Then we have the estimates

jD�
s �i�s�j 	 C ���s�� i � �� ���� I� � � �� ����m�

jD�
s

i
k�s�j 	 C ���s�� i � �� ���� I� k � 
� ���� �i� ��

� Asymptotic behaviour of solutions

We begin this section with the study of the asymptotic behaviour of solutions of
equation ������ The results we obtain will be applied � via a change of variable
� to get asymptotics for the solutions of equation ������ Hence the asymptotic
behaviour of solutions of elliptic equations close to a cusp �see Corollary ����
will follow as a consequence of the above results�

��� Asymptotics for s� ��

Let us consider the equation

DsU �A�s�U � 
� s � T � �����

��



we con�ne ourselves to solutions U satisfying �TU � Wm���
We have two situations� The �rst of the two is when the lines �� � �� and

�� � �� limiting the strip �� � �� � �� do not involve any eigenvalue of the
matrix A� The second situation appears if one of the above lines contains an
eigenvalue of A� In this case we will derive two di�erent asymptotic formulas
for the solution U �s�� The �rst one contains eigenvalues of the limiting matrix
A while the second one involves eigenvalues of the perturbed matrix A�s��

Proposition ��� Assume that�

�� Condition 	 of Proposition 	�
 is ful�lled�

�� N eigenvalues ��� ���� �N �counting the multiplicities� to which correspond
the eigenchains ik� k � 
� ���� �i� �� i � �� ���� N � are located in the strip
�� � ��i � ���

�� There are no eigenvalues of the matrix A on the lines �� � �� and
�� � ���

Then� any solution U �s� of the equation DsU � A�s�U � 
� s � T � such that
�TU � Wm�� can be written as

U �s� �
NX
i��

�i��X
k��

�i���kX
l��

�i���kX
n�l

ei�is
�cik�	n�l
��i�

�n� l� 

�is�l

l 
ik 	 Z�s��

where �TZ � Wm���

Proof� We �rst consider the equation

DsU �AU � F

where F is a function with support in R��
Assume that in the strip �� � ��i � �� there exist only N eigenvalues

��� ���� �N of A with multiplicities ��� ���� �N� respectively� Assume also that
there are no eigenvalues of A on the lines �� � �� and �� � ���

If F belongs to the space Vm���� �and therefore to Vm������ then the solution
U of our equation is unique in each of the spaces Wm�� and Wm�� � Moreover�

the Fourier transform �F ��� of F �s� is analytic in the strip �� � �� � ���
Using the Cauchy formula� we get

U �s� �
�p
�	

Z ���i�

���i�

ei�s �� �A��� �F ��� d�

�
�p
�	

lim
X���

Z X�i�

�X�i�

ei�s �� � A�
�� �F ��� d�

�
�p
�	

lim
X���

�Z �X�i�

�X�i�

	

Z X�i�

�X�i�

	

Z X�i�

X�i�

�
	 R

�
�p
�	

Z ���i�

���i�

ei�s �� �A��� �F ��� d� 	 R

where R stands for the sum of the residues of the function ei�s �� � A��� �F ���
in the strip �� � �� � �� �cf� Fig� ���

��
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Fig� �� The contour of integration�

Since the singularities of the function ei�s��� A��� �F ��� are only the poles
of ��� A���� i�e�� the eigenvalues ��� ���� �N� it follows that

Res
�
ei�s��� A��� �F ���

�
j���i

�
�

��i � �� 

�i��X
k��

�i���kX
l��

cil���il


ei�s ��� �i�

�i���k
�	�i��
 j���i

� ei�is
�i��X
k��

�i���kX
l��

�i���kX
n�l

�cik�	n�l
��i�

�n� l� 

�is�l

l 
ik�

Hence�

U �s� �
NX
i��

�i��X
k��

�i���kX
l��

�i���kX
n�l

ei�is
�cik�	n�l
��i�

�n� l� 

�is�l

l 
ik

	
�p
�	

Z ���i�

���i�

ei�s ��� A��� �F ��� d��

We now consider the equation

DsU �A�s�U � 
� s � T�

and we introduce the function V � �TU � This new function ful�lls the equation

DsV � A�s�V � F� s � R�
where F � �Ds�T �U is a function with compact support�

Assume that V � Wm�� and rewrite the above equation as

DsV � AV � �A�s� �A�V 	 F�

��



Since both F and �A�s��A�V belong to the space Vm����� it follows from what
has already been proved that the solution U can be represented in the form

U �s� �
NX
i��

�i��X
k��

�i���kX
l��

�i���kX
n�l

ei�is
�cik�	n�l
��i�

�n� l� 

�is�l

l 
ik 	 Z�s��

where �TZ � Wm��� This completes the proof�
�

Now� assume for simplicity that only the line�� � �� contains an eigenvalue
of the matrix A� In this case� Proposition ��� can be applied but in a slightly
di�erent form�

Proposition ��� Assume that�

�� Condition 	 of Proposition 	�
 is ful�lled�

�� N eigenvalues ��� ���� �N �counting the multiplicities� to which correspond
the eigenchains ik� k � 
� ���� �i� �� i � �� ���� N � are located in the strip
�� � ��i � ���

�� There is only one eigenvalue �N�� of the matrix A on the line �� � ���

Then� any solution U �s� of the equation DsU � A�s�U � 
� s � T � such that
�TU � Wm��� can be written as

U �s� �
NX
i��

�i��X
k��

�i���kX
l��

�i���kX
n�l

ei�is
�cik�	n�l
��i�

�n � l� 

�is�l

l 
ik 	 ei�N��s

�N����X
k��

ck
�is�k

k 

	 Z�s��

where �T ��Ds � �N����N��Z� � Wm��� and c�� � � � � c�N���� are some constant
vectors�

Proof� Assume that the line �� � �� involves an eigenvalue �N�� of
multiplicity �N�� of A and consider the functions

k�s� � sk ei�N��s� 
 	 k 	 �N�� � ��

Let �P��� be the polynomial �� � �N����N�� � Denote by P�Ds� the linear
di�erential operator with constant coe�cients� whose order is �N�� and which
vanishes on all the functions k�s�� This operator P�Ds� can be represented by

P�Ds� � �Ds � �N���
�N��

�

�N��X
���

C�N��

� ���N����N����D�
s �

Consider now the equation

DsU � AU � F� s � R�

where F is a function with a support in R��

��



Assume that ��� ���� �N are N eigenvalues of A of multiplicities ��� ���� �N�
respectively� lying in the strip �� � ��i � ��� Assume also for simplicity that
there are no eigenvalues of A on the line �� � ���

If we apply the Fourier transform to the above equation� it gives

�P �U � gPU
� �� � �N����N�� ��� A��� �F�

where the resolvent ��� A��� has the form given in Subsection ����
Note that the function �����N��

�N�����A��� is meromorphic as ���A����
but the point �N�� is now regular� Following the proof of Proposition ���� we
get

P�Ds�U �s� �
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it follows that
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Hence�

P�Ds�U �s� � P�Ds�
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Since the functions

ik

k 
k�s�� k � 
� � � � � �N�� � ��

span the space of solutions of the equation P�Ds�u � 
� we get
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where �T �P�Ds�Z� � Wm��� and c�� � � � � c�N��
are some constant vectors�

�

As mentioned� we are going to give yet another result about asymptotics of
solutions of equation ����� when one of the lines limiting the strip �� � �� �
�� contains an eigenvalue of A�

The results of Section � show that the following proposition is a consequence
of Theorem ��� of Plamenevskii ���

Proposition ��� Let the following conditions hold�

�� On the line �� � ��i� there is one eigenvalue �� � ��i�i of the matrix A
and only one eigenvalue �i�s� �to which corresponds the eigenchain ik�s��
k � �� ���� �i� �� of the matrix A�s� tends to it as s � 	�� the integer
�i being independent of s�

�� lim
s���

�q�s� � 
� for q � 
� � � � �m� where �q�s� � max
j�������m

jDq
s�bj�s� � aj�j�

��
��R
T

s�r ���s�ds � � and
��R
T

s�r


��q�s� 	 ��q �s�

�
ds � �� where r is equal

to �� if �� is simple� and �i � �� if �� is multiple�

If U �s� is a solution of the system DsU � A�s�U � 
� s � T � such that �TU �
Wm�� � for � � ���i���i���� then

U �s� � exp

�
i

Z s

T

�i���d�

���i��X
k��

�
P
	i

�i���k

�s� 	 o���
�
ik�s� 	 W �s�

�
�

where �TW � W��� and P
	i

k �s� denotes a polynomial of degree k whose coe��

cients depend on the solution U �s��

��� Applications

Consider the di�erential equation�
�

���t�
Dt

�m
u 	

X
����m��

am���t�

�
�

���t�
Dt

��

u � f�t�� t � �� �����

where ��t� is a smooth real�valued function on the interval �
� �� such that
��t� � 	� as t� 
 and ���t� � 
 for t � �
� ��

The coe�cients a��t�� � � � � am�t� are assumed to be continuous up to t � 
�
We denote by a�� � � � � am their values at t � 
� Without loss of generality we
can assume that am �� 
�

As mentioned� such di�erential equations appear in the analysis on mani�
folds with singular points� The derivative ���t� is determined close to t � 

by geometry of singularities� It in turn determines the function ��t� up to a
constant� and it is a property of �real� singularities that ��
	� � �� The last
condition is necessary in order that ��t� could be extended to a di�eomerphism
of R� onto the whole real axis R� Such is the case� in particular� if the derivative
���t� does change the sign for small t � 
�

��



Example ��� Let ��t� � �tk��� for t � �
� �� where k 
 
� Choose any C�

function ��t� on R� with negative values� such that

��t� �

	 �tk��� if t � �
� ��
��� if t � ���	���

Set

��t� �

Z t

t�

d�

����
� t � R��

where t� � 
 is a �xed real number� Note that ��t� � 	� as t � 
� and
��t� � �� as t � 	�� Moreover� ���t� � ����t� is negative for all t � R�
hence the function t �� ��t� de�nes a di�eomorphism between R� and R�

�

The change of variable t � ����s� yields

lim
s���



a� � ���

�
�s� � a��

Ds



a� � ���

�
�s� �

�
�

���t�
Dta�

�

����s�

�
�

Hence� to derive asymptotic formulas for solutions of equation ����� when t� 
�
we just need to apply the above change of variable and reduce the equation �����
to the form ����� which has been already investigated�

To simplify notation� we let Dt stand for the singular derivative occurring
in ������ i�e��

Dt �
�

���t�
Dt�

Theorem ��� Assume that�

�� lim
t��

jDq
t �bj�t� � aj� j � 
� for q � 
� ����m � j and j � �� ����m� where

bj�t� � aj�t� 	 �j��Dtaj���t� 	 � � �	 �j�j��D
j��
t a��t��

�� N eigenvalues ��� ���� �N �counting the multiplicities� of A� to which cor�
respond the eigenchains ik� k � 
� ���� �i � �� i � �� ���� N � are located in
the strip �� � ��i � ���

�� There are no eigenvalues of the matrix A on the lines �� � �� and
�� � ���

Then� any solution U �t� of the equation DtU � A�t�U � 
� t � �� such that
�TU �����s�� � Wm�� can be written as

U �t� �
NX
i��

�i��X
k��

�i���kX
l��

�i���kX
n�l

ei�i		t

�cik�	n�l
��i�

�n� l� 

�i��t��l

l 
ik 	 Z�t��

where �TZ�����s�� � Wm���

If the lines limiting the strip �� � �� � �� meet the eigenvalues of the
matrix A� Theorem ��� needs a slight modi�cation �cf� Proposition �����

��



Corollary ��� Assume that�

�� lim
t��

jDq
t �bj�t� � aj� j � 
� for q � 
� ����m� j and j � �� ����m�

�� N eigenvalues ��� ���� �N �counting the multiplicities� of the matrix A� to
which correspond the eigenchains ik� k � 
� ���� �i � �� i � �� ���� N � are
located in the strip �� � ��i � ���

�� There is only one eigenvalue �N�� of the matrix A on the line �� � ���

Then� any solution U �t� of the equation DtU � A�t�U � 
� t � �� such that
�TU �����s�� � Wm��� can be written as

U �t�
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NX
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�i��X
k��

�i���kX
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�i���kX
n�l
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�i��t��l

l 
ik 	 ei�N��		t


�N����X
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	 Z�t��

where �T ��Dt � �N����N��Z� �����s�� � Wm��� and c�� � � � � c�N���� are some
constant vectors�

Using again the change of variable t � ����s�� we obtain the following con�
sequence of Proposition ���� Set

���t� �
X

n�m������n�m���

�Y
i��

sup
j�������m��

jDni
t bj�t�jmi �

Theorem ��� Let the following conditions hold�

�� On the line �� � ��i� there is one eigenvalue �� � ��i�i of the matrix A
and only one eigenvalue �i�t� �to which corresponds the eigenchain ik�t��
k � �� ���� �i � �� of the matrix A�t� tends to it as t � 
� the integer �i
being independent of t�

�� lim
t��

�q�t� � 
� for q � 
� � � � �m� where �q�t� � max
j�������m

jDq
t �bj�t� � aj�j�
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�R
�

���t���r ���t�d��t� �� and
�R
�

���t���r


��q�t� 	 ��q �t�

�
d��t� ��� where r

is equal to �� if �� is simple� and �i � �� if �� is multiple�

If U �t� is a solution of DtU�A�t�U � 
� t � �� satisfying �TU �����s�� � Wm�� �
for � � ���i���i���� then

U �t� � exp

�
i

Z t

�

�i���d����

���i��X
k��

�
P
	i

�i���k

���t�� 	 o���
�
ik�t� 	 W �t�

�
�

where �TW �����s�� � W��� and P
	i

k �s� denotes a polynomial of degree k whose

coe�cients depend on the solution U �t��

��



��� The case of C� coe�cients

In this part we are going to derive asymptotic formulas for solutions of the
equation ����� when the coe�cients a��t�� � � � � am�t� are smooth up to t � 
�
Let us mention once again that such equations appear when we study linear
di�erential operators close to cuspidal singularities�

By assumption� the derivatives of arbitrary order of aj�t� are continuous up
to t � 
� and consequently the functions D�

t aj�t� are bounded on the interval
�
� ��

Moreover�

bj�t� � aj�
� � aj �

D
q
t �bj�t� � aj� � 


when t tends to 
� for all q � 
� ����m� j and j � �� ����m� It follows that the
�rst condition of Theorem ��� is ful�lled� Hence Theorem ��� and Corollary ���
can be �simultaneously� rewritten in as follows�

Corollary ��	 Assume that�

�� The coe�cients a��t�� � � � � am�t� are smooth up to t � 
�

�� N eigenvalues ��� ���� �N �counting the multiplicities� of the matrix A� to
which correspond the eigenchains ik� k � 
� ���� �i � �� i � �� ���� N � are
located in the strip �� � ��i � ���

�� There is only one eigenvalue �N�� of the matrix A on the line �� � ���
Then� any solution U �t� of the equation DtU � A�t�U � 
� t � �� such that
�TU �����s�� � Wm��� can be written as

U �t�

�
NX
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�i��X
k��

�i���kX
l��

�i���kX
n�l

ei�i		t

�cik�	n�l
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�n� l� 
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ik 	 ei�N��		t


�N����X
k��

ck
�i��t��k

k 

	 Z�t��

where �T ��Dt � �N����N��Z� �����s�� � Wm��� and c�� � � � � c�N���� are some
constant vectors� If there are no eigenvalues of A on the line �� � ��� the
vectors c�� � � � � c�N���� vanish and the function Z is such that �TZ�����s�� �
Wm���

If ��t� � � log t� we have Dt � �tDt� i�e�� ����� is a Fuchs�type equation�
Hence� the asymptotic formula given in Theorem ��� is similar to the formula
obtained by Kondrat�ev in ��� i�e��

U �t� �
NX
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�i��X
k��

�i���kX
l��

�i���kX
n�l

t�i�i
�cik�	n�l
��i�

�n� l� 

��i log t�l

l 
ik 	 Z�t��

It also possible to derive asymptotics involving the eigenvalues of the ma�
trix A�t�� for solutions of Fuchs�type equations� In fact� the integrals given in
Theorem ��� converge because

lim
t��

t�
� �log t��r � 
�

��



In this case� we have

U �t� � exp

�
�i
Z t

�

�i���

�
d�

���i��X
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�
P
	i

�i���k

�� log t� 	 o���
�
ik�t� 	 W �t�
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�

Remark ��
 Unfortunately� when ��t� is given by Example �
 and k � 
�
the mentioned integrals do not converge any more and Theorem �� cannot be
applied�

�




References

�� S� Agmon and L� Nirenberg� Properties of solutions of ordinary di�erential
equations in Banach space� Comm� Pure Appl� Math� �� ������� ��������
MR ��������

�� I� C� Gohberg and M� G� Krein� The basic propositions on defect num�
bers� root numbers and indices of linear operators� Uspekhi Mat� Nauk ��

������� no� � ����� ������� English translation� Amer� Math� Soc� Transl�
�� ����
�� �������� MR �
������

�� V� A� Kondrat�ev� Bondary problems for elliptic equations in domains with
conical or angular points� Transactions of the Moscow Mathematical Soci�
ety �� �������

�� V� G� Maz�ya and B� A� Plamenevskii� On the asymptotic behaviour of
solutions of di�erential equations in Hilbert space� Math� USSR Izvestiya �
������� no� �� �
��������

�� B� A� Plamenevskii� On the asymptotic behaviour of solutions of quasiellip�
tic di�erential equations with operator coe�cients� Math� USSR Izvestiya
� ������� no� �� ��������
�

�� B��W� Schulze� Pseudo�Di�erential Boundary Value Problems � Conical
Singularities and Asymptotics� Akademie Verlag� Berlin� �����

�� B��W� Schulze and N� Tarkhanov� Pseudodi�erential Calculus on Mani�
folds with Singular Points� Preprint MPI �����
� Max�Planck�Institute f!ur
Math�� Bonn� �����

�� V� Rabinovich� B��W� Schulze and N� Tarkhanov� A Calculus of Boundary
Value Problems in Domains with Non�Lipschitz Singular Points� Preprint
��"�� Univ� of Potsdam� �����

�� B��W� Schulze and N� Tarkhanov� Euler Solutions of Pseudodi�erential
Equations� Preprint ��"�� Univ� of Potsdam� �����

��


	Introduction
	1 Some preliminary results
	1.1 Differential equations with constant coecients
	1.2 Differential equations with variable coecients
	1.3 Spectral decomposition

	2 Asymptotic behaviour of solutions
	2.1 Asymptotics for s -> +infinite
	2.2 Applications
	2.3 The case of C-infinite coefficients

	References

