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Abstract. The paper deals with a non-linear singular partial differential
equation: (E) td/0t = F(t,x,u,du/0x) in the holomorphic category. When
(E) is of Fuchsian type, the existence of the unique holomorphic solution was
established by Gérard-Tahara [2]. In this paper, under the assumption that
(E) is of totally characteristic type, the authors give a sufficient condition for
(E) to have a unique holomorphic solution. The result is extended to higher
order case.
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1 Introduction and Main Result.

Let (t,2) € C; x C,, we consider the following non-linear first order
singular partial differential equation

ou ou
ta = F (t,x,u,a—x) 5 (1)

where u = wu(?,x) is an unknown function, F(¢,2,u,v) is a function with
respect to the variables (¢, z,u,v) € C; x C, x C, x C,. Further we assume
the following conditions:
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(H1) F(¢,z,u,v)is a holomorphic function defined in a neighborhood of
the origin (0,0,0,0) € C; x C, x C, x C,.
(H2) F(0,2,0,0) =0 near x = 0.

Thus the function F(¢,x,u,v) may be expressed in the form:

F(tu,0) = a{)t 4 B 4 4@+ Baltyue), (2)
where
oF oF oF
a(x) = W(O,x,(),()), Blx) = a—u(O,x,0,0), () = %(O,x,(),()),

and the degree of Ry(t, x,u,v) with respect to (¢, u,v) is greater than or equal
to 2.

If v(x) = 0 near @ = 0, then B(x) is the indicial exponent of (1), and
Gérard-Tahara [2] gives that, if 3(0) ¢ {1,2,---}, the equation (1) has a
unique holomorphic solution u(¢, x) near a neighborhood of (0,0) € C; x C,
with u(0,2) = 0 near # = 0. The condition “y(x) = 0 near x = 0”7 means
that the linearlized equation of (1) is “Fuchsian type”; so, in this case, the
equation (1) is called non-linear Fuchsian type partial differential equation
(or is called “Briot-Bouquet type equation” in [1, 2]).

Remark. Quite recently, Yamane [7] also studied the case for the nonlinear
Fuchsian type PDE whose indicial exponent takes a positive integer value.

If y(x) # 0 and v(0) # 0, then we can use the implicit function theorem to
solve v from the equation (1), then, by using Cauchu-Kowalewski Theorem,
we can deduce easily that the equation (1) has a unique holomorphic solution
u(t, ) with u(0,2) = 0 and u(¢,0) = 0 near (0,0) € C; x C,.

So we are only interested in the case of v(x) #Z 0 and ¥(0) = 0, i.e. the
case of y(x) = aPe(x), where p is a positive integer and ¢(0) # 0. In this
case, the equation (1) is called totally characteristic type; and ((z) 4+ v(x)0,
is the indicial operator of (1). We know that there is an essential difference
between the case of p = 1 and the case of p > 2, since, in the case of p > 2,
the indicial operator 3(x)+ v(x)0, has an irregular singularity at « = 0.

In this paper, we shall consider the simplest case, i.e.

(H3) ~(x) = xc(x), and ¢(0) #0

and the case of y(x) = aP¢(x), for p > 2 will be studied in the forthcoming
paper.
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We have the following result:

Theorem 1. Under the conditions (H1), (H2) and (H3), if Re ¢(0) < 0 and
ﬂcg(o;M ¢ Z_ ={0,—1,-2,---} for any k > 1, then the equation (1) has a
unique holomorphic solution u(t,x) near (0,0) € C; x C, with u(0,2) =0
near v = 0.

2 Proof of Main Result.

First we put formally
u(t,z) = up(2)t". (3)
k=1

Then introduce the formal series (3) into the equation (1) and compare the
coefficients of t* in two sides of the equation, we have

u = a(z) + Bla)uy + y(x)L,
2ur = Bl)us +(0)22 + i, ), 1
Bus = Bla)us +Y(2) 22 + folur,up, 52,92, .

Thus we obtain the following recursive formula

0 0 Ouj—
) G (3 = Ry = focs (e, G,

),forkE]N,

where v(z) = xc(x), and fo(z) = —a(x), so

xauk n (5(:1?) — k) "y = %fk—l = fu_1, for k € N, (5)

Denoting % = Mg (x), we easily see that if [, (0) ¢ Z_ =
{0,—1,-2,---}, then for any k& > 1, the equation (5) has a unique holo-
morphic solution ug(x) near © = 0 and moreover we see that all uy(x) are
holomorphic in a common neighborhood of * = 0. It remains to prove that
the formal series solution (3) is convergent near (0,0) € C; x C,.

We need the following two lemmas, which will be useful for the proof of

the main result.
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Lemma 1. If Re ¢(0) < 0, then there exists K > 0, large enough, such that
¢ oz .
luslle < M femally, for k> K (3C > 0), (6)

where uy, is the solution of (5), and the norm || - ||, (for r > 0 small enough)
is defined by || fl, = maxju|<, [ f(2)].

Proof. From the equation (5), we have

d z A (s) R z A (s) 5 1
£ o] =,

where a is a point in the segment (0, 2) joining the two points 0 and x in
the complex plane. Thus

/a dy [ o (y)] dy = /ax el XkT(S)dsfk—l(y)idya

@ AR(e) 4o z ¥ AR(s) 4o~ 1
el 5 () — i) = [l s )y

that is

and therefore

z A (s)
uk(x) = e_fa :

a)—l—/axe_f E

Now, letting @ — 0 in [(0, 2) we have

o 1
! Ji-1{y)dy.

z Ap(s)
e Jo 75 dsuk(a) — 0,

because, for k large enough, we know Re A,(0) > 0.
Hence we have

wle) = [ BT )y,

this implies, for r > 0 small enough, that

T _ [T pls)=k
/ e fy sc(s) d

||uk|l» < max
|| <r

51 r
;| ol (7)



Holomorphic Solution 5

Since ¢(0) # 0, then f((z)) is bounded near x = 0, thus there exists a
constant (4, such that

C1
_ [ B(s) =1 1 l=l x
ey s < Ol T i) Jz] _

|y

Next, we set Cy = —Re ¢(0) > 0, then near = 0 we have

_k
Y

Thus we obtain, for a constant ¢ > 0, that

k
Y CE | o ‘% T
/ & fy sc(S) d _dy S C/ (m) 2 _dT/ —c |x|01 c{; 776}?2 01 1d77
0 y 0 n n 0
(8)
Observe (3 > 0, so if we choose K > 0 large enough, suth that C% —Cy—
1 >0 for any £ > K, then

Cy - = .
o ki — .0,

Hence we can choose a constant C' > 0, suth that for any £ > K we have

k—ccchQ < %, this implies, combining with (7) and (8), that Lemma 1 holds.

Lemma 2. Let R > 0 and f(x) be a holomorphic function on D = {x €
C | |z| <R} Iftoranyr, 0 <r < R, f(x) satisfies

¢
< -
max |f(x)] < e
for some ¢ > 0 and a > 0, then we have
af (a + 1)ec
g’lf;)r( %(l'” ~ W, for 0 < Vr < R. (9)

The proof of Lemma 2 is well-known, cf. Lemma 5.1.3 of [6] (also see [5]).
Now let us prove Theorem 1. First we expand the remainder term
Ry(t, x,u,v) of (2) into Taylor series with respect to (¢, u,v), i.e.

Ry(t,z,u,0) = Y. apgala)tPulo”.

pHgt+a>2
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We let R > 0 small enough, such that

(1) %5(7;‘)(90) is holomorphic on D = {z € C | || < R};
(i) |%2229)] < 4, on D

(ii1) X pigtas2 Apgat?Y 7Y™ is a convergent power series in (Z,Y).

Secondly from the equation (4), we have

3 _ _ o)
(xaac + )\1)U1 - e(x)’
a9 _ ap,g,a () ...
(w57 + M Jur = > > o(x) X Uk X X U (10)
prota>2 ptkittkg
+i 4 FHla=k
X aull X oeee X %
dx dx

Without loss of generality, we may assume that the estimate (6) in Lemma
1 holds for any £ > 1, i.e.

C -~
|kl < ?ka_ﬂ\r, for k> 1,
where C' is independent of r. Then we choose A > 0, suth that on Dp,

Ju
lui(z)] < A and ‘6—:1:1 < A.

Now we introduce a function Y'(¢), satisfying the following equation:

Z Ap,q,oz
(R — r)p+q+a—2

" ptgtax2

Y = At + Y (Y, (11)

where r is a parameter with 0 < r < R.

Since the equation (11) is an analytic functional equation in Y, then we
can use the implicit function theorem to deduce that the equation (11) has a
unique holomorphic solution Y (¢) in a neighborhood of t = 0 with Y'(0) = 0.

Expanding Y'(¢) into Taylor series in ¢,

Y(t) =Y vith (12)

k>1
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From the equation (11), we know that the coefficients of (12) can be given
by

Yi= A,
and for £ > 2
Y. = ¢ Z Z Ap7q7oz Ve % XY
R_rp"‘q‘l'az? PR+ kg (R — r)ptata=? . )
+i+FHla=k
< (eYl) x - x (eYi,).
Moreover we can deduce that Y% is of the form
Cy
Yk:W,fork:L 27 (14)

where ) = A, and the constants C; > 0, for £ > 2, can be decided induc-
tively from the equation (13), which are independent of r. Actually from
(13), it is easy to check that the order of (Rl_r) isk—1,4e. 1+(p+qg+
a=2)+ k-4 +k,-D+lL -1+ +({s—1)=k—1, so the
formula (14) will be hold.

Next, we prove that the series 37,5, Y, t* is a majorant series for the formal

series solution 37;5q ug(z)t* near x = 0. In fact, we can prove, by induction,
that for any £ > 1 and 0 < r < R, we have

lup(@)] < [kug(z)| <Y, on Dy (1)
%(m) < é€Yy, on D,. (11)

Actually, since Y7 = A, the estimates (1) and (/1) hold for k = 1. Suppose
that k > 2, and for any 1 <i < k, (/) and (/1) are all hold for ¢. Then for
i = k, from the equation (10) and Lemma 1 (here the estimate (6) holds for
any k > 1) and inductive assumptions, we have

ur(e)l <% >0 > Apga Xk (2)] X - e x ug (@)

prgta>2 ptkit.tkhq
+i+-+la=k

5 3
< |G (@)] < e xS (a)]

IA

% Z Z Apga X Y X oo X Y,

prgta>2 ptkit.tkhq
+i+-+la=k

X (eYy) x -+ x (eYy,).
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Since R is small enough, we may assume 0 < R < 1, thus (R—r)Ptete=2 <
1, then we have

Apga
lug(2)| < § > > (R_rz;gjl—q-l—a—Z X Vi X o X Yy,

prgta>2 prkit.tkq
+i+-+la=k

x(eYy,) x -+ x (eY,).

From the formule (13) and (14), we have

R—r C 1
kP Tk (R—r)k

luk(z)] <

Thus
Ch Ch

|uk(x)| < |kuk(x)| < (R_r)k_g < (R—T)k_l =

the estimate (/) holds.
Next, by using Lemma 2, we have
auk k —1 GCk
htinlid < :
dx (2)] < k (R—r)kt

< €Yy,

this implies the estimate (I1). Therefore we have proved that 3, Yt* is
the majorant series of the formal series solution (3) near x = 0, thus the
formal series solution (3) is convergent near (0,0) € C; x C,, Theorem 1 is
proved.

3 Case of High Order Singular PDE

In this section, we shall extend the result of Theorem 1 to the case of high
order singular partial differential equations. Let us consider the following
high order singular partial differential equation:

(t0)™u = F (t,:z;, {(tat)fagu}msm) L (La)€CixCy  (15)
g<m

Now we denote (19;)/9%u by notation 7, i.ec.

(tat)]agu L ZLO[, and {(tat)]agu}]-l-aSm L Z — {Z]"a}]-l-aSm .
g<m j<m
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For the function F(¢,x,7), we suppose

(H1)” F(t,z,7) is a holomorphic function defined in a neighborhood
of the origin (0,0,0) € C; x C, x CV|
where N = #{(j,a) | j+a <m,j <m}.

(H2)” F(0,2,0) =0 near « = 0.

Thus we rewrite F'(¢,x, 7Z) near the origin as

OF
W(vavo)t + Z

Jtam
g<m

F
77 (0,2,0) 70 + Balt, 2, 7), (16
Jyx

F(t,z,7) =
where the degree of Ry(t,x, Z) with respect to (¢, Z) is greater than or equal
to 2.

If %(O,x,ﬂ) = 0 near = 0 for any a > 0, then the equation (15) is
called non-linear Fuchsian type partial differential equation. In this case the
existence and uniqueness of holomorphic solution of (15) has been proved by
Gérard and Tahara [3].

Here we shall consider the case for the equation (15) to be totally char-
acteristic type. Denote %(O,x,()) by a(z), and 3 aF (O x,0) by b (x), then

the equation (15) becomes

c(a,t0p, 0p)u = a(x)t + Ry(t, x, 7), (17)
where the operator
C((E, tat, a ) tat Z b] o tat ]aa (18)
Jtam
J<m

is a linear singular partial differential operator, its symbol is given by

c(w, p, € — > biala)p’e.
Jta<lm
J<m

We define the indicial operator of (15) as
c(x, X, 0y) = [t (2, 10,.0,)1 ] |1=0, for A € C.
Denoting ¢, (, p, £) as principal symbol of ¢(z,td;, d,), i.e.
Cl,p,6) = p™ = Y biala)p’€”.

Jta=m
g<m
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Thus we suppose the following condition:

(H3)” bj () = l’ab]a( ) for j4+a < mandj < m, b]a( ) are holomorphic
near x = 0 and bo,m( ) #0

Under the condition (H3)’, the equation (15) is called totally character-
istic type non-linear singular partial differential equation, and the operator
c(x,t0, 0;) is a linear partial differential operator with regular singularity at
(0,0) € C; x C,.. Furthermore, the principal symbol ¢, can be factorized as

m

e, p, € Z b]a —bOm Hl'f i@, p)),  (19)

Jta=m ]:1
J<m

where &;(x, p) is a continuous function near & = 0 and is homogeneous in p
of degree 1, and here we suppose

(H4)” For every j, 1 < j <m, Re ;(0,1) < 0.
For any k > 1, operator ¢(x, k, d,) is a Fuchsian operator in x, its indicial
polynomial is defined as
Lk, )\) = [z ¢e(z, k, 0p)2"]| =0,
thus roots of the indicial polynomial are called indicial exponents of
c(x, k,0;). We have following result:

Theorem 2. Under the conditions (H1)’, (H2)’, (H3)" and (H4)’, if for any
E>1L(k,X)#0 forany A € Z, = {0,1,2,---}, then the equation (15) has
a unique holomorphic solution u(t,x) near (0,0) € C; x C, with u(0,2) =0
near v = 0.

In order to prove Theorem 2, we let

= g):uk(:z;)tk (20)

be the formal series solution of the equation (15), then we introduce this
formal series into the equation (17), and comparing the coefficients of ¥, for
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k > 1, in both sides of the equation, we obtain
e(a, 1,0)ur(x) = alx),

c(z ke, O )up(z) = fooy {Puszl <i<k—1,0<a<m}), (21)

where f_1 is a holomorphic function near = 0, only depending on {02 u;; 1 <
1 <k—-1,0<a<m}.

Since L(k,A) # 0, for any & > 1 and A € Z,, we can solve the functions
ug(x) uniquely from the equation (21), which are holomorphic in a common
neighborhood of x = 0. It remains to prove the convergence of the formal
seires solution (20).

Similar to Lemma 1, for high order equation we also have the following
lemma, which is important in the proof of Theorem 2.

Lemma 3. There exists a constant C' > 0, suth that for k large enough, we
have

ka il (22)

ekl <

S o
where r > 0 small enough.

Proof: First, similar to (19), we can also use the condition (H3)" and
factorize the operator ¢(x, k, d,) into

m

(@, ky€) = boula Mt - &, k), bon(0) 0.

Thus near @ = 0, the equation (21) becomes

[1(20, = & k)ur(e) = fr-, (23)
7=1
where fr_q = l;&}n(x)fk_l, and we know that &;(x, k) in the formula (19) is

the main part of é(:z;, k), which means

fj(ka)
fj(ka)

— 1, as k — oo. (24)
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We set

m

‘/1 = H(xax - gj(x7k))uk7

i=2

then the equation (23) becomes
(20, — & (2, k)i = ficr.

Thus we have ~
T x £q(s,k) o The
%:/GLLTdﬁﬂw@
0 y
Since &;(x, k) is homogenous of degree 1 with respect to k, from (24) we
have

Re éj(o,k) =kRe £;(0,1) + o(k), for1<j<m. (25)

Thus from the condition (H4)" we have Re éj((),k) <0 (1 <j5<m)for
k large enough. So, similar to the proof of Lemma 1, near the origin and for
large k we have for some positive constants ¢ and C

|:1;| C'1 Reé1 (0,k)
|y

that is for large k, —0151(0, k) > 0 and we have

z & (s,k)
2y
efy = Pl <e

eclRegl(O,k)ln(%”

: ||
Vil < c:rnax(kvrﬁR6&<O*>jQ OO0y ) i,

|z|<r

S —ClRefl(O k)ka IH

Next, let V5 = [T75(20, — é(:z;,k))uk, then (20, — 52(1?,]{))‘/2 =V. Itis

the same we can deduce that there exists a constant 3 > 0, such that for

large k
Vall < Vil < & il
=y Re 52(0 ) T OOy Re€ (0, k) Rey(0, k) T
So finally we have for k large enough,
< foctlly,  (3C; > 0). 26
bl < 11 (e ) Wl G050 o



Holomorphic Solution 13

From (25), we know that there exists a constant €’ > 0, such that for k
large enough we have

/cm . clclcm
< Ll < 2l
sl < S il < SE i
where )
max ba}n(:p)‘ < ¢y,

|| <r
for r > 0 small enough. Lemma 3 is proved.

By using Lemma 3, we can prove the convergence of the formal series
solution (20) in the following way.

First we expand the remainder term Ry(¢,x, Z) of (16) into Taylor series
with respect to (¢,7), i.e.

Ry(t,x, 7)) = Z ap ()P 72",

pHv[>2
where
N v vy,
v="_vja}iresm €NV, Jul= 3" va, Z27= T] (Zia)"".
J<m Jta<lm Jtasm
I<m I<m

We let R > 0 small enough such that 0 < R < 1 and

(i) ap.(x) is holomorphic on Dg;
(ii) lapu(2)| < Ay, on Dp;
(iii) Xpip>2 Aput?Z" is a convergent power series in (Z, Z).

For simplicity we assume that the estimate (22) holds for any k& > 1. Let
us choose A > 0 so that

|0 ur(z)] < A on Dg, 0 <Va<m.

Now, let us consider the following functional equation:

vowe €y 4
(R—r) pHv[>2

PV [v|
(R— r)m(p+|v|—2)tp(BY) ’ (27)

where r is a parameter with 0 < r < R, C' > 0 is the constant in (22), and
B = (me)™.
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Since the equation (27) is an analytic functional equation in Y, we see by
the implicit function theorem that the equation (27) has a unique holomor-

phic solution Y(¢) in a neighborhood of ¢t = 0 with Y(0) = 0.
If we expand Y'(¢) into
Y =Y vt

k>1

then by the same argument as in the proof of Theorem 1 (and also in the
discussion in chapter 6 of [4]) we can show that for any &k > 1l and 0 <r < R
we have

‘kjaguk(x)‘ < (me)*Y, < BY; on D,
for any (j,«) with j + o < m and j < m.

This implies that Y = 37,54 Y,t* is a majorant series of the formal solution

(20). Thus, we have obtained the convergence of the formal series solution
(20). Theorem 2 is proved.
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