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Introduction

In the present paper we establish a semiclassical Atiyah-Bott—Lefschetz formula for
general endomorphisms of elliptic complexes on manifolds with conical singularities.

Namely, we consider elliptic complexes of semiclassical (pseudo)differential op-
erators with endomorphisms generated by semiclassical Fourier-Maslov integral op-
erators. In this situation, the semiclassical Lefschetz number is defined in a natural
way, and the main task of this paper is to express the semiclassical asymptotics
of this Lefschetz number via some classical invariants of the endomorphism. Since
the classical object associated with a Fourier integral operator is the correspond-
ing Lagrangian manifold, it is natural to express these invariants in “Lagrangian”
terms. In the present paper we consider the special class of Fourier integral oper-
ators associated with a Lagrangian manifold that is the graph of some canonical
transformation and express the semiclassical asymptotics of the Lefschetz number
in terms of fixed points of the transformation.

The present research was carried out on the basis of the papers [1, 2], where the
semiclassical Lefschetz formula was established for general endomorphisms of ellip-
tic complexes on smooth manifolds, the paper [3], where the semiclassical Lefschetz
formula was established for geometric endomorphisms of elliptic complexes on man-
ifolds with conical singularities, and the paper [4], where the theory of semiclassical



quantization of canonical transformations was constructed for configuration spaces
containing conical points.

Outline of the paper. In the first section, we introduce the main tools used
in elliptic theory for singular manifolds in the semiclassical situation (semiclassical
Sobolev spaces, semiclassical Mellin transform, and semiclassical pseudodifferential
operators). The second section, where we recall the results of [4] in a refined form,
deals with the main assertions concerning the semiclassical quantization on singular
manifolds, including the theorem on the continuity of quantized canonical transfor-
mations in weighted Sobolev spaces. In the third section we state and prove our
formula for the leading term of the asymptotics of the Lefschetz number L(%) as
h — 0.

1 Semiclassical Quantization of States and Ob-
servables

1.1 Conical and cylindrical coordinates

Let (M, {a1,...,an}) be a smooth manifold with conical singular points aq,...,ayx
(see [5]). In a neighborhood of each singular point «, the manifold can be represented
as a cone

K= ([0,1) x 2)/({0} x Q), (1)

where (), the base of the cone, is a smooth compact manifold. Throughout the
following, we assume that the representation (1) is chosen and fixed in a neighbor-
hood of each conical point. In this neighborhood we use two types of coordinates,?
namely,

the conical coordinates (r,w), r € [0,1), w € Q;

the eylindrical coordinates (t,w), t € (0,400, w € Q.
The latter are related to the conical coordinates by the change of variables

—1
r=c¢ .

In fact, both coordinates are coordinates on the blow-up
K" =10,1) x Q

of the cone K.

'We use the same notation w for a point w € Q (in this case our consideration can be global on
Q) and for its coordinates in some local coordinate system on Q (then w = (w1, ..., wp_1) € R* 71,
where n — 1 = dim€). This will not lead to a misunderstanding.



We mainly use the cylindrical coordinates. (In this interpretation, the manifold
M, or, more precisely, the blow-up M", is represented as a manifold with cylindrical
ends.) The conical coordinates will be used only for geometric visualization.

1.2 The semiclassical Mellin transform

This subsection, as well as several subsequent subsections, introduces the semiclassi-
cal counterparts of notions well-known in the theory of pseudodifferential operators
on manifolds with singularities. Naturally, we focus on the dependence on a small
parameter h > 0 occurring in semiclassical constructions.

Let f(r) € C§F(R,), v € R. We define the semiclassical Mellin transform of the
function f by the formula

o0

T(o) = (Moo () = / rit g &

r
0

where p is a complex variable ranging on the weight line
Ly = {Imp = hv}.

The inversion formula obviously has the form

-1 —ip/h
fr) = M) = o |7 P f(p) dp.
Ly
In cylindrical coordinates ¢ = —Inr (r = e™'), the semiclassical Mellin transform

becomes the semiclassical Fourier—Laplace transform (cf. [6])

o0

fo)= [ emitiw. pe L.
and the inversion formula reads
1ty = == [ e f(p) dp
27 h '
Ly



1.3 Semiclassical Sobolev spaces

Let v = (71,...,7v) € RY and s € R. We introduce the Sobolev space H;" (M)
as follows. Let ¢eg,eq,...,en be a partition of unity on M such that all the ¢; are
smooth functions independent of h, each function e;(z), j = 1,..., N, is supported
in a neighborhood of the point «; covered by the conical (and cylindrical) coordinate
system, and supp ey contains none of the singular points a4,...,ay. On the space
Cg°(M) of smooth functions u(z) on M such that suppu N {aq,...,an} = 0, we
define a norm ||ul|s~.n by setting

ull3 - = ZHGJ ull o n + leoull3 e

Here || - ||2, is one of the usual (pairwise equivalent) norms in the ordinary semi-

classical Sobolev space Hf(M\ U U;) (e.g., see [6]), where U, is a sufficiently small
7=1
neighborhood of «;. In local coordinates, up to equivalence, we have

it = [ [(1-1025)" |

R~
the norm on the right-hand side of this formula is just the norm in the Sobolev
space Hj(R") [6]. Next, the norm || - ||s, is defined in the conical or cylindrical
coordinates with the help of the semiclassical Mellin transform as follows:

dz:

?

s/2

o0 2
dr d\?
0

L2(Q5)
7 o2 5/2 2
= / ‘ (1 — hzﬁ — h*Aq ) X tu(e™ w) dt
oo L2(Qy)
~ 5 / H(l +Ipl? = WA ()| dp
2nh h ’ Tl

where §; is the base of the cone at the point «;, Ag, is the Beltrami-Laplace
operator on ); with respect to some Riemannian metric on §2; (independent of
h), and L*(§);) is the space of functions on §; square integrable with respect to
the measure corresponding to this Riemannian metric. One can verify that up



to equivalence || - ||s.4 is independent of the ambiguity in this construction, and
moreover, the constants in the inequalities expressing the equivalence can be chosen
to be independent of h.

For each h we complete the space C5°(M) with respect to the norm || - ||, and
denote the space of functions u(x, h) such that for each h € (0, 1] the function u(-, k)
belongs to the above-mentioned completion by H;"(M). Thus, the “norm” || - |51
on the space H;"' (M) is actually a family of seminorms indexed by h € (0, 1].

For each given v, the spaces {H,;" (M)} ,cr» form a scale. In particular,

H7 (M) C H™ (M)
for s > s'. Moreover,

H7 (M) C Hy 7 (M) (2)
for s > s and v > 4’ (the last inequality is understood in the sense that ~; > ~! for
i=1,...,N). If s > s and v > 4/ (that is, 7, > 4/ for all s = 1,..., N), then the
embedding (2) is compact (for each fixed h).

We shall study operators acting in semiclassical Sobolev spaces. Let

A= A(h): H — HO

be some linear operator. We say that A is bounded with a norm of the order of p(h)
if
[Aullsm0n < C@(h) f[ullsn

with some constant ' independent of h. We merely say that A is bounded if one
can take ¢(h) =1 in this inequality.

1.4 Semiclassical pseudodifferential operators

First, we introduce symbol classes.

Let v = (2',...,2") € R" and { = (&,...,&,) € R,. By
ST = S"(Ry x R, x (0,1]p)
we denote the space of smooth functions H(x, ¢, h) such that

lolHBI+
Dz IEPDRI

For each function satisfying these estimates, the operator?

(2, &) < Cop(T+EN™ VL ol + (8l +1=10,1,2,....  (3)

1

A 2 0
=H —th—.h 4
H T~ tho, (4)

2We use Feynman ordering of noncommuting operators; see [7] for details.
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is well defined and is bounded in the Sobolev spaces
A
fi: BB~ B (R

for each s € R.
Next, let © = (r,wy,...,wn1) € R} = {(r,w)|r > 0} and £ = (p,¢1,...,¢n-1) €
C, x R™. By
SI'= SR x C, x Ry x [0,1)))
we denote the space of functions H(x, &, h) such that
i) H(x,& h)is defined in R} x C x RP™! % [0, 1), in the strip {|Imp| < e} and

is smooth with respect to all the variables and analytic in p in this strip;
i) H(x,& h) =0 for r > R, where R is sufficiently large;
iii) the estimates (3) hold in this strip.

Under these conditions, the operator

1 1

2
H=H %,é,ihrg,— zhi =H (e‘t & _@'h% —zhi> (5)

or o

is well defined and bounded in the spaces
e H (R, % R™Y) — H7" (R, x R™Y)

for any s € R and v € R and for sufficiently small h (it suffices to take h < ¢/|~|,
so that the weight line £, will lie in the strip {|Imp| < ¢}).

We now define a semiclassical pseudodifferential operator of order m on a man-
ifold M with conical singularities as an operator which has the form (4) (respec-
tively, (5)) in the local coordinates on the smooth part of M (respectively, near the

A
conical singular points) modulo an integral operator ¢) with smooth kernel such that

A
Q: Hi"(M) — H;7(M)
is compact for any s,7, and N and has the norm O(A™) for arbitrary Nj.
In the usual way we introduce the notion of the conormal symbol [5] of a semi-
A
classical pseudodifferential operator [f on M at each conical point o € {a,...,an}.

A
The conormal symbol is an analytic family Ho (p) of operators depending on the
parameter p, [Imp| < &, and acting in spaces of functions on the base  of the
corresponding cone.



2 Canonical Transformations and Their Quanti-
zation

2.1 The cotangent bundle

Using the cylindrical coordinates (¢,w) in a neighborhood of each conical point, we
consider the blow-up M”" of the manifold M treating the latter as a manifold with
conical ends. The manifold M”" is a manifold with boundary (the point ¢ = oo is

included), and by definition we set T*M = T*M" (thus, T*M is a manifold with
boundary). In a neighborhood of a cylindrical end, 7*M has the form

T"M ~TQ x (0,00] x R 3 (w,q;t,p)
and is equipped with symplectic form
W =dp ANdt+dg A dw

(here dg¢ A dw is the standard symplectic form on T*Q and 2 is the base of the
corresponding cone). In the conical coordinates near the singular point we have

T"M ~T"Q x[0,1) x R 3> (w,q;r,p),
and the symplectic form becomes

dp A\ d
wzz—p/\ r—l—dq/\dw.
r

2.2 Canonical transformations

We consider canonical transformations of the space T*M, that is, smooth mappings
g: T"M — T"M

of manifolds with boundary such that

Under the assumption that the bases of all cones corresponding to singular points are
connected, it is obvious by definition that ¢ is a diffeomorphism of the “fiber” of T*M
over each conical point « (the word “fiber” is used here to mean the corresponding
component of the boundary of T*M) onto the “fiber” over some (possibly, the
same) conical point ay. We write oy = g¢(«); this notation will not lead to a
misunderstanding.



Let us describe the structure of canonical transformations near the conical points.
Let (t,w,p,q) and (7,%,&, 1) be the cylindrical coordinates near the points a and
g(«) on the first and the second copy of T*M, respectively. Then y can be written
as a mapping

g9 (Lw,p,q) = (1,9, 6 m).
The following properties of ¢ were established in [4].

Theorem 1 1) The mapping g near the conical point can be represented in the form

T=t+x(4wpﬂ)

b =1(e™w,p,q),

{=¢e™w,p,9), (6)
n=n(e",w,p,q),

where x, ¥, &, and n are smooth functions.

2) The formulas

P =1(0,w,p,q),
n=n(0,w,p,q)

specify a family of canonical transformations
g(p) : T°Qy — T7Qy(q,

where 1, and Qo) are the bases of the cones at the corresponding conical points.
This family is called the conormal family of ¢ at the conical point «.

3) The mapping

¢ =£(0,w,p,9),
has the form
{=p+te

where ¢ is some constant, which will be referred to as the conormal shift of ¢ at a
the conical point c.

4) Let
g(oo7w07p07q0) = (0071/)07507770)-
Then there is a subset I C {1,...,n — 1} such that the functions (1,%r,n7,p,q),

where I = {1,...,n —1}\I, form a system of local coordinates on the graph of g in
a neighborhood of the point

(OO,wo,po, qo; 0, 77Z)07 507 770)-



Moreover, in the corresponding neighborhood of the point (oo, wo, po,qo) the trans-
formation is determined by a generating function of the form

SI(Tv 77va nm, P, q) = (p + C)T + 511(6_77 77va nm, P, q)
by the usual formulas

,_ 951 5_@ _ 05 95 ¢___@
“op ST o T o T awr YT Ty

2.3 Quantized canonical transformations

Let
g:T"M — T"M

be a canonical transformation, and let a be a smooth function on T*M. Under some
additional assumptions we shall define an operator T'(¢g,a) (a quantized canonical
transformation) acting in the semiclassical Sobolev spaces H;"” (M).

Assumption 1 The transformation ¢ is asymptotically first-order homogeneous
with respect to the action of the group R, of positive numbers on the fibers of
Ty M. The conormal shift of ¢ is zero.

Assumption 2 In a neighborhood of the conical points, the generating functions
of g are analytic in p in the strip |Imp| < & for some ¢ > 0.

The graph
L, CT"M xT"M (7)

of the canonical transformation ¢ is a Lagrangian manifold with respect to difference
of the symplectic forms on the first and the second copy of T*M. It is equipped
with the standard measure (volume form) that is the nth power of the symplectic
form on either of the copies of T*M lifted to L, via the natural projection.

Assumption 3 The manifold L, satisfies the quantization conditions [8, 6].

Assumption 4 The function a belongs to S*(T*M). (The space SI*(1T*M) is
defined as the space of smooth functions on T*M whose coordinate representatives
belong to S™ for charts away from conical points and to S7 for conical charts.)

3This requirement can be weakened and replaced by some finer conditions imposed on the
behavior of ¢ at infinity in the fibers. To clarify the exposition, we have chosen the simplest
possibility.
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Let K, be the Maslov canonical operator on L, [8, 6]. We define j/: (g,a) to
be the integral operator with Schwartz kernel [K,(7ja)](x,y) on M x M, where
71 Ly — T"M is the natural projection on the first factor on the right-hand side
in (7). (It is assumed that a smooth measure dx on M is given such that in the
cylindrical coordinates near each conical point we have

dr = dt A dw,

where dw is some smooth measure on the base () of the corresponding cone. Then
we can treat Schwartz kernels as functions.)
If the support of the amplitude @ is entirely contained in a cylindrical canon-

A
ical chart with the coordinates (7,7, 77, p,q), then the operator T (g,a) can be
represented in the form

P = () ][ or{Et i v}

D - 1/2 -~
X(WTG) (%) (6_77¢17UT7P7Q)U(}77Q) dpdq dnfv

where a(p, q) is the semiclassical Fourier-Laplace transform of the function u(t,w),
mja is expressed via the local coordinates of the canonical chart, the integral with
respect to p is taken over the weight line £, and the argument of the Jacobian is
chosen according to the construction of the canonical operator.

Theorem 2 Under the above assumptions, the operator T'(g,a) is continuous in the

spaces
A

T (g,a) = Hy" (M) — H7""(M)
for any s € R and v € R provided that h < ¢/|~|.

Proof. Although the proof of this statement can be found in [4], here we outline

A
a different proof. Without loss of generality (multiplying 7'(g,a) on the left by e
and on the right by ¢") we can assume that v = 0 (in this case, the coordinate

A
p in the argument of the integrand is shifted by iyh). Then T (g,a) becomes the
usual Fourier—Maslov integral operator with a special behavior of the coefficients as
7 — 00. Using a technique similar to that in [9], one can show that

/\* A
T"(g,a) T'(g,a),

11



where the star stands for the adjoint in L*(R x Q, dt dw), is a 2mth-order pseudod-
ifferential operator of the form described in Subsection 1.4. This readily implies the
assertion of the theorem.

A A A
For the operator T=T (g,a), we define the conormal symbol Ty (p) as follows.
A
Let us represent 7" in a neighborhood of a conical point in the form
1

A Ao 0O
T=T TJTE ,

A A
where 7 (r,p), the operator-valued symbol of 7', is a family of operators acting in
function spaces on the base {2 of the corresponding cone. Then

A A
To (p) =T (0,p).
Equivalently, ]/\70 (p) can be defined as the operator-valued symbol of the operator

AN 0 A 0 ] A
To=To <ZTE> =7 <0,ZTE> = s- %E%UA T Uy,
where
Unf(r) = f(r/X)
and the strong limit is taken on the set of functions compactly supported in r.

A
Let us write out the conormal symbol for the case in which the operator 7' (g, a)
is given by (8) (the general case can be reduced to that with the help of a partition
of unity). Since the conormal shift is zero (¢ = 0), we have

SI(Tv ¢Ivnfvp7q) =pT + Sl[(e_q—qub[vnfv}%Q)v

and the operator (8) can be rewritten in the cylindrical coordinates in the form

Tg. apil(r) = (ﬁ)wm J[ e |su(Fovromivgroa) +omm| |

1

X (FTQ)M < 7%7 77va U Z'T%, Q>ﬁ(r7 Q) dq dUT

D(p,q)

where (r, ¢) is the semiclassical Fourier transform of u with respect to w. It follows

that the conormal symbol ]/\70 (p) is given by the formula

ot = (5) [ (& [su(0.00m.0) + o]

12



x(mra

) (D(fa 1,y

1/2
0,77Z), _7p7q1v)q dqd )
D(p,q) ) (0,117, 4)5(a) da dns

To (p) =T (9(p), a(p)), (9)

where ¢(p) is the conormal family of ¢ and a(p) is produced by the restriction of
a to the boundary r = 0. To prove (9), it suffices to observe that the function
S11(0,%7, 17, p, ¢) (where p is a parameter) is just a generating function of ¢(p) (we
omit the computations with the Jacobian D(&,ny,¢7)/D(p, q)).

3 The Atiyah—Bott—Lefschetz theorem

3.1 Statement of results

Let M be a compact manifold with conical singularities {ay,...,ay}, and let

D: C%(M, Ey) — C(M, By)

be a formally elliptic semiclassical pseudodifferential operator of order m on M (the
A
formal ellipticity means that the principal symbol o( D) is invertible outside the zero

A
section of T*M). Then the conormal symbol Dy (p) is elliptic with parameter in
the sense of Agranovich—Vishik [10] in some sector containing the real axis and is
invertible in some sectors of the form shown in Fig. 1 and independent of h € (0, 1].

A
Outside these sectors, for each h € (0, 1] the operator Dal(p) has countably many
poles with finite-dimensional principal parts of the Laurent series.
Thus, for each h € (0,1] there are at most finitely many values of 4 such that

A
the operator D is not elliptic in the scale {H;"(M)}. Moreover, the set of pairs

A
(7, h) for which Dal(p) has poles on the line L, is one-dimensional (in the sense
of measure theory), and hence for almost all v the set of values of the parameter h

A
for which Dal(p) has poles on L}, is discrete. We only deal with such values of ~,
which will be /{eferred to as admissible. We denote the set of values of h for which
the operator P is elliptic in the scale {H,;"(M)} by Z(~); for each admissible v,
this is an everywhere dense subset of the interval (0,1).
Now let g : T"M — T*M be a canonical transformation satisfying Assump-
tions 1- 3, and let a; € S°(T*M), i = 1,2, be amplitudes satisfying Assumption 4.

13



Figure 1. The conormal symbol has no poles in the dashed sectors

We set j/\}:]/: (g,a;). Suppose that the diagram

0 —— C=(E) b C%(F) —— 0
T T
D
0 —— C*(F) C(F) —— 0
commutes. Then so does the diagram
S B S—m
0 —— H(E) H,™"(F) —— 0
T T2 (10)
D

0 —— H)(E)

H7m(F) —— 0

for all s, h, and v < ¢/h. For h € Z(~), the operator 1/5 is elliptic, and hence the

14



Lefschetz number

A
~ — Trace Ty

A
£(h) = Trace Ty |KerD |Cokerﬁ

is well defined.
We shall obtain the asymptotics of the Lefschetz number L£(h) as h — 0, h €
Z(7), under some additional assumptions about the canonical transformation ¢ and

the conormal symbol 1/50 (p).

Assumption 5 The transformation ¢ is nondegenerate in the sense that

i) for each interior fixed point z = g(z) € T*M, one has
det (1 — g.(2)) # 0;

ii) for each conical fixed point «, one of the following conditions is satisfied.

Either
x(0,0,p,q) >0

for all p,w,q € R x T*Q (in this case the point is said to be attractive),
or

x(0,0,p,q) <0

for all p,w,q € R x T*Q (in this case the point is said to be repulsive).
Here x(e™" w,p,q) is the function determining the ¢-component of g according
to formulas (6) in Theorem 1.

Assumption 6 The conormal symbol 1/50 (p) at each conical point « satisfies the
following conditions:
a) for each ¢ > 0, the number N(h) of poles (with regard to multiplicity) of the

family ﬁgl(p) in the strip {|Imp| < e} satisfies the estimate
N(h) < C(g)h™™
for some Ny € R;
b) for each compact subset K C C, the family ﬁal(p) satisfies the estimate

/\_ . A _ .
HDOI(p)HHS(Q)—JIS(Q) < Cdist (p, spec(Do)) Mo peK,

where dist (p, spec (1/50)) is the distance from the point p to the set spec (1/50) of poles
A
of the family Dgl(p).

15



Under these assumptions, the following theorem holds.

Theorem 3 The Lefschetz number L(h) of the diagram (10) has the following asymp-
totics for given v and h — 0, h € Z(v):

L) = L+ 3 Llow) +O(h),

ag

where Ly s the contribution of the interior fived points, which can be calculated in

the same way as in [1], Y extends over all conical fized points ay of the transfor-
ag

mation g, and L(ay) is the contribution of the conical fized point oy, which is given
by the formula

Llag) ==+ Z Trace Res { Tho (p)lA)El(p)aDng(p) (11)

P
Ehyy <& Imp; <thvi+or (h) !

(the upper sign corresponds to attractive, and the lower, to repulsive points). Here

]/\“10 (p) and 1/\)0 (p) are the conormal symbols of ]/\“1 (p) and 1/\), respectively, at
the point oy and pr(h) is some function of h such that /2 < pp(h) < e. If the

A
coefficients of the principal parts of the Laurent series of Dgl(p) at the poles p; are
bounded in the L* norm by a constant of the order of h=", then in (11) we can take
pr(h) = const = ¢.

3.2 Proof of the theorem

To reduce the amount of subscripts in formulas, we carry out the proof for the case
in which the manifold M has only one conical point « (which is necessarily a fixed
point of ¢ in this case). Without loss of generality, we can assume that v = 0. The
proof consists of two parts:

1) For each fixed h € Z(v), we construct a regularizer of 1/5 with a special
dependence on a parameter A — oo; a preliminary formula for the Lefschetz number
is obtained by passing to the limit as A — oc.

2) We study the asymptotics of the expression thus obtained as h — 0, h € Z(7).

1) The Lefschetz number can be calculated by the well-known formula (e.g.,
see [11, 3])

L(h) = Trace (Th (1— RD)) — Trace (Ts (1— DR)), (12)

16



A A A
where R is some global regularizer of the operator [ on M. We construct R in the
form

]/%: Un ]/%1 fi+ ]/%2 fa, (13)

A A
where R; is the exact local inverse of D in a neighborhood of the conical singular

A
point, constructed in [3], and R3 is the “interior” (usual pseudodifferential) regular-
izer; fi, fa is a partition of unity such that f; =1 in a neighborhood of the conical

point and f; = 0 outside a larger neighborhood; vy and ), are cutoff functions such
that o, f; = fi, 1 = 1,2. We choose f1, 1)1 and 3 to be functions that depend only
on the cylindrical variable ¢ in a neighborhood of the conical point; moreover,

i = filt = A), 1 =it = A), = et — A),

A
where A is the above-mentioned large parameter. Note that while Ry is constructed
A
for each fixed h separately and it is hard to say anything about the behavior of Ry

A
as h — 0, Ry is an semiclassical pseudodifferential operator and so is well-behaved
as h — 0 (see Lemma 3 below). In particular, it follows that the operators

A

A AA A A
' =1- R:D, @=1- DR,
are semiclassical pseudodifferential operators.

Lemma 1 The functions fi, f2, 11 and iy can be chosen so that for all sufficiently
large X one has

[supp f; U mg(x'supp f;)] Nsupp (1 — ;) =0, j=1,2,
where © : T*M — M is the natural projection.

The proof is the same as that of Lemma 2 in [3].
Let us substitute the regularizer (13) into (12). We have

1= DR = 1= Dty R i D s Ba fo
= L= (D] B fi— i~ [Dyin) Be fo— (1= Q)
= Qo D] Re fo— (Do) Bo o,

I=RD = 1=t Ri i D—ts Bo fo D
= L f 1= Q) — i B L D] — s B Lo, D)
= @ Fs— o B [ D)~ R [ D),
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and consequently,

L = Trace (é\jl 2@ f2) — Trace (1/:2 by é f2)
+ Trace (]/\H {1 ]/%1 [l/\),fz] + g ]/%2 [l/\)va]})
+ Trace (é\jz {[1/5,@/)1] ]/%1 i+ [1/571/)2] ]/%2 f2).

We rewrite this expression in the form
L= El + £2 + £37

where

£y = Trace(Ty (R — Ro)[D, fi]),

Ly = Trace (ZAH @bz@/fz) — Trace (1/}‘2 ¢2é\2f2)7

Ly = Trace(Ty {(1= 1) Ra [, DI+ (1= ) Re (D, f2]})
+ Trace (T {[D, 1] Br fi + [Dss] Ro fo})

(the argument of the functions f; and ¢; in this formula is t — A).
Now let A — oo. Just as in [3], we obtain

o0 A
. 1 A A A oD
Ah_{glo Ly = ors Trace T1o (p)(R10 (p)— R2o (p))T(;(m

— 00

dp. (14)

(Here the additional subscript “0”indicates that the conormal symbol is taken. In

A A
particular, Rio (p) = Dol(p).)
To calculate lim L, let us consider the compactly supported function

A—o0
f(6) = fi(t) fa(t = A).
Lemma 2 Trace (j/\jlo é\%f) = Trace (1%0 é\Qof).

Proof.

A

AAY A AA A A A
Trace (7o Qof) = Trace (T10 (1— R20D0)f) = Trace (T1o (Rio — R20) Do f)
AN AN AN AN AN AN AN AN
= Trace (T10 (Ri0 — R20)[Do, f]) + Trace (T1o0 (Rio — R20)f Do).

18



The first term is zero (cf. [12]), and we can transform the second term by cyclically
permuting the factors:

A A A A
Trace (T10 (Rio — R20)f Do)

FAAN A A
= Trace (DoTho (Rio — R20)f)
f)

)
A A A A
= Trace (T'20Do (R0 — R2o)
A A A A
= Trace (T2 (1— DoRao)f) = Trace (T2 Qof).

The proof of the lemma is complete.
Now we obtain

lim £, = lim Trace (71 ol = A) @ folt = \)= Tao Gafi (0 fo(t = A)

A— 00
— lim Tface(fz el = A) CA? falt = A)— T Qo fi(t) falt — X))

AN

AV A A AA
= Trace (71 @'— Tho Qo fi(t)) — Trace (T @— T20 Qofi(t)).
(Both trace integrals converge and the passage to the limit is valid, since the dif-

A A AN A A
ference Ty @'— Tio @b, as well as Ty @— T Qo, decays as t — oo at the rate of
e ).
Finally, the passage to the limit as A — 0 in L3 can be performed simply by
freezing the coefficients of T;, D, and R; at t = oo (r = 0). We obtain

lim £, = Trace (1/:10 {(1 =) ]/%10 [fhlgo] + (1 —2)2) ]/%20 [l/\)o,fz]})

A— 00

+ Trace (fzo {[l/\)oa ] ]/%10 fi+ [l/\)Oa 3] ]/%20 fa})

(here the argument of ; and f; is ¢, not £ — X).
2) Next, we must find the asymptotics of the Lefschetz number as h — 0, h €
Z(7). The contribution of the term

ﬁrem = lim £3
A—00
is O(h™) by virtue of the assumptions imposed on the conormal symbol, the canon-
ical transformation, and the supports of the functions f; and ¢; (we omit the corre-
sponding, rather lengthy argument). It remains to calculate the asymptotics of the
contributions
Eint == /\hm £2
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and

'Ccone = hm £1.

A—00
A
Since Rs is a semiclassical pseudodifferential regularizer, it follows that the asymp-
totics as h — 0 of the contribution L;,; can be calculated according to the stationary
phase method. This gives the standard expression for the contribution of the inte-

rior fixed points (see [1]). To calculate the asymptotics as b — 0 of Leone, we take
a special semiclassical pseudodifferential regularizer.

A
Lemma 3 There exists a semiclassical pseudodifferential reqularizer R, such that

A A
in a neighborhood of the conical point one has Ry=R> (t, —ih%), where the symbol

A
R (t,p) is holomorphic in p in a sufficiently narrow strip [Imp| < e.

Proof. Let H(e % w,p,q) be the principal symbol of 1/5 in a neighborhood of the
conical point, and let

H(e ' w,p.q) = H(e ",w.D.q),

where the bar on the right-hand side stands for complex conjugation. Then the func-
tion H(e™*,w,p,q) is holomorphic in p in some strip and we can take the principal
symbol of the regularizer in a neighborhood of the conical point in the form

R2(€_t7wap7Q) = H(e_t,w,p,q)(l + Hﬁ(e_t7w7p7Q))_l'

The subsequent terms are constructed with the help of regular perturbation theory.
The regularizer thus constructed possesses the desired properties.
Now let us calculate the integral (14) using the residue formula. Suppose that
the conical point is attractive. It follows from Assumption 6 that for each h € Z(7)
one can choose a number p(h) € [¢/2, ] such that on the line Im p = p(h) there are

A A
no poles of the family Dal(p) and Dal(p) < C - AN on this line as |p| < R (for

A
|p| > R, where R is sufficiently large, the decay of Dgl(p) at infinity is guaranteed).
Now let us consider the integral over the contour shown in Fig. 2.

We have

A A oD
Leone = Z Trace Res ¢ Tho (p)Do l(p) °
Py ap
0<Imp;<p(h)
A
1 A A A oD
T 5 / Trace T1o (p)(Rio (p)— R0 (p))iaop(p) dp.
Imp=p(h)
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fe—=
=

Figure 2. The integration contour

A
(We have used the fact that R (p) is holomorphic in the strip 0 < Imp < p(h).)
It remains to estimate the integral over the line Imp = p(h).

We have
A —c1/h
| Tho (P)[1o—1, < Ce™

for sufficiently small ¢ by virtue of the conditions imposed on the conical fixed
point and on the canonical transformation (for small e, the imaginary part of the
generating function on the line Im p = p(h) is estimated below by const -¢ with a
positive constant). Next,

AN

A A N_q
Rio (p)— R0 (p) = Do~ @y,

and hence
A A Ay A
I Rio (P)= Rao (Pl < 1D0” ()| 22—, | Qoo (P,
where || - || is the trace norm of operators in L. Since
N ~NN
HDO (p)HL2—>L2 < ch™™
and

I Q0 (D)l < L+ p)~,
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where N3 is arbitrarily large, we find that

A

0 Do (p)

< C 1 —N3 —ClthlN
5 I < Ol

I T1o (p)(R1o (p)— Rao (1))

(with some other constant ('), whence it follows that the second integral is O(h>).
The proof of the theorem is complete.

3.3 Example

In this subsection we shall briefly consider a simple example illustrating Theorem 3.
In our example, the manifold M is the cylinder

C=5"%xR!

A
with two conical points {t = too} attached, and we take D to be the simplest
first-order elliptic operator, namely, the Cauchy—Riemann operator

A 0 0
D— —Zha —|— h%,

where ¢ is the standard angular coordinate on S*. We shall consider this operator
in the weighted Sobolev spaces

ﬁ: HZv’Ylv—’M(C) N Hz—lm,—W(C)‘

To avoid misunderstanding, recall that the weight function is ¢ (=9 = ¢~ near
t = —oo (where the standard cylindrical coordinate is 7 = —t) and ¢™"?* near ¢ = co
(where the standard cylindrical coordinate is t).

The conormal symbol

Do (0) = +p 4 b2
Do (p) = £p+ %

(the upper sign corresponds to the conical point ¢ = oo, and the lower, to t = —o0)

A
of the operator [ has poles at the points
PE = 1kh.

A
Thus, D is Fredholm in the above spaces provided that neither 4 nor 7, is an

A
integer. To be definite, we assume that 7y < 3. Then the cokernel of D is trivial,
and the kernel is spanned by the functions

uk(p,t) = ek(H'W), m < k<.
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Let S(p, ¢) be a smooth function of at most linear growth at infinity, analytic in p
in some strip Im p < ¢, and satistying the condition

Z—i(p,q) < 0 for real p.

Consider the operator
A T A A
T= exp {%S(p, Q)} ,

where P P
A A
p ? o q e 07

For sufficiently small & the operator j/\j is well defined in the scale {H,;""""*(C)} and

A
commutes with [,

FANAN AN A
TD=DT
(indeed, both operators are operators with constant coefficients). The Lefschetz
number
VANEVANEVAN
L=L(D.T,T)

of the corresponding commutative diagram is given by

£="Trace T[ o= 3 exp{S(—ilk, hk)}.

Y1 <k<y2

A
The same answer is provided by Theorem 3. Indeed, one can readily see that T
is a Fourier—Maslov integral operator associated with the canonical transformation

g:(t,e,p,q)— (1,0 q)
given by the formulas
a5 a5
= t+—(p.q), ¢=¢+—(pq),
ap( ) aq( )
/ 7

rp =0 q4 =4q.

Since 05/dp < 0, we see that the point ¢ = —oo is attractive, the point ¢t = 400 is
repulsive, and there are no interior fixed points. Let us caclulate the contribution
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of the point t = —oo. We have, according to (11),

-

L_o = Z Trace Res ~
Pk :
fW1<Impk<hW1+6 p—d
- Y exp{%S(—ihk,hk)}.
1 <k<vi+e/h

Similarly, for the point ¢ = co we have

7 A
exp{ +5(p,4)

Lo = — Z Trace Res —
—h’yg—s<1mpk<—h'yg o p + 1 9q
- ¥ exp{%S(—ihk,hk)}.
Ao <k<vate/h

The sum of the last two expressions differs from the exact expression for the Lefschetz
number by

3 exp{%S(—ihk, hk)}.
e/htv1 <k<s/h+v2

The number of terms in this differnce does not exceed [y — 1], and each term is
exponentially small as h — 0 (provided that ¢ is sufficiently small) by virtue of the
conditions imposed on the function S. Indeed, we have

Im S(—ie + O(h),q) = —52—5(0, q)+O0(e+h)>Ce
p

with a positive constant independent off for sufficiently small A and ¢. Hence we
see that Theorem 3 provides the asymptotics of the Lefschetz number in this case.
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