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OPTIMAL FACTORIZATION OF MUCKENHOUPT WEIGHTS

MICHAEL BRIAN KOREY

Abstract� Peter Jones� theorem on the factorization of Ap weights is sharp�
ened for weights with bounds near �� allowing the factorization to be per�
formed continuously near the limiting� unweighted case� When � � p ��
and w is an Ap weight with bound Ap�w� 	 � 
 �� it is shown that there ex�
ist A� weights u� v such that both the formula w 	 uv��p and the estimates
A��u�� A��v� 	 � 
O�p�� hold� The square root in these estimates is also
proven to be the correct asymptotic power as �� ��

�� Introduction

A non�negative weight function w onRn is in the Muckenhoupt Ap class� w � Ap�
if there is a constant C such that�

�

jQj
Z
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jQj
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w�����p�

�p��
� C���

for all cubes Q inRnwith sides parallel to the coordinate axes� Here and throughout
this note jQj denotes the Lebesgue measure of Q� integrals are evaluated with
respect to Lebesgue measure� and � � p ��� The smallest constant C for which
��� holds is termed the Ap bound of w and is denoted Ap�w�� note that Ap�w� � ��
by H�older	s inequality� with equality only when w is almost everywhere constant�
The limiting case w � A� is de
ned by the requirement that

�

jQj
Z
Q

w � C inf
Q

w���

for all cubes Q� where infQw denotes the essential in
mum of w over Q�� The least
bound C in ���� denoted A��w�� is likewise at least ��

Products of suitable powers of A� weights are in Ap� In fact� if u and v are in A��
then uv��p is in Ap� and the bound of this product satis
es the estimate

Ap�uv
��p� � A��u�A��v�

p������

as follows directly from conditions ��� and ���� By means of a delicate stopping�
time argument� Jones �� succeeded in proving the converse� Each Ap weight w can
be decomposed as the product w � uv��p of A� weights u and v� Several years
later� Rubio de Francia found a much simpler proof of this decomposition �see ���
���� and ����� and his �reiteration� scheme has since found many applications� It
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has been used� for example� to give a constructive proof of the duality of Hardy
space H� and BMO� the space of functions of bounded mean oscillation �see ����
to prove an extrapolation theorem for operators on weighted Lp spaces �see �����
and to characterize the domains on which BMO functions have extensions to all
of Rn �see ����

For the purpose to be discussed here� however� the reiteration argument has
one shortcoming� It does not give sharp quantitative information on the weight
bounds A��u� and A��v� of the factors that arise in the decomposition of a given
Ap weight w as uv��p� In particular� it does not reveal whether it is possible to fac�
tor Ap weights with bounds near � �continuously� into pairs of component weights
with A� bounds near �� By contrast� observe that the estimate ��� immediately
shows that when the bounds A��u� and A��v� are near �� then so is Ap�uv

��p��
To see how this di�culty arises� let us brie�y review the reiteration argument

in the simplest case p � �� in which we seek to factor a given A� weight w into a
quotient of two A� weights �see �����

Since w � A�� the Hardy�Littlewood maximal operator M is bounded both
on L��w dx� and� by the symmetry in ���� on L��w�� dx��y It follows that the
sublinear operator S de
ned by

S�f� � w����M �w���f� � w���M �w����f�

is bounded on the unweighted space L��dx�� say kS�f�k� � Bkfk�� Now choose
a positive function f in L��dx�� as well as a number � larger than �� Next� set
g �

P�
k����B�

�kSk�f�� Then g � L��dx� and

S�g� � ��B�
�X
k��

��B��kSk�f� � ��B�g � S�f��

Since S�f� � �� the pointwise estimate S�g� � ��B�g holds� Thus

w����M �w���g� � S�g� � ��B�g�

so that M �w���g� � �B�w���g�� Hence u � w���g belongs to A� and satis
es
A��u� � �B� Similarly� v � w����g is in A�� and A��v� � �B� The construction
thus quickly decomposes w as a quotient u�v of twoA� weights� it does not� however�
sharply control the A� bounds of the factors in this quotient� For even if the
A� bound of the original weight w is near �� we can only conclude from the above
argument �letting � approach �� that the A� bounds of u and v are no larger than
the operator bound B� and this is at least ��z

Thus� the reiteration scheme� while useful in numerous applications� does not
answer the question we pose here� If A��w� is near �� then is it possible to factor w
as a quotient of two A� weights u and v with bounds also near �� The a�rmative
answer to this question is contained in the following theorem� the proof of which is
the focus of this paper�

yRecall that Mf�x�� 	 supQ���jQj�
R
Q jf j� where the supremum runs over all cubes Q con�

taining x�� For the fundamental proof thatM is bounded on the weighted space L��w dx� exactly
when w � A�� see ��� or �����

zSimply observe that for f positive� both M�w���f� � w���f and M�w����f� � w����f � so
that S�f� � �f�
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Theorem� If w is an Ap weight and Ap�w� � � � � � � � ��� then there exist

A� weights u and v satisfying both w � uv��p and

A��u�� A��v� � � �C
p
�����

The constants C and �� depend only on the dimension n and the index p�

The method of the proof is 
rst to supplement the original argument of Jones ��
in the dyadic model case with some sharp estimates in the author	s thesis ��� The
averaging method of Garnett and Jones �� is then adapted to handle the general
case� Sharpness of the asymptotic estimate ��� in the theorem is shown in the 
nal
section�

�� The dyadic setting

We begin by proving the following dyadic version of the factorization theorem�
This version is stated for the collection D�Q�� of all dyadic subcubes of an arbitrary�

xed cube Q� in Rn� that is� all those cubes obtained by dividing Q� into �n

congruent cubes of half its length� dividing each of these into �n congruent cubes�
and so on� by convention� Q� itself belongs to D�Q���

Lemma �� Suppose that w satis�es the dyadic Ap condition

sup
Q�D�Q��

�
�

jQj
Z
Q

w

��
�

jQj
Z
Q

w�����p�

�p��
� � � � � � � �����

on the cube Q�� Let f � logw� Then there exist functions g� F � and G on Q�

which satisfy both the pointwise identity

f�x� � fQ�
� g�x� � F �x�� G�x�� x � Q����

and the estimates

jgj � C�
p
�����

�

jQj
Z
Q

eF � �� � C�
p
�� inf

Q
eF � Q � D�Q������

�

jQj
Z
Q

eG��p��� � �� � C�
p
�� inf

Q
eG��p���� Q � D�Q������

The constants C� and �� depend only on the dimension n and the index p�

Essential to the estimates in the lemma is the following measure�theoretic result
�see ��� ��� or ����� which insures that the mean oscillation of the logarithm of a
weight is close to � when the Ap bound of the weight is near the optimal value ��

Lemma �� If the ratio of the arithmetic and geometric means of w on Q satis�es�
�

jQj
Z
Q

w

���
exp

�

jQj
Z
Q

logw

�
� � � � � �

and f � logw� then

�

jQj
Z
Q

jf � fQj � C�
p
������
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This result holds on each single cube �and� in fact� we may take C� � ���� The
form in which we shall apply the estimate is as follows� Let k � k and k � k� denote
the dyadic and full BMO seminorms� i�e��

kfk � sup
Q�D�Q��

�

jQj
Z
Q

jf � fQj and kfk� � sup
Q�Rn

�

jQj
Z
Q

jf � fQj�

When w satis
es the dyadic Ap condition ���� then ���� and Jensen	s inequality
insure that k logwk � C�

p
�� likewise� when Ap�w� � � � �� then k logwk� � C�

p
��

The following proof of the dyadic version of the factorization theorem combines
an iterative Calder�on�Zygmund decomposition singling out those cubes on which
the mean oscillation of f is large with the bound obtained from Lemma ���

Proof of Lemma �� Fix Q�� set f � logw and � � �nkfk� Let G� � fQ�g� De
ne
G� � fQj � D�Q�� � jfQj � fQ�

j � �� Qjmaximalg����

and� inductively�

Gm	� � fQj � D�Q� � Q � Gm� jfQj � fQj � �� Qjmaximalg�����

Write G �
S�
m�� Gm and let �m be the union of the cubes in Gm� By construction�

�m	� � �m � � � � � ��� For Q in Gm	�� let eQ denote the unique cube in Gm
enveloping Q�

Now� maximality in the selection criteria ���� and ���� and standard BMO esti�
mates give rise to the mean�value inequality

� � jfQ � f
eQj � ��� Q �

��
m��

Gm�����

They also lead to the relative density estimate

jQ��m	�j � ��njQj� Q � Gm�����

which is valid for each non�negative integer m� Summing this last estimate over
the cubes in Gm and iterating leads to the bound

j�mj � ��mnj��j�����

Furthermore� di erentiation of the Lebesgue integral!in conjunction with ����
and ����!yields the pointwise estimate

jf�x��
X

Qj�Gm

fQj	Qj �x�j � �� x � �m n�m	������

which is also valid for each non�negative m� Hence� when we set

g�x� � f�x� � fQ�
�

�X
m��

X
Qj�Gm

�fQj � f
eQj
�	Qj �x������

then jgj � � a�e� on Q��y The bound � � �nkfk � �nC�
p
� from Lemma � then

gives the desired estimate ��� for g�

�The argument follows ��� and ��� closely� with modi�cations introduced to get around the fact
that the proof for the dyadic model case in ��� pp� ������� only leads to A� factors with bounds
which are at least �� even when the Ap bound of the weight to be factored is nearly ��

yNote that the intersection �m�m is a set of measure zero within Q�� on account of ����� So
it su�ces to verify the bound for g on �m n �m� separately for each non�negativem� and this
follows from �����
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Next� to obtain suitable dyadic A� factors of w� split the double sum in ����
according to the sign of the di erence fQj � f

eQj
� That is� let

f�x� � fQ�
� g�x� � F �x��G�x��

where

F �x� �
�X
m��

X
Qj�Gm

�fQj � f
eQj
�		Qj �x�����

and

G�x� �
�X
m��

X
Qj�Gm

�f
eQj
� fQj �

		Qj �x������

It is important to note that the functions F and G de
ned in ���� and ���� are
non�negative� where they are positive� their value must� by ����� exceed �� For later
purposes� we also wish to express F and G as sums over all the dyadic subcubes
of Q�� not just over those where the mean oscillation of f is large� Thus� we write

F �x� �
X

Qk�D�Q��

ak	Qk �x�����

and

G�x� �
X

Qk�D�Q��

bk	Qk �x������

In ����� for example� whenever Qk 	� 
�m��Gm or whenever Qk � 
�m��Gm but
fQk � f

eQk
� �� then ak � �� otherwise� ak � fQk � f

eQk
� A similar interpretation

applies to the coe�cients bk�
In light of Lemma �� it su�ces to show that the dyadic A� bounds of expF and

expG��p� ��� do not exceed � � C�� provided that � � �nkfk is suitably small�
This means we must show that

�

jQj
Z
Q

eF � �� � C�� inf
Q

eF����

and

�

jQj
Z
Q

eG��p��� � �� � C�� inf
Q

eG��p�������

for all Q � D�Q��� To prove this we now consider three cases�

Case I� The initial cube� We 
rst verify ���� in the case when Q � Q�� the original
cube� In this case� infQ F � �� for the choice of � in the stopping�time argument
insures that the set �� n�� has positive measure� see ����� Changing variables in
the standard integral formula

R
Q�e

F � �� �
R�
� etjfx � Q � F �x� � tgj dt leads to

the equation

�

jQj
Z
Q

eF � � �
�

jQj
Z �

�

jE� je�� d
�����

in which

E� � fx � Q � F �x� � �
g�
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Estimating the dyadic A� bound of expF then reduces to estimating the size of the
set E� � But condition ���� insures that E� � ��� when � � 
 � �� and� in general�
that E� � �k� when ��k � �� � 
 � �k �for each k in N�� Thus� by ���� and �����

�

jQj
Z
Q

eF � � � ��
�X
k��

j�kj
jQj e

��k � � � ��
�X
k��

��nke��k�����

The latter sum is less than �� when � � �nkfk is su�ciently small� Consequently�
jQj�� RQ eF � � � ��� which is ���� for Q � Q��

Case II� A cube with a large jump in mean value� Suppose now that Q � Gm for
some positive m and that fQ � f

eQ � ��z Then

�inf
Q
eF ���

�

jQj
Z
Q

eF �
�

jQj
Z
Q

eF�infQ F � ��
�

jQj
Z �

�

j eE� je�� d
�

where eE� � fx � Q � F �x�� inf
Q
F � �
g�

In analogy to the 
rst case� we 
nd from ���� and ���� that eE� � Q ��m	k� when

��k � �� � 
 � �k �for each k in N�� So for 
 in this range� j eE� j � ��nkjQj� from
which the desired estimate ���� once again follows�

Case III� Cubes with no large jump in the mean� In Case I� we considered Q�� in
Case II� we treated those dyadic cubes Q within Q� for which fQ � f

eQ � �� To

handle the remaining case e�ciently� we 
rst introduce a bit of further notation�

For each proper dyadic subcube Q of Q�� let eQ denote the minimal cube in G that
strictly contains itx and set

P�Q� � fQj � D�Q� � fQj � f
eQ � �� Qjmaximalg�

N �Q� � fQj � D�Q� � fQj � f
eQ � � �� Qjmaximalg�

Note that the union of P�Q� and N �Q� is exactly the set of the cubes in 
�m��Gm
that lie within Q� In this notation� the remaining case now consists of proving ����
on each dyadic cube Q for which Q 	� P�Q��

Fix such a cube Q� To estimate
R
Q
expF we split Q into the union of its subcubes

in P�Q� and the complement of this union� On the one hand� if Qj � P�Q�� theneQj � eQ� Case II then applies� so thatZ
Qj

eF � �� � ����inf
Qj

eF �jQjj�

But infQj F � inf
eQ F � �fQj � f

eQj
�� hence

� � inf
Qj

F � inf
eQ
F � fQj � f

eQj
� ���

zUnlike in ����� the sign of the di�erence is important here�
xThat is� eQ 	

TfQj � G � Q � Qjg� This is consistent with the earlier notation� in which

Q � Gm� and eQ � Gm�
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by ����� On the other hand� on the complement in Q of 
Qj the value of F is
exactly inf

eQ F � All together� then�Z
Q

eF � �� � ���
X

Qj�P�Q�

�inf
Qj

eF �jQjj� �inf
eQ
eF �jQ n 
Qj�P�Q�Qj j

� �� � ���e���inf
eQ
eF �

X
Qj�P�Q�

jQjj� �inf
eQ
eF �jQ n 
Qj�P�Q�Qjj

� �� � ���e���inf
eQ
eF �jQj�

Since inf
eQ F � infQ F � the bound ���� thus also holds for the cubes Q in this� the

last case�
The justi
cation of the dyadic A� bound ���� is similar� with G��p� �� in place

of F � N �Q� in place of P�Q�� etc� This completes the proof of Lemma ��

�� The general setting

The proof of the theorem follows the argument in �� pp� ���"���� except for
certain technical modi
cations which are introduced to keep all bounds as small
as possible� For completeness� the full proof is given here� Let SN be the cube
fx � Rn � jxij � �N � � � i � ng�
Lemma �� Suppose that w � Ap and that Ap�w� � � � � � � � ��� Let f � logw�
For each natural number N there exist functions gN � FN � and GN on the cube SN
satisfying both the pointwise identity

f�x� � fSN � gN �x� � FN �x�� GN �x�� x � SN �����

and the bounds

jgN j � C�
p
������

�

jQj
Z
Q

eFN � �� �C�
p
�� inf

Q
eFN � Q � SN �����

�

jQj
Z
Q

eGN��p��� � �� �C�
p
�� inf

Q
eGN��p���� Q � SN �����

The constants C� and �� depend only on the dimension n and the index p�

Note that ���� and ���� are valid for all subcubes of SN � not just the dyadic
ones�

Let us 
rst show how this last lemma implies the theorem� The identity ����
can be re�written� after subtracting o the mean value of each side on S�� as

f�x� � fS� � gN �x�� �gN �S� � � FN �x�� �FN �S� �� GN �x�� �GN �S� �����

� #gN �x� � #FN �x�� #GN �x������

Then j#gN j � �C�
p
� a�e� on SN � by ����� Taking the logarithm of ���� readily yields

a bound on the mean oscillation of FN �

�

jQj
Z
Q

jFN � �FN �Qj � �

jQj
Z
Q

�FN � inf
Q
FN � � �C�

p
�� Q � SN �����
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The same estimate applies to #FN � since it di ers from FN only by an additive con�
stant� The John�Nirenberg inequality in �� then allows us to convert this statement

into a bound on the quadratic mean oscillation of #FN � namely

�

jQj
Z
Q

j #FN � � #FN �Qj� � C��� Q � SN �

Suppose now that N �M � When Q � SM � the last estimate becomes

�

jSM j
Z
SM

j #FN j� � �C�� � �j� #FN �SM j������

To control the right�hand side� form a telescoping sum of mean values�

� #FN �SM � � #FN �S� � � #FN�S� � � #FN �S� � � � � �� � #FN�SM � � #FN �SM�� ������

Since jS�j�jS�j � � � � � jSM j�jSM��j � �n� the magnitude of each of the M brack�
eted di erences is no more than the 
xed quantity �n��C�

p
��� by ����� In fact�

as � #FN �S� � �� ���� becomes j�FN �SM j �M�n	�C�
p
�� Conditions ���� and ����

together then yield the quadratic bound

�

jSM j
Z
SM

j #FN j� � �C��� ��M�n	�C�
p
��� ���

which holds uniformly for N � M�M � ��M � �� � � � � and an analogous bound is
also valid for #GN � For each M � the sequences f #FN � N �Mg and f #GN � N �Mg
are thus bounded in L��SM �� we have also already seen that f#gN � N �Mg is a
bounded sequence in L��SN �� Using a diagonal argument� we may therefore choose
a subsequence Nj � �� so that #FNj � F� #GNj �G weakly in L��SM � and so
that #gNj � g in the weak�star topology on L��SM �� with this convergence holding
simultaneously for all M �� Taking a further subsequence� if necessary� we may
assume that the convergence also occurs pointwise a�e� on Rn� From ����� then�
f�x� � fS� � g�x� � F �x�� G�x�� with

jgj � C�
p
� a�e� on Rn�����

To obtain the desired A� bound on expF � 
x an arbitrary cube Q in Rn�
and choose M so large that Q � SM � Apply Fatou	s lemma to the sequence
fexp #FNj � Nj � Mg to obtain the boundy

�

jQj
Z
Q

eF � �� � C�
p
�� inf

Q
eF����

from ����� Set u � expfS� � g � F �� Thanks to ���� and ����� u � A� and
A��u� � exp�C�

p
�� �� � C�

p
�� � � �O�p��� as desired� The corresponding A�

bound for v � expG��p���� follows similarly from ����� The proof of the theorem
is now complete�

�The John�Nirenberg inequality has been invoked to move from uniform boundedness in L�

to that in L�� otherwise� weak compactness would have only guaranteed the existence of a subse�
quence converging to a measure�

ySuppose that f�jg is a sequence of non�negative� measurable functions that converges a�e�
to �� What is needed here are both the �standard�L� form of Fatou�s lemma�

R
� � lim infj

R
�j�

as well as its L� form� lim infj�inf �j� � inf �� the latter can be veri�ed via a simple proof by
contradiction� With the help of these ingredients� it does not seem necessary to approximate F
by �nite linear combinations or to invoke H�older�s inequality� as is done on p� ��� of ���� Recall
that we write inf � for ess inf�� as indicated in the introduction�
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Proof of Lemma �� We use the averaging procedure of �� to move from the dyadic
version of the theorem �Lemma �� to the general� local version �Lemma ��� Fix
N and assume� without loss of generality� that fSN � �� Set Q� � SN	� and
� � �nkfk�� For each � � SN � apply Lemma � on Q� to the translate T�f of f �
where T�f�x� � f�x � ��� note that condition ��� holds uniformly for T�f �in place
of f� as � varies� due to the assumption that Ap�ef � � � � �� The result is

T�f�x� � �T�f�SN�� � g����x� � F ����x�� G����x��

where g���� F ���� and G��� satisfy ���� ���� and ���� respectively�z Next� for a�e� x
within the cube SN � we know that

f�x� �
�

jSN j
Z
SN

T���T�f��x� d�

�
�

jSN j
Z
SN

T��
�
g��� � �T�f�SN�� � F ��� � G���

�
�x� d�

� gN �x� � FN �x�� GN �x��

where� in the last line� gN �x� � jSN j��
R
SN

T��
�
g��� � �T�f�SN��

�
�x� d� and

FN �x� � jSN j��
R
SN

T���F �����x� d�� and where GN is de
ned analogously to FN �
Now� since f is in BMO� then

j�T�f�SN�� j � j�T�f�SN�� � fSN�� j� jfSN�� � fSN j� jfSN j � cn
p
��

as follows from ���� and the assumption fSN � ��x The uniformboundedness of g���

in ��� then insures that jgN j � C�
p
� a�e� on SN � In addition� the expansion ����

guarantees that there are non�negative coe�cient functions a���k � depending mea�
surably on ��� such that

F ����x� �
X

Qk�D�SN���

a
���
k 	Qk�x��

Note that this sum runs over D�SN	��� a 
xed� countable collection of cubes which
is indexed by k and independent of �� as in x�� each coe�cient a���k is either �
or a number between � and ��� Condition ���� leads to a similar representation
for G����

It remains to show that FN satis
es the desired A� estimate on SN � Fix an
arbitrary cube Q within SN � Our goal is to show ����� i�e��

�

jQj
Z
Q

eFN � �� �C�
p
�� inf

Q
eFN �����

zThe symbols Gm����� G���� and �m���� will likewise denote the sets within Q� obtained when
f is replaced by its translate T�f in the de�nitions of Gm� G� and �m in x��

xCompare the bound obtained from ����
�Choose a dyadic subcube Qk of Q�� with jQkj 	 ��njQ�j� By de�nition� the coe�cient a

���
k

satis�es a���k 	 ��T�f�Qk � �T�f�Q� ��Ek � where Ek 	 f� � SN � ��T�f�Qk � �T�f�Q� � 	 
g�
Since f � L��SN��� then �	 	 	 � is a continuous function of �� and Ek is consequently an open set

within SN � This proves the measurability in � of the coe�cient functions a
���
k associated to each

�rst�generation subcube Qk of Q�� The argument for cubes of a later generation within D�Q�� is
analogous�



�� MICHAEL BRIAN KOREY

To reach this we will make a number of reductions� First� on the cube Q� write

F ��� � F
���
� � F

���
� � with

F
���
� �

X
��Qk����Q�

a
���
k 	Qk � F

���
� �

X
��Qk����Q�

a
���
k 	Qk �

where �Q� denotes the side�length of Q� Note that only 
nitely many terms enter
into the 
rst sum� Next� de
ne the averaged forms

FN���x� �
�

jSN j
Z
SN

F
���
� �x� �� d�� FN���x� �

�

jSN j
Z
SN

F
���
� �x� �� d��

thus� FN � FN�� � FN��� On account of Lemma �� to prove ���� it su�ces to show
the two bounds

sup
Q

FN�� � inf
Q
FN�� � C�����

and
�

jQj
Z
Q

eFN�� � �� �C�� inf
Q
eFN�� �����

where � � �nkfk��
Now� ���� is a consequence of the following Lipschitz estimatek on the contribu�

tion to FN of the terms arising from cubes of a 
xed size�

Lemma �� Let

$Fj�x� �
�

jSN j
Z
SN

X
��Qk����j��SN �

a
���
k 	Qk�x��

so that FN �x� �
P�

j��
$Fj�x�� If sup�	i	n jxi � yij � ��j�SN �� then

j $Fj�x� � $Fj�y�j � C��
jkfk�

�SN �
jx� yj�

with C� dependent only on the dimension n �and� in particular� not on j��

In fact� if x� y � Q and r is the integer satisfying ��r���SN � � �Q� � ��r�SN ��
then sup�	i	n jxi � yij � ��r�SN �� Hence

jFN���x� � FN���y�j �
rX

j��

j $Fj�x� � $Fj�y�j � C�kfk�
rX

j��

�j
jx� yj
�SN �

�����

The latter sum is no more than �
p
n� so that ���� holds�

What about ����� We can� in fact� further simplify the right�hand side there
by noting that FN�� � �� As for the left�hand side� from Jensen	s inequality and
Fubini	s theorem it follows that

�

jQj
Z
Q

eFN�� �
�

jQj
Z
Q

exp
�

jSN j
Z
SN

T���F
���
� ��x� d�dx

� �

jQjjSN j
Z
Q

Z
SN

expT���F
���
� ��x�� d�dx

�
�

jSN j
Z
SN

�

jQj
Z
Q	�

exp�F
���
� ��y� dy d��

kThis is Lemma ��� in ����
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For the proof of ����� it thus su�ces to obtain a suitable estimate on the inner
integral in the last line� i�e�� to show that

�

jQj
Z
Q	�

exp�F
���
� ��y� dy � � �O�������

uniformly for all � � SN � The last integral average can be written� as in ����� in
the form

� �
�

jQj
Z �

�

jE���
��� je�� d
�

where

E
���
��� � fy � Q� � � F

���
� �y� � �
g�

But Q � � is contained within a union of �n dyadic subcubes of SN	�� each hav�
ing side�length less than twice that of Q� Applying the construction in x� to

each of these subcubes and summing leads to the estimate jE���
��� j � cn�

�nk� when

��k � �� � 
 � The bound ���� then follows from writing
R�
� �� � � � d
 as the sumP�

k��

R �k
��k����� � � � d
 � The proof of estimate ���� for GN is similar� This settles

the last remaining step in the proof of the lemma� and the factorization theorem is
thus complete�

�� Sharpness of the asymptotic estimate

That the square root is the sharp power in the theorem follows from considering
a step function w with the value � �

p
� on one side and ��p

� on the other side
of a hyperplane in Rn� This weight satis
es Ap�w� � � � O���� although� as we
shall presently show� regardless of how it is factored into a quotient of A� weights�
at least one of its factors must have an A� bound exceeding � �O�p���
Proposition� Let w be the step function taking the value ��

p
� in Rn

	 and ��p�
in Rn

�� Suppose that w � uv��p for A� weights u and v� Then

Ap�w� � � � c��

although

maxA��u�� A��v�� � � � c��
p
��

The constant c depends only on the index p�

Proof� For simplicity� we 
rst show this in the case p � �� Divide the unit cube
Q � ����� ����n in half� with I � Q �Rn

	 and J � Q �Rn
�� A calculation shows

that the A� bound of the given weight w is achieved when the averages of w and
w�� are formed symmetrically over Q� in which case

A��w� �

�
� �

p
�

�
�
��p�

�

��
�

��� �
p
��

�
�

����p��
�
�

�

�� �
� � �O����

Suppose that w � u�v for the pair of A� weights u� v� If A��u� � � �
p
���� thenZ

Q

v �
�

�

� �
p
�
�

�

��p
�

�
min

�Z
I

u�

Z
J

u

�
� �

�� �

�

� �
p
���

Z
I

u�
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where the last step is a simple consequence of the assumed A� bound on u�� In
addition�

inf
Q
v � inf

I
v �

�

� �
p
�
inf
I
u � �

� �
p
�

Z
I

u�

Hence

A��v� �
R
Q
v

infQ v
� � �

p
�

��� ���� �
p
����

� �

��p��� � � �
�

�

p
��

When p � �� the argument is similar� If A��u� � � �
p
��� and vp�� � u�w�

then the above estimates show that A��v� � �� �
p
�������p��� � � �

p
���� When

p � �� it is easier to begin with an A� weight v and to set u � wvp��� In this case� if
A��v� � � �

p
��Cp� then A��u� � �� �

p
������ � �

p
��Cp���p� the last quantity

exceeds � � c��
p
�� provided that Cp is su�ciently large� This completes the proof

of the proposition�
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�When jQj�� RQ u 	 �� 
 �� infQ u and Q is divided into two halves I� J of equal measure�

then a simple calculation shows that �
R
I u���

R
J u� � � 
 �� �see� e�g�� ��� x�� Cor� ����
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