On Carleman Formulas for
the Dolbeault Cohomology

Mauro Nacinovich Bert-Wolfgang Schulze
Dipartimento di Matematica Institut fur Mathematik
Via F. Buanaroti 2 Universitat Potsdam
56127 Pisa Postfach 60 15 53
Italy 14415 Potsdam
Germany

Nikolai N. Tarkhanov*
Institute of Physics
Russian Academy of Sciences

Akademgorodok
660036 Krasnoyarsk

Russia

February 21, 1998

*Supported by the Max-Planck Gesellschaft.

1



Nacinovich, Schulze, Tarkhanov

Abstract

We discuss the Cauchy problem for the Dolbeault cohomology in
a domain of C* with data on a part of the boundary. In this setting
we introduce the concept of a Carleman function which proves useful
in the study of uniqueness. Apart from an abstract framework we
show explicit Carleman formulas for the Dolbeault cohomology.
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Key words and phrases: 0-operator, cohomology, integral formu-
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Introduction

Analytic continuation is a central problems in complex analysis and its
applications. Assume we are given a class of analytic functions in a domain
D of C* which are well behaved on the boundary of D. A subset S of
JdD is said to be a set of uniqueness for this class if any function of the
class vanishing on S is zero in the whole domain D. It is well-known that
in general analytic functions on D do not depend continuously on their
values on a uniqueness set unless S contains the Shilov boundary of D. For
this reason 1t is impossible in general to recover the values of an analytic
function of the class from its values on S by a “nice” integral formula. The
instability should result in integral representation formulas involving either
a passage to the limit or a non-compact domain of integration. However, the
functional evaluating the holomorphic functions at the points of D may still
be continuous with respect to some two-norm convergence which requires,
along with convergence on S, boundedness in all of D. Such formulas are
referred to as ‘Carleman formulas.” For the existence of a Carleman formula
it is not sufficient that S be a set of uniqueness for the corresponding class.
In fact, such a formula exists if and only if S is a set of conditional stability
(cf. [AT90]).

The Carleman formulas for holomorphic functions of one and several
complex variables bear many applications both in the complex analysis it-
self and in the natural science. As but one example of these we recall the
problem of supersolvability of physical devices. For a systematic treatment
containing most of what is known on Carleman formulas and their applica-
tions we refer the reader to Aizenberg [Aiz93].

In higher-dimensional complex analysis d-closed differential forms and
especially their Dolbeault cohomology classes play a very important role,
aside from holomorphic functions. A cohomology class is a good substitute
of a holomorphic function; local triviality near a point of the boundary
substitutes analytic continuation, although a lack of localisability makes
the notion of extendibility of cohomology classes more complicate.

Thus, the Cauchy problem for the Dolbeault cohomology in a domain
with data on a part of the boundary generalises that of analytic contin-
uation. It was treated by Andreotti and Hill [AH72a] who reduced the
questions of uniqueness and existence to the vanishing of some cohomology
of the Dolbeault complex in the domain. The problem arises of finding
a suitable analog of Carleman formulas for holomorphic functions for the
Dolbeault cohomology classes. To this end, we first need an explicit de-
scription of subsets S of the boundary with the property that each d-closed
differential form u in D which is d-exact near S is actually d-exact on all of
D. This question is at present far from being solved. We will restrict our
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consideration to open subsets of the boundary.

A heuristic explanation of the procedure involved might be as follows.
Suppose that the boundary of D is “good” in some sense away from the set
S. By a “good” boundary we mean a hypersurface which is either strictly
pseudoconvex or on which the Levi form has a prescribed number of positive
eigenvalues. Then, were we able to solve the equation du = f near S in D,
the “good” structure of 9D\ S allow us to find a solution it in the whole
domain. However, things seem to go in a slightly different way and we
have to impose on 9D \ S a pseudoconcavity condition rather than one of
pseudoconvexity.

Moreover, if S is a set of uniqueness for some group of Dolbeault coho-
mology in the domain D, we are interested in finding integral formulas which
allow us to represent any O-closed differential form u in D, up to a J-exact
form, via the cohomology class defined by w on S. For this purpose, we
use Koppelman’s extension of the Martinelli-Bochner formula to differential
forms (cf. [Kop67]). The strategy is to represent our d-closed differential
form in D as the sum of two integrals, the first of the two being over the
boundary and the second one J-exact in D. Next we split the boundary
integral as the sum of one over S and one over its complement in 9D. In
this process we approximate the Koppelman kernel on 9D \ S by d-closed
differential forms in a neighborhood of the closure of the domain. In this
way we obtain a representation that we refer to as a generalised Carleman
formula for the Dolbeault cohomology.

1 Koppelman kernel

For n-dimensional vectors vy, ..., vy with entries in a ring and non-negative
integers ny,...,ny with ny+...4+ny = n, we denote by D,,, . (v1,...,0n)
the determinant of order n whose first n; columns are vy, the next n,
columns are vy etc., the last ny columns are vy. We compute the de-
terminant by columns, i.e., we define det(v;;) = > ;(=1)v;1 ... vi,, Where
ey denotes the signature of the permutation I = (i1,...,1,) of the integers
(1,...,n).

Let v = v(z,(,t) be a smooth function on O x [0, 1] with values in C",
O being an open set not intersecting the diagonal {# = (} in C? x C.
Fix 0 < p < n. Consider the double differential forms Kép)(w) of bidegree
(p,g—1)in z and (n — p,n — q) in ¢, given by

_1)at{n—p)(g—1)
) (=D () (1)
K (w) el \p) lg—1

% Dypup(02,0C) N Dyt g (v,0:0. (0 + di)v) (1.1)

for 1 < ¢ <mn,and Kép) = Kff_jl_)l =
The double forms (1.1) were first introduced by Koppelman [Kop67].
Here we rehearse some elementary properties of these forms.
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Lemma 1.1 For each smooth function f on O x[0,1], we have the equal-
ity Kép)(fv) = f”Kép)(v).

Proof. Indeed, if 3 is one of the differentials ., d; and d;, then we get
d(fv) = (0f)v + fOv. As the vector (0f)v is proportional to v, it gives no
contribution to the last determinant on the right-hand side of (1.1). This
proves the lemma.

0
In particular, if v satisfies (v,( — z) # 0 pointwise on the set O x [0, 1],

then X
K v — K® (v
g (<v,¢—z>) o= )

where (-, -) denotes the standard bilinear form C* @ C* — C. Thus, when
considering a vector-valued function v with the property that (v, —z) # 0
on O x [0,1], after multiplication by a non-zero function we may actually

assume that (v,( —z) = 1.

Lemma 1.2 Suppose v satisfies (v,{ —z) =1 on O x [0,1]. Then, we
have

(O + i) K&, (v) = (—1)+ . K (v). (1.2)

Proof. Cf. for instance Lemma 1.2 in Aizenberg and Dautov [AD75]
and elsewhere.
0
Note that if v; = v;(2,(), 7 = 1,2, are smooth functions on O with
values in C", both satisfying (v;,( —z) = 1 on O, then the linear homotopy
vy = (1 — t)vg + tvy; between them still satisfies (vs,( — z) = 1 on the set
O x [0,1].

Lemma 1.3 Let v satisfy (v,( —z) =1 on O x [0,1]. Write vy and v,
for the values of v at t =0 and t = 1, respectively. Then
K& (01) = K&, (v0) = 0. 15 (0) = (=1)PT 19, 11, (), (1.3)

on the set O, where [Z»(p)(v) = (—1)r*e [ dt| Kif)l(v) dt.

Proof. It suffices to integrate equality (1.2) over ¢t € [0, 1] and take
into account that

_ 1 1 _
D / | KD, (v)dt = — / dt|o K, (v) di
0 0

because 5( and d; anticommute.
O
There is a universal solution to the equation (v,( — z) = 1 outside of
the diagonal in C x C¢, given by vi(z,() = ((—2z)/|¢ —z]* for z # (. Under
this choice of v, the double forms Kép)(v) fit together to give a fundamental
solution of convolution type to the Dolbeault complex on C".
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Lemma 1.4 Let D be a bounded domain in C* with a piecewise smooth
boundary and u € CYAPYTED). Then,

— /m) u A ]&”53_)1(1)1) + /D ou A [&”53_)1(1)1) + 5/1) u A K;p)(vl) = ypu, (1.4)
where yp is the characteristic function of D.

Proof. Cf. the original paper of Koppelman [Kop67]. For a thorough
treatment we also refer the reader to [ADT75].

4

2 Abstract framework

In the sequel, we denote by D a bounded domain in C* with a piecewise
smooth boundary.

Let S be an open subset of 0D with a piecewise smooth boundary.
Assume moreover that 9D \ S is smooth. Then we can find an open neigh-
bourhood U of 9D \ S and a smooth real-valued p in U such that Vo # 0
on UNID and DNU ={z € U: p(z) < 0}. We call such a function p a
local defining function of D near 9D \ S.

Fix 0 < ¢ < n — 1. Recall that the part 9D\ S of 9D is called strictly
g-pseudoconcave if the Levi form of p has at least ¢ negative eigenvalues
at each point of 9D \ S. This property is independent of the choice of the
local defining function. Note that 0-pseudoconcavity imposes no condition
on the Levi form.

We may also regard 9D\ S as a part of the boundary of the complement
of D. Then, —p is a local defining function for C* \ D close to 9D\ S. A
g-pseudoconcavity assumption for ¢ implies that the Levi form of —p has at
least ¢ positive eigenvalues at each point of 9D\ S. Hence, at most n—1—g¢
eigenvalues may be negative or zero. In this case we say that 9D \ S is
strictly (n — 1 — q)-pseudoconvex. The usual ‘strict pseudoconvexity’ thus
corresponds to the ‘strict 0-pseudoconvexity’.

The following result is a kind of Lemma 4.5.3 of [Tar95] in the case of
the Dolbeault complex.

Lemma 2.1 Let 0 < ¢ < n—1. Suppose 9D\ S is strictly q-pseudocon-
cave. Then, there are a neighbourhood U of 9D\ S in C* and smooth double

differential forms Rg]fl_)l(z, ¢) and Pq(i)l(z, () on (UND) x (U\D), such that

EW (o) = BY(2,0) + (=1)7+19. P2 (2, 0),

6CR!(JZ-)|-)1(27 ¢) = 0. 1)

Note that R((JZ_DI_)I(Z,O and Pq(i)l(z,o should be of bidegree (p,q) and
(p,g — 1) in z, respectively, and (n — p,n —g—1) in (.

Proof. Without loss of generality we may assume that the set 9D\ S
is connected.
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Since the Levi form of p has at least ¢ negative eigenvalues at each
point of the compact set 9D \ S, this is still true in some neighbourhood
of D\ S on the boundary. It follows that there is a neighbourhood U’ of
ID\ S in C* and a smooth function o’ in U’ agreeing with —p near 9D\ S,
such that Q = {z € U": ¢/(z) < 0} is a domain with a compact closure in
U', Vo'|lag # 0 and the Levi form of o' has at least ¢ positive eigenvalues at
each point of 0€).

Thus, © is a strictly (n — 1 — ¢)-pseudoconvex domain in C* and the
boundary of € intersects 9D in a set containing a neighbourhood of 9D\ S.
Set U = (D\ Q) U (2\ D), then 9D\ S lies in the interior of U and

UNnD = D\Q,
U\D = Q\D.

By [AG62], the Dolbeault cohomology groups H*(E(APTEQ)) are finite-
dimensional for 1 > n — ¢q. Moreover, since ) C C*, they are actually zero
(cf. [Lau75]). Note that this fact still holds if we replace © by the closure
of Q).

For each fixed z € D\ Q, the double differential form Kl(p)(vl) is 0-
closed in ¢ € €, as is clear from Lemma 1.2. Since H" ™' (E(AP"TEQ)) = 0,
it follows that there is a double differential form Pz(p)(Z, () of bidegree (p,0)
in z and (n —p,n —2) in (, such that Kl(p)(vl) = 5CP2(p)(Z, () for all ¢ € Q.
Combining a clever argument of Kerzman [Ker72] with a priori estimates
for the solution of the d-Neumann problem given in [AH72b], we can even

ensure that Pz(p)(z,o be smooth for (z,() € (D\ Q) x Q away from the
diagonal z = (.

Set R(zp)(z,o = Kz(p)(vl) — (—l)p"'lézpz(p)(z,o. Using Lemma 1.2 we
deduce that

ORY(2,¢) = K (v) — (—1)"*10.9.P" (=, ()
= 0K (v1) — (1)K (vy)
=0

for all (z,¢) € (D\ Q) x Q. As H"2(E(AP"TzQ)) = 0, we can apply the
above argument again, with Kl(p)(vl) replaced by R(Qp)(z,o, to obtain a
double differential form P:)fp)(z, () of bidegree (p,1) in z and (n — p,n — 3)
in ¢, such that R(Qp)(z,o = 5CP§p)(Z,§) for all ( € ©. Once again we may
find P:)fp)(z, () smooth outside of the boundary diagonal in (D \ ) x €.
Continuing this process as far as the strict (n — 1 — ¢)-pseudoconvexity

of  allows, we construct double differential forms Pi(p)(z, O)y1=2,...,q+1,
on (D\ Q) x £, such that

KX (1) = 8:PE)(2,¢) + (=110, PP (2, ¢)
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Fig. 1: A typical set of uniqueness for the Dolbeault cohomology.

for e = 1,...,q. Letting R((JZ_DI_)I(Z,O = K;f_)l(vl) — (—1)p+q52P;f_)1(z,§), we
get, by Lemma 1.2,

I REN (2, ¢) = ORI (vr) = (=1)110.0: P (=, )
= 0K (v1) = (—1)"F10 K ()
= 0

for all (z,¢) € (D \ Q) x Q. This completes the proof.
O
The proof actually shows that if D lies in the complement of a strictly
(n — ¢ — 1)-pseudoconvex domain € and the boundary of D intersects J
in the complement of S, then the decomposition (2.1) is valid for all z € D
and ¢ € Q (see Fig. 1).

3 Carleman formula

Using the double differential form Pq(i)l(z, () constructed in Lemma 2.1, we
may introduce a d-homotopy operator

hiPu (z) = _/QD\SU A (=1 p®) (2 ) + /D uh KP(vy), zelnD,

on differential forms u of bidegree (p,q) in D continuous up to the part
dD \ S of the boundary. The interest of the operator hgp) lies in the fact

that we obtain 5h§p)u = u in UND, provided u is d-closed and vanishes on

S.

Theorem 3.1 Let R(gﬁ)l(c; z,(), € >0, be a family of double differential
forms on (U ND) x D, d-closed in { € D and approximating R((JZ_DI_)I(Z,O
uniformly in ¢ € 9D\S when ¢ — 0, for fivred = € UND. Ifu € CYAPITED)
is O-closed, then

u(z) = —11_1;% U A ([x”ﬁ)l(vl) — R(gﬂ_)l(c; z, )) + 5h§p)u (z), zeUND.
(3.1)
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Proof. Indeed, since R((f_jl_)l(e; 2,() is O-closed in ¢ in the domain D, for
each z € U ND, we conclude from (1.4) and Stokes’ formula that

u(z) = — /m) u A ([&”53_)1(1)1) - R((f_jl_)l(e; z, )) + 5/1) u A K;p)(vl)

if z € UND. The boundary integral can be written as the sum of two
integrals, one over S and the other over 9D \ S. When integrating with

respect to ( € 9D\ 5, we may invoke the decomposition of [&”53_)1(1)1) given

by (2.1). Hence it follows that

u(z):—/su/\ ([(53_)1(7)1)_354—)1(6 z, )) - /QD\SU/\ (Rg]fl_)l(vl)—]%g_l_)l(c z, ))
+ 5h§p)u (2)

for z € UND. This equality holds for all positive € close to zero. Moreover,
both the left-hand side and the last summand on the right-hand side are
independent of e. As the restriction of u to 9D \ S is continuous and
R(gﬁl(e z,+) approximates Rfﬁ_)l( -) in the norm of L'(9D \ S), we may
assert that the integral over 9D \ S on the right-hand side tends to zero
when € — 0. Thus, passing to the limit when € — 0 we arrive at formula

(3.1), as desired.
O
The difference C;f_)l(e;z,ﬁ) = [&”53_)1(1)1) — Rg+1( z,() is said to be a
Carleman function for the Dolbeault cohomology of D at step g. Let us
observe that

0c Cifhle20) = 0K i)
= (=1)PT9, KP(vy) (3.2)
for all (z,¢) € (U N D) x D, the last equality being due to Lemma 1.2.

Corollary 3.2 Suppose there exists a Carleman function for the Dol-
beault cohomology of D at step q. If u € CHAPITED) is d-closed in D and
d-exact on S, then u is D-exact in U ND.

Proof. Let u = Jv on S where v € CY(AP97IT5S). Integrating by
parts and using (3.2) we get

[unciiaz = [oonciie=
= /asv A C;f_)l(e; z, )+ 5/51) A K;p)(vl)

for all z € U N D. Since the restriction of v to 95 is continuous and
Cgf_)l(e; z,+) converges to zero in the L'(9S)-norm when e — 0, we conclude
that the integral over 05 on the right-hand side tends to zero as ¢ — 0. It

follows that
=0 ([ oA KO w1) + )
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in U N D, proving the corollary.
O
The question of the existence of a Carleman function for the Dolbeault
cohomology is at present far from being solved. We just mention that such is
the case if H*= 971 (E(A"PTED)) is dense in H"~ =Y E(A"PTA(ID\ S5))).
This latter condition is actually equivalent to the dense solvability of the
transpose to the Cauchy problem for the Dolbeault cohomology of D at step
g with data on S.

4 Support function

In this section we show how Lemma 1.3 can be used to derive explicit
Carleman functions for the Dolbeault cohomology of D. To this end the
concept of a ‘support function’ for the Dolbeault cohomology of D proves
useful. We keep the notation of the previous sections. In particular, U is a

neighbourhood of 9D\ S in C".

Definition 4.1 A smooth mapping v: (UND)x(ID\S) — C* satisfying
(v,(—2) = 1 is said to be a support function for the Dolbeault cohomology of
D at step q if ¢ Dy gn—g—1(v,0.v,0:v) =0 for all (z,() € (UND)x(dD\S).

Usually one considers support functions of the form v{v,( — z)~' where
v: (UND) x(0D\S) — C" satisfies (v, — z) # 0 pointwise on the set
(UND) x (9D \ S) (cf. Ch. V in Range [Ran86]).

Example 4.2 Assume that the domain D is linearly concave close to
dD \ S in the sense that for each point z € U N D there is a complex
hyperplane {¢( € C": (v(2),( — z) = 0} through z which does not intersect
the set 9D \ S. Then v(z){v(z),{ — 2)~" is a support function for the
Dolbeault cohomology of D at step ¢, for each g.

O

If vy is a support function for the Dolbeault cohomology of D at step

g, then the double differential form ]&”53_)1(1)0) is d-closed in ( € 9D\ S, for

any z € U N'D. Hence equality (1.3) yields an explicit decomposition (2.1)

with (7 (7 5 19
RyL(2,¢) = KFi(vo) — (=1)PF10 L1 (ve),
PR 0 = (S (v,

where v; = (1 — t)vg + tvy. Thus Theorem 3.1 still applies with Rg]fl_)l(z, ()

and Pq(i)l(z, () given by (4.1).

Note that R((f_jl_)l(z, () and ]&”53_)1(1)0) differ by a J¢-closed double differen-
(r)

tial form, and so the problem of approximating R/, (z, () reduces easily to

(4.1)

the analogous problem for [x’;f_)l(vo).
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