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Abstract

We consider a homogeneous pseudodi�erential equation on a cy�

linder C � R� X over a smooth compact closed manifold X whose

symbol extends to a meromorphic function on the complex plane with

values in the algebra of pseudodi�erential operators over X � When

assuming the symbol to be independent on the variable t � R� we

show an explicit formula for solutions of the equation� Namely� to

each non�bijectivity point of the symbol in the complex plane there

corresponds a �nite�dimensional space of solutions� every solution be�

ing the residue of a meromorphic form manufactured from the inverse

symbol� In particular� for di�erential equations we recover Euler�s

theorem on the exponential solutions� Our setting is model for the

analysis on manifolds with conical points since C can be thought of

as a 	stretched� manifold with conical points at t � �� and t ���

AMS subject classi�cation
 primary
 ��N
�� secondary
 ��G�
�

Key words and phrases
 pseudodi�erential operator� meromorphic

family� residue�
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Introduction

The aim of this paper is to bring together two areas in which the Euler the�
ory for ordinary di�erential equations with constant coe�cients is a powerful
source of intuition and an important ingredient� One of the two deals with
abstract meromorphic functions taking their values in the space of bounded
operators between Banach spaces� This area was intensively studied in the
late 	
�s by Blekher �Ble

�� Krein and Tro�mov �KT

�� Eni �Eni

�� Sigal
�Sig���� Markus and Sigal �MS���� Gokhberg and Sigal �GS��� etc�� who de�
veloped the earlier papers of Keldysh �Kel��� and Gokhberg �Gok���� The
other area is the analysis of pseudodi�erential operators on manifolds with
conical points� It is originated with the paper of Kondrat�ev �Kon
�� and
was developed by Plamenevskii �Pla�
�� Schulze �Sch
�� Sch
��� Melrose and
Mendoza �MM���� Schrohe and Schulze �SS
�� SS
��� Maz�ya� Kozlov and
Rossmann �MKR
�� and other authors� The de�nition of a pseudodi�eren�
tial operator close to a conical point relies on the concept of a parameter�
dependent pseudodi�erential operator on a smooth closed manifold� as is
introduced by Agranovich and Vishik �AV
��� On the other hand� the key
result of the theory is an asymptotic expansion of solutions near conical
points� the idea going back at least as far as Evgrafov �Evg
��� Agmon
and Nirenberg �AN
��� Kondrat�ev �Kon
�� and Maz�ya and Plamenevskii
�MP���� If pulled back to t � � by the di�eomorphism t �� e�t� the
asymptotics are nothing but Euler solutions to the equation de�ned by the
conormal symbol at the conical point� This latter is a parameter�dependent
pseudodi�erential operator on a cross�section of the manifold in a neigh�
bourhood of the conical point� the parameter being the covariable � � R
of t� Moreover� it extends meromorphically in � to a neighbourhood of the
real axis� In the present work we will thus be concerned with an equation

�

��

Z
��
dz

Z
R

ei�t�t
��za�z�u�t��dt� � f�t�� t � R� �����

on the cylinder C � R�X over a C� compact closed manifoldX� Here� a�z�
is a meromorphic function in a strip � � fz � C � �z � �a� b�g containing
the line �� � R�i�� which takes its values in the space of classical pseudod�
i�erential operators of order m on X� We assume that �� contains no pole
of a�z� and that the restriction of a�z� to each horizontal line within the
strip � behaves like a parameter�dependent pseudodi�erential operator on
X� When �rst de�ned on functions u � C�

comp�R� C
��X��� the operator on

the left�hand side of ����� extends to a mapping of weighted Sobolev spaces
on the cylinder� Hs���C�� Hs�m���C�� for every s � R� Thus� we may take
Hs�m���C� as a domain for f and Hs���C� as such for u� Under the natural
condition of ellipticity� we give an explicit formula for the resolvent a���z�
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and prove that equation ����� has a unique solution u for each right�hand
side f � We then use this result to investigate equation ����� on weighted
Sobolev spaces Hs�w�C�� with w � �w�� w�� a pair of real numbers control�
ling the growth of functions at t � ��� This scale of Sobolev spaces on
the cylinder is more capacious to specify the solutions of ����� than the one�
parameter scale� In particular� taking w � ���� �� yieldsHs�w�C� � Hs���C�
for all s� � � R� Generally speaking� the operator on the left�hand side of
����� can not be extended to a continuous mapping Hs�w�C� � Hs�m�w�C��
even if w� � �a� b�� To give meaning to ����� we distinguish between the
cases �w��w� and �w��w�� If �w� � w�� then in order that a func�
tion u belong to Hs�w�C� it is necessary and su�cient that u � Hs���C�
for each �w� � � � w�� Moreover� for any u � Hs�w�C�� the Fourier
transform Fu�z� �

R
R
e�izt

�

u�t��dt� is a holomorphic function in the strip
�w� � �z � w� with values in Hs�X�� Denote by DomA the subspace of
Hs�w�C� consisting of all u with the property that resp eitza�z�Fu�z� � � at
each pole p of a�z� in the strip �w� � �z � w�� It is fairly straightforward
that DomA is of �nite codimension� For any u � DomA� the integral on
the left�hand side of ����� is independent of the particular choice of � in
the interval ��w�� w��� Moreover� it gives a function in Hs�m�w�C� thus
de�ning an operator A � DomA � Hs�m�w�C�� We prove that if a�z� is
invertible on both ��w� and �w� � then the equation Au � f has a unique
solution u � DomA for every f in a subspace ofHs�m�w�C� of �nite codimen�
sion� In particular� A is a Fredholm operator� Let us now turn to the case
�w� � w�� WereA a continuous linear operator Hs�w�C�� Hs�m�w�C�� the
transpose A� would de�ne an operator H�s�m��w�C� � H�s��w�C�� where
�w � ��w���w��� Note that the couple �w already meets the condition
w� � �w�� and so we may apply the above arguments again� with a�z�
replaced by a���z�� to arrive at an operator A� � DomA� � H�s��w�C�� The
domain of A� is a subspace of H�s�m��w�C� of �nite codimension which is
non�zero unless a�z� has no pole in the strip w� � �z � �w�� Hence it
follows� for u � Hs�w�C�� that �A���u is determined uniquely up to elements
of the annihilator of DomA� in Hs�m�w�C�� As this annihilator is �nite�
dimensional� the transpose of A� is de�ned modulo operators of �nite rank�
We set A � �A��� for any one choice of the operators on Hs�w�C� taking
their values in the annihilator of DomA� in Hs�m�w�C�� Then A is well�
de�ned as mapping Hs�w�C� � Hs�m�w�C� and the de�nition agrees with
the usual one in the case of di�erential operators� We prove that if a�z� is
invertible on both ��w� and �w� � then the equation Au � f has a solution
u � Hs�w�C� for each f � Hs�m�w�C�� Moreover� the space of solutions of
the corresponding homogeneous equation is �nite�dimensional� i�e�� A is a
Fredholm operator� In both the cases we show an index formula for A which
turns out to be a version of the logarithmic residue theorem of Gokhberg
and Sigal �GS���� Let us �nally remark that our results extend easily to the
case where X is a C� compact manifold with boundary� On such a manifold
live parameter�dependent boundary value problems with the transmission
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property� Hence we may consider meromorphic functions a�z� in the strip �
taking their values in the boundary value problems� The inverse �resolvent�
of an elliptic meromorphic function is available in the same class� and so
our arguments still go in this context� The necessary tools are developed in
Schrohe and Schulze �SS
�� SS
���

� Meromorphic families

Let �m
cl �X� stand for the space of classical pseudodi�erential operators of

order m on X�
By a parameter�dependent classical pseudodi�erential operator of order

m on X� with parameter � � R� is meant any family a�� � of operators
in �m

cl �X� with the property that � enters into the symbol of a�� � as an
additional covariable� The space of such operators is denoted by �m

cl �X�R��
The space �m

cl �X� bears a natural Fr�echet topology� Hence� we may
consider holomorphic functions in the strip � taking their values in �m

cl �X��
Denote by Am��� the space of all holomorphic functions h�z� in � with
values in �m

cl �X�� such that h���i�� � �m
cl �X�R� uniformly in � on compact

segments in �a� b��

Proposition ��� For each a�� � � �m
cl �X�R� there exists a function

h�z� � Am�C � such that h�� � � a�� � modulo ����X�R��

Proof� Cf� Theorem ����� in Schulze �Sch
���
�

Note that if h � Am��� and h��� i�� � ����X�R� for some � � �a� b��
then h � A������

Recall that a�� � � �m
cl �X�R� is said to be parameter�dependent elliptic

if �m�a��x� �� 	� 	� � for each x � X and all ��� 	� � R�T �x�X� di�erent from
zero� If h � Am��� and h�� � i�� is parameter�dependent elliptic for some
� � �a� b�� then so is the restriction of h�z� to each horizontal line within
the strip �� Indeed� the principal symbol �m�h�� � i��� is independent of
� � �a� b��

We will also consider meromorphic functions in the strip � taking their
values in �m

cl �X�� We restrict our attention to those having a �nite number
of poles in each strip 
 
 �z 
 � with a � 
 
 � � b� Let Mm��� stand
for the space of all such functions a�z� ful�lling moreover the following
properties�

� for each excision function ��z� for the set of poles of h�z�� we have
��a����i�� � �m

cl �X�R� uniformly in � on compact segments in �a� b��

� close to a pole p � �� we have a�z� �
P��

j��� aj�z � p�j � h�z� with aj
operators of �nite rank in ����X� and h�z� a holomorphic function
near p with values in �m

cl �X��
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Proposition ��� When topologising Am��� and Mm��� in a natural

way� we have Mm��� � M����� � Am��� in the sense of non�direct sum

of Fr�echet spaces�

Proof� Cf� Theorem � in Schulze �Sch
�� ������ or Theorem ����� in
Schrohe and Schulze �SS
���

�

The spaces Mm��� inherit an �algebra structure under the pointwise
composition of pseudodi�erential operators on X�

Proposition ��� If a�z� � Mm��� and b�z� � Mn���� then a�z�b�z� �
Mm�n����

Proof� Cf� Proposition 
 in Schulze �Sch
�� ������ or Proposition �����
in Schrohe and Schulze �SS
���

�

Let a�z� � Mm���� Write a�z� � as�z� � ar�z� by Proposition ����
where as�z� � M����� and ar�z� � Am���� We say that a�z� is parameter�
dependent elliptic if so is ar�z�� From what has already been said it follows
that this de�nition is correct� i�e�� independent of the particular choice of
the split of a�

Proposition ��� Suppose a�z� � Mm��� is parameter�dependent ellip�
tic� Then a�z� is invertible away from a discrete subset of � which meets

every strip 
 
 �z 
 �� with a � 
 
 � � b� only at a �nite number of

points� Moreover� a���z� � M�m����

Proof� Write a�z� � as�z� � h�z� with some as�z� � M����� and
h�z� � Am���� As h�z� � Am��� is parameter�dependent elliptic� there is
an h���z� � M�m��� such that h���z�h�z� � h�z�h���z� � � for all z � �
�cf� �Sch
�� �������� By Proposition ���� we have h���z�as�z� � M������
Hence the operator � � h���z�as�z� is invertible for all but countably many
z � � and its inverse is of the form ��g�z� with g�z� � M����� �cf� Lemma
������ in �SS
���� Now it is easy to check that a���z� � �� � g�z��h���z�
�lls the bill�

�

The operator a���z� is called the resolvent of a�z�� Evidently� it is
parameter�dependent elliptic along with a�z�� In Section � we show an
explicit formula for the principal part of a���z��

� Characteristic values

In the sequel� an important role is played by the notion of the multiplicity
of a characteristic value of a meromorphic operator�valued function� This
concept goes as far as Gokhberg and Sigal �GS��� who extended the work
of Krein and Tro�mov �KT

� for analytic operator�valued functions�
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Let a�z� � Mm��� be a meromorphic function in the strip � with
values in �m

cl �X�� Our standing assumption on a�z� is that this function is
parameter�dependent elliptic� as is explained in Section ��

For a �xed z � � away from the set of poles� a�z� can be thought of as
an operator Hs�X� � Hs�m�X� for any one s � R� The particular choice
of s is actually not important because the kernel and the cokernel of a�z�
consist of C� functions on X�

A point z� � � is said to be a characteristic value of a�z� if there exists
a holomorphic function u�z� in a neighbourhood of z� with values inHs�X��
such that u�z�� 	� � but a�z�u�z� is holomorphic at z� and vanishes at this
point� It is worth pointing out that a�z�u�z� is not a priori de�ned at z��
however� it is well�de�ned in a punctured neighbourhood of z�� We call u�z�
a root function of a�z� at z��

Suppose z� is a characteristic value of a�z� and u�z� is a corresponding
root function� The order of z� as a zero of a�z�u�z� is called the multiplicity
of u�z�� and the function u�z�� � Hs�X� an eigenfunction of a�z� at z��
If supplemented by the zero function on X� the eigenfunctions of a�z� at
z� form a linear space� This space is called the kernel of a�z� at z�� and
is denoted by kera�z��� By the rank of an eigenfunction u� � Hs�X� we
mean the supremum of the multiplicities of all root functions u�z� such that
u�z�� � u��

Proposition ��� For any characteristic value z� of a�z�� the kernel of

a�z� at z� is �nite�dimensional and consists of C� functions on X� More�

over� the rank of each eigenfunction of a�z� at z� is �nite�

Proof� We have

a�z� �
��X

j���

aj�z � z��
j � h�z� �����

in a neighbourhood of z�� where aj are smoothing operators of �nite rank
on X and h�z� is a holomorphic function near z� with values in �m

cl �X��
Let us observe from the very beginning that h�z�� is an elliptic pseudod�

i�erential operator on X� Indeed� write a�z� � as�z�� ar�z� by Proposition
���� where

as�z� � M������
ar�z� � Am���


Comparing this with ����� near z�� we see that �m�h�z��� � �m�ar�z��� As
ar�z�� is elliptic� so is h�z��� which is our claim�

If u�z� is a holomorphic function in a neighbourhood of z� with values
in Hs�X�� then

a�z�u�z� �
�X

����

�
X

j�k��

�

k!
aju

�k��z��� �z�z��� � h�z��u�z�� �O�jz�z�j�
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close to z�� Hence it follows that in order that u�z� be a root function of
a�z� at z� it is necessary and su�cient that u�z�� 	� � and

���X
k��

�

k!
a��ku

�k��z�� � � for all � � ��� 
 
 
 ����
�����

h�z��u�z�� � �
�X

k��

�

k!
a�ku

�k��z��


Since h�z�� is an elliptic operator in �m
cl �X�� the second equation of

����� shows that u�z�� lies in a �nite�dimensional subspace of C��X� which
is completely determined by h�z�� and the operators a��� 
 
 
 � a�� in ������
This establishes the �rst part of the proposition�

To prove the second part� let u�z� be a root function of a�z� at z��
This means that f�z� � a�z�u�z� is a holomorphic function near z� and
f�z�� � �� By Proposition ���� we get u�z� � a���z�f�z� in a punctured
neighbourhood of z�� As a���z� � M�m��� and u�z�� 	� �� we can assert
that the order of z� as a zero of f�z� does not exceed the order of z� as a
pole of a���z�� This latter is �nite� which completes the proof�

�

By a canonical system of eigenfunctions of a�z� at z� we mean any

system of eigenfunctions u
���
� � 
 
 
 � u

�I�
� with the property that the rank of

u
���
� is the maximum of the ranks of all eigenfunctions of a�z� at z� and the

rank of u�i�� is the maximum of the ranks of all eigenfunctions in a direct

complement in kera�z�� of the linear span of the vectors u
���
� � 
 
 
 � u

�i���
� � for

i � �� 
 
 
 � I� Let ri be the rank of u�i�� � for i � �� 
 
 
 � I� It is a simple matter
to see that the rank of any eigenfunction of a�z� at the characteristic value
z� is always equal to one of the ri� Hence it follows that the numbers ri are
determined uniquely by the function a�z�� Note that a canonical system of
eigenfunctions is not� in general� uniquely determined� The numbers ri are
said to be partial null multiplicities of the characteristic value z� of a�z��
Following �GS���� we call n�a�z��� � r� � 
 
 
 � rI the null multiplicity of
the characteristic value z� of a�z�� If a�z� has no root function at z�� we set
n�a�z��� � ��

We may apply these arguments as well to the inverse family a���z��
as is clear from Proposition ���� By abuse of notation� we call both the
characteristic values of a�z� and those of a���z� the singular values of a�z��
Suppose that z� is a characteristic value of a���z� in the strip �� Denote by
��� 
 
 
 � �J the partial null multiplicities of this characteristic value of a���z��
The numbers �� are also referred to as the partial polar multiplicities of the
singular value z� of a�z�� Moreover� we call n�a���z��� � �� � 
 
 
� �J the
polar multiplicity of the singular value z� of a�z� and denote it by p�a�z���
�cf� �GS����� If a���z� has no root function at z�� we set p�a�z��� � ��

De�nition ��� The quantity m�a�z��� � n�a�z��� � p�a�z��� is called

the multiplicity of a singular value z� of the family a�z��
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If a�z� is holomorphic at a point z� � � and the operator a�z�� is
invertible� then z� is said to be a regular point of a�z�� Note that the
multiplicity of each regular point of a�z� is equal to zero�

We will need an auxiliary result concerning the multiplicity of a char�
acteristic value�

Proposition ��� Assume that z� � � is a characteristic value of a�z� �
Mm���� If bj�z�� j � �� �� are invertible holomorphic functions near z� with
values in �

nj
cl �X�� then z� is a characteristic value of c�z� � b��z�a�z�b��z�

and the partial null multiplicities of z� for c�z� and a�z� coincide�

Proof� Indeed� the multiplicity of any root function u�z� of a�z� at z�
is equal to the multiplicity of the root function b��� �z�u�z� of c�z� at z�� In
particular� the kernels of a�z� and c�z� at z� are isomorphic� and the desired
conclusion follows�

�

Proposition ��� actually shows that both the partial null multiplicities
and the partial polar multiplicities of the singular value z� for c�z� and a�z�
coincide� In particular� we get m�c�z��� � m�a�z����

� Factorisation

In this section we brie"y sketch a special factorisation of a meromorphic
operator�valued function close to a characteristic value� as is given by Gokh�
berg and Sigal �GS����

Proposition ��� Let a�z� � Mm��� be parameter�dependent elliptic

and z� � � be a singular value of a�z�� Then there are invertible holomor�

phic functions b��z� and b��z� near z� with values in ��m
cl �X� and ��

cl�X��
respectively� such that

b��z�a�z�b��z� � �� �
NX
���

���z � z��
m� �����

close to z�� where m� 
 
 
 
 
 mN are integers and ��� ��� 
 
 
 � �N are mu�

tually orthogonal projections� such that ��� 
 
 
 � �N � ����X� are of rank �
and �� �

PN
��� �� � ��

Proof� The proof consists in an inspection of the proof of Theorem ���
in �GS���� For the convenience of the reader we repeat the relevant material
from �GS��� with necessary modi�cations�

Let us expand a�z� as a Laurent series ����� in a neighbourhood O of
the point z�� By the above� h�z�� is an elliptic pseudodi�erential operator
of order m on X� As �m�h�z�� � �m�a�z�� for z in O n fz�g and a�z� is
invertible in a punctured neighbourhood of z�� it follows that the index of
the operator h�z�� is equal to �� We can therefore assert that there is a
smoothing operator s� of �nite rank on X� such that e� � s� � h�z�� is
invertible� By continuity� the operator e�z� � s��h�z� is invertible in some
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neighbourhood O� of z�� By shrinking O� if necessary� we may assume that
O� � O� Then we get

a�z� � g�z� � e�z�

� e�z� �� � e���z�g�z���

for all z � O� where g�z� �
P��

j��� aj�z � z��j � s��
Clearly� s�z� � e���z�g�z� is a holomorphic function in O n fz�g whose

values are smoothing operators of �nite rank on X� In the neighbourhood
O it admits a representation

s�z� �
��X

j���

sj�z � z��
j � t�z�

where s��� 
 
 
 � s�� are smoothing operators of �nite rank on X and t�z� is
a holomorphic function in O with values in smoothing operators of �nite
rank on X�

Let N denote the intersection of the null�spaces of the operators aj�
j � ��� 
 
 
 ���� and s� in D��X�� Since all these operators are of �nite
rank� we see that N is a subspace of D��X� of �nite codimension� If u � N �
then g�z�u � �� and so s�z�u � � for all z � O�

In N � we consider the subspace N� consisting of all functions u � N
satisfying s��u � 
 
 
 � s��u � �� This subspace has a �nite codimension
in N and hence in D��X�� A familiar argument shows that there exists
a direct complement D��X� � N� of N� in D��X� which is invariant with
respect to each of the operators s��� 
 
 
 � s�� �as well as a��� 
 
 
 � a�� and s��
but we will not use this latter fact�� Moreover� since all the aj� s� and sj are
smoothing operators� it follows that D��X��N� is a subspace of C��X��

Let � be the projection which projects D��X� onto D��X��N� parallel
to N�� By the above� � is a smoothing operator� Set �� � �� ��

It is a simple matter to see that ��s�z�� � ��t�z��� From this we
deduce that

� � s�z� � � � �s�z�� � ��t�z��

� �� � �s�z����� � ��t�z���


The operator�valued function f�z� � � � ��t�z�� is holomorphic in O�
and its values are invertible operators� namely f���z� � � � ��t�z��� Thus
a�z� can be represented in the form a�z� � e�z�d�z�f�z�� with d�z� given
by d�z� � � � �s�z��� For z � O� the operator �d�z�� can be regarded as
acting in the �nite�dimensional space �D��X�� By an argument of �GS���
����� this operator can be represented in the form �d�z�� � e��z�#c�z�f��z��
where e��z� and f��z� are holomorphic functions in O taking their values
in the group of invertible linear operators in �D��X�� and #c�z� is of the
form #c�z� �

PN
��� #���z � z��m� � Here� m� 
 
 
 
 
 mN are integer numbers�
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#��� 
 
 
 � #�N are pairwise orthogonal projections acting in the space �D��X��
and N is the rank of the projection

PN
��� #�� in �D��X��

It is easy to verify that

d�z� � ��� � e��z��� ��� �
NX
���

���z � z��
m� � ��� � f��z����

where �� � #���� � � �� 
 
 
 � N � Introducing the notation

b��z� � f���z� ��� � f��� �z����
b��z� � ��� � e��� �z��� e���z��

we obtain the representation ������ Finally� as a�z� is invertible at points
close to z�� so is b��z�a�z�b��z�� Hence it follows that �� �

PN
��� �� � ��

which completes the proof�

�

Following �GS���� we call ����� a normal factorisation of a�z� at the
point z�� The principal signi�cance of such a factorisation is that it al�
lows one to highlight the structure of the inverse operator�valued function�
Namely� if b��z�a�z�b��z� � c�z� near z�� with c�z� given by the right�hand
side of ������ then a���z� � b��z�c���z�b��z� in a punctured neighbourhood
of z�� where

c���z� � �� �
NX
���

���z � z��
�m� 


On the other hand� if having a normal factorisation of a�z� at z�� we
can show explicitly the partial null and polar multiplicities of the singular
value z� of a�z�� Namely� suppose that the numbers m�� � � �� 
 
 
 � N � from
����� satisfy the conditions

m� 
 
 
 
 
 mJ � ��
mJ�� 
 
 
 
 
 mN�I � ��
mN�I�� 
 
 
 
 
 mN � ��

where � 
 I 
 N and � 
 J 
 N�I� Then� the partial null multiplicities of
the singular value z� of a�z� are equal to mN�I��� 
 
 
mN � the partial polar
multiplicities of the singular value z� of a�z� are equal to m�� 
 
 
mJ � whence
m�a�z��� �

PN
���m�� We also deduce that the maximum of the ranks of

all eigenvectors of a�z� corresponding to a characteristic value z� which is a
normal point of a�z� is equal to the order of the pole of a���z� at z��

For a�z� � Mm���� we denote by p
p
 a�z� the principal part of the
Laurent expansion of a�z� in a neighbourhood of a singular value z�� By
de�nition� p
p
 a�z� is a smoothing operator of �nite rank on X for all z in
a punctured neighbourhood of z�� Hence the trace �denoted tr � of p
p
 a�z�
is well�de�ned�
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Corollary ��� Suppose a�z� � Mm��� is parameter�dependent elliptic
and z� � � is a singular value of a�z�� Then

tr p
p
 a��z�a���z� �
m�a�z���

z � z�



Proof� Indeed� applying ����� yields

tr p
p
 a��z�a���z� �
m�a�z���

z � z�
� tr p
p


�
b���z�b

��
� �z� � b���z�b

��
� �z�

�

in a neighbourhood of z�� Since both b��z� and b��z� are holomorphic and
invertible near z�� we conclude that

p
p
 b���z�b
��
� �z� � ��

p
p
 b���z�b
��
� �z� � ��

which completes the proof�
�

In case a�z� is a polynomial operator�valued function this corollary goes
back at least as far as Keldysh �Kel���� The general case is due to Gokhberg
and Sigal �GS����

Given a�z� � Mm���� we write a��z� for the function z �� �a�z���� the
prime meaning the transposed pseudodi�erential operator� It is clear that
a��z� � Mm���� moreover� a��z� is parameter�dependent elliptic if a�z� is�

Corollary ��� If a�z� � Mm��� is parameter�dependent elliptic� then
a�z� and a��z� have the same singular values with the same partial null and

polar multiplicities� In particular� m�a��z�� � m�a�z����

Proof� This follows immediately from Propositions ��� and ��� �see
also Theorem ��� in �GS�����

�

� Resolvent

In this section we rehearse the expansion of the principal part of the resol�
vent a���z� from �GS����

Let a�z� � Mm���� We assume that a�z� is parameter�dependent el�
liptic�

Suppose that z� � � is a characteristic value of a�z� and that u�z� is a
root function of a�z� at z�� Recall that the value u�z�� � C��X� is called
an eigenfunction of a�z� at z�� Denote by r the multiplicity of u�z�� The
derivatives

�

k!
u�k��z��� k � �� 
 
 
 � r � ��

are said to be associated functions for the eigenfunction u�z�� �a priori they
are in a space Hs�X���
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Proposition ��� For each characteristic value z� of a�z�� the associated
functions of a�z� at z� lie in a �nite�dimensional subspace of C��X��

Proof� We argue as in the proof of Proposition ���� Pick a root function
u�z� of a�z� at z�� Write

a�z� �
P�

j��� aj�z � z��j�
u�z� �

P�
k�� uk�z � z��k

in a neighbourhood of z�� An easy veri�cation shows that for u�z� to be of
multiplicity r 
 � it is necessary and su�cient that

���X
k��

a��kuk � � for all � � ��� 
 
 
 ����

�����

a�u� �
���X
k��

a��kuk � �
���X

k����

a��kuk for all � � �� 
 
 
 � r � �

�cf� ������� As a� is an elliptic operator in �m
cl �X� and a��� 
 
 
 � a�� are

smoothing operators of �nite rank on X� we deduce by induction from the
second group of equalities ����� that each function uk� k � �� �� 
 
 
 � r � ��
belongs to a subspace of C��X� of �nite dimension� Moreover� this subspace
is completely determined by the operators a��� 
 
 
 � ak� which is precisely our
assertion�

�

If u�� 
 
 
 � ur�� are associated functions for an eigenfunction u� of a�z� at
z�� then any system u�� u�� 
 
 
 � uN with � 
 r�� is called a chain consisting
of an eigenfunction and associated functions of a�z� at z��

It is easy to see that a system u�� u�� 
 
 
 � uN of functions in Hs�X�
forms a chain if and only if there are functions uN��� 
 
 
 � uN�� � Hs�X�
such that

���X
k��

a��kuk � � for � � ��� 
 
 
 �N

�cf� �������

Let u
���
� � 
 
 
 � u

�I�
� be a canonical system of eigenfunctions of a�z� at z��

I being the dimension of ker a�z��� Denote by ri the rank of u
�i�
� � If� for each

i � �� 
 
 
 � I� the functions u
�i�
� � u

�i�
� � 
 
 
 � u

�i�
ri�� form a chain consisting of an

eigenfunction and associated functions of a�z� at z�� then the system�
u
�i�
� � u

�i�
� � 
 
 
 � u

�i�
ri��

�
i�������I

is called a canonical system of eigenfunctions and associated functions of
a�z� at z��

The following result will be needed below� It is proved by Gokhberg
and Sigal �GS��� for meromorphic operator�valued functions� They refer to
Keldysh �Kel��� for the case of polynomials with values in operators on a
Hilbert space�
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Proposition ��� For each characteristic value z� of a�z�� there are

canonical systems �
u
�i�
� � u

�i�
� � 
 
 
 � u

�i�
ri��

�
i�������I

��
g
�i�
� � g

�i�
� � 
 
 
 � g

�i�
ri��

�
i�������I

of eigenfunctions and associated functions of a�z� and a��z� at z�� respec�
tively� such that

p
p
 a���z� �
IX
i��

��X
j��ri

�z � z��
j
ri�jX
k��

hg�i�k � �iu�i�ri�j�k
 �����

Proof� Cf� Theorem ��� in �GS����
�

� Unitary reduction

We now turn to pseudodi�erential equations on a cylinder C � R�X over
a C� compact closed manifold X�

Any function on C may be thought of as a function on R with values
in a function space on X� In particular� we write S�C� � S�R��� C

��X�
for the space of rapidly decreasing functions on the real axis with values
in C��X�� If u � e��tS�C�� where � � R� then the Fourier transform
Fu�z� � Ft ���z�e	ztu� of u is well�de�ned for all z lying on the horizontal
line �� � fz � C � �z � �g� Moreover� Fu�� � i�� is a rapidly decreasing
function of � � R with respect to each seminorm in C��X��

Let a�z� � Mm���� Pick a � � �a� b� such that the line �� is free from
the poles of a�z�� For each u � e��tS�C�� the integral

Au �t� �
�

��

Z
��
eitza�z�Fu�z� dz

�����
� e��tF��

	 ��ta�� � i��Ft��	�e
�tu�� t � R�

gives a rapidly decreasing function on R with values in C��X�� modulo the
factor e��t� In fact� A is a continuous mapping of e��tS�C�� e��tS�C�� as
is easy to see�

Lemma 	�� Suppose u � e��tS�C�� Then F�Au��z� � a�z�Fu�z� for
all z � ���

Proof� Using the equality Fu�� � i�� � Ft��	�e�tu� for � � R� we
obtain

F�Au��� � i�� � Ft��	�e
�tAu�

� a�� � i��Ft ��	�e
�tu�

� a�� � i��Fu�� � i���
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the second equality being due to ����� and the fact that a��� i��Ft��	 �e�tu�
is a rapidly decreasing function of � � R with values in C��X�� This is the
desired conclusion�

�

Roughly speaking� Lemma ��� just amounts to saying that the Fourier
transform of the temperate distribution u�t� � � is a constant multiple of
the Dirac delta�function� In fact�

R
R
e�i	tdt � �� ��� � for each � � R�

Our next goal is to extend A to a continuous mapping of weighted
Sobolev spaces on the cylinder� Hs���C�� For s � Z� and � � R� we mean
by Hs���C� the completion of C�

comp�C� with respect to the norm

kukHs���C� �

�
�Z
R

X
j�A
s

kDj�e�tu�k�HA�X�dt

�
A
�
�


 �����

Obviously� Hs���C� is a Hilbert space� however� the Hilbert structure is
not canonical� If s is a negative integer� we set Hs���C� to be the dual
of H�s��� �C�� For fractional s� the space Hs���C� is de�ned by �complex�
interpolation�

Proposition 	�� As de�ned by ������ A extends to a continuous map�

ping Hs���C�� Hs�m�� �C� for each s � R�
Proof� Fix a family of order reductions $s�� � � �s

cl�X�R�� s � R� on
X� Then

kukHs���C� �
�Z

��
k$s��z�Fu�z�k�L��X�dz

��
�

�

the equivalence of two norms meaning that their ratio is bounded both above
and below by positive constants independent of u� Hence

kAukHs�m���C� �
�Z

��
k$s�m��z�a�z�Fu�z�k�L��X�dz

��
�


 c

�
sup
	�R

k$s�m�� �a�� � i��$�s�� �kL�L��X��

�
kukHs���C�

for all u � C�
comp�C�� the constant c being independent of A and u� Since

the seminorm

a�� � �� sup
	�R

k$s�m�� �a�� �$�s�� �kL�L��X��

is continuous on �m
cl �X�R�� the proof is complete�

�

Given an f � Hs�m�� �C�� consider the equation Au � f for an unknown
function u � Hs���C�� The solvability theory of this equation is a direct con�
sequence of the fact that the Fourier transform u�t� �� Fu�� � i�� extends

to a unitary isomorphism H����C� ��� L���� � L��X��� up to an inessential
factor ��� This reduces the problem to a parameter�dependent equation on
the base X�
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Proposition 	�� If the weight line �� lies away from the set of singular

values of a�z�� then the mapping A � Hs���C� � Hs�m���C� is one�to�one

and onto� for every s � R� Moreover� the inverse mapping is given by the

formula

A��f�t� �
�

��

Z
��
eitza���z�Ff�z� dz� t � R
 �����

Proof� Indeed� Proposition ��� shows that a���z� � M�m���� More�
over� the line �� is free from the poles of a��� which is guaranteed by the
assumption� Hence it follows� by Proposition ���� that the operator A��

given by ����� extends to a continuous mapping Hs�m�� �C� � Hs���C�� for
any s � R� It remains to prove that A��A � � and AA�� � �� We restrict
our attention to the �rst equality� the proof of the second one is similar�
Obviously� it su�ces to show that A��A � � on C�

comp�C� because this sub�
space is dense in Hs���C�� But for u � C�

comp�C� we may use Lemma ��� to
obtain

A��Au �t� �
�

��

Z
��
eitza���z�a�z�Fu�z�dz

�
�

��

Z
��
eitzFu�z�dz

� u�t�

the latter equality being a consequence of the Fourier inversion formula�
This is our claim�

�

Proposition ��� is an underlying technical tool for studying more intri�
cate settings of the problem Au � f �

� Inhomogeneous equation

The factor e�t entering into ����� can not control independently the be�
haviour of functions at t � �� and t � �� To do this� we introduce yet
another scale of weighted Sobolev spaces on the cylinder� which includes
two weight parameters� Namely� let w � �w�� w�� be a pair of real numbers
to inspect the growth of functions at t � ��� Fix a cut�o� function � for
the point t � �� on the real axis� i�e�� � is a C� function on R equal to �
near t � �� and vanishing near t ��� For s � R� set

Hs�w�C� � �Hs��w� �C� � ��� ��Hs�w��C�� �
���

the right�hand side being understood in the sense of non�direct sum of
Fr�echet spaces� In particular� taking w � ���� �� we get Hs�w�C� � Hs���C�
for any s� � � R�



�� Schulze� Tarkhanov

Lemma ��� As de�ned by �
���� the space Hs�w�C� is equivalently topol�

ogised under the norm

kukHs�w�C� �
�
k�uk�Hs��w

��C� � k��� ��uk�Hs�w��C�

��
�



Proof� The proof follows from the fact that the spaces Hs���C� are
invariant under multiplication by smooth functions on R constant in the
complement of a compact interval�

�

It follows that Hs�w�C� bears a Hilbert structure� Note that this struc�
ture depends on the particular choice of � while the space Hs�w�C� itself
does not� The dual of Hs�w�C� is still identi�ed with H�s��w�C�� for each s

and w�

Lemma ��� Let w � �w�� w�� satisfy �w� 
 w�� Then� in order that

a function u belong to Hs�w�C� it is necessary and su�cient that u � Hs���C�
for each �w� 
 � 
 w��

Proof� To prove the necessity� we make use of the triangle inequality
to get

kuk�Hs���C� 
 �
�
k�uk�Hs���C� � k��� ��uk�Hs���C�

�

 c kuk�Hs�w�C�

for any u � C�
comp�C�� with c a constant independent of u� The latter

inequality follows from Lemma 
�� and the estimates

k�ukHs���C� 
 c� k�ukHs��w
��C��

k��� ��ukHs���C� 
 c�� k��� ��ukHs�w��C�

which are due to the condition �w� 
 � 
 w�� Conversely� applying
Lemma 
�� implies

kuk�Hs�w�C� 
 c
�
kuk�Hs��w

��C� � kuk�Hs�w��C�

�
for all u � C�

comp�C�� the constant c depending only on �� This proves the
su�ciency�

�

The proof above gives more� namely if u belongs to both Hs��w��C�
and Hs�w��C�� then u � Hs�w�C��

When regarded from the point of view of the Fourier transform� the
spaces Hs�w�C� with �w� 
 w� have the following advantage�

Lemma ��� Given any u � Hs�w�C�� the Fourier transform Fu�z� is
holomorphic in the strip �w� � �z � w�� Moreover� if j is a non�negative

integer 
 s� then

kzjFu�z�kHs�j�X� 
 c

�
�p

w� � �z �
�p

w� ��z
�
kukHs�w�C� �
���

for all z in the above strip� with c � � a constant independent of u and z�
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Proof� A familiar argument shows that it is su�cient to establish
the estimate �
��� for any function u � C�

comp�C�� For this purpose� write
u � �u � �� � ��u� We estimate separately the Fourier transforms of �u
and �� � ��u� Let b�� b�� � R be such that ��t� � � for t 
 b� and ��t� � �
for t 
 b��� Then�

zjF��u��z� �
Z
R

e�iztDj ���t�u�t��dt

�
Z b��

��
e�i�zte	ztDj ���t�u�t��dt

for all z � C � Hence it follows� by H%older�s inequality� that

kzjF��u��z�kHA�X� 

�Z b��

��
e��w��	z�tdt

� �

�
	Z
R

ke�w�tDj��u�k�HA�X�dt


�

�


 c�
e�w��	z�b

��

p
w� � �z k�ukHj�A��w

� �C�

for each z in the half�plane �z � �w�� Here� the constant c� depends only
on j and w�� but not on u and z� Analogously�

kzjF��� � ��u��z�kHA�X� 
 c��
e��w��	z�b

�

p
w� ��z k��� ��ukHj�A�w� �C�

for any z in the half�plane �z � w�� the constant c�� depending only on j

and w�� Combining these estimates we arrive at �
���� as desired�
�

Let a�z� � Mm���� Our next objective will be to assign an operator
A � Hs�w�C� � Hs�m�w�C� to a�z�� for weight data w � �w�� w�� satisfying
a � �w� 
 w� � b� Note that formula ����� does not �t for the de�nition
of A as the integral on the right side depends on the choice of � in the
interval ��w�� w��� To cope with this di�culty� we shrink the domain of
A by considering only those u � Hs�w�C� for which the integral in �����
is independent of � � ��w�� w��� The following lemma highlights such
functions u�

Lemma ��� Let a�z� have no poles on the lines ��w� and �w� � where
a � �w� 
 w� � b� Then� for each u � Hs�w�C� with s � max���m�� we
haveZ
��w

�

eitza�z�Fu�z�dz�
Z

�w�

eitza�z�Fu�z�dz � ��i
X

	p���w��w��

resp e
itza�z�Fu�z�


Proof� Consider a closed contour l which is the boundary of the rect�
angle with vertices �T � iw�� T � iw�� T � iw� and �T � iw� �see Fig� ���
Choose T � � large enough� so that the rectangle contains all the poles
of a�z� in the strip between ��w� and �w� � From Lemma 
�� we de�
duce that F �z� � eitza�z�Fu�z� is a meromorphic function in the strip
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� �z

�
�z

�

�
�

�

w�

�
�w�

T�T

u

u

u

p

Fig� �� Auxiliary contour l�

�w� � �z � w� with values in Hs�m�X� �for �xed t � R�� Hence� the
residue formula yields

Z T�iw�

�T�iw�
F �z�dz �

Z T�iw�

T�iw�
F �z�dz �

Z T�iw�

�T�iw�
F �z�dz �

Z �T�iw�

�T�iw�
F �z�dz

� ��i
X

	p���w��w��

resp F �z��

and we shall have established the lemma if we prove that the integralsR�T�iw�
�T�iw� F �z�dz are in�nitesimal with respect to the H�s�X��norm� when
T ��� For this purpose� we �rst make use of H%older�s inequality to obtain

k
Z �T�iw�

�T�iw�
F �z�dz kH�s�X� 
 c

�Z �T�iw�

�T�iw�
ka�z�Fu�z�k�H�s�X�jdzj

��
�

where c �
�Rw�
�w�

e��t�d�
��
�

is independent of T � Consider the family of
integrals Z ��

�T
ka�� � i��Fu�� � i��k�H�s�X�d� �
���

parametrised by � � ��w�� w��� Since the operator�valued function a�z�
is holomorphic in a half�strip larger than ��z � T � �w� � �z � w�� we
may invoke the estimates

ka�� � i��kL�Hs�X��Hs�t�X�� 
 c

� h� im if t 
 ��
h� im�t if t 
 �

for all z therein� where t 
 m is arbitrary real number and c a constant
independent of �� � T and � � ��w�� w�� �cf� Shubin �Shu����� Hence it
follows thatZ ��

�T
ka�� � i��Fu�� � i��k�H�s�X�d� 
 c�

Z ��

�T
h� i�s kFu�� � i��k�L��X�d�


 C kuk�Hs���C��

the constant C being independent of � � ��w�� w��� On the other hand�
the norms kukHs���C� are bounded uniformly in � � ��w�� w�� by the norm
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kukHs�w�C�� which is due to Lemma 
��� We thus conclude that �
��� is a
bounded function on the interval � � ��w�� w��� Integrating this function
over � � ��w�� w�� and interchanging the integrals� by Fubini�s theorem�
we get Z ��

�T
d�
Z w�

�w�
ka�� � i��Fu�� � i��k�H�s�X�d� ��


Hence it follows that there is a sequence T� � � converging to �� such
that

lim
���

Z w�

�w�
ka��T� � i��Fu��T� � i��k�H�s�X�d� � ��

which is the desired conclusion�
�

The condition u � Hs�w�C� with s � max���m� might be dropped but
we have not been able to do this�

Pick s � R with s 
 max���m� and a weight data w � �w�� w��
satisfying a � �w� 
 w� � b� Set

DomA � fu � Hs�w�C� � resp e
itza�z�Fu�z� � � for � w� � �p � w�g

where� by abuse of notation� we suppress the dependence of DomA of s and
w�

Lemma ��	 If a�z� is parameter�dependent elliptic� then DomA is a

closed subspace of �nite codimension in Hs�w�C�� In fact�

codimDomA �
X

�w��	p�w�

p�a�p��


Proof� Indeed� let p be a pole of a�z� in the strip �w� � �z � w��
From Proposition ��� we deduce that p is a characteristic value of the inverse
function a���z�� By Proposition ���� there are canonical systems�

f
���
� � f

���
� � 
 
 
 � f

���

���

�
��������J

��
v
���
� � v

���
� � 
 
 
 � v

���

���

�
��������J

of eigenfunctions and associated functions of a���z� and �a�����z� at p� re�
spectively� such that

p
p
 a�z� � p
p
 �a������z�

�
JX
���

��X
j��
�

�z � p�j

��jX
k��

hv���k � �i f ���
��j�k

in a neighbourhood of p� the angular brackets standing for a pairing of
distributions on X� Hence it follows that

resp e
itza�z�Fu�z� � resp e

itz �p
p
 a�z��Fu�z�

�
JX
���

��X
j��
�


��jX
k��

�

��j � ��!

�
�

�z

��j�� �
eitzFt��zhv���k � ui

����
z�p

f
���

��j�k
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The expression on the right�hand side of this equality can be written equiv�
alently as

eitp
JX
���

��X
j��
�


��jX
k��

�

��j � ��!

�
�

�z
� it

��j��
Ft��zhv���k � ui

���
z�p

f
���

��j�k

� eitp
JX
���


���X
j��

�
�
��jX

k��

Z
R

e�ipt
� �it� it��k��

�k � ��!
hv���
��j�k� u�t��i dt�

�
A f

���
j �

showing that the equation resp eitza�z�Fu�z� � � just amounts to a system
of

JX
���

�� � p�a�p��

linearly independent moment conditions on the function u� These moments
are induced by the system�

� 
��jX
k��

e�ipt
� ��it��k��
�k � ��!

v
���

��j�k�x�

�
A
��������J
j���������
���

� �
���

each function being in H���w�C�� Hence the lemma follows�
�

Unless otherwise stated we assume that a�z� � Mm��� is parameter�
dependent elliptic� For u � DomA� we de�ne Au by formula ����� with any
one � in the interval ��w�� w��� such that the line �� is free from the poles
of a�z��

Proposition ��� As de�ned above� Au is independent of the particular

choice of �� If moreover a�z� has no pole on the lines ��w� and �w� � then
Au � Hs�m�w�C� and the corresponding operator A � DomA � Hs�m�w�C�
is continuous�

Proof� The �rst assertion follows immediately from Lemma 
��� To
prove the second part� we apply Lemma 
�� once again to obtain

Au�t� �
�

��

Z
��w

�

eitza�z�Fu�z�dz

�
�

��

Z
�w�

eitza�z�Fu�z�dz

for all t � R� From the �rst equality it follows� by Proposition ���� that
Au � Hs�m��w� �C�� On the other hand� the second equality implies that
Au � Hs�m�w��C�� We can now invoke Lemma 
�� to see that Au belongs
actually to Hs�m�w�C� and

kAukHs�m�w�C� 
 c
�
kAukHs�m��w

��C� � kAukHs�m�w��C�

�

 c

�
kukHs��w

��C� � kukHs�w��C�

�

 c kukHs�w�C��
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the constant c being independent of u while not necessarily the same in
di�erent applications� This completes the proof�

�

We are now in a position to study the inhomogeneous equation Au � f

for an unknown function u � DomA� where f � Hs�m�w�C�� As follows�
this equation is solvable for f in a closed subspace of �nite codimension in
Hs�m�w�C��

Theorem ��� Let a�z� have no singular value on the lines ��w� and

�w� � Suppose f � Hs�m�w�C�� where s 
 max���m�� Then� in order that

there exist a function u � DomA satisfying Au � f it is necessary and

su�cient that

resp e
itza���z�Ff�z� � � for � w� � �p � w�
 �
���

Proof� Necessity� If f � Au for some function u � Hs�w�C�� then
Ff�z� � a�z�Fu�z�� which is clear from Lemma ���� As Fu�z� is holomor�
phic in the strip �w� � �z � w�� we get

resp e
itza���z�Ff�z� � resp e

itzFu�z�
� �

for each pole p of a���z� with �w� � �p � w�� This is precisely our
assertion�

Su�ciency� Conversely� let f � Hs�m�w�C�� s 
 max���m�� satisfy
condition �
���� By Lemma 
�� we can assert that the integral

u�t� �
Z
��
eitza���z�Ff�z� dz� t � R�

is independent of the particular choice of � in the interval ��w�� w��� pro�
vided that the line �� does not meet any pole of a���z�� Taking � to be
�w� and w�� we conclude from Proposition ��� that u belongs both to
Hs��w��C� and Hs�w��C�� Lemma 
�� now shows that u � Hs�w�C�� As
Fu�z� � a���z�Ff�z� and Ff�z� is holomorphic for �w� � �z � w�� it
is immediate that u � DomA� Moreover� applying Proposition ��� gives
Au � f � and the proof is complete�

�

Note that we have actually proved that the equation Au � f has at
most one solution in DomA� In fact� under moment conditions �
���� the
solution is given by formula ����� with any one � � ��w�� w���

Corollary ��
 Assume that a�z� is invertible on the lines ��w� and

�w� � Then� the operator A � DomA � Hs�m�w�C� is injective and has a

closed range of �nite codimension�

codimRanA �
X

�w��	p�w�

n�a�p��
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Proof� Indeed� combining Theorem 
�� and Lemma 
�� we conclude
that

codimRanA � codimDomA��

�
X

�w��	p�w�

p�a���p��

�
X

�w��	p�w�

n�a�p���

the last equality being a consequence of what has been proved in Section ��
This establishes the formula�

�

The corollary says that the operator A � DomA� Hs�m�w�C� is Fred�
holm� and yields information about the index of A�

	 Transposed equation

We keep the notation of the previous section� In particular� a�z� � Mm���
is assumed to be parameter�dependent elliptic�

Our goal is to assign a natural pseudodi�erential operator A to a�z�
which acts in Sobolev spaces Hs�w�C� with weight data w � �w�� w�� sat�
isfying a � w� � �w� � b� Note that if Hs�w�C� �� Hs���C� for some
� � R� then �� 
 w� and � 
 w� implying �w� 
 w�� Consequently� in
the case �w� � w� we can no longer de�ne A by formula ������ Moreover�
the Fourier transform of a function u � Hs�w is no longer holomorphic in
any strip� which results in the rigidity of the contour of integration� Of
course� no problem arises in case a�z� is a polynomial function of z� i�e�� for
di�erential operators on the cylinder C�

To cope with these di�culties� we invoke familiar duality arguments�
For this purpose� let us have look at the transpose of the operator A given
by ������

Proposition ��� Suppose that a�z� has no pole on a line �� � where

� � �a� b�� For any s � R� the transpose A� � H�s�m��� �C� � H�s����C� of
the mapping of Proposition ��	 is induced by

A�g �t� �
�

��

Z
���

eitza���z�Fg�z� dz� t � R
 �����

Proof� It su�ces to specify A�g for g � C�
comp�C�� If u � C�

comp�C��
then

hg�Aui �
Z
R

h g�t�� �

��

Z
��
eitza�z�Fu�z�dz i dt

�
Z
R

h �

��

Z
��
e�it

�za��z�Fg��z�dz� u�t�� i dt��
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as is easy to check� Changing the variable in the inner integral by z �� �z�
we arrive at ������ as desired�

�

Thus� the transpose of ����� is actually given by the same formula� with
a�z� and � replaced by a���z� and ��� respectively� If �w� � w�� then
the weight data �w � ��w���w�� meets the condition of Lemma 
���
Hence we may apply the techniques of the previous section to study the
operator A� � H�s�m��w �C� � H�s��w�C� related to the symbol function
a���z� � Mm���� via ������ Recall that a���z� is parameter�dependent
elliptic� for so is a�z�� It follows that� for s 
 min���m�� the domain of A��
i�e��

DomA� � fg � H�s�m��w�C� � resp eitza���z�Fg�z� � � forw�� �p ��w�g

is a closed subspace of �nite codimension in H�s�m��w�C�� More precisely�
we have

codimDomA� �
X

w��	p��w�

p�a���p��
�����

�
X

w��	p��w�

p�a�p���

the last equality being a consequence of Corollary ���� By Corollary 
���
if a�z� is invertible on both the lines ��w� and �w� � then the operator
A� � DomA� � H�s��w�C� is injective and has a closed range of �nite codi�
mension

codimRanA� �
X

w��	p��w�

n�a���p��
�����

�
X

w��	p��w�

n�a�p���

the second equality being due to Corollary ���� Were DomA� equal to
H�s�m��w�C�� we would de�ne A � Hs�w�C�� Hs�m�w�C� to be the transpose
of the mapping A� � H�s�m��w�C�� H�s��w�C�� thus arriving at a surjective
operator whose null�space is the annihilator of RanA� in Hs�w�C�� Such is
the case if a�z� has no pole in the strip w� � �z � �w�� in particular� for
di�erential operators on the cylinder� However� in the general case we have
to take more care on the de�nition of A as the dual of DomA� can not be
identi�ed within Hs�m�w�C��

Lemma ��� Let H�� H� be re
exive Fr�echet spaces� Suppose that

A� � DomA� � H �
� is a continuous mapping whose domain is a complemented

subspace of H �
�� Then� for each u � H� there is unique element f � H� such

that
hg� fi � hA�g� ui for all g � DomA��
hg� fi � � for all g � H �

� �DomA�

�����
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Here� we use the customary notation H � for the dual of a topological
vector space H�

Proof� Indeed� pick a topological complement H �
� � DomA� of the

subspace DomA� in H �
�� Denote by � the projection of H �

� onto DomA�

parallel to H �
� �DomA�� Given u � H�� de�ne a functional f on H �

� by

hg� fi � hA��g� ui
for g � H �

�� As both A� and � are continuous� we conclude that f is a
continuous linear functional on H �

�� and so f can be identi�ed with an
element of H�� Obviously� f satis�es ������ On the other hand� if f�� f� � H�

satisfy ������ then

hg� f� � f�i � h�g� f� � f�i � h��� ��g� f� � f�i
� �

for all g � H �
�� whence f� � f�� The proof is complete�

�

Setting Au � f � we thus get a linear operator H� � H�� A simple
argument of functional analysis shows that A is continuous� However� it is
worth pointing out that the de�nition of A depends on the particular choice
of the topological complement of DomA� in H �

�� unless DomA� � H �
��

Applying this abstract scheme to our problem� we arrive at a continuous
linear operator A � Hs�w�C�� Hs�m�w�C�� for s 
 min���m�� By de�nition�
we have

hg�Aui � hA�g� ui for g � DomA��
hg�Aui � � for g � H�s�m��w�C��DomA��

�����

provided u � Hs�w�C�� If a�z� is a polynomial function of z with values in
�m
cl �X�� then A agrees with the usual extension of a di�erential operator to

spaces of distributions�

Theorem ��� Let a�z� be invertible on the lines ��w� and �w� � As de�
�ned by ������ A � Hs�w�C�� Hs�m�w�C� is a Fredholm operator� Moreover�

the null�space of A is of dimension codimRanA� and the range of A is of

codimension codimDomA��

Proof� By ������ u � Hs�w�C� satis�es Au � � if and only if u belongs to
the annihilator of RanA� in Hs�w�C�� Hence it follows that the dimension of
the null�space of A is equal to the codimension of RanA�� which is �nite� On
the other hand� since A� � DomA� � H�s��w�C� is injective� we easily deduce
from ����� that in order that the equation Au � f be solvable it is necessary
and su�cient that f belong to the annihilator of H�s�m��w�C��DomA� in
Hs�m�w�C�� Therefore� the codimension of the range of A coincides with the
codimension of DomA�� which proves the theorem�

�

We �nish this section with a description of solutions of the homogeneous
equation Au � ��
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Corollary ��� To each characteristic value p of the symbol a�z� in the

strip w� � �z � �w� there correspond n�a�p�� linearly independent solu�

tions of Au � �� namely�
� ri�jX

k��

eipt
�it�k��

�k � ��!
u
�i�
ri�j�k

�x�

�
A
i�������I
j���������ri��

���
�

where
�
u
�i�
j

�
is a canonical system of eigenfunctions and associated functions

of a�z� at p� as guaranteed by Proposition ��	�

It is a simple matter to verify that each function of the form ���
�
belongs to H��w�C�� provided that w� � �p � �w� �cf� �
�����

Proof� To highlight the role of canonical systems of eigenfunctions and
associated functions� we give the proof only for polynomial functions a�z��
The general case needs handling with greater care for we de�ne A by a dual
argument �cf� ������� For the proof� �x i � �� 
 
 
 � I� By de�nition� there is
a root function u�i��z� of multiplicity ri for a�z� at the point p� such that

�

j!

�
�

�z

�j

u�i��p� � u
�i�
j �x�

for j � �� �� 
 
 
 � ri � �� Hence it follows that

ri�jX
k��

eipt
�it�k��

�k � ��!
u
�i�
ri�j�k

�x� �
ri�jX
k��

�

�k � ��!

�
�

�z

�k��

eizt
���
z�p

u
�i�
ri�j�k

�x�

�
�

�ri � j � ��!

�
�

�z

�ri�j�� �
eizt u�i��z�

����
z�p

�

the last equality being a consequence of the Leibniz formula� When applying
the operator A to the right�hand side of this equality� we may interchange
A and the derivative in z� This implies

A

�
�ri�jX

k��

eipt
�it�k��

�k���!
u
�i�
ri�j�k

�x�

�
A�

�

�ri�j���!

�
�

�z

�ri�j��

A
�
eizt u�i��z�

����
z�p

�
�

�ri�j���!

�
�

�z

�ri�j���
eizta�z�u�i��z�

����
z�p

�

the right�hand side being zero for each j � �� �� 
 
 
 � ri�� because a�z�u�i��z�
vanishes up to order ri�� at the point p� To complete the proof it su�ces to
note� by Theorem ���� that system ���
� encompasses the whole contribution
of p to the null�space of A�

�
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 Index

Let a�z� � Mm��� be a parameter�dependent elliptic function with values
in �m

cl �X�� Given any weight data w � �w�� w�� with w�� w� � �a� b�� we
assign a pseudodi�erential operator A � Hs�w�C� � Hs�m�w�C� to a�z�� as
described above� Recall that in the case �w� � w� the operator A is not
de�ned on all of Hs�w�C� unless the symbol a�z� has no pole in the strip
�w� � �z � w�� To arrive at an operator de�ned on the entire space
Hs�w�C� we �x a topological complement of the domain of A in Hs�w�C�
and compose A with the projection of Hs�w�C� onto DomA� By abuse of
notation� we continue to write A for the resulting operator whose null�space
is Hs�w�C��DomA� Corollary 
�� and Theorem ��� state that if a�z� has no
singular values on the lines ��w� and �w� � then A is a Fredholm operator�
Hence the index of A is well�de�ned and independent of the choice of s
provided s meets the condition above� The following theorem provides us
with an explicit formula for the index�

Theorem 
�� Suppose that a�z� is invertible on the lines ��w� and

�w� � Then�

indA � tr

�
�

��i

Z
�w�

a���z�a��z�dz � �

��i

Z
��w

�

a���z�a��z�dz

�

 �����

We emphasise that the integrals on the right�hand of ����� are divergent
while their sum makes sense to be explained in the proof� Moreover� the op�
erators a���z�a��z� are not of trace class on X unless X is zero�dimensional�
However� the operator�valued function a���z�a��z� is holomorphic every�
where in the strip between ��w� and �w� � except possibly at a �nite num�
ber of points which are either poles or characteristic values of a�z�� Thus�
only the principal parts of Laurent expansions of this function near singular
values contribute to the sum of the integrals� as is clear from the residue
formula� We then invoke the fact that these principal parts take their values
in the space of smoothing operators on X�

Proof� Indeed� from what has been proved in Sections 
 and � it follows
that

indA �
X

�w��	p�w�

p�a�p��� X
�w��	p�w�

n�a�p��

� � X
�w��	p�w�

m�a�p���

if �w� 
 w�� and

indA �
X

w��	p��w�

n�a�p�� � X
w��	p��w�

p�a�p��

�
X

w��	p��w�

m�a�p���
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if �w� � w�� We now compute the sum on the right�hand sides in another
way� To this end� for T � �� denote by QT the rectangle with vertices
�T � iw�� T � iw�� T � iw� and �T � iw� �cf� Fig� ��� Let T � � be
so chosen that QT contains all singular values of a�z� in the strip between
��w� and �w� � Combining Corollary ��� with the residue formula we can
assert that

�

��i
tr
Z
�QT

a���z�a��z�dz �
X

w��	p��w�

m�a�p��

for T large enough� Thus� the integral on the left is equal to the index of
A� up to the sign of �w� �w�� Letting T �� we arrive at ������ and the
proof is complete�

�

Formula ��� is a rather particular case of the theorem on the logarithmic
residue for meromorphic operator�valued functions due to Gokhberg and
Sigal �GS���� Our viewpoint sheds some new light on the general index
theorem for elliptic pseudodi�erential operators on manifolds with conical
points given in �FST
��� Note that explicit formulas ���
� for solutions of
Au � � along with those for solutions of A�g � � can be of use to derive
a simple Lefschetz �xed point formula for the operator A� generalising the
index formula ����� �cf� Theorem ��� in �GS�����
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