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Schulze, Tarkhanov

Abstract

We consider a homogeneous pseudodifferential equation on a cy-
linder C = R x X over a smooth compact closed manifold X whose
symbol extends to a meromorphic function on the complex plane with
values in the algebra of pseudodifferential operators over X. When
assuming the symbol to be independent on the variable t € R, we
show an explicit formula for solutions of the equation. Namely, to
each non-bijectivity point of the symbol in the complex plane there
corresponds a finite-dimensional space of solutions, every solution be-
ing the residue of a meromorphic form manufactured from the inverse
symbol. In particular, for differential equations we recover Euler’s
theorem on the exponential solutions. Our setting is model for the
analysis on manifolds with conical points since C can be thought of
as a ‘stretched” manifold with conical points at t = —oco and ¢t = oo.

AMS subject classification: primary: 45N05; secondary: 34G10.
Key words and phrases: pseudodifferential operator, meromorphic
family, residue.
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4 Schulze, Tarkhanov

Introduction

The aim of this paper is to bring together two areas in which the Euler the-
ory for ordinary differential equations with constant coefficients is a powerful
source of intuition and an important ingredient. One of the two deals with
abstract meromorphic functions taking their values in the space of bounded
operators between Banach spaces. This area was intensively studied in the
late ‘60s by Blekher [Ble69], Krein and Trofimov [KT69], Eni [Eni69], Sigal
[Sig70], Markus and Sigal [MS70], Gokhberg and Sigal [GS71] etc., who de-
veloped the earlier papers of Keldysh [Kel51] and Gokhberg [Gok51]. The
other area is the analysis of pseudodifferential operators on manifolds with
conical points. It is originated with the paper of Kondrat’ev [Kon67] and
was developed by Plamenevskii [P1a89], Schulze [Sch91, Sch98], Melrose and
Mendoza [MM83], Schrohe and Schulze [SS94, SS95], Maz’ya, Kozlov and
Rossmann [MKR97] and other authors. The definition of a pseudodifferen-
tial operator close to a conical point relies on the concept of a parameter-
dependent pseudodifferential operator on a smooth closed manifold, as is
introduced by Agranovich and Vishik [AV64]. On the other hand, the key
result of the theory is an asymptotic expansion of solutions near conical
points, the idea going back at least as far as Evgrafov [Evg6l], Agmon
and Nirenberg [AN63], Kondrat’ev [Kon67] and Maz’ya and Plamenevskii
[MP72]. If pulled back to ¢ = oo by the diffcomorphism ¢ > e~!, the
asymptotics are nothing but Fuler solutions to the equation defined by the
conormal symbol at the conical point. This latter is a parameter-dependent
pseudodifferential operator on a cross-section of the manifold in a neigh-
bourhood of the conical point, the parameter being the covariable 7 € R
of t. Moreover, it extends meromorphically in 7 to a neighbourhood of the
real axis. In the present work we will thus be concerned with an equation

1 e
=~/ dz/ReW—f)Za(z)u(t')dt':f(t), t R, (0.1)

on the cylinder C = R x X over a C*° compact closed manifold X. Here, a(z)
is a meromorphic function in a strip = = {z € C: Iz € (a,b)} containing
the line I, = R 4¢v, which takes its values in the space of classical pseudod-
ifferential operators of order m on X. We assume that I', contains no pole
of a(z) and that the restriction of a(z) to each horizontal line within the
strip = behaves like a parameter-dependent pseudodifferential operator on

X. When first defined on functions u € Cg5; (R, (X)), the operator on
the left-hand side of (0.1) extends to a mapping of weighted Sobolev spaces
on the cylinder, H*7(C) — H*="7(C), for every s € R. Thus, we may take
H*="7(C) as a domain for f and H*7(C) as such for u. Under the natural

condition of ellipticity, we give an explicit formula for the resolvent a=!(z)
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and prove that equation (0.1) has a unique solution u for each right-hand
side f. We then use this result to investigate equation (0.1) on weighted
Sobolev spaces H*"(C), with w = (w_, w4 ) a pair of real numbers control-
ling the growth of functions at ¢ = +oo. This scale of Sobolev spaces on
the cylinder is more capacious to specify the solutions of (0.1) than the one-
parameter scale. In particular, taking w = (—v,v) yields H*"(C) = H*"(C)
for all s,y € R. Generally speaking, the operator on the left-hand side of
(0.1) can not be extended to a continuous mapping H**(C) — H*~""(C),
even if wy € (a,b). To give meaning to (0.1) we distinguish between the
cases —w_ <wy and —w_ >wy. If —w_ < wy, then in order that a func-
tion u belong to H*"(C) it is necessary and sufficient that « € H*"(C)
for each —w_ < v < wy. Moreover, for any v € H>"(C), the Fourier
transform Fu(z) = fp e " u(t')dt' is a holomorphic function in the strip
—w_ < [z < wy with values in H*(X). Denote by Dom A the subspace of
H*"(C) consisting of all u with the property that res, ¢a(2)Fu(z) = 0 at
each pole p of a(z) in the strip —w_ < Jz < wy. It is fairly straightforward
that Dom A is of finite codimension. For any u € Dom A, the integral on
the left-hand side of (0.1) is independent of the particular choice of v in
the interval (—w_,wy). Moreover, it gives a function in H*~™"(C) thus
defining an operator A: Dom A — H*=™%(C). We prove that if a(z) is
invertible on both I'_,,_ and I',,, then the equation Au = f has a unique
solution u € Dom A for every f in a subspace of H*=""(C) of finite codimen-
sion. In particular, A is a Fredholm operator. Let us now turn to the case
—w_ > w;. Were A a continuous linear operator H*"(C) — H*~""(C), the
transpose A’ would define an operator H~**™~%(C) — H~*"(C), where
—w = (—w_, —wy). Note that the couple —w already meets the condition
w_ < —wy, and so we may apply the above arguments again, with a(z)
replaced by a’(—z2), to arrive at an operator A’: Dom A" — H~=*~"(C). The
domain of A’ is a subspace of H™*7™~%(C) of finite codimension which is
non-zero unless a(z) has no pole in the strip wy < Sz < —w_. Hence it
follows, for uw € H*"(C), that (A")'u is determined uniquely up to elements
of the annihilator of Dom A" in H*~"*(C). As this annihilator is finite-
dimensional, the transpose of A’ is defined modulo operators of finite rank.
We set A = (A’) for any one choice of the operators on H**(C) taking
their values in the annihilator of Dom A" in H*=""(C). Then A is well-
defined as mapping H*"“(C) — H*7""(C) and the definition agrees with
the usual one in the case of differential operators. We prove that if a(z) is
invertible on both I'_,,_ and I',, then the equation Au = f has a solution
u € H*"(C) for each f € H*7""(C). Moreover, the space of solutions of
the corresponding homogeneous equation is finite-dimensional, i.e., A is a
Fredholm operator. In both the cases we show an index formula for A which
turns out to be a version of the logarithmic residue theorem of Gokhberg
and Sigal [GS71]. Let us finally remark that our results extend easily to the
case where X is a C'* compact manifold with boundary. On such a manifold
live parameter-dependent boundary value problems with the transmission
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property. Hence we may consider meromorphic functions a(z) in the strip =
taking their values in the boundary value problems. The inverse (resolvent)
of an elliptic meromorphic function is available in the same class, and so
our arguments still go in this context. The necessary tools are developed in

Schrohe and Schulze [SS94, SS95].

1 Meromorphic families

Let W7 (X) stand for the space of classical pseudodifferential operators of
order m on X.

By a parameter-dependent classical pseudodifferential operator of order
m on X, with parameter 7 € R, is meant any family a(7) of operators
in U7 (X) with the property that 7 enters into the symbol of a(7) as an
additional covariable. The space of such operators is denoted by U7 (X;R).

The space W[ (X) bears a natural Fréchet topology. Hence, we may
consider holomorphic functions in the strip = taking their values in U7} (X).
Denote by A™(Z) the space of all holomorphic functions h(z) in = with
values in W (X), such that h(r+iv) € W (X;R) uniformly in v on compact
segments in (a,b).

Proposition 1.1 For each a(t) € V3(X;R) there exists a function

cl

h(z) € A™(C) such that h(7) = a(7) modulo U~>(X;R).

Proof. Cf. Theorem 2.2.8 in Schulze [Sch98].

0

Note that if h € A™(Z) and h(7+1iv) € U™7(X;R) for some vy € (a,b),
then h € A=>(Z).

Recall that a(7) € ¥ (X;R) is said to be parameter-dependent elliptic
if o™ (a)(x;71,€) # 0 for each € X and all (7,&) € R xT(X) different from
zero. If h € A™(Z) and h(7 4 i7) is parameter-dependent elliptic for some
v € (a,b), then so is the restriction of h(z) to each horizontal line within
the strip =. Indeed, the principal symbol o™ (h(r + 7)) is independent of
v € (a,b).

We will also consider meromorphic functions in the strip = taking their
values in U7} (X). We restrict our attention to those having a finite number
of poles in each strip o < Jz < § with ¢ < a < < b. Let M (Z) stand
for the space of all such functions a(z) fulfilling moreover the following
properties:

e for each excision function y(z) for the set of poles of h(z), we have
(xa)(T+1y) € ¥ (X;R) uniformly in 4 on compact segments in (a, b);

cl

e close to a pole p € =, we have a(z) = Zj_:l_ﬂ a;j(z —p) + h(z) with a;
operators of finite rank in W™*°(X) and h(z) a holomorphic function
near p with values in W7} (X).
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Proposition 1.2 When topologising A™ (=) and M™(Z) in a natural
way, we have M™(Z) = M~%(Z) + A™(Z) in the sense of non-direct sum
of Fréchet spaces.

Proof. Cf. Theorem 5 in Schulze [Sch91, 2.1.2] or Theorem 4.1.8 in
Schrohe and Schulze [SS94].
O
The spaces M™(Z) inherit an “algebra” structure under the pointwise
composition of pseudodifferential operators on X.

Proposition 1.3 Ifa(z) € M™(Z) and b(z) € M™(Z), then a(z)b(z) €
M (E).

Proof. Cf. Proposition 6 in Schulze [Sch91, 2.1.2] or Proposition 4.1.7
in Schrohe and Schulze [SS94].
O
Let a(z) € M™(Z). Write a(z) = as(z) + a.(z) by Proposition 1.2,
where as(z) € M™(Z) and a,.(z) € A™(Z). We say that a(z) is parameter-
dependent elliptic if so is a,(z). From what has already been said it follows
that this definition is correct, i.e., independent of the particular choice of
the split of a.

—_—
—

Proposition 1.4 Suppose a(z) € M™(Z) is parameter-dependent ellip-
tic. Then a(z) is invertible away from a discrete subset of = which meets
every strip a < Iz < (3, with a < a < 3 < b, only at a finite number of
points. Moreover, a='(z) € M~ (Z).

Proof. Write a(z) = as(z) + h(z) with some as(z) € M™(=Z) and
h(z) € A™(Z). As h(z) € A™(Z) is parameter-dependent elliptic, there is
an h'(z) € M™™(Z) such that A=Y (2)h(z) = h(z)h™'(z) = 1 for all z € =
(cf. [Sch98, 1.2.4]). By Proposition 1.3, we have h™'(2)as(z) € M™>(Z).
Hence the operator 1 + h™'(z)ay(z) is invertible for all but countably many
z € Z and its inverse is of the form 1+g¢(z) with g(z) € M™>(Z) (cf. Lemma
4.3.13 in [SS94]). Now it is easy to check that a='(z) = (1 + g(2))h™'(z)
fills the bill.

0

The operator a™'(z) is called the resolvent of a(z). Evidently, it is
parameter-dependent elliptic along with a(z). In Section 4 we show an
explicit formula for the principal part of a™*(2).

2 Characteristic values

In the sequel, an important role is played by the notion of the multiplicity
of a characteristic value of a meromorphic operator-valued function. This
concept goes as far as Gokhberg and Sigal [GS71] who extended the work
of Krein and Trofimov [KT69] for analytic operator-valued functions.
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Let a(z) € M™(Z) be a meromorphic function in the strip = with
values in W (X). Our standing assumption on a(z) is that this function is
parameter-dependent elliptic, as is explained in Section 1.

For a fixed z € = away from the set of poles, a(z) can be thought of as
an operator H*(X) — H*~™(X) for any one s € R. The particular choice
of s is actually not important because the kernel and the cokernel of a(z)
consist of C'* functions on X.

A point zg € Z is said to be a characteristic value of a(z) if there exists
a holomorphic function u(z) in a neighbourhood of zy with values in H*(.X),
such that u(zg) # 0 but a(z)u(z) is holomorphic at zo and vanishes at this
point. It is worth pointing out that a(z)u(z) is not a priori defined at z,
however, it is well-defined in a punctured neighbourhood of zy. We call u(z)
a root function of a(z) at z.

Suppose zg is a characteristic value of a(z) and u(z) is a corresponding
root function. The order of zy as a zero of a(z)u(z) is called the multiplicity
of u(z), and the function u(zg) € H*(X) an eigenfunction of a(z) at z.
If supplemented by the zero function on X, the eigenfunctions of a(z) at
zo form a linear space. This space is called the kernel of a(z) at zp, and
is denoted by kera(zp). By the rank of an eigenfunction ug € H*(X) we
mean the supremum of the multiplicities of all root functions u(z) such that

u(zo) = up.

Proposition 2.1 For any characteristic value zy of a(z), the kernel of
a(z) at zg is finite-dimensional and consists of C™ functions on X. More-
over, the rank of each eigenfunction of a(z) at zq is finite.

Proof. We have

-1

a(z) = 3 aj(z — 20 + h(2) (2.1)

J=—p

in a neighbourhood of zy, where a; are smoothing operators of finite rank
on X and h(z) is a holomorphic function near zo with values in U7} (X).
Let us observe from the very beginning that h(zo) is an elliptic pseudod-
ifferential operator on X. Indeed, write a(z) = as(z) + a,(z) by Proposition
1.2, where
as(z) € M™(2),
a.(z) € A™=).

Comparing this with (2.1) near zo, we see that o™ (h(z)) = 0™ (a,(20). As
a,(zo) is elliptic, so is h(zo), which is our claim.
If u(z) is a holomorphic function in a neighbourhood of zo with values

in H*(X), then

a(z)u(z) = 3 ( 3 %%u(’“)(%)) (2=20)" + h(z0)u(z0) + O(]z = )

v=—u j+k=v
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close to zg. Hence it follows that in order that u(z) be a root function of
a(z) at zo it is necessary and sufficient that u(zo) # 0 and

utv 1

> yal,_ku(k)(zo) =0 forall v = —pu,...,—1;

k=0 b . (2.2)
h(zo)u(zo) = — kz_:l Ha_kU( )(Zo).

Since h(zp) is an elliptic operator in U7 (X), the second equation of
(2.2) shows that u(zo) lies in a finite-dimensional subspace of C'°°(X') which
is completely determined by h(zo) and the operators a_,,...,a_; in (2.1).
This establishes the first part of the proposition.

To prove the second part, let u(z) be a root function of a(z) at z.
This means that f(z) = a(2)u(z) is a holomorphic function near z, and
f(z0) = 0. By Proposition 1.4, we get u(z) = a~'(2)f(2) in a punctured
neighbourhood of z5. As a™'(2) € M™(Z) and u(z) # 0, we can assert
that the order of zy as a zero of f(z) does not exceed the order of z; as a
pole of a™'(z). This latter is finite, which completes the proof.

0

By a canonical system of eigenfunctions of a(z) at zp we mean any

(1)

system of eigenfunctions wuy ,...,uél) with the property that the rank of

(1)

ug ’ is the maximum of the ranks of all eigenfunctions of a(z) at zo and the

(1)

rank of uy’ is the maximum of the ranks of all eigenfunctions in a direct

(1) (1—1)

complement in kera(z) of the linea;’ span of the vectors uy ', ..., uy ’, for

1 =2,...,1. Let r; be the rank ofug), fore=1,...,1. It is a simple matter
to see that the rank of any eigenfunction of «a(z) at the characteristic value
zo 1s always equal to one of the r;. Hence it follows that the numbers r; are
determined uniquely by the function a(z). Note that a canonical system of
eigenfunctions is not, in general, uniquely determined. The numbers r; are
said to be partial null multiplicities of the characteristic value zo of a(z).
Following [GST71], we call n(a(z0)) = 1 + ... + rr the null multiplicity of
the characteristic value zg of a(z). If a(z) has no root function at zy, we set
n(a(z)) = 0.

We may apply these arguments as well to the inverse family a™'(2),
as is clear from Proposition 1.4. By abuse of notation, we call both the
characteristic values of a(z) and those of a™'(z) the singular values of a(z).
Suppose that zg is a characteristic value of a™!(z) in the strip =. Denote by
01, - ., 0y the partial null multiplicities of this characteristic value of a™!(z).
The numbers p, are also referred to as the partial polar multiplicities of the
singular value zo of a(z). Moreover, we call n(a™'(z0)) = 01 + ... + o the
polar multiplicity of the singular value zg of a(z) and denote it by p(a(zo))
(cf. [GST1]). If a='(2) has no root function at zo, we set p(a(zg)) = 0.

Definition 2.2 The quantity m(a(z0)) = n(a(z0)) — pla(zo)) is called
the multiplicity of a singular value zo of the family a(z).
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If a(z) is holomorphic at a point zo € = and the operator a(z) is
invertible, then zy is said to be a regular point of a(z). Note that the
multiplicity of each regular point of a(z) is equal to zero.

We will need an auxiliary result concerning the multiplicity of a char-
acteristic value.

Proposition 2.3 Assume that zg € = is a characteristic value of a(z) €
M™ME). Ifbj(z), j = 1,2, are invertible holomorphic functions near zy with
values in W' (X)), then zy is a characteristic value of ¢(z) = by(z)a(2)bi(2)
and the partial null multiplicities of zo for c¢(z) and a(z) coincide.

Proof. Indeed, the multiplicity of any root function u(z) of a(z) at zo
is equal to the multiplicity of the root function by'(2)u(2) of ¢(2) at zp. In
particular, the kernels of a(z) and ¢(z) at zg are isomorphic, and the desired
conclusion follows.

0

Proposition 2.3 actually shows that both the partial null multiplicities
and the partial polar multiplicities of the singular value zo for ¢(z) and a(z)
coincide. In particular, we get m(e(z0)) = m(a(zo)).

3 Factorisation

In this section we briefly sketch a special factorisation of a meromorphic
operator-valued function close to a characteristic value, as is given by Gokh-

berg and Sigal [GS71].

Proposition 3.1 Let a(z) € M™(Z) be parameter-dependent elliptic
and zy € = be a singular value of a(z). Then there are invertible holomor-
phic functions by(z) and by(2) near zo with values in W™ (X) and W2 (X),
respectively, such that

N
ba(z)a(z)bi(z) = mo + Z T, (2 — z0)"™ (3.1)
v=1
close to zo, where my < ... < my are integers and mg, 71,..., TN are mu-

tually orthogonal projections, such that my,...,mn € V"(X) are of rank 1
and o+ N 7, = 1.

v=1

Proof. The proof consists in an inspection of the proof of Theorem 3.1
in [GS71]. For the convenience of the reader we repeat the relevant material
from [GS71] with necessary modifications.

Let us expand a(z) as a Laurent series (2.1) in a neighbourhood O of
the point zg. By the above, h(zg) is an elliptic pseudodifferential operator
of order m on X. As o™ (h(z)) = 0™(a(z)) for z in O \ {20} and a(z) is
invertible in a punctured neighbourhood of zy, it follows that the index of
the operator h(zg) is equal to 0. We can therefore assert that there is a
smoothing operator so of finite rank on X, such that ey = so + h(zo) is
invertible. By continuity, the operator e(z) = so + h(z) is invertible in some
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neighbourhood O’ of zy. By shrinking O, if necessary, we may assume that

01 = O. Then we get

a(z) = g(z)+e(2)
= e(z) (1 +e7'(2)g(2)),
for all z € O, where ¢g(z) = Zj_:l_ﬂ a;j(z — z0) — so.
Clearly, s(z) = e7'(2)g(z) is a holomorphic function in O \ {2z} whose
values are smoothing operators of finite rank on X. In the neighbourhood
O it admits a representation

-1

s(z)= > silz —=20) +1(2)

J=—p

where s_,,...,s_1 are smoothing operators of finite rank on X and #(z) is
a holomorphic function in O with values in smoothing operators of finite
rank on X.

Let N denote the intersection of the null-spaces of the operators «;,
J = —p,....,—1, and so in D'(X). Since all these operators are of finite
rank, we see that A is a subspace of D'(X) of finite codimension. If u € NV,
then g(z)u =0, and so s(z)u = 0 for all z € O.

In NV, we consider the subspace Ny consisting of all functions « € N
satisfying s_,u = ... = s_yu = 0. This subspace has a finite codimension
in A" and hence in D'(X). A familiar argument shows that there exists
a direct complement D'(X) & Ny of Ay in D'(X) which is invariant with
respect to each of the operators s_,,...,s_1 (as well as a_,,...,a_; and s,
but we will not use this latter fact). Moreover, since all the a;, so and s; are
smoothing operators, it follows that T/(X) & N is a subspace of C(X).

Let 7 be the projection which projects 7'(X) onto D'(X) & N parallel
to My. By the above, 7 is a smoothing operator. Set 7o = 1 — 7.

It is a simple matter to see that mes(z)m = mot(z)m. From this we
deduce that

L+s(z) = 1+ms(z)m+ mot(z)m
= (14 ms(z)m)(1 + mot(z)m).

The operator-valued function f(z) = 1 + mot(z)m is holomorphic in O,
and its values are invertible operators, namely f~'(z) = 1 — mot(2)7. Thus
a(z) can be represented in the form a(z) = e(2)d(z)f(z), with d(z) given
by d(z) = 1+ ws(z)m. For z € O, the operator md(z)m can be regarded as
acting in the finite-dimensional space 7D'(X). By an argument of [GST1,
1.3], this operator can be represented in the form wd(z)m = e1(2)é(2) f1(2),
where e1(z) and fi(z) are holomorphic functions in O taking their values
in the group of invertible linear operators in 7#D'(X), and ¢&(z) is of the

form é(z) = Zi\;l 7, (z — z0)". Here, m; < ... < my are integer numbers,
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T1,...,TN are pairwise orthogonal projections acting in the space 7D'(X).
and N is the rank of the projection 30, #, in 7D'(X).
It is easy to verify that

d(z) = (mo + e1(2)m) (mo + 3 m(z = 20)™) (w0 + fi(2)7),

v=1

where 7, = 7,7, v =1,..., N. Introducing the notation

bi(z) = [f~Yz)(m0+ ffl(z)ﬁ)v
by(z) = (mo+er'(z)m) e (2),

we obtain the representation (3.1). Finally, as a(z) is invertible at points
close to zg, so is by(z)a(2)bi(z). Hence it follows that m + SN omo=1,
which completes the proof.
0
Following [GS71], we call (3.1) a normal factorisation of a(z) at the
point zg. The principal significance of such a factorisation is that it al-
lows one to highlight the structure of the inverse operator-valued function.
Namely, if ba(z)a(2)bi(z) = ¢(z) near z, with ¢(z) given by the right-hand
side of (3.1), then a™(2) = by(2)c™(2)b2(z) in a punctured neighbourhood
of zg, where
N

cHz)=mo + Z (2 — z0) """,

v=1

On the other hand, if having a normal factorisation of a(z) at zo, we
can show explicitly the partial null and polar multiplicities of the singular
value zg of a(z). Namely, suppose that the numbers m,, v =1,..., N, from
(3.1) satisfy the conditions

my S S my < 0,
myp < < my_r = 0,
My_1+1 < < my > 0,

where 0 < [ < Nand 0 < .J < N—1. Then, the partial null multiplicities of
the singular value zq of a(z) are equal to my_z41,...my, the partial polar
multiplicities of the singular value zy of a(z) are equal to my,...my, whence
m(a(z)) = Zi\;l m,. We also deduce that the maximum of the ranks of
all eigenvectors of a(z) corresponding to a characteristic value zo which is a
normal point of a(z) is equal to the order of the pole of a™!(z) at z.

For a(z) € M™(Z), we denote by p.p.a(z) the principal part of the
Laurent expansion of a(z) in a neighbourhood of a singular value zy. By
definition, p.p. a(z) is a smoothing operator of finite rank on X for all z in

a punctured neighbourhood of zy. Hence the trace (denoted tr) of p.p.a(z)
is well-defined.
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Corollary 3.2 Suppose a(z) € M™(Z) is parameter-dependent elliptic
and zo € = is a singular value of a(z). Then

m{e(z0))

tr p.p.d'(2)a”'(2) = p——

Proof. Indeed, applying (3.1) yields

m(a(z0))

Z — 20

tr p.p.a'(z)a”!(z) = —trpp. (B(2)b7 ' (2) + By(2)b5 ' (2))
in a neighbourhood of z,. Since both by(z) and by(z) are holomorphic and
invertible near zg, we conclude that

p-p-bi(2)b ' (2) = 0,
p.p.by(2)by () = 0,

which completes the proof.
O

In case a(z) is a polynomial operator-valued function this corollary goes
back at least as far as Keldysh [Kel51]. The general case is due to Gokhberg
and Sigal [GST71].

Given a(z) € M™(Z), we write a/(z) for the function z — (a(z))’, the
prime meaning the transposed pseudodifferential operator. It is clear that
a'(z) € M™(Z); moreover, a'(z) is parameter-dependent elliptic if a(z) is.

Corollary 3.3 If a(z) € M™(Z) is parameter-dependent elliptic, then
a(z) and a'(z) have the same singular values with the same partial null and
polar multiplicities. In particular, m(a'(z0) = m(a(zo)).

Proof. This follows immediately from Propositions 2.3 and 3.1 (see
also Theorem 5.3 in [GS71]).
O

4 Resolvent

In this section we rehearse the expansion of the principal part of the resol-
vent a~!(z) from [GS71].

Let a(z) € M™(Z). We assume that a(z) is parameter-dependent el-
liptic.

Suppose that zo € = is a characteristic value of a(z) and that u(z) is a
root function of a(z) at zp. Recall that the value u(zo) € C*(X) is called
an eigenfunction of a(z) at zo. Denote by r the multiplicity of u(z). The
derivatives

1

H u
are said to be associated functions for the eigenfunction u(z) (a priori they
are in a space H*(X)).

(k)(zo), k=1,...,r—1,
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Proposition 4.1 For each characteristic value zo of a(z), the associated
functions of a(z) at zo lie in a finite-dimensional subspace of C*(X).

Proof. We argue as in the proof of Proposition 2.1. Pick a root function
u(z) of a(z) at zo. Write
a(z) = YZ_,ai(z— =),
u(z) = il w(z — z0)"

in a neighbourhood of zy. An easy verification shows that for u(z) to be of
multiplicity » > 1 it is necessary and sufficient that

utv

Zal,_kuk =0 forall v = —p,...,—1;

k=0

v—1 ntv (4.1)
aoty, + Z Ay_pUp = — Z ay_pup forallv=0,...,r—1

k=0 k=v+1

(cf. (2.2)). As ag is an elliptic operator in U7 (X) and a_y,...,a_, are
smoothing operators of finite rank on X, we deduce by induction from the
second group of equalities (4.1) that each function ug, k = 0,1,...,r — 1,
belongs to a subspace of C°°(X) of finite dimension. Moreover, this subspace
is completely determined by the operators a_,, ..., aj, which is precisely our
assertion.
O
If uq,...,u,—1 are associated functions for an eigenfunction g of a(z) at
Zo, then any system wg, uy, ..., uy with v <r—11s called a chain consisting
of an eigenfunction and associated functions of a(z) at zo.
It is easy to see that a system wug,uy,...,un of functions in H*(X)
forms a chain if and only if there are functions uni1,...,uny, € H*(X)
such that

utv

Zal,_kuk =0 for v=—pu,....N

k=0
(cf. (4.1)).

Let uél)
I being the dimension of ker a(zg). Denote by r; the rank of uéi). If, for each
1 =1,...,1, the functions uéi), u(li), cees ui,z)_l form a chain consisting of an
eigenfunction and associated functions of a(z) at zo, then the system
(0l

=1,...

yees ,uél) be a canonical system of eigenfunctions of a(z) at zo,

is called a canonical system of eigenfunctions and associated functions of
a(z) at zo.

The following result will be needed below. It is proved by Gokhberg
and Sigal [GS71] for meromorphic operator-valued functions. They refer to
Keldysh [Kel51] for the case of polynomials with values in operators on a
Hilbert space.
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Proposition 4.2 For each characteristic value zo of a(z), there are

(w0, wla)

(g((J )79§ )7 e ’gf(’j)—l)¢:1,...,l

canonical systems

of eigenfunctions and associated functions of a(z) and d'(z) at zo, respec-
tively, such that

-y H @y 0
= Z Z 2 ZO Z <gk ) > um‘-l—j—k‘ (42)
=1 j=-r; k=0

Proof. Cf. Theorem 7.1 in [GST1].

5 Unitary reduction

We now turn to pseudodifferential equations on a cylinder C = R x X over
a C'* compact closed manifold X.

Any function on C may be thought of as a function on R with values
in a function space on X. In particular, we write S(C) = S(R) @, C*(X)
for the space of rapidly decreasing functions on the real axis with values
in C*(X). If u € e™S(C), where v € R, then the Fourier transform
Fu(z) = Fusn(€3'u) of u is well-defined for all z lying on the horizontal
line I'y = {z € C: Iz = v}. Moreover, Fu(7 + ¢7) is a rapidly decreasing
function of 7 € R with respect to each seminorm in C*(X).

Let a(z) € M™(Z). Pick a v € (a,b) such that the line ', is free from
the poles of a(z). For each u € e7"'S(C), the integral

Ault) = o [ et Fule) d:

o (5.1)
= e " FLa(r+ i) Fus(Mu), tER,

gives a rapidly decreasing function on R with values in C*(X'), modulo the
factor e™7. In fact, A is a continuous mapping of e™"*S(C) — ¢7"'S(C), as
is easy to see.

Lemma 5.1 Suppose u € ¢7""'S(C). Then F(Au)(z) = a(z) Fu(z) for
all z € T,

Proof. Using the equality Fu(r + ivy) = Fusr(e’u) for 7 € R, we
obtain

F(Au)(t+17) = Fior (" Au)

a(T +17) Fosr(e70)
= a(r +y)Fulr +1v),



16 Schulze, Tarkhanov

the second equality being due to (5.1) and the fact that a(7 4 iv)Fi-(€"u)
is a rapidly decreasing function of 7 € R with values in C*°(X). This is the
desired conclusion.
O

Roughly speaking, Lemma 5.1 just amounts to saying that the Fourier
transform of the temperate distribution u(¢) = 1 is a constant multiple of
the Dirac delta-function. In fact, [y e="'dt = 27 §(7) for each 7 € R.

Our next goal is to extend A to a continuous mapping of weighted
Sobolev spaces on the cylinder, H*7(C). For s € Z; and v € R, we mean
by H*7(C) the completion of C& (C) with respect to the norm

comp

1/2
Jullnce) = ( /> r\DJ‘(e“u)H%IA(X)dt) . (52)

J+A<s

Obviously, H*7(C) is a Hilbert space; however, the Hilbert structure is
not canonical. If s is a negative integer, we set H*7(C) to be the dual
of H=*~7(C). For fractional s, the space H*7(C) is defined by (complex)
interpolation.

Proposition 5.2 As defined by (5.1), A extends to a continuous map-
ping H*Y(C) — H*="™7(C) for each s € R.

Proof. Fix a family of order reductions A*(7) € U3 (X;R), s € R, on
X. Then

1/2
i~ ( | INRIFUnde)

the equivalence of two norms meaning that their ratio is bounded both above
and below by positive constants independent of u. Hence

1/2
ullroey ~ ([ 1A (ReJole FuCo g

< ¢ (sup IA™™(T)a(T + i’y)/\_s(r)Hg(p(X))) ||| Ereviey

TER

for all w € C°

comp
the seminorm

(C), the constant ¢ being independent of A and u. Since

a(r) = sup AT (m)a(m)AT (7 Leqez

is continuous on U7 (X;R), the proof is complete.
O
Given an f € H*=™7(C), consider the equation Au = f for an unknown
function u € H*7(C). The solvability theory of this equation is a direct con-
sequence of the fact that the Fourier transform wu(t) — Fu(r 4 i) extends
to a unitary isomorphism H%7(C) = L*(T',, L*(X)), up to an inessential
factor 2m. This reduces the problem to a parameter-dependent equation on

the base X.
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Proposition 5.3 [f the weight line I, lies away from the set of singular
values of a(z), then the mapping A: H*Y(C) — H*~"™7(C) is one-to-one
and onto, for every s € R. Moreover, the inverse mapping is given by the
formula

1

ATV(l) = — / et N () Ff(2)dz, teR. (5.3)
2m Jr,

Proof. Indeed, Proposition 1.4 shows that «™!(z) € M™™(Z). More-
over, the line T, is free from the poles of a™', which is guaranteed by the
assumption. Hence it follows, by Proposition 5.2, that the operator A~}
given by (5.3) extends to a continuous mapping H*~"7(C) — H*7(C), for
any s € R. It remains to prove that A=™'A =1 and AA™! = 1. We restrict
our attention to the first equality; the proof of the second one is similar.
Obviously, it suffices to show that A=A =1 on CZ,,(C) because this sub-
space is dense in H*7(C). But for u € O, (C) we may use Lemma 5.1 to
obtain

-1 1 itz —1
AT Au(t) = 5 /F7 eFa " (z)a(z)Fu(z)dz
= i/ ' Fu(z)dz
27 Jr,

= u(t)

the latter equality being a consequence of the Fourier inversion formula.
This is our claim.
O
Proposition 5.3 is an underlying technical tool for studying more intri-
cate settings of the problem Au = f.

6 Inhomogeneous equation

The factor ¢’ entering into (5.2) can not control independently the be-
haviour of functions at t = —oo and ¢ = oco. To do this, we introduce yet
another scale of weighted Sobolev spaces on the cylinder, which includes
two weight parameters. Namely, let w = (w_,w; ) be a pair of real numbers
to inspect the growth of functions at { = +00. Fix a cut-off function w for

the point ¢ = —oo on the real axis, i.e., w is a C'"* function on R equal to 1
near t = —oo and vanishing near ¢t = co. For s € R, set
H>"(C)=wH>™(C)+ (1 —w)H**(C), (6.1)

the right-hand side being understood in the sense of non-direct sum of
Fréchet spaces. In particular, taking w = (—~,v) we get H*"(C) = H*"(C)
for any s,v € R.
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Lemma 6.1 As defined by (6.1), the space H*"(C) is equivalently topol-
ogised under the norm

1/2
el ey = (lwoullZyemos ) + 101 = @)ullfroms @) -

Proof. The proof follows from the fact that the spaces H*7(C) are
invariant under multiplication by smooth functions on R constant in the
complement of a compact interval.

O

It follows that H*"(C) bears a Hilbert structure. Note that this struc-
ture depends on the particular choice of w while the space H*"(C) itself
does not. The dual of H**(C) is still identified with H~=*~"(C), for each s

and w.

Lemma 6.2 Let w = (w_,wy) satisfy —w_ < w;. Then, in order that
a function u belong to H*"(C) it is necessary and sufficient that w € H*7(C)
for each —w_ <~ < wy.

Proof. To prove the necessity, we make use of the triangle inequality
to get
llireoie) < 2 (loullizone) + 110 = w)ullirene))
< ¢ HUH%IW(C)

for any v € C2_(C), with ¢ a constant independent of u. The latter

comp
inequality follows from Lemma 6.1 and the estimates

loulliene) < ¢ wullgemeiey
10— @l < ¢ N0 —wulloes o)

which are due to the condition —w_ < v < wy. Conversely, applying
Lemma 6.1 implies

HUH%IS"“(C) sc (HUHJQLIS’_UJ—(C) + HUHJQLISW%(C))
for all u € ¢

comp

sufficiency.

(C), the constant ¢ depending only on w. This proves the

O
The proof above gives more, namely if u belongs to both H*~*~(C)
and H*"+(C), then v € H>"(C).
When regarded from the point of view of the Fourier transform, the
spaces H*"(C) with —w_ < w; have the following advantage.

Lemma 6.3 Given any u € H*"(C), the Fourier transform Fu(z) is
holomorphic in the strip —w_ < Sz < wy. Moreover, if j is a non-negative
integer < s, then

, 1 1
J §—3 < g, w 2
120 Fu(2)|| gos(x) < ¢ (W_ =t e %Z) [ullfewey — (6:2)

for all z in the above strip, with ¢ > 0 a constant independent of v and z.
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Proof. A familiar argument shows that it is sufficient to establish
the estimate (6.2) for any function v € C& (C). For this purpose, write

comp
u = wu ~+ (I —w)u. We estimate separately the Fourier transforms of wu

and (1 — w)u. Let 0',0” € R be such that w(t) =1 for t <V and w(t) =0
for t > b". Then,

A F(wu)(z) = /R = DI (w(t)u(t)) di

b// ) - )
- / =R S D (uo(tyu(t)) di

for all z € C. Hence it follows, by Holder’s inequality, that

1

, v NG | .
Hsz(wu)(Z)HHA(X) < (/ 62(w_+\sz)tdt) (/ He—w_tDJ (WU)H%IA(X)dt)
R

. e(w_—l—Sz)b”
< ¢ N [lewul| g+ 2= )

for each z in the half-plane Sz > —w_. Here, the constant ¢’ depends only
on j and w_, but not on u and z. Analogously,

e(—w+ +S2)b

< = [[(1 = w)u]l
1= g =3z HITA ()

for any z in the half-plane 3z < w,y. the constant ¢’ depending only on j
and w;. Combining these estimates we arrive at (6.2), as desired.

1/ F((1 = wyu) () lrax

0

Let a(z) € M™(Z). Our next objective will be to assign an operator

A H?(C) — H*=™"(C) to a(z), for weight data w = (w_,wy) satisfying

a < —w- < wy < b. Note that formula (5.1) does not fit for the definition

of A as the integral on the right side depends on the choice of ~ in the

interval [—w_,w;]. To cope with this difficulty, we shrink the domain of

A by considering only those v € H*"(C) for which the integral in (5.1)

is independent of v € [—w_,wy]. The following lemma highlights such
functions w.

Lemma 6.4 Let a(z) have no poles on the lines I'_,,_ and L', , where
a < —w_- <wy <b. Then, for each u € H*"(C) with s = max(0,m), we
have

/ eitza(z)}—u(z)dz— /eitza(z)}—u(z)dz = 2m Z res, eitza(z)}—u(z).

Spe(—w—wy)

—w_ W

Proof. Consider a closed contour [ which is the boundary of the rect-
angle with vertices =T —iw_, T'—iw_, T + 1wy and —T 4 iw, (see Fig. 1).
Choose T > 0 large enough, so that the rectangle contains all the poles
of a(z) in the strip between I'_,,_ and I'y,,. From Lemma 6.3 we de-
duce that F(z) = ¢a(2)Fu(z) is a meromorphic function in the strip



20 Schulze, Tarkhanov

R
w4
®
[ )
T e |0 7 R
—Ww_

Fig. 1: Auxiliary contour [.

—w_ < Yz < wy with values in H*="(X) (for fixed ¢t € R). Hence, the
residue formula yields

T—1w— THiwg THiwg —TH4iwg
/ F(z)dz + F(z)dz — / F(z)dz — / F(z)dz

—T—iw_ T—2w_ —TH4iwg —T—tw_

= 2mi > res, F(2),

Spe(—w—,wy)

and we shall have established the lemma if we prove that the integrals
[ P(2)dz are infinitesimal with respect to the H=*(X)-norm, when
T — oo. For this purpose, we first make use of Holder’s inequality to obtain

iT+m+F y +T+iws . , ; 1/2
— < s
I Pl S| [ lala)Fule) - ld-]

where ¢ = (fi“_ e_Z“’da) i is independent of T'. Consider the family of

integrals

+oo
' o) ||7r-x) 6.3
[ Nlalr + o) Fu(r + io) -, (63

parametrised by o € (—w_,w;). Since the operator-valued function a(z)
is holomorphic in a half-strip larger than £Rz > T, —w_ < 3z < wy, we
may invoke the estimates

. (ry™ if t > 0;
la(r + o) caeco.mre=y) < € { (rym=t if ¢ <0

for all z therein, where t > m is arbitrary real number and ¢ a constant
independent of £7 > T and o € (—w_,wy) (cf. Shubin [Shu87]). Hence it
follows that

IA

+eoo +eoo
. f‘ : 2_S d 2/ 2s f’ : 22 d
[ llalr +io)Fulr + o)l ydr < ¢ [ ) I Fulr +i0) [ dr

< O lullzesey,

the constant C' being independent of o € (—w_,w;). On the other hand,
the norms |[u||f+.-(c) are bounded uniformly in ¢ € (—w_,w,) by the norm
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||| grsw(cy, which is due to Lemma 6.2. We thus conclude that (6.3) is a
bounded function on the interval o € (—w_,w, ). Integrating this function
over o € (—w_,w;) and interchanging the integrals, by Fubini’s theorem,
we get

oo
/ / T—I—m)]:u(r—l—m)HH d0< 0.
+T w_

Hence it follows that there is a sequence T, > 0 converging to oo, such
that

w.

lim ¥ la(£T, 4 io) Fu(£+T, —I-ZO')HH da — 0,

V=00 —w_

which is the desired conclusion.
O
The condition v € H*"(C) with s = max(0,m) might be dropped but
we have not been able to do this.
Pick s € R with s > max(0,m) and a weight data w = (w_,w;)
satisfying ¢ < —w_ < wy < b. Set

Dom A = {u € H*"(C): res,e“a(z)Fu(z) =0 for —w_ < Sp < wy}

where, by abuse of notation, we suppress the dependence of Dom A of s and
w.

Lemma 6.5 [f a(z) is parameter-dependent elliptic, then Dom A is a
closed subspace of finite codimension in H*"(C). In fact,

codim Dom A = > pla(p)).

—w_<Sp<wy

Proof. Indeed, let p be a pole of a(z) in the strip —w_ < Iz < wy.
From Proposition 3.1 we deduce that p is a characteristic value of the inverse
function a™!(z). By Proposition 4.2, there are canonical systems

(fo ,f1 yre QL)—l) =1,....7"°
() () («)

(% v ...U_)
(0 » Y1 » Yo,—1 =1, T

of eigenfunctions and associated functions of a™*(z) and (¢™!)(2) at p, re-
spectively, such that

™))

~~

p.p-a(z) = p.p.

J -1 . 0+ () ()
= Z Z (z —p)’ Z (v 7'>fgL—|—j—k
=1 j=—0p, k=0

in a neighbourhood of p, the angular brackets standing for a pairing of
distributions on X. Hence it follows that

res, e 't a(z)Fu(z )—resp itz (p. p.a(z))fu(z)

S o\ 0 0
= Z Z Z (az) (eltzftv—)z<vk 7U>) ‘z:p fgﬁ-j—k.

=1 j=—o. k=
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The expression on the right-hand side of this equality can be written equiv-

alently as
’ S 9 o © ©
(it Z Z Z (62 —|—zt) Fims= (v, ,u}‘Z:p fgrl-j—k
=1 j=—o. k=
J o-1 fo—] . k-1
. i L2 — 1t . .
—er Y (Y / e I 0 ey ) 10,
=1 j=0 \ k=1 'R ( )!

showing that the equation res, ¢'“a(z)Fu(z) = 0 just amounts to a system

of
J
o=
=1

linearly independent moment conditions on the function u. These moments
are induced by the system

( QLz:_] o= vt ((;Zt_/)l;’ U;i)—j—k(l’)) o : (6.4)

k=1 J=01,...,0,—1

each function being in H*~*(C). Hence the lemma follows.
O
Unless otherwise stated we assume that a(z) € M™(Z) is parameter-
dependent elliptic. For u € Dom A, we define Au by formula (5.1) with any
one 7 in the interval [—w_, w4], such that the line I', is free from the poles

of a(z).

Proposition 6.6 As defined above, Au is independent of the particular
choice of . If moreover a(z) has no pole on the lines I'_,,_ and ', , then
Au € H*7™"(C) and the corresponding operator A: Dom A — H*=™"(C)
s continuous.

Proof. The first assertion follows immediately from Lemma 6.4. To
prove the second part, we apply Lemma 6.4 once again to obtain

Aut) = o [ ea)Fule)s
1 ZtZ
= o [ Tl Fu(z)d

wy
for all £ € R. From the first equality it follows, by Proposition 5.2, that
Au € H*7™~"=(C). On the other hand, the second equality implies that
Au € H*=™"+(C). We can now invoke Lemma 6.2 to see that Au belongs
actually to H*=""(C) and

[Aullgomuey < e (| Aullgomm-ve ey + | At gro-mos )

¢ (Ilullgremomiey + Nl )
C HuHHs,w(C)7

IAIA
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the constant ¢ being independent of u while not necessarily the same in
different applications. This completes the proof.

O

We are now in a position to study the inhomogeneous equation Au = f

for an unknown function u € Dom A, where f € H*=7™"(C). As follows,

this equation is solvable for f in a closed subspace of finite codimension in

H=m(C).

Theorem 6.7 Let a(z) have no singular value on the lines I'_,,_ and
L, . Suppose f € H*="™"(C), where s > max(0,m). Then, in order that
there exist a function v € Dom A satisfying Au = f it is necessary and
sufficient that

res, e Za " () Ff(2) =0 for —w_ <Sp < wy. (6.5)

Proof. Necessity. 1f f = Au for some function u € H**(C), then
Ff(z) = a(z)Fu(z), which is clear from Lemma 5.1. As Fu(z) is holomor-
phic in the strip —w_ < Sz < wy, we get

res, e Fa () Ff(2) = res, e Fu(z)
=0

for each pole p of a7!(z) with —w_ < Sp < wy. This is precisely our
assertion.

Sufficiency. Conversely, let f € H*7"™"(C), s > max(0,m), satisfy
condition (6.5). By Lemma 6.4 we can assert that the integral

u(t) = /F ePa N (2)Ff(2)dz, teER,

is independent of the particular choice of 4 in the interval [—w_,w,], pro-
vided that the line T, does not meet any pole of a~'(z). Taking v to be
—w_ and w4, we conclude from Proposition 5.2 that u belongs both to
H>~“=(C) and H*"“+(C). Lemma 6.2 now shows that u € H*"“(C). As
Fu(z) = a Y(2)F f(2) and F f(2) is holomorphic for —w_ < Jz < wy, it
is immediate that v € Dom A. Moreover, applying Proposition 5.3 gives
Au = f, and the proof is complete.
O
Note that we have actually proved that the equation Au = f has at
most one solution in Dom A. In fact, under moment conditions (6.5), the
solution is given by formula (5.3) with any one vy € [—w_, w4].

Corollary 6.8 Assume that a(z) is invertible on the lines I'_,,_ and
Lw,. Then, the operator A: Dom A — H*=""(C) is injective and has a
closed range of finite codimension,

codim Ran A = > n(a(p)).

—w_<Sp<wy
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Proof. Indeed, combining Theorem 6.7 and Lemma 6.5 we conclude
that

codimRan A = codim Dom A™!

= > pla(p)

—w_<SIp<wy

= > n(a(p)),

—w_<SIp<wy

the last equality being a consequence of what has been proved in Section 2.
This establishes the formula.
O
The corollary says that the operator A: Dom A — H*=™"(C) is Fred-
holm, and yields information about the index of A.

7 Transposed equation

We keep the notation of the previous section. In particular, a(z) € M™(Z)
is assumed to be parameter-dependent elliptic.

Our goal is to assign a natural pseudodifferential operator A to a(z)
which acts in Sobolev spaces H*"(C) with weight data w = (w_,w;) sat-
isfying ¢ < wy < —w_ < b. Note that if H*"*(C) — H*7(C) for some
v € R, then —y < w_ and v < wy implying —w_ < wy. Consequently, in
the case —w_ > w4 we can no longer define A by formula (5.1). Moreover,
the Fourier transform of a function v € H*" is no longer holomorphic in
any strip, which results in the rigidity of the contour of integration. Of
course, no problem arises in case a(z) is a polynomial function of z, i.e., for
differential operators on the cylinder C.

To cope with these difficulties, we invoke familiar duality arguments.
For this purpose, let us have look at the transpose of the operator A given

by (5.1).

Proposition 7.1 Suppose that a(z) has no pole on a line ', where
v € (a,b). For any s € R, the transpose A': H=5t™~7(C) — H=>77(C) of
the mapping of Proposition 5.2 is induced by

1 .
! _ wtz I
Alg(t) = %/F (=) Fg(e)dz, tER (7.1)
Proof. It suffices to specify A’g for g € C55,,(C). If u € CF,,(C),
then
9. 4u) = [ {g(0), o= [ ea(z)Fu()d=)
R 27 Jr,

= [ [ Fg e ()
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as 1s easy to check. Changing the variable in the inner integral by z — —z,
we arrive at (7.1), as desired.
0
Thus, the transpose of (5.1) is actually given by the same formula, with
a(z) and v replaced by a'(—z) and —~, respectively. If —w_ > w,, then
the weight data —w = (—w_, —w;) meets the condition of Lemma 6.2.
Hence we may apply the techniques of the previous section to study the
operator A’ : H=*t™=v(C) — H~57"(C) related to the symbol function
a'(—z) € M™(=Z) via (7.1). Recall that a'(—z) is parameter-dependent
elliptic, for so is a(z). It follows that, for s < min(0,m), the domain of A’,
ie.,

Dom A’ = {g € H™™™(C): res, e¢“a’'(—2)Fg(z) = 0 forw_ < Sp < —w,}

is a closed subspace of finite codimension in H~**"™~*(C). More precisely,
we have

codim Dom A’ = Z p(a'(—p))

wo <Ip<—wy

= >, plalp)),

wi <Sp<L—w_

(7.2)

the last equality being a consequence of Corollary 3.3. By Corollary 6.8,
if a(z) is invertible on both the lines I'_,,_ and I',,, then the operator
A" Dom A" — H=>~*(C) is injective and has a closed range of finite codi-
mension

codimRan A" = Z n(a'(—p))

wo <Ip<—wy

= Y. nfa(p)),

wi <Sp<L—w_

(7.3)

the second equality being due to Corollary 3.3. Were Dom A’ equal to
H=stm=w(C), we would define A: H*"(C) — H*"™"(C) to be the transpose
of the mapping A’: H=**™~(C) — H~*7*(C), thus arriving at a surjective
operator whose null-space is the annihilator of Ran A" in H*"(C). Such is
the case if a(z) has no pole in the strip w; < Sz < —w_, in particular, for
differential operators on the cylinder. However, in the general case we have
to take more care on the definition of A as the dual of Dom A’ can not be

identified within H*=""(C).

Lemma 7.2 Let H;, H, be reflexive Fréchet spaces. Suppose that
A": Dom A" — H{ is a continuous mapping whose domain is a complemented
subspace of Hy. Then, for each w € Hy there is unique element [ € Hy such

that
<gvf> = <A'g,u> fO?“ all g < DomA/;

(9, /) =0 for all g€ Hy o Dom A'. (7.4)
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Here, we use the customary notation H’ for the dual of a topological
vector space H.

Proof. Indeed, pick a topological complement H) & Dom A’ of the
subspace Dom A" in H}. Denote by 7 the projection of H) onto Dom A’
parallel to H) & Dom A’. Given u € H,, define a functional f on H) by

(9, f) = (A'mg,u)

for g € H). As both A" and 7 are continuous, we conclude that f is a
continuous linear functional on H), and so f can be identified with an
element of Hy. Obviously, f satisfies (7.4). On the other hand, if fi, f» € H>
satisfy (7.4), then

(9, i = fa) = (mg, fr — f2) + (L —m)g, fr — f2)
= 0

for all ¢ € H), whence f; = f5. The proof is complete.
O

Setting Au = f, we thus get a linear operator H; — H;. A simple
argument of functional analysis shows that A is continuous. However, it is
worth pointing out that the definition of A depends on the particular choice
of the topological complement of Dom A’ in H), unless Dom A’ = HJ.

Applying this abstract scheme to our problem, we arrive at a continuous
linear operator A: H*"(C) — H*~""(C), for s < min(0,m). By definition,
we have

(g, Au) = (A'g,u) for ¢ € Dom A’;

(g, Au) =0 for ge H=st™=¥(C) © Dom A, (7.5)

provided v € H*"(C). If a(z) is a polynomial function of z with values in
U7 (X), then A agrees with the usual extension of a differential operator to
spaces of distributions.

Theorem 7.3 Let a(z) be invertible on the lines I'_,,_ and ', . As de-
fined by (7.5), A: H**“(C) — H*="™"(C) is a Fredholm operator. Moreover,
the null-space of A is of dimension codim Ran A" and the range of A is of
codimension codim Dom A’.

Proof. By (7.5),u € H>"(C) satisfies Au = 0 if and only if u belongs to
the annihilator of Ran A" in H*"(C). Hence it follows that the dimension of
the null-space of A is equal to the codimension of Ran A’, which is finite. On
the other hand, since A”: Dom A" — H~*7"(C) is injective, we easily deduce
from (7.5) that in order that the equation Au = f be solvable it is necessary
and sufficient that f belong to the annihilator of H=**™~*(C) & Dom A’ in
H*=""(C). Therefore, the codimension of the range of A coincides with the
codimension of Dom A’, which proves the theorem.

O

We finish this section with a description of solutions of the homogeneous
equation Au = 0.
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Corollary 7.4 To each characteristic value p of the symbol a(z) in the
strip wy < Sz < —w_ there correspond n(a(p)) linearly independent solu-
tions of Au =0, namely

(kz__f vt % ufﬂji)_j_k(x))il | (7.6)

where (ugl)

of a(z) at p, as guaranteed by Proposition 4.2.

) is a canonical system of eigenfunctions and associated functions

It is a simple matter to verify that each function of the form (7.6)
belongs to H*"(C), provided that w; < Jp < —w_ (cf. (6.4)).

Proof. To highlight the role of canonical systems of eigenfunctions and
associated functions, we give the proof only for polynomial functions a(z).
The general case needs handling with greater care for we define A by a dual
argument (cf. (7.5)). For the proof, fix i = 1,...,[. By definition, there is
a root function u)(z) of multiplicity r; for a(z) at the point p, such that

1 (%)j W (p) = ul(x)

J!

for y=0,1,...,r;, — 1. Hence it follows that

Z=p

ri—j (it)k_l , ri—j 1 P k=1
1pt (2) ) — . 1zt
,; oy i) 2 (k — 1) (82) ‘

k=1
1 oN“TT
Y =zt (1)
(=g =) (82) (e K (Z))

the last equality being a consequence of the Leibniz formula. When applying
the operator A to the right-hand side of this equality, we may interchange

A and the derivative in z. This implies

ri—j (it k=1 1 g\ izt (i
A(Zew <(k—21>!“5i)—f"“(x)): m(a—) Al
1 a e izt 7
- () o)),

the right-hand side being zero for each j = 0,1,...,7;—1 because a(z)u')(z)

vanishes up to order r; — 1 at the point p. To complete the proof it suffices to
note, by Theorem 7.3, that system (7.6) encompasses the whole contribution
of p to the null-space of A.

4
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8 Index

Let a(z) € M™(Z) be a parameter-dependent elliptic function with values
in W (X). Given any weight data w = (w_,w;) with w_,w; € (a,b), we
assign a pseudodifferential operator A: H*"(C) — H*7"™"(C) to a(z), as
described above. Recall that in the case —w_ < wy the operator A is not
defined on all of H*"(C) unless the symbol a(z) has no pole in the strip
—w_ < Sz < wy. To arrive at an operator defined on the entire space
H*"(C) we fix a topological complement of the domain of A in H*"(C)
and compose A with the projection of H*"(C) onto Dom A. By abuse of
notation, we continue to write A for the resulting operator whose null-space
is H>*(C)&Dom A. Corollary 6.8 and Theorem 7.3 state that if a(z) has no
singular values on the lines I'_,,_ and I',, , then A is a Fredholm operator.
Hence the index of A is well-defined and independent of the choice of s
provided s meets the condition above. The following theorem provides us
with an explicit formula for the index.

Theorem 8.1 Suppose that a(z) is invertible on the lines I'_,,_ and

Iy, . Then,

4+

ind A = tr (L/ a” ' (2)d'(2)dz — L/ a_l(z)a’(z)dz) . (8.1)
270 T, —w_

We emphasise that the integrals on the right-hand of (8.1) are divergent
while their sum makes sense to be explained in the proof. Moreover, the op-
erators a~!(z)a’(z) are not of trace class on X unless X is zero-dimensional.
However, the operator-valued function a~'(z)a/(z) is holomorphic every-
where in the strip between I'_,,_ and T',, , except possibly at a finite num-
ber of points which are either poles or characteristic values of a(z). Thus,
only the principal parts of Laurent expansions of this function near singular
values contribute to the sum of the integrals, as is clear from the residue
formula. We then invoke the fact that these principal parts take their values
in the space of smoothing operators on X.

Proof. Indeed, from what has been proved in Sections 6 and 7 it follows
that

indA = > plalp)— DY n(alp)

—w_<Sp<wy —w_<Sp<wy

= - Z m(a(p))v

—w_<Sp<wy

if —w_ <w,, and

indA = Y nlap)- Y pla(p))

w4 <Sp<L—w— wi <Sp<L—w_

= >, ma(p)),

wi <Sp<L—w_
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if —w_ > wy. We now compute the sum on the right-hand sides in another
way. To this end, for T" > 0, denote by ()7 the rectangle with vertices
=T —w_, T —iw_, T 4 iws and =T + iwy (cf. Fig. 1). Let T' > 1 be
so chosen that )7 contains all singular values of a(z) in the strip between
I'_,_ and I'y,,. Combining Corollary 3.2 with the residue formula we can
assert that

L. tr /8QT a”(z)d'(z)dz = Z m(a(p))

2m w4 <Sp<L—w—

for T large enough. Thus, the integral on the left is equal to the index of
A, up to the sign of —w_ —w,. Letting T' — oo we arrive at (8.1), and the
proof is complete.
O
Formula 8.1 is a rather particular case of the theorem on the logarithmic
residue for meromorphic operator-valued functions due to Gokhberg and
Sigal [GST1]. Our viewpoint sheds some new light on the general index
theorem for elliptic pseudodifferential operators on manifolds with conical
points given in [FST97]. Note that explicit formulas (7.6) for solutions of
Au = 0 along with those for solutions of A’g = 0 can be of use to derive
a simple Lefschetz fixed point formula for the operator A, generalising the

index formula (8.1) (cf. Theorem 4.1 in [GS71]).
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