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By S.Z.LEVENDORSKIi AND S.I.BOYARCHENKO !
1. Introduction

The investment literature of the last two decades has recognized the import-
ance of interactions among the irreversibility of investment, uncertainty in the
economic environment, and the choice of timing and/or scale of the new invest-
ment (see Merton (1971); Pindyck (1982, 1988); Abel (1983); Bertola (1990);
Dixit (1993); Dixit and Pindyck (1994); Abel and Eberly (1994); Bertola and
Caballero (1994); Metcalf and Hassett (1995); Abel et al. (1996); Caballero and
Pindyck (1996); see also the bibliography in Dixit and Pindyck (1994)).

In all of these models, assumptions about the nature of the stochastic processes
describing the economic environment are crucial. In the majority of papers, the
continuous time stochastic processes are used to model returns or prices. Usually,
the (Geometric) Brownian Motion models the movement of variables like the
general price level, prices of financial instruments (Fisher (1975)) and option
prices (Black and Scholes (1973); Merton (1973)); for a discrete time analog, see
Chow (1994). In some cases, the (Geometric) Mean Reverting process is used -
see e.g. Dixit and Pindyck (1994); Metcalf and Hassett (1995).

The assumption that the exogeneous variable(s) of interest follow a Brownian
motion is very convenient since it allows one to obtain closed form solutions. At
the same time, there is some empirical evidence against the modelling of observa-
bles as normal random variables. For instance, in many cases distributions with
fat tails, in particular, truncated Lévy distributions are observed (see, e.g. Man-
tegna and Stanley (1995), Cont et al. (1997); these distributions were constructed
first by Mantegna and Stanley (1994), and Koponen (1995) suggested a family
which admits an explicit description in terms of the Fourier transform). Thus, we
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have nice tractable models based on the assumption that observables are normal
random variables, and a number of situations when observed processes exhibit
fat tails.

In the paper we develop a discrete time model which is almost as tractable
as the most popular continuous time models based on the Brownian Motion, yet
allows one to treat truncated Lévy flights and more general distributions. We do
not make very specific assumptions on the probability distribution. In particular,
we do not assume that it is possible to pass to the limit At — 0 and describe
the process by a continuous time model. We believe that this model is especially
useful in cases when the time interval between observations is not very small, as
it is the case in the theory of real options. (Note that numerical results show that
the threshold is sensitive — though not much — to a choice of the time interval).

We apply our model to the Planner’s problem ( see e.g. Dixit and Pindyck
(1994), Ch. 11), and derive an explicit formula for the investment threshold,
in terms of an observed distribution density. We produce numerical results for
symmetric distributions from a three-parameter Koponen’s (1995) family which
includes gaussian ones and truncated Lévy distributions.? The results show that
if a distribution is close to a Lévy distribution, i.e. the truncation happens
far from the origin, the threshold increases — in many cases by dozens or even
hundreds percent — as we replace a gaussian distribution with the truncated Lévy
distribution, of the same variance. If the truncation happens relatively close to
the origin, then the threshold may decrease — not significantly, though.

This means that the investment threshold can be made lower by dumping too
large fluctuations of economic indices.

The method of the paper is based on a reduction to the Wiener-Hopf equation
for the Bellman function®. We solve it by the factorization method (Wiener
and Hopf (1931)) in a bit more modern form Eskin (1973), assuming that the
investment threshold is given. The value function must satisfy certain conditions
which lead to an equation for the threshold.

The same approach can be applied to the pricing of the perpetual American
put option, under the same very weak assumptions on a probability distribution
(see Levendorskii and Boyarchenko (1998)). There also exists a continuous-time
version of the method; the corresponding results will be published elsewhere.

2Cont et al. (1997) found that a distribution of this family could be used to describe the
Standard & Poor’s 500 index futures.
3Thus, we see a familiar name though not quite a nsual method for the theory of investment



2. The Planner’s Problem

The model is a discrete version of the capacity choice model of investment
described in Dixit and Pindyck (1994, Ch.11). Consider a planner who chooses
investment. The investment is irreversible, and each unit of capital costs K to
install. The one period return when @ units of capital are in place is XU(Q)
where X is the stochastic shift variable. A discount rate r > 0 is fixed. The
planner’s objective is to maximize the expected present value of returns net of
capital installation cost.

Let x; = In X, and assume that

(1) Ty = T+ o+ Yy,

where y, are independently identically distributed random variables with zero
mean and the probability distribution density p satisfying

+oo
(2) / p(a)e’dr < +oo.
For simplicity, we consider symmetric p, though our results admit generalization
to the case of non-symmetric distributions. We also need a condition

+oo
(3) q:= e_r""a/ pla)edr < 1.

— 00

Really, for ) constant, the discounted expected returns grow each period by a

factor e [T°° p(x)e”dx, and are discounted back at rate e

by

, and hence are given

w(z) = U(Q)e" Z::.o 7

for this series to converge, we need (3).
The last condition for p is: there exist €, ¢y and w > 0 such that p = Fp, the
Fourier transform of p, and its derivative satify bounds

(4) plk) <1, Yk € R,

PR+ [P/ (F)| < C(1+ |k))™, ¥V k, |Sk| < co
(Due to (2), p is holomorphic on a strip |3k| < 1, therefore (4) makes sense).

The second bound is a weak form of a smoothness condition. For instance, for a
piece-wise smooth p it holds with w = 1.

Let w(@, x) be the Bellman function. Due to the absence of variable cost,

(5) w(Q, x) is non-decreasing w.r.t. (), for x fixed,



and clearly,

(6) w(Q, x) is non-decreasing w.r.t. x, for @) fixed,
and
(7) w(Q, x) is non-negative.

Due to (6)—(7),
(8) w(Q, x) is measurable and locally integrable w.r.t. .

(If w(Q, ) = 400 for & > b, then for a < b < ¢, the integral over (a,¢) is +00).
Finally, assume that

(9) U is differentiable and concave.
An argument on p.p. 360-361 in Dixit and Pindyck (1994) shows that (9) imply

(10) w(Q, x) is concave w.r.t. @, for x fixed.

In discrete time, the Bellman equation for the problem under consideration is
(1w(Q,25-1) = s (exples )U(Q) — K(Q — Q)+ e Blu(Q/, e}

where E is the expectation operator. Suppose that a point (@, ) is in the inaction
region, i.e. the maximum in (11) is attained at @' = @). Then

w(@, ) = U(Q)e” + e Elw(Q', x;) ;1]

or, on the strength of (1),

(12) 0@ =UQ +e [ pyul@+a+y)dy =
= U@ + ¢ [ pla+a = y)ul@,y)dy,

for all & < h(Q), where = h(Q) is the boundary of the inaction region.

Lemma 2.1. Let (1), (2) and (9) hold, and let there exist (Q),x) such that
w(Q,r) < 0.

Then w(Q,x) < +oo for all (Q,x).

Proof. Suppose that for some y, w(Q),y) = +oo. Then, on the strength of
(6), w(Q,z) =400, ¥z >y, and the RHS in (12) is infinite. The contradiction
shows that w(Q,z) < +o00 ¥ .



Due to (5), for @1 < @, w(Q1,x) < 400, and we may assume that @ is in
the action region. If (@, ) and (@1, x) are in the action region,

(13) w(@,7) —w(Qr,x) = K(Q — Q1) + (U(Q) = U(Q1))e”, Vx> h(Q).

By dividing (13) by @ — @1 and passing to the limit ()3 — @, we see that in the
action region wg(Q), x) exists and

(14) wo(@Q,z) =K+ U (Q)e", x> h(Q).

It follows from (9), (10) and (14), that there exist C' = C(Q1, ) such that for all
Q > Q1, wo(Q,x) < C. By integrating, we obtain w(Q,x) < 4oc.

Lemma has been proved.

The disinvestment is never optimal since there is no variable cost and the
installation cost cannot be recovered should X fall very low. Hence, i is non-
decreasing, and for almost all ), the derivative

(15) R'(Q) exists.

Below, we consider only @ satisfying (15) and derive a formula for h(Q). We
will see that the expression obtained defines a continuous function, therefore the
formula will be valid for all Q).

Due to (4), for a given x, wg(Q, ) exists for almost all @, and by (14), for
(@, x) in the action region; in Appendix, we show that if @) satisfies (15), wg(Q, x)
exists for almost all © < h(Q)). We choose @) satisfying (15), and differentiate (12)
w.r.t. Q:

(16) wo(Q.) = U(Q) + ¢ [ pla+a —y)wo(Quldy, ¥ < h(Q).

— 00

Due to (2), p(k) is holomorphic on a strip |Sk| < 1 and is continuous on the
closed strip |Sk| < 1. Set

A(k) =1 = e (k)

and define an operator A(D) by
(D)) = (FHARF ) = @0 [ [ e AR u(y)dydr.

A(D) is called a pseudo-differential operator (PDO) with the symbol A(k). Note
that D = —id/0x, and the Taylor formula gives u(x + «) = (exp(iaD)u)(z).
Using this equality and an equality

[ ple = yhuty)dy = (F 50 Fue),

— 00



we may rewrite (16) as
(17) (A(D)we)(@,x) = U(Q)e”, = < h(Q).
Fix Q and h, a prospective kandidat for 2(Q), and set
U=U'(Q), uz)=wg(Q,z+h)—K—U'e"h

Due to (2), for |8] <1,

oo ptoo |
A(D)eP = (27)71 / / 0 A (k)P dydk = A(—i3)e™,

— 00

therefore in terms of u, (14) and (17) are

(18) u(z) =0, x>0,
and
(19) (A(D)u)(z) = qU'e" " —r K, 2 <0,

where ¢ = 1 — A(—1) is the same as in (3), and r; = A(0) =1 —e™".
Take small € € (0,1), and set

uf(x) = e“u(x), A(k)= Ak +ie).

By multiplying (18)—(19) by e“ and taking into account that e A(D)e~" =
AY(D), we obtain

20 A (D)u () = qU'e"eM 9 — p Ke™, 2 <0
(20) ( q , ,

(21) u(x) =0, x>0.

To solve (20)—(21), we need the following lemma. It is a variant of standard
factorization theorems (see e.g. Eskin (1973), Section 6).

Lemma 2.2. Let (2) and (4) hold.

Then there exists €g > 0 such that for any |e| < €y, A°(k) admits a factoriza-
tion

(22) A(k) = AL(R)AZ(K)

with the AL (k) satisfying the following conditions:

a) AL (resp. A2 ) is holomorphic in a half-plane Ik > 0 (resp. Ik <0), and
admits a continuous extension into the closed half-plane;

b) there exist ¢ > 0,C such that

(23) e < ALK <O, Y £ Sk > 0;
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c) AL(k)™! admits a representation
(24) AL = 1+ TE(k),
where T is holomorphic in a half-plane £3k > 0, and salisfies an estimate
(25) TS0 < O(1+ )™, ¥ +3k >0,

where C' and wy > 0 are independent of k.

Proof. For e = 0, RA(l) > 1 —e > 0, VI € R (see (4)), and on the
strength of (2) and (4), if |e| is not too large, then there exists ¢, > 0 such
that RA(l) > ¢., VI € R. For such ¢ and [ € R, In A°(]) is well defined by a

requirement: In a is real for ¢ > 0, and we may set, for 7 > 0 and k € R,

ok
(26) b (k + iT) = iQL/ AT
m

—o0 k + 1T — l
AL (k£ i7) = exp(bL(k +i7)).

The proof that A% satisfy (22) and a)—c) is a minor variation of the proof in Eskin
(1973); for completeness, we give it in Appendix.

Parts a) and b) of Lemma 2.2 allow one to obtain a unique solution u® €

Ly(R_) to a problem (20)—(21) (see e.g. Theorem 7.1 in Eskin (1973)):

ut = Aj_(D)_IG_AE_(D)_l(qU’ehe(l"'E)x —r Ke™),

€

where §_ is the characteristic function of E_. By multiplying by e™*, we obtain

(27) U= e_“"Afl_(D)_l@_AE_(D)_l(qU’ehe(H'E)l’ —ry Ke™).

The derivation of a formula for & = h(Q)) is based on an analysis of the behaviour
of u(x) = u(x, h) near zero.
Lemma 2.3. For x >0, u(xz,h) =0, and as x — —0,

(28) ulw, h) = d(h)(1 + () + pz())+

+2A2(0) 7' K + " xa(@) 4 xa(a),

where functions py(x) = o(l),u2(x) = o(l), x1(x) = o(x), x1(x) = o(x) are
independent of b, and d(h) = A® (=) tqU'e" — A°(0)~'r K.
Proof. The first statement is just (19), and (28) will be proved in Appendix.
By returning to wg(Q, ), we obtain

(29)  wo(Qx.h) = K + U(Q)e” +d(h)(1 + ¢ jur(x — h) + ol — b))+
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+(x — h)d(h)Ag(—i)_qu’(Q)eh + ehxl(:zj — h)+ x2(x — h),

as @ — h— 0. Direct calculations (see Appendix) show that b° (—7) and b° (0) are
real, therefore A% (—7) and A% (0) are positive, and d(h) is real. Eq. (29) implies

lim wo(Q,x,h) = K +U'(Q)e" + d(h),
r—h—

and since

lim wo(Q.2,h) = K + U(Q)e",

r—h+0

an assumption d(h) # 0 contradicts (10).
If d(h) =0, (29) gives

. s 1 h
xgirio wQ(vavh) - [X —I_ U (Q)e 9

and

lim wo.(Q,z,h) = AE(())_IMK + U’(Q)eh >

z—h—0

> U/(Q)eh = lim le’(vavh)v

r—h+0

which agrees with (10) but shows that the smooth pasting condition (valid for a
gaussian continuous time model) fails in our discrete time model.

Clearly, d(h) = 0 if and only if
A2 (i)
H — hQ) _ ﬁ—i[’
(30 Q== By
and direct calculations (see Appendix) show that
(31) AC(—i)/ A (0) = 7P exp(lh — ),

where

1

~oor

L /0+°° In((1 = e™"p(l) cos(al))? + (e p(l) sin(ald))?) (1 + 1*)7dl,

L ftee p(l)sin(al) -1 2\—1
Lh=- / ¢ N1+ 12)7 Nl
S (67’ — p(l) sin(al) (1+1)

Theorem 2.1. Let (1) — (4) hold.
Then the investment threshold is given by (30)—(31).
Proof. We have proven (30) for almost all Q). Since h is non-decreasing and

the RHS in (30) is continuous, (30) holds for all Q.
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To facilitate the comparison with the Marshallian prescription, we rewrite
(30) as
l—q AZ(0)q(1 — q)
XU'(Q) is the marginal utility, and the expected present value of it is equal to
XU'(Q)/(1 — q) — see a discussion after (3). A textbook Marshallian calculation

tells the planner to invest when this value exceeds the cost K, but, as in Dixit
and Pindyck (1994), an additional factor

K.

o A° (—1)ry
A%(0)g(1 - q)

intervenes; in Dixit in Pindyck (1994), the factor is kg = /(8 — 1), where § > 1
is a positive root to the characteristic equation k*c?/2 + ak?* —r = 0.

Here the factor, x, is rather complicated, and it is difficult to perform a
comparative statics analysis of it; still, it is not difficult to calculate it numerically.

Numerical Examples. The first truncated Lévy distributions were con-
structed by Mantegna and Stanley (1994). Later, Koponen (1995) constructed a
family of truncated Lévy distributions which admit explicit description in terms
of their Fourier transforms. For the sake of brevity, we consider only symmetric
distributions of this family, with p, defined by

P (k) = exp[—? X1 — ((k/X)? 4 1)"/2 cos(v arctan(k/X))]/v(v — 1)],

where ¢ > 0,A > 0 and v € (0,2],r # 1 are parameters. We have chosen a
normalization so that the variance is independent of v and A.

For v = 2, we obtain py(k) = exp(—o?k?/2) which means that p; is a gaussian
distribution. As v moves from 2 down, p, deviates from a gaussian distribution,
and for fixed v € (0,2),v # 1, in the limit A — 40, p, becomes a Lévy distribution
with p, (k) = exp(—c1|k|” cos(vm/2)/v(v — 1)). Roughly speaking, (—A7* A1)
is an interval where p, differs insignificantly from a Lévy distribution, and for
|z| >> A~!, the distribution exhibits an exponential fall-off.

Here are some numerical examples.? In tables below, we fix r, o, o, A with and
see how the factor k varies with v. Since At is normalized to unity, r, a, o have
to be small which explains choices in examples below. kg, the factor in Dixit and

Pindyck (1994), is independent of A and v.

4The authors thank Mitya Boyarchenko for the help with calculations



Table 1. Parameters: r = 0.006, o« = —0.002, ¢ = 0.095, A = 1.5

ko = 3.512.

v | 2.0 1.8 1.6 1.4 1.2 0.8 0.6 0.4 0.2
k| 3.332 | 3.341 | 3.358 | 3.387 | 3.431 | 3.558 | 3.723 | 3.922 | 4.223

Table 2. Parameters: r = 0.006, a« = —0.002, ¢ = 0.111, A =1.5

ko = 7.011.

v |20 1.8 1.6 1.4 1.2 0.8 0.6 0.4 0.2

k| 6.578 | 6.732 | 6.973 | 7.334 | 7.873 | 10.029 | 12.428 | 17.731 | 37.637

In these two examples, it is clearly seen that the factor k grows as v goes from
2 down, i.e. as a process deviates from a gaussian one of the same variance.

In Example 1, the factor x can grow by more than 26%, and in Example 2,
by 572%.

The following example shows that the factor can decrease, though not that
significantly — by 4.5%; as compared with the continuous time model — by 8.7%

Table 3. Parameters: r = 0.006, a = —0.002, o0 = 0.079, A =2

Ko = 2.348.

v |20 1.8 1.6 1.4 1.2 0.8 0.6 0.4 0.2
k| 2.252 ] 3.242 | 2.231 | 2.218 | 2.204 | 2.173 | 2.159 | 2.150 | 2.145

We see that the factor can increase quite dramatically as we replace a gaussian
distribution by a non-gaussian one with the same variance. There are also cases
when the factor decreases, though not significantly. This happens if a distribution
is obtained from a Lévy one by a truncation too close to origin.

3. Conclusion

In the paper, we have constructed a discrete time model of investment under
uncertainty, which is applicable in the case of non-gaussian distributions. This
model admits a closed form solution as the standard continuous time model based
on the Geometric Brownian Motion (systematically used by Dixit and Pindyck
(1994) and other authors) does. Our model allows one to treat more complex
processes and does not require that the passing to the continuous time limit be
possible. The last remark is essential in applications where the time increment
is not very small. In addition, in cases when the underlying stochastic process
is a mixture of continuous and jump processes, our model does not require the
separation of the mixture, as standard models do.

Here is another characterization of our model: in standard models of irrever-
sible investment under uncertainty, only information about mean and variance is
used whereas in our model — about moments of higher order as well.

10



According to standard models, the volatility changes the threshold for the in-
vestment: the higher the volatility of the price of a commodity (and the standard
measure of the volatility is the variance), the higher level of the price is needed
to trigger the new investment. Our model shows that in the case of fat-tailed dis-
tributions, the threshold depends on the higher moments, and in some cases can
be much higher still: it can grow with the higher moments even if the variance
remains the same. However, there are also cases when the threshold decreases,
and this may happen when fat tails are truncated in a small vicinity of the origin.
This implies that policy interventions should aim at dumping of large fluctuations
rather than at decreasing of the average volatility, i.e. variance.
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Appendix

A1l. Some basic facts of the theory of the Sobolev spaces and the
theory of pseudo-differential operators (see e.g. Eskin (1973)

By S(R) one denotes the space of infinitely differentiable functions decaying
at infinity faster than any power of x, together with all derivatives, and by S’'(R)
— its dual space.

Let s € R. The Sobolev space H*(R) consists of v € S’(R) with the finite

norim
+oo 2\s
lullo= (048

The closure of Cg°(R4) in H*(R) is denoted by He (R+). The spaces H*(R) and

e (Ry) are Hilbert spaces, and H°(R) = La(R), H° (Ry) = Lo(Ry).

For an integer m > 0 and s > m + 1/2, H*(R) C C™(R), by the Sobolev
embedding theorem.

The Dirac delta-function (a linear functional defined by §(f) = f(0)) belongs

to H* (Ry), for any s < —1/2.
If the symbol of a PDO A(D) is measurable and admits a bound

(33) [A(E)| < C(L+ [K[*)™2, ¥ &,

1/2
a(k)|2dk) .

then A(D) is said to be of order m. A PDO of order m is a bounded operator
from H*(R) to H*~™(R). If A(k) admits a holomorphic extension into a half-
plane £3% > 0 and satisfies a bound (33) in the closed half-plane, then A(D) is

a bounded operator from He (R+) to H' (Rs), where | = s —m.

Let J be an interval, and 7" be a PDO of negative order. Then for f €
C>*(J)NS'(R), a solution u € S'(R) to an equation (I — T)u = f also is C*° on
J.

For T of arbitrary order and f € C*(J)NS'(R), T'f is C* on J.

A2. The existence of wg. Let ) satisfy (13). To prove that wg(Q,z)
exists for almost all @ < h(Q), note that (12) can be written in the form
(I = T)w)(Q,z) = U(Q)e", ¥V a < h(Q),
where by (4), T is a PDO of negative order —w. The RHS being of the class

C*, a solution w € C*((—o0,h(Q))). Since w is non-decreasing and bounded
on (—oo, h(Q)), it admits a continuous extention on (—oo, h(Q)].

Now fix @)1 > @ and set @(Q,Q1,2) = w(Q,x) — w(Q1,x). By substituting
into (12) and (14), we obtain

(I =T)yw)(Q, Q1,x) =

13



=q(U(Q) = U(€1))e" = A0 - (@ — Q1) — w(Qr,z) + (Tw)(Q1, v),
for @ < h(Q), and
w(Q, Qr,x) =0, = > h(Q),

where T'is an integral operator with the positive kernel k(x—y) = e "plz+a—y).
Let e, h = h(Q), be the extension by zero operator from (—oo,h) on R, and ry,
the corresponding restriction operator, and set T, = r,Te,. Then the problem
above can be written in the form of the Wiener-Hopf equation in L. ((—o0,h)):

(I =Ty = fi(Q)u;.

where f; € O, and ui () = €%, us(z) = Lus(x) = —w(Q1, v), ua(2) = Tw(Q1, @)
are independent of () and belong to C'((—o0, h]).
The operator norm of T} as an operator in L. ((—o0,h)) is

T 1=k N m=e" < 1,

and hence, I —T}, is invertible with the inverse (I—T},)~" = [+ T,+T?+T7+---. By
invoking the theorem on the differentiability of the integral w.r.t. the upper limit,
we see that functions v;(z,h) = (I — Ty) 'u;)(z) are differentiable w.r.t. h. It
follows that if (13) holds, then @w(Q, Q1,x) = 3, f;(Q)v;(x, h(Q)) is differentiable
wrt. @, for @ < h(Q). Since w(Qq,x) is independent of @, w(Q,x) is also
differentiable w.r.t. @, for < h(Q).

A3. Proof of Lemma 2.2. Fix ¢, for which functions in (26) are well-
defined, and suppress an index e. As [ — +oo, In A(l) = O(p(l)), and on the
strength of (4), there exist C,w > 0 such that

(34) I A()| < C(L+ )™, V€ R.

Fix 70 > 0, and consider by (k) in a half-plane +Sk > 7o. Set J; = {l | |k =] >
K723, o = (L] Ie—t] < [KI/2}. On Jy, [K] < 21—k] and 1] < k1] +]] < 31T

hence
(35) (L [k =17 L+ [N < 3L+ [R) 2L+ )21+ 1)),
and since (1 + |{])7'7“/2 € Ly(R), we deduce from (34)(35) an estimate

In A(1)

(36) n k-1

dl| < Coy (14 k)72,

where a constant C, is independent of k and 7 > 75. On Jy, |l| > |k| — |k = 1| >
|k|/2 > |k — (], and hence,

(L4 k= I)7HLH )™ < OO [k = U)7HL A+ [k = )72 (1 + [k)) 7

14



Therefore,

k—1

In A(l
J2

+oo
< Cug (14 [k [ (0 [k = U) 77721 < Cory (14 k)™,

Thus, (36) holds with R instead of J;. Similar estimates hold for derivatives
w.r.t. k, and in a region +3k > 7, parts b), ¢) and the first part of a) have been
proved.

To show that Ai(k) admits a continuous extension up to the boundary of a

half-plane £3k > 0, fix £ € R and write, for 7 > 0,

bk +ir) = bL(k+ir) + b%(k +i7),

where
bl(ki')—iL/ Mdl
+ R k>t kb £ir — 1
. ' In A(l)
b2 (k + ir) = L/ B )
HUES j:27T lk—ll<1 k £i7 —

The denominator of the integrand of b1 being bounded away from zero, uniformly
ink € Rand 7 > 0, the proof for +3% > 75 above shows that bl (k) is continuous
in a closed half-plane 3k > 0 and satisfies all the necessary estimates there.

Consider b7 (k). On the strength of (4), there exists C' > 0 such that for all
ke Rand ce (k—1,k+1),

[In A(e)| + [A'(c)/A(e)| < O+ [k]) 7.

Hence, using the Lagrange formula

In A(l) = In A(k) +

where ¢ € (k,l) (or ¢ € ([,k)), and noticing that
iL/ dl B iL/ -
2r Jp—<ar kit =1 "2 Jy<rir—1

7 For — 1 1 Tdl
_ i_/ T = _/ ALY
2m Jj<1 12+ 72 2m J<1 12 + 72 1/

as 7 — +0, we obtain that b3 (k) is continuous up to the boundary of a half-plane

£33k > 0, and admits an estimate

b2 (k4 i7)| < C(1 4 |7] + |k[) /2

15



This finishes the proof of Lemma 2.2.

A3. Proof of Eq. (28). By the residue theorem, we have, for 5 > 0 and
T > 3,
+oo
A (D)o = (21 / / =0k A (k)ePydydk =

= m)t [ A ) ik + ) =

_ (—2mi)! /+°O_” ETEAT (k) (k 4 i8) " dk 4 (—2mi) " (—2mi) A (—i3).

The first term in the RHS tends to 0 as 7 — 400, therefore
(37) AT (D)0_e”™ = A (—iB)e’", ¥V z <0,

and similarly, A¢(D)0_e’* = 0, V z > 0. Using (26), Lemma 2.2 a) and the

residue theorem, we derive obtain:

, it Al
A (—i(1 :——/
(38) B A S prps
i e Al 4 de) i e A(D) o
__ dl:——/ A = a0
Qw/_oo k—i(l+e) —1 o Jooo k—i—1 -(=4),
and due to (4),
Lo e A
(39) (i =~ [ eyl =
i e A(l+ e)
— L 2R 40 ).
27T/oo k—1e—1 -(0)

Substitute (37)— (39) into (27); the result is
(40) u=e"TAL(D)e"O_,
where f(z) = A°(—i)~tqU’c"e¢* — A°(0)r K. By (2), A(k) is holomorphic on

a strip |Sk| < 1, and bounded away from zero on the real axis, hence, by (4),
A(k+1e) also is bounded away from zero on the real axis, provided e is sufficiently
small. Using these observation and (37), we obtain, similarly to (38) — (39),

e—exAi(D)—leex — —eer(D) 1 eac —eacAe (D)eex —
= A%(D)™'A° (D) = A%(D).

Hence, we may rewrite (40) as

(41) u=AL(D)"0_f.

16



By using (26), it is straightforward to show that A} (k) is real for real k, and
A° (—1i), A?(0) are real as well. Hence, u is real-valued (and independent of small
€ > 0). Nevertheless, to ensure the applicability of various results of the theory
of pseudo-differential operators, it is more convenient to proceed with (40) in the
form

(42) u=e"TAL(D)'O_[",

where f¢(z) = A% (=) 1qU'e"e('T97 — A (0)r  Ke™. Since f© € S(R_), we can
apply a formula (5.38) in Eskin (1973):

(43)0_f => (1 —4iD)™8- (1 — D) f)(0) + (1 —iD)~"0_(1 — D)™ f*.
s=1
Here m is a positive integer, d is the Dirac delta-function, and

(1= iD)*6)(z) = (27)"" /+°° e7H(1 — ik)

By using (43) and (24)—(25), we can rewrite (42) as
u=e “(1+TLD))[(1—- iD)7LS - f(0)+

+(1 —iD)726 - (1 —iD)f)0) + (1 —iD)*0_(1 —iD)* f].

By introducing the notation
¢s = (1 - iD)_S(Sv wi = T—IE—(D)(l - iD)_l(S,
wh = AL(D)(1 = iD)s,
ws =AY (D)™ (1 —iD) 2 A% (=) qU'0_((1 — iD)? e +97),
wy = —AL(D)" (1 —iD)2A2(0) "' KO_((1 — iD)%e™),

we can write
(44) u=e""{(¢1 +wi)[(0) + ¢2 - (f°(0) — (/)'(0))+

+wy - (f9(0) = (f)'(0)) + €"ws + wi}.
Consider terms in (44).

1) We know that § €H' (R), for any | < —1/2, and since f° € S(R_),
Theorem 5.1 in Eskin (1973) gives 0_f<,0_(1 — iD)*f* € H*(R), for any s €
(0,1/2). But T¢(D)(1 —iD)™" and AS(D)(1 —iD)~? are PDO of order —1 —w
and —2, respectively, and hence, w§ € HT'*(R) c H'/**“/2(R) C C(R), wj €
H™(R) C CY(R). Similarly, w§,wj € C'(R). The symbols of A% (D)™ and
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15 (D) being holomorphic in a half-plane 3%k > 0, we have suppw$ C (—o0,0],
J=1,---,4. Hence, wi(0) = 0, and w$(0) = (w$)'(0) =0, j = 2,3,4.

J
2) Consider ¢, s = 1,2. By the residue theorem, for > 0 and 7 > 0,

+oo | +ootiT |
() = (2%)_1/ 7R (1 — ik)" dk = (2%)_1/ 7R (1 — k) dk — 0,

—oo+1iT

as T — 400, and hence, ¢s(x) = 0. Further,

0 .
/ e et dy = (1 - ik)_l

therefore ¢1(x) = e for « < 0.
By differentiating ¢, at « < 0, we find

+oo | 1k

S = m) [T e i = —61(2) + o).

— 00

The general solution to an equation ¢, = —e” + ¢y is ¢a(x) = —xe” + Ce”, but

ol
&y €H (R_), V1 < 3/2,is of the class C'(R), and hence, equal to 0 at x = 0.
Thus, we obtain ¢q(z) = —ze”, ¥V 2 < 0.

3) Now we calculate coefficients in (43):
f(0) =d(h) = Ag(—i)_qu’eh — A% (0)" ' K,

(f)(0) = (1 + )A% (=i)qU'e" — A (0)"'r K = (1 + €)d(h) + A°(0)"'r K.
4) As @ — —0,
=< n(@)d() = (1 + (1 — ))d(h) + of),
¢ hy(2) = —w + ofx),
(d(h) — (1 + )d(h) — A2(0)7'r K) =
[(1—¢) =1+ +e)]+2A%0)"'r K +o(x) =
=d(h)+ xd(h) + :I;A(i(())_lrlK + o(x).

5) By gathering 1) — 4), we obtain (28).
A4. Calculation of A%(—i) and A°(0). By noticing that Rp is even and
3p is odd, and using (26), we obtain

e “oi(x) -
= d(h) + xd(h

—— N

b_(—i) i /+°° In(1 — €_r+ml}5(5))dl

- 2m J- — =
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= 1 /"’OO 1 —1 In (((1 — 6_7’]3([) COS(al))2 + (6—7’]5([) Sin(al))2)1/2) dl—

o) 1211

e Al
z/ i l(—iarctan e~"p(l) sin(al) ))dl:

o) 1241 1 —e7p(l) cos(al

_ i /OO In((1 — e "p(I) Cos(ozl))2 + (e7"p(1) sin(ozl))z)dl_
2w Jo 2+1

_l/oo [ e~ "p(l) sin(al)
7 Jo

arctan

241 1 —ep(l)cos(al)

and | valy )
1 +oo In(1 — e~ 4ol
b_(0) = —i— lim n(l — 7))

2m 40— —ir —1

dl =

+oo (7 _ —r4aln
_ —ii m (ir =) In(1 —e p(l))
2m T=+0 ./ _oo 7242

1 ool 1 oo h(1) sin( ol
=—In(l — 6_7’)/ — —/ [~ arctan il ?s1n(a ) dl =
s o 241 7Jo e" — p(l) cos(al)

— lln(l ey - l/oool 1 p({) sin(al)

= B t
T aretan o p(l) cos(al)

dl =

Since A = exp b,

A° (=) B 1 —r
T(O) = exp{—§ln(1 —e ")+ I — I},

where [, [ are the same as in (31).
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