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I� Introduction

���� After seminal papers by Black and Scholes ��
�� and Merton ��
��� a geo�
metrical Brownian motion model is widely being used as a standard reference model
particularly in the context of option pricing and hedging� but empirically it is demostra�
ted to be incorrect in number of ways� Main di�culties this model faces are systematic
deviations of option prices from the ones predicted by the Black�Scholes formula� and a
leptokurtic character of stock return variability�

The deviations may be due to various factors� for instance� due to an unrealistic
assumption of continuous trading� at no cost� which is assumed in the Black�Scholes
model� but the fact that real processes do not conform to the gaussian assumption
certainly accounts for at least part of the deviation�

For models with non�zero cost of trading� see e�g� Morton and Pliska ������ Gran�
nan and Swindle ������ Whalley and Wilmott ���
� and the bibliography there� and
for di�erent approaches to modelling of stock volatility� see e�g� Hull and White ���
��
Merton ��
��� Cox and Ross ��
��� Rubinstein ������ Taylor ������ Duan ������
Scott ���
�� Bj�ork� Kabanov and Runggaldier ���
�� Renault and Touzi ������ Rogers
���
� and bibliography there�

In some sense� almost all approaches to modelling of a stock volatility start with
gaussian processes� one selects an appropriate mixture� with possible addition of jump
components� or uses a convolution of the Brownian motion kernel with a polynomially
decaying one� in models based on the Fractional Brownian motion see e�g� Bouchaud
and Sornette ����� and Rogers ���
���

In the paper� we suggest to use a family of �truncated L�evy processes� as refe�
rence models�� Truncated L�evy distributions were constructed by Mantegna and Stan�
ley ������ and Koponen ����� suggested a family of in�nitely divisible truncated L�evy
distributions� which admit explicit description in terms of their Fourier transforms�
Truncated L�evy distributions were observed in real �nancial markets Mantegna and
Stanley ������ Cont et al� ���
��� Cont et al� ���
� gave a formula for the probabi�
lity distribution of the Standard � Poor�s �		 index futures� which explicitly describes
the exponential fall�o� in the tails of the distribution and �ts the data�

By using the same simple heuristic ideas which are used to derive the Black�Scholes
equation� we obtain their analogues and �nd the solutions for European call and put
options�

The formulas are on almost the same level of complexity as the Black�Scholes for�
mula� and hence admit simple adjustment so popular among practioners with the Black�
Scholes formula� Possible advantages of the suggested approach are�

�� the basic processes have �fat tails�� as empirical distributions do� so in applica�
tions� there may be no need to �nd an appropriate mixture of basic processes�

�� a basic process is characterized by three parameters� not by variance only� which
entails additional possibilities of adjustment�

�After the �rst variant of this paper �without the last Section on the perpetual American put	 had
been prepared� Prof� Mantegna informed us about a paper by Matacz �
���	 where the truncated Levy
distributions were used for similar purposes� The methods and results of this paper and a paper Matacz
�
���	 are di�erent�
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�� the equations and formulas admit natural approximate discrete versions which
use an observed distribution only� We illustrate the last point in Section �� where we
solve a discretized version of a generalized linear Black�Scholes equation for the perpetual
American put� a continuous�time version of this result will be published elsewhere��

The simplest analogs of the Black�Scholes equation are linear pseudo�di�erential
equations� which can easily be solved by means of the Fourier transform in this respect�
our approach is close to Scott ���
��� They are obtained under assumption that the
returns on a stock and a derivative security are perfectly correlated� but we show that
this assumption fails unless a process is gaussian�

We use the no�arbitrage approach� and derive two non�linear equations� They are
rather involved� and we are unable to solve them as yet� though we suggest a scheme
for an approximate solution�

���� Let S � St� be a current or spot price of a stock S� and let F be a current
price of a derivative security for the stock� Let r be the riskless rate� The celebrated
Black�Scholes equation for the dynamics of F

�

�
��S�FSS � rSFS � rF � Ft � 	 ��

was derived under two assumptions�
I� S follows a Geometric Brownian Motion� i�e� can be described by a stochastic

di�erential equation
dS

S
� �dt � �dz�

where dz is the increment of the standard Wiener process with zero mean and unit
variance�

II� In the limit �t � 	� the returns on the stock and the derivative security are
perfectly correlated� for some non�stochastic b�

�F � E��F  

F
� b

�S � E��S 

S
� o�t� as �t� 	� ��

Instead of ��� we assume that the returns can be described by a stochastic process
obeying rather general conditions which are satis�ed e�g� by a family of truncated L�evy
distributions which was constructed by Koponen ������ For the sake of brevity� we
consider only symmetric distributions of this family� In terms of the Fourier transform�
these distributions are given by

!p�������tk� � exp���t������ ��� � k� � ������ cos� arctank���� ��� � �� �

where � 	 	� � 	 	 and � � 	� � � � �� � are parameters� Note that the variance is
independent of � and ��

For � � �� we obtain !p�������tk� � exp��t��k���� which means that p�������t is
a gaussian distribution� As � moves from � down� p�������t deviates from a gaussian
distribution� and for �xed � � 	� ��� � �� �� in the limit � � �	� p�������t becomes a
L�evy distribution with !p���tk� � exp�tc� jkj���

Note that !p�������tk� are holomorphic on a strip j�kj 
 �� and we use this observa�
tion as the starting point�
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���� In the paper� we impose the following condition on the behavior of

�lnS�t� �t� � lnS�t� �t�� lnS�t�� as �t� 	 �

�lnS�t� �t� � ��t � Yt��t � o�t�� ��

where for �xed �t� Yt��t are i�i�d� random variables with the distribution density p�t

given by

p�ty� � �����
Z ��

��
expfiyk ��tP k�gdk� ��

The main properties of the Koponen�s ����� family are
a�

P k� � P �k� 	 	 � k � R n 	� P 	� � 	� P ��	� 	 	� ��

b� there exist � 	 	 and � � 	� � such that

P is holomorphic on a strip j�kj 
 �� ��

and for any �� � 	� �� and s � 	� ��

jP sk�j � C���s� � jkj���s� j�kj � ��� 
�

c� there exist P� 	 	 and � 	 	 such that for any �� � 	� ��

P k� � P�jkj� � Ojkj����� as k � �	� j�kj 
 ��� ��

In this paper� we shall use 
� with s � 	� and instead of ��� a weaker condition�

P k� � �	 as k �	�

but 
� with s � 	� � and �� are needed for a continuous version of results of Section ��
which will be published elsewhere�

���� Clearly� gaussian processes satisfy ��"�� with � � �	� but there are many
other processes di�erent from gaussian ones� say� the ones described by truncated L�evy
distributions� which satisfy ��"�� with � 
 �	 and do not with � � �	��

Under conditions ��"��� we derive non�gaussian analogs of the Black�Scholes equa�
tion ��� We use four approaches� which give the same equation �� in the gaussian case�
The approaches use� respectively�

�� The non�arbitrage condition

E��F  � rF�t

E��F � E��F  �� ���
�

E��S � rS�t

E��S � E��S �� ���
� o�t�� as �t� 	� ��

�� The perfect correlation assumption ���
�� The construction of a risk�minimizing portfolio consisting of shares of the stock

and the derivative security� This is in a spirit of Bouchaud and Sornette ������
�� The construction of a portfolio which eliminates #uctuations of order ��
Let�s call the corresponding equations the Generalized Black�Scholes equation I� II�

III and IV� respectively� or GBSE�I� GBSE�II� GBSE�III and GBSE�IV�
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As it turns out� these equations look di�erent though for gaussian processes� reduce
to the same equation ���� and for non�gaussian processes obeying ��"��� are di�erent�
To be more precise� let F be the spot price of an European call or put� option� We
have solved the GBSE�II and proved that

a� F satis�es the perfect correlation assumption �� if and only if it satis�es both
GBSE�I and GBSE�II�

b� F � a solution to GBSE�II subject to appropriate boundary conditions� satis�es
the perfect correlation assumption �� if and only if P satis�es a certain very complicated
non�linear pseudo�di�erential equation� this is a condition ��� below�� and we show
that if the excess rate of return on the stock is not high then P does not satisfy condition
��� unless P k� � ��

�
k�� i�e� the process is gaussian� We believe that non�gaussian P

do not satisfy ��� in all cases�
c� the riskless portfolio consisting of shares of the stock and option exists if and only

if F satis�es ���� and if F satis�es it then F satis�es both GBSE�II and GBSE�III�
Thus� in the case of non�gaussian processes obeying ��"��� the perfect correlation

assumption fails� a riskless portfolio consisting of a stock and an European option does
not exist� and the standard hedging is impossible� It is no suprize that the assumption
and the riskless portfolio disappear simulteneously� the latter can be constructed if and
only if the returns on the stock and the option are perfectly correlated�

���� GBSE�I and GBSE�III are non�linear pseudo�di�erential equations� and GBSE�
II and GBSE�IV are linear pseudo�di�erential equations� We derive GBSE�I and GBSE�
II in Sections � and �� respectively� In Section �� we also derive condition ����

In Sections � and �� we solve GBSE�II for European call and put options� and
produce some numerical results which show that the di�erence between our result and
the Black�Scholes formula can be sizable assuming that the variance is the same�� and
in Section �� we prove that the solutions does not obey the condition ��� unless the
process is gaussian�

In Section 
� we derive GBSE�III� and in Section � " GBSE�IV� solutions to the
latter are similar to the ones for GBSE�II�

Both GBSE�I and GBSE�III especially the latter� are very complicated� and so far�
we were unable to solve them�

In fact� we doubt that an analytical solution exists at all� and even the justi�cation
of an iteration procedure which we suggest in Section � for GBSE�I� seems to be very
hard�

We suggest formulas for the �rst and the second approximation�
We suggest a way to rewrite our formulas in terms of an observed probability distri�

bution� We hope that this can be used to produce appropriate computational schemes�

�An equation is called pseudo�di�erential if it involves pseudo�di�erential operators� A pseudo�
di�erential operator P �y�Dy	 with the symbol P � P �y� k	 acts as follows�

u�x	 �� ���	��
Z ��

��

Z ��

��

exp�i�y � z	k	P �y� k	u�y	dydk�

If P �y� k	 �
P

pj�y	k
j is a polynomial in k� then P �y�Dy	 �

P
pj�y	D

j
y � Dy � �i�y� is a di�erential

operator� If P is independent of y� one writes P �Dy	�
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Finally� in Section �� we derive a formula for the perpetual American put option�
assuming that the dynamics of its price obeys a linear generalized Black�Scholes equa�
tion� and produce numerical examples showing that the di�erence between our formula
and the Merton�s one can be signi�cant�

�� Derivation of the Generalized Black�Scholes Equation I	
The Non�Arbitrage Approach

The nominators and denominators in Eq� �� can be calculated by means of the
following two lemmas�

Set y � lnS� fy� t� � F exp y� t��
Lemma ���� Let f � fy� t� be continuously di	erentiable and admit a bound

jfy� t�j � Ct exp��jyj�� � y� t�

where Ct 	 	 and �� � 	� �� are independent of y�
Then for all y� t� as �t� 	�

Et�y��f  � ft � �fy � P Dy�f�y� t��t� o�t�� �	�

Proof� For small �t and y�

fy � �y� t� �t� � fy� t� � fy � �y� t� �t�� fy � �y� t���

�fy � ��t� t�� fy� t�� � fy � �y� t�� fy � ��t� t��

The �rst and second di�erences above being equal to

fty � �y� t��t� o�t� � fty� t��t� o�t��

and
fyy � ��t� t��t� o�t� � fyy� t��t� o�t��

respectively� it remains to calculate

Et�y�fy���t��y� t��fy���t� t� �
Z ��

��
fy���t�z� t�p�tz�dz�fy���t� t� �

�
Z ��

��
fy � ��t� z� t�p�tz�dz � fy � ��t� t��

Here we have used the symmetry of p�� By using one of the main properties of the

Fourier transform df 
 g � !f � !g� the convolution becomes the multiplication� and then
Eq� ��� �� and 
� which allow us to change the order of calculation of the limit and
the integral below�� we obtain

lim
�t��

Et�y�fy � �y� t�� fy� t� ��t �

� lim
�t��

�

���t

Z ��

��
expiky � ��t�exp��tP k���� �� !f k� t�dk �

�



� lim
�t��

�

���t

Z ��

��
expiky���tP k�� � o�t�� !fk� t�dk �

�
�

��

Z ��

��
expiky��P k�� !fk� t�dk�

Thus� �	� has been proved�
Lemma ���� Let f and g satisfy conditions of Lemma ����
Then

E��f�E��f  ��g�E��g � � �P Dy�fg��gP Dy�f�fP Dy�g��t�o�t�� ���

Proof� Simple algebraic manipulations give

E��f � E��f  ��g � E��g � � Ef � �f � E�f � �f  �g � �g � E�g � �g � �

� E�f � �f�g � �g� � E�f � �f� E�g � �g� �

using �	� and the equality fg�t � ftg � fgt� we continue��

� fg � fg�t � �fg�y � P Dy�fg���t � o�t��

�f � ft � �fy � P Dy�f��t� o�t��g � gt � �gy � P Dy�g��t� o�t�� �

� �P Dy�fg� � gP Dy�f � fP Dy�g��t� o�t��

Lemma has been proved�
Direct calculations show that for jaj 
 ��

e�ayP Dy�e
ay � P Dy � ia�� ���

as operators�� and P Dy� acts on exponents as follows�

P Dy�e
ay � P �ia�eay� ���

Using �	�� ��� and ���� we can rewrite �� as follows�

ft � �fy � P Dy�f � rf��t � o�t�

��P Dy�f�� � �fP Dy�f��t � o�t� ���
� o�t����� �

�
� � P �i�� r��t � o�t�

��P ��i� � �P �i���t� o�t� ���
� o�t������

Passing to the limit� we obtain the Generalized Black�Scholes Equation�I�

ft � �fy � P Dy�f � rf �
�� P �i�� r�

�P ��i� � �P �i��P Dy�f
�� � �fP Dy �f����� ���

Example ���� Let p�t be gaussian� Then !pk� � exp��t�
�

� k
��� and therefore

P k� �
��

�
k�� P �ia� � ���

�
a��






P Dy� � ���

�
�y � �P ��i� � �P �i� �

��

�
�� �� � ���

� P Dy�f
�� �

��

�
f��yy � ��ffyy � fy�

��� �fP Dy�f � ���ffyy � ���

and ��� turns into

ft � �fy �
��

�
fyy � rf � � �

��

�
� r�fy� ���

Since
fty� t� � FtS� t�� fyy� t� � SFSS� t��

fyyy� t� � S�FSSS� t� � SFSS� t��

we obtain the Black�Scholes equation ���
Thus� for gaussian p� Eq� ��� reduces to a linear di�erential equation� but for other

p� it is a very complicated non�linear pseudo�di�erential equation�

�� Derivation of The Generalized Black�Scholes Equation II	
The Perfect Correlation Assumption Approach

Now suppose that �F and �S are perfectly correlated in the limit �t� 	� i�e� ��
holds� Multiplying �� by �S�E��S �� taking the expectation E � Et�y� and applying
Lemmas ��� and ���� we obtain

�P Dy�fey� � eyP Dy�f � fP Dy�ey

f
�t � b

�P Dy�e�y � �eyP Dy�ey

ey
�t � o�t��

�
�
Using ��� and ���� then dividing �
� by e�y�t and passing to the limit as �t � 	�
we obtain

�P Dy � i�f � P Dy�f � P �i�f
f

� b�P ��i� � �P �i���

Thus�

b �
�P Dy � i�f � P Dy�f � P �i�f

�P ��i� � �P �i��f � ���

Consider forming a portfolio by investing a fraction w in the option and � � w in the
stock� The return on this portfolio is

w
�F

F
� �� w�

�S

S
�

and its uncertain component is equal to

w
�F

F
� � �w�

�S

S
� E�w

�F

F
� �� w�

�S

S
 �

� w
�F � E��F  

F
� � � w�

�S � E��S 

S
�

�



� wb � � � w�
�S � E��S 

S
�

The choice w � ���� b� makes the portfolio riskless� and since a riskless portfolio must
earn the riskless rate of return� we obtain

r�t � E�w
�F

F
� � �w�

�S

S
 � o�t��

or

r�t �
ft � �fy � P Dy�f

� � b�f
� b

�� b

�ey � P Dy�ey

ey
�t � o�t��

Dividing by �t� passing to the limit �t � 	� next using ��� and ���� and �nally
multiplying by �� b�F � we obtain

��P ��i� � �P �i��f � �P Dy � i�f � P Dy�f � P �i�f� r �

� �P ��i� � �P �i��ft � �fy � P Dy�f��
� �P Dy � i�f � P Dy�f � P �i�f��� P �i��� ���

By using simple algebraic manipulations� we can rewrite ��� as

ft � �fy � P Dy�f � rf �

�
� � P �i�� r

�P ��i� � �P �i��P Dy � i�f � P Dy�f � P �i�f�� �	�

Example ���� Let p�t be a gaussian distribution� Then� using ���� we obtain

�P Dy � i�f � P Dy�f � P �i�f �

�
��

�
�Dy � i�� � D�

y � ��f � ��iDyf � ��fy�

�P ��i� � �P �i� � ��� �P �i� �
��

�
�

and therefore� �	� turns into ���� which is the Black�Scholes equation ���
Thus� in the case of gaussian processes� Eq� �	� and ��� are identical and reduce

to the Black�Scholes equation ��� as it should be the case since it is well�known that
for gaussian processes� the approaches used in Sections � and � give the same result�

For a non�gaussian p�t� the RHS�s of ��� and �	� di�er� in the former� it is a
non�linear in f � and in the latter " linear� Clearly� a linear equation �	� is much easier
to solve� and we shall do it in the next two Sections for European call and put options�
respectively�

But a linear equation �	� has been derived under the perfect correlation assumption
�� which implies a non�trivial restriction on P and F � To derive it� multiply �� with b
de�ned by ���� by �F �E��F  � take the expectation and apply Lemmas ��� and ����

�P Dy�f�� � �fP Dy �f

f
�t � b

�P Dy�fey� � eyP Dy�f � fP Dy�ey

ey
�t � o�t��

�



Using ���� dividing by �t and passing to the limit as �t � 	� then multiplying by f
and using ���� we obtain

�P Dy�f
�� � �fP Dy�f �

�
�P Dy � i�f � P Dy�f � P �i�f

�P ��i� � �P �i� �P Dy � i�f � P Dy�f � P �i�f��

or

�P Dy�f
�� � �fP Dy�f��P ��i���P �i�� � �P Dy� i�f �P Dy�f �P �i�f���

���
Theorem ���� The following statements are equivalent

a� F S� t� � flnS� t� satis�es the perfect correlation assumption ����
b� F S� t� � flnS� t� satis�es �����
c� f is a solution to Eq� ���� if and only if it is a solution to Eq� �����
Proof� The equivalence of a� and b� has been proved already� Further� the LHS

in ��� is non�negative� being the limit of non�negative functions� therefore ��� is equi�
valent to the statement� the RHS�s of ��� and �	� are equal� Since the LHS�s are
identical� c� and b� are equivalent�

Theorem has been proved�

�� A Solution to The Generalized Black�Scholes Equation II
for European Call Options

Rewrite �	� as
ft � PDy�f� ���

where

PDy� � r � i�Dy � P Dy� �
�� P �i�� r

�P ��i� � �P �i��P Dy � i� � P Dy� � P �i���

Eq� ��� is valid for any derivative security of the stock S� If F is the spot price of an
European call option� F satis�es the following boundary conditions

F S� T � � maxS �X� 	�� ���

F 	� t� � 	� F S� t� � S� ���

where T is the expiration date and X is the striking price� In terms of fy� t� � F ey� t��
��� can be rewritten as

fy� T � � maxey � ex� 	�� ���

where x � lnX�
Take � � �� � � ��� and set gy� t� � e��yfy� t�� Then a problem ���� ��� for f

is equivalent to the following problem for g�

gt � PDy � i��g� ���

gy� T � � maxe�����y � e��y�x� 	�� �
�

�	



By making the Fourier transform w�r�t� y� we see that a problem ���"�
� is equivalent
to

!gt � Pk � i��!g� ���

!gk� T � � !hk�� ���

where
!hk� �

Z ��

��
e�iyk maxe�����y � e��y�x� 	�dy �

�
Z ��

x
e�iyke�����y � e��y�x�dy �

�
e�����ik�y

� � � � ik

�����
��

x

�
e�x�����ik�y

�� � ik

�����
��

x

�

� � e�����ik�x

�� � � ik
�
e�����ik�x

�� � ik
� � e�����ik�x

k � i��k � i� � i�
�

By solving the Cauchy problem ���"���� we obtain

!gk� t� � �exp��Pk � i��� ikx� �� ��x�

k � i��k � i� � i�
�

where � � T � t� and therefore�

gy� t� �
�

��

Z ��

��
eiyk!gk� t�dk �

� �e�����x

��

Z ��

��

expiy � x�k � �Pk � i���

k � i��k � i� � i�
dk�

Since fy� t� � e�ygy� t�� we have

fy� t� � � ex

��

Z ��

��

expiy � x�k � i��� �Pk � i���

k � i��k � i� � i�
dk �

� � ex

��

Z ���i�

���i�

expiy � x�z � �Pz��

zz � i�
dz�

and by returning to the initial variables X � ex� S � ey� F S� t� � fy� t��

F S� t� � �X

��

Z ���i�

���i�

expi lnS�X�z � �Pz��

zz � i�
dz� �	�

Here is another form of F S� t�� Since the integrand in �	� is meromorphic on any
strip �� 
 �z 
 ���� �� � 	� ��� with the only pole at z � �i� we have

F S� t� � �X

��

Z ���i��

���i��

expi lnS�X�z � �Pz��

zz � i�
dz�

� X

��
��i

expi lnS�X�z � �Pz��

z

�����
z	�i

��



by the residue formula�
Since P 	� � 	� we have

P�i� � r � � � P �i� �
�� P �i�� r

�P ��i� � �P �i��P ��i� � �P �i�� � 	�

and therefore�

F S� t� � S � X

��

Z ���i��

���i��

expi lnS�X�z � �Pz��

zz � i�
dz� ���

Under conditions ��"��� the integrals in �	� and ��� converge and decay faster than
any power of lnS�X�� as S � S�� � �	� Hence� F 	� t� � 	� Below� we present some
numerical results for a family ��
�

We �x S � �		� r � 	��� and for X � �	� �		� ��	 and � � ��	� ���� ��� and di�erent
values of �� � and � � compute F S� t�� Recall that the variance is indepependent of �
and �� and that for � � �� a process is gaussian�

In the �rst series of examples� we take � � P �i�� which implies that the stock
itself has zero drift�

Table ����
Values of F S� t�� parameters� r � 	��� � � �� � � 	��

� 	��� 	��� 	��� 	�� 	�� 	��
X ��	 �		 �	 ��	 �		 �	
� � ��	 ���� ���� ����	 ���� ����� �
�
�
� � ��� ���� ���� ����� ���� ����� �
��

� � ��� ���� ���� ����� ���� ����� �
���

Table ����
Values of F S� t�� parameters� r � 	��� � � �� � � 	���

� 	��� 	��� 	��� 	�� 	�� 	��
X ��	 �		 �	 ��	 �		 �	
� � ��	 	��
 ���� ���	
 ���� ����� �����
� � ��� ��	� ��	� ���	� ���� �	��
 ���
�
� � ��� ���� ��
� ����	 ���� �	�
� ����


We see that for stocks with zero drift� our formula gives higher price for options out
of the money than the Black�Scholes one� and for options at the money and usually�
for options in the money� � lower price�

The next table shows that the results can change signi�cantly if the drift changes�
Here we take � � �P �i����

�The authors thank to Mitya Boyarchenko for the help with calculations�
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Table ����
Values of F S� t�� parameters� r � 	��� � � �� � � 	���

� 	��� 	��� 	��� 	�� 	�� 	��
X ��	 �		 �	 ��	 �		 �	
� � ��	 ���� ���� ����� ���� ����� �
�
�
� � ��� ���� ���� ����
 ���� ����� �
�
�
� � ��� ���	 ���� ����� ���� ����
 �
���

�� A Solution to The Generalized Black�Scholes Equation II
for European Put Options

For an European put option� the boundary conditions are

F S� T � � maxX � S� 	�� F 	� t� � Xe�r�T�t�� F �	� t� � 	�

In terms of y � lnS� x � lnX� fy� t� � F S� t�� � � T � t� they can be rewritten as

fy� T � � maxex � ey� 	�� f�	� t� � ex�r	 � f�	� t� � 	�

Take �� � 	� ��� and set gy� t� � e��yfy� t�� Then g is a solution to a problem

gt � PDy � i���g� ���

gy� t� � maxex���y � e������y� 	�� ���

By making the Fourier transform w�r�t� y� we see that a problem ���"��� is equivalent
to

!gtk� t� � Pk � i���!gk� t�� ���

!gk� t� � !hk�� ���

where
!hk� �

Z ��

��
e�iyk maxex���y � e������y� 	�dy �

�
Z x

��
e�iykex���y � e������y�dy �

�
ex�����ik�y

�� � ik

�����
x

��

� e������ik�y

�� � ik

�����
x

��

� � e������ik�x

k � i���k � i�� � i�
�

By solving the Cauchy problem ���"���� we obtain

!gk� t� � �exp��Pk � i���� ikx� � � ���x�

k � i���k � i�� � i�
�

where � � T � t� and therefore�

gy� t� � �e������x

��

Z ��

��

exp��Pk � i��� � iky � x��

k � i���k � i�� � i�
dk�

��



Since fy� t� � e���ygy� t�� we have

fy� t� � � ex

��

Z ��

��

exp��Pk � i��� � ik � i���y � x��

k � i���k � i�� � i�
dk �

� � ex

��

Z ���i��

���i��

exp��Pz� � izy � x��

zz � i�
dz�

By returning to the initial variables X � ex� S � ey� F S� t� � fy� t�� we obtain

F S� t� � �X

��

Z ���i��

���i��

exp��Pz� � iz lnS�X��

zz � i�
dz� ���

The integrand in ��� being meromorphic on a strip ���� ���� where �� � 	� ��� with
the only pole at z � 	� we can apply the residue formula and obtain

F S� t� � �X

��

Z ���i��

���i��

exp��Pz� � iz lnS�X��

zz � i�
dz�

�
X

��
��i

exp��Pz� � iz lnS�X��

z � i
j z � 	�

Since P 	� � 	� we have

P	� � r � P 	� �
�� P �i�� r

�P ��i� � �P �i��P �i� � P 	� � P �i�� � r�

therefore

F S� t� � Xe�	r � X

��

Z ���i��

���i��

exp��Pz� � iz lnS�X��

zz � i�
dz� �
�

By comparing ��� and �
�� we see that

FputS� t� � FcallS� t� � Xe�r	 � S�

which is just the statement of the put�call pairity theorem�
Since Fcall	� t� � 	� Eq� �
� implies Fput	� t� � Xe�t	 �


� An Analysis of The Perfect Correlation Assumption

We have shown that the perfect correlation assumption �� is equivalent to Eq�
���� Using Eq� ���� we derived the Generalized Black�Scholes Equation�II and found
its solutions for European call and put options�

By denoting the last terms in ��� and �
� by gy� t�� we can write

fcy� t� � ey � gy� t�� fpy� t� � Xe�r	 � gy� t�

c stands for call� and p " for put��

��



Let us check ��� for f � fp given by �
�� Since
R��
�� p�ty� � �dy � �� � �t 	 	�

we have P D�� � 	� and therefore�

P Dy�fp � P 	�Xe�r	 � P Dy�g � P Dy�g�

P Dy � i�fp � P �i�Xe�r	 � P Dy � i�g� fpP Dy�fp � Xe�r	 � g�P Dy�g�

�P Dy�f
�
p � �P Dy�X

�e�r	 � �Xe�r	 g � g�� � ��Xe�r	P Dy�g � P Dy�g
��

It follows that ��� reduces to

��Xe�r	P Dy�g � P Dy�g
� � �Xe�r	 � g�P Dy�g��P ��i� � �P �i�� �

� �P �i�Xe�r	 � P Dy � i�g � P Dy�g � P �i�Xe�r	 � P �i�g���

By simplifying� we see that Eq� ��� for fp is equivalent to Eq� ��� for g�
Similar calculations show that Eq� ��� for fc is equivalent to Eq� ��� for g�
Substituting

gy� t� � � ex

��

Z ��

��

expiy � x�k � i���� �Pk � i����

k � i���k � i�� � i�
dk �

� �ex�������y��

��

Z ��

��

expiy � x�k � �Pk � i����

k � i���k � i�� � i�
dk

into Eq� ���� using the following equalities

P Dy � ia�ey��f � ey��P Dy � ia� ����f� FP Dy�f�k� t� � P k� !fk� t��Z ��

��
e�iyk�y��y�dy �

Z ��

��

!�k � k�� !�k��dk��

and cancelling the factor exp�x� � ��� � y����� we obtain an equivalent form of Eq�
����

�

��

Z ��

��

Z ��

��
eiky�P k � �i��� � �P k� � i�����

� exp��Pk � k� � i���� �Pk� � i����

k � k� � i���k � k� � i�� � i�k� � i���k� � i�� � i�
dkdk��

��P ��i� � �P �i�� �

�
�

��

Z ��

��
dk�

Z ��

��
dkeiky�P k � k� � i�� � i� � P k � k� � i��� � P �i���

��P k� � i�� � i� � P k� � i��� � P �i�� exp��Pk � k� � i���� �Pk� � i����

k � k� � i���k � k� � i�� � i�k� � i���k� � i�� � i�
�

By making the inverse Fourier transform� we obtainZ ��

��

�P k � �i��� � �P k� � i���� exp��Pk � k� � i���� �Pk� � i����

k � k� � i���k � k� � i�� � i�k� � i���k� � i�� � i�
dk��

��P ��i� � �P �i�� �

��



�
Z ��

��
�P k � k� � i�� � i� � P k � k� � i��� � P �i���

��P k� � i�� � i� � P k� � i��� � P �i���

� exp��Pk � k� � i���� �Pk� � i����

k � k� � i���k � k� � i�� � i�k� � i���k� � i�� � i�
dk�� ���

for all k � R� � 	 	� and �� � 	� ���
We have proved
Theorem 
��� Let ������� hold�
Then the perfect correlation assumption ��� for an European call option holds if and

only if Eq� ���� hold� and the same is true for an European put option�
The following theorem states that under reasonable conditions� which are certainly

satis�ed if the excess return on the stock is not high� Eq� ���� hence the perfect
correlation assumption ��� fails�

Theorem 
��� Let k � 	 be the only point of minimum of Pk�� and let it be
non�degenerate�

Then Eq� ���� fails unless

P k� � �P �i�k�� ���

i�e� the process is gaussian�
Before proving Theorem ���� we note that the conditions of Theorem ��� are satis�ed

by P � Taking into account ��" �� and the de�nition of P� we see that there exist c 	 	
such if

� � P �i�� r

�P ��i� � �P �i� 
 c�

then P satis�es the condition of Theorem ����
Proof of Theorem 
��� By continuity of P and on the strength of ��"��� there

exists c 	 	 such that for any �� � �c� c�� the minimum of Pk � i��� is attained at
the only point k � 	 and is non�degenerate�

Fix k � 	 and �� � 	� c�� and consider the asymptotics of integrals in ��� as
� � �	� In the both integrands� we see the same fast decaying exponential function�
and the non�degeneracy condition stated above allows us to conclude that the leading
term of the asymptotics of the LHS in ��� is of the form const����dl��������� where
const��� depends on �� and the fast decaying exponential function only� and

dl��� � �P ��i��� � �P �i�����P ��i� � �P �i���

Similarly� the leading term of the asymptotics of the RHS is of the form const����
dr��������� where const��� is the same as above� and

dr��� � �P �i�� � i� � P �i��� � P �i����

By comparing the leading terms� we see that if ��� holds then � � � 	� c��

�P ��i����P �i����P ��i���P �i�� � �P �i��i��P �i���P �i���� �	�

��



dl and dr coincide on a segment 	� c�� and since both are holomorphic on a strip
jzj 
 ���� they coincide on it� But dr is holomorphic on a wider strip jzj 
 ��
therefore dl also is� Hence� a function z �� P �i�z� is holomorphic on this strip� and
therefore� P is holomorphic on a strip j�kj 
 ��� But by our assumption� j�kj 
 � was
the widest strip with this property� Hence� � � �	� and �	� holds for all ���

Set � � ��� Since P 	� � 	� and P z� � P $z�� we obtain from �	�

�P ��i� � �P �i��� � �P �i����

hence P ��i� � �P �i�� Using the principle of mathematical induction� it is not di�cult
to show that

P �ni� � n�P �i�� � n � Z�

Now we use the induction on m � �� �� � � �� and for �xed m� the induction on s �
	������� � � �� to show that

P �
�

�
� s

�

�m
�i� � P �i��

�
� s

�

�m
��� ���

Eq� ��� means that Eq� ��� holds on a subset of R� which has an accumulation point�
the both sides being holomorphic� Eq���� holds everywhere�

Theorem ��� has been proved�

�� Derivation of the Generalized Black�Scholes Equation III	
The Risk�Minimization Approach

Consider an investor holding a fraction w of her%his wealth in the derivative security
and a fraction � � w in the stock� Suppose that the investor wishes to minimize the
variance of the portfolio

E

���w�F � E��F  

F
� � � w�

�S � E��S 

S

��
�� �

The �rst order condition is

E

	�
�F � E��F  

F
� �S � E��S 

S

��
w

�F � E��F  

F
� � �w�

�S � E��S 

S

�

�

� o�t��

as �t� 	� By using Lemma ���� we obtain

w�f��P Dy�f
� � �f��P Dy�f� � w � ���e��yP Dy�e

�y � �e�yP Dy�e
y��

��� �w��f��e�yP Dy�e
yf� � f��P Dy�f � e�yP Dy�e

y� � 	�

Eq� ��� and ��� allow us to simplify

w�f��P Dy�f
� � �f��P Dy�f� � w � ���P ��i� � �P �i���

�




��� �w��P Dy � i� � f��P Dy�f � P �i�f� � 	�

After rearranging� we arrive at

w�f��P Dy�f
� � �f��P Dy�f � P ��i�� �

� f��P Dy � i�f � f��P Dy�f � P ��i� � P �i��
and therefore�

w �
f��P Dy � i�f � f��P Dy�f � P ��i� � P �i�

�f��P Dy�f� � �f��P Dy�f � P ��i�
�

�
P Dy � i�� P Dy�� P ��i� � P �i��f
�f��P Dy�f� � �P Dy � i�f � P ��i�f

� ���

For a gaussian p�t� Eq� ��� gives

P Dy�f � ���

�
fyy� �P Dy�f

� �
��

�
�ffyy � �f�y ��

P Dy � i�f �
��

�
�iy � i��f � ���

�
y � ���f � ���

�
fyy � �fy � f��

and

w �
�fyy � �fy � fyy � �f � f

�fyy � �f��f�y � �fyy � �fy � �f � �f
�

�
f � fy

f � �fy � f��f�y
�

�� f��fy
�� �f��fy � f��f�y

�
�

�� f��fy
�

This is the fraction of wealth invested in the option in the Black�Scholes model�
Now we can calculate the minimal variance attainable with the choice of w given

by �����
By using Lemma ��� and ���"���� we obtain

vmin �� lim
�t��

varmin��t �

� w��f��P Dy�f
� � �f��P Dy�f� � � �w���P ��i� � �P �i���

��w� �w��f��P Dy � i�f � f��P Dy�f � P �i���
After simpli�cation� we obtain

vmin �
AB � C�

A� B � �C
� ���

where
A � �f��P Dy�f

� � �f��P Dy�f� B � �P ��i� � �P �i��
C � �f��P Dy � i�f � f��P Dy�f � P �i��

We see that the nominator in Eq� ��� is zero if and only if the perfect correlation
condition ��� holds�

��



Thus� we have proven
Theorem ���� Let conditions ������� hold�
Then the riskless portfolio exists if and only if the perfect correlation assumption

holds�
We proceed with the derivation of GBSE�III� w and vmin being found� we can use

the non�arbitrage condition for the portfolio and the stock�

E
h
w�F

F
� �� w��S

S

i
� r�t

var
���
min

�
E
h
�S
S

i
� r�t

E
��

�S
S

����� � o�t�����

By Lemma ����
E��S�S � �� P �i���t� o�t��

E��S�S�� � �P ��i� � �P �i���t� o�t��

therefore we obtain

wf��fft � �fy � P Dy�f � rfg� � � w��� P �i�� r� �

�
� � P �i�� r�v

���
min

�P ��i� � �P �i����� �

and �nally�
ft � �fy � P Dy�f � rf �

� �� P �i�� r�f �
��� � w�� �

v
���
min

w�P ��i� � �P �i�����
�A � ���

This is the GBSE III� For gaussian p�t� w � ��� � f��fy�� f� � w��� � fy� vmin � 	�
and the RHS in ��� is equal to �� P �i�� r�fy�

Thus� Eq� ��� turns into ���� which is the Black�Scholes equation ���
For other p�t� GBSE�III is a non�linear pseudo�di�erential equation� more compli�

cated than GBSE�I�

�� A Scheme for Solving GBSE�I and GBSE�III

We can write both GBSE�I and GBSE�III in the form

ft � P �i� � r�fy � P Dy�f � rf � � � P �i�� r�&f�� ���

where

&f� � &I f� � �P Dy�f
� � �fP Dy�f���P ��i� � P �i����� � fy�

and

&f� � &IIIf� � f

���� w�� �
v
���
min

w�P ��i� � �P �i�����
�A� fy�

respectively�

��



For gaussian p�t� the RHS in ��� is 	� therefore we may expect that if the process
does not deviate too far from a gaussian one� then one can obtain the �rst approximation
to the solution to a boundary value problem for� Eq� ��� by solving the corresponding
boundary�value problem for the following equation

ft � P �i� � r�fy � P Dy�f � rf � 	� ���

We call it GBSE�IV�
Note that one can derive Eq� ��� by constructing a portfolio which eliminates

#uctuations of order e�S � �� the proof is similar to the one employed in Section ��
Set

P�k� � r � P k�� P �i� � r�ik�

and write Eq� ��� in the form
ft � P�Dy�f�

A function P� enjoys all the properties which we used when we derived formulas for Eu�
ropean call and put options in Sections � and �� Hence� we can write the corresponding
solutions to Eq� ��� by replacing P with P�� The results are�

for an European call option�

F S� t� � �X

��

Z ���i�

���i�

expi lnS�X�z � �P�z��

zz � i�
dz� �
�

where � � �� �� is arbitrary� or equivalently�

F S� t� � S � X

��

Z ���i��

���i��

expi lnS�X�z � �P�z��

zz � i�
dz� ���

where �� � 	� �� is arbitrary�
for an European put option�

F S� t� � �X

��

Z ���i�

���i�

expi lnS�X�z � �P�z��

zz � i�
dz� ���

where � � ��� 	� is arbitrary� or equivalently�

F S� t� � Xe�r	 � X

��

Z ���i��

���i��

expi lnS�X�z � �P�z��

zz � i�
dz� �	�

where �� � 	� �� is arbitrary�
Here are several examples for an European call option�
Table ����
Values of F S� t�� parameters� r � 	��� � � �� � � 	��

� 	��� 	��� 	��� 	�� 	�� 	��
X ��	 �		 �	 ��	 �		 �	
� � ��	 ���� ���� ����	 ���� ����� �
�
�
� � ��� ���� ���
 ����� ���� ���� �����
� � ��� ���
 ���� ����	 ���� ���� �����

�	



We see that the results di�er from the ones for an European call option given by
GBSE�II see Table ����� here GBSE�IV gives higher values of F S� t� for options in the
money� and lower for options at the money and out of the money�

Now we outline a numerical scheme for solving a non�linear GBSE for the case of
an European call option� the case of a put one is similar� Set f�y� t� � F ey� t�� where
F is given by either �
� or ���� and let f be a solution to Eq���� subject to boundary
conditions

f�	� t� � 	� fy� T � � maxey � ex� 	��

Set g � f � f�� Then g is a solution to

gt � P�Dy�g � � � P �i�� r�&f� � g�� ���

subject to boundary conditions

g�	� t� � 	� gy� T � � 	� ���

By applying F � the Fourier transform w�r�t� y� we reduce a problem ���"��� to

!gtk� t� � P�k�!gk� t� � � � P �i�� r�F&f� � g��k� t�� ���

with !g subject to
!gk� T � � 	� ���

After a problem ���"��� is solved� one has to verify the �rst boundary condition in
����� The well�known formula for the Cauchy problem allows us to reduce a problem
���"��� to a family of equations

!gk� t� � � � P �i�� r�
Z t

T
expft� t��P�k�gF&f� � g��k� t��dt��

By making the inverse Fourier transform� we arrive at

gy� t� � � � P �i�� r�F��
Z t

T
expft� t��P�k�gF&f� � g��k� t��dt�� ���

Suppose� that the simple iteration method is applicable to Eq� ���� Then we can
take

gy� t� � �� P �i�� r�F��
Z t

T
expft� t��P�k�gF&f���k� t��dt� ���

as the �rst approximation to the solution of Eq�����
Thus� we suggest f� � g as the second approximation to the solution of either

GBSE�I and GBSE�III� where the �rst approximation� f � is given by �
������� and
a correction term� g� by ����

Finally� recall that for small � � approximately�

exp��P Dy��uy� t� � p	 
 u�y� t� ��
Z ��

��
p	 y � y��uy�� t�dy�� �
�

��



and therefore� the following approximate equalities hold�

P Dy�uy� t� � p	 
 u�y� t�� uy� t����� ���

exp��P�Dy��u�y� t� � exp�r�p	 
 u�y � � r � P �i��� t�� ���

f�y� � � � exp��P�Dy��h�y� � � � exp�r�p	 
 h�y � � r � P �i��� � �� �	�

where hy� � maxey � ex� 	�� and

P �ia� �
�

� �
Z ��

��
p�ty�eaydy

�
��t� ���

By using formulas �
�"���� one can rewrite formulas �
�� ��� and ��� for so�
lutions of GBSE�I in terms of a given function h and an observed distribution p�t�
and discretize them to develop a numerical scheme for computation the RHS�s in these
formulas�

Similarly one can rewrite formulas for solutions of GBSE�III in this case they are
much more involved��

� The Pricing of The American Perpetual Put Option

��� Suppose that GBSE�IV� one of the linear generalizations of the Black�Scholes
equation� hold� and consider the perpetual American put option the case of GBSE�II
can be considered similarly�� Let X be the striking price� S " the level of the stock� and
denote by GS�X� the rational put price� Then

GX�S� � maxfX � S� 	g� GX��	� � 	�

For a su�ciently low level of the stock price� it is advantageous to exercise the put�
De�ne H to be the largest value of the stock such that the put holder is better o�
exercizing than continuing to hold the put� and set

x � lnS� h � lnH� gx� �� gx�X� � GS�X��

Then
gx� � X � ex� � x 
 h� and g�	� � 	� ���

Since gx� is independent of t� it obeys a stationary GBSE�IV�

P�D�� i�D � r�g�x� � 	� x 	 h� ���

where � � r � P �i�� As a proxy for P �i�� in applications one may use Eq� ���� and
it can be reasonable to adjust � since the hedge used in deriving the GBSE�IV is not
perfect and the portfolio constructed is not risk�free�

A discretized version of the GBSE�IV is

gx�� e�r�t
Z ��

��
p�tx � ��t� y�gy�dy � 	� ���

��



The formula for h will be formulated in terms of an observed distribution density p�t�
under fairly weak assumptions on an even� p�t�Z ��

��
p�tx�exdx 
 �	� ���

and there exists C and � 	 	 such that !p � Fp� the Fourier transform of p� and its
derivative satify bounds

!pk� � �� � k � R�

j!pk�j� j!p�k�j � C� � jkj���� � k � R� ���

The second bound is a weak form of a smoothness condition� For instance� for a piece�
wise smooth p it holds with � � ��

To simplify the notation� we normalize �t to unity� and drop a subscript �t� Set
Ak� � �� e�r�i
k !pk�� By the Taylor formula� ei
Dux� � ux� ��� therefore ��� can
be rewritten as

AD�g�x� � 	� � x 
 h� �
�

On the strength of ���� we may look for solutions g � L�R� and rewrite �
� as

AD�g�x� � �x� h�� � x� ���

where � � L�R��� Here and below we identify L�R�� with a subspace of L�R� by
de�ning �x� � 	 � x 	 	� Similarly� L�R�� is regarded as a subspace of L�R��

We will solve ��� subject to ��� by the Wiener�Hopf ����� method� in a bit more
modern version see e�g� Eskin ��
���� It is based on the factorization of Ak��

The following lemma is a variant of standard factorization theorems see e�g� Eskin
��
��� Section ���

Lemma ��� Let ���� and ���� hold�
Then Ak� admits a factorization

Ak� � A�k�A�k� ���

with the A�k� satisfying the following conditions
a� A� �resp� A�� is holomorphic in a half�plane �k 	 	 �resp� �k 
 	�� and admits

a continuous extension into the closed half�plane�
b� there exist c 	 	� C such that

c � jA�k�j � C� � � �k � 	� 
	�

c� A�k��� admits a representation

A�k��� � � � T�k�� 
��

where T� is holomorphic in a half�plane ��k 	 	� and satis�es an estimate

jT�k�j � C� � jkj���� � � ��k � 	� 
��

where �� 	 	 and C are independent of k�

��



Proof� By ���� !pk� � �� hence we have Al� � � � e�r 	 	� for all l � R�
Therefore� lnAl� is well de�ned by a requirement� ln a is real for a 	 	� and we may
set� for � 	 	 and k � R�

b�k � i� � � � i

��

Z ��

��

lnAl�

k � i� � l
dl� 
��

A�k � i� � � expb�k � i� ���

The proof that A� satisfy ��� and a�"c� is a minor variation of the proof in Eskin
��
��� for completeness� we give it in Appendix�

With a factorization ��� at our disposal� we return to ��� and multiply it by
A�D����

A�D�g�x� � A�D�����h � x�� � x�

Since supp� � R�� and A�k� satis�es 
	� in a half�plane �k � 	� suppA�D���� � R�
see e�g� Eskin ��
��� Theorem ����� Hence�

A�D�g�x� � 	� x 	 h� 
��

Set ux� � gx � h� � eh�x �X� For � � 	�

A�D�e�x � e�xe��xA�D�e�x � � � e�xA�D � i�� � � � e�xA��i���

since � � � SR��

hBD� � �� �i � h�� $BD��i � h�� $B !�i � B	� !�	� � B	�h�� !�i � B	�h�� �i�

Hence� we may rewrite 
�� as

A�D�u�x� � ��x�A��i�eh�x �A�	�X�� x 	 	� 
��

where �� is the characteristic function of R�� Note that on the strength of ���� suppu �
R�� and A�k� satis�es 
	� in a half�plane �k � 	� Therefore� the LHS of 
�� is zero
for x 
 	� and hence� 
�� holds for all x� By applying A�D��� to 
��� we obtain

ux� � A�D�����A��i�eh�x �A�	�X�� x 	 	� 
��

Take � 	 � and set u�x� � e��xux�� f �x� � e��xfx�� Next� multiply 
�� by e��x�
and use an equality e��xA�D���e�x � A�D � i����� The result is

u� � A�D � i������f
�� 

�

where f �x� � A��i�eh������x �A�	�Xe��x�
Lemma ��� For x 
 	� ux� h� � 	� and for x 	 	�

ux� h� � dh�� � eh��x� � ��x���

� xdh�A�	�X � eh��x� � ��x�� 
��

��



where functions ��x� � o��� ��x� � o��� ��x� � ox�� ��x� � ox�� as x� �	� are
independent of h� and dh� � A��i�eh �A�	�X�

Proof� The �rst statement is just ���� and 
�� will be proved in Appendix�
Theorem ��� Let ���� and ���� hold�
Then a pricing formula for the American perpetual put option is given by for any

� 	 ��

GX�S� � X � S � A�	�XS������
Z ��

��

eik ln�S�H�

A�k � i��ik � �� ��ik � ��
dk� 
��

where H� the exercise price� is given by

H � eh � XA�	��A��i� � X� � e�r���� expI� � I��� �	�

and

I� �
�

��

Z ��

�
ln�� e�r!pl� cos�l��� � e�r!pl� sin�l����� � l����dl�

I� �
�

�

Z ��

�
arctan

�
!pl� sin�l�

er � !pl� sin�l�

�
l��� � l����dl�

Proof� Direct calculations see Appendix� show that A�	�� A��i� are positive�
Due to 
��� if dh� 
 	� then a condition GX� ex� � X � ex is violated at x � h� and
if dh� 	 	� then GX�S� is not decreasing w�r�t� S� which is also impossible� Hence�
dh� � 	� which is just �	�� the calculations of A�	� and A��i� in Appendix being
taken into account�

Finally� Eq� �	� is equivalent to A��i�eh � A�	�X� therefore 

� can be
rewritten as

ux� � A�	�Xe�x�����
Z ��

��
eikxA�k � i����

Z ��

�

�
e�iky������y � e�iky��y


dydk �

� A�	�Xe�x�����
Z ��

��
eikxA�k � i����

�
�

ik � �� �
� �

ik � �

�
dk �

� A�	�Xe�x�����
Z ��

��

eikx

A�k � i��ik � �� ��ik � ��
dk�

and using equalities gx� � X � ex � ux� h�� x � lnS� h � lnH� we obtain 
���
Note that due to 
���

lim
S�H��

GSX�S� � �� 
 �� � A�	�X � lim
S�H��

GSX�S��

which means that the smooth pasting condition valid in the standard continuous time
Geometric Brownian motion model Merton ��
��� fails in our discrete time model�

In Merton ��
��� the exercise price H� � X��� � ��� where � � ��r��� is the
negative root of the characteristic equation ��k��� � r � �����k � r � 	�

Numerical Examples� The �rst truncated L�evy distributions were constructed by
Mantegna and Stanley ������ Later� Koponen ����� constructed a family of truncated

��



L�evy distributions which admit explicit description in terms of their Fourier transforms�
For the sake of brevity� we consider only symmetric distributions of this family� with !p�
de�ned by

!p�k� � exp��������� k���� � ����� cos� arctank���� ��� � �� �

where � 	 	� � 	 	 and � � 	� � � � �� � are parameters� We have chosen a normalization
so that the variance is independent of � and ��

For � � �� we obtain !p�k� � exp���k���� which means that p� is a gaussian
distribution� As � moves from � down� p� deviates from a gaussian distribution� and
for �xed � � 	� ��� � �� �� in the limit � � �	� p� becomes a L�evy distribution
with !p�k� � exp�c�jkj� cos�������� � ���� Roughly speaking� ����� ���� is an
interval where p� di�ers insigni�cantly from a L�evy distribution� and for jxj 		 ����
the distribution exhibits an exponential fall�o��

Here are some numerical examples�� In tables below� we �x r� �� � and see how the
threshold H varies with �� H�� the threshold in Merton ��
��� is independent of � and
��

Table �� Parameters X � �� r � 	�			�� � � 	�		�� � � ���� H� � 	����

� ��	 ��� ��� ��� ��� 	�� 	�� 	�� 	��
H 	���
 	���� 	���� 	���� 	���� 	���� 	���� 	���� 	��
	

Table �� Parameters X � �� r � 	�		�� � � 	�	�� � � ���� H� � 	����

� ��	 ��� ��� ��� ��� 	�� 	�� 	�� 	��
H 	���� 	���
 	���� 	���	 	���� 	���� 	���� 	���� 	����

In these two examples� it is clearly seen that the threshold increases as � goes from
� down� i�e� as a process deviates from a gaussian one of the same variance�

Probably� this is a result of a smooth truncation� For instance� for a mixture with

bp� x� � � exp���k���� � � � �� sin�
p

����
p

��� � � �	� � �

the threshold decreases though weakly� as � goes from � down�
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Appendix

A�� Some basic facts of the theory of the Sobolev spaces and the theory
of pseudo�di�erential operators �see e�g� Eskin �����

By SR� one denotes the space of in�nitely di�erentiable functions decaying at
in�nity faster than any power of x� together with all derivatives� and by S �R� " its dual
space�

Let s � R� The Sobolev space HsR� consists of u � S �R� with the �nite norm

k u ks�
�Z ��

��
� � k��sj!uk�j�dk

����
�

The closure of C�
� R�� in HsR� is denoted by

o

Hs R��� The spaces HsR� and
o

Hs R��

are Hilbert spaces� and H�R� � L�R��
o

H� R�� � L�R���
For an integer m � 	 and s 	 m����� HsR� � CmR�� by the Sobolev embedding

theorem�
The Dirac delta�function a linear functional de�ned by �f� � f	�� belongs to

o

Hs R��� for any s 
 �����
If the symbol of a PDO AD� is measurable and admits a bound

jAk�j � C� � jkj��m��� � k� ���

then AD� is said to be of order m� A PDO of order m is a bounded operator from
HsR� to Hs�mR�� If Ak� admits a holomorphic extension into a half�plane ��k 	 	
and satis�es a bound ��� in the closed half�plane� then AD� is a bounded operator

from
o

Hs R�� to
o

H l R��� where l � s�m�

A�� Proof of Lemma ��� As l � �	� lnAl� � O!pl��� and on the strength
of ���� there exist C�� 	 	 such that

j lnAl�j � C� � jlj���� � l � R� ���

Fix �� 	 	� and consider b�k� in a half�plane ��k � ��� Set J� � fl j jk � lj � jkj��g�
J� � fl j jk � lj � jkj��g� On J�� jkj � �jl� kj and jlj � jk � lj� jkj � �jl � kj� hence

� � jk � lj���� � jlj��� � �� � jkj������ � jlj�������� � jlj���� ���

and since � � jlj������� � L�R�� we deduce from ���"��� an estimate�����
Z
J�

lnAl�

k � l
dl

����� � C	�� � jkj������ ���

where a constant C	� is independent of k and � � ��� On J�� jlj � jkj � jk� lj � jkj�� �
jk � lj� and hence�

� � jk � lj���� � jlj��� � C� � jk � lj���� � jk � lj������ � jkj������

��



Therefore� �����
Z
J�

lnAl�

k � l
dl

����� �
� C�	�� � jkj�����

Z ��

��
� � jk � lj�������dl � C�	�� � jkj������

Thus� ��� holds with R instead of J�� Similar estimates hold for derivatives w�r�t� k�
and in a region ��k � ��� parts b�� c� and the �rst part of a� have been proved�

To show that A�k� admits a continuous extension up to the boundary of a half�
plane ��k 	 	� �x k � R and write� for � 	 	�

b�k � i� � � b��k � i� � � b��k � i� ��

where

b��k � i� � � � i

��

Z
jk�lj�

lnAl�

k � i� � l
dl�

b��k � i� � � � i

��

Z
jk�lj��

lnAl�

k � i� � l
dl�

The denominator of the integrand of b�� being bounded away from zero� uniformly in
k � R and � � 	� the proof for ��k � �� above shows that b��k� is continuous in a
closed half�plane ��k � 	 and satis�es all the necessary estimates there�

Consider b��k�� On the strength of ���� there exists C 	 	 such that all for all
k � R and c � k � �� k � ���

j lnAc�j� jA�c��Ac�j � C� � jkj����
Hence� using the Lagrange formula

lnAl� � lnAk� �
A�c�

Ac�
l � k��

where c � k� l� or c � l� k��� and noticing that

� i

��

Z
jk�lj��

dl

k � i� � l
� � i

��

Z
jlj��

dl

i� � l
�

� � i

��

Z
jlj��

�i� � l

l� � � �
dl �

�

��

Z
jlj��

�dl

l� � � �
� ����

as � � �	� we obtain that b��k� is continuous up to the boundary of a half�plane
��k � 	� and admits an estimate

jb��k � i� �j � C� � j� j� jkj������
This �nishes the proof of Lemma ����

A�� Proof of Eq� ����� Since � 	 �� we have f � � SR��� Therefore� we may
apply a formula ����� in Eskin ��
�� and obtain

��f
� �

mX
s	�

� � iD��s� � � � iD�s��f ��	� � � � iD��m��� � iD�mf �� ���

��



Here m is a positive integer� � is the Dirac delta�function� and

� � iD��s��x� � �����
Z ��

��
eixk� � ik��sdk�

By using ��� and 
��"
��� we can rewrite 

� as

u � e�x� � T�D � i����� � iD���� � f �	��

�� � iD���� � � � iD�f ��	� � � � iD������ � iD��f � �

By introducing the notation

�s � � � iD��s�� w�
� � T�D � i��� � iD�����

w�
� � A�D � i����� � iD�����

w�
� � A�D � i����� � iD���A��i���� � iD��e�����x��

w�

 � �A�D � i����� � iD���A�	�X��� � iD��e��x��

we can write
u � e�xf�� � w�

��f
�	� � �� � f �	� � f ���	��� ���

�w�
� � f �	� � f ���	�� � ehw�

� � w�

g�

Consider terms in ����

�� We know that � �
o

H l R�� for any l 
 ����� and since f � � SR��� Theorem
��� in Eskin ��
�� gives ��f

�� ��� � iD��f � � HsR�� for any s � 	� ����� But
T�D � i��� � iD��� and A�D � i��� � iD��� are PDO of order �� � � and ���
respectively� and hence� w�

� � H l����R� � H�������R� � CR�� w�
� � H l��R� �

C�R�� Similarly� w�
�� w

�

 � C�R�� The symbols of A�D � i���� and T�D � i�� being

holomorphic in a half�plane �k 
 	� we have suppw�
j � R�� j � �� � � � � �� Hence�

w�
�	� � 	� and w�

j	� � w�
j�
�	� � 	� j � �� �� ��

�� Consider �s� s � �� �� By the residue theorem� for x 
 	 and � 	 	�

�sx� � �����
Z ��

��
eixk� � ik��sdk � �����

Z ���i	

���i	
eixk� � ik��sdk � 	�

as � � �	� and hence� �sx� � 	� Further�Z �

�
e�ixkexdx � � � ik����

therefore ��x� � e�x for x 	 	�
By di�erentiating �� at x 	 	� we �nd

���x� � �����
Z ��

��
eixk

ik

� � ik��
dk � ��x�� ��x��

The general solution to an equation ��� � e�x � �� is ��x� � xe�x �Ce�x� but �� �
o

H
l

R��� � l 
 ���� is of the class C�R�� and hence� equal to 	 at x � 	� Thus� we obtain
��x� � xe�x� � x 	 	�

�	



�� Now we calculate coe�cients in ����

f �	� � dh� � A��i�eh �A�	�X�

f ���	� � � � ��A��i�eh � �A�	�X � �� ��dh� � A�	�X�

�� As x� �	�

e�x��x�dh� � � � �� ��x�dh� � ox��

e�x��x� � x� ox��

e�x��x� � x�dh� � � � ��dh� � A�	�X �

� dh� � xdh���� �� � � � � � �� � xA�	�X � ox� �

� dh� � xdh� � xA�	�X � ox��

�� By gathering �� " �� and ���� we obtain 
���
A�� Calculation of A��i� and A�	�� By noticing that !p is even and �!p is

odd� and using 
��� we obtain

b��i� � � i

��

Z ��

��

ln� � e�r�i
l!pl��

�i� l
dl �

� � i

��

Z ��

��

i� l

l� � �
ln
�
� � e�r!pl� cos�l��� � e�r!pl� sin�l�������


dl�

� i

��

Z ��

��

i� l

l� � �

�
�i arctan

e�r!pl� sin�l�

�� e�r!pl� cos�l�

�
dl �

�
�

��

Z �

�

ln�� e�r!pl� cos�l��� � e�r!pl� sin�l����

l� � �
dl�

� �

�

Z �

�

l

l� � �
arctan

e�r!pl� sin�l�

� � e�r!pl� cos�l�
dl�

and

b�	� � �i �

��
lim
	���

Z ��

��

ln� � e�r�
l!pl��

�i� � l
dl �

� �i �

��
lim
	���

Z ��

��

i� � l� ln� � e�r�
l!pl��

� � � l�
dl �

�
�

��
ln�� e�r�

Z �

�

dl

l� � �
� �

�

Z �

�
l�� arctan

!pl� sin�l�

er � !pl� cos�l�
dl �

�
�

�
ln�� e�r�� �

�

Z �

�
l�� arctan

!pl� sin�l�

er � !pl� cos�l�
dl�

Since A� � exp b��

A�	�

A��i� � expf�

�
ln� � e�r�� I� � I�g�

where I�� I� are the same as in 
���

��
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