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Abstract. In this paper we study a class of non-linear singular partial differential
equation in complex domain €; x €C}. Under certain assumptions, we prove the existence
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§1 Introduction and Main Result.

Let (¢,z) € € x €7, we consider the following non-linear singular partial differ-

ential equation
towu = F(t, o, u,Vzu), (t,x) € C; x CL. (1)

where u = wu(t,z) is an unknown function, 7y = (0z,,---,04,), F(t,z,u,v) is a
function with respect to the variables (¢,z,u,v) € C; x C? x €, x C.

For the function F(t,z,u,v), we suppose

(H1) F(t,z,u,v) is a holomorphic function in a neighborhood of the origin (0, 0,0,0) €
C,xClxC, xCL.
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(H2) F(0,2,0,0) =0 near z = 0.

Thus we can expand F'(t,x,u,v) as the following form:

F(t,z,u,v) = a(z)t + b(z)u + Z bj(z)vj + Z ap gy (@) PV, (1)
pt+q+|v[>2
where a(z) = 9,F(0,,0,0), b(z) = 9,F(0,2,0,0), bj(z) = 0, F(0,,0,0).

If for 1 < j < n, bj(x) = 0 near x = 0, the linearlized equation of (1) is “Fuchsian
type (cf. [1, 2]”, so the equation (1) is called non-linear Fuchsian type PDE (or is
called “Briot-Bouquet type equation” in [4, 5]); this situation has been discussed
by [4-7]. If b;(0) # O for some j, then we can use the implicit function theorem to
solve v; from the equation (1), then, by using Cauchy-Kowalewski theorem, we can
easily deduce that (1) has a unique holomorphic solution wu(¢,z) with u(0,z) = 0

and u(t,0) = 0 near (0,0) € €C; x €. So in this paper, we shall consider the case
of bj(x) # 0 and b;(0) = 0, i.e. the indicial operator of ( ) + Z bj(z)0y; is a

singular PDO. In this situation the equation (1) has been called totally characteristic
type PDE by Chen-Tahara [8].

In this paper, we shall discuss the case, i.e. the indicial operator of (1) has regular
singularity at x = 0, we suppose

(H3) For 1 < j < n, bj(z) = zjcj(x), and ¢;j(z) is a holomorphic function near
z =0.

The situation of b;(z) = ac]c]( z) for p > 2 will be studied in the forthcoming
paper.

Actually, if we denote C(t,x,0;,Vz) = t0; — b(x Z zjcj(z)0y;, the equation

(1) can be rewritten as

C(ta z, 8157 VQ?)U’ = a(x)t + Z Op,q,y (x)tpuq(VIu)7 (2)
p+a+(v[>2

And the indicial polynomial of C(¢t, z, 0, /) is defined as (cf. [1-3])

L0, \) = [z770C(t, 2,0, V)t 2| (12)=(0,0)
= 0-5(0) =D ¢;(0)A
j=1

where 0 € €, and A = (A, Ag, -, Ay €7, 2 = 222 - ),

n

Furthermore, we suppose



(H4) There exists a o > 0, such that for any (k,a) € N x Z"}, we have
Lk, )| = o(1 + |af).
We have the following result:

Theorem 1. Under the conditions (H1), (H2), (H3) and (H4), the equation
(1) has a unique holomorphic solution u(t,z) near (0,0) € C; x C? with u(0,z) =0

near r = 0.

Remark 1. Chen-Tahara [8] has studied a special case for non-totally char-
acteristic PDE with one space variable z € €'. Observe the situation with several
space variables will be a non-trivial extension. Indeed we can not use the mathod in
[8] directly, we use here the new idea to prove the result of Theorem 1. The result
in the paper is new even in the case of space dimension n = 1. Actually the result

in [8] can be easily deduced by Theorem 1 here.

§2 Proof of Main Result.

First we take a formal series
o0
u(t,z) = Z ug (z)tF. (3)
k=1

And then introducing (3) into the equation (2) and comparing the coefficients of ¢

in both sides of the equation, we have, for k =1,

1 —b(z) — Zn: ci(x) xji u; = a(z) (4)
( )

i=1

and for k > 2,

(1) - jécﬂw) (x]a%))uk

- Z ap,q,v(x) Z Umy X+ X Uy, X 8x1un(1) X v (5)
1
2<pt+a+|vI<k (cn)
x@wlun%) X oo X 8$"un§") X oo X 3$nun%)

where (C'1) denotes a subset of N x N4 x NIl in which p +my +--- +my —I—ngl) +
..._|_ng11)+...+ngn)+...+n%2):]g‘



We shall solve (4) and (5) formally in formal power series ring C[[z]] (cf. [7]) to
get the formal solution of (1). Thus we expand a(x), b(z), ¢;j(z) and ap ¢ (x) into

Taylor series in x :

a(z) = Z agx®, b(z) = Z bz,

aEZi an1
cj(z) = Z CjaZ®,  apgy(T) = Z aé‘f‘q)nxa.
aEZi ani

Also, expand unknown functions ug(z) (k > 1) as a formal power series in z :

ug(z) = Z Uk, o

Qa€Zl
Then the equation (4) is equivalent to

(180 = 2 650 Jure = aa+ 3 b+ 30 X Bicsamsuns
j=1

f<a =1 B<a (4)
for any o € 27,

where we know that only u; 3 (8 < «) appear in the right hand side of (4’). Since
n

<1 —b(0) — Zajcj(0)> # 0 (see (H4)), we can get ui(z) € C[[z]] from (4'), which
j=1

is a unique formal solution of (4).

Moreover the equation (5) becomes (for & > 2) :
(1= 00) = Y a5e0) o
7j=1
n
= D bapurst+ Y D Bicja suks

f<a Jj=1p<a "
1
+ Z al(fq)a’)‘ Z Umy by X000 X Umg kq x ((ml,l + l)ungl),mgl)—l—m)
2<p+q+|yI<k (C2)
Bla
X---X((m(l) +1)u 1 1 )X---X((m(n)—i—l)u )
7171 ngyl)ym((x1)+el l,n ngn)’mgn)+en

(n)
XX ((magn + Do oo, )

for any o € Z7,
where (C2) denotes a subset of N x N7 x NN x ZTHHM), in which
prmit-Ame+nt 440l M pnl) =k,
Btk kg +m 4 rm® o em e =,

and e; = (0,---,0,1,0,---,0) € Z} is j-th unit vector, and m;’ = (mgyl,---,m-



From the condition in Theorem 1, we know (k —b(0) — Z ajCj(0)> # 0 (for any
j=1

(k,a) e N xZ"%) and only {u; ;1 <i<k—1, B€Z"} and {uyg, B < a} appear
in the right hand side of (5'). So we can also solve (5') inductively and get a unique
formal solutions ug(z) € C[[z]] (for k > 2). Observe u(t,z) = Z(k,a)eNxZi g o tF T
is a formal series solution of (1). It remains to prove the convergence of u(t,z) near
0,0).

Lemma 1. The condition (H4) is equivalent to the following condition:
(H4') There exists a constant o', such that for any k € N and o € Z7, we have

n
k — b(0) — ch(O)aj >o'(k+14|al).
j=1
Proof: Observe the condition (H4') implies the condition (H4). We only need to
prove that (H4) implies (H4').

n
We set M =1+ |Reb(0)| + Z |Rec;(0)], then if & > 2M (|a| + 1), we have
j=1

" E_1
0 ~ YO 2 b 1+ e
if k <2M(|a| + 1), we have
n
E=50) = Y60y = olL+]a)

j=1
> 2 (3M +3M]|al)
> (2M(1L+al) + 1+ a)
> 37k +1+|af).

Set o/ = min{1, 557}, then we have
n
k —b(0) — ch(O)aj >o'(k+14|al).
j=1
Lemma 1 is proved.

From Lemma 1, we can define U ,, (for a € Z7}) as follows:

1
U1,0 = g|a0|a
for a > 0, € Z7,

1 n
o= |lta Doy e 7
Ul, 0_1(2 T |a|) <|a | + Z | « /8|U1,/8 + Z Z /8]|C],Oé ﬂ|U1,,8>

[B<a j=18<a



where the constant ¢’ > 0 appeared in the condition (H4').

Similarly, for k > 2, we define Uy, o (for « € Z7) by following recursive formula:

U = — b U U
b (k+1+| |(Z|aﬁ| kﬁ+2125ylcga 51Uk,
Jj=1p<a
+ Z |ap,q,7| Z Unny oy X o0 X Unng oy X000 X
2Sp+e(143\7\5k (C2) @
1
(Omia D00 ) XX mia F DUy X )
() + DUy o0 %X (000 + D00 )
1 ( - @)
= (D ba—slUks + D D Bileja—5Uks + gk_1>
o'(k+1+|al) o =i
for any o € Z7,
Then comparing with (4’) and (5), we can easily deduce
Lemma 2. Let uy  and Uy, be defined as above, then we have
(1) For any (k,a) € N x Z"!, we have
|uha|§;Uk@-
(2) Set
Ul(t,z) = Z Ukyatha. (6)

(k,a)ENXZY

Then U = U(t, z) is the unique formal solution of the following equation:

o'ty U = A(x)t+ [0 + B(z U+Z [—0" + Cj(2)]x;00,U

=1 (7)
+ Z Ap gy (@)tPUL(0,U)7,
pta+|v[>2
where
= Y laalz®,  B(z) =) |bala®,
ani a>0
(z) = Z |¢jalz®, Apgn(z Z |ap,q,7|$
a>0 aEZ”

So it would be enough if we can prove the convergence of U(t, ). Let us rewrite



Ul(t,z) as U(t,x) = Z Ui ()t* and from the equation (7), we have
keN

{a' + o' — B(z) —|—j§n:1 <a' -G (x))xj&l;j: Ui(z) = Az),

ko' o = Ba) + 3 (o = Ci(a) a0, | Uhle) = gua (),

where we also denote go(z) = A(z), and for £ > 2, gx_1(x) = Z g,(coi)lxo‘ is a
aEZi
holomorphic function near z = 0. Actually, from following lemmas, we can prove

the formal series solution U (¢, z), as mentioned in Lemma 2, is convergent near (0,0).

Lemma 3 For any k > 1, the formal solution Uy (z) is a holomorphic function
near x = 0, and there exist constant C' > 0 and R > 0 small enough, such that for
any k € N,

C
1Ukllr < —llgk-1ll&,

where | f||r = maX|y|<R,1<j<n |f (z)].
Proof: From the definition of Uy o, we have

: 3 ()
Uba = —< |ba—p|Uk,5 + |¢ja—p|BiUrks + g )
= GEtit]al) ;:a a=51Uk,p ;ﬂ% ja-61BiUks + 947
1 n 1
= E( > lbaslUks+ D2 D IcjaplUks + Eg,(ﬂ)
Ao J=18<a
which implies,
1

where g(z) < f(z) means f(x) is a majorant series of g(z) near z = 0, i.e. [0%¢g(0)| <
1 n
B f(0); G(z) = — (B(ac) +Z Cj($)>. Since G(0) = 0 and gx_1(x) is a holomorphic
o ;
j=1

function near z = 0, then from (9) we can deduce that Ui(z) is a holomorphic
function near z = 0, and there exist R > 0 and C' > 0, such that

C
1Uk(@)[r < —llgk—1(2)l[r, for any k € N.

The proof of Lemma 3 is completed.



Lemma 4 Let R > 0 and f(z) be a holomorphic function on D} = {z €
C"| |zj| < R,1<j<n}. Foranyr,0<r <R, if f(x) satisfies

c
[ —
gelaD)glf( z)| < "=
for some ¢ > 0 and a > 0, then we have
1
grel%x gg{] x)‘ < %, for any j (1 <j<n)andr e (0,R). (10)

Proof: See [9, Lemma 5.1.3].
Now let us prove the convergence of the formal seires solution U (¢, z). Let 0 <
R < 1 small enough, such that
(i) Ap g (x) is holomorphic on D%;
(i) [Ap,gy(7)| < Ap gy on Di;
(iii) Z A, g tPulv” is a convergent power series in (t,u,v).
p+a+(v[>2
We choose A > 0, such that on D%,
|Ur(z)] < A and [0y, Ur(7)] <ed, 1<j<n.

Now we introduce a function Y (t), satisfying the following equation:

_ ¢ Apyq{‘/ PV q [
V=At+— > E ety (ev), (11)
pHq+1y[>2

where 7 is a parameter with 0 < r < R, C' > 0 is the constant appeared in Lemma,
3.

Since the equation (11) is an analytic functional equation in Y, by the implicit
function theorem we can easily prove that the equation (11) has a unique holomor-
phic solution Y (¢) in a neighborhood of ¢ = 0 with Y (0) = 0.

Expanding Y (¢) into Taylor series in ¢,

o
=Y Vit (12)
k=1

From the equation (11), we know that the coefficients of (12) can be given by

Y1 =A,
and for k > 2,
Y, = B Z Z Apay Y, X--xY, X
— _ 2 1 q
" ptathl>2(03) el (13)
(eynl) e (BYTZM)

8



where (C3) means my + - +mg+n1 +---+n, =k —p.

Moreover we can deduce that Y, is of the form

Ck

Vi = (R—r)k-1’

for k=12, (14)

where C7 = A, and the constant Cy > 0, for k£ > 2, can be decided inductively from
the equation (13), which is independent of . Actually from (13), it is easy to check
that the order ofﬁ isk—1,ie. 1+ (p+qg+|y|—-2)+ (1 —1)+ -+ (ng—1)+
(m1—1)+ -+ (my, — 1) =k — 1, so the formula (14) holds.

Next, we prove that the series )~ Y;,tF is a majorant series for the formal series
solution ;>4 Uy (z)t* near z = 0. In fact, we can prove, by induction, that for any
k>1and 0 <r < R, we have

Uk ()| < |kUk(z)| < Yk, on DF; (15)
%(x) <eYy (1<j<n) onDp. (16)
Ly

Actually, since Y7 = A, the estimates (15) and (16) hold for £ = 1. We suppose
that k£ > 2, and for any 1 <17 < k, (15) and (16) hold for 4. Since g,(goi)l is decided by
(6), g—1(z) = >, g,(goi)lxa then from Lemma 3 and (6), we have by induction that

C
|Up(z)| < - S > Ay X Upy x -+ X Upy, ¥ BxlUngl) X oo
pta+v1>2(C1)
><8$1U 1 X=X 8InU (n) X =+ X (%LU (n)
" n Tyn

C
< = Z ZAp,qﬁmelx---meqx
pta+|v[>2(C3)

(€Yn,) X -+ x - x (eYyp )

Since 0 < r < R < 1, thus (R — r)PT¢t171=2 < 1 then we have

¢ paq{V
Ur(2)l = +;>2§ Ry aihs X Yy, X
prqgT|y

XY, X (€Yn,) X -oo X --- X (eYy ).
k]

From the formula (13) and (14), we have

— 1
R TYk:%-

Uk(@)l < — PR

Thus

06(0)] < UL 0)] S T < it =

9



the estimate (15) holds for k.

Next, by using Lemma 4, we have

‘%({E)‘ k—1 eC},
O -k (R —r)k-1

S €Yk,

this implies the estimate (16) holds for k. Therefore we have proved that 37, 2
is the majorant series of the formal series solution U (¢, z) near = 0, which implies,
by Lemma 2, that the formal series solution (3) is convergent near (0,0) € C; x CZ,

Theorem 1 is proved.

§3 Case of Higher Order Singular PDE

In this section, we shall extend the result of Theorem 1 to the case of higher order

singular partial differential equation:
(60,)™u = F(t,x, {(tat)fagu}(jya)ef) (t,z) € T, x ", (17)

where F = {(j, ) |j + |a] <m, j <m}.
Now we denote (t9;)’9%u by notation Zj 4, i.e.

(t00) 0w > Zja, and {(t0) 070} jayer ¢ Z = {Zja}(ja)er

For the function F(t,z,Z), we suppose

(A1) F(t,z,Z) is a holomorphic function in a neighborhood of origin (0,0,0) €
C; x C" x CV, where N = #F;

(A2) F(0,z,0) =0, near z = 0;

(A3) 97, ———(0,2,0) = 2%bj o (), and b; o (x) is a holomorphic function near z = 0;
Jrex
Thus we can rewrite F'(t,z,Z) as
F(t,z,Z)=a(@)t+ Y 1°bja(@)Zja+ . apst’Z7,
(sa)eF p+|y|>2

where a(z) = %—?(0,3:,0).

Actually, if we denote

Oty 2, {(t0) 05 Y japer) = (t0)™ — Y 2%bjale)(t0r) 05,

(Ja)eF

the equation (17) can be rewriten as

C(t, 2, {(t0) 02} joyer)u = ala)t + D apr ()P ({(t0;) 03U} (ja)eF)”-
p+|][>2

10



And the indicial polynomial of C(¢, z, {(tat)j8§‘}( yer) is defined as

Jra
LO,X) = [z770C(t, 2, {(t0:)7 05} (j,0)er) 2| (t.2)=(0,0)
. n ap
= m— > bj,a(0)97H<H()\l—al+m)>
()eF I=1 “m=1

where (6,\) € €y x C¥.
Furthermore, we suppose
(A4) There exist a constant o > 0, such that for any (k,3) € N x Z}, we have

|L(K, B)| = o (1 +|B]™).

Similar to Lemma 1, we have

Lemma 5. The condition (A4) is equivalent to the following condition:
(A4') There exist a constant o’ > 0, such that for any k € N, € Z'}, we have

Cal o, 2 )

_ !
(f—a) (j,0) EF,a<B

E™ = Y bia(0)K

(J,a)eF,a<p

Proof: Here, we only prove (A4) implies (A4').
We set M =1+ Z (1 + |Reb; o (0)]), then we have

(j,x)eF
(a). for k > 2M(|5] + 1), we have
Rl km
Em— > bia(0)K o> =
()EF asp (6= o)t 12
> Z(km+Mkk_1|ﬁ|)
1 B
> — (k™ J ;
> 30 ¥ PEta)

(J,0)EF,a<p

(b). for k < 2M(|B| + 1), N = #F, we have

D D T (1)1 p

(j,0)€Fa<p (=)
o(1+[BI™)
s N (AM)™ (14 6™) + 2M)™ (2™ + (216))™)
s N (@M)™ (14 |61™) + 2M)™ (1 + |8)™)
vy (2N (4M)™ (1 + |ﬁ|"f) +§!m)
e (Y Pgta)

(J,)eF,a<lp

vV IV IV IV

Y

11



So we take o/ = min{Z, m}, then

D S

(j,0)EF,a<B (5 — o)t

. !
> o' </€m + Z K’ L,)
Gayerass B
Lemma 5 is proved.

The following is main result in this section.

Theorem 2. Under the conditions (Al), (A2), (A3) and (A4), the equation
(17) has a unique holomorphic solution u(t,x) near (0,0) € C;x C? withu(0,z) =0
near x = 0.

The proof of Theorem 2 is similar to the proof of Theorem 1. First we can expand

a(z), bja(x), ap,(r) into Taylor series, i.e.

a(z) = Z aﬂxﬂ, bjalz) = Z bg?ozxﬂ,
pezn peZr

ap~(z) = Z al(%%xﬂ.

Then, as similar to (4') and (5’), we can obtain the unique formal solution (of

equation (17)) u(t,z) = Z uk,gthﬂ. And next we can construct a formal
keN,fezn
series U(t,z) = Z Uk st¥ 2", which is a majorant series of u(t,z) near (0,0)
keN,BEZ

and satisfies the following equation:

o' (to)"U = A(x)t+ >
(j,x)eF

(=o' + Bj o)) (tat)jagU} +

i Vi (]‘8)
S A@r ] ((tat)ﬂagU> ,
pH|>2 (o) EF
where
Alz) = Y lagle®,  Bjala) =S WP, Apy(z) = 3 lalf)]a”.
peZ” B>0 peZr

Thus we only need to prove the convergence of U(¢,z) near (0,0). If we rewrite

Ul(t,xz) as U(t,x) = Z Uy (z)t*, and introduce this formal solution into (18), we
keN

12



have

L*Jr S (0~ Bia@)a®%|Uh(x) = A),
() eF )
. ‘ (19)
|:Ikm+ Z z))x®0y |Uk(z) = gr—1(x),
(J,0)€F i

where for k > 2, gy _1(2) = gi—1 (U1, -+, Up—1, {(t0)T 02U} (jayer ) = D g,(f_)lxﬂ,
1I<I<k-1 gezn

and go(z) = A(z).
From (19), We can solve Ug(z) uniquely, which is holomorphic near z = 0. In

fact, we have

Lemma 6 For any k > 1, the formal solution U(:Jc) is a holomorphic function
near x = 0, and meanwhile there exist constants C' > 0 and R > 0 small enough,

such that for any k € N,
C
1Ukllr < 2 llge—1llR,

Proof: From equation (18), we deduce

1
Ukﬁ = X

TCRgI

(J,)eF,a<p

_ ool
> |b§',ﬁo¢ “)WMUM + gz(f)1>

() €F,alp<p

1 1
< (0% W el
(@) eF,u<p
which implies,
1
Uk(z) < G(2)Ug(z) + ngfl(x)a
where go(z) = A(z), G < Z Bj o > and G(0) = 0. Thus we can solve

(j,)EF
Uy (z), which is a holomorphic function near z = 0, and satisfies

C
Uk @)z < 25 Igk-1(2) [, for any k € N. (20)

Lemma 6 is proved.

13



Now let us prove the convergence of formal solution of the equation (18). We let
0 < R < 1 small enough, such that

(i) Ap () is holomorphic on D;

(i) |Apq(z)| < Ay, on D;

(iii) Z A, P Z7 is a convergent power series in (¢, Z).

pt|v[>2
Then we choose A > 0, such that on D%,

(8, 0%U; (z)| < (me)™A, for any (j,a) € F.

Next we introduce a function Y'(¢), satisfying the following equation:

AP;'Y
(R — rym+h—2)

Y=At+ —— Y

t*(BY)", 21
(B=r)™ e o) )

where r is a parameter with 0 < r < R,C > 0 is the constant appeared in the
estimate (20), and B = (me)™.

Similar to the proof in section 2, we know that the equation (21) has a unique
holomorphic solution Y (¢) in a neighborhood of ¢ = 0 with Y (0) = 0.

Expanding Y (t) as a Taylor series in ¢,

Y(t) = i Yit*, (22)
k=1

then by the same argument as in the proof of Theorem 1, we can obtain, for any
k>1,

k02U (z)| < (me)l®lyy < BY; on D%, for any (j,a) € F.

This implies that Y (t) = Y+, Yxt* is a majorant series of the formal solution
U(t,z) = Yp>1 Up(x)t* near 2 = 0. Theorem 2 is prove.
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