# On the Holomorphic Solution of Non-linear Totally Characteristic Equations with Several Space Variables ${ }^{1}$ 

Chen Hua<br>School of Mathematics, Wuhan University<br>Hubei, 430072, P. R. China<br>Luo Zhuangchu<br>School of Mathematics, Wuhan University<br>Hubei, 430072, P. R. China


#### Abstract

In this paper we study a class of non-linear singular partial differential equation in complex domain $\mathbb{C}_{t} \times \mathbb{C}_{x}^{n}$. Under certain assumptions, we prove the existence and uniqueness of holomorphic solution near origin of $\mathbb{C}_{t} \times \mathbb{C}_{x}^{n}$.


Key Words and Phrases. Non-linear, singular partial differential equation, holomorphic solution.

Classification. Primary 35A07; Secondary 35A10, 35A20

## §1 Introduction and Main Result.

Let $(t, x) \in \mathbb{C}_{t} \times \mathbb{C}_{x}^{n}$, we consider the following non-linear singular partial differential equation

$$
\begin{equation*}
t \partial_{t} u=F\left(t, x, u, \nabla_{x} u\right), \quad(t, x) \in \mathbb{C}_{t} \times \mathbb{C}_{x}^{n} \tag{1}
\end{equation*}
$$

where $u=u(t, x)$ is an unknown function, $\nabla_{x}=\left(\partial_{x_{1}}, \cdots, \partial_{x_{n}}\right), F(t, x, u, v)$ is a function with respect to the variables $(t, x, u, v) \in \mathbb{C}_{t} \times \mathbb{C}_{x}^{n} \times \mathbb{C}_{u} \times \mathbb{C}_{v}^{n}$.

For the function $F(t, x, u, v)$, we suppose
(H1) $F(t, x, u, v)$ is a holomorphic function in a neighborhood of the origin $(0,0,0,0) \in$ $\mathbb{C}_{t} \times \mathbb{C}_{x}^{n} \times \mathbb{C}_{u} \times \mathbb{C}_{v}^{n}$.

[^0](H2) $F(0, x, 0,0) \equiv 0$ near $x=0$.
Thus we can expand $F(t, x, u, v)$ as the following form:
$$
F(t, x, u, v)=a(x) t+b(x) u+\sum_{j=1}^{n} b_{j}(x) v_{j}+\sum_{p+q+|\gamma| \geq 2} a_{p, q, \gamma}(x) t^{p} u^{q} v^{\gamma}
$$
where $a(x)=\partial_{t} F(0, x, 0,0), b(x)=\partial_{u} F(0, x, 0,0), b_{j}(x)=\partial_{v_{j}} F(0, x, 0,0)$.
If for $1 \leq j \leq n, b_{j}(x) \equiv 0$ near $x=0$, the linearlized equation of (1) is "Fuchsian type (cf. [1, 2]", so the equation (1) is called non-linear Fuchsian type PDE (or is called "Briot-Bouquet type equation" in [4, 5]); this situation has been discussed by [4-7]. If $b_{j}(0) \neq 0$ for some $j$, then we can use the implicit function theorem to solve $v_{j}$ from the equation (1), then, by using Cauchy-Kowalewski theorem, we can easily deduce that (1) has a unique holomorphic solution $u(t, x)$ with $u(0, x) \equiv 0$ and $u(t, 0) \equiv 0$ near $(0,0) \in \mathbb{C}_{t} \times \mathbb{C}_{x}^{n}$. So in this paper, we shall consider the case of $b_{j}(x) \not \equiv 0$ and $b_{j}(0)=0$, i.e. the indicial operator of $(1) b(x)+\sum_{j=1}^{n} b_{j}(x) \partial_{x_{j}}$ is a singular PDO. In this situation the equation (1) has been called totally characteristic type PDE by Chen-Tahara [8].

In this paper, we shall discuss the case, i.e. the indicial operator of (1) has regular singularity at $x=0$, we suppose
(H3) For $1 \leq j \leq n, b_{j}(x)=x_{j} c_{j}(x)$, and $c_{j}(x)$ is a holomorphic function near $x=0$.

The situation of $b_{j}(x)=x_{j}^{p} c_{j}(x)$ for $p \geq 2$ will be studied in the forthcoming paper.

Actually, if we denote $C\left(t, x, \partial_{t}, \nabla x\right)=t \partial_{t}-b(x)-\sum_{j=1}^{n} x_{j} c_{j}(x) \partial_{x_{j}}$, the equation (1) can be rewritten as

$$
\begin{equation*}
C\left(t, x, \partial_{t}, \nabla_{x}\right) u=a(x) t+\sum_{p+q+|\gamma| \geq 2} a_{p, q, \gamma}(x) t^{p} u^{q}\left(\nabla_{x} u\right)^{\gamma} \tag{2}
\end{equation*}
$$

And the indicial polynomial of $C\left(t, x, \partial_{t}, \nabla_{x}\right)$ is defined as (cf. [1-3])

$$
\begin{aligned}
L(\theta, \lambda) & =\left.\left[x^{-\lambda} t^{-\theta} C\left(t, x, \partial_{t}, \nabla_{x}\right) t^{\theta} x^{\lambda}\right]\right|_{(t, x)=(0,0)} \\
& =\theta-b(0)-\sum_{j=1}^{n} c_{j}(0) \lambda_{j}
\end{aligned}
$$

where $\theta \in \mathbb{C}$, and $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} \mathbb{C}^{n}, x^{\lambda}=x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{n}^{\lambda_{n}}\right.$.
Furthermore, we suppose
(H4) There exists a $\sigma>0$, such that for any $(k, \alpha) \in \mathbf{N} \times \mathbf{Z}_{+}^{n}$, we have

$$
|L(k, \alpha)| \geq \sigma(1+|\alpha|) .
$$

We have the following result:
Theorem 1. Under the conditions (H1), (H2), (H3) and (H4), the equation (1) has a unique holomorphic solution $u(t, x)$ near $(0,0) \in \mathbb{C}_{t} \times \mathbb{C}_{x}^{n}$ with $u(0, x) \equiv 0$ near $x=0$.

Remark 1. Chen-Tahara [8] has studied a special case for non-totally characteristic PDE with one space variable $x \in \mathbb{C}^{1}$. Observe the situation with several space variables will be a non-trivial extension. Indeed we can not use the mathod in [8] directly, we use here the new idea to prove the result of Theorem 1. The result in the paper is new even in the case of space dimension $n=1$. Actually the result in [8] can be easily deduced by Theorem 1 here.
$\S 2$ Proof of Main Result.
First we take a formal series

$$
\begin{equation*}
u(t, x)=\sum_{k=1}^{\infty} u_{k}(x) t^{k} . \tag{3}
\end{equation*}
$$

And then introducing (3) into the equation (2) and comparing the coefficients of $t^{k}$ in both sides of the equation, we have, for $k=1$,

$$
\begin{equation*}
\left(1-b(x)-\sum_{j=1}^{n} c_{j}(x)\left(x_{j} \frac{\partial}{\partial x_{j}}\right)\right) u_{1}=a(x) \tag{4}
\end{equation*}
$$

and for $k \geq 2$,

$$
\begin{align*}
& \left(k-b(x)-\sum_{j=1}^{n} c_{j}(x)\left(x_{j} \frac{\partial}{\partial x_{j}}\right)\right) u_{k} \\
& \begin{aligned}
&= \sum_{2 \leq p+q+|\gamma| \leq k} a_{p, q, \gamma}(x) \sum_{(C 1)} u_{m_{1}} \times \cdots \times u_{m_{q}} \times \partial_{x_{1}} u_{n_{1}^{(1)}} \times \cdots \\
& \times \partial_{x_{1}} u_{n_{\gamma_{1}}^{(1)}} \times \cdots \times \partial_{x_{n}} u_{n_{1}^{(n)}} \times \cdots \times \partial_{x_{n}} u_{n_{n_{n}}^{(n)}}
\end{aligned} \tag{5}
\end{align*}
$$

where ( $C 1$ ) denotes a subset of $\mathbf{N} \times \mathbf{N}^{q} \times \mathbf{N}^{|\gamma|}$, in which $p+m_{1}+\cdots+m_{q}+n_{1}^{(1)}+$ $\cdots+n_{\gamma_{1}}^{(1)}+\cdots+n_{1}^{(n)}+\cdots+n_{\gamma_{n}}^{(n)}=k$.

We shall solve (4) and (5) formally in formal power series ring $\mathbb{C}[[x]]$ (cf. [7]) to get the formal solution of (1). Thus we expand $a(x), b(x), c_{j}(x)$ and $a_{p, q, \gamma}(x)$ into Taylor series in $x$ :

$$
\begin{cases}a(x)=\sum_{\alpha \in \mathbf{Z}_{+}^{n}} a_{\alpha} x^{\alpha}, & b(x)=\sum_{\alpha \in \mathbf{Z}_{+}^{n}} b_{\alpha} x^{\alpha}, \\ c_{j}(x)=\sum_{\alpha \in \mathbf{Z}_{+}^{n}} c_{j, \alpha} x^{\alpha}, & a_{p, q, \gamma}(x)=\sum_{\alpha \in \mathbf{Z}_{+}^{n}} a_{p, q, \gamma}^{(\alpha)} x^{\alpha} .\end{cases}
$$

Also, expand unknown functions $u_{k}(x)(k \geq 1)$ as a formal power series in $x$ :

$$
u_{k}(x)=\sum_{\alpha \in \mathbf{Z}_{+}^{n}} u_{k, \alpha} x^{\alpha}
$$

Then the equation (4) is equivalent to

$$
\begin{gather*}
\left(1-b(0)-\sum_{j=1}^{n} \alpha_{j} c_{j}(0)\right) u_{1, \alpha}=a_{\alpha}+\sum_{\beta<\alpha} b_{\alpha-\beta} u_{1, \beta}+\sum_{j=1}^{n} \sum_{\beta<\alpha} \beta_{j} c_{j, \alpha-\beta} u_{1, \beta} \\
\text { for any } \alpha \in \mathbf{Z}_{+}^{n}
\end{gather*}
$$

where we know that only $u_{1, \beta}(\beta<\alpha)$ appear in the right hand side of $\left(4^{\prime}\right)$. Since $\left(1-b(0)-\sum_{j=1}^{n} \alpha_{j} c_{j}(0)\right) \neq 0($ see $(\mathrm{H} 4))$, we can get $u_{1}(x) \in \mathbb{C}[[x]]$ from $\left(4^{\prime}\right)$, which is a unique formal solution of (4).

Moreover the equation (5) becomes (for $k \geq 2$ ) :

$$
\begin{align*}
& \left(k-b(0)-\sum_{j=1}^{n} \alpha_{j} c_{j}(0)\right) u_{k, \alpha} \\
& =\sum_{\beta<\alpha} b_{\alpha-\beta} u_{k, \beta}+\sum_{j=1}^{n} \sum_{\beta<\alpha} \beta_{j} c_{j, \alpha-\beta} u_{k, \beta} \\
& +\sum_{\substack{2 \leq p+q+|\gamma| \leq k \\
\beta \leq \alpha}} a_{p, q, \gamma}^{(\beta)} \sum_{(C 2)} u_{m_{1}, k_{1}} \times \cdots \times u_{m_{q}, k_{q}} \times\left(\left(m_{1,1}^{(1)}+1\right) u_{n_{1}^{(1)}, m_{1}^{(1)}+e_{1}}\right) \\
& \quad \times \cdots \times\left(\left(m_{\gamma_{1}, 1}^{(1)}+1\right) u_{\left.n_{\gamma_{1}, m_{\alpha_{1}}^{(1)}+e_{1}}^{(1)}\right) \times \cdots \times\left(\left(m_{1, n}^{(n)}+1\right) u_{n_{1}^{(n)}, m_{1}^{(n)}+e_{n}}\right)} \quad \times \cdots \times\left(\left(m_{\gamma_{n}, n}^{(n)}+1\right) u_{n_{n_{n}}^{(n)}, m_{\gamma_{n}}^{(n)}+e_{n}}\right)\right. \\
& \quad \text { for any } \alpha \in \mathbf{Z}_{+}^{n},
\end{align*}
$$

where $(C 2)$ denotes a subset of $\mathbf{N} \times \mathbf{N}^{q} \times \mathbf{N}^{|\gamma|} \times \mathbf{Z}_{+}^{n(1+q+|\gamma|)}$, in which

$$
\begin{aligned}
& p+m_{1}+\cdots+m_{q}+n_{1}^{(1)}+\cdots+n_{\gamma_{1}}^{(1)}+\cdots+n_{1}^{(n)}+\cdots+n_{\gamma_{n}}^{(n)}=k \\
& \beta+k_{1}+\cdots+k_{q}+m_{1}^{(1)}+\cdots+m_{\gamma_{1}}^{(1)}+\cdots+m_{1}^{(n)}+\cdots+m_{\gamma_{n}}^{(n)}=\alpha
\end{aligned}
$$

and $e_{j}=(0, \cdots, 0,1,0, \cdots, 0) \in \mathbf{Z}_{+}^{n}$ is j-th unit vector, and $m_{j}^{(k)}=\left(m_{j, 1}^{(k)}, \cdots, m_{j, n}^{(k)}\right)$.

From the condition in Theorem 1, we know $\left(k-b(0)-\sum_{j=1}^{n} \alpha_{j} c_{j}(0)\right) \neq 0$ (for any $\left.(k, \alpha) \in \mathbf{N} \times \mathbf{Z}_{+}^{n}\right)$ and only $\left\{u_{i, \beta} ; 1 \leq i \leq k-1, \beta \in \mathbf{Z}_{+}^{n}\right\}$ and $\left\{u_{k, \beta}, \beta<\alpha\right\}$ appear in the right hand side of $\left(5^{\prime}\right)$. So we can also solve $\left(5^{\prime}\right)$ inductively and get a unique formal solutions $u_{k}(x) \in \mathbb{C}[[x]]$ (for $k \geq 2$ ). Observe $u(t, x)=\sum_{(k, \alpha) \in \mathbf{N} \times \mathbf{Z}_{+}^{n}} u_{k, \alpha} t^{k} x^{\alpha}$ is a formal series solution of (1). It remains to prove the convergence of $u(t, x)$ near $(0,0)$.

Lemma 1. The condition (H4) is equivalent to the following condition:
( $H 4^{\prime}$ ) There exists a constant $\sigma^{\prime}$, such that for any $k \in \mathbf{N}$ and $\alpha \in \mathbf{Z}_{+}^{n}$, we have

$$
\left|k-b(0)-\sum_{j=1}^{n} c_{j}(0) \alpha_{j}\right| \geq \sigma^{\prime}(k+1+|\alpha|)
$$

Proof: Observe the condition (H4 $4^{\prime}$ ) implies the condition (H4). We only need to prove that (H4) implies (H4 ).

We set $M=1+|\operatorname{Re} b(0)|+\sum_{j=1}^{n}\left|\operatorname{Re} c_{j}(0)\right|$, then if $k \geq 2 M(|\alpha|+1)$, we have

$$
\left|k-b(0)-\sum_{j=1}^{n} c_{j}(0) \alpha_{j}\right| \geq \frac{k}{2} \geq \frac{1}{4}(k+1+|\alpha|) ;
$$

if $k<2 M(|\alpha|+1)$, we have

$$
\begin{aligned}
\left|k-b(0)-\sum_{j=1}^{n} c_{j}(0) \alpha_{j}\right| & \geq \sigma(1+|\alpha|) \\
& \geq \frac{\sigma}{3 M}(3 M+3 M|\alpha|) \\
& \geq \frac{\sigma}{3 M}(2 M(1+|\alpha|)+1+|\alpha|) \\
& \geq \frac{\sigma}{3 M}(k+1+|\alpha|)
\end{aligned}
$$

Set $\sigma^{\prime}=\min \left\{\frac{1}{4}, \frac{\sigma}{3 M}\right\}$, then we have

$$
\left|k-b(0)-\sum_{j=1}^{n} c_{j}(0) \alpha_{j}\right| \geq \sigma^{\prime}(k+1+|\alpha|)
$$

Lemma 1 is proved.
From Lemma 1, we can define $U_{1, \alpha}$ (for $\alpha \in \mathbf{Z}_{+}^{n}$ ) as follows:

$$
\left\{\begin{array}{l}
U_{1,0}=\frac{1}{2 \sigma^{\prime}}\left|a_{0}\right| \\
\text { for } \alpha>0, \alpha \in \mathbf{Z}_{+}^{n} \\
U_{1, \alpha}=\frac{1}{\sigma^{\prime}(2+|\alpha|)}\left(\left|a_{\alpha}\right|+\sum_{\beta<\alpha}\left|b_{\alpha-\beta}\right| U_{1, \beta}+\sum_{j=1}^{n} \sum_{\beta<\alpha} \beta_{j}\left|c_{j, \alpha-\beta}\right| U_{1, \beta}\right)
\end{array}\right.
$$

where the constant $\sigma^{\prime}>0$ appeared in the condition $\left(\mathrm{H} 4^{\prime}\right)$.
Similarly, for $k \geq 2$, we define $U_{k, \alpha}$ (for $\alpha \in \mathbf{Z}_{+}^{n}$ ) by following recursive formula:

$$
\begin{align*}
U_{k, \alpha}= & \frac{1}{\sigma^{\prime}(k+1+|\alpha|)}\left(\sum_{\beta<\alpha}\left|b_{\alpha-\beta}\right| U_{k, \beta}+\sum_{j=1}^{n} \sum_{\beta<\alpha} \beta_{j}\left|c_{j, \alpha-\beta}\right| U_{k, \beta}\right. \\
& +\sum_{2 \leq p+q+|\gamma| \leq k}\left|a_{p, q, \gamma}^{(\beta)}\right| \sum_{(C 2)} U_{m_{1}, k_{1}} \times \cdots \times U_{m_{q}, k_{q}} \times \cdots \times \\
& \quad\left(\left(m_{1,1}^{(1)}+1\right) U_{n_{1}^{(1)}, m_{1}^{(1)}+e_{1}}\right) \times \cdots \times\left(\left(m_{\gamma_{1}, 1}^{(1)}+1\right) U_{n_{\gamma_{1}}^{(1)}, m_{\alpha_{1}}^{(1)}+e_{1}}\right) \times \cdots  \tag{6}\\
& \left.\quad \times\left(\left(m_{1, n}^{(n)}+1\right) U_{n_{1}^{(n)}, m_{1}^{(n)}+e_{n}}\right) \times \cdots \times\left(\left(m_{\gamma_{n}, n}^{(n)}+1\right) U_{n_{\gamma_{n}, m_{\gamma n}^{(n)}}^{(n)}+e_{n}}\right)\right) \\
= & \frac{1}{\sigma^{\prime}(k+1+|\alpha|)}\left(\sum_{\beta<\alpha}\left|b_{\alpha-\beta}\right| U_{k, \beta}+\sum_{j=1}^{n} \sum_{\beta<\alpha} \beta_{j}\left|c_{j, \alpha-\beta}\right| U_{k, \beta}+g_{k-1}^{(\alpha)}\right) \\
& \quad \text { for any } \alpha \in \mathbf{Z}_{+}^{n},
\end{align*}
$$

Then comparing with $\left(4^{\prime}\right)$ and $\left(5^{\prime}\right)$, we can easily deduce

Lemma 2. Let $u_{k, \alpha}$ and $U_{k, \alpha}$ be defined as above, then we have
(1) For any $(k, \alpha) \in \mathbf{N} \times \mathbf{Z}_{+}^{n}$, we have

$$
\left|u_{k, \alpha}\right| \leq U_{k, \alpha} .
$$

(2) Set

$$
\begin{equation*}
U(t, x)=\sum_{(k, \alpha) \in \mathbf{N} \times \mathbf{Z}_{+}^{n}} U_{k, \alpha} t^{k} x^{\alpha} . \tag{6}
\end{equation*}
$$

Then $U=U(t, x)$ is the unique formal solution of the following equation:

$$
\begin{align*}
\sigma^{\prime} t \partial_{t} U=A(x) t & +\left[-\sigma^{\prime}+B(x)\right] U+\sum_{j=1}^{n}\left[-\sigma^{\prime}+C_{j}(x)\right] x_{j} \partial_{x_{j}} U \\
& +\sum_{p+q+|\gamma| \geq 2} A_{p, q, \gamma}(x) t^{p} U^{q}\left(\partial_{x} U\right)^{\gamma} \tag{7}
\end{align*}
$$

where

$$
\begin{cases}A(x)=\sum_{\alpha \in \mathbf{Z}_{+}^{n}}\left|a_{\alpha}\right| x^{\alpha}, & B(x)=\sum_{\alpha>0}\left|b_{\alpha}\right| x^{\alpha}, \\ C_{j}(x)=\sum_{\alpha>0}\left|c_{j, \alpha}\right| x^{\alpha}, & A_{p, q, \gamma}(x)=\sum_{\alpha \in \mathbf{Z}_{+}^{n}}\left|a_{p, q, \gamma}^{(\alpha)}\right| x^{\alpha} .\end{cases}
$$

So it would be enough if we can prove the convergence of $U(t, x)$. Let us rewrite
$U(t, x)$ as $U(t, x)=\sum_{k \in \mathbf{N}} U_{k}(x) t^{k}$ and from the equation (7), we have

$$
\begin{align*}
{\left[\sigma^{\prime}+\sigma^{\prime}-B(x)+\sum_{j=1}^{n}\left(\sigma^{\prime}-C_{j}(x)\right) x_{j} \partial_{x_{j}}\right] U_{1}(x) } & =A(x), \\
& \vdots  \tag{8}\\
{\left[k \sigma^{\prime}+\sigma^{\prime}-B(x)+\sum_{j=1}^{n}\left(\sigma^{\prime}-C_{j}(x)\right) x_{j} \partial_{x_{j}}\right] U_{k}(x) } & =g_{k-1}(x),
\end{align*}
$$

where we also denote $g_{0}(x)=A(x)$, and for $k \geq 2, g_{k-1}(x)=\sum_{\alpha \in \mathbf{Z}_{+}^{n}} g_{k-1}^{(\alpha)} x^{\alpha}$ is a holomorphic function near $x=0$. Actually, from following lemmas, we can prove the formal series solution $U(t, x)$, as mentioned in Lemma 2, is convergent near $(0,0)$.

Lemma 3 For any $k \geq 1$, the formal solution $U_{k}(x)$ is a holomorphic function near $x=0$, and there exist constant $C>0$ and $R>0$ small enough, such that for any $k \in \mathbf{N}$,

$$
\left\|U_{k}\right\|_{R} \leq \frac{C}{k}\left\|g_{k-1}\right\|_{R},
$$

where $\|f\|_{R}=\max _{\left|x_{j}\right| \leq R, 1 \leq j \leq n}|f(x)|$.
Proof: From the definition of $U_{k, \alpha}$, we have

$$
\begin{aligned}
U_{k, \alpha} & =\frac{1}{\sigma^{\prime}(k+1+|\alpha|)}\left(\sum_{\beta<\alpha}\left|b_{\alpha-\beta}\right| U_{k, \beta}+\sum_{j=1}^{n} \sum_{\beta<\alpha}\left|c_{j, \alpha-\beta}\right| \beta_{j} U_{k, \beta}+g_{k-1}^{(\alpha)}\right) \\
& \leq \frac{1}{\sigma^{\prime}}\left(\sum_{\beta<\alpha}\left|b_{\alpha-\beta}\right| U_{k, \beta}+\sum_{j=1}^{n} \sum_{\beta<\alpha}\left|c_{j, \alpha-\beta}\right| U_{k, \beta}+\frac{1}{k} g_{k-1}^{(\alpha)}\right)
\end{aligned}
$$

which implies,

$$
\begin{equation*}
U_{k}(x) \ll G(x) U_{k}(x)+\frac{1}{\sigma^{\prime} k} g_{k-1}(x), \tag{9}
\end{equation*}
$$

where $g(x) \ll f(x)$ means $f(x)$ is a majorant series of $g(x)$ near $x=0$, i.e. $\left|\partial_{x}^{\beta} g(0)\right| \leq$ $\partial_{x}^{\beta} f(0) ; G(x)=\frac{1}{\sigma^{\prime}}\left(B(x)+\sum_{j=1}^{n} C_{j}(x)\right)$. Since $G(0)=0$ and $g_{k-1}(x)$ is a holomorphic function near $x=0$, then from (9) we can deduce that $U_{k}(x)$ is a holomorphic function near $x=0$, and there exist $R>0$ and $C>0$, such that

$$
\left\|U_{k}(x)\right\|_{R} \leq \frac{C}{k}\left\|g_{k-1}(x)\right\|_{R}, \quad \text { for any } k \in \mathbf{N} .
$$

The proof of Lemma 3 is completed.

Lemma 4 Let $R>0$ and $f(x)$ be a holomorphic function on $D_{R}^{n}=\{x \in$ $\left.\mathbb{C}^{n}| | x_{j} \mid \leq R, 1 \leq j \leq n\right\}$. For any $r, 0<r<R$, if $f(x)$ satisfies

$$
\max _{x \in D_{r}^{n}}|f(x)| \leq \frac{c}{(R-r)^{a}}
$$

for some $c \geq 0$ and $a \geq 0$, then we have

$$
\begin{equation*}
\max _{x \in D_{r}^{n}}\left|\frac{\partial f}{\partial x_{j}}(x)\right| \leq \frac{(a+1) e c}{(R-r)^{a+1}}, \quad \text { for any } j(1 \leq j \leq n) \text { and } r \in(0, R) \tag{10}
\end{equation*}
$$

Proof: See [9, Lemma 5.1.3].
Now let us prove the convergence of the formal seires solution $U(t, x)$. Let $0<$ $R<1$ small enough, such that
(i) $A_{p, q, \gamma}(x)$ is holomorphic on $D_{R}^{n}$;
(ii) $\left|A_{p, q, \gamma}(x)\right| \leq A_{p, q, \gamma}$ on $D_{R}^{n}$;
(iii) $\sum_{p+q+|\gamma| \geq 2} A_{p, q, \gamma} t^{p} u^{q} v^{\gamma}$ is a convergent power series in $(t, u, v)$.

We choose $A>0$, such that on $D_{R}^{n}$,

$$
\left|U_{1}(x)\right| \leq A \quad \text { and } \quad\left|\partial_{x_{j}} U_{1}(x)\right| \leq e A, \quad 1 \leq j \leq n
$$

Now we introduce a function $Y(t)$, satisfying the following equation:

$$
\begin{equation*}
Y=A t+\frac{C}{R-r} \sum_{p+q+|\gamma| \geq 2} \frac{A_{p, q, \gamma}}{(R-r)^{(p+q+|\gamma|-2)}} t^{p} Y^{q}(e Y)^{|\gamma|} \tag{11}
\end{equation*}
$$

where $r$ is a parameter with $0<r<R, C>0$ is the constant appeared in Lemma 3.

Since the equation (11) is an analytic functional equation in $Y$, by the implicit function theorem we can easily prove that the equation (11) has a unique holomorphic solution $Y(t)$ in a neighborhood of $t=0$ with $Y(0)=0$.

Expanding $Y(t)$ into Taylor series in $t$,

$$
\begin{equation*}
Y(t)=\sum_{k=1}^{\infty} Y_{k} t^{k} \tag{12}
\end{equation*}
$$

From the equation (11), we know that the coefficients of (12) can be given by

$$
Y_{1}=A
$$

and for $k \geq 2$,

$$
\begin{gather*}
Y_{k}=\frac{C}{R-r} \sum_{p+q+|\gamma| \geq 2} \sum_{(C 3)} \frac{A_{p, q, \gamma}}{(R-r)^{p+q+|\gamma|-2}} Y_{m_{1}} \times \cdots \times Y_{m_{q}} \times  \tag{13}\\
\left(e Y_{n_{1}}\right) \times \cdots \times\left(e Y_{n_{|\gamma|}}\right)
\end{gather*}
$$

where ( $C 3$ ) means $m_{1}+\cdots+m_{q}+n_{1}+\cdots+n_{|\gamma|}=k-p$.
Moreover we can deduce that $Y_{k}$ is of the form

$$
\begin{equation*}
Y_{k}=\frac{C_{k}}{(R-r)^{k-1}}, \quad \text { for } \quad k=1,2, \cdots \tag{14}
\end{equation*}
$$

where $C_{1}=A$, and the constant $C_{k} \geq 0$, for $k \geq 2$, can be decided inductively from the equation (13), which is independent of $r$. Actually from (13), it is easy to check that the order of $\frac{1}{R-r}$ is $k-1$, i.e. $1+(p+q+|\gamma|-2)+\left(n_{1}-1\right)+\cdots+\left(n_{q}-1\right)+$ ( $\left.m_{1}-1\right)+\cdots+\left(m_{|\gamma|}-1\right)=k-1$, so the formula (14) holds.

Next, we prove that the series $\sum_{k \geq 1} Y_{k} t^{k}$ is a majorant series for the formal series solution $\sum_{k \geq 1} U_{k}(x) t^{k}$ near $x=0$. In fact, we can prove, by induction, that for any $k \geq 1$ and $0<r<R$, we have

$$
\begin{align*}
\left|U_{k}(x)\right| & \leq\left|k U_{k}(x)\right| \leq Y_{k}, \quad \text { on } D_{R}^{n} ;  \tag{15}\\
\left|\frac{\partial U_{k}}{\partial x_{j}}(x)\right| & \leq e Y_{k}, \quad(1 \leq j \leq n) \quad \text { on } D_{R}^{n} . \tag{16}
\end{align*}
$$

Actually, since $Y_{1}=A$, the estimates (15) and (16) hold for $k=1$. We suppose that $k \geq 2$, and for any $1 \leq i<k$, (15) and (16) hold for $i$. Since $g_{k-1}^{(\alpha)}$ is decided by (6), $g_{k-1}(x)=\sum_{\alpha} g_{k-1}^{(\alpha)} x^{\alpha}$ then from Lemma 3 and (6), we have by induction that

$$
\begin{aligned}
\left|U_{k}(x)\right| \leq & \frac{C}{k} \sum_{p+q+|\gamma| \geq 2} \sum_{(C 1)} A_{p, q, \gamma} \times U_{m_{1}} \times \cdots \times U_{m_{q}} \times \partial_{x_{1}} U_{n_{1}^{(1)}} \times \cdots \\
& \times \frac{\partial_{x_{1}} U_{n_{\gamma 1}^{(1)}} \times \cdots \times \partial_{x_{n}} U_{n_{1}^{(n)}} \times \cdots \times \partial_{x_{n}} U_{n_{\gamma n}^{(n)}}}{k} \sum_{p+q+|\gamma| \geq 2} \sum_{p+C 3)} A_{p, q, \gamma} \times Y_{m_{1}} \times \cdots \times Y_{m_{q}} \times \\
& \left(e Y_{n_{1}}\right) \times \cdots \times \cdots \times\left(e Y_{\left.n_{|\gamma|}\right)}\right) .
\end{aligned}
$$

Since $0<r<R<1$, thus $(R-r)^{p+q+|\gamma|-2}<1$, then we have

$$
\begin{array}{r}
\left|U_{k}(x)\right| \leq \frac{C}{k} \sum_{p+q+|\gamma| \geq 2} \sum_{(C 3)} \frac{A_{p, q, \gamma}}{(R-r)^{p+q+|\gamma|-2}} \times Y_{m_{1}} \times \cdots \\
\times Y_{m_{q}} \times\left(e Y_{n_{1}}\right) \times \cdots \times \cdots \times\left(e Y_{n_{|\gamma|} \mid}\right) .
\end{array}
$$

From the formula (13) and (14), we have

$$
\left|U_{k}(x)\right| \leq \frac{R-r}{k} Y_{k}=\frac{C_{k}}{k} \cdot \frac{1}{(R-r)^{k-2}} .
$$

Thus

$$
\left|U_{k}(x)\right| \leq\left|k U_{k}(x)\right| \leq \frac{C_{k}}{(R-r)^{k-2}} \leq \frac{C_{k}}{(R-r)^{k-1}}=Y_{k},
$$

the estimate (15) holds for $k$.
Next, by using Lemma 4, we have

$$
\left|\frac{\partial U_{k}}{\partial x_{j}}(x)\right| \leq \frac{k-1}{k} \cdot \frac{e C_{k}}{(R-r)^{k-1}} \leq e Y_{k}
$$

this implies the estimate (16) holds for $k$. Therefore we have proved that $\sum_{k \geq 1} Y_{k} t^{k}$ is the majorant series of the formal series solution $U(t, x)$ near $x=0$, which implies, by Lemma 2, that the formal series solution (3) is convergent near $(0,0) \in \mathbb{C}_{t} \times \mathbb{C}_{x}^{n}$, Theorem 1 is proved.

## §3 Case of Higher Order Singular PDE

In this section, we shall extend the result of Theorem 1 to the case of higher order singular partial differential equation:

$$
\begin{equation*}
\left(t \partial_{t}\right)^{m} u=F\left(t, x,\left\{\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha} u\right\}_{(j, \alpha) \in \mathcal{F}}\right), \quad(t, x) \in \mathbb{C}_{t} \times \mathbb{C}_{x}^{n} \tag{17}
\end{equation*}
$$

where $\mathcal{F}=\{(j, \alpha)|j+|\alpha| \leq m, j<m\}$.
Now we denote $\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha} u$ by notation $Z_{j, \alpha}$, i.e.

$$
\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha} u \leftrightarrow Z_{j, \alpha}, \quad \text { and }\left\{\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha} u\right\}_{(j, \alpha) \in \mathcal{F}} \leftrightarrow Z=\left\{Z_{j, \alpha}\right\}_{(j, \alpha) \in \mathcal{F}}
$$

For the function $F(t, x, Z)$, we suppose
(A1) $F(t, x, Z)$ is a holomorphic function in a neighborhood of origin $(0,0,0) \in$ $\mathbb{C}_{t} \times \mathbb{C}_{x}^{n} \times \mathbb{C}^{N}$, where $N=\# \mathcal{F} ;$
(A2) $F(0, x, 0) \equiv 0$, near $x=0$;
(A3) $\frac{\partial F}{\partial Z_{j, \alpha}}(0, x, 0)=x^{\alpha} b_{j, \alpha}(x)$, and $b_{j, \alpha}(x)$ is a holomorphic function near $x=0$;
Thus we can rewrite $F(t, x, Z)$ as

$$
F(t, x, Z)=a(x) t+\sum_{(j, \alpha) \in \mathcal{F}} x^{\alpha} b_{j, \alpha}(x) Z_{j, \alpha}+\sum_{p+|\gamma| \geq 2} a_{p, \gamma} t^{p} Z^{\gamma}
$$

where $a(x)=\frac{\partial F}{\partial t}(0, x, 0)$.
Actually, if we denote

$$
C\left(t, x,\left\{\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha}\right\}_{(j, \alpha) \in \mathcal{F}}\right)=\left(t \partial_{t}\right)^{m}-\sum_{(j, \alpha) \in \mathcal{F}} x^{\alpha} b_{j, \alpha}(x)\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha}
$$

the equation (17) can be rewriten as

$$
C\left(t, x,\left\{\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha}\right\}_{(j, \alpha) \in \mathcal{F}}\right) u=a(x) t+\sum_{p+|\gamma| \geq 2} a_{p, \gamma}(x) t^{p}\left(\left\{\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha} u\right\}_{(j, \alpha) \in \mathcal{F}}\right)^{\gamma}
$$

And the indicial polynomial of $C\left(t, x,\left\{\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha}\right\}_{(j, \alpha) \in \mathcal{F}}\right)$ is defined as

$$
\begin{aligned}
L(\theta, \lambda) & =\left.\left[x^{-\lambda} t^{-\theta} C\left(t, x,\left\{\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha}\right\}_{(j, \alpha) \in \mathcal{F}}\right) t^{\theta} x^{\lambda}\right]\right|_{(t, x)=(0,0)} \\
& =\theta^{m}-\sum_{(j, \alpha) \in \mathcal{F}} b_{j, \alpha}(0) \theta^{j} \prod_{l=1}^{n}\left(\prod_{m=1}^{\alpha_{l}}\left(\lambda_{l}-\alpha_{l}+m\right)\right)
\end{aligned}
$$

where $(\theta, \lambda) \in \mathbb{C}_{\theta} \times \mathbb{C}_{\lambda}^{n}$.
Furthermore, we suppose
(A4) There exist a constant $\sigma>0$, such that for any $(k, \beta) \in \mathbf{N} \times \mathbf{Z}_{+}^{n}$, we have

$$
|L(k, \beta)| \geq \sigma\left(1+|\beta|^{m}\right)
$$

Similar to Lemma 1, we have

Lemma 5. The condition (A4) is equivalent to the following condition:
(A4') There exist a constant $\sigma^{\prime}>0$, such that for any $k \in \mathbf{N}, \beta \in \mathbf{Z}_{+}^{n}$, we have

$$
\left|k^{m}-\sum_{(j, \alpha) \in \mathcal{F}, \alpha \leq \beta} b_{j, \alpha}(0) k^{j} \frac{\beta!}{(\beta-\alpha)!}\right| \geq \sigma^{\prime}\left(k^{m}+\sum_{(j, \alpha) \in \mathcal{F}, \alpha \leq \beta} k^{j} \frac{\beta!}{(\beta-\alpha)!}\right)
$$

Proof: Here, we only prove (A4) implies (A4').
We set $M=1+\sum_{(j, \alpha) \in \mathcal{F}}\left(1+\left|\operatorname{Re} b_{j, \alpha}(0)\right|\right)$, then we have
(a). for $k \geq 2 M(|\beta|+1)$, we have

$$
\begin{aligned}
\left|k^{m}-\sum_{(j, \alpha) \in \mathcal{F}, \alpha \leq \beta} b_{j, \alpha}(0) k^{j} \frac{\beta!}{(\beta-\alpha)!}\right| & \geq \frac{k^{m}}{2} \\
& \geq \frac{1}{4}\left(k^{m}+M k^{k-1}|\beta|\right) \\
& \geq \frac{1}{4}\left(k^{m}+\sum_{(j, \alpha) \in \mathcal{F}, \alpha \leq \beta} k^{j} \frac{\beta!}{(\beta-\alpha)!}\right)
\end{aligned}
$$

(b). for $k<2 M(|\beta|+1), N=\# \mathcal{F}$, we have

$$
\begin{aligned}
& \left|k^{m}-\sum_{(j, \alpha) \in \mathcal{F}, \alpha \leq \beta} b_{j, \alpha}(0) k^{j} \frac{\beta!}{(\beta-\alpha)!}\right| \\
\geq & \sigma\left(1+|\beta|^{m}\right) \\
\geq & \frac{\sigma}{2 N(4 M)^{m}}\left(2 N(4 M)^{m}\left(1+|\beta|^{m}\right)+(2 M)^{m}\left(2^{m}+(2|\beta|)^{m}\right)\right. \\
\geq & \frac{\sigma}{2 N(4 M)^{m}}\left(2 N(4 M)^{m}\left(1+|\beta|^{m}\right)+(2 M)^{m}(1+|\beta|)^{m}\right) \\
\geq & \frac{\sigma}{2 N(4 M)^{m}}\left(2 N(4 M)^{m}\left(1+|\beta|^{m}\right)+k^{m}\right) \\
\geq & \frac{\sigma}{2 N(4 M)^{m}}\left(k^{m}+\sum_{(j, \alpha) \in \mathcal{F}, \alpha \leq \beta} k^{j} \frac{\beta!}{(\beta-\alpha)!}\right) .
\end{aligned}
$$

So we take $\sigma^{\prime}=\min \left\{\frac{1}{4}, \frac{\sigma}{2 N(4 M)^{m}}\right\}$, then

$$
\left|k^{m}-\sum_{(j, \alpha) \in \mathcal{F}, \alpha \leq \beta} b_{j, \alpha}(0) k^{j} \frac{\beta!}{(\beta-\alpha)!}\right| \geq \sigma^{\prime}\left(k^{m}+\sum_{(j, \alpha) \in \mathcal{F}, \alpha \leq \beta} k^{j} \frac{\beta!}{(\beta-\alpha)!}\right) .
$$

Lemma 5 is proved.
The following is main result in this section.

Theorem 2. Under the conditions (A1), (A2), (A3) and (A4), the equation (17) has a unique holomorphic solution $u(t, x)$ near $(0,0) \in \mathbb{C}_{t} \times \mathbb{C}_{x}^{n}$ with $u(0, x) \equiv 0$ near $x=0$.

The proof of Theorem 2 is similar to the proof of Theorem 1. First we can expand $a(x), b_{j, \alpha}(x), a_{p, \gamma}(x)$ into Taylor series, i.e.

$$
\left\{\begin{array}{l}
a(x)=\sum_{\beta \in \mathbf{Z}_{+}^{n}} a_{\beta} x^{\beta}, \quad b_{j, \alpha}(x)=\sum_{\beta \in \mathbf{Z}_{+}^{n}} b_{j, \alpha}^{(\beta)} x^{\beta}, \\
a_{p, \gamma}(x)=\sum_{\beta \in \mathbf{Z}_{+}^{n}} a_{p, \gamma}^{(\beta)} x^{\beta} .
\end{array}\right.
$$

Then, as similar to $\left(4^{\prime}\right)$ and $\left(5^{\prime}\right)$, we can obtain the unique formal solution (of equation (17)) $u(t, x)=\sum_{k \in \mathbf{N}, \beta \in \mathbf{Z}_{+}^{n}} u_{k, \beta} t^{k} x^{\beta}$. And next we can construct a formal series $U(t, x)=\sum_{k \in \mathbf{N}, \beta \in \mathbf{Z}_{+}^{n}} U_{k, \beta} t^{k} x^{\beta}$, which is a majorant series of $u(t, x)$ near $(0,0)$ and satisfies the following equation:

$$
\begin{align*}
\sigma^{\prime}\left(t \partial_{t}\right)^{m} U=A(x) t+\sum_{(j, \alpha) \in \mathcal{F}}\left[\left(-\sigma^{\prime}+B_{j, \alpha}(x)\right) x^{\alpha}\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha} U\right]+ \\
\sum_{p+|\gamma| \geq 2} A_{p, \gamma}(x) t^{p} \prod_{(j, \alpha) \in \mathcal{F}}\left(\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha} U\right)^{\gamma_{j, \alpha}}, \tag{18}
\end{align*}
$$

where

$$
A(x)=\sum_{\beta \in \mathbf{Z}_{+}^{n}}\left|a_{\beta}\right| x^{\beta}, \quad B_{j, \alpha}(x)=\sum_{\beta>0}\left|b_{j, \alpha}^{(\beta)}\right| x^{\beta}, \quad A_{p, \gamma}(x)=\sum_{\beta \in \mathbf{Z}_{+}^{n}}\left|a_{p, \gamma}^{(\beta)}\right| x^{\beta} .
$$

Thus we only need to prove the convergence of $U(t, x)$ near $(0,0)$. If we rewrite $U(t, x)$ as $U(t, x)=\sum_{k \in \mathbf{N}} U_{k}(x) t^{k}$, and introduce this formal solution into (18), we
have

$$
\begin{align*}
{\left[\sigma^{\prime}+\sum_{(j, \alpha) \in \mathcal{F}}\left(\sigma^{\prime}-B_{j, \alpha}(x)\right) x^{\alpha} \partial_{x}^{\alpha}\right] U_{1}(x) } & =A(x), \\
& \vdots  \tag{19}\\
{\left[\sigma^{\prime} k^{m}+\sum_{(j, \alpha) \in \mathcal{F}}\left(\sigma^{\prime}-B_{j, \alpha}(x)\right) x^{\alpha} \partial_{x}^{\alpha}\right] U_{k}(x) } & =g_{k-1}(x),
\end{align*}
$$

where for $k \geq 2, g_{k-1}(x)=g_{k-1}\left(U_{1}, \cdots, U_{k-1},\left\{\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha} U_{l}\right\}_{\substack{(j, \alpha) \in \mathcal{F} \\ 1 \leq l \leq k-1}}\right)=\sum_{\beta \in \mathbf{Z}_{+}^{n}} g_{k-1}^{(\beta)} x^{\beta}$, and $g_{0}(x)=A(x)$.

From (19), We can solve $U_{k}(x)$ uniquely, which is holomorphic near $x=0$. In fact, we have

Lemma 6 For any $k \geq 1$, the formal solution $\left.U_{( } x\right)$ is a holomorphic function near $x=0$, and meanwhile there exist constants $C>0$ and $R>0$ small enough, such that for any $k \in \mathbf{N}$,

$$
\left\|U_{k}\right\|_{R} \leq \frac{C}{k^{m}}\left\|g_{k-1}\right\|_{R}
$$

Proof: From equation (18), we deduce

$$
\begin{aligned}
U_{k, \beta}= & \frac{1}{\sigma^{\prime}\left(k^{m}+\sum_{(j, \alpha) \in \mathcal{F}, \alpha \leq \beta} k^{j} \frac{\beta!}{(\beta-\alpha)!}\right)} \times \\
& \left(\sum_{(j, \alpha) \in \mathcal{F}, \alpha \leq \mu<\beta}\left|b_{j, \alpha}^{(\beta-\mu)}\right| k^{j} \frac{\mu!}{(\mu-\alpha)!} U_{k, \mu}+g_{k-1}^{(\beta)}\right) \\
\leq & \frac{1}{\sigma^{\prime}}\left(\sum_{(j, \alpha) \in \mathcal{F}, \mu<\beta}\left|b_{j, \alpha}^{(\beta-\mu)}\right| U_{k, \mu}+\frac{1}{k^{m}} g_{k-1}^{(\beta)}\right),
\end{aligned}
$$

which implies,

$$
U_{k}(x) \ll G(x) U_{k}(x)+\frac{1}{\sigma^{\prime} k^{m}} g_{k-1}(x)
$$

where $g_{0}(x)=A(x), G(x)=\frac{1}{\sigma^{\prime}}\left(\sum_{(j, \alpha) \in \mathcal{F}} B_{j, \alpha}(x)\right)$, and $G(0)=0$. Thus we can solve $U_{k}(x)$, which is a holomorphic function near $x=0$, and satisfies

$$
\begin{equation*}
\left\|U_{k}(x)\right\|_{R} \leq \frac{C}{k^{m}}\left\|g_{k-1}(x)\right\|_{R}, \quad \text { for any } k \in \mathbf{N} \tag{20}
\end{equation*}
$$

Lemma 6 is proved.

Now let us prove the convergence of formal solution of the equation (18). We let $0<R<1$ small enough, such that
(i) $A_{p, \gamma}(x)$ is holomorphic on $D_{R}^{n}$;
(ii) $\left|A_{p, \gamma}(x)\right| \leq A_{p, \gamma}$ on $D_{R}^{n}$;
(iii) $\sum_{p+|\gamma| \geq 2} A_{p, \gamma} t^{p} Z^{\gamma}$ is a convergent power series in $(t, Z)$.

Then we choose $A>0$, such that on $D_{R}^{n}$,

$$
\left|\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha} U_{1}(x)\right| \leq(m e)^{m} A, \text { for any }(j, \alpha) \in \mathcal{F}
$$

Next we introduce a function $Y(t)$, satisfying the following equation:

$$
\begin{equation*}
Y=A t+\frac{C}{(R-r)^{m}} \sum_{p+|\gamma| \geq 2} \frac{A_{p, \gamma}}{(R-r)^{m(p+|\gamma|-2)}} t^{p}(B Y)^{|\gamma|} \tag{21}
\end{equation*}
$$

where $r$ is a parameter with $0<r<R, C>0$ is the constant appeared in the estimate (20), and $B=(m e)^{m}$.

Similar to the proof in section 2, we know that the equation (21) has a unique holomorphic solution $Y(t)$ in a neighborhood of $t=0$ with $Y(0)=0$.

Expanding $Y(t)$ as a Taylor series in $t$,

$$
\begin{equation*}
Y(t)=\sum_{k=1}^{\infty} Y_{k} t^{k} \tag{22}
\end{equation*}
$$

then by the same argument as in the proof of Theorem 1, we can obtain, for any $k \geq 1$,

$$
\left|k^{j} \partial_{x}^{\alpha} U_{k}(x)\right| \leq(m e)^{|\alpha|} Y_{k} \leq B Y_{k} \quad \text { on } \quad D_{R}^{n}, \quad \text { for any }(j, \alpha) \in \mathcal{F}
$$

This implies that $Y(t)=\sum_{k \geq 1} Y_{k} t^{k}$ is a majorant series of the formal solution $U(t, x)=\sum_{k \geq 1} U_{k}(x) t^{k}$ near $x=0$. Theorem 2 is prove.

## Acknowledgements

The paper was initiated while CH was a visiting professor in Department of Mathematics of Nantes University and Department of Mathematics of Rouen University during January - February 1999, and completed while CH was a visiting professor in the School of Mathematics, University of Leeds and Institute of Mathematics, University of Potsdam during October - November 1999, he would like to thank the Institutes for the invitations and their hospitalities.

## References

[1] M. S. Baouendi and C. Goulaouic, Cauchy problems with characteristic initial hypersurface. Comm. Pure Appl. Math., 26 (1983), 455-475.
[2] H. Tahara, Fuchsian type equations and Fuchsian hyperbolic equations, Japan. J. Math., 5 (1979), 245-347.
[3] R. Melrose and G. Mendoza, Elliptic operators of totally characteristic type, Preprint MSRI 047-83, Berkeley.
[4] R. Gérard and H. Tahara, Nonlinear singular first order partial differential equations of Briot-Bouquet type, Proc. Japan Acad., 66 (1990), 72-74.
[5] R. Gérard and H. Tahara, Holomorphic and singular solution of nonlinear singular first order partial differential equations, Publ. RIMS, Kyoto Univ. 26 (1990), 979-1000.
[6] R. Gérard and H. Tahara, Solutins holomorphes et singulières d'équations aux dérivées partielles singulières non linéaires, Publ. RIMS, Kyoto Univ. 29 (1993), 121-151.
[7] R. Gérard and H. Tahara, Singular nonliear partial differential equations, Aspects of Mathematics, E 28, Vieweg, 1996.
[8] Chen Hua and H. Tahara, On the holomorphic solution of non-linear totally characteristic equations, to appear in Mathematische Nachrichten, Germany.
[9] L.Hörmmander, Linear partial differential operators, Springer, 1963.


[^0]:    ${ }^{1}$ Research supported by the National Natural Foundation of China and the Huacheng Grant.

