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1 Introduction

The Dirichlet problem for hyperbolic differential equations in a bounded domain is
usually regarded as an “unnatural” problem of mathematical physics. Its solution
may neither exist, nor be uniquely determined, nor depend continuously on the
data. Nevertheless, beginning with the Thirties from time to time there appeared
papers in which a character of this "unnaturalness” was investigated under various
points of view (cf. [1], [5], [7]). One of the typical results of this kind is the
following. Consider the equation u,, = 0 in a rectangle with sides of slopes
+1 and let £ be the ratio of the sides of the rectangle. Then the solution of
the Dirichlet problem is uniquely determined if and only if ¢ is irrational. the
solution exists for all sufficiently smooth boundary values if £ can be approximated
“sufficiently fast” by rationals [5].

On this background the following facts which have been established by one of
the authors [6] turned out to be unexpected to some extent. For any linear 3rd-
order hyperbolic differential operator P(d,,d,) with constant coefficients and for
a wide class of domains D C R? intimately connected to the operator the Dirichlet
problem

(1.1) P(0y,0y)u=f inD, u=g¢g ondD

is uniquely solvable for all functions f € C(D), g € C*(dD), and the inverse
operator of the problem is bounded.

If we say “solvability” here and in what follows we have in mind the existence
of a generalized (in the sense of the distribution theory) solution u(x,y) € C*(D).

In the case of third order hyperbolic equations the Dirichlet problem in special
domains is motivated by equivalent interesting problems in integral geometry or
functional equations, cf. [6]. These connections turn the problem into a natural
one and there arise new questions in this context that require more complete
information.

The main goal of the present paper is to describe conditions under which any
generalized solution to problem (1.1) is a classical one.



2 Third order hyperbolic operators in the plane

In what follows we consider a linear differential operator P in the (x,y)-plane of
the form

Pu = Pu+ Qu,

where P = P(0,,0,) is an arbitrary homogeneous a-hyperbolic operator of 3-rd
order with constant coefficients, and @ = Q(z,y,d,, dy) is an arbitrary smooth
linear differential operator of second order. The a-hyperbolicity of the operator
P means that the characteristic polynomial P(7,A) has, for any A # 0, three
different real roots in 7. It follows that for some real constants M, aq, az, az with

a; # ay, for 7 # k
P(r,A) = M(7 — a1 A\)(T — a2A) (T — ash).
In turn this means that straight lines
Yy — aix = const, Yy — agx = const, Yy — a1z = const,

are characteristics of the operator P. Denote by Ry, Rs, ..., Re, characteristic
rays beginning at some point 0. Choose any triple of neighboring rays R;, say
Ri1,R2, Rs. Let R3 be the ray lying between R; and Rs. Consider a curvilinear
triangle D with sides OR C Ry, OQ C Ry and I' = R(Q), where I is an supposed
to satisfy the RiRq-angle condition. This means that if ¢ € I' and ¢; € Ry (resp.
q2 € Ry) is the projection of ¢ along Rs (resp. along R;) then the parallelogram
0q1qqs lies in D. The Dirichlet problem that we treat is as follows:

Given functions G € C'(D) and h € C(9D), find a solution of the boundary

value problem
(2.1) Pu=G in D; u=~h ondD.

Denote by C*(dD), k > 1, the space of continuous functions on 9D whose
restrictions to OR, O and (), R are k times differentiable.
The following result was obtained in the paper [6] by one of the authors:

Theorem 2.1 Assume that the curve I' has no points of tangency with char-
acteristics which are parallel to Ry or Ry. Then for any functions G € C(D)
and h € C*(OD), there exists a unique generalized solution u(x,y) of the problem
(1.1). The inverse operator: (G, h) — u is continuous: C(D)xC*dD) — C*(D).

However the existece of a classical solution u(x,y) € C3(D) was given in [6]
only in the case of a straight line I'.

In the present paper we generalize this last result to a more general class of
curves ['.



3 Classical solutions to a hyperbolic Dirichlet problem

Theorem 3.1 Assume that the curve I' satisfies the conditions of Theorem 2.1
and that the curvature C(T') is sufficiently small. If G € C*(D) and h € C3(9D),

then the generalized solution u(x,y) of the problem 1.1 is the classical one and

we have u € CS(E).

Proof. The proof consists of two parts. In part I we prowe Theorem 3.1 for the
case GG = 0. After this, in part 11, we construct a solution of the problem (1.1)
which belongs to the space C3(D) and vanishes on 9D. We will restrict ourselves
to the homogeneous operator P = P. The general case can be considered in the
framework of perturbation theory.

Part I. 1t is obvious that there exists such a linear change of variables in the
space R? which reduces the problem (1.1) (with G' = 0) to the problem

(3.1) (1105 + 120,)0:0,u =0 in D, u=~h on dD.

Here D is a domain in R? whose boundary 0D consists of three parts I'y UT', UT's
such that

where {; > 0, {3 > 0 and
(32) W0 =0, 2()=1 yO)=1 y(1)=0

Let h = hy(z) on I'1, h =ha(y)on I'y and h = hs(z,y) on I's. The continuity of
the function h leads to the natural compatibility conditions

(3.3) hy(0) = ha(0),  hi(1) = hs(1,0),  ha(1) = hs(0,1).

Since the domain D = {(z,y) | 0 < 2 < 2(t), 0 <y < y(t), 0 <t < 1} is
supposed to satisfy the R1R- angle condition (with Ry as a- and Ry as y- axes),
an arbitrary generalized solution u € C*(D), satisfying the boundary conditions
on I'y U Ty is nothing bit

xr

(3.4) u(z,y) = / (/F(m13 n mgt)dt) ds + hy(2) + ha(y) — ha(0),

0

(x,y) € D. Here m = (my,my) is the unit vector which is orthogonal to the
[ = (l1,13) and my > 0, mz < 0. As for the function F, this is an arbitrary



continuous function on the interval I = (mg,my). The necessity of satisfying
the boundary condition u = hs on I's leads naturally to the following integral
equation for the unknown function F' € C'(1)

z(t) [ y(t)
(3.5) / (/ F(myx + mzy)dy) de = H(t), 0<t<1,
0

0

where H(t) = —hl( t ) ( )—|—h3( (1), y(t )) +71(0). What is essential here
is that the function H(t), generated by an arbitrary function h € C*(dD), belongs
to the space C3([0,1]) = (C* U Cy)([0,1]). This follows from the compatibility
conditions (3.3).

Thus, in order to prove that the function u(x,y) (which is defined by (3.4))
belongs to the space C3(D) it is sufficient to prove that if H(t) € C3([0,1]), then
F e CHI).

Introduce the new variable
z =myx(t) + may(t), 0<t<I.

Since the domain D satisfies the angle condition, we have 2/(t) > 0, y'(¢) <0
for any t € [0,1]. Therefore, mia’(t) + mqy'(t) > 0 for all ¢, and there exists the
inverse function

t=o(z), z€l

for which = ¢/(z). Introduce the function
6(z) =ma(zoo)(z),  olz)=ma(yoo)(z),

where fog denotes the composition of two maps f and g. The following properties
of these functions which follow their definition will be important for us:

dz)+o(z) =2z, 0<6(z)<my, my<p(z)<0; 0<z<1.

Substituting o(z) instead of ¢ in the equation (3.5) we get

8(z)/m1 [ o(2)[ma
(3.7) / / F(myz + may)de | dy = H(z), zel,
0 0

where H = H oo € CF(I). According to conditions (3.2) the right and the left
hand sides of this equation vanish at the ends of the interval I. This means that
differentiating twice this equation we arrive at an equivalent equation that looks



as follows

z

(35)  F) - P (F o))~ PE)F 0 o)) +'(2) [ Flsds
o(#)

+0"(2) / F(s)ds =H"(z).
8(=)
Denote by Ty, k =1,2,..., the linear operator in the space C'(I) given by

Ty F— 5’k(F 0d)+ g’k(F 0 0).
Since the functions H"(z), §”(z), ¢"(z) belong to the space C'(I) and F(z) €
C(I), the function

& =mmyH" — 5"/F(3)d5 — g"/F(S)dS
0 1)

belongs to the space C''(I). Therefore, what remains to be checked is that the
relation

(3.9) F-TF =90,
implies /' € C*(I). In order to do this consider the “differentiated” equation
(3.9):
) e
(3.10) G — 5’3(G 0d)— Q/S(G 09)— 25’5"/G(3)d5 — Qngll/G(S)dS =9’
0 0
Denote by K the linear operator in C'(/)

) e
K:G— 25’5"/G(3)d5 + —ZQ’gll/G(s)ds.
0 0

Then the equation (3.10) takes the form
G-TG—-KG=9"

Note that because the curvature C of the curve I' equals

3/2

C(z) = 18'(2)o"(2) — 8"(2)' ()|} (5%(2) + (=) .



from (3.6) it follows that

[6(2)] = C(2) (8"(2) + 2" (2))

This means that for any ¢ > 0 the relation

3/2

3/2

C(z) < max(5'2(z) + 9’2(2))

entails

67(2)] <
Since §'(z) + o'(z) = 1 and §'(2)0'(2) > 0, we have

sup (5’3(2) + 9’3(2)) <1,

and consequently the norm of the operator 75 is less than one. The same is also
true for the operator T5 4+ K if the number ¢ is sufficiently small. Thus, the
equation (3.10) has the unique solution GG € C'(I). It is clear that the function

g for all z € 1.

v = /ZG(S)dS

satisfies the equation

d
— (U =To0) =3’
d:z;( 2V)

and consequently

U —To0 =&+ m,

where m is a constant. Set F' — W = ym. Then the function y belongs to the
space C'(I) and satisfies the equation

(3.11) x— Ty =1.

To prove that F' € C'*(I) we have to check that y € (7).
Since the norm of the operator Ty in C'(1) is less than one, the solution y of
the equation (3.11) can be written in the form

(3.12) =3 171
n=0

The functional series in (3.12) converges uniformly on the interval I. It remains
to prove that the differentiated series Y202 ((T5'1)'(2) also converges uniformly on
I. Denote

(T21)(z) = 6" (2) + 2"*(2) := ()



and let
max r(z) =T, Zm}ax 16"(2)] =7

Since

(T31)(2)] = [T(T371)(2)] < Fmax [T,
the inequality

(3.13) m}aX|Tfl| <) =7"
holds. Further,
d
E(Tznl) =28"8"(Ty ') 0§+ 200" (T3 1) 0 p
d d
—|—5'3 —T2”_11 0d + 9’3 —T2”_11 o 0.
dz dz

Since &' + o' =1, 6’0’ > 0 and |§"| = |o"| (cf. (6)) we get the inequality

d
< Frsup [Ty~ M| 4 Fsup ‘d—TQ”_ll
z

d
sup ‘ETfl
which implies, taking into account the inequality (3.13), the inequality

d
<7t 4 Fsup ‘ETQ”_ll

d
sup [—15'1
p ‘dz 2
By iterating this inequality we arrive at the estimate

—tm—1
<nrr"

d
sup ‘ETfl

which together with the inequality ¥ < 1 leads to the uniform convergence of
the series > |%T2”1|. Thus, the differentiability of the function y is proved, and
together with this Theorem 3.1 is proved for G = 0.

Part I1. In this part of the proof we present a C>-solution u of the equation

(llax —|— lzay)axayu = G iH D,

where (i is an arbitrary C''-function in overlineD. Changing x on [z and y on
[y and using again the notation u, G and D for the new functions and domain,
we reduce our problem to the equation

(D0 + 8,)0.0,u = G.



It has an obvious solution

z+y

1 _ _
2 J 2 2

H(x,y) = /x (/y G(S,t)dt) ds.

We are going to show that u € C3(D). It is clear that

where

_I_
H 1 — —
(3.14) gu=t _/ (Z—I-:L' y72 :z:-l-y)
2 4 2
z4+r—y z—x+Yy
_Hy< 2 2 )}dz’
and
r+y
3 1
(3.15) Ofu = TH, — 1 H, +8/ e — 2Hoy + Hy)

z4+r—y z—x+y
( , ) dz,
2 2
where H, = 0, H, H,, = 0*H etc. Since i € Cl(ﬁ), we have
PoyH(x,y) € C(D),  0:.0;H(x,y) € C(D),
and therefore the function

3 1 1o + +
z+r—y z—ax+y
°H,—~H —/ Yy ( , )d
A A er80( ) 9 9 -

belongs to the space C''(D). Assume for a moment that both functions

z+y
(I)l(xvy): / Hxx (Z—I_x_yvz_x—l_y)dzv
0

2 2
4y 4 4
z4+r—y z—a+y
Oy(z,y) = / Hyy< 5 \ 5 )dz,
0

belong to the space C''(D). Then by virtue of (3.15) we find that 9*u € C'(D)

and consequently 9u € C'(D). Because of the symmetry between the variables x

9



and y, we verify in just the same way that aj’u € C(D), and, finally, u € C3(D).

Thus it remains to check that ®;(z,y) € C(D), j = 1,2. A direct calculation
shows that

Hm:(”_y,z_““y) <Z+$_y,t)dt.
2
This means that
oty Zﬂ N
z4x—
0 0

Introducing new variables z + = — y = 2s;¢t = ¢, we get

Dy ( = —Z/x (S/x-l—y St)dt) ds.

In this form the differentiability of the function ®,(x,y) is guaranteed. In just
the same way one can check the differentiability of the function ®y(x,y). This
proves Theorem 3.1.
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