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Abstract

The index formula for elliptic pseudodifferential operators on a
two-dimensional manifold with conical points contains the Atiyah--
Singer integral as well as two additional terms. One of the two is the
‘eta’ invariant defined by the conormal symbol, and the other term is
explicitly expressed via the principal and subprincipal symbols of the
operator at conical points. In the preceding paper we clarified the
meaning of the additional terms for first-order differential operators.
The aim of this paper is an explicit description of the contribution
of a conical point for higher-order differential operators. We show
that changing the origin in the complex plane reduces the entire
contribution of the conical point to the shifted ‘eta’ invariant. In
turn this latter is expressed in terms of the monodromy matrix for
an ordinary differential equation defined by the conormal symbol.

AMS subject classification: primary: 58G10; secondary: 58G03.
Key words and phrases: manifolds with singularities, differential
operators, index, ‘eta’ invariant, monodromy matrix.
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Introduction

In [FST97] we proved the following index formula for elliptic pseudodiffer-
ential operators on a two-dimensional manifold with a conical point:

) |
ind A= [ AS(4)=5u(A) + L/ tr 05 Lo
SIxR

S*M 42

T dgde, (0.1)

M being the manifold in question whose cross-section close to the conical
point is identified with the unit circle S'.

The index is evaluated for A acting on weighted Sobolev spaces on M
as H*"(M, E°) — H*="™7(M, E'), where E° and E' are C"*° vector bundles
over the smooth part of M which behave properly when approaching the
conical point.

The first term on the right-hand side of this formula is the Atiyah-
Singer integral derived from the principal interior symbol oy of A and the
curvature forms Q° and Q! of the bundles £° and E!, respectively. We have

1 /1 _ 1 _ _
AS(A) = e (6 tr (o5 dog)” — 5 tr (QOUO Y000 + Q' 0ogo; 1)) .

The weight exponent v enters only the second term on the right side of
(0.1) which is known as the ‘eta’ invariant of the conormal symbol A, of A
at the conical point. More precisely,

HAD =~ LT (A2 )l i) = iy AT 4 i)+ ),
Tr being a regularised trace (cf. Melrose [Mel95]).

Both these terms occur in the Atiyah-Patodi-Singer formula for the
index of Dirac operators (cf. [APS75]). In contrast to this latter formula,
(0.1) contains the additional third term which does not vanish even for the
Cauchy-Riemann operator on the plane. This summand also depends on
the conormal symbol A.(7) only because the principal symbol oq and the
so-called subprincipal symbol

7 820'0

Osub = 01 + 561’65

are evaluated at the conical point. Here o; means the homogeneous com-
ponent of degree deg oy — 1 of the complete symbol of A.(7).

Of course, formula (0.1) is still true for manifolds with several conical
points. A slight change we have to do is that the ‘eta’ invariant and the
additional terms should be summed up over all conical points of M.

The aim of this paper is an explicit description of the contribution of
a conical point for elliptic differential operators. To this end we show first
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that by changing the origin in the complex 7-plane we can make the third
term to vanish reducing the whole contribution of the conical point to the
shifted ‘eta’ invariant. The new origin 7o which we refer to as the centre is
the root of the linear equation

(/ t -1 800 1
ro — T Csu
SIxR 0 or 0 b

The next goal is to express the ‘eta’ invariant in terms of the mon-
odromy matrix M(7) for an ordinary differential equation defined by the

=1
d¢dr = 0, (0.2)

T=-—1

conormal symbol A.(7). We introduce a phase function

(1) = % log det (M(T) + M7Y(r) — 2)

which is an analytic function of 7 with logarithmic ramification points. Then
our final index theorem reads

. 1
ind A = /S*M AS(4) + 5= Aryi(7) (0.3)

where Ar ;,¢(7) denotes the variation of the phase function along a suitable
contour defined by the weight line I' and the centre 75 (Theorem 3.1).

In some particular cases we may say more about the variation A, o(7).
For example, if the function f(7) = det(M(7) + M~'(7) — 2) is even with
respect to 7, that is

o =T) = f(ro+T),

then the second term in (0.3) may be calculated in terms of zeros of f(7) and
turns out to be half-integer (Theorem 3.2). Thinking over these properties
we have come to a generalisation of the symmetry conditions used in [SSS97].
A detailed treatment of this symmetry in the higher-dimensional case will
be given in a forthcoming paper.

Finally, we show that the above integrality of %Apﬁocp(r) holds for
any first-order elliptic system, no matter whether the symmetry condition
is fulfilled or not. To this end we investigate the asymptotical behaviour
of solutions and the monodromy matrix when R7 — foo and J7 remains
bounded. Although there exists vast literature on this topic, we have not
found the desired facts and were forced to prove them. The proof uses
the ideas of Faddeev and Takhtajan [FT87] for the non-linear Schrodinger

equation.

1 The existence of the centre

Recall that the neighbourhood of a conical point is treated as a cylindrical
end with coordinates t € Ry and @ € R mod (27). Since any complex vector
bundle over a circle is trivial, we may assume that E° = E' = C" over the



The existence of the centre 7

cylindrical end and, for given trivialisations, the connection one-forms I'°,
I't are equal to 0.
The conormal symbol of an mth order differential operator has the

form
m m—1

A(r) = am(:zj)ax—m—l—am_l(x,r)m—l—...—I—ao(:zj,r). (1.1)

So, it i1s an ordinary differential operator on a circle whose coefficients

m—k
ag(x,T) = Z aw(:z;)rl
=0

are polynomials in 7 of degree m — k. Thus, the principal symbol of the
operator A restricted to the boundary is

o0(A) = Y i (@) 78 ()"
k=0
and for the lower-order term we have
m—1
o1(A) = Z A—1—k k() " (if)m_l_k.
k=0

The interior ellipticity means that og(A) is an invertible matrix for any real
(&,7) # (0,0); in particular, the coefficient a,,(x) in (1.1) is an invertible
matrix-valued function on a circle. Without loss of generality we assume
that a,,(z) = 1, otherwise we change the frame in ' using a,, as a transition
matrix.

Replacing 7 by 747 in (1.1), we see that the shift by 75 in the complex
7-plane does not change the principal symbol ¢, while for ; we have a new
expression

— —|— 80'0
o1 =01+ —To.
1 LT 5T
The subprincipal symbol og,}, obeys the same rule
—_ 80'0
Osub = Osub + —=— T0-
ar

Thus, after shifting we obtain a new additional term in (0.1) proportional
to the left-hand side of (0.2). The following theorem guaranties a unique
solvability of the linear equation (0.2).

Theorem 1.1 For any elliptic differential operator A,

80'0
trogt =—
/SlxR 0 or

=1

drdé # 0. (1.2)

T7=-1
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Proof. Denoting det og by f(x,7,£), we have

tra_laao = f_ f
From ellipticity we deduce that the roots of the polynomial f = f(r,¢) for
fixed real 7 form two disjoint sets corresponding to the upper and lower
half-planes. The integrand in (1.2) is a rational function in ¢ decaying as
O(|€]7?) when £ — oo. Thus, integrating over £, we may replace the real
axis by a closed contour ci consisting of a large semicircle in the upper
(lower) half-plane and its diameter and surrounding all the poles in the
corresponding half-plane.
By the Euler theorem for homogeneous functions,

af 1 6_f)

[ G = =

so that

LorT L, 0f
| = mr — £f7! %

and the residue theorem yields

[

where ££ are the roots of the equation f(£1,€) =0 in the upper half-plane.
Since f(+1,&) = 0 is equivalent to f(1,+£) = 0, we see that at least one
set €T or £ is not empty. Thus,

SO+ 6)>0

proving the theorem. O

1 Of

/ a¢

—ff_

T=-—1

=1

d¢ = =2mi (3 &6+ &)

=—1

Remark 1.2 Our proof uses essentially the fact that f(7,¢) is a ho-
mogeneous polynomial. Clearly, for rational homogeneous functions f(7,¢)
having no zeros and poles on the real axis ¢ = 0 the theorem is not true.

2 The Green function and the monodromy
matrix

The operator

L)

is a pseudodifferential operator of order —2 on the circle, thus it belongs
to the trace class. Its trace may be explicitly calculated in terms of the
so-called monodromy matrix.
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Consider the ordinary differential equation
A(m)u = u(m)(:zj) + a1 (2, T)u(m_l)(x) + ... Fao(z, T)u(x) =0. (2.1)

Its solutions form a linear space of dimension mr. Since the coefficients are
2m-periodic functions, the shift w(z) — u(x + 27) defines a linear transfor-
mation M of the space of solutions called the monodromy.

Theorem 2.1 The monodromy transformations M(7), M~'(7) are en-
tire functions in 7, and

T d A_ldA() —1d21 dt(M()—I—M_l() 2)
P\ g e ) T o g e ’ ’ '

Proof. Any solution w(x) is uniquely defined by the vector of its
Cauchy data

!
i) =| “@ (2.2)
w1 ()
at some point xg. The monodromy carries the vector w(xg) to @(xo+2m) and
we may calculate the monodromy matrix as follows. Consider the Wronsky

matrix U(x, xg, 7) consisting of linearly independent vector-valued functions
(2.2) normalised by the initial condition

Ulpzz, = Ulxg, 20, 7) = 1. (2.3)
Then,

M(r) = U(xo+2m,20,7),
M= (1) = U(xo —2m,20,7).

The Wronsky matrix satisfies a first-order differential equation
A(r)U =0 (2.4)

where A(7) is given by the block matrix

d/dx -1 0
0 d/de ... 0
A(r) = (2.5)
0 0 -1
ao(e,7) ar(x,7) ... amer(x,7)+d/dx

Since the coefficients are polynomials in 7, the solution U(x, ¢, 7) is a holo-
morphic function in 7 € C and so are M(7) and M~'(r). We will express
the operator A’(7)A-'(7) through the first order operator (2.5).

Introduce the notion 3>~ B for the sum of diagonal blocks of a block
matrix B.
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Lemma 2.2 The following equality holds
AUT)AZ () = XA (n) AT (7).

Proof. To find A~'(7), write the equation Aw(7) = ¢ for @ in compo-

nents
duo
L
dzx ’
du1
T U2 = 0
dzx ’
dum—l
+ tm1Upm1 + ...+ GoUp = Vpy_1.
dzx
Eliminating
duo
U1 = — — Y
dzx ’

B d duo
vz = dr \ dx vo vl

and so on, we obtain an equation for ug of the form

(d/dx)™ ug + apm_r (d/dx)" " ug + ... + aguo = w

where w is a known function, namely a linear combination of vg, vy, ..., vm_1
and their derivatives. Thus, ug = AZ'(7)w, and moving backward we find
successively uy, Uz, ..., u,_1. The most simple expression we have in the
case when vg =v; = ... =v,,_3 = 0. Then
u = A7),
up = (d/dx) A7 (T)vm_1,
ums = (dfde)" ™ AT (7)o,

It follows that A~! exists exactly when AZ! does and

kL. % AC_I(T_)1
A= | o
* ... ok (df/dx)"t AZN(T)

where * means any expression whose explicit form is irrelevent. Next,
o 0 ... 0
Ay = | oo 7 (2.6)
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the prime meaning the derivation in 7, so that

0 0 0
A A =] ;
* X AUT)AZH(T)

proving the lemma.
0
Now we find A~!(7) in another way. Let = vary in the closed interval
[0,27] and let U(x,7) be the Wronsky matrix satisfying (2.3) at xg = 0.
The operator A~*(7), when considered on periodic functions on [0, 27], is an
integral operator whose kernel G(x,y,7) (the Green function) is a periodic
solution of the equation

A(T)G(z,y,7) = §(z —y).

We treat « as an argument while y € [0, 27] is considered as a parameter,
o being the Dirac d-function. This equation means that G satisfies the
homogeneous equation on [0,y) and (y, 27], whence

G(z,y,7) = Ulx,7)C_, for x€]0,y),
G(z,y,7) = Ulz,7)Cy, for x € (y,27],

the matrices C'x being independent of x. To produce the é-function, these
matrices should satisfy the relation

C(-I- —-(C_ = U_l(yv T)
while periodicity yields

C. = UQ2nr,7)C4
= M(T)C_|_

Solving this system, we get a usual expression for the Green function,
namely

_ U, ) (L= M(r))" Uy, 7), z€[0,y),
G@W”*‘{U@ﬁmﬂﬂu—ﬁﬂﬂy%rw%ﬂ, x € (y, 2],

or equivalently

Glx,y,7) =
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Using Lemma 2.2, we conclude that the operator (A.(7)AZ'(7))" has the

kernel

LY (AU M) - M) 0 (7))
+ %sgn(:p ) % (AN Uz, 1)Uy, 7)) - (2.7)

The second term vanishes at @ = y because from (2.6)

S LA = ()
= 0

since a,,_; is a linear function in 7. To calculate the trace of (A’ (7)AZ (7))
(which belongs to the trace class), we put @ = y in (2.7), take the matrix
trace and integrate over [0,27]. The second term in (2.7) may be dropped

and we obtain

' —1 r_ G
Tr (AC(T)AC (T)) —/0 tr a—(:z;,:z;,r)d:z;

T

= 5t (L M) = M) [ U ) A7), 7) de

To complete the proof of Theorem 2.1, we need the following lemma.

Lemma 2.3 We have

M= ()M () = — /2” U= (2, 7) A, 7)U (2, 7) dr.

0

Proof. Differentiating (2.4) in 7, we obtain
AU + A' (1)U =0 (2.8)

with an initial condition

Uz, 7) |s=0 = 0,

where the prime means derivation in 7. To find U’, we apply a variation of

constants to (2.8) looking for U’ in the form UV. Then (2.8) yields

dV ,
U % ‘|‘ .A (T)U = 0,
so that -
Vi(z) = —/0 U Ny, n)A'(y, ")U(y, ) dy
and

Ulz,7)=Ul(z,7) /090 U™y, ) A (y, ) U(y, ) dy.

Taking x = 27 yields the desired identity.
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Fig. 1: Variation of () along I'.

Now
' —1 r 1 d —1ag=1 g7
Tr (AL(r)ATNr)) = —5 ot (L M)(1 = M)~ MM
_ d —1as 1 d —1 a0
= thr(M—l) M—QthrM M
_ L e det(M — 12
2dr? 08 €€

which is precisely (2.1).

3 The index formula

Combining the results of Sections 1 and 2, we obtain a simple interpretation
of the boundary terms in the index formula (0.1). We also introduce a
symmetry condition generalising that of [SSS97]. It allows one to simplify
further the boundary term reducing it to the number of poles of AZ! in a
strip.

Consider two horizontal lines I'; I'g in the complex 7-plane, 'y passing
through the centre 75. In the strip between these lines the operator AZ!(7)
has a finite number of poles. In particular, for |R7| > To > 1 there are no
poles at all. Consider a contour starting at the point 79 — 7" with 7" > 0
large enough, so that |R(7 — T')| > To, then going along I' in the region
where |R7| < Tp, and terminating at the point 7o + T (see Fig. 1). The
function

1
(1) = 5 log det(M + M~ — 2)
is analytic with ramification points at zeros of
flr) = e
= det'* (M + M~ —2)
det(M — 1)
det/? M
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Clearly, the zeros of det(M(7) — 1) are the poles of AZ'(7). Denote by
o(ro + T) — ¢(1o — T) the variation of ¢(7) along the contour described
above and set

Aty () = Jim (¢(ra+T) = plra— 1), (3.1)
With this notation we have the following theorem.

Theorem 3.1 Let 79 be the centre and M(7) be the monodromy matrix
of the ordinary differential operator A.(T) on the circle. Then

|
'dA:/ AS(A) + — Ap of7). 3.2
nd A= [ AS(A) 4 = Anpr) (3.2

Proof. Let us consider the isomorphisms of the bundles £° E!' con-
sisting in multiplication by exp(i7ot). The local expressions for the operator

A = A.(—10/0t) in cylindrical charts change to
e~V AeiTt — A (—12 + 70)
ot Y
So, its conormal symbol changes to A.(T + 7).

If 79 is the centre, then according to Section 1 the boundary term
consists of

A ) = o T AT ()AL ). (33)

27

It is sufficient to compute (3.3) for 7o = 0. Consider

Q) =TF - (47 (L) = i 2 ) )

By Theorem 2.1, this quantity is equal to

o (o) - ingee(r)).

According to the definition of Tr (see Melrose [Mel95]) and n(A.), we

obtain
1
—577 —Th_g)lo/ drl/ (14 iy)d
the right-hand side being understood as a constant term in the asymptotic
expansion when 7' — oo. Thus,

T=T+uy

_% n(A) = m (c,o(T) - iv%@(ﬂ)

2m1 T—oo

T=—T41vy

and the variation of ¢(7) is taken along the weight line I' (for (9/07)¢(7),
the variation does not depend on the path). In the region |R7| > Ty where



The index formula 15

Fig. 2: The contour [ = {3 U [5.

©(7) is holomorphic in the strip between I' and the real axis, we may use
the Taylor formula, thus obtaining

o) 12 p() = plr — i) + Rofr,7)

where Ry(7,7) is a remainder term which tends to 0 for ®7 — +oo and
|S7| < C. Hence it follows that

the variation is taken along the contour in Fig. 1 with 7o = 0. This com-
pletes the proof.
O

There are important particular cases when the variation (3.1) can be
calculated by the residue theorem.

Theorem 3.2 Let f2(7) = det(M(7)+ M~'(7)—2) be an even function

with respect to the centre o, that is
Fro+T)=fAr-T) (3.4)

for any T. Then

ind A = /S*M AS(A)+ (p+ %q) sgn (S70 — ) (3.5)

where p is the number of zeros of f(7) (counted along with their multiplici-
ties) in the strip between I' and Iy, and q is the number of zeros on the line

I'.

Proof. To be specific, let Sy < . Consider a closed contour { = [ Ul,
where [y is the contour on Fig. 1 and [, goes along the line I'y bypassing
the zeros lying on 'y along small semicircles (see Fig. 2). Clearly,
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1 1
s Arng(r) = 5= Aulr)
27 27
1
= —p—— A .

We next observe that the variation of ¢(7) along [y is equal to the
sum of variations along all the semicircles. Indeed, the variations along the
segments of 'y cancel because of (3.4). When the radii of the semicircles
tend to 0, the variations along them tend to m¢ times the number ¢ of
zeros on ['g counted together with their multiplicities. This is the desired
conclusion.

O

Since the result is very simple, it is desirable to have simple sufficient
conditions for (3.4) to be fulfilled. One of these is the symmetry condition of
[SSS97] for the conormal symbol: there exist isomorphisms vo(x) and vy (x)

of the bundles E° and E'. such that

Ao = T) =wv1(x) Ac(1o + T) vo(x) (3.6)

for each real T'. Roughly speaking (3.6) means that the symmetry transfor-
mation 7 +— 279 — 7 acts on A.(7) by an automorphism of the algebra of
differential operators on S! induced by isomorphisms of the bundles E°, K.
We introduce more general symmetry conditions including automorphisms
generated by changes of variables.

Definition 3.3 The conormal symbol A.(7) is called symmetric (with
respect to the centre 7o) if there exist a diffeomorphism g : S* — S and
bundle isomorphisms

vo: ¢ EY — E°,
vy gEY — Bl
such that
Ao =T) = (g7 ) v A0 + T)vo g™ (3.7)

The definition gains in interest if we realise that differential operators
with symmetric conormal symbols meet the condition of Theorem 3.2.

Proposition 3.4 For symmetric conormal symbols (3.4) holds.

Proof. A diffeomorphism g: S' — S' is defined by a monotone function
g(z), € R, such that

g(x +2m) = g(x) + 27

where the sign ‘4’ means that g preserves the orientation while ‘—’ corre-

sponds to diffeomorphisms reversing the orientation. If U(x, 7 — T') is the
Wronsky matrix for A.(1 — T'), then by (3.7) we have

Uz, 70+ T) = vo(x)U(g(x), 70 — T) vy ().
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Taking x = 27, we obtain
M(7o+T) = vo(0) (M* (7 — 1)) w5 *(0).

Thus, in the case of orientation-preserving diffeomorphisms ¢ (in particular,
under the symmetry condition (3.6)) we have

M (o +T) = vo(0) M(70 = T) vy (0),
while an orientation-reversing diffeomorphism ¢ yields
M(mo+T) = vo(0) M~ (70 — T) v5 ' (0).

Both these properties imply (3.4) and thus (3.5).
0

Consider some examples illustrating Proposition 3.4.

Example 3.5 Let 70 = 0; g: @ — —z and vp = 1, vy = (—=1)". Then
(3.7) written for
al
AlT) = i
(1) = > arie)7 p

k+i<m
just amounts to the fact that

aw(—x) = (—1)m+k+l aw(:z;).

In other words, the coefficients are even matrix functions if & + [ and m
have the same parity, and odd functions otherwise. In particular, constant
coefficients will do, provided that ax; = 0 for £+ [ # m (mod 2).

O

Example 3.6 For a first-order scalar differential operator
d
A(r) = i a(x)r — b(x)

Proposition 3.4 always holds. Indeed, the monodromy is given by a scalar
factor

M(7) =exp (/(J%(a(x)r + b(x)) d:z;)

and the centre 1y is the root of the equation (0.2) which in our case reduces
to

(KQM@%+M@Mx:O

Clearly, M(1o — T) = M~ (o + T).
0

A particular case of this example is the Cauchy-Riemann operator on
a Riemann surface with conical points.

Remark 3.7 It is interesting that the index formula in the form (3.5)
under symmetry condition (3.7) is valid in the general setting of pseudodif-
ferential operators on a higher-dimensional manifold with conical singular-
ities. The proof using the ideas of [SSS97] and the machinery of [FST97]

will be given in a forthcoming paper.
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4 First-order operators

Consider in more detail the case of a first-order matrix-valued operator

A(r) = i — A(x)T — B(x). (4.1)
dx

We will show that, similarly to Example 3.6, the centre is completely de-
termined by the monodromy matrix, or rather by its asymptotic behaviour
when RT — oo while 37 remains bounded. The asymptotics implies that
the boundary contribution in the index formula (3.2) is half-integer pro-
vided the frames in E°, E' are chosen in an appropriate way. Consequently,
the Atiyah-Singer term also has a half-integer value. The interpretation in
terms of zeros as in (3.5) fails in general.

We begin with a choice of frames in E° and E'. By the interior el-
lipticity, the spectrum of A(z) at any « € S* does not intersect imaginary
axis, so it consists of two disjoint parts in the right and left half-planes. The
corresponding spectral projectors are given by the Cauchy integrals

Pulw) = oo [ (4 iA() ™ de (12
1 Jeg
where the contours c¢i surround the spectrum in the corresponding half-
planes. These projectors depend smoothly on x defining a splitting of the
trivial bundle C" = F° = E! into a direct sum of two subbundles. Like any
complex bundle over a circle, these subbundles are trivial. It follows that
we may choose a frame in C” with a transition matrix C'(x), so that

and
At =ict) (47 ) e

where a4 (x) are (r4 Xry)-matrices having the spectra in the right (left) half-
plane. Passing to new frames in F°, E' with the same transition matrix
C(x), we reduce the matrix A(x) to a block-diagonal form

Alz) = ( “+(§“'> a_(zx) ) . (4.3)

Here the matrices ax have their spectra in the right (left) half-planes. The
matrix B(x) changes to

d
c-1po v o
dx
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and may be written in a block form

bii(x) big(x
by = (o) o)) w

corresponding to (4.3). Thus, we have reduced the conormal symbol A.(7)
to the canonical form (4.1), (4.3), (4.4) with a block-diagonal matrix A(x).

Lemma 4.1 The centre 1y is the root of the equation

/02” (tr (ap ()7 + bu(2)) — tr(a_(2)r + bya(2))) de = 0. (4.5)
Proof. We have

oo = & — Alx)T;
oaupb = —B(x),

so equation (0.2) reduces to

r /%d:z;/ ((€+ i)™ = (€ = iA@@) ) (Ale)ro + B(x)) dé = 0.

Integrating over ¢ and using (4.2), we obtain

fr /02” ( DY ) (A(z)m + B(x))dz = 0,

which is precisely (4.5).

5 Lyapunov estimates

In this section we consider the so-called stable case when the part a4 (x)
n (4.3) is absent. So, all the eigenvalues of A(x) = a_(x) have negative
real parts. Such matrices will be called stable. The Wronsky matrix as a
function of z is a solution of the Cauchy problem

C;—g = (A(x)r+ B(x))U,
Ulpzy = L

The following theorem gives an estimate for the fundamental solution

Ulz,y,7) = Uz, 1)Uy, 7).

Theorem 5.1 Let A(x) be a stable matriz. Then there exist constants
C, d > 0 such that, for 7 > 1,

[U(z,y, 7)|| < C exp(=d(x—y)7), (5.1)

provided x >y, where || - || means any matriz norm.
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Remark 5.2 In the case of constant coefficients A and B, estimate (5.1)
is obvious, because the solutions can be expressed in terms of exponential
functions. For variable coefficients it is not, however, so obvious (recall
stable and unstable zones for the Schrédinger equation).

The following necessary and sufficient condition of stability is due to
Lyapunov (see e.g. [Gan86]).

Lemma 5.3 A complex matriz A is stable if and only if there exists a
Hermitian positive definite matriz X such that

AX 4+ XA=—1. (5.2)

Proof. If A is stable, so is A*. Hence both exp At and exp A*t are
exponentially decaying as ¢ — +o00. The matrix X may be defined by an
explicit expression, namely

X = /Oo exp(A™t) exp( At)dt. (5.3)
0
Indeed,
b &0 a b
A X+ XA = / e (exp(A™t) exp(At))dt
0
= —1.

Conversely, from (5.2) it follows, for an eigenvector e of A with an
eigenvalue A, that

(e,e) = —(XAe,e)—(Xe, Ae)
= —(A—I—X)(Xe,e).

Hence R < 0, as desired.
0
Proof of Theorem 5.1. If A(z) is a smooth periodic function in z,
then (5.3) shows that X (z) is also a smooth periodic function. In particular,
there are bounds independent of x, for

0<Cy < X(z) < Cy (5.4)

in the sense of quadratic forms. Denoting the usual norm in C" by |le|| =

(e,e), we define a new norm

lellx = /(Xe,e)

which is equivalent to the usual one. Then, inequalities (5.4) give a precise
form of the equivalence relations

Cullell® < lellx < Callel” (5.5)
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For a solution U(x,y,7), we consider the function

f@) = |[Uelk
= (U (z,y,7)X(2)U(x,y,7)e, €).

Differentiating and using (5.2), we get

%f: (U (A + BY"X + X(Ar + B) + X') Ue, )
T
= —r(Ue,Ue) + ((B'X + XB + X')Ue, Ue).

The matrix B*X + X B + X' is Hermitian and, for 7 large enough, we
have

—%SFX+XB+X§%

in the sense of quadratic forms. By (5.5), the norm ||Ue||* may be replaced
by [|Uel|%, hence
af

% < —de(l')

with some positive constant d. Dividing by f(x) and integrating from y to
x, with x > y, we obtain

f(z)
f(y)

log < —dt(x—1y)

which means that

U,y Tl @) < exp(=d (z —y) 7) [lell ).

Since the norms || - || x () are equivalent to any fixed norm || - ||, we come
to (5.1), which completes the proof.
0

This theorem has some obvious modifications. For example, an estimate
|U (2, YUy, 7)|| < C exp(—d(z—y)7) (5.6)

holds if 7 — —o0 and = < y. Next, we may replace a stable matrix A = a_
by a matrix A = a; with a spectrum in the right half-plane. In this case
we have

[U (2, 1)Uy, 7)|| < € exp(d(z —y) T) (5.7)
for 7 = 400 and <y or 7 =+ —oo and = > y, with some C., d > 0.

6 Asymptotics of solutions

In this section we consider the general case of equation (4.1) with a splitted
matrix A(xz). So, we write it in the form

g—g = (A(z,7)+ B(x))U (6.1)
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where

Az, 7) = ()Ur(gﬁ) )\_((; T))

ap ()T + by () 0
( 0 a— ()T + baa(x) ) (6.2)

is a block-diagonal part and

B(z) = ( 6210(:1;) 6120(:1;) )

is an antidiagonal part of the coefficients. We assume that both a_(2) and
—ay(x) are stable matrices.

Let us look for a solution of (6.1) in the form (cf. (4.5) in [FT87, Ch. 1])
Ulx,7) =14+ W(x,7))Z(x, 1), (6.3)

where 7 is a block-diagonal matrix and W is an antidiagonal matrix. Sub-
stituting (6.3) into (6.1) and separating diagonal and antidiagonal parts, we

obtain
VA
a—M/Z—I- Wa— = AMWZ+ BZ,
7 .
8_ = (A+ BW)Z.
dx
Eliminating 7, we arrive at a matrix Riccati equation for W
%—W:AW—WA—I—B—WBW (6.5)
x

Were W a solution of (6.5), the second equation in (6.4) would give us
an equation for Z with a block-diagonal coefficient A + BW.

To find W, we observe that equation (6.5) is equivalent to two separate
equations for wiy and wsyy,

ow

8:;2 = )\_|_w12 — wigA_ + by — w12521w127 (6-6)
ow

8;1 = A_wg — wor Ay + by — warbiatwo;. (6.7)

Assuming A1 to be of the form (6.2), let us consider 7 positive and large
enough. We will look for solutions to (6.6) and (6.7) on the closed interval
x € [0,27] with initial conditions

w12(27r) == 0,

we1(0) =
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Lemma 6.1 The solutions of (6.6), (6.8) and (6.7), (6.9) exist, for T

large enough, and satisfy the estimates

me(%T)H =

(6.10)
[war (@, 7)|| =
uniformly in x € [0, 27].

Proof. Let us consider the case of wy,, the reasoning for wy; is similar.
First we reduce (6.6), (6.8) to an equivalent integral equation. To this end,
let us treat f = b3 — wi2b21w12 as a known function and apply the variation
of constants to the equation

w’12 = )\_|_w12 — wlg)\_ + f

In other words, we look for a solution of the form

wig(z) = Uy (2)V(2)UZ N (z) (6.11)
where Uy (x,7) are fundamental solutions to the Cauchy problems
oUL
= A
Oz + U:|:7
Utlp=o = L
Substituting, we obtain
aVv 1
Fr U fu-

and taking into account (6.8),

Now, returning to (6.11) and replacing f(y), we come to the integral equa-
tion

wiz(7) = — /:W Us(2)UL N (y) (br2(y) — wia(y)bar (y)wia(y)) U-(y)UZ" (x)dy.

This equation may be solved by iterations. From Theorem 5.1 and what
has been said at the end of Section 5, we deduce that

10+ () U (W)l
V- (@)U ()]

for 7 > 1 and @ < y. In particular, these expressions are uniformly bounded
for 7> 1 and 0 < x <y < 27. The initial iteration

C exp(d(z —y)7), (6.12)
C exp(d(x —y)T) (6.13)

B /:W Up(2)UFH(y) bia(y) U-(y)UZ! () dy
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may be estimated by means of (6.12), (6.13) as

27 C
_ < =
C /x exp(2d(z —y)7) dy < 57

1
- oft).
T
When combined with the boundedness of (6.12) and (6.13), this es-
timate implies the convergence of the iterations and the desired estimate

(6.10).

Similarly, for wy; we obtain an integral equation

wy () = /: U_(2)U= () (baa(y) — war (y)br2(y)war (y)) Up(y) UL (z)dy

and then repeat the previous arguments.
O
Turning to the block-diagonal part, we denote by Zi(x,7) the entries
of Z. More precisely, we take them as solutions of the Cauchy problems

0z
P L (Ag + bi2way) Zy,
v (6.14)
Zile=o = 1
and
07_
p = (A= 4 bywia) Z_,
v (6.15)
Z_ |x:0 — 1

The crucial property of the coefficients in (6.14) and (6.15) is that, for

7 > 1, the matrix
1
Ao+ bywiy = A + 0 (;)

is stable and so is

— (A4 + braway) .

In particular, this implies estimates (5.1), (5.6) for Z_ and (5.7) for Z,.
We have thus constructed a solution of the form (6.3), with

Wiz, 7)=0 (l)

T

uniformly in z. It does not satisfy the initial condition U(0,7) = 1, but this
drawback can be easily corrected. Indeed,

V(z,7) = Uz, m)U0,7)
= (14+W(z,7)Z(z, 7)1+ W(0,7))""
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is the desired solution. For the monodromy matrix, we obtain

M(r) = V(2nr,71)
= (1+W(Q2rm)Z02r, 7)1+ W(0,7))""

= (o) S ) (100 (2)):

(6.16)

Finally, we apply (6.16) to compute the asymptotic expansion of the
phase function

(1) = % log det (M(T) + M7Y(r) — 2)

for R7 — 400 and |I7| < C. All the calculations will be performed modulo
mi. From (6.16) it follows that

M)+ MY (r)—2 = (1 L0 (l)) {Z(QW,T) (1 +0 (l))

T T

(ro (D)) zenn—2(1+0 O} (140 (2))

implying

(1o (2) #enn 20 ()} o (2).

A straightforward computation shows that the expression in curly brackets

(1) = % log det {Z(ZW,T) (1 +0 (l))

transforms further to

(TG 2o 00 N6 2 0mm)
+(Z;1<§m> ?)<1+O<%))(Z;l<gm> (1))
(7 D)0+ 0 2oma)} (0 20en)

Now, Z;'(2m,7) and Z_(27,7) decay exponentially for R7 — +oo.
Indeed, applying (5.1) for = 27 and y = 0, we get

|1Z-2n,7)|]] < C exp(—2ndr)

- o(t)
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the same is true for Z7'(27,7), as may be seen from (5.7) for = 0 and
y = 27. Hence the previous expression can be rewritten as

( Z+(%7Tﬁ> (1) ) (1 +0 G)) ( (1) Z:l(gﬂﬁ) )

so that

(1) = % log det Z, (27, 7) — % logdet Z_(2m,7) + O (l) :

T

Finally, using the Liouville formula for detZ; and detZ_. we arrive at

o(r) = % /027r tr (A + biaway )da — % OQW tr (A= + byjwys)dx + O (%)
= [ ) 4 b)) — (a4 e e 10 (1))
(6.17)

Similarly, an asymptotic formula for ¢(7) may be obtained as Rr —
—oo and 7| < C. The result will be given by (6.17) with the opposite
sign. We summarize these results as follows.

Theorem 6.2 Let Rt — +oo and |S7| < C. Then the following asymp-
totic formulas hold:

o(r) = i% /027r (tr (aq ()7 4+ b)) — tr(a— ()T + baa(x))) dx + mi Ny

10 (3) . (6.18)

T

The integers N1 remain undetermined. We may fix one of them, then
the other will depend on the path to be used for analytic extension.

Corollary 6.3 The variation Ar ,,0(7) is an integer multiple of mi.
Proof. Using (6.18) we write

Arp(r) = mi (N — N_)
o [ @)+ T) 4 b)) — (o (@)(r0 + T) + bia())) o
o [ s = T) 4 b)) = b (o (2)(r = T) 4 b)) o
The two integral terms give
/02” (tr (ag (2)70 + biy(2)) — tr (- (2)70 + baa(2))) da

which is zero in virtue of Lemma 4.1.
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