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Introduction

The theory of boundary value problems in Sobolev spaces for elliptic differential
equations is at present well known (e.g., see [1, 18]). The main theorem concerning
these problems states that under some algebraic conditions (the Shapiro—Lopatinskii
conditions) this problem is Fredholm. One of the important features of this the-
ory is that not any elliptic operator on a manifold with boundary admits boundary
conditions of the above type. It was found out ([3], see also [22, 23]) that the obstruc-
tion to the existence of (pseudo)differential Fredholm boundary value problems in
Sobolev spaces is of topological character, and hence a given elliptic operator admits
a Fredholm boundary value problem only if the corresponding obstruction vanishes.

Unfortunately, this obstruction does not vanish for some important geometric
operators like the Hirzebruch (signature) or Dirac operators. In particular, this
leads to the fact that the general formula for the index of elliptic operators on
manifolds with boundary (e.g., see [10, 22]) does not apply to these operators, which
are important in topology and Riemannian geometry.

An attempt to find a formula for the signature in the case of manifolds with
boundary has led Atiyah, Patodi, and Singer [2] to the consideration of a bound-



ary value problem for the Hirzebruch (and Dirac) operator in the space Ly. More
precisely, these operators are treated as unbounded operators in L, with domains
determined by homogeneous boundary conditions of a special form. In this set-
ting, these operators are Fredholm, and for example, the index computation for the
Hirzebruch operator on a manifold with boundary results in an expression for the
signature of the manifold in terms of its L-genus and an additional term called the
n-invariant [2].

However, the two cases are apparently quite different: while for an elliptic dif-
ferential operator A with boundary conditions of Shapiro—Lopatinskii type we can
either consider the boundary problem itself or treat A as an unbounded operator
in L? corresponding to the homogeneous boundary conditions, only the latter pos-
sibility is available if boundary conditions of Shapiro—Lopatinskii type do not exist
for A. Hence the following question is quite natural: Is there a general theory of
boundary value problems which includes the classical (Shapiro—Lopatinskii) problems
but also permits one to pose Fredholm nonhomogenecous boundary value problems
for elliptic operators for which classical boundary value problems fail to exvist? In
the present paper, we describe such a theory. Most of the ingredients needed there
are in fact contained in Seeley’s papers [24, 25]. However, for operators violating
the Shapiro-Lopatinskii condition he only considered homogeneous boundary value
problems in L?, of which the problems considered in [2] are a very special case.

Let us outline our main idea. Simple examples given by the Cauchy—Riemann,
Bitsadze [5], and other equations show that although they do not possess Fredholm
boundary value problems in Sobolev spaces, such problems do exist if the right-hand
sides in the boundary conditions belong to finer spaces (for example, for the Cauchy—
Riemann equations these are the Hardy spaces; e.g., see [6, 21]). In fact, these spaces
are (closed) subspaces of some Sobolev spaces, which permits one to suggest that
to define a Fredholm boundary value problem one must in the general case use sub-
spaces of Sobolev spaces. In the present paper, we implement this scheme. More
precisely, the (m — 1)st-order jets at the boundary of solutions of a homogeneous
mth-order elliptic equation always form a subspace of the Sobolev space of sections
of the corresponding bundle over the boundary, which readily gives a trivial example
of a boundary value problem of the above type. In classical boundary value prob-
lems, the boundary operator can be viewed as an isomorphic (or almost isomorphic,
i.e. Fredholm) mapping of this subspace onto the Sobolev space of sections of some
other bundle over the boundary. In nonclassical (general) boundary value prob-
lems, the mapping is onto a subspace that may be infinite-codimensional. From the
topological viewpoint, the obstruction to posing a classical (Shapiro—Lopatinskii)
boundary value problem is equivalent to the nonexistence of an isomorphism of a
certain vector bundle over T3 X = T*X\{0}, where X is the boundary, to the pull-



back of a vector bundle over X. From the analytical viewpoint, the obstruction
is the nonexistence of a pseudodifferential almost isomorphism between a certain
subspace of the Sobolev space of boundary jets and the Sobolev space of sections
of a vector bundle over X. It is easily recognized that the latter condition is the
“quantized” version of the former.

The structure of the paper is as follows. It consists of three sections. The first
section comprised the main results. Specifically, the definition of a general boundary
value problem is introduced and discussed in Subsection 1.1; a criterion for the
Fredholm property to hold is established in Subsection 1.2; a pseudodifferential
statement of general boundary value problems is described and the corresponding
finiteness theorem is proved in Subsection 1.3. Finally, in Subsection 1.4 we discuss
the Shapiro-Lopatinskii conditions.

The reasoning in Section 1 is based on the use of the Calderén—Selley boundary
projection operator [7, 24, 25], whose construction involves the inverse of an ellip-
tic operator on the double of the original manifold. This is a little disadvantage,
because it it intuitively clear that everything concerning the boundary conditions
must be determined by the behavior of the operator in question near the boundary
(or even at the boundary) rather that on the entire manifold (not to speak of the
rather ambiguous continuation to the double). That is why we have included Sec-
tion 2, where the finiteness theorem of Subsection 1.3 is proved be constructing a
parametrix of the problem in quite a “classical” manner (we freeze the coefficients
at an arbitrary point of the boundary, pass to the Fourier transform with respect to
the tangential variables, and study the resulting ordinary differential equation). We
do some preliminary work in Subsection 2.1, examine the model problem with frozen
coefficients in the half-space in Subsection 2.2, and construct the global parametrix
in Subsection 2.3.

Section 3 contains two simple and familiar examples, in one of which there are
no classical boundary value problems (the Cauchy—Riemann operator, Subsection
3.1), whereas the other possesses those (the Euler operator, Subsection 3.2).

Acknowledgement. The authors are deeply grateful to Dr. Vladimir Nazaikin-
skii, who has thoroughly read the manuscript, made a lot of valuable remarks, and
suggested quite a few improvements.



1 Main Results

1.1 Definition of general boundary value problems

Let M be a compact C'*° manifold with smooth boundary dM = X, and let
D: C%(M, E) — C%(M, F), (1)

where F and F' are vector bundles over M, be an mth-order elliptic differential
operator on M. We shall define the abstract notion of a general boundary value
problem (BVP) for the operator (1) (which includes classical BVPs as a special
case), introduce a specific construction of general BVPs, and show that with this
construction one can always achieve a BVP that is Fredholm in relevant function
spaces. As a by-product, we obtain the well-known condition for the existence of
classical boundary value problems satistying the Shapiro-Lopatinskii condition.

As usual in the theory of elliptic operators, we consider the operator (1) in
Sobolev spaces,

D: HY(M,E) — H="(M, F), 2)

where s > m — 1/2 is an integer. The boundary conditions will be imposed on the
(m — 1)st-order jet 7%~ '(u) of the solution u € H*(M, E) at the boundary; to treat
them conveniently, we take a collar neighborhood U of X in M and identify it with
the product X x [0,1) (for example, this can be done by choosing a Riemannian
metricon M, whence (x,t) € X x[0,1) can be identified with the point at a distance
t from X on the geodesic issuing from « € X in the inward normal direction). By
the trace theorem, we then have a continuous mapping

m—1

SR (ML E) = M (X E) = @ HTP(XE),
which takes each u € H*(M, E) to the (m — 1)st-order jet

j=0
Ju AN
.m_l _ _._ _._
Iy (u)—<u|X, ZatXV”’[( Zat> u] X)

at the boundary (here ¢*FE is the pullback of £ under the embedding

1 X — M,
and the restriction |, is defined by

Pl = lim ¢l
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the limit being taken in the corresponding Sobolev space on X'). For brevity, in the
following we sometimes write F instead of ¢*F.

Definition 1 A general boundary value problem for the operator (2) is a problem
of the form

Du=feH"M,F),
N (3)
BUY (u)=g€L

for the unknown function v € H*(M, E'), where L is some Banach space and

A
B: HYVAH(X,E) — L (4)
is a continuous linear operator.

In other words, a general BVP is an operator of the form
AN A
(D B o) - HY(M, B) — H™™ (X, E) & 5)

A A
with D and B as in (2) and (4).
A
Remark 1 We must draw a distinction between the boundary operator B oy ™" in
(3) and (5) and the “general boundary operators” (e.g., see Sternin [27, 28], where
they were considered in the framework of relative elliptic theory). The latter have

A A A
the form ¢* p, where p= j$ b is a pseudodifferential operator on M rather than on

A
X. On the one hand, our definition is more restrictive in that B oj% " is necessarily

a differential operator of order < m — 1 in the direction normal to the boundary

(this requirement sounds quite natural for boundary value problems, as opposed to

Sobolev problems). On the other hand, the codomain of ¢* 0 b is always a Sobolev
m—1

A
space, whereas B oy~ is allowed to act into an arbitrary Banach space.

Remark 2 A classical BVP is a specific case of (3) in which £ is the Sobolev space

A
of sections of some vector bundle over X and B is a (pseudo)differential operator.

The main reason for introducing the notion of a general BVP is that for a given

1/5 we can always find a problem (3) with the Fredholm property (which is not the
case with classical BVPs). As we shall see shortly, this readily follows from the

A

results of Seeley [24, 25], who however did not make the final step—for operators D
such that classical BVPs with the Shapiro-Lopatinskii condition fail to exist, he only
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considered problems with homogeneous boundary conditions (¢ = 0) and with é a
pseudodifferential operator. We point out that Seeley’s work essentially uses and
develops the ideas due to Calderdén ([7]; see also [8]), who was the first to introduce
projection operators of this type in order to study boundary value problems. Close
results are due to Boutet de Monvel [9] and Hérmander [17]. Calderén’s projections
found various applications in differential equations and mathematical physics (e.g.,

see [1, 15, 16, 17, 19, 20]).

1.2 The finiteness theorem (abstract case)
Let us show how Seeley’s reasoning can be adapted to our aims. First, we give an
intuitive argument to clarify the idea, and then fill in the missing details. By a

A
fairly simple technique, D can be extended to an elliptic differential operator on the
double 2M of the manifold M (note that 2M is a closed compact manifold), and
we can define a continuous operator extending any f € H*~™(M, F') to 2M with

A
smoothness s —m preserved. Since D is elliptic, it is now pretty clear that (modulo
a finite-dimensional defect, which can be neglected as far as the Fredholm property

AN
is concerned) we can use a right almost inverse of D to reduce problem (3) to a
problem of the same form with f = 0 (and, of course, with different ¢):

u € H (M, FE).

Now let

N(D,s) = {u e H(M,E)| Du=0)}
be the kernel of the operator (2). We see that the point is to describe the linear
manifold

Fo(D.s) = j5 7 (N(D.s)) € Hi7VA(X, E),
that is, the space of boundary data for the solutions in H*( M, F) of the homogeneous
equation. If Ro(ﬁ,s) is a subspace (i.e. is closed), then we can hope that any
operator é (see (4)) such that

; . Ro(D,s) = L (6)

Ro(D,s)
is an isomorphism or at least a Fredholm operator gives rise to a Fredholm BVP
(3). In particular, the simplest choice is as follows:

A A
L = Ry(D,s), and B is a continuous projection onto L.

7



Now we proceed to rigorous exposition. Let

No(D) = {u € C=(M)| Du=0, jo ' (u)=0}.

This is a finite-dimensional space.
Seeley proved the following assertion.

Theorem 1 ([24, 25]) There exists an operator

A

S: (C(X,E)" — C™(M, F)
such that

A
i) for any s, S extends to a continuous mapping

A

S: HTVA(X,E) = N(D.s) C HY (M. E);

i) N(ﬁ,s) is the direct sum of No(l/\)) and § (H;_I/Z(X,E)), that is,

A A A

N(D,s) = No(D)® S (Hy (X, E));

iii) the operator

Pt =7l 5 HITVA(X, E) = HETV2(X, E)

A A
is a conlinuous projection onto Ro(D,s); moreover, P+ is a pseudodifferential

A
operator whose principal symbol o(P T)(x,€) is a projection onto the space
L™ (x,&) of initial data of the solutions of the ordinary differential equation

(D) (x,O,f,—i%) o) =0

such that p(t) — 0 ast — 4o0.
A A
Corollary 1 Ro(D,s) =Im P T is closed.
Next, for each s Seeley constructed a bounded operator
O H (M, E) — H*(M, E)

8
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such that o
DC [f=f (10)

whenever f € H*™™(M, E) is orthogonal' to the finite-dimensional space No(l/\) *).

A A
In other words, (' is a right inverse of [) modulo finite-dimensional operators.
Now we can state and prove our first theorem concerning general BVPs.

Theorem 2 The general boundary value problem (3) (or, which is the same, the
operator (b)) is Fredholm if and only if the operator (6), i.e., the restriction

A A
B :Im Pt — L,

A
Im pt
has the Fredholm property.

Proof. First, we reduce the assertion to the case in which the right-hand side f
is zero.

Lemma 1 Problem (3) is Fredholm if and only if so is the problem
u=20,
(Jx '(w) =g €L

In other words, the operator (5) is Fredholm if and only if so is the operator

(11)

&> o>

A

Bojit: N(D,s) — L. (12)

Proof of Lemma 1. Obviously, the kernels of the operators (5) and (12) coin-
cide. Let us study the cokernels. We claim that the cokernel of the operator (5) is

isomorphic to that of the operator (12) plus (direct sum) No(l/\) *). Indeed, let f be

A

orthogonal to No(D *). Then, by (10), the substitution
A ~
u=C f+u
reduces problem (3) to problem (11) for u with ¢ replaced by

~ A LA
9=9— Bjx  C [.

I'We assume that some measure is chosen on M and some Hermitian metrics in the bundles
under consideration are fixed.



A
Since dim No(D *) < oo, the assertion follows readily.
Now we have the decomposition

m 1 A

m—1 /\_|_ B
Bo]X .N(DS)—>RO(D5) Im p™ — L,

and the assertion of Theorem 2 can readily be obtained from Lemma 1 and the
following statement.

Lemma 2 The operator

om—1 A A

Jx : N(D,S) - RO(Dv‘S) (13)
is Fredholm.

Proof. By the definition of Ro(ﬁ, s), the operator (13) is an epimorphism. Next,

by virtue of (7) the kernel of the operator (13) is just No(ﬁ), which is finite-
dimensional. This completes the proof of Lemma 2 and Theorem 2.

1.3 The finiteness theorem (pseudodifferential case)

In applications, it is often important to describe the space £ and the boundary
A
operator B in explicit terms. The form of the * snnplest” Fredholm BVP in which

AN AN
B=pP tand L =Im P * suggests such a description: B must be a pseudodifferential
operator acting in sections of vector bundles on X,

AN
B: HTVAXLE) — HO(X, ),

and the subspace £ C H?(X, () must be described as the image of some pseudod-
ifferential operator

P HO(X,G) — H°(X,G)

A
(for simplicity, we assume that P is a pseudodifferential operator of order zero).

A
Moreover, we assume that the principal symbol o(P)(x, ) is a projection operator

in (7°G)(z,e), (2,§) € Ty X, where

717X —- X

is the natural projection, the range of ]/5 is closed, and Im fgc Im ]/5 We endow
A
Im P with the Hilbert space structure inherited from H? (X, G).

10



A
Consider the general boundary value problem () is an elliptic operator)

A

Du=fe H"(M,F),
- (M, F) (14)
B

A
j¥ ') =g €lIm pC H?(X,G)
for the unknown function v € H*(M, E).

Theorem 3 Suppose that the following condition is satisfied:
A

(GSL) For any (x,&) € T3 X, the principal symbol o(B)(x,&) of the operator é

induces an isomorphism between the spaces® L™ (z,¢) and Im U(]g)(x,f)
Then problem (14) is Fredholm. In other words, the operator

AN A A
(D, Bojy™"): H*(M,E) — H*"™(M,F) & Im P
has the Fredholm property.

We shall refer to condition (GSL) as the coerciveness condition, or the generalized

A
Shapiro—Lopatinskii condition. For the case in which p= 1, we arrive at the usual
Shapiro—Lopatinskii condition (e.g., see [1]). This will be discussed in Subsection 1.4.
The advantage of the general condition is that a boundary value problem satistying

A
this condition can be posed for an arbitrary elliptic operator D (it suffices to take®
A A A
B=p=p 7).
Proof of Theorem 3. By Theorem 2, it suffices to prove that

A A A
B:Im Pt —=Im P (15)

A
is a Fredholm operator. First, let us make a technical remark. The operator P T

acts in the space
m—1

HVHX E) = HTP(XE) (16)

i=0

A
and is of order 0 in this space; hence the orders of matrix entries of P T vary
according to the orders of the direct summands in (16), and the principal symbol of

A
2Recall that L~ (x,€) is constructed from the principal symbol of the operator [ as the space
of solutions to Eq. (9) decaying as ¢ — +oo.

A
3More precisely, order reduction is needed so that P be a zero-order operator.

11



A

P T that we speak about is defined in the sense of Douglis-Nirenberg [13]. To make
things more convenient, let us take an invertible first-order elliptic pseudodifferential

A
operator A in C*°(X, F') and use the isomorphism

(1= diag (A" A2, A 0) s e V(X B) — (X B

to reduce the orders so as to avoid using principal symbols in the sense of Douglis—
Nirenberg. Thus, we replace
Pt by UP*U and B by BU
denoting the newly obtained operators by the same letters.
Now ]/5 * is of order 0, é is of order s — m + 1/2 — o, and the principal symbol
U(é) of é is an isomorphism between the ranges of U(]/5 *) and U(]g). Momentarily,
A

let us write A instead of o(A) for the principal symbol of any pseudodifferential

A
operator A.
Since any short exact sequence of vector bundles splits, it is an easy exercise in
linear algebra to find symbols

Ri, Ry € Hom (7*G 7 E™), w:T;X — X,
homogeneous of order o + m — s — 1/2 such that
PTR,=R;, i=1,2,
R\B=P", BR,=P

Set
AN AN AN
Ri=P" R, i=12
Then
AN AN AN
R(Im p)CIm p*
and
A A /\_I_ A
Rl B:P —I_le (17)
A A A A
BR, =P+ Q ,, (18)

A
where the @) | , are pseudodifferential operators of order —1 on X (hence compact
operators), and moreover,

A A
Im (P ) CIm(p ),
A A

Q
Q I (P) C Im (P)

12



(the latter inclusion is due to the fact that Im fgc Im ]/5) Now restricting (17) and
A A
(18) to Im P * and Im P, respectively, we obtain

AA A
1 B= 1Im]g++ Q 19
A A A A (19)
BR,=1 r+Q,+(P-1) .
Imp Im]/D\
A
Lemma 3 The operator (P —1)| s compact.

Imp
Proof. Let S be the unit sphere in Im ]/5 Consider the bounded operator
]3: H?(X,G)/Ker ]/5—> Im]/5

A A
induced by P. This operator is one-to-one, and since Im P is closed, it follows from

Banach’s open mapping theorem that ]3 ~1is bounded, and so ]3 ~1(9) is a bounded
set in H7(X,G)/Ker ]/5 Consequently, there exists a bounded set g’C H(X,G)

such that S :]/3 (S). Now

A AN A ~

(P =1)(8) = (P "= P)(5)

A A
is a relatively compact subset of H(X, ), since P *— P is an operator of order —1

(recall that P2 = P). Lemma 3 is thereby proved.
Now it follows from (19) that 7/\3 ; and 7/\3 , are, respectively, left and right

regularizers of é in the spaces (15). Thus, the operator (15) is Fredholm, which
completes the proof of Theorem 3.

1.4 The Shapiro—Lopatinskii condition

A A
If P is the identity operator, P= 1, then problem (14) turns into the classical bound-
A
ary value problem for the elliptic operator [ with boundary conditions specified by

the operator é (the right-hand side g in the boundary conditions is allowed to range
over the entire Sobolev space H7(X,()). Note that the principal symbol P(x,§) of

A
the operator P, which acts in the spaces

P(x,¢): (W*G)(%g) =G, — (F*G)(Lg),

13



in this case is the identity operator,
Im P(2,€) = (77G) (0,0,

so that condition (GSL) is reduced to the requirement that the symbol B defines an
isomorphism

B: L™ —rG, (20)

of bundles over X, where, of course,
L™ = 1T5X

is the bundle with fiber L™ (x,£) at any (x,¢) € TgX, and 7* : ToM — M is the
natural projection.

This is just the usual Shapiro—Lopatinskii condition.

We see that classical boundary value problems satisfying the Shapiro—Lopatinskii
condition exist if and only if L™ is isomorphic to the pullback under the natural
projection of some bundle over X.

The obstruction to the existence of such an isomorphism can be re presented as
follows (sf. [3, 22]). It suffices to deal with the cosphere bundle S*X instead of T3 X,
since the former is a retract of the latter (in plain words, it suffices to extablish the
existence of an isomorphism (20) on S*X and then extend it by homogeneity). For
each (z,&) € S*X, consider the ordinary differential operator

1/5 (x,6) = U(ﬁ) (x,O,f,—i%) : H"(R,) — LQ(R_I_)

with constant coefficients (cf. (9)). Since the coefficient of (9/0t)™ is nonzero, it

follows that {1/5 (x,€)} is a conditions family of Fredholm operators parametrized
by (x,€) € S*X, and consequently, the K-theoretic index

index {D (¢,6)} € K(5°X)
is well defined. Note that
AN
index {D (z,6)} = [L7],

where [L7] is the class of the bundle L~

phisms

s+y 10 K(S™X), since one has the isomor-

Ker D (2,€) = L™(,&)

14



(L~ (x,€) is the space of initial data of exponentially decaying solutions of (9) hence
of those solutions which belong to L*(R_)) and

Coker 1/5 (x,&) = {0}

A
(recall that D (x,€) is a differential operator). Now for the existence of an isomor-
phism (20) it is necessary that

index {D (z,6)} € T K (X),

where 7 : S*X — X is the canonical projection.

Summarizing, not every elliptic operator admits a classical boundary condition
of Shapiro—Lopatinskii type, and the obstuction to the existence of such problems
is of topological nature [3].

2 Construction of the parametrix

The proof of Theorem 3 given in Subsection 1.3 is quite abstract in that it is based
on the Calderéon—Seeley projection; here we give a different proof of this theorem by
explicity constructing a parametrix for problem (14).

The reader should be aware that the notation we use here (see Subsection 2.1)
slightly differs from that adopted in Section 1. The main difference is that we use
0/0t instead of —i10/0t so as to avoid an excessive amount of factors +¢ in all the
formulas.

2.1 Notation and preliminary considerations
Let M be a smooth manifold with boundary X = M, and let E;, ¢ = 1,2, be
complex vector bundles over M. Next, let

D: H (M, Ey) — H*"(M, Es)

be an elliptic pseudodifferential operator with principal symbol D.

In a neighborhood of X = 9M we introduce special coordinates (x,t) as in
Section 1. The dual variables will be denoted by (£, p). In this neighborhood, the
operator and the symbol have, respectively, the form

.0 0
—in §> + lower-order terms, (21)

D = D(x,t,&,p), EelrX, pecC. (22)

A
D=D (x,t,

15



Let
p; = pj(xvtvf)
be the points at which the symbol (22) is not invertible. The p; are obviously the
roots of the polynomial equation

det D(x,t,£,p) = 0.

To describe them more conveniently as eigenvalues of some matrix, we use the
following, quite standard trick. We have*

D=D(x,t,&,p)=p" + A, _p" "+ ..+ Ap+ Ay, A= Aix,t8).

Consider the matrix operator

p —1 0 ... 0

0 p —1 ... 0
A= 0O 0 p ... 0

AO Al A2 p‘I’Am—l

It is a block matrix each of whose blocks is an endomorphism of F (more precisely,
7*E, where 7 : Tf X — X).
Then the equation
D(x,t,6,p)u=0

is equivalent to
A($7t7p7€) U= 07
where
u

pu

]
Il

m—1

P u

Consequently, p; = p;(x, £, 1) are the eigenvalues of the endomorphism

0 +1 0 0
0 0 +1 ... 0
A= 0 0 0 ... 0 (7T E)" = (7T E)™. (23)
—Ay —A —A, ... —A,._

4By virtue of the ellipticity, the coefficient D(z,,0, 1) of (9/9t)™ is an invertible homomorphism
Fy — Es. Hence, we can assume that £y = F and D(z,t,0,1) = 1 (the identity homomorphism).
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Let ¢;(x,t,£) be the corresponding eigenvectors and associated eigenvectors of this
homomorphism.

Note that Re p;(x,t,£) # 0 for £ # 0 by virtue of the ellipticity, so that the
functions p;(x,t,£) (and, accordingly, the eigenfunctions ¢;(x,t,&)) split into two
subsets

{p;‘l_aj:1,...,k+}, Rep}l' > 0,
{py,i=1,...,k_}, Repj <0.

For simplicity, we assume that all eigenvalues of the endomorphism (23) are simple,
so that there are no associated eigenvectors.

For each triple (x,%,&), £ # 0, by

L™ =L (x,t,¢)

we denote the sum of eigenspaces of (23) corresponding to the eigenvalues

i (z,t,8), 5 =1,...,k_}.

Similarly, we introduce the spaces
Lt = Lt (x,t,9).

Obviously, for sufficiently small ¢ < ¢ we have the direct sum expansion

Lt (z,t,6) ® L™ (x,t,&) = LAV O

Let P~ (x,t,£) be the projection onto L™ (x,¢,£) along Lt (x,t,&), and let P (x,t,¢)
be the projection onto L*(x,¢,£) along L™ (x,t,&). Obviously,

i) P%(z,t,£) are matrices smoothly depending on (z,t, &), & # 0;
) P, €) + P(e,0,6) = 1

iii) P*(z,t,¢) are zero-order homogeneous in £.

2.2 The equation in the half-space

In the half-space R, consider the operator

A N a a S i3 S5—m i3
DwOZD <x0707_la_x7§> : H (R-I-’E) — H (R+,E)
obtained from (21) by freezing the coefficients at a point (x,0) of the boundary X.

A
Let us supplement the operator D, with boundary conditions so as to obtain a
Fredholm problem.
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Remark 3 According to Section 1, we consider boundary operators of the form
A o
B O]m 17

A
where B is a matrix pseudodifferential operator on X acting on sections of £™, and
7™ 1 is the (m — 1)st-order jet of a function u with respect to ¢ at ¢ = 0:

ou o™y
U — (u(:z;, 0), E(% 0),..., W(:p, 0)) :

where

H~I"YX(X E) — H(X,F)
for some bundle F' over X, is equivalent to the problem
A
{ Axo v = 77Z)7
A
By, v]i=0 = ¢,
where

are m-component vectors.

A
Let us study the kernel of the operator A, . By performing the Fourier transform

A (J;Ovova %) ;: 0.

Consequently, the elements of the kernel have the form?®

O E(E) = CE(E)e 1o (6),

where the C]i(f) are arbitrary functions of ¢ and the c,ojc(f) are the corresponding
eigenfunctions. Since the spectrum is simple, it follows that these functions depend

in x, we obtain the equation

°In the following formulas, in the coefficients of the operator and in the related p]»i and goji we

everywhere assume ¢t = 0.
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on the parameter ¢ # 0 regularly. Since the solutions of the original equation
must belong to the Sobolev space, the solutions with superscript + are excluded
automatically,

Cr(§) =0,

and the system of solutions of the homogeneous equation has the form
0T(E1) = CT (O 9T (6), G =1,k p.
J J J

Obviously, the boundary conditions must be chosen so as to determine the con-
stants C'7(£) uniquely. Let some boundary conditions

A

Bl’o v|t:0 = g

A
be given, where B, is a pseudodifferential operator with constant coefficients. The
Fourier transform algebraizes these conditions:

B,,(€) ¥ (£,0) =9 (¢). (24)

Note that the general solution of the nonhomogeneous equation

0 o~
A (l’o, 0757 a) v:¢

has the form

ke
=T+ CT (O (),
j=1
where ¥ * is some particular solution, and consequently, the initial data
ke
U im0 =0 "o + Z Cr(&)e; (€)
j=1

form a coset modulo the subspace L~ (x¢,€). Thus, the boundary condition (24)
acquires the form

B Y CT(O47 () =0 (€)= Buyl) ¥ loco

It follows that for C'7({) to be determined uniquely, we must require that
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i) the homomorphism B,,(¢) be a monomorphism on L™ (xg,&);

ii) the data g (£) lie in the range of this homomorphism, which is a subspace of

the fibre of I'.

It is natural to describe this subspace as the image of some projection P(¢),

9 (&) = P(E)gi(€)

for arbitrary ¢1(£). For conditions (24) to be well-posed, we must require that the
range of B,,({) be contained in the range of P(§).

Proposition 1 One has the equivalence
Im B, (§) CIm P({) & By (&) = P(f)Bg)(f)

for some homomorphism Bg)(f)

Proof. Suppose that
Im B, (£) C Im P(¢).
Then
P(&)B,,(£) = B,, (),

since P(£) is the identity operator on the range.
Conversely, if

B, (&) = P(&)BU(¢),

then obviously

Im B,, (€) C Im P(£).

Now, in order that the problem with conditions (24) have no cokernel in the
boundary conditions, we must require the operator B, (£) to be an isomorphism of
the spaces L™ (xo,¢) and Im P({). Under this condition, the problem

:@ZN(tv f)v (25)
g

{ A (0,0,6,2)  (1,€)
=9 (& () € Im P(¢)

B, (€) ¥ (€,0) =9 (),

is uniquely solvable. Let us find the solution.

1) We have

5 - A0.9] 760 =T 10
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Let us expand ;7) (t,€) in the basis

{e] (€5 =1, by 95 (6,0 =1, k_}.

Then the corresponding components satisfy the equation

n ~t

[%_p;t(g)] v (4,6 =y, (1,6),

whose solution has the form

t
~t

~t
5 = ety [t [ g ar

For the sign “47, we have Cj‘"(f) = 0 and the integration is from +oo to ¢, so that
the solution can be represented in the form

+ oo

~+ + _r ~+
(6 = - / T I (7 6 dr.

t

For the sign “~”, the functions C'7({) are arbitrary, and hence the integration is

from 0 to t:
¢

(6 = Cr @ [T O i g,

Finally, the general solution of the equation has the form

ke U B
(L = Y OTO Ve (e) + / DT g (1, €pi(€) dr

+00 gy

- [t e i

Using the projecttions P*({) and P~(£), we can expand the operator A into the
components

A=PTA+ P A=AT+ A".
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In these terms, we have

¢ too
_I_/eA ©0=7 p=(¢) J (r,&)dr — / A=) pt(¢) @7, (1,&)dr,

where
ke
=D O (0pi(6)
7=1
is an arbitrary element of the space L~ (o, ¢).
2) Let us now satisfy the boundary conditions. We have

+oo

5(0,6) =C (6) / AT PH(E) I (r,€) dr

0
and the boundary conditions acquire the form

+ oo

B..(6) =3 (€) + B, (€) / AP (E) U (r,6) dr

0

Since B, (£) is an isomorphism of L™ (zo,¢) onto Im P(§) = Im B, (), it follows
that the inverse

B (€) + Im B, (€) — L™ (w0,¢)

exists. We can extend the latter homomorphism to the entire F' by setting
BV = BLHEP(E).
Obviously, Bg(g0 1)(5) is a homomorphism of F' into F, and moreover,
i) Big (OB, () = 1 on L™ (wo.€):
i) B, (¢)B1 (&) = P(&);

iii) the range of Bg(go_l)(f) coincides with L~ (o, §).
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Now we have

+oo

C (&)= BV T (6) + BCI(E)B,, (6) / AN (. 6) dr

0

and the solution of the problem acquires the form

v(t,§) = OB

9 (€)+ B, (6) / AT OTPH(E) ¥ (7,0) dr]

0

t +o0
+ / AP (¢) () dr - / A OTIPH(E) () dr
= R[5

Let us prove that R is the exact resolving operator of problem (25).
First, we show that R is a right inverse.
1) The substitution into the equation gives

since
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2) The boundary conditions are satisfied. Indeed, we have

~

B, (/R(1,9) im0 = B, (€)BCV(€) § (€)

1B, ()BCV(E)B,, (€) / ANOTPH(E) U (.6 dr

+ oo

B, (¢) / AT PH(E) ) (v, ) dr = P(E) § (€) =3 (),

since B, (6)BSV(€) = P(¢), 9 (€) € Im P(€), and

B, (B (€)B,,(€) = B, (€)

by virtue of the inclusion Im B, () C Im P(¢).
Now let us prove that R is a left inverse. We have

a o ~ _ ~
" Ka - A<f>> 5, B,,(€) ¥ |] = A BED(E)(B,, iz

+o0 ~
‘|‘€_A_(£)tB9(UO_1)(€)BxO(€) / 6A+(§)TP+(€) (a_v — A(f) ; (f,T)) dr

t

+/€A—(£)(t—7)p—(§) (66_: —A(&) v (&T)) dr

+ oo

- / AT P () (g_ —A() v <f,r>) dr.

t

Integration by parts in the term with 0 v /07 in all three integrals yields

R K% . A(f)) 5B,(6) |} — OB, (€) ¥ limo)

o0

— BB, (P T i) + OB, (€) [ AT

0
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and

since Bg(co_l)(f)BxO () =1 on L™ (x0,¢). By summing these equations, we obtain

(BB, (€) = BEUEOB,, (P& = PO =0,
and consequently,
R (55— 4(©) & B0 7 o] =5 0,60

as desired.
It follows that the problem

{ A <:1;0,0, —i%, %) v(t,x) = (L, x),

B,, <—z%> v(0,2) = g(x) (%6)

has the regularizer

W)vg] x*fR[ xﬁfqvbvfﬁ—m’g]v
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where F stands for the Fourier transform, and the regularizer of the model problem
D <:1;0,0, —iaa—x, %) u(t,z) = f(t,2),
B, (=) i) (@) = gl)

under the above assumptions is given in the cited spaces by®

Rl[fvg] = Ro[a(f)hg]v

(27)

where a(f) = (0,...,0, f).

Remark 4 If we do not assume that g(«) € Im P (—i%), then, modulo smoothing

operators, one has
A L0\ .
R [Dl, u, B, (—z—) ]m_l] =u
0 0 ax

ﬁxo Rl[fvg] = f7
B, " Ralf gl = P (=i ) o

Note that the estimates of the regularizers are standard, and we omit them
altogether.

and

2.3 The general situation

Consider the boundary boundary value problem

{D“:f’ (28)

A ‘m—1

Bix u=g,
with v € H*(M,Ey), f € H* (M, E,), and ¢ € H?(X, F), where the F; are
bundles over M and [’ is a bundle over X. We assume that the conditions of

A A
Theorem 3 are satisfied. Namely, D is an mth-order elliptic operator, and B is an
operator in sections of bundles whose order is compatible with the indices of Sobolev
spaces, so that

3

A .
B: B H VX " E) — H(X, F)

0

J

SWe omit the standard cutoff functions in a neighborhood of ¢ = 0. Note that it is due to these
functions that the exact resolving operator for problem (25) becomes only a regularizer of problem
(27) after the Fourier transform.
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is a bounded operator and s —m + 1/2 > 0. We also assume that the right-hand
side g in problem (28) belongs to the range of a pseudo-differential operator

P: H(X,F) — H°(X, F)

of order zero with closed range, whose principal symbol P(x,£{) is a projection in
A
the fibres of 7*F for any (x,¢), £ # 0, and that the range of B is contained in the

range of ]/5 Finally, we assume that condition (GSL) is satisfied.

Now we are in a position to construct a parametrix for problem (28)

To this end, for any xy € X we consider the model problem (27). Let U,
be a sufficiently small neighborhood of 2o in M (the size of the neighborhood will

A A A
be specified later). By Dy, Bu, and Py we denote pseudodifferential operators

A A A
coinciding on functions with support in U with D, B, and P, respectively, and
satisfying the following condition: the symbols Dy, By, and P differ from D, ,
B.,, and P,, on the unit sphere at most by ¢ > 0 (obviously, for any ¢ > 0 there

exists a neighborhood U in which DU, BU, and PU can be constructed). Let R(xo)
be the regularizer of the model problem at zy. Assuming f and ¢ to be supported
in U, we have

A (w0)
(BB o vurE g = 2O

N o1 R (#0)
B] ¢U 1 [fvg]

where ¢y is a function with support in U such that ¢y = 1 on supp f and supp g¢
and 0 < ¢y < 1. Next, we have

D ¢oREV (S, gl =Dv bRV 9] = (Dv — Dy )RS, g]
Do, bRV LF ] + b Dy REO[F 4]
(DU—D$0)¢UR [fv ] [Dl’oqubU] 1’0 [fv ] f

A A
The principal symbol of Dy — D, does not exceed e. It follows that there exists a

pseudodifferential operator T[(Jl) with norm less than 2¢ and a smoothing operator

(Qu such that

A A
Dv = Dzy=Tv + Qu.
Consequently,

D R g = 4+ TP ) + QP(f ),
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and QS) is a smoothing operator.

1] <

Similarly, we have

where

A ‘m—1 R(l’o) :/\ 'm—lR(l’O)
B " WuRy™f, 9] =Bu oj 1 LS gl
PEARERA m—1 (z0) B m—1 (z0)
= (Bu = Buy) 0 J" Ry, 9] + [ By, u] 0 J" 7 0 Ry, 9]
+u Bay 0" R[S, g]
A A -1 (o) m—115(x0) 5
_(BU_BZ’O)O] 77Z)U,R“1 [fvg]+[B$07¢U]oj Rl [fvg]+77bU Pl’og
A A — (0) sm—1.15(20)
= (Bu — Bao) 0 J" 0o RYV[f, 9] + [Bao, Yul o j" RIS, 9]
— A A AN
+[tv, Paolg + (Pu — Pay )9+ Py -
Hence, there exists operators T[(Jz) and Qg) such that
AN - A
B " oo RS f.gl =P g + T (f.9) + QP (f.9).

and moreover,

|7

< 2e([|Rall + 1)

and Qg) is a smoothing operator.
Finally, we have the relation

AN - A
(D B oj" YRy (f.g] = (1. P 9) + Tu(f.9) + ([.9).
where ()r7 is a smoothing operator and Ty satisfies the estimate
1 Tul] < 22(2|[Rall + 1)
By choosing ¢ so small that
2:(2]|R4|| +1) < 1/2, (29)
we ensure that 1 4+ 7y is invertible and
A A | (o) -1 A
(D, B o™ o Ry > (1 +Tu) ([, 9) = (J; P g) + Qu(/, 9)-

Note that although the operator Ty depends on the choice of ¥y, the size of the
neighborhood in which inequality (29) is satisfied is independent of ¢y.
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From the cover {U,,} we now choose a finite subcover {U,,,j =1,...,N}. Let
A
V C M\ X be an open set supplementing this subcover to a cover of M. Let R be

A
a pseudodifferential regularizer of D on M\ X. Finally, let {e;, e} be a partition of
unity subordinate to the cover, and let 1;,% be the corresponding cutoff functions.
Standard computations show that the operator

N
Ro(f,9) =3 v+ T (fog) + v b f

is a regularizer of problem (28) in the sense that
AN AN A A
(DvB 0J )Rgl = (17P)+ Qv
A
where () is a smoothing operator. Obviously, by considering R, on the subspace

A
Im pC H?(X, F) (in the boundary component), we obtain a regularizer of problem
(28). The left regularizer can be constructed in a similar way. The proof is complete.

3 Examples

3.1 The Cauchy-Riemann operator

Consider the operator d/9%Z on a complex manifold M of (complex) dimension 1.
Obviously, this operator is elliptic. Suppose that the boundary X of M is purely
real, i.e., there exist coordinates z = = + 2y in a neighborhood of the boundary such
that the equation of X is {y = 0}. In these coordinates we have

s A0 o\ il 0
0z 2\ 0z Zay 2\ 0y ")

The symbol of this operator is

¢

5P+

D (p.¢)

(the variable y plays the role of ¢ in the general construction). We take F to be the
one-dimensional trivial bundle over X. For each point xo € X, we obviously have
p1(€) = —€. Furthermore

LHE) =R, L(6) = {0} for ¢ < 0:
L~(6) =R, L*(¢)={0} for >0,
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Consequently,
PF(&) =0(=¢), P7(£) =90(¢),
where 0 is the Heaviside function.

Since the dimension of L~(£) is not the same for ¢ < 0 and ¢ > 0, it follows that
L~ () is not isomorphic to the pullback of any bundle on X.

Now let .
{DUZﬁ (30

A
B u|y=0 =g

be a boundary value problem for the operator 1/5 Obviously, the bundle F' used
in the boundary conditions must be one-dimensional if we want the generalized
Shapiro—Lopatinskii condition to be satisfied. Next, in this case B(x,¢) is a scalar
function. The generalized Shapiro—Lopatinskii condition gives isomorphisms

B(z,§): R—=R, for{>0
B(z,¢): {0} = R, for { <0

on some subspaces. Clearly, the condition is satisfied if B(xz,&) # 0 for £ > 0,
B(x,£) =0 for £ <0, and the projection P(x,£) coincides with P~ ({). Under these
conditions, problem (30) with

we H'(M), f el (M), g€lm P (&) C H(M),

is Fredholm. Note that the range of the operator ]/5 ~ (&) is called the Hardy space
[6, 21].

3.2 The Euler operator

Consider an even-dimensional Reimannian manifold M with boundary” oM = X.
Let
d46: AY(M) — A°Y(M)

be the Euler operator (e.g., see [4, 14, 11, 12]) on M. In the coordinates (¢, x) near
X, this operator can be rewritten in the form

& (A +éx)eaa ) ( A(X) >_>< A(X) ) (31)
i % : Aodd(X) AOdd(X) )

Tt is assumed that near the boundary the metric is the direct product of a metric on X by the
standard metric d¢t? on R!.
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where dy and 6x are, respectively, the exterior differential on X and its metric
adjoint. To calculate the symbol of the Euler operator, note that

i) the symbol of dy is the exterior multiplication by i£dux;

ii) the symbol of éx is the interior multiplication by —i Ve, where V¢ is the vector
corresponding to {dx with respect to the metric gx.

Furthermore, we need the relation
iii)
(6 1 —Ve] o = —((€dan)(Ve)) + (Ve )(€da| o =~

where A and | are the operators of exterior and interior multiplication, respec-

tively (e.g., [26]).

It is convenient to prove i) — iii) in the coordinates in which the metric ¢ of the boundary is
(dz')? + ...+ (dz™)? over a given (fixed) point x5 € X. For w € A*¥(X), we have

wo= Z Wiy (@) dat A LA dalE,
J1<...<Jx
n—1 6w (1‘) ' '
D M 3L P
J1<..<Jr s=1 x
- x (i) e o) it na
J1<...<jr \s=1

which proves i).
Next, we have

dw=—xdsvw=—xd Z 1)76:Dg n(@)dz't AL A delnrr
J1< <

where | = (I1,...,lh—x—1) = l(j) is the tuple of indices complementary to j = (j1,...,Jz) and
o(j, 1) is the number of transpositions in the permutation taking (4,/) to (1,...,n—1).
Consequently,

bw = — Z ‘7(] D Z P dn s Adz't AL A dalrrr
J1<..<Jr
a(] 0 Owjy i o({s3,0,0") 7.1 l
Y Sy P gt | da,
ox?
J1<..<Jr 5=1
where ({f,...,1,_;) is the index tuple complementary to (s,l1,...,l,—x—1). Let us consider each

term of the sum. If s ¢ (j1,...,7%), then s € (l1,...,lh_r—1) and consequently, the exterior
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product do® Adz's A.. . Adz'n=*=1 is zero. If s € (j1,. .., ji), then (&4, ...l _ ) = (j1, .-, jr)\{s}-
Next, it is easy to verify that the sign of each term is (—1)* (n is even!), and we have

Z Z awé;s]k 8x5 da:]l A dETr

J1<.<Jr 5=1

Z Z ( axs)wjlmjk%deh/\.../\da:j’la

Ji<...<jr s=1

bw

Since Ve = 8/0x in our coordinates, this proves ii).
Finally, for any form w we have

w=del A" +w",
where w’ and w” do not contain 2/. Consequently,
[(608) (6551) + (6551 ) (teim)]
O Oxl
= &dad NEw + (@ )J@dm A" = dae?d A + & = Gw.
By summing this over j = 1,...,n — 1, we obtain iii).

Now the symbol of the operator (31) is

P e A V)
P ( e n—Ve) ) |

Let us find the spectral points and the corresponding subspaces of this operator
family.
We must have

p i(Ede A —V]) o\ 52)
i(Ede A —Vi)) p wodd |

where (note that it follows from general considerations that p # 0 for £ # 0)
po 4 i(Edx N =V ] ) =0,
that is,

W = —(da A — V]
p
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and

0 = i(Ede A Ve + puort® = ~(éda A —Ve] P 4 purtd

1
p
1
= —(p* — [ ),

whence it follows that
p(&) = px(&) = £ [¢].
Conversely, if p = £¢|,

¢

W = EFE(fdw A =Ve] )™, (33)

and w°dd € A°d4(X) is artibrary, then equation (32) holds. Hence the spectrum of
D(p, &) consists of the two points

p==E[¢

for any £ # 0, and the corresponding eigenspace is described by (33), where w®
ranges over the entire space A°d4(X). Similarly, we can prove that the eigenspace is

dd

described by the formula
i

W = ij(fdx A =Ve )™, (34)

where w*®" ranges over A®V(X).
Equations (33) and (34) show that the projections

Poy i AX) = A(X) @ A°M(X) — A(X)

and

Poaa s A(X) = A(X) @ A°M(X) — A°(X)

are isomorphisms of the space L_({) corresponding to the eigenvalue p_(&) = — [¢|
onto A®¥(X) and A°d(X), respectively. Consequently, for the Euler operator we
have the classical (Shapiro-Lopatinskii) Fredholm boundary value problems

{ﬁuzf, i {ﬁuzf,

Poulx = 1 Poaaulx = g9,

where

D=d+6: H (M, A“(M)) — H*™' (M, A°¥(M))
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is the Euler operator, and ¢; and g5 belong to

HS_I/Q(X, Aev(X))

and
]{5—1/2(}(7 AOdd(X)),
respectively.
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