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Abstract
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Introduction

The theory of boundary value problems in Sobolev spaces for elliptic di�erential
equations is at present well known �e�g�
 see ��
 ����� The main theorem concerning
these problems states that under some algebraic conditions �the Shapiro�Lopatinskii
conditions� this problem is Fredholm� One of the important features of this the�
ory is that not any elliptic operator on a manifold with boundary admits boundary
conditions of the above type� It was found out ����
 see also ���
 ���� that the obstruc�
tion to the existence of �pseudo�di�erential Fredholm boundary value problems in
Sobolev spaces is of topological character
 and hence a given elliptic operator admits
a Fredholm boundary value problem only if the corresponding obstruction vanishes�

Unfortunately
 this obstruction does not vanish for some important geometric
operators like the Hirzebruch �signature� or Dirac operators� In particular
 this
leads to the fact that the general formula for the index of elliptic operators on
manifolds with boundary �e�g�
 see ���
 ���� does not apply to these operators
 which
are important in topology and Riemannian geometry�

An attempt to nd a formula for the signature in the case of manifolds with
boundary has led Atiyah
 Patodi
 and Singer ��� to the consideration of a bound�
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ary value problem for the Hirzebruch �and Dirac� operator in the space L�� More
precisely
 these operators are treated as unbounded operators in L� with domains
determined by homogeneous boundary conditions of a special form� In this set�
ting
 these operators are Fredholm
 and for example
 the index computation for the
Hirzebruch operator on a manifold with boundary results in an expression for the
signature of the manifold in terms of its L�genus and an additional term called the
��invariant ����

However
 the two cases are apparently quite di�erent	 while for an elliptic dif�
ferential operator A with boundary conditions of Shapiro�Lopatinskii type we can
either consider the boundary problem itself or treat A as an unbounded operator
in L� corresponding to the homogeneous boundary conditions
 only the latter pos�
sibility is available if boundary conditions of Shapiro�Lopatinskii type do not exist
for A� Hence the following question is quite natural	 Is there a general theory of
boundary value problems which includes the classical �Shapiro�Lopatinskii� problems
but also permits one to pose Fredholm nonhomogeneous boundary value problems
for elliptic operators for which classical boundary value problems fail to exist� In
the present paper
 we describe such a theory� Most of the ingredients needed there
are in fact contained in Seeley�s papers ���
 ���� However
 for operators violating
the Shapiro�Lopatinskii condition he only considered homogeneous boundary value
problems in L�
 of which the problems considered in ��� are a very special case�

Let us outline our main idea� Simple examples given by the Cauchy�Riemann

Bitsadze ���
 and other equations show that although they do not possess Fredholm
boundary value problems in Sobolev spaces
 such problems do exist if the right�hand
sides in the boundary conditions belong to ner spaces �for example
 for the Cauchy�
Riemann equations these are the Hardy spaces� e�g�
 see ��
 ����� In fact
 these spaces
are �closed� subspaces of some Sobolev spaces
 which permits one to suggest that
to dene a Fredholm boundary value problem one must in the general case use sub	
spaces of Sobolev spaces� In the present paper
 we implement this scheme� More
precisely
 the �m � ��st�order jets at the boundary of solutions of a homogeneous
mth�order elliptic equation always form a subspace of the Sobolev space of sections
of the corresponding bundle over the boundary
 which readily gives a trivial example
of a boundary value problem of the above type� In classical boundary value prob�
lems
 the boundary operator can be viewed as an isomorphic �or almost isomorphic

i�e� Fredholm� mapping of this subspace onto the Sobolev space of sections of some
other bundle over the boundary� In nonclassical �general� boundary value prob�
lems
 the mapping is onto a subspace that may be in
nite	codimensional� From the
topological viewpoint
 the obstruction to posing a classical �Shapiro�Lopatinskii�
boundary value problem is equivalent to the nonexistence of an isomorphism of a
certain vector bundle over T ��X � T �Xnf�g
 where X is the boundary
 to the pull�
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back of a vector bundle over X� From the analytical viewpoint
 the obstruction
is the nonexistence of a pseudodi�erential almost isomorphism between a certain
subspace of the Sobolev space of boundary jets and the Sobolev space of sections
of a vector bundle over X� It is easily recognized that the latter condition is the
�quantized� version of the former�

The structure of the paper is as follows� It consists of three sections� The rst
section comprised the main results� Specically
 the denition of a general boundary
value problem is introduced and discussed in Subsection ���� a criterion for the
Fredholm property to hold is established in Subsection ���� a pseudodi�erential
statement of general boundary value problems is described and the corresponding
niteness theorem is proved in Subsection ���� Finally
 in Subsection ��� we discuss
the Shapiro�Lopatinskii conditions�

The reasoning in Section � is based on the use of the Calder�on�Selley boundary
projection operator ��
 ��
 ���
 whose construction involves the inverse of an ellip�
tic operator on the double of the original manifold� This is a little disadvantage

because it it intuitively clear that everything concerning the boundary conditions
must be determined by the behavior of the operator in question near the boundary
�or even at the boundary� rather that on the entire manifold �not to speak of the
rather ambiguous continuation to the double�� That is why we have included Sec�
tion �
 where the niteness theorem of Subsection ��� is proved be constructing a
parametrix of the problem in quite a �classical� manner �we freeze the coe�cients
at an arbitrary point of the boundary
 pass to the Fourier transform with respect to
the tangential variables
 and study the resulting ordinary di�erential equation�� We
do some preliminary work in Subsection ���
 examine the model problem with frozen
coe�cients in the half�space in Subsection ���
 and construct the global parametrix
in Subsection ����

Section � contains two simple and familiar examples
 in one of which there are
no classical boundary value problems �the Cauchy�Riemann operator
 Subsection
����
 whereas the other possesses those �the Euler operator
 Subsection �����

Acknowledgement	 The authors are deeply grateful to Dr� Vladimir Nazaikin�
skii
 who has thoroughly read the manuscript
 made a lot of valuable remarks
 and
suggested quite a few improvements�
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� Main Results

��� De�nition of general boundary value problems

Let M be a compact C� manifold with smooth boundary �M � X
 and let

�

D	 C��M�E�� C��M�F �� ���

where E and F are vector bundles over M 
 be an mth�order elliptic di�erential
operator on M � We shall dene the abstract notion of a general boundary value
problem �BVP� for the operator ��� �which includes classical BVPs as a special
case�
 introduce a specic construction of general BVPs
 and show that with this
construction one can always achieve a BVP that is Fredholm in relevant function
spaces� As a by�product
 we obtain the well�known condition for the existence of
classical boundary value problems satisfying the Shapiro�Lopatinskii condition�

As usual in the theory of elliptic operators
 we consider the operator ��� in
Sobolev spaces


�

D	 Hs�M�E� � Hs�m�M�F �� ���

where s � m� ��� is an integer� The boundary conditions will be imposed on the
�m� ��st�order jet jm��X �u� of the solution u � Hs�M�E� at the boundary� to treat
them conveniently
 we take a collar neighborhood U of X in M and identify it with
the product X � ��� �� �for example
 this can be done by choosing a Riemannian
metric on M 
 whence �x� t� � X���� �� can be identied with the point at a distance
t from X on the geodesic issuing from x � X in the inward normal direction�� By
the trace theorem
 we then have a continuous mapping

jm��X 	 Hs�M�E��Hs����
m �X�E� �

m��M
j��

Hs�����j�X� i�E��

which takes each u � Hs�M�E� to the �m� ��st�order jet

jm��X �u� �

�
ujX �� i

�u

�t

����
X

� � � � �

��
�i

�

�t

�m

u

�����
X

�

at the boundary �here i�E is the pullback of E under the embedding

i 	 X ��M�

and the restriction �jX is dened by

�jX � lim
����

�jt�� �
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the limit being taken in the corresponding Sobolev space on X�� For brevity
 in the
following we sometimes write E instead of i�E�

De�nition � A general boundary value problem for the operator ��� is a problem
of the form

�

D u � f � Hs�m�M�F ��
�

B �jm��X �u�� � g � L
���

for the unknown function u � Hs�M�E�
 where L is some Banach space and

�

B	 Hs����
m �X�E�� L ���

is a continuous linear operator�

In other words
 a general BVP is an operator of the form

�
�

D�
�

B �jm��X � 	 Hs�M�E�� Hs�m�X�E� � L ���

with
�

D and
�

B as in ��� and ����

Remark � We must draw a distinction between the boundary operator
�

B �jm��X in
��� and ��� and the �general boundary operators� �e�g�
 see Sternin ���
 ���
 where
they were considered in the framework of relative elliptic theory�� The latter have

the form i�
�

b
 where
�

b� j�X
�

b is a pseudodi�erential operator on M rather than on

X� On the one hand
 our denition is more restrictive in that
�

B �jm��X is necessarily
a di�erential operator of order � m � � in the direction normal to the boundary
�this requirement sounds quite natural for boundary value problems
 as opposed to
Sobolev problems�� On the other hand
 the codomain of i� � b is always a Sobolev

space
 whereas
�

B �jm��X is allowed to act into an arbitrary Banach space�

Remark � A classical BVP is a specic case of ��� in which L is the Sobolev space

of sections of some vector bundle over X and
�

B is a �pseudo�di�erential operator�

The main reason for introducing the notion of a general BVP is that for a given
�

D we can always nd a problem ��� with the Fredholm property �which is not the
case with classical BVPs�� As we shall see shortly
 this readily follows from the

results of Seeley ���
 ���
 who however did not make the nal step�for operators
�

D
such that classical BVPs with the Shapiro�Lopatinskii condition fail to exist
 he only
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considered problems with homogeneous boundary conditions �g � �� and with
�

B a
pseudodi�erential operator� We point out that Seeley�s work essentially uses and
develops the ideas due to Calder�on ����� see also ����
 who was the rst to introduce
projection operators of this type in order to study boundary value problems� Close
results are due to Boutet de Monvel ��� and H ormander ����� Calder�on�s projections
found various applications in di�erential equations and mathematical physics �e�g�

see ��
 ��
 ��
 ��
 ��
 �����

��� The �niteness theorem �abstract case	

Let us show how Seeley�s reasoning can be adapted to our aims� First
 we give an
intuitive argument to clarify the idea
 and then ll in the missing details� By a

fairly simple technique

�

D can be extended to an elliptic di�erential operator on the
double �M of the manifold M �note that �M is a closed compact manifold�
 and
we can dene a continuous operator extending any f � Hs�m�M�F � to �M with

smoothness s�m preserved� Since
�

D is elliptic
 it is now pretty clear that �modulo
a nite�dimensional defect
 which can be neglected as far as the Fredholm property

is concerned� we can use a right almost inverse of
�

D to reduce problem ��� to a
problem of the same form with f � � �and
 of course
 with di�erent g�	

�

D u � ��
�

B �jm��X �u�� � g�
u � Hs�M�E��

Now let

N�
�

D� s� � fu � Hs�M�E� j
�

D u � �g

be the kernel of the operator ���� We see that the point is to describe the linear
manifold

R��
�

D� s� � jm��X �N�
�

D� s�� 	 H
s����
m �X�E��

that is
 the space of boundary data for the solutions inHs�M�E� of the homogeneous

equation� If R��
�

D� s� is a subspace �i�e� is closed�
 then we can hope that any

operator
�

B �see ���� such that

�

B

����
R��

�

D�s�

	 R��
�

D� s�� L ���

is an isomorphism or at least a Fredholm operator gives rise to a Fredholm BVP
���� In particular
 the simplest choice is as follows	

L � R��
�

D� s�� and
�

B is a continuous projection onto L�
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Now we proceed to rigorous exposition� Let

N��
�

D� � fu � C��M� j
�

D u � �� jm��X �u� � �g� ���

This is a nite�dimensional space�
Seeley proved the following assertion�

Theorem � 
��� ���� There exists an operator

�

S	 �C
��X�E��m � C��M�E�

such that

i� for any s
�

S extends to a continuous mapping

�

S	 H
s����
m �X�E�� N�

�

D� s� 	 Hs�M�E��

ii� N�
�

D� s� is the direct sum of N��
�

D� and
�

S �Hs����
m �X�E�� that is

N�
�

D� s� � N��
�

D��
�

S �Hs����
m �X�E��� ���

iii� the operator

�

P
� � jm��X �

�

S	 Hs����
m �X�E� �Hs����

m �X�E�

is a continuous projection onto R��
�

D� s�� moreover
�

P � is a pseudodi�erential

operator whose principal symbol 	�
�

P ���x� 
� is a projection onto the space
L��x� 
� of initial data of the solutions of the ordinary di�erential equation

	�
�

D�

�
x� �� 
��i

�

�t

�
��t� � � ���

such that ��t�� � as t� !
�

Corollary � R��
�

D� s� � Im
�

P � is closed�

Next
 for each s Seeley constructed a bounded operator

�

C	 Hs�m�M�E�� Hs�M�E�

�



such that
�

D
�

C f � f ����

whenever f � Hs�m�M�E� is orthogonal� to the nite�dimensional space N��
�

D ���

In other words

�

C is a right inverse of
�

D modulo nite�dimensional operators�
Now we can state and prove our rst theorem concerning general BVPs�

Theorem � The general boundary value problem ��� �or which is the same the
operator ���� is Fredholm if and only if the operator ��� i�e� the restriction

�

B

����
Im

�

P�

	 Im
�

P
� � L�

has the Fredholm property�

Proof� First
 we reduce the assertion to the case in which the right�hand side f
is zero�

Lemma � Problem ��� is Fredholm if and only if so is the problem

�

D u � ��
�

B �jm��X �u�� � g � L�
����

In other words the operator ��� is Fredholm if and only if so is the operator

�

B �jm��X 	 N�
�

D� s�� L� ����

Proof of Lemma �� Obviously
 the kernels of the operators ��� and ���� coin�
cide� Let us study the cokernels� We claim that the cokernel of the operator ��� is

isomorphic to that of the operator ���� plus �direct sum� N��
�

D ��� Indeed
 let f be

orthogonal to N��
�

D ��� Then
 by ����
 the substitution

u �
�

C f!
�

u

reduces problem ��� to problem ���� for
�

u with g replaced by

�

g� g�
�

B jm��X

�

C f�

�We assume that some measure is chosen on M and some Hermitian metrics in the bundles
under consideration are 	xed�

�



Since dim N��
�

D �� �

 the assertion follows readily�
Now we have the decomposition

�

B �jm��X 	 N�
�

D� s�
jm��
X�� R��

�

D� s� � Im
�

P
�

�

B�� L�

and the assertion of Theorem � can readily be obtained from Lemma � and the
following statement�

Lemma � The operator

jm��X 	 N�
�

D� s�� R��
�

D� s� ����

is Fredholm�

Proof� By the denition of R��
�

D� s�
 the operator ���� is an epimorphism� Next


by virtue of ��� the kernel of the operator ���� is just N��
�

D�
 which is nite�
dimensional� This completes the proof of Lemma � and Theorem ��

��
 The �niteness theorem �pseudodi�erential case	

In applications
 it is often important to describe the space L and the boundary

operator
�

B in explicit terms� The form of the �simplest� Fredholm BVP in which
�

B�
�

P � and L � Im
�

P � suggests such a description	
�

B must be a pseudodi�erential
operator acting in sections of vector bundles on X


�

B	 Hs����
m �X�E� � H��X�G��

and the subspace L 	 H��X�G� must be described as the image of some pseudod�
i�erential operator

�

P 	 H��X�G� � H��X�G�

�for simplicity
 we assume that
�

P is a pseudodi�erential operator of order zero��

Moreover
 we assume that the principal symbol 	�
�

P ��x� 
� is a projection operator
in ���G��x���
 �x� 
� � T ��X
 where

� 	 T ��X � X

is the natural projection
 the range of
�

P is closed
 and Im
�

B	 Im
�

P � We endow

Im
�

P with the Hilbert space structure inherited from H��X�G��

��



Consider the general boundary value problem �
�

D is an elliptic operator�

�

D u � f � Hs�m�M�F ��
�

B �jm��X u� � g � Im
�

P	 H��X�G�
����

for the unknown function u � Hs�M�E��

Theorem � Suppose that the following condition is satis
ed�

�GSL� For any �x� 
� � T ��X the principal symbol 	�
�

B��x� 
� of the operator
�

B

induces an isomorphism between the spaces� L��x� 
� and Im 	�
�

P ��x� 
��
Then problem ���� is Fredholm� In other words the operator

�
�

D�
�

B �jm��X � 	 Hs�M�E�� Hs�m�M�F �� Im
�

P

has the Fredholm property�

We shall refer to condition �GSL� as the coerciveness condition
 or the generalized

Shapiro�Lopatinskii condition� For the case in which
�

P� �
 we arrive at the usual
Shapiro�Lopatinskii condition �e�g�
 see ����� This will be discussed in Subsection ����
The advantage of the general condition is that a boundary value problem satisfying

this condition can be posed for an arbitrary elliptic operator
�

D �it su�ces to take�
�

B�
�

P�
�

P ���

Proof of Theorem �� By Theorem �
 it su�ces to prove that

�

B	 Im
�

P
� � Im

�

P ����

is a Fredholm operator� First
 let us make a technical remark� The operator
�

P �

acts in the space

Hs����
m �X�E� �

m��M
j��

Hs�����j�X�E� ����

and is of order � in this space� hence the orders of matrix entries of
�

P � vary
according to the orders of the direct summands in ����
 and the principal symbol of

�Recall that L�
x� �� is constructed from the principal symbol of the operator
�

D as the space
of solutions to Eq� 
�� decaying as t� ���

�More precisely order reduction is needed so that
�

P be a zero�order operator�

��



�

P � that we speak about is dened in the sense of Douglis�Nirenberg ����� To make
things more convenient
 let us take an invertible rst�order elliptic pseudodi�erential

operator
�

" in C��X�E� and use the isomorphism

�

U� diag �
�

"
m���

�

"
m��� � � � �

�

"
�� 	 Hs����

m �X�E�� �Hs�m�����X�E��m

to reduce the orders so as to avoid using principal symbols in the sense of Douglis�
Nirenberg� Thus
 we replace

�

P
� by

�

U
�

P
�
�

U
�� and

�

B by
�

B
�

U
���

denoting the newly obtained operators by the same letters�

Now
�

P � is of order �

�

B is of order s�m! ��� � 	
 and the principal symbol

	�
�

B� of
�

B is an isomorphism between the ranges of 	�
�

P �� and 	�
�

P �� Momentarily


let us write A instead of 	�
�

A� for the principal symbol of any pseudodi�erential

operator
�

A�
Since any short exact sequence of vector bundles splits
 it is an easy exercise in

linear algebra to nd symbols

R�� R� � Hom���G���Em�� � 	 T ��X � X�

homogeneous of order 	 !m� s� ��� such that

P�Ri � Ri� i � �� ��

R�B � P�� BR� � P�

Set
�

R i �
�

P
�
�

R i� i � �� ��

Then
�

R i�Im
�

P � 	 Im
�

P
�

and
�

R �

�

B�
�

P
�!

�

Q �� ����
�

B
�

R � �
�

P !
�

Q �� ����

where the
�

Q ��� are pseudodi�erential operators of order �� on X �hence compact
operators�
 and moreover


�

Q �Im�
�

P
�� 	 Im�

�

P
���

�

Q �Im�
�

P � 	 Im�
�

P �

��



�the latter inclusion is due to the fact that Im
�

B	 Im
�

P �� Now restricting ���� and

���� to Im
�

P � and Im
�

P 
 respectively
 we obtain

�

R �

�

B� �
Im

�

P�
!

�

Q ��

�

B
�

R � � �
Im

�

P
!

�

Q � ! �
�

P ���

����
Im

�

P

�
����

Lemma � The operator �
�

P ���

����
Im

�

P

is compact�

Proof� Let S be the unit sphere in Im
�

P � Consider the bounded operator

�

P 	 H��X�G��Ker
�

P� Im
�

P

induced by
�

P � This operator is one�to�one
 and since Im
�

P is closed
 it follows from

Banach�s open mapping theorem that
�

P �� is bounded
 and so
�

P ���S� is a bounded

set in H��X�G��Ker
�

P � Consequently
 there exists a bounded set
�

S	 H��X�G�

such that S �
�

P �
�

S�� Now

�
�

P ����S� � �
�

P
��

�

P ��
�

S�

is a relatively compact subset of H��X�G�
 since
�

P ��
�

P is an operator of order ��
�recall that P � � P �� Lemma � is thereby proved�

Now it follows from ���� that
�

R � and
�

R � are
 respectively
 left and right

regularizers of
�

B in the spaces ����� Thus
 the operator ���� is Fredholm
 which
completes the proof of Theorem ��

��� The ShapiroLopatinskii condition

If
�

P is the identity operator

�

P� �
 then problem ���� turns into the classical bound�

ary value problem for the elliptic operator
�

D with boundary conditions specied by

the operator
�

B �the right�hand side g in the boundary conditions is allowed to range
over the entire Sobolev space H��X�G��� Note that the principal symbol P �x� 
� of

the operator
�

P 
 which acts in the spaces

P �x� 
� 	 ���G��x��� � Gx � ���G��x����

��



in this case is the identity operator


ImP �x� 
� � ���G��x����

so that condition �GSL� is reduced to the requirement that the symbol B denes an
isomorphism

B 	 L� � ��G� ����

of bundles over X
 where
 of course


L� � T ��X

is the bundle with ber L��x� 
� at any �x� 
� � T ��X
 and �� 	 T ��M � M is the
natural projection�

This is just the usual Shapiro�Lopatinskii condition�
We see that classical boundary value problems satisfying the Shapiro�Lopatinskii

condition exist if and only if L� is isomorphic to the pullback under the natural
projection of some bundle over X�

The obstruction to the existence of such an isomorphism can be re presented as
follows �sf� ��
 ����� It su�ces to deal with the cosphere bundle S�X instead of T ��X

since the former is a retract of the latter �in plain words
 it su�ces to extablish the
existence of an isomorphism ���� on S�X and then extend it by homogeneity�� For
each �x� 
� � S�X
 consider the ordinary di�erential operator

�

D �x� 
� � 	�
�

D�

�
x� �� 
��i

�

�t

�
	 Hm�R��� L��R��

with constant coe�cients �cf� ����� Since the coe�cient of ����t�m is nonzero
 it

follows that f
�

D �x� 
�g is a conditions family of Fredholm operators parametrized
by �x� 
� � S�X
 and consequently
 the K�theoretic index

index f
�

D �x� 
�g � K�S�X�

is well dened� Note that

index f
�

D �x� 
�g � �L���

where �L�� is the class of the bundle L�jS�X in K�S�X�
 since one has the isomor�
phisms

Ker
�

D �x� 
� � L��x� 
�

��



�L��x� 
� is the space of initial data of exponentially decaying solutions of ��� hence
of those solutions which belong to L��R��� and

Coker
�

D �x� 
� � f�g

�recall that
�

D �x� 
� is a di�erential operator�� Now for the existence of an isomor�
phism ���� it is necessary that

index f
�

D �x� 
�g � ��K�X��

where � 	 S�X � X is the canonical projection�
Summarizing
 not every elliptic operator admits a classical boundary condition

of Shapiro�Lopatinskii type
 and the obstuction to the existence of such problems
is of topological nature ����

� Construction of the parametrix

The proof of Theorem � given in Subsection ��� is quite abstract in that it is based
on the Calder�on�Seeley projection� here we give a di�erent proof of this theorem by
explicity constructing a parametrix for problem �����

The reader should be aware that the notation we use here �see Subsection ����
slightly di�ers from that adopted in Section �� The main di�erence is that we use
���t instead of �i���t so as to avoid an excessive amount of factors �i in all the
formulas�

��� Notation and preliminary considerations

Let M be a smooth manifold with boundary X � �M 
 and let Ei
 i � �� �
 be
complex vector bundles over M � Next
 let

�

D	 Hs�M�E��� Hs�m�M�E��

be an elliptic pseudodi�erential operator with principal symbol D�
In a neighborhood of X � �M we introduce special coordinates �x� t� as in

Section �� The dual variables will be denoted by �
� p�� In this neighborhood
 the
operator and the symbol have
 respectively
 the form

�

D� D

�
x� t��i

�

�x
�
�

�t

�
! lower�order terms� ����

D � D�x� t� 
� p�� 
 � T �xX� p � C� ����

��



Let
pj � pj�x� t� 
�

be the points at which the symbol ���� is not invertible� The pj are obviously the
roots of the polynomial equation

detD�x� t� 
� p� � ��

To describe them more conveniently as eigenvalues of some matrix
 we use the
following
 quite standard trick� We have	

D � D�x� t� 
� p� � pm !Am��p
m�� ! � � � !A�p !A�� Aj � Aj�x� t� 
��

Consider the matrix operator

A �

�
BBBB�

p �� � � � � �
� p �� � � � �
� � p � � � �
� � � � � � � � � � � � � � �
A� A� A� � � � p !Am��

	
CCCCA �

It is a block matrix each of whose blocks is an endomorphism of E �more precisely

��E
 where � 	 T ��X � X��

Then the equation
D�x� t� 
� p�u � �

is equivalent to

A�x� t� p� 
�
�

u� ��

where

�

u�

�
BB�

u
pu
� � �

pm��u

	
CCA �

Consequently
 pj � pj�x� 
� t� are the eigenvalues of the endomorphism

A �

�
BBBB�

� !� � � � � �
� � !� � � � �
� � � � � � �
� � � � � � � � � � � � � � �
�A� �A� �A� � � � �Am��

	
CCCCA 	 ���E�m � ���E�m� ����

�By virtue of the ellipticity the coe�cientD
x� t� �� �� of 
���t�m is an invertible homomorphism
E� � E�� Hence we can assume that E� � E� and D
x� t� �� �� � � 
the identity homomorphism��

��



Let �j�x� t� 
� be the corresponding eigenvectors and associated eigenvectors of this
homomorphism�

Note that Re pj�x� t� 
� �� � for 
 �� � by virtue of the ellipticity
 so that the
functions pj�x� t� 
� �and
 accordingly
 the eigenfunctions �j�x� t� 
�� split into two
subsets

fp�j � j � �� � � � � k�g� Re p�j � ��

fp�j � j � �� � � � � k�g� Re p�j � ��

For simplicity
 we assume that all eigenvalues of the endomorphism ���� are simple

so that there are no associated eigenvectors�

For each triple �x� t� 
�
 
 �� �
 by

L� � L��x� t� 
�

we denote the sum of eigenspaces of ���� corresponding to the eigenvalues

fp�j �x� t� 
�� j � �� � � � � k�g�

Similarly
 we introduce the spaces

L� � L��x� t� 
��

Obviously
 for su�ciently small t �  we have the direct sum expansion

L��x� t� 
�� L��x� t� 
� � ��Em
�x����

Let P��x� t� 
� be the projection onto L��x� t� 
� along L��x� t� 
�
 and let P��x� t� 
�
be the projection onto L��x� t� 
� along L��x� t� 
�� Obviously


i� P��x� t� 
� are matrices smoothly depending on �x� t� 
�
 
 �� ��

ii� P��x� t� 
� ! P��x� t� 
� � ��

iii� P��x� t� 
� are zero�order homogeneous in 
�

��� The equation in the half�space

In the half�space Rn
�
 consider the operator

�

Dx�
� D

�
x�� ���i

�

�x
�
�

�t

�
	 Hs�Rn

�� E�� Hs�m�Rn
�� E�

obtained from ���� by freezing the coe�cients at a point �x�� �� of the boundary X�

Let us supplement the operator
�

Dx�
with boundary conditions so as to obtain a

Fredholm problem�

��



Remark � According to Section �
 we consider boundary operators of the form

�

B �jm���

where
�

B is a matrix pseudodi�erential operator on X acting on sections of Em
 and
jm�� is the �m� ��st�order jet of a function u with respect to t at t � �	

u �

�
u�x� ���

�u

�t
�x� ��� � � � �

�m��u

�tm��
�x� ��

�
�

Obviously
 the problem 

�

Dx�
u � f�

�

Bx�
�jm��u � g�

where
�

Bx�
	
m��M
j��

Hs�j�����X�E�� H��X�F �

for some bundle F over X
 is equivalent to the problem

�

Ax�
v � ��

�

Bx�
vjt�� � g�

where
v � jm��u� � � ��� � � � � �� f�

are m�component vectors�

Let us study the kernel of the operator
�

Ax�
� By performing the Fourier transform

in x
 we obtain the equation

A

�
x�� �� 
�

�

�t

�
�

v� ��

Consequently
 the elements of the kernel have the form


�

v �j �
� � C�j �
�e
p�j t��j �
��

where the C�j �
� are arbitrary functions of 
 and the ��j �
� are the corresponding
eigenfunctions� Since the spectrum is simple
 it follows that these functions depend

�In the following formulas in the coe�cients of the operator and in the related p�j and ��j we

everywhere assume t � ��

��



on the parameter 
 �� � regularly� Since the solutions of the original equation
must belong to the Sobolev space
 the solutions with superscript ! are excluded
automatically


C�
j �
� � ��

and the system of solutions of the homogeneous equation has the formn
�

v �j �
� t� � C�j �
�e
p�
j
t��j �
�� j � �� � � � � k�

o
�

Obviously
 the boundary conditions must be chosen so as to determine the con�
stants C�j �
� uniquely� Let some boundary conditions

�

Bx�
vjt�� � g

be given
 where
�

Bx�
is a pseudodi�erential operator with constant coe�cients� The

Fourier transform algebraizes these conditions	

Bx�
�
�

�

v �
� �� �
�

g �
�� ����

Note that the general solution of the nonhomogeneous equation

A

�
x�� �� 
�

�

�t

�
�

v�
�

�

has the form

�

v�
�

v � !

k�X
j��

C�j �
�e
p�
j
���t��j �
��

where
�

v � is some particular solution
 and consequently
 the initial data

�

v jt�� �
�

v �jt�� !

k�X
j��

C�j �
��
�

j �
�

form a coset modulo the subspace L��x�� 
�� Thus
 the boundary condition ����
acquires the form

Bx��
�

k�X
j��

C�j �
��
�

j �
� �
�

g �
��Bx��
�
�

v �jt���

It follows that for C�j �
� to be determined uniquely
 we must require that

��



i� the homomorphism Bx��
� be a monomorphism on L��x�� 
��

ii� the data
�

g �
� lie in the range of this homomorphism
 which is a subspace of
the bre of F �

It is natural to describe this subspace as the image of some projection P �
�


�

g �
� � P �
�g��
�

for arbitrary g��
�� For conditions ���� to be well�posed
 we must require that the
range of Bx��
� be contained in the range of P �
��

Proposition � One has the equivalence

ImBx��
� 	 ImP �
� � Bx��
� � P �
�B���
x�

�
�

for some homomorphism B
���
x� �
��

Proof � Suppose that
ImBx�

�
� 	 ImP �
��

Then
P �
�Bx�

�
� � Bx�
�
��

since P �
� is the identity operator on the range�
Conversely
 if

Bx�
�
� � P �
�B���

x�
�
��

then obviously
ImBx�

�
� 	 ImP �
��

Now
 in order that the problem with conditions ���� have no cokernel in the
boundary conditions
 we must require the operator Bx�

�
� to be an isomorphism of
the spaces L��x�� 
� and Im P �
�� Under this condition
 the problem


A
�
x�� �� 
�

�
�t

� �
v �t� 
� �

�

� �t� 
��

Bx�
�
�

�

v �
� �� �
�

g �
��
�

g �
� � ImP �
�
����

is uniquely solvable� Let us nd the solution�
�� We have �

�

�t
�A�x�� �� 
�

�
�

v �t� 
� �
�

� �t� 
��

��



Let us expand
�

� �t� 
� in the basis

f��
j �
�� j � �� � � � � k�� �

�

j �
�� j � �� � � � � k�g�

Then the corresponding components satisfy the equation�
�

�t
� p�j �
�

�
�

v
�

j �t� 
� �
�

�
�

j �t� 
��

whose solution has the form

�

v
�

j �t� 
� � C�j e
p�j ���t !

tZ
ep
�

j ����t���
�

�
�

j ��� 
� d��

For the sign �!�
 we have C�
j �
� � � and the integration is from !
 to t
 so that

the solution can be represented in the form

�

v
�

j �t� 
� � �

��Z
t

ep
�

j ����t���
�

�
�

j ��� 
� d��

For the sign ���
 the functions C�j �
� are arbitrary
 and hence the integration is
from � to t	

�

v
�

j �t� 
� � C�j �
�e
p�j ���t !

tZ
�

ep
�

j ����t���
�

�
�

j ��� 
� d��

Finally
 the general solution of the equation has the form

�

v �t� 
� �

k�X
j��

C�j �
�e
p�
j
���t�j�
� !

tZ
�

k�X
j��

ep
�

j
����t���

�

�
�

j ��� 
��j�
� d�

�

��Z
t

k�X
j��

ep
�

j ����t���
�

�
�

j ��� 
��j�
� d��

Using the projecttions P��
� and P��
�
 we can expand the operator A into the
components

A � P�A! P�A � A� !A��

��



In these terms
 we have

�

v �t� 
� � eA
����t

�

C �
�

!

tZ
�

eA
�����t���P��
�

�

� ��� 
� d� �

��Z
t

eA
�����t���P��
�

�

� ��� 
� d��

where
�

C �
� �

k�X
j��

C�j �
��j�
�

is an arbitrary element of the space L��x�� 
��
�� Let us now satisfy the boundary conditions� We have

�

v ��� 
� �
�

C �
� �

��Z
�

e�A
�����P��
�

�

� ��� 
� d��

and the boundary conditions acquire the form

Bx�
�
�

�

C�
�

g �
� !Bx�
�
�

��Z
�

e�A
�����P��
�

�

� ��� 
� d��

Since Bx�
�
� is an isomorphism of L��x�� 
� onto Im P �
� � ImBx�

�
�
 it follows
that the inverse

B��x�
�
� 	 ImBx�

�
�� L��x�� 
�

exists� We can extend the latter homomorphism to the entire F by setting

B����
x�

�
� � B��x�
�
�P �
��

Obviously
 B����
x� �
� is a homomorphism of F into E
 and moreover


i� B
����
x� �
�Bx�

�
� � � on L��x�� 
��

ii� Bx�
�
�B

����
x� �
� � P �
��

iii� the range of B
����
x� �
� coincides with L��x�� 
��

��



Now we have

�

C �
� � B����
x�

�
�
�

g �
� !B����
x�

�
�Bx�
�
�

��Z
�

e�A
�����

�

� ��� 
� d�

and the solution of the problem acquires the form

�

v �t� 
� � eA
����tB����

x�
�
�


��g �
� !Bx�

�
�

��Z
�

e�A
�����P��
�

�

� ��� 
� d�

�
�

!

tZ
�

eA
�����t���P��
�

�

� ��� 
� d� �

��Z
t

eA
�����t���P��
�

�

� ��� 
� d�

� R�
�

��
�

g��

Let us prove that R is the exact resolving operator of problem �����
First
 we show that R is a right inverse�
�� The substitution into the equation gives�

�

�t
�A�
�

�
R�

�

��
�

g� � eA
����t�A��
� �A�
��B����

x�
�
�

�


��g �
� !Bx�

�
�

�Z
�

e�A
�����

�

� ��� 
� d�

�
� ! P��
�

�

� ��� 
�

!

tZ
�

e�A
�����t����A��
� �A�
��P��
�

�

� ��� 
� d� ! P��
�
�

� �t� 
�

�

��Z
t

eA
�����t����A��
� �A�
��P��
�

�

� ��� 
� d� �
�

� �t� 
��

since

�A��
� �A�
��B����
x�

�
� � � �recall that ImB����
x�

�
� 	 L��x�� 
���

�A��
� �A�
��P��
� � ��

�A��
� �A�
��P��
� � ��

��



�� The boundary conditions are satised� Indeed
 we have

Bx�
�
�R�

�

��
�

g�jt�� � Bx�
�
�B����

x�
�
�

�

g �
�

!Bx�
�
�B����

x�
�
�Bx�

�
�

��Z
�

e�A
�����P��
�

�

� ��� 
� d�

�Bx�
�
�

��Z
�

e�A
�����P��
�

�

� ��� 
� d� � P �
�
�

g �
� �
�

g �
��

since Bx�
�
�B

����
x� �
� � P �
�


�

g �
� � ImP �
�
 and

Bx�
�
�B����

x�
�
�Bx�

�
� � Bx�
�
�

by virtue of the inclusion Im Bx�
�
� 	 ImP �
��

Now let us prove that R is a left inverse� We have

R

��
�

�t
�A�
�

�
�

v�Bx�
�
�

�

v jt��

�
� eA

����tB����
x�

�
��Bx�

�

v jt��

!e�A
����tB����

x�
�
�Bx�

�
�

��Z
�

eA
�����P��
�

�
�
�

v

��
�A�
�

�

v �
� � �

�
d�

!

tZ
�

eA
�����t���P��
�

�
�
�

v

��
�A�
�

�

v �
� � �

�
d�

�

��Z
t

eA
�����t���P��
�

�
�
�

v

��
�A�
�

�

v �
� � �

�
d��

Integration by parts in the term with �
�

v ��� in all three integrals yields

R

��
�

�t
�A�
�

�
�

v�Bx�
�
�

�

v jt��

�
� eA

����tB����
x�

�
��Bx�
�
�

�

v jt���

�e�A
����tB����

x�
�
�Bx�

�
�P� �

v jt��� ! e�A
����tB����

x�
�
�Bx�

�
�

�Z
�

e�A
�����

��



�P��
��A��
� �A�
��
�

v �
� � � d� ! P��
�
�

v �t� 
�� eA
����tP��
�

�

v jt��

!

tZ
�

eA
�����t���P��
��A��
� �A�
��

�

v �
� � � d� � P��
�
�

v �
� � �

�

��Z
t

eA
�����t���P��
��A��
� �A�
��

�

v �
� � � d�

� eA
����t�B����

x�
�
�Bx�

�
� �B����
x�

�
�Bx�
�
�P��
� � P��
��

�

v jt��!
�

v �t� 
��

Note that we have

�B����
x�

�
�Bx�
�
� �B����

x�
�
�Bx�

�
�P��
� � P��
��P��
�

� B����
x�

�
�Bx�
�
�P��
� �B����

x�
�
�Bx�

�
�P��
� � �

and

�B����
x�

�
�Bx�
�
��B����

x�
�
�Bx�

�
�P��
�� P��
��P��
�

� B����
x�

�
�Bx�
�
�P��
� � P��
� � ��

since B
����
x� �
�Bx�

�
� � � on L��x�� 
�� By summing these equations
 we obtain

�B����
x�

�
�Bx�
�
� �B����

x�
�
�Bx�

�
�P��
� � P��
�� � ��

and consequently


R

��
�

�t
�A�
�

�
�

v� Bx�
�
�

�

v jt��

�
�
�

v �t� 
��

as desired�
It follows that the problem��

�
A
�
x�� ���i

�
�x

� �
�t

�
v�t� x� � ��t� x��

Bx�

�
�i �

�x

�
v��� x� � g�x�

����

has the regularizer
R���� g� � Fx��R�Fx����F��xg��

��



where F stands for the Fourier transform
 and the regularizer of the model problem��
�

D
�
x�� ���i

�
�x

� �
�t

�
u�t� x� � f�t� x��h

Bx�

�
�i �

�x

�
jm��u

i
�x� � g�x�

����

under the above assumptions is given in the cited spaces by�

R��f� g� � R����f�� g��

where ��f� � ��� � � � � �� f��

Remark � If we do not assume that g�x� � ImP
�
�i �

�x

�

 then
 modulo smoothing

operators
 one has

R�

�
�

Dx�
u�Bx�

�
�i

�

�x

�
jm��

�
� u

and ��
�

�

Dx�
R��f� g� � f�

Bx�
jm��R��f� g� � P

�
�i �

�x

�
g�

Note that the estimates of the regularizers are standard
 and we omit them
altogether�

��
 The general situation

Consider the boundary boundary value problem

�

D u � f�
�

B jm��X u � g�
����

with u � Hs�M�E��
 f � Hs�m�M�E��
 and g � H��X�F �
 where the Ei are
bundles over M and F is a bundle over X� We assume that the conditions of

Theorem � are satised� Namely

�

D is an mth�order elliptic operator
 and
�

B is an
operator in sections of bundles whose order is compatible with the indices of Sobolev
spaces
 so that

�

B	
m��M
j��

Hs�j�����X� i�E�� H��X�F �

�We omit the standard cuto� functions in a neighborhood of � � �� Note that it is due to these
functions that the exact resolving operator for problem 
��� becomes only a regularizer of problem

��� after the Fourier transform�

��



is a bounded operator and s �m ! ��� � �� We also assume that the right�hand
side g in problem ���� belongs to the range of a pseudo�di�erential operator

�

P 	 H��X�F �� H��X�F �

of order zero with closed range
 whose principal symbol P �x� 
� is a projection in

the bres of ��F for any �x� 
�
 
 �� �
 and that the range of
�

B is contained in the

range of
�

P � Finally
 we assume that condition �GSL� is satised�
Now we are in a position to construct a parametrix for problem ����
To this end
 for any x� � X we consider the model problem ����� Let Ux�

be a su�ciently small neighborhood of x� in M �the size of the neighborhood will

be specied later�� By
�

DU 

�

BU 
 and
�

PU we denote pseudodi�erential operators

coinciding on functions with support in U with
�

D

�

B
 and
�

P 
 respectively
 and
satisfying the following condition	 the symbols DU 
 BU 
 and PU di�er from Dx� 

Bx�
 and Px� on the unit sphere at most by  � � �obviously
 for any  � � there

exists a neighborhood U in which
�

DU 

�

BU 
 and
�

P U can be constructed�� Let R�x��
�

be the regularizer of the model problem at x�� Assuming f and g to be supported
in U 
 we have

�
�

D�
�

B jm��� � �UR
�x��
� �f� g�t �

�
� �

D �UR
�x��
� �f� g�

�

B jm���UR
�x��
� �f� g�

	
A �

where �U is a function with support in U such that �U � � on supp f and supp g
and � � �U � �� Next
 we have

�

D �UR
�x��
� �f� g� �

�

DU �UR
�x��
� �f� g� � �

�

DU �
�

Dx���UR
�x��
� �f� g�

!�
�

Dx�� �U �R
�x��
� �f� g� ! �U

�

Dx� R
�x��
� �f� g�

� �
�

DU �
�

Dx���UR
�x��
� �f� g� ! �

�

Dx�� �U �R
�x��
� �f� g� ! f�

The principal symbol of
�

DU �
�

Dx� does not exceed � It follows that there exists a

pseudodi�erential operator T ���
U with norm less than � and a smoothing operator

QU such that
�

DU �
�

Dx�� TU !QU �

Consequently

�

D �UR
�x��
� �f� g� � f ! T

���
U �f� g� !Q

���
U �f� g��

��



where
������T ���

U

������ � �
������R�x��

�

������ and Q
���
U is a smoothing operator�

Similarly
 we have

�

B jm���UR
�x��
� �f� g� �

�

BU �j
m��R�x��

� �f� g�

� �
�

BU �
�

Bx�� � j
m���UR

�x��
� �f� g� ! �Bx�� �U � � j

m�� � R
�x��
� �f� g�

!�U
�

Bx� �j
m��R

�x��
� �f� g�

� �
�

BU �
�

Bx�� � j
m���UR

�x��
� �f� g� ! �Bx�� �U � � j

m��R�x��
� �f� g� ! �U

�

P x� g

� �
�

BU �
�

Bx�� � j
m���UR

�x��
� �f� g� ! �Bx�� �U � � j

m��R
�x��
� �f� g�

!��U �
�

P x��g ! �
�

PU �
�

P x��g!
�

P g �

Hence
 there exists operators T ���
U and Q

���
U such that

�

B jm�� � �UR
�x��
� �f� g� �

�

P g ! T
���
U �f� g� !Q

���
U �f� g��

and moreover
 ������T ���
U

������ � ��jjR�jj! ��

and Q
���
U is a smoothing operator�

Finally
 we have the relation

�
�

D�
�

B �jm����UR
�x��
� �f� g� � �f�

�

P g� ! TU�f� g� ! �f� g��

where QU is a smoothing operator and TU satises the estimate

jjTU jj � ��� jjR�jj! ���

By choosing  so small that

��� jjR�jj! �� � ���� ����

we ensure that � ! TU is invertible and

�
�

D�
�

B �jm����UR
�x��
� �� ! TU�

���f� g� � �f�
�

P g� !QU�f� g��

Note that although the operator TU depends on the choice of �U 
 the size of the
neighborhood in which inequality ���� is satised is independent of �U �

��



From the cover fUx�g we now choose a nite subcover fUxj � j � �� � � � � Ng� Let

V 	 MnX be an open set supplementing this subcover to a cover of M � Let
�

R be

a pseudodi�erential regularizer of
�

D on MnX� Finally
 let fej� eg be a partition of
unity subordinate to the cover
 and let �i� � be the corresponding cuto� functions�

Standard computations show that the operator

Rgl�f� g� �
NX
j��

�jR
�xj�
� �� ! T

�j�
U ����f� g� ! �

�

R f

is a regularizer of problem ���� in the sense that

�
�

D�
�

B �jm���Rgl � ���
�

P �!
�

Q�

where
�

Q is a smoothing operator� Obviously
 by considering Rgl on the subspace

Im
�

P	 H��X�F � �in the boundary component�
 we obtain a regularizer of problem
����� The left regularizer can be constructed in a similar way� The proof is complete�

� Examples


�� The Cauchy�Riemann operator

Consider the operator ���z on a complex manifold M of �complex� dimension ��
Obviously
 this operator is elliptic� Suppose that the boundary X of M is purely
real
 i�e�
 there exist coordinates z � x! iy in a neighborhood of the boundary such
that the equation of X is fy � �g� In these coordinates we have

�

D�
�

�z
�

�

�

�
�

�x
! i

�

�y

�
�

i

�

�
�

�y
� i

�

�x

�
�

The symbol of this operator is

�

D �p� 
� �
i

�
�p ! 
�

�the variable y plays the role of t in the general construction�� We take E to be the
one�dimensional trivial bundle over X� For each point x� � X
 we obviously have
p��
� � �
� Furthermore

L��
� � R� L��
� � f�g for 
 � ��
L��
� � R� L��
� � f�g for 
 � ��

��



Consequently

P��
� � ���
�� P��
� � ��
��

where � is the Heaviside function�
Since the dimension of L��
� is not the same for 
 � � and 
 � �
 it follows that

L��
� is not isomorphic to the pullback of any bundle on X�
Now let 


�

D u � f�
�

B ujy�� � g
����

be a boundary value problem for the operator
�

D� Obviously
 the bundle F used
in the boundary conditions must be one�dimensional if we want the generalized
Shapiro�Lopatinskii condition to be satised� Next
 in this case B�x� 
� is a scalar
function� The generalized Shapiro�Lopatinskii condition gives isomorphisms

B�x� 
� 	 R � R� for 
 � �
B�x� 
� 	 f�g � R� for 
 � �

on some subspaces� Clearly
 the condition is satised if B�x� 
� �� � for 
 � �

B�x� 
� � � for 
 � �
 and the projection P �x� 
� coincides with P��
�� Under these
conditions
 problem ���� with

u � Hs�M�� f � Hs���M�� g � Im
�

P
��
� 	 Hs�����M��

is Fredholm� Note that the range of the operator
�

P ��
� is called the Hardy space
��
 ����


�� The Euler operator

Consider an even�dimensional Reimannian manifold M with boundary� �M � X�
Let

d ! � 	 "ev�M�� "odd�M�

be the Euler operator �e�g�
 see ��
 ��
 ��
 ���� on M � In the coordinates �t� x� near
X
 this operator can be rewritten in the form�

� �
�t

�dX ! �X�odd

�dX ! �X�ev
�
�t

	
A 	

�
"ev�X�

"odd�X�

�
�

�
"ev�X�

"odd�X�

�
� ����

�It is assumed that near the boundary the metric is the direct product of a metric on X by the
standard metric dt� on R��

��



where dX and �X are
 respectively
 the exterior di�erential on X and its metric
adjoint� To calculate the symbol of the Euler operator
 note that

i� the symbol of dX is the exterior multiplication by i
dx�

ii� the symbol of �X is the interior multiplication by �iV�
 where V� is the vector
corresponding to 
dx with respect to the metric gX �

Furthermore
 we need the relation

iii�
�
dx � �V�c�

�� � ���
dx���V�c� ! �V�c��
dxc�� � �
���

where � and c are the operators of exterior and interior multiplication
 respec�
tively �e�g�
 ������

It is convenient to prove i� � iii� in the coordinates in which the metric g of the boundary is

dx��� � � � � � 
dxn�� over a given 
	xed� point x� � X� For � � �k
X� we have

� �
X

j��			�jk

�j�			jk
x�dx
j� � � � �� dxjk�

d� �
X

j��			�jk

�
n��X
s
�

��j�			jk
x�

�xs
dxs

�
� dxj� � � � �� dxjk

�
X

j��			�jk

�
n��X
s
�

i

�
�i

�

�x

�
�j�			jk
x�dx

j

�
� dxj� � � � �� dxjk�

which proves i��
Next we have

�� � � � d � � � � � d
X

j��			�jk


�����j�l��j�			jk
x�dx
l� � � � �� dxln�k�� �

where l � 
l�� � � � � ln�k��� � l
j� is the tuple of indices complementary to j � 
j�� � � � � jk� and
	
j� l� is the number of transpositions in the permutation taking 
j� l� to 
�� � � � � n� ���

Consequently

�� � � �
X

j��			�jk


�����j�l�
n��X
s
�

��j�			jk
�xs

dxs � dxl� � � � �� dxln�k��

� �
X

j��			�jk

n��X
s
�


�����j�l�
��j�			jk
�xs


�����fsg�l�l
� �dxl

�

� � � � �� dxl
�

k�� �

where 
l��� � � � � l
�
k��� is the index tuple complementary to 
s� l�� � � � � ln�k���� Let us consider each

term of the sum� If s �� 
j�� � � � � jk� then s � 
l�� � � � � ln�k��� and consequently the exterior

��



product dxs�dxl� � � � ��dxln�k�� is zero� If s � 
j�� � � � � jk� then 
l��� � � � � l
�
k��� � 
j�� � � � � jk�nfsg�

Next it is easy to verify that the sign of each term is 
���s 
n is even�� and we have

�� � �
X

j��			�jk

n��X
s
�

��j� 			jk
�xs

�

�xs
cdxj� � � � �� dxjk

�
X

j��			�jk

n��X
s
�


�i�

�
�i

�

�xs

�
�j�			jk

�

�xs
cdxj� � � � �� dxj

�

k


Since V� � ���x in our coordinates this proves ii��
Finally for any form � we have

� � dxj � �� � ����

where �� and ��� do not contain xj� Consequently��
�jdx

j�
��

�j
�

�xj
c

�
�

�
�j

�

�xj
c

��
�jdx

j�
�	

�

� �jdx
j � �j�

� �

�
�j

�

�xj

�
c�jdx

j � ��� � ��j dx
j � �� � ��j�

�� � ��j�


By summing this over j � �� � � � � n� � we obtain iii��

Now the symbol of the operator ���� is

D�p� 
� �

�
p i�
dx � �V�c�

i�
dx � �V�c� p

�
�

Let us nd the spectral points and the corresponding subspaces of this operator
family�

We must have

�
p i�
dx � �V�c�

i�
dx � �V�c� p

��
�ev

�odd

�
� �� ����

where �note that it follows from general considerations that p �� � for 
 �� ��

p�ev ! i�
dx � �V�c��
odd � ��

that is


�ev � �
i

p
�
dx � �V�c��

odd

��



and

� � i�
dx � �V�c��
ev ! p�odd �

�

p
�
dx � �V�c�

��ev ! p�odd

�
�

p
�p� � j
j���odd�

whence it follows that
p�
� � p��
� � � j
j �

Conversely
 if p � � j
j


�ev � �
i

j
j
�
dx � �V�c��

odd� ����

and �odd � "odd�X� is artibrary
 then equation ���� holds� Hence the spectrum of
D�p� 
� consists of the two points

p � � j
j

for any 
 �� �
 and the corresponding eigenspace is described by ����
 where �odd

ranges over the entire space "odd�X�� Similarly
 we can prove that the eigenspace is
described by the formula

�odd � �
i

j
j
�
dx � �V�c��

ev� ����

where �ev ranges over "ev�X��
Equations ���� and ���� show that the projections

Pev 	 "�X� � "ev�X�� "odd�X�� "ev�X�

and
Podd 	 "�X� � "ev�X�� "odd�X�� "odd�X�

are isomorphisms of the space L��
� corresponding to the eigenvalue p��
� � � j
j
onto "ev�X� and "odd�X�
 respectively� Consequently
 for the Euler operator we
have the classical �Shapiro�Lopatinskii� Fredholm boundary value problems


�

D u � f�

PevujX � g�
and



�

D u � f�

PoddujX � g��

where
�

D� d ! � 	 Hs�M�"ev�M��� Hs���M�"odd�M��

��



is the Euler operator
 and g� and g� belong to

Hs�����X�"ev�X��

and
Hs�����X�"odd�X���

respectively�
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