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Abstract

We consider a G-invariant star-product algebra Aona symplectic
manifold (M, w) obtained by a canonical construction of deformation
quantization. Under assumptions of the classical Marsden-Weinstein
theorem we define a reduction of the algebra A with respect to the G-
action. The reduced algebra turns out to be isomorphic to a canonical
star-product algebra on the reduced phase space B. In other words,
we show that the reduction commutes with the canonical G-invariant
deformation quantization. A similar statement in the framework of ge-
ometric quantization is known as the Guillemin-Sternberg conjecture
(by now completely proved).

AMS subject classification: primary 58F05; secondary: 81510, 7T0H33.
Key words: deformation quantization, Hamiltonian group action, moment
map, classical and quantum reduction.

1 Introduction

We consider a symplectic manifold (M,w) with a Hamiltonian action of a
compact Lie group GG. Let G, G* denote the Lie algebra of (¢ and its dual



space. Supposing that the classical moment map p : M — G* exists glob-
ally on M, we denote by ey, es,...,€, a basis of G, X, X.,,..., X, the
corresponding vector fields on M and by p; = (u,e;) their Hamiltonians.
Clearly,

{/“Livﬂj} — Xei/vbj = ij/lk (11)

k. are structure constants of G and { , } the Poisson bracket on M.

]
Next we suppose that the assumptions of the classical Marsden-Weinstein

where ¢

reduction theorem [1] are fulfilled:

1. u = 0 is a non-critical value of the moment map,

2. the action of G on the level manifold My = {y = 0} is free.

Item 1 means that the differentials dyy, dus, . . ., dp, are lineary independent
on My, so by implicit function theorem My is a smooth manifold. From (1.1)
it follows that M,y is preserved under G-action. Item 2 implies that M is
a principal G-bundle over a base B = My/G which is the orbit space of
(G-action on M.

The algebraical version of the classical reduction procedure is as follows.
We consider the algebra of classical observables A = C*°(M) equipped with a
commutative pointwise product of functions and the Poisson bracket defined
by the symplectic form w. Define a subalgebra of G-invariant functions

Ag=H{a € A:{pu,a} =0} C A (1.2)

and an ideal J C Ag consisting of functions ¢ € Ay which may be represented
in the form a = biy;, so

J={acAy: a=Vby, b c A}. (1.3)
The reduced algebra is a quotient
R = Ao/ J. (1.4)

Like the original algebra A, R has a structure of the Lie-Poisson algebra. It
means that there is a commutative product on R, as well as the Lie algebra
structure {-, -} compatible with the product:

{ab,c} ={a,c}b+ a{b,c}, (1.5)

inherited from A,.



Theorem 1 (Marsden-Weinstein) There exists a symplectic form wp
on the reduced phase space B such that its lifting to My coinsides with the
restriction of w to My. The reduced algebra R is tsomorphic to the Lie-
Poisson algebra C°(B) with respect to the form wg.

A typical example of a classical reduction may be constructed starting
with any principal G-bundle P over a symplectic manifold (B,wg). Let A
be a connection one-form on P. It means that A is G-valued one-form on P
with the properties:

(X )A=e, g°A=Ad). (1.6)

Here X, denotes a vector field on P corresponding to e; € G.

Let M = P x G* with the action of &

g(p, &) = (pg, Ady¢)

where pg denotes the right action of G on the principal bundle. This action
preserves the form

w=wp —d(&N) (1.7)

which is non-degenerate for £ small enough. The moment map is

n(p, &) =&

In fact this example describes the general case: in the assumptions of the
Marsden-Weinstein theorem there exists an equivariant diffeomorphism f of
a G-invariant neighborhood of My in M to a G-invariant neighborhood of
P x0in P x G such that

W= f*(WB - d<§7 )‘>)

(the so-called normal form theorem [4]).

Passing to a quantum reduction, we first recall briefly a canonical con-
struction of deformation quantization (Section 2). More details may be found
in [2] or in the book [3]. The main technical lemmas concerning canonical
G-invariant deformation quantization are proved in Section 3. They allow
to define a quantum moment map: we show in Section 3 that the following
theorem holds.



Theorem 2 Under assumptions of the classical Marsden-Weinstein the-
orem the quantum Hamiltonians iy, iz, ..., [, obtained by the canonical G-
invariant quantization of the classical Hamiltonian functions py, po, ...,y
satisfy the relations .
%[ﬁuﬁj] = ¢l (1.8)

Note that (1.8) is a quantum version of (1.1). The existence of the quan-
tum moment map was proved in the thesis of A. Astashkevich [5] under
somewhat different assumptions.

Now we define a reduction for the algebra A of quantum observables
similarly to the classical case. We consider an invariant subalgebra

Ap={ae A:[j,a =0} (1.9)
and a left ideal J C A, generated by ji;, that is
J={ae A :a=0boji b e A}

where o denotes a multiplication in A. The reduced algebra is by definition
a quotient

R=Ay/J. (1.10)

The aim of this article is to prove the following reduction theorem for
canonical deformation quantization.

Theorem 3 Under assumptions of the classical Marsden-Weinstein the-
orem the reduced algebra R is isomorphic to the algebra obtained by the canon-
ical deformation quantization of the classical reduced algebra R = C*°(B).

In other words, the following diagram is commutative up to isomorphisms

Azco=(M) %
!
R=C>®(B) %

S

Here horizontal arrows mean canonical deformation quantization (G-invariant
for the upper arrow), while vertical arrows mean reduction procedure for the
classical (left) and quantum (right) cases. We prove this theorem first for
a particular case of the cotangent bundle of a Lie group (Section 4). The
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general case is considered in Section 5 using a modification of the canonical
quantization procedure for non-trivial coefficients bundles.

Note, that the reduction procedure in geometric quantization was inten-
sively studied in recent years. The final proof of the Guillemin-Sternberg
conjecture [6] may be found in [7, 8]. In contrast, the literature concerned
with the reduction in deformation quantization is very poor. Besides the
pioneer work [9] where a number of interesting physical examples was con-
sidered using the s-product approach we mention the book [3, Chapter §]
where a weaker result was obtained only for the Abelian case.

2 Canonical Deformation Quantization

The canonical construction which we are going to describe briefly deals with
sections of the so-called formal Weyl algebras bundle W over a symplectic
manifold M. Such a section is a "function”

a=a(x,y,h)= i hray, o(x)y” (2.1)

k,|o|=0

where @ € M, y € T.M, o = (o1,09,...,02,) is a multy-index, y* =
(yh )1 (y?)°2 ... (y*)*2, where y', ..., y*" are coordinates of the vector y in
a local frame of the tangent bundle T'M. The series in (2.1) is formal, we
assign to its terms a total degree 2k 4 |a| and order the terms with respect
to this degree. The space of all sections denoted by C°°(M, W) form an
associative algebra with respect to a fibrewise Weyl (Moyal) product

ih 0 0
aob=exp —5w ayiﬁ

) a(z,y,h) bz, z, h)|,_, . (2.2)

We also consider W-valued differential forms, that is the sections C*(W®
A), where A is the exterior algebra of T*M. Any diffeomorphism f of M
acts on sections a € C*(M, W @ A) by pulling them back:

(fra)(z,y,dz,h) =a (f(x), g—iy,df(x),h) :



If f is a symplectomorphism, f* preserves the product (1.2), thus f* is an
automorphism of the algebra C*(M,W @ A). Thus, a Hamiltonian vector
field X defines a derivation of the algebra of sections

d %
Lxa= Efta

=0
called the Lie derivative. Here f; is the Hamiltonian flow generated by X.
We define a derivation ¢ of the algebra C*(M,W @ A) by
da = —%[wijyldx],a] =dz' A a—;.,

§a =y (%) a.

Any symplectic connection on M induces a connection @ on the bundle

and the "adjoint” ¢*

W acting on sections (2.1) by covariant derivation of the coefficients aj ()
as tensor fields on M. In local Darboux coordinates d may be written in the
form

Z. Z' N
Jda = d,a + %[Fijky y]d:zjk, al

where I';;; are connection coefficients of the symplectic connection and d,
means the exterior differential with respect to z.
We will consider more general connections on W :

Da = da + %[’y,a] = da — da + %[r,a]

where v and r are global sections of the bundle W @ A! with degr > 3.
These forms are defined up to a central summand. To fix it we impose a
normalizing condition

7|y:0 = r|y:0 * (23)
The 2-form

Q= gRiy'y' + 07+ %’Y oy € C™(M,W @ A?)

is called the curvature of D. Here R;; = 1/2Rijkld:1;k A dz' is the curvature
of the symplectic connection.

The canonical deformation quantization is based on the following facts

2, 3.



Proposition 4 There exists a unique form r € C*(M, W @ A') with
degr > 3 satisfying two conditions:

dr =20 (2.4)
Q=—w. (2.5)
The first condition implies (2.3). The second one means that the curva-

ture is a central form, so

D*a = %[Q,a] =0
for any section a. The connection D with this property is called Abelian.
Having a connection D with the properties (2.4), (2.5), we define an algebra

Wp =Ha€ C*(M,W): Da =0}
of flat sections.

Proposition 5 There is one-to-one correspondence between flal sections

and functions from C*(M)[[h]] given by
Wp €a— o(a) =al,_, € C(M)[[R]].

The inverse map

Q: CZ(M)[[A]] = Wp

is called canonical quantization. It depends on the choice of the symplectic
connection d, but the corresponding algebras Wp turn out to be isomorphic.
Moreover, this isomorphism may be taken in a particular form which we are
going to describe. First we introduce gauge transformations of the algebra
of all sections C*°(M, W). To this end consider a "section”

U=1+ > hru.(a)y”. (2.6)

2k+|a|>0

In contrast to (2.1) here & may be any integer number, positive or negative.
The only restriction is that the total degree 2k 4 || should be positive.
Such formal series also form an algebra with respect to the fibrewise product



(2.2). So, U is a section of an extended formal Weyl algebras bundle which
we denote WT. Clearly, U is invertible since its leading term is 1.
For a given U of the type (2.6) define an inner isomorphism 7' of the
algebra C°°(M, W) by
Ta=UoaolU™" (2.7)

We call such an isomorphism a gauge transformation.

Proposition 6 Let 01,0y be two symplectic connections and Wp,, Wp, C
C(M,W) C C>(M,WT) corresponding algebras of flat sections. Then
there exists a section U C C°(M, W) of the type (2.6) such that the gauge
transformation T" maps the algebra Wp, onto Wp,.

Writing .
Dy=Di+7[A, ]
with a global section Ay € C*°(M, W @ A') satisfying
degAy >3, Ay],_, =0, (2.8)

we may find U as a solution of the equation
DUoU™" + %A’y =0 (2.9)
having a unique solution under the normalizing condition
Ul,—o=1. (2.10)
Note that for two sections
a; = Q1(a) € Wp,, dz = Qs(a) € Whp,

obtained by two different quantizations of the same function a € C*°(M)[[R]],

the equality
dy=UoaoU™" (2.11)

does not hold in general.



3 (G-invariant Canonical Quantization

If we have a Hamiltonian action of a Lie group GG, we will consider G-invariant
Abelian connections D, so that

D(g*a) = g*(Da)
for any section a € C*(M, W @ A) or
D/:Xea == ,CXS(DCL)

for any vector field X, defined by an element e of the Lie algebra.
The following facts are easy consequences of the propositions of the pre-
vious section.

1. If 9 is a G-invariant symplectic connection, then the corresponding
Abelian connection D is also G-invariant.

2. For two G-invariant Abelian connections Dy, Dy the form A~y is G-
invariant, that is

gGAy=Ay, LxAy=0. (3.1)

3. The solution U of (2.9), (2.10) defining an isomorphism T by (2.7)
between Wp, and Wp, is G-invariant.

Lemma 7 Let H. be a Hamiltonian function of the vector field X.,e € G.
If dH. # 0, then for a G-invariant Abelian connection D and for any section
a € C®(M,W @A)

Ly.a=(i(X)D + Di(X.))a + %[Q(He), al. (3.2)

Proof. The statement is local, so we may choose the Darboux local coor-
dinates such that P

Xe — He — wlixZ

-~ OzV’

(see, e.g. [3, Theorem 2.3.4]). For a special choice

D=d, + %[wijyidxjv ]
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we have ' '
Q(H.) = w2 +y).

The corresponding one-parameter group ¢g; acts on sections as
gia=a(z' +t,2%,... 2" y,dv, h),

so that Equality (3.2) becomes evident.
For another choice of the Abelian connection Dy = D + %[A’y,-] with
gi-invariant A~ we would have

Lx.a = (i(X)Dr + Dii(X.))a + Q(H) = i(X.) 2]
because the addition of [Ay, - ]/h to D and —i(X.)A~y to Q(H) simultane-

ously doesn’t change the right-hand side. It remains to show that the section

Q(H) — i(X)A~ is equal to Q1(H). Because of (2.8)

(QUH) — i(X)AY)],_p = QUH)|,y = wria’,

so it is sufficient to show that Q(H) — i(X.)A~ is flat with respect to Dy,
that is )
i

— Di(X)Ay + ¢

[A77 Q(H) - Z(XS)A’Y] =0 (33)

since DQ(H) = 0.
Applying (3.2) which is proved for D to Ay which is G-invariant, we
obtain

DI(X.)Aq + L[QU), Ag] = —~i(X.) DA,

so the left-hand side of (3.3) becomes
1

h

i

(X )DAY + -

[((X)Ay, Aq] = i( X ) (DAY + —A%%).

But )
7
h

since both D and D; have the same curvature —w, whence (3.3) follows. O

DAY+ —Av* =0
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Lemma 8 Let X., H be the same as in the previous lemma. Let Dy, Dy
be two G-invariant Abelian connections, U the solution of (2.9), (2.10). Then

Qy(H)=UoQ(H)o U™ (3.4)

Proof. Since U is a G-invariant section, we have by the previous lemma

using (2.9)
Lx U = i(Xe)D1U+%[Q1(H),U]
= —3iX)JAyo U+ 2 Qu(H)oU — U 0 Qu(H) =0,

yielding (3.4). O

Lemma 9 G-invariant canonical quantization commutes with the group
action, that is

Qga) = g°Q(a) (3.5)
for any € C=(M)[[h]].

Proof. Clearly,

(7 Q)] = (7°Q(a)],_o) = 5"

Next,
D(g"Q(a)) = g"D(Q(a)) =0
since D is G-invariant and Q(a) is flat. So, (3.5) follows from the uniqueness

of the quantization procedure (Proposition 5). O
The infinitesimal version of (3.5) is

Q(,CXCL) = ,CXQ(CL) (36)

We apply the properties of the G-invariant canonical quantization to ob-
tain the quantum moment map. So far the group G may by any finite-
dimensional Lie group (not necessarily compact or semisimple). All we need
is the existence of the classical moment map g which has no critical values
in some neighborhood V' C G* of 0. Restricting u to ' (V'), we may assume
that g has no critical points at all.

11



Proof of Theorem 2. Applying @ to (1.1), we obtain

Q(Xipy) = Q).
By Lemma 9
Q(Xipj) = Q(Lxp5) = Lx,Q15),
yielding
/:Xiﬁj = ijﬂk-
Now, by Lemma 7
. . . ? . b
Lxipg = 10X Dpj + 5 [Q(wa), i) = 71, )

since Dfi; = 0 implying (1.8). O

Having the quantum Hamiltonians, we define the quantum reduction of
the algebra A = Wp(M) as was described in the introduction.

4 The Case of the Lie Group

From now on the group G is supposed to be compact. We consider its right
and left action on /' = T*(G' = (G x G* and the canonical deformation quanti-
zation on [’ wich is invariant with respect to this G x G action. An invariant
star-product on TG was first constructed in [10]. Here we describe this con-
struction in our terms and then apply it to prove the reduction theorem for
this particular case.

The group G may be considered as a principal G-bundle (whose base
is a point), so the construction of the Hamiltonian action of G on G x G*
described in the introduction may be applied. The connection form A in
this case i1s the Maurer-Cartan left-invariant form A;. We also need the

Maurer-Cartan right-invariant form Ap = Ad, Ap (for matrix Lie groups
AL =g 'dg, Ar = dgg™"). Introduce a symplectic form
wp = =d(§,AL) = —d(n, Ar) (4.1)

where { € G*, n = Ad;-.{. This form is preserved by left and right actions
defined by

Lu(9,6) = (ug, &), Ru(g,€) = (gu, Ad}€) (4.2)
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with moment maps
1e(g,€) =n, wpr(g,§) =<
The functions ¢ and 5 satisfy the following relations
{66 =i, {niniy = =i, {&.ny} =0. (4.3)
For deformation quantization we consider the tangent bundle
T(GXxG)=EGEXG xGxG”
with the left and right actions of ¢ defined by (4.2)
Lu(gv ) 57 tv 7—) = (Ug, 57 tv 7—)7 Ru(gv 57 tv 7—) = (gu7 Adz& Adu—ltv AdZT)v (44)

The sections of the Weyl algebras bundle are functions a = a(g,&,t,7,h)
on G X G* X G x G* considered as formal series with respect to ¢, 7,h. The
fibrewise product o is the Moyal product (2.2) corresponding to the standard
Poisson bracket on G x G*

da db  da Db
teb} = 5 or ~ arom,

By Theorem 2 any (G x G-invariant quantization gives flat sections

~

&=Q&); mi=Qnm)

defining quantum Hamiltonians for G x GG action. Thus, they should satisfy
the following commutation relations similar to (4.3):

[6,6] = —ihef&y, (A = thefi, [&.7;]) = 0. (4.5)
Moreover, . .
l6nal = Lpd, Zlindl = Lua (4.6)

where L1, and Lg, are Lie derivatives corresponging to e; € G via left and
right actions on G x G* x G x G*.

Theorem 10 There exists a unique G x G-invariant canonical deforma-
tion quantization @) satisfying the following two conditions:
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1. for any a(g) € C*~(G)
i = Q(a) = a(ge"), (4.7)

2. é and 1; are linear forms in £ + 7.

Proof. First of all observe that the section & of the form &+, fi(g, 1))
where f;(g,t) is a function with values in G is uniquely defined by its adjoint

action on a(ge') = Q(a(g))

LE alae = (2% ¢

{6 alge)] = (o )
Because of (4.6) the latter expression should be equal to

1 _ze;

d
Lr.a(ge') = Ea(ge e*)

2=0-

The Campbell-Hausdorff formula for e’e** implies immediately

B adt '
11— exp(—adl,g)e27

filg,t)

so we have the only possibility for é compatible with the assumptions of the
theorem. Similarly,

adt

————Ad,-1¢)).
explad;) —1 7 i)

ﬁi:<§+7—7

It is easy to check that these é and 7; satisfy commutation relations (4.5).
Indeed, the commutator of two linear forms in £ + 7 is again a linear form
in £ + 7. Thus, to prove (4.5), we need to check that commutators of both
sides of (4.5) with any section of the form a(ge') coincide. But this is the
case because of (4.6).

Now we present an Abelian connection Dg on the Weyl algebras bundle
so that a(ge’) and é, n; constructed above are flat with respect to Dp. To
this end consider the form

v = (dé,t) — (7, Ar) = d&;it' — iy
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on GG x G* with values in W. Denoting by

da
3

the differential of the section a(g, €, ¢, 7) with respect to g, £ and using (4.5),
(4.6) along with the relation

da = dé—— + NyLp,a

1
dA\p = 5[)\3,)\3]

for the Maurer-Cartan form, one immediately checks that

d7+%70750,

so that

Dpa = da + %[’y,a]

is an Abelian connection. To compute its curvature, we have to normalize
replacing it by

Y =7 = Vli=0r=0 =7+ (1, Ar),
resulting in

i
Q= dyn + 579 0 = d(n, Ar) = d(& Ar).

This completes the proof. O

We will consider the reduction procedure of the algebra Wp, (F) with
respect to the right action of (G. The following proposition is crucial for the
quantum reduction.

Proposition 11 For the constructed quantization 7; belong to the ideal
generated by &, more precisely,

—— . o~

N = (Adg-1)f 0 & (4-8)

Proof. Denoting by af(g) the entries of the matrix Ad,-1, we have by
Theorem 10

— .

(Ad,—1)] = @ = dl(geh).

K3 K3
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Thus,

ih Od! 85]
2 9tk dr,
since gis linear in 7. Show, that the commutator in the last expression
vanishes. Indeed,

P 1
aj o =aj§; + = aig + glal. &l

6. @]] = Lr,a! = (ad., )Lal
and

(adej)i = c?k = —trad., =0

because of the unimodularity of a compact Lie group.

Now,

@l 0 &jlimo,r=0 = @l€jlimo,r=0 = al&; = i,
proving that @’ o é = Q(n;). O
Finally, we prove the reduction theorem for the right action.

Theorem 12 For any right-invariant canonical deformation quantiza-
tion on F'= G X G* the reduced algebra consists of constants only.

Proof. Since any two canonical right-invariant quantizations are isomor-
phic and this isomorphism preserves the Hamiltonians é of the infinitesimal
right action, we may assume that we are dealing with the special quantiza-
tion Constructed in Theorem 10. For this quantization the right-invariant
subalgebra Ao C A = Wp,(F) is Ay = Q(a(n,h)) and the ideal J C Ay is
generated by 7;.

The algebra Ao may be described in a more convenient way using the
so-called Weyl correspondence. For a polynomial a(n,h) € Ay define the cor-
responding polynomial a'' (77, h) € Ao replacing in a(n, h) each monomial by
the symmetric o-product of 7;. There is a standard way to extend this cor-
respondence to more general functions. For a function a(n, k) € C5(G*)[[R]]

let '
a(x) = /6_“”’“’>a(777h)d77

be its Fourier transform (here # € R™ is interpreted as an element of G).
Then we put

o (7, h) = (27)" / G (x, h)de (4.9)
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where the exponential function exp(i(n, z)) € Ao is defined via differential
equation

diis) =i(n,z)oU(s); U(0)=1,

so that exp(i(7, «)) is defined as U(1). The function a(n, k) is called the Weyl
symbol of the flat section a"V (77, h) € Wp,.. The product o in Wp,, induces the
composition rule for the Weyl symbols as follows. The differential equation
implies the usual Campbell-Hausdorff formula

e o eb — ea—l—b—I—C’H(a,b)

1 1 1
5[@, b] + E[[av b]v b] + E[av [av b]] +..
Taking a = (7, z), b =1(7,y), we have by (4.5)

[, %), (7, 9)] = —ih (0], [, y]),

Y

CH(a,b) =

implying

exp(i{7,)) 0 exp(i{i,u}) = exp(itn. 2 +y + T CH(hr, hy).

This leads to the following *-product on symbols

i L0 0
a(nv h) * 5(777 h) = eXp<77, ECH(_Zha_gv _Zha_§)> a(fa h)b(§7 h)|§:(:77 : (410)

From this formula it is evident that the higher-order terms vanish at n = 0.
Thus, the left ideal (as well as the right one) generated by 1,19, ...,n, via
this s*-product consists of functions vanishing at n = 0 and vice versa. By
the Weyl rule, this ideal corresponds to the left ideal in AO, generated by
15725 -5 7,. Moreover, it is easy to describe the projection

7 Ay — R = Ag/J. (4.11)

For a flat section @ € Ay we take its Weyl symbol a(n, h), that is we represent
a as a" (1, h) (note, that a(n, h) # @|i=0.,—o in general) and then set

ma = a(0,h) € C[[h]] = R,

completing the proof. O
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5 General Case

Let M be a symplectic manifold with a Hamiltonian (right) action of a
compact Lie group (' satisfying the assumptions of the classical Marsden-
Weinstein theorem. We use a typical model described in the introduction.
So, M is considered as a fibration over a symplectic base (B,wg) with a typi-
cal fibre F' = G xG* and the group (i acts on fibres by right translations (4.2).
More precisely, we have to restrict ourselves to a tubular G-invariant neigh-
borhood of My = ~'(0) and to the corresponding neighborhood V € G*.
Without loss of generality we consider a special G-invariant deformartion
quantization adopted to this fibering structure. To this end introduce a
bundle K over B associated to a principal G-bundle M, taking the algebra
Whp,(F) constructed in the previous section as a fibre of K with a left action

T, ona=a(g€t,7)€ Wp,.(F) defined by
Tea=L'_1a=a(u gt 1)
The Lie algebra G of i acts then as

d )
t(ei)a = Ea(e_eitgv £.t, 77) e = _'CLia = _% [ﬁlv a] ) (51)

where (4.6) was used. According to a general construction a section of the
associated bundle is defined by local sections p : U — My of the principal
bundle My and corresponding local functions

a(x) = a(x7g7 §7t7 T? h)? T E U

satisfying the following transition rule: for another local section R;p =
pf, f = f(x) € G the corresponding function is

Tfa = a(x7f_1(x)g7f,t,T,h).

The connection A on the principal bundle My defines an associated connection
according to the rule
i

Oca = dya(x) + t(p™Na(x) = dya — E[@, prA), al. (5.2)
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This definition does not depend on the choice of the local section p defining
correctly a derivation of the algebra of sections C*°(K). The curvature of
this connection is

i

—d(B. A
(,p >+h

<ﬁ7p*)‘> © <ﬁ7 p*)‘> = _<ﬁ7 /i> (53)

where |
k=d(p"\)+ §[p*)\,p*)\]

is a local expression for the curvature form of A. The curvature is a global
section of K @ AZ.

Note, that the sections 7; are local (that is they depend on the choice
of the section p of the principal bundle). On the contrary, the sections é
are global, and moreover, they are flat with respect to the connection (5.2).
Clearly, é are generators of the right action of G on fibres of K. There are
two subbundles

KryCKyCK
associated to My with fibres

Ay C Ay C A=Wp,(F).

Here Ay is the subalgebra of right-invariant elements of A, thus a € Ag
depends only on 7; (in any local representation) while Ay is an ideal of Ag
generated by 7;. The quotient K/K; = Kg is a trivial bundle C[[h]] by
Theorem 10. We will use the projection 7 : K — Kg (see Section 4). It may
be thought of as a substitution 7; = 0 in the sections " (z,7;, k) € C*(Ky).
Clearly, the connection dx may be restricted to subbundles Kq, K ; because
the connection form in (5.2) takes values in K.

Consider now the Weyl algebras bundle on B with coefficients in K, that
is

W(B,K)=W(B)a K

where the tensor product is taken with respect to C[[h]]. The sections of
W (B, K) locally have the form

a(r,y) = a(x,y,9.§ 1,7, h) (5.4)
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where © € B, y € T,B. For fixed z,y this function is a flat section of
Whp,(F). A symplectic connection on B defines a connection dp on the bun-

dle W(B) (see Section 2) and futher, a connection d on the bundle W (B, K)
0=0g@1+1® dx.
Our goal is to construct an Abelian connection Dgx on W(B,K) whose
curvature is Qg x = —wp. We look for Dp x in the form
7
Dpx =0+ 17

where v € C*(W(B,Ko) @ A') is a global section which should satisfy the
following equation

‘
h

where R;; is the curvature of dg. This equation has a unique solution under

S SR
v+ 7 =wp + (7, k) — 5 'y’ (5.5)

the normalization 5
(S* = L3 - = .
vi=y ( axk) 7=0 (5.6)

for |¢] small enough [3, theorem 8.2.1, theorem 6.5.1]. As usual, we consider
a subalgebra Wp (B, K) of flat sections.

Theorem 13 The algebra Wp, (B, K) coincides with the algebra Wp,, (M)
of flat sections on M with respect to an Abelian connection Dy; whose cur-
vature s

QM = —WgB + d<§, )\> = —Whpr.

Proof. The section (5.4) may be considered as a section of W(M). If it
belongs to Wp,, (B, K) the following two conditions should be satisfied: 1)
Dpa = 0 which means it is flat along the fibres, 2) Dpxa = 0. They both
are equivalent to the only condition

DMCL = DFCL + DBJCa =0.

Clearly, D3; = 0 since Dy and Dp x are Abelian connections. To compute
the curvature of Djs, we have to normalize the connection form (7, p*A) in
(5.2) substructing its constant term

<777 p*)‘>|t=0,7'=0 = <777p*)‘> = <£7Adg_1p*)‘>
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(the form v is normalized because of (5.6)). This leads to
Qv =Qr+ Qpx +d(§,Ady-1p™ X)) = —wp + d(§, A + Ady—1p™A),
proving the theorem since
AL+ Adyj—ip™A = A

because of (1.6). O

Proof of Theorem 3. Without loss of generality we may consider the re-
duction of the algebra A= Wpy «(B,K). Clearly, the invariant subalgebra
Ay is Wpy (B, Ko), while the ideal J is Wpy (B,K ;) (note that the con-
nections 0, Dp x preserve the subbundles W(B,Ky) and W(B,K;)). We
need to show that the projection 7 maps Wp,  (B,Ko) to Wp,(B) (recall
that 7 acts by substitution 7; = 0). First apply 7 to (5.5). Since

Ui
87 = 8B7 + E[<777p )‘>77]7 (57)
we have
m(07) = Ip(17)
because the second term in (5.7) vanishes under m. The term (7, k) in (5.5)
also vanishes and we obtain

1 1 o
Ip(my) + E(WV)Z = —wB — §Rijy2y‘7-

This equation along with §*(7my) = 0 (the consequence of (5.6)) means that
77y defines the Abelian connection on W (B):

7
Dp = 0p + E[W%']-

Now, let a € Wp,, (B, Ko). Thus, it satisfies the equation
Dpxa = 0a+ %[’y,a] = 0.
Applying 7 to both sides, we obtain
i

Og(ma) + E[W%WQ] = Dp(ma) =0,

which means that ma € Wp_(B) proving the theorem. O
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