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� The Riemann�Roch Theorem

Introduction

The classical Riemann�Roch theorem reads as follows� Suppose M is a compact
Riemann surface� Let p be a point in M and m an integer� For a holomorphic
form u in a punctured neighbourhood of p� we write ord �u� p	 � �m if the
product �z � p	mu extends to a holomorphic form in a whole neighbourhood
of p� Thus� u is allowed to have a pole of order � m at p� if m � 
� and is
required to have a zero of order � �m at p� if m � 
� Given any point divisor
� � pm�

� � � � pmN

N on M � denote by L��� ��	 the space of all holomorphic functions
on M n supp � such that ord �u� p�	 � �m� � for each � � �� � � � � N � and by
L����� ���	 the space of all holomorphic forms of bidegree �
� �	 on M n supp �
such that ord �u� p�	 � m� � for each � � �� � � � � N � Then �cf� Springer Spr���
and elsewhere	�

dimC L��� ��	 � ��� g	 �
X
�

m� � dimC L����� ���	� �
��	

where g is the genus of the Riemann surfaceM equal to the number of �handles�
of M � The quantity deg � �

P
� m� is known as the degree of the divisor ��

Being a very particular case of the Atiyah�Singer index theorem� this re�
sult illustrates rather strikingly how the index theorem applies to proving the
existence of solutions of elliptic equations� Indeed� �
��	 implies the Riemann
inequality dimC L��� ��	 � ���g	�deg �� whence it follows that the space L��� ��	
is not trivial provided deg � � g��� On the other hand� if deg � � ��g��	� then
the space L����� ���	 proves to contain only the zero form� and so the Riemann
inequality in fact becomes the equality determining the dimension of L��� ��	�
The classical Riemann�Roch theorem has been generalized in di�erent ways

to higher�dimensional complex varieties� The best known generalizations are
the Hirzebruch Riemann�Roch theorem and the Grothendieck Riemann�Roch
theorem �cf� Fulton and Lang FL��� and the references given there	� In fact�
the Hirzebruch Riemann�Roch theorem served as a starting point and a source
of technical tools for the Atiyah�Singer theorem�
In the paper GS��a�� Gromov and Shubin suggested a generalization that

was motivated by the classical analysis of solutions with point singularities to
general elliptic equations� Namely� let A � Di�a�V� �V 	 be an elliptic di�erential
operator of order a between sections of vector bundles V and �V over a smooth
manifoldM of dimension n� Pick a point p in M and an integer m� If m � 
�
then� for a solution u of Au � 
 in a punctured neighbourhood of p� we write
ord �u� p	 � �m if u extends to a solution on the whole neighbourhood of p and
D�u�p	 � 
� j�j � �m��� If m � 
� we proceed as follows� Let u be a solution
of Au � 
 in U nfpg� U being a neighbourhood of p� After shrinking U � we may
assume that U lies within a local chart on M � both V and �V are trivial over U
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and A has a fundamental solution � in U � Were M � V � �V and A real analytic�
the well�known result on the structure of hyperfunctions with a point support� if
applied to Au� would allow us to conclude that u�y	 �

P
�D

�
y��y� p	c� modulo

solutions on the entire neighbourhood U � the series converging uniformly in y
on compact subsets of U nfpg �cf� Tar��� �������	� In the C� case we draw the
same conclusion for those u which are extendable to a distribution on the whole
neighbourhood U � Now� we write ord �u� p	 � �m if u extends to a distribution
on U and

u�y	 �
X

j�j�m��

D�
y��y� p	c�� y � U n fpg� �
��	

modulo solutions to Au � 
 on U � Since the singularity of ��y� y�	 on the
diagonal of U � U is actually the same as that of the standard fundamental
solution for the �a	�	 th power of the Laplace operator in Rn� we easily deduce
that ord �u� p	 � �m if and only if u � ur�us in U nfpg� where ur � C�loc�U� V 	
and us�y	 � o�jy� pja�n�m	 as y � p� We write ord �u� p	 � �m if ord �u� p	 �
�m but it is not true that ord �u� p	 � �m � �� Obviously� it is immaterial
which local coordinates on U and local trivialisations of V and �V we choose
to de�ne ord �u� p	� This de�nition is compatible with the standard de�nition
of the order of a pole or a zero for a meromorphic form on a Riemann surface
�this corresponds to the case n � �� A � �� and a � �	� By a point divisor on
M is meant any element of the free Abelian group generated by points of this
manifold� We write a point divisor in the multiplicative form � � pm�

� � � � pmN

N �
with m� � Z n f
g� Set supp � � fp�� � � � � pNg� It is customary to write p� � �
that corresponds to the unity of the group� The �inverse� divisor is de�ned by
��� � p�m�

� � � � p�mN

N � and so supp ��� � supp �� The degree of a divisor � is
de�ned to be

deg � � k

NX
���

signm�

��
jm� j�n��

n

�
�

�
jm� j�a�n��

n

��
� �
��	

k being the rank of V � where
�
J
j

�
� J �

j��J�j�� if j � J and 
 otherwise� Note that

deg � depends also on the order a of A and on the �bre dimension k of V �or �V �
which is clear from the ellipticity of A	� Having disposed of these preliminary
steps� we introduce two spaces

L��� A	 � fu � C�loc�M n supp �� V 	 � Au � 
� ord �u� p�	 � �m�g�
L����� A�	� fg � C�loc�M n supp �� �V �	 � A�g � 
� ord �g� p�	 � m�g�

where A� � Di�a� �V �� V �	 is the transpose of A� These are spaces of �meromor�
phic� solutions to the equation Au � 
 and its transpose A�g � 
� respectively�
depending on a given divisor� the solutions are allowed to have some poles �at
points that enter into the corresponding divisor with positive degrees	 and are
required to have zeros �at points that enter into the corresponding divisor with
negative degrees	�



� The Riemann�Roch Theorem

Theorem 	� �cf �GS��a�� If M is a compact smooth closed manifold�
then

dimC L��� A	 � indA� deg � � dimC L����� A�	� �
��	

Since the index of the Cauchy�Riemann operator on a compact Riemann
surface is equal to ��g� g being the genus� the classical Riemann�Roch theorem
�cf� �
��		 is a very particular case of Theorem 
���
Let us mention yet another particular case of Theorem 
��� If A is a selfad�

joint elliptic operator on a compact smooth closed manifoldM � then indA � 
�
which yields dimC L��� A	 � deg � � dimC L����� A	� This result for the scalar
Laplacian on a Riemannian manifold goes back at least as far as Nadirashvili
Nad����
It is worth pointing out that the index of the operator A can be evaluated in

each Sobolev space Hs�M�V 	� s � R� The elliptic theory on a compact smooth
closed manifold M shows that the mapping A � Hs�M�V 	 � Hs�a�M� �V 	 is
Fredholm and its index is independent of s� This index can be calculated by
the Atiyah�Singer formula �cf� AS���	�
Gromov and Shubin GS��a� gave also a generalization of Theorem 
�� to

non�compact smooth manifolds with compact boundary� In this case one im�
poses appropriate boundary conditions and conditions at in�nity in order to
ensure that the given elliptic operator de�nes a Fredholm operator in suitable
spaces�
In this paper we derive a generalization of the classical Riemann�Roch the�

orem that is motivated by the analysis of solutions of elliptic equations on
manifolds with conical singularities �cf� Kondrat�ev Kon���� Melrose and Men�
doza MA���� Plamenevskii Pla���� Schulze Sch��� Sch��� Sch���	� On such a
manifoldM live di�erential operators which are usual over the smooth part of
M and of so�called Fuchs type close to singular points� They act naturally in
weighted Sobolev spaces of distributions on the smooth part of M � the weight
functions being powers of the distance to the set of singular points� The con�
cept of ellipticity relies on two symbolic levels� the �rst of the two is the usual
principal symbol de�ned over the smooth part of M up to the singular points�
and the second of these is the conormal symbol de�ned over the set of singular
points� The conormal symbol at a singular point v �M is a family of usual dif�
ferential operators acting in Sobolev spaces over a cross�section ofM close to v�
The parametre z substituting the Fuchs�type derivative along the geodesic at v
varies over a vertical line �z � n

� �
v in the complex plane� 
v being the weight
exponent at v� Thus� the ellipticity depends on the weighted Sobolev spaces to
be domains of the operator in question� Elliptic operators are Fredholm and
have parametrices within the so�called cone algebra of pseudodi�erential opera�
tors on M �cf� ibid	� In this setting we prove equality �
��	 both for divisors �
supported away from the set of singular points and for those meeting this set�
The idea of using the calculus of b�pseudodi�erential operators on a manifold

with boundary to deduce the classical Riemann�Roch theorem goes back to the
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book of Melrose Mel��� �����

� Manifolds with Singular Points

Let M be a �topological	 manifold of dimension n with a singular point v� and
let M have a C� structure away from v� We are going to induce a singular C�

structure on M at the point v�
To this end� let us �x the type of the singular point v by specifying a model

object in an Euclidean space� Namely� consider the model surface in Rn��

given by C� � frS�f�r	x	 � r � 
� �	� x � Xg� where S is a di�eomorphism
of a star�shaped domain � 	 Rn onto an open subset of the unit sphere Sn

in Rn��� X is a compact closed submanifold of dimension n � � in �� and f
is a C� function on �
� �	 with values in �
� ��� continuous up to r � 
� This
surface is smooth away from the origin 
 � Rn�� and the origin is a conical
point of C�� if f 
 const� and a cusp of a higher order� if f�
�	 � 
� Under the
mapping ��r� x	 � rS�f�r	x	� the smooth part C� n f
g of C� is identi�ed with
the cylinder �
� �	�X over X� while the origin is blown up to the base f
g�X
of this cylinder� Moreover�

det
��

��r� x	
� det

� rS��	

��r� �	
j��f�r�x

vanishes only for r � 
 where rankR det
��

��r�x� � ��

Since C� is embedded into R
n��� there is a natural way to de�ne a singular

C� structure on this surface� Namely� by a C� function on C� we mean
the restriction� to C�� of some C� function in a neighbourhood of C�� Were
C� smooth at 
� then a familiar result yield that such functions have inner
description in terms of local coordinates on C�� which serves as an additional
argument in favour of our de�nition� If u is a C� function on C�� then the
pull�back ��u �r� x	 � u�rS�f�r	x		 is a C� function on the cylinder 
� �	�X�
i�e�� up to r � 
� The converse is not true as shows any component of ����y	�
y � C��
Now� a homeomorphismh ofC� is said to be a di�eomorphism if h�
	 � 
 and

there is a di�eomorphism of a neighbourhood of C� in R
n�� whose restriction

to C� coincides with h�
Returning to the original manifoldM � we callM a manifold with a cusp at v

if there is a neighbourhood U of v and a homeomorphism h � U � C� such that
h�v	 � 
 and the restriction h � U nfvg � C�nf
g is a di�eomorphism� Any two
such homeomorphisms h� and h� are said to be equivalent if the composition
h�h

��
� is a di�eomorphism of C�� Then� the C

� cusp structure on M close to
v is de�ned by any class of equivalent homeomorphisms U � C�� as above�
Our next goal is to give an alternative description of the �model object�

which still makes sense for not necessarily embedded manifolds X� Set H �
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Fig� �� A manifold with a cusp at v�

����h� the composition being regarded as a multivalentmappingU � 
� �	�X�
This is a di�eomorphism of U n fvg onto �
� �	 � X and the image of v by H
is the base f
g � X of the cylinder� An easy consideration shows that H is
actually a homeomorphism of U onto the topological cone

Ct�X	 �

� �	�X

f
g �X

over X� We call any two homeomorphisms H� and H� of U onto Ct�X	 with
these properties equivalent if the restriction of H�H

��
� to �
� �	�X extends to a

di�eomorphism of a neighbourhood of 
� �	�X in R�X� Classes of equivalent
homeomorphisms H � U � Ct�X	 give M various singular C� structures close
to the point v� Let us elucidate the relevance of the C� cusp structures among
them�
Suppose h�� h� are two equivalent homeomorphisms U � C�� thus de�ning

the same C� cusp structure onM at v� Write H� � ����h� and H� � ����h�
and consider the composition H� �H

��
� � ����h� � h

��
� 	�� Since h� � h

��
� is a

di�eomorphism of C�� it follows that the restriction of H� �H
��
� to �
� �	�X

extends to a di�eomorphism of a neighbourhood of 
� �	�X� i�e�� H�� H� are
equivalent homeomorphisms U � Ct�X	� Thus� each C

� cusp structure on M
determines in a natural way some singular C� structure on M via the �model
object� Ct�X	�
As the topological cone Ct�X	 has no canonical singular C

� structure� it
is not to be expected that C� cusp structures on M at v can be speci�ed
by singular C� structures on M via Ct�X	� In other words� di�erent C� cusp
structures onM can determine the same singular C� structure onM via Ct�X	
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because� for a di�eomorphism of 
� �	�X� the composition � � ���� need
not be a di�eomorphism of C�� However� each singular C� structure on M at
v via Ct�X	 originates with some C� cusp structure� as every homeomorphism
H � U � Ct�X	 factors through C�� i�e�� H � ���h for some homeomorphism
h � U � C� �cf� Fig� �	�
We deduce that in order to specify a C� cusp structure on M at v within a

singular C� structure de�ned by a homeomorphismof U onto Ct�X	� one needs
an additional information on the original cusp structure� As such an information
can serve either a Riemannian �cusp	 metric on the cylinder �
� �	�X or a class
of typical vector �elds near the base r � 
 of the cylinder�

The concept of a manifold with cusps extends in a natural way to the case
of several singular points�

� Cusp Algebras

We begin by showing the class of Riemannian metrics on the cylinder �
� �	�X
specifying C� cusp structures on M close to a singular point v�

The di�eomorphism � � �
� �	 � X � C� n f
g pulls back the Riemannian
metric dy�� � � � �� dy�n�� from the smooth part of C� to the cylinder �
� �	�X�
thus giving

��
�
dy�� � � � �� dy�n��

�
� dr� �

n��X
j��

�
�rf �	

�
nX
���

x�
�Sj
���

�fx	

�
dr � �rf	

nX
���

�Sj
���

�fx	 d��

��

����	

followed by restricting the di�erentials d��� � � � � d�n to tangential vectors to X�
Of course� ����	 degenerates at the base f
g �X of the cylinder�

Example �� Let n � � and let C� be the surface with a cusp at the origin
given in the polar coordinates of R	 by�	



y� � r cos sin f�r	���
y� � r sin sin f�r	���
y	 � r cos f�r	���

where r � 
� �	�  � 
� ��	 and �� is a �xed angle in the interval �
� �	� Then�
a trivial veri�cation shows that

��
�
dy�� � dy�� � dy�	

�
� �� � �rf ��r	��	

�	dr� � �r sinf�r	��	
�d��

d� being the Riemannian metric along the unit circle S��

�
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Vector �elds along the base X of the cylinder �
� �	 � X endowed with

Riemannian metric ����	 are of the form �rf	��
Pn��

��� a��r� x	 �	�x� in local
coordinates of X� The coe!cients a� are of class C� up to r � 
 if so is f � We
are thus lead to typical vector �elds on a manifold with a C� cusp structure�
These are

a��r� t	
�

�r
�
�

rf

n��X
���

a��r� x	
�

�x�
�
�

rf

�
a��r� x	

�
rf

�

�r

�
�

n��X
���

a��r� x	
�

�x�

�

����	
close to the cusp�

If f satis�es the condition sup jrjf �j��r	j � �� for all j� then such vector
�elds behave properly under composition� Modulo the weight factor �rf	���
they are section of a vector bundle over M called the �compressed tangent
bundle�� When restricted to the smooth part of M � this latter is isomorphic to
the usual tangent bundle over M n fvg� On the other hand� the weight factor
�rf	�� can be managed via suitable weighted Sobolev spaces on M �

The microlocalisation of this Lie algebra of vector �elds leads to an algebra
of pseudodi�erential operators on M called a �cusp algebra�� For more details
we refer the reader to ST��� and RST����

In particular� if v is a conical point of M � i�e�� f 
 �� then the Riemannian
metric close to v becomes

dr� � r�
nX

��	��

�
�n��X

j��

�Sj
���

�Sj
��	


A d��d�	�

resulting in the Fuchs�type derivative D � �r�	�r and in the cone algebra of
Melrose and Mendoza MA��� and Schulze Sch��� Sch��� Sch����

� The Riemann�Roch Theorem

Let us consider a compact closed manifoldM with a �nite set of conical points
singM � fv�� � � � � vIg� As described above� such a manifold has a C� structure
away from the set singM and a C� cone structure close to each point v �
singM � Alternatively�M can be thought of as a compact smooth manifold with
cylindrical �ends�� i�e�� close to a point v � singM � we identifyM with a cylinder
Cv � 
� �	�Xv over a compact smooth closed manifoldXv of dimension n���
each Cv being endowed with a cone metric dr� � r�gXv

�r	 where gXv
�r	 is a

family of Riemannian metrics on Xv � smooth in r � 
� �	 up to r � 
�

The cone metric gives rise to the Lie algebra of vector �elds on Cv spanned
by r�	�r and �	�xj � where x � �x�� � � � � xn��	 are local coordinates on Xv� It
follows that the typical di�erential operators on Cv are of the so�called Fuchs
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type

A �
�

ra

aX
j��

aj�r	D
j � ����	

where D � �r�	�r and aj � C�loc�
� �	�Di�
a�j�Xv		� The class of Fuchs�type

operators is invariant under local di�eomorphisms ofM preserving the C� cone
structure�
To each operator ����	 we assign its principal Fourier symbol �aF�A	 away

from r � 
 as well as its Mellin symbol at r � 
�

�M�A	�v� z	 �
aX

j��

aj�
	z
j � ����	

This latter is regarded as a family of di�erential operators over Xv acting in
Sobolev spaces Hs�Xv	� Hs�a�Xv	 and parametrised by the complex variable
z varying along a vertical line "
 � fz � C � �z � 
g� 
 � R�
Now� by a di�erential operator of order a on M � we mean any di�erential

operator of order a on the smooth part M n singM ofM which is of Fuchs�type
����	 close to singular points� In just the same way we de�ne di�erential op�
erators A between sections of smooth vector bundles V and �V over M � When
�pulled back� to a cylindrical end Cv� both V and �V are trivial over the bound�
ary f
g�Xv� which allows us to regard the Mellin symbol at r � 
� �M�A	� as
a mapping Hs�Xv	  Vv � Hs�a�Xv	  �Vv� We continue to write Di�a�V� �V 	
for the space of all di�erential operators of order a between sections of V and
�V �
The natural domain of an operator A � Di�a�V� �V 	 is a weighted Sobolev

space Hs�
�M�V 	 of sections of V over M � where s � R and 
 � �
�� � � � � 
I	
is a tuple of real numbers� This space is modeled on the usual Sobolev space
Hs
loc�M n singM�V 	 away from the singular points and on a weighted Sobolev

space Hs�
i�Cvi� V 	 close to the singular point vi� The de�nition ofH
s�
i�Cvi� V 	

invokes the Mellin transform in r � R� and the Fourier transform in x � R
n���

along with the weight factor r
n
�
�
i �cf� Schulze Sch��� ������	�

Each operator A � Di�a�V� �V 	 is known to extend to a continuous mapping
Hs�
�M�V 	 � Hs�a�
�a�M� �V 	� for all s � R and 
 � RI � where we set

 � a � �
� � a� � � � � 
I � a	�
The weight tuple 
 enters into the concept of ellipticity on a manifold with

conical singularity in the following way� An operator A � Di�a�V� �V 	 is said to
be elliptic with respect to a weight tuple 
 � RI � if A is elliptic in the usual
sense away from the set singM and� for each i � �� � � � � I� the Mellin symbol of

A at the singular point vi is an isomorphismHs�Xvi 	Vvi
��� Hs�a�Xvi	 �Vvi �

for any one s � R and all z � "n
�
�
i �

Note that if A is elliptic with respect to 
 � RI � then its transpose A� �
Di�a� �V �� V �	 under the pairing H�s��
�M�V �	 � Hs�
�M�V 	 � C is elliptic
with respect to the weight tuple a� 
�
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A basic result of the analysis on manifolds with conical singularities is that�
given any 
 � RI � the mapping A � Hs�
�M�V 	� Hs�a�
�a�M� �V 	 is Fredholm
for all s � R if and only if A is elliptic with respect to 
 �cf� ibid� �����	�
Moreover� if A is elliptic� then the kernel and the cokernel of the mapping A are
independent of s �but not of 
	� and so the index of A can be evaluated in the
space H��
�M�V 	�

We are now in a position to introduce our �rst version of the Riemann�Roch
theorem for a manifold M with conical singularities� To this end� given any
point divisor � � pm�

� � � � pmN

N with supp � � singM � �� we consider two spaces

L��� A	� fu � H��

loc �M n supp �� V 	 � Au � 
� ord �u� p�	 � �m�g�

L����� A�	� fg � H��a�

loc �M n supp �� �V �	 � A�g � 
� ord �g� p�	 � m�g�

ord �u� p	 being de�ned as above�

Theorem �� Suppose A is a di�erential operator on M � elliptic with re�
spect to a weight tuple 
 � RI � and � is a point divisor on M supported away
from the set of singular points� Then�

dimC L��� A	 � indA� deg � � dimC L����� A�	� ����	

We emphasize that indA means the index of the operator A evaluated in
any one Sobolev space Hs�
�M�V 	� s � R� The problem of �nding an explicit
index formula for Fredholm di�erential operators on a compact closed manifold
with conical singularities has not been solved in a completely satisfactory way
�however� see the work of Piazza Pia��� for a partial result	� Theorem ��� can
be useful anyway� for explicit index formulas are known for particular operators�
The theorem is still true for elliptic di�erential operators on compact closed

manifolds with cusps �cf� Schulze and Tarkhanov ST���	� As is observed by
Melrose Mel���� various problems for cusp and cone pseudodi�erential operators
are essentially the same� The index problem for pseudodi�erential operators is�
as yet� unsolved for all the �bred cusp algebras except the scattering algebra
�cf� ibid	�

If the set of singular points of M is empty� equality ����	 gives �
��	� and
so Theorem ��� contains Theorem 
�� as a very particular case� However� the
proof of Theorem ��� is similar in spirit to that of Gromov and Shubin GS��a��

We postpone the proof of Theorem ��� until Section � while showing that
arti�cial conical points do not a�ect the index of the operator A if 
 is properly
chosen�

Lemma �� Let v �M n singM and let M � be the manifold obtained from
M by regarding v as new conical point� Suppose 
� � �
� 
v	� where 
 � R

I and

v �

�
a� n

� �
n
�

�
� Then the index of A � Hs�
��M �� V 	 � Hs�a�
��a�M �� �V 	 is

equal to the index of A � Hs�
�M�V 	� Hs�a�
�a�M� �V 	�
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Note that in order to a 
v ful�lling the condition of the lemma exist it is
necessary and su!cient that a � n�

Proof Pick a neighbourhood U of the point v such that U does not meet
the set singM � If n

� � 
 � n � a� then each section u � Hs�

loc �U� V 	 satis�

fying Au � 
 in U n fvg extends to a solution of this equation on the whole
neighbourhood U � This is a kind of the theorem on removable singularities for
solutions of elliptic equations� For the proof� use expansion �
��	 together with
the observation that the elements of Hs���

loc �U� V 	 admit extensions to distri�
butions on U � Conversely� if 
 � n

� � 
� then each solution to Au � 
 in U
belongs to Hs�


loc �U� V 	� On the other hand� if 
 �
n
� � �a � 
	 � n � a� then

similar arguments apply to solutions of the transposed equation A�g � 
� The
inequalities


 � n
� � 
 � n� a�


 � n
� � �a � 
	 � n� a

are easily veri�ed to coincide� thus resulting in a � n
� � 
 � n

� � Since we still
have indA � dimkerA � dimkerA�� the lemma follows�

�

� A Duality Theorem

Let � � pm�

� � � � pmN

N be a point divisor with a support away from the set of
singular points of M �
We introduce the positive and negative parts of � as divisors

�� � p
m�

�

� � � � p
m�

N

N �

�� � p
m
�

�

� � � � p
m
�

N

N �

where m� � max�m� 
	� m� � min�m� 
	� Here all factors of the form pm� with
m � 
 have to be omitted�
It is clear that � � ���� and

����	� � ���	���
����	� � ���	���

We next introduce new spaces which play an important role in the proof of
Theorem ��� but on the other hand allow us to formulate a duality theorem
which is important by itself�
Namely�L���� A	 is de�ned to consist of all sections u � H��


loc �Mnsupp ��� V 	
such that u vanishes at p� up to order �m� � �� if p� � supp ��� and� for each
p� � supp ��� there exist a neighbourhood U of p� and sections ur � C�loc�U� V 	
and us � C�loc�U n fp�g� V 	 with the property that u � ur � us in U n fp�g and
Aus � 
 in U n fp�g� ord �us� p�	 � �m� �
Thus� we allow merely singularities that occur as singularities of solutions

to Au � 
� The space L���� A	 consists of sections with the same zeros and



�� The Riemann�Roch Theorem

singularities as allowed in the de�nition of L��� A	� However� the de�nition of
L���� A	 contains no global restrictions on u� so all possible local singularities
and zeros can be present at each point p� � supp � independently from what
happens at other points�
Now we introduce the reduced divisor

�� � p 
m�

� � � � p 
mN

N � ����	

where �m� � signm� �jm�j � a	� and the factors p 
m�
� with �m� � 
 have to be

omitted�
Thus� compared with �� the absolute value of every exponent decreases by a

�or becomes 
 if it was initially less than a	� Note that ����	� � ���	�� and

���	� � ���	��

���	� � ���	��

hence the designations ����� ��� and ��� will cause no confusion�
We de�ne the space L������ A	 to consist of all sections f � H��
�a�M� �V 	

such that f vanishes at p� up to order � �m� � �� if p� � supp ���� Note that
L������ A	 actually depends on ��� only� and so L������ A	 � L������� A	�

Lemma �� The di�erential operator A extends in a natural way to a map�
ping �A � L���� A	� L������ A	�

Proof Indeed� pick u � L���� A	� It follows from the de�nition of L���� A	
that Au� being de�ned on M n supp ��� extends by continuity to a section
f � H��
�a�M� �V 	� Moreover� f � L������ A	� as is easy to check� Hence� setting
�Au � f yields the required extension of A�

�

We now apply these arguments again� with the operator A with domain
H��
�M�V 	 replaced by the transpose A� with domain H��a�
 �M� �V �	� to in�
troduce the spaces L������ A�	 and L�������� A�	�
In fact� L������ A�	 consists of all sections g � H��a�


loc �M n supp ��� �V �	
such that g vanishes at p� up to order m� � �� if p� � supp ��� and� for each
p� � supp ��� there exist a neighbourhood U of p� and sections gr � C�loc�U�

�V �	

and gs � C�loc�U n fp�g� �V �	 with the property that g � gr � gs in U n fp�g and
A�gs � 
 in U n fp�g� ord �gs� p�	 � m� �
Furthermore� L�������� A�	 is generated by sections v � H���
�M�V �	 such

that v vanishes at p� up to order �m� � �� if p� � supp ����

Lemma �� The di�erential operator A� extends in a natural way to a map�
ping �A� � L������ A�	� L�������� A�	�

Proof This follows by the same method as in Lemma ����
�
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Our next objective is to introduce an important duality in the spaces de�ned
before� To this end� we recall the de�nition of the dual bundle on a manifold
with conical singularities�
By a density on M we mean any density � over the smooth part of M �

which takes the form � � rn��drdxmodulo factors smooth up to r � 
� close to
each conical point v� Obviously� this de�nition is independent of the particular
splitting of coordinates �r� x	 near v� We denote by ��M 	 the bundle of complex
densities on M � For every � � ��M 	� the integral

R
M
� is well�de�ned� If V

is a vector bundle over M � then the bundle V � � HomC�V���M 		 is called
the dual bundle� There is a natural pairing of bundles V �  V � ��M 	 which
gives the pairing in sections h�� �i � C��M�V �	 � C��M�V 	 � C by means of
hv� ui �

R
M
hv�y	� u�y	i� Here� hv�y	� u�y	i � �y�M 	 is obtained by use of the

pairing between V �
y and Vy�

In contrast to the case of a compact closed C� manifoldM � the transposed
operator A� does not ful�l the property hg�Aui � hA�g� ui for all smooth u and
g� but only for those with �suppu�supp g	�singM � �� However� the following
is what we really need�

Lemma �� For each u � Ha�
�M�V 	 and g � Ha�a�
�M� �V �	�

hg�Aui � hA�g� ui� ����	

Proof By a property of weighted Sobolev spaces� we can choose a se�
quence �u�	��������� in C�comp�M n singM�V 	 approximating u in the norm of

Ha�
�M�V 	� Then Au� � Au in the norm of H��
�a�M�V 	� whence

hg�Aui � lim
���

hg�Au�i

� lim
���

hA�g� u�i

� hA�g� ui�

as required�
�

We thus deduce that the natural domain of the transpose A� is the Sobolev
space Hs�a�
�M� �V �	�

Lemma �� For each point divisor � supported away from singM � the pair�
ings

H���
�M�V �	�H��
�M�V 	 � C�

H��a�
�M� �V �	�H��
�a�M� �V 	 � C

extend to pairings

L�������� A�	 � L���� A	 � C�

L������ A�	� L������ A	 � C�
����	
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Proof We claim that pairings ����	 are in fact de�ned by integration over
M n supp �� We only need to show that the integrals which appear here really
converge�
Indeed� suppose u � L���� A	 and v � L�������� A�	� Then� near a point p�

with m� � 
� we have u�y	 � O�jy�p�j
a�n�m��	 where � is any number in the

interval �
� �	� The case a�m� � 
 does not evoke any problem� In the opposite
case we have v�y	 � O�jy�p� jm��a	� Hence hv�y	� u�y	i � O�jy�p�j�n�	 and
the integral

R
Mnsupp �hv�y	� u�y	i converges near all points p� withm� � 
 which

are the only possible singularities�
The same reasoning applies to the second pairing in ����	 which completes

the proof�
�

Now let h�� �i � H� � H � C be a bilinear pairing of two complex vector
spaces H and H�� Given a vector subspace # of H� we de�ne the annihilator
or orthogonal complement #� of # with respect to the pairing h�� �i to consist of
all v � H� such that hv� ui � 
 for each u � #� Thus� #� is a vector subspace

in H�� And vice versa� if #� is a vector subspace of H �� then #�� is de�ned as
a vector subspace in H��
In the following theorem the annihilator is with respect to the second pairing

in ����	�

Theorem �
 �	 For each u � L���� A	 and g � L������ A�	� it follows that
hg� �Aui � h �A�g� ui�

�	 im �A �
�
ker �A�

��
� i�e�� f � im �A if and only if f � L������ A	 and hg� fi � 


for all g � ker �A��
�	 dimcoker �A � dimker �A��

The relevance of Theorem ��� to Theorem ��� is clear from the fact that
ker �A � L��� A	 and ker �A� � L����� A�	� Both the theorems will be proved in
parallel in the next section�
Note that part �	 gives solvability conditions for the equation Au � f in the

class L���� A	 that consists of sections with prescribed orders of zeros and poles�

� Proofs

Theorems ��� and ��� will be proved simultaneously because these proofs inter�
twine �cf� Gromov and Shubin GS��a�	�
In the sequel H���
�M�V 	 stands for the union of the spaces Hs�
�M�V 	

over all s � R� Obviously�

H���
�M�V 	 �� D��M n singM�V 	�
E ��M n singM�V 	 �� H���
�M�V 	�

for each 
 � R�



Proofs ��

Denote by E ���M�V 	 the subspace of E ��M n singM�V 	 consisting of sections
u such that suppu 	 supp �� and� near supp ��� u can be written as

u�y	 �
X

p�	supp ��

X
j�j�m���

c��D
���y � p�	� ����	

where ��y	 is the Dirac measure and c�� � Vp� � Clearly� E
�
��M�V 	 � E ����M�V 	�

Similar spaces will be used for the bundle �V and other divisors occurring in
the proof�
For every u � L���� A	 we can �nd a �regularisation� �u � H���
�M�V 	 such

that �u � u on M n supp �� and A�u � fr � fs with fr � H��
�a�M� �V 	 and
fs � E ���M� �V 	� Denote by �L���� A	 the space of all such regularisations� Due
to the elliptic regularity result and the structure of fundamental solutions �cf�
Introduction	� the space �L���� A	 can be equivalently described as the set of all
�u � H���
�M�V 	 such that �u is of class C� in a neighbourhood of supp ���
�u vanishes at each point p� � supp �� up to order �m� � �� and A�u � fr � fs
with fr � H��
�a�M� �V 	 and fs � E ���M� �V 	�

Lemma 
� The sequence


 �� E �
��M�V 	
i
�� �L���� A	

r
�� L���� A	 �� 
 ����	

is exact� Here i and r are the natural inclusion and restriction mappings�

Proof The surjectivity of r means the existence of a regularisation as
mentioned before� the injectivity of i is evident� So we must only prove the
exactness in the middle term which actually means that if u � E ��M nsingM�V 	
is supported on supp �� and Au � E ���M� �V 	� then u � E �
��M�V 	� This is a local
assertion� and so it su!ces to consider the case � � pm with m � 
� But then
the statement easily follows from the ellipticity of A�

�

Lemma 
� We have

dimE ���M�V 	 � q
X

p�	supp ��

�
m� � n� �

n

�
� ����	

Proof Since E ���M�V 	 �
L

m���
E �
p
m�
�
�M�V 	� it is su!cient to prove that� for

every m� � 
�

dimE �pm�
�
�M�V 	 � q

�
m� � n� �

n

�
�

which reduces to a well�known combinatorial exercise�
�
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Lemma 
� As de�ned in Lemma ���� the operator �A is Fredholm and its
index satis�es

ind �A � indA� deg �� ����	

Proof Consider the following commutative diagram


 �� E �
��M�V 	
i
�� �L���� A	

r
�� L���� A	 �� 
��yA�

��y $A ��y �A

 �� E ���M� �V 	

i
�� L������ A	� E ���M� �V 	

�
�� L������ A	 �� 


where the �rst row is sequence ����	� the mappings i and � in the second row are
natural inclusion and projection� respectively� and A�� $A are the restrictions of
A to the corresponding spaces of distributions� Since both rows in the diagram
are exact� we can assert� by the well�known algebraic property of the Euler
characteristic� that

ind �A � ind $A� indA��

On the other hand� A� operates in �nite�dimensional spaces� and so its index
is equal to the di�erence of the dimensions of the spaces� Thus�

indA� � dimE �
��M�V 	� dimE ���M� �V 	

� �q
X

p�	supp ��

��
m� � n� �

n

�
�

�
m� � a� n� �

n

��

� � deg ���

the second equality being due to ����	� Hence

ind �A � ind $A� deg ��� ����	

Now consider the commutative diagram


 �� H��
�M�V � �	
i

�� �L���� A	
�
 �A
�� E ���M� �V 	 �� 
��yA� ��y $A ��yId


 �� L������ A	
i

�� L������ A	� E ���M� �V 	
�
�� E ���M� �V 	 �� 


where H��
�M�V � �	 is de�ned to consist of all sections u � H��
�M�V 	 such
that u vanishes at p� up to order �m� � � if p� � supp ��� The operator A� is
the restriction of A� Once again� the rows are exact whence

ind $A � indA�� ����	

Finally� consider the commutative diagram


 �� H��
�M�V � �	
i

�� H��
�M�V 	
q
�� J��V 	 �� 
��yA� ��yA ��yJ�A	


 �� L������ A	
i

�� H��
�a�M� �V 	
q
�� J
��

�V 	 �� 




Proofs ��

where

J��V 	 �
H��
�M�V 	

H��
�M�V � �	
�

J
��
�V 	 �

H��
�a�M� �V 	

H��
�a�M� �V � ��	
�

i and q are the natural inclusion and quotient mappings� and J�A	 is the natural
quotient mapping� Then we deduce

indA� � indA� ind J�A	�

Since J��V 	 �
L

m���
Jpm�

�
�V 	 and� for each m� � 
�

dimJpm�
�
�V 	 � q

�
�m� � n� �

n

�

�cf� ����		� we obtain

ind J�A	 � dimJ��V 	 � dimJ
��
�V 	

� q
X

p�	supp ��

��
�m� � n� �

n

�
�

�
�m� � a � n� �

n

��

� � deg ���

Hence indA� � indA� deg ��� and so applying ����	 and ����	 yields

ind �A � indA� deg �� � deg ��

� indA� deg ��

which completes the proof�
�

Equality ����	 means that dimker �A � indA � deg � � dimcoker �A� and so
Theorem ��� will be proved once we prove part �	 in Theorem ���� We begin
with the proof of part �	 in Theorem ����

Lemma 
� For each u � L���� A	 and g � L������ A�	� we have

hg� �Aui � h �A�g� ui� ����	

Proof Let us �rst assume that equality ����	 holds for all u � L���� A	 and
g � L������ A�	 such that suppu � supp g does not meet the set singM � Pick a
function � � C�comp�M nsingM 	 with the property that � 
 � in a neigbourhood
of supp �� Then� for each u � L���� A	 and g � L������ A�	� we obtain

hg� �Aui � hg� �A��u	i� hg� �A���� �	u	i

� h �A�g� �ui� hg�A���� �	u	i

� h �A�g� �ui� h �A�g� ��� �	ui

� h �A�g� ui
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the third equality being a consequence of Lemma ���� We are thus reduced to
proving ����	 for u � L���� A	 and g � L������ A�	 supported on the smooth part
of M �
This latter case is actually treated in Lemma ��� of Gromov and Shubin

GS��a�� For the convenience of the reader we repeat the relevant material from
GS��a��
Let us take a function � � C�comp�R

n	 such that ��y	 � � if jyj � �
� � and

��y	 � 
 if jyj � �� For each � � 
� set ���y	 � �
�
y
�

�
� so that �� is a C�

function with a support in the ball jyj � �� satisfying ���y	 � � if jyj �
�
� � and

jD����y	j � c��
�j�j for all y � Rn�

For each point p� � supp �� we �x local coordinates in a neighbourhood U�
of p� � Using these local coordinates we de�ne

���y	 � ��
NX
���

���y � p�	�

for small � � 
� It follows that �� � 
 in a neighbourhood of supp �� �� � �
outside a small neighbourhood of supp �� and jD����y	j � c��

�j�j� the deriva�
tive being taken in chosen local coordinates� Now using the de�nition of the
transposed operator and the convergence of the integrals de�ning both sides in
����	 we get

hg� �Aui � lim
���

h��g�Aui

� lim
���

hA����g	� ui

� lim
���

h��A
�g� ui� lim

���
hA�� ���g� ui

� h �A�g� ui� lim
���

hA�� ���g� ui�

where A�� ��� � A��� � ��A
� is the commutator of A� and ���

It remains to prove that the last limit vanishes� To do this� we observe that
A�� ��� is a di�erential operator of order a � � with coe!cients supported in a
small neighbourhood of supp �� In fact�

A�� ��� �
X

j�j�o��

A����y	D
�

close to p�� with

suppA��� 	 fy � �
� � jy � p� j � �g� ����	

jA����y	j � c ��a�j�j� ����	

We now proceed by considering two cases� m� � 
 and m� � 
�
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Let m� � 
� Then in U� we have

u�y	 � O�jy � p� j�m� 	�
D�g�y	 � o�jy � p� ja�n�m��j�j	�

and so� on suppA����

u�y	 � O���m� 	�
D�g�y	 � o��a�n�m��j�j	�

which is due to ����	� Hence ����	 gives hA���D
�g�y	� u�y	i � o���n	 and� since

the volume of suppA��� is O��
n	�Z

U�

hA�� ���g�y	� u�y	i � o��	 as �� 
� ����
	

as required�
Let m� � 
� On the support of A���� we similarly have

u�y	 � o��a�n�m� 	�
D�g�y	 � O��m��j�j	

whence hA���D
�g�y	� u�y	i � o���n	� This clearly forces ����
	� and the proof

is complete�
�

Let h�� �i � H� � H � C be a bilinear pairing of two complex spaces H and

H�� We say that this pairing is non�degenerate if both H� and H�� are trivial�
i�e�� consist of zero elements only�

Lemma 

 Pairings 	��
� are non�degenerate�

Proof The statement is evident because all spaces in ����	 contain smooth
sections of the corresponding bundles supported away from singM �supp � and�
on the other hand� the elements of these spaces are uniquely determined by their
�smooth	 restrictions to M n �singM � supp �	�

�

Now we need the following abstract lemma from GS��a� which we reproduce
with the proof for the sake of completeness�

Lemma 
� Suppose h�� �i �H��H � C is a non�degenerate bilinear pairing
of complex spaces H and H�� Then� for each vector subspace # of H� we have
# 	 �#�	� and

dim# � codim#�� if dim# ���
codim# � dim#�� if dim#� ���

�����	



�� The Riemann�Roch Theorem

Proof The inclusion # 	 �#�	� is obvious� From this we conclude that
codim# � codim �#�	�� Thus� the �rst formula of �����	 implies the second
one and we have only to prove the �rst formula�
To do this� we �rst observe that� since H�� � f
g� for each �nite linearly

independent system �hi	i	I in H there is a system �h�i	i	I in H
� parametrised

with the same family of indices� such that H� �
�
L �hi	i	I

��
�L �h�i	i	I � Here�

L �hi	i	I means the linear span of �hi	i	I � It follows that dim# � codim#��
and so it remains to prove the reverse inequality�
Consider the natural mapping # � HomC�H�	#��C	 given by h �� Fh�

where
Fh

�
h� �#�

�
� hh�� hi� for h� � H��

From H�� � f
g we deduce that the mapping h �� Fh is injective� Combining
this with the fact that codim#� ��� we derive

codim#� � dimH�	#�

� dimHomC�H
�	#��C	

� dim#�

as required�
�

Lemma 
� Under the second pairing of 	��
�� we have

�
im �A

��
� ker �A��

Proof By de�nition� ker �A� consists of all sections g � L������ A�	 such that
A�g � 
 in M n supp �� On the other hand� im �A contains all sections of the
form Au� with u � H��
�M�V 	 supported away from supp �� Combining this
with Lemma ���� we arrive at the desired conclusion�

�

Proofs of Theorems �� and �
 Lemmas ��� and ��� imply

im �A 	
�
ker �A�

��
� �����	

codim im �A � dimker �A�� �����	

and so we are left with the task of showing that both the inclusion and the
inequality are actually equalities�

By �����	� dimker �A� � codim
�
ker �A�

��
� hence equality in �����	 implies

equality in �����	� Since codim im �A� dimcoker �A� we only need to show that

dimcoker �A � dimker �A�� �����	
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For this purpose� we invoke the remark after Lemma ��� and �����	 to see
that

dimker �A � indA� deg � � dimcoker �A

� indA� deg � � dimker �A��

We now apply this argument again� with A replaced by A� and � replaced by
���� to obtain

dimker �A� � indA� � deg ��� � dimker �A

� �indA� deg � � dimker �A�

Combining these opposite inequalities yields

indA� deg � � dimcoker �A � indA� deg � � dimker �A��

which is equivalent to �����	� This completes the proofs of Theorems ��� and
����

�

� Contributions of Singular Points

The case where the support of a divisor � is allowed to meet the set of singular
points of M presents a much more delicate problem� The reason is that a
solution u to Au � 
 in a punctured neighbourhood of a point p � singM need
not have an expansion like �
��	� Hence the question arises of �nding a proper
substitute of solutions with ord �u� p	 � �m as well as of specifying the degree
of a divisor � with supp � � singM �� ��
By private communication M� Gromov informed us that the contributions

of conical points p � supp � can be evaluated by expanding solutions as series
in Bessel functions� But our approach is based on quite di�erent ideas from the
analysis on a manifold with conical points�
We begin with an equivalent description of the order �of �zero�	 of a solution

at a point p �M n singM in terms of the weighted Sobolev spaces� In order to
get asymptotic results� it is necessary to put some restrictions on the order of
A� Namely� we assume that a � n�
Let u be a solution of Au � 
 in U n fpg� where U is a coordinate neigh�

bourhood of p on the smooth part of M � If U is su!ciently small� then A has
a fundamental solution � � %�a� �V jU � V jU	 in U � Since a � n� the kernel of �
bears the estimates

D�
yD

�
y���y� y

�	 � O�jy � y�ja�n�j�j�j�j	� for all �� � � Zn
�� ����	

uniformly on compact subsets of U � U � Combining this with �
��	 yields the
following assertion�
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Lemma �� Let m � Z� In order that ord �u� p	 � �m it is necessary and
su�cient that

u � H
���m�n

�
��

loc �U� V 	� for m � 
�

u � H
���m�n

�
�a����

loc �U� V 	� for m � 
�

Note that by Hs�

loc �U� V 	 we mean the weighted Sobolev spaces as above�

constructed as if p be an arti�cial conical point of M � The lemma is still true
if we replace the exponent s � � by s � 
� for u is a solution of Au � 
 away
from p�

Proof Indeed� from �
��	 and ����	 it follows that ord �u� p	 � �m if and
only if

jy � pjm�
n
�
��u � L�

loc�U� V 	� for m � 
�
jy � pjm�n

�
�a����u � L�

loc�U� V 	� for m � 
�

the space L�
loc�U� V 	 being de�ned with respect to the volume form dy on U �

Since in the polar coordinates with centre at p we have dy � rn��drdx� where
r � jy� pj and dx is the area form on the unit sphere Sn��� the lemma follows�

�

As described in Lemma ���� the notion of the order can be extended also
to the singular points of M � The obvious asymmetry in m in the above two
conditions is explained by the fact that� for m � 
� the �weakest� singularity of
u at p is due to the term ��y� p	c�� i�e�� O�jy � pja�n	� While the de�nition of
ord �u� p	 � �m for m � 
 is irrelevant to the concrete di�erential operator A
and agrees with the heuristic concept of the multiplicity of a zero� the de�nition
of ord �u� p	 � �m for m � 
 invokes A and di�ers from the heuristic concept
unless a � n � �� On the other hand� a solution u � Hs�


loc �U� V 	 to Au � 

in a punctured neighbourhood U n fvg of a conical point v is known to bear
asymptotics of the form

u�r� x	 � ��r	
MX
���

j�X
j��

r�z��log r	jc�j�x	 mod H��
�l
loc �U� V 	 ����	

close to v� where � � C�comp�U 	 is a cut�o� function for the point v� z� � C
are non�bijectivity points of the conormal symbol �M�A	�v� z	 lying in the strip
n
� � 
 � l � �z � n

� � 
� with l � 
� and c�j are functions of �nite�dimensional
subspaces #� of C��Xv	  Vv on the base Xv � Hence the �orders� of such
solutions can �ll in the interval �a � n� 
	� too� For this reason we choose
in favour of the de�nition of ord �u� p	 � �m for m � 
� thus removing the
asymmetry in m � Z�

De�nition �� Let p � M and m � R� For a solution u to Au � 
 in

U n fpg� we write ord �u� p	 � m if u � H
��m� n

�
� �
�

loc �U� V 	�
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The correction �
� in the exponent is chosen by purely aesthetic reasons� What

we do in the case p �� singM is actually that we regard p as an arti�cial conical
point of M by blowing up M at p�
The point divisors � we have to deal with under this de�nition of ord �u� p	

are still elements of a free abelian group generated by points of the manifold
M � These are of the form � � pm�

� � � � pmN

N � now with m�� � � � �mN real numbers�
Under De�nition ���� the inverse divisor occurring in �
��	 and ����	 should be
��� � p�m��n���a

� � � � p�mN�n���a
N � which prompts us a group operation in the

set of all point divisors� Namely� for �� � p
m��
� � � � p

m�N
N and ��� � p

m���
� � � � p

m��N
N � we

set
����� � p

m���m
��

���n���a�
� � � � p

m�N�m��N��n���a�
N �

depending on the dimension of the underlying manifoldM and the order of the
di�erential operator A� This agrees with the usual operation in case A is of
order a � n� �� as is the case for the Cauchy�Riemann operator on a Riemann
surface�
A divisor � � pm�

� � � � pmN

N is said to be non�characteristic for A if� for each
�� either p� �� singM or p� � singM and �M�A	�p� � z	 is invertible on the line
"m��

�
�
�

We are now in a position to extend Theorem ��� to the case of point divisors
meeting the set of singular points� For a point divisor � � pm�

� � � � pmN

N � we
consider two spaces

L��� A	 � fu � H��

loc �M n supp �� V 	 � Au � 
� ord �u� p�	 � �m�g�

L����� A�	� fg � H��a�

loc �M n supp ���V �	 � A�g � 
� ord �g� p�	 � m��n���ag�

Theorem �� Let A be a di�erential operator on M elliptic with respect to
a weight tuple 
 � RI � Assume that � is a point divisor on M non�characteristic
for A� Then�

dimC L��� A	 � indA� deg � � dimC L����� A�	� ����	

Just as in �
��	 the degree of � occurring in ����	 is made up of contributions

of the points p�� i�e�� deg � �
PN

��� deg p
m�
� �

To describe the contributions of the points p� lying on the smooth part of
M � denote by m� the integral part of m � R� i�e�� the largest of the integers
not exceeding m� Then�

deg pm�
� �

�����	
����

�k

��
�m��

�
� ��n

n

�
�

�
�m��

�
� ��a�n
n

��
� if �m��

�
� �����


� if a�n� �m��
�
� �����

k

��
��m��

�
� ��a��
n

�
�

�
��m��

�
� ���

n

��
� if �m��

�
� ��a�n

�cf� �
��		�
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To evaluate the contributions of points p� � singM we need more informa�
tions on the conormal symbol �M�A	� Pick a conical point v ofM � The spectrum
of �M�A	 at v is said to consist of all points z � C such that �M�A	�v� z	 fails to
be an isomorphismHs�Xv	Vv � Hs�a�Xv	 �Vv for some s � R� Recall that
Xv stands for a cross�section of X close to v� being a compact smooth closed
manifold� We denote by spec�M�A	�v� �	 the spectrum of �M�A	 at v� From
the invertibility of the �compressed	 principal symbol of A over the set of sin�
gular points ofM it follows that �M�A	�v� z	 is a holomorphic family of elliptic
di�erential operators over Xv parametrised by z � C� Moreover� the restriction
of this family to each vertical line is an elliptic operator on Xv with the parame�
tre z� Hence we deduce that the spectrum of �M�A	 at v is a discrete set in the
complex plane� whose intersection with each vertical strip of �nite width is �nite�
Away from the spectrum the inverse �M�A	�v� z	�� is well known to be a holo�
morphic family of pseudodi�erential operators in %�a�Xv	  HomC� �Vv� Vv	� A
further observation is that �M�A	�v� z	�� is actually a meromorphic family over
the complex plane� with poles of a �nite rank at the points of spec�M�A	�v� �	�
This means that� for each z� � spec�M�A	�v� �	� we can write

�M�A	�v� z	
�� �

order z�X
j��

S�j�v	 �z � z�	
�j � R��z	� ����	

where S�j�v	 are smoothing operators of �nite rank over Xv and R��z	 is holo�
morphic in a neighbourhood of z � z�� It follows immediately that the singular
range of �M�A	�v� z	�� at z�� i�e�� the space�	


u �
order z�X
j��

uj�z � z�	
�j �

uj � C��Xv	 Vv�
�M�A	�v� z	u is holomorphic near z�

��
� �

is �nite�dimensional� The dimension of this space is known as the rank of the
pole z� and is denoted by rank z� �cf� Melrose Mel��� ����	�
Now� for p� � vi a conical point of M � we have

deg pm�

� � sign

�
m��

�

�
�
n

�
�
i

� X
z	spec �M�A��p����

�z	�n� �
i�m��
�
� 	

rank z� ����	

the sum in the right�hand side being 
 if m� �
�
�
� n

�
� 
i � 
� Note that the

lines "n
�
�
i and "m��

�
�
are� by assumption� free of the points of the spectrum

of �M�A	�p� � �	�
A particular case of Theorem ��� is the Relative Index Theorem of Melrose

and Mendoza MA��� �cf� also Sch��� ������� Mel��� ����	� which corresponds
to the case supp � � singM �

Proof of Theorem �� We are going to deduce Theorem ��� from Theo�
rem ��� and the Relative Index Theorem cited above�
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To this end� we denote by Aw� for w � RI � the operator A regarded as
mapping Hs�w�M�V 	 � Hs�a�w�a�M� �V 	� the exponent s being immaterial in
the sequel� If A is elliptic with respect to a weight tuple w� then indAw �
dimkerAw � dimkerA�w where both kerAw and kerA�w are independent of w�
Here� we abbreviate �Aw	

� to A�w�
Consider a weight tuple 
� � �
��� � � � � 


�
I	 in R

I de�ned as follows� Pick
i � �� � � � � I� If vi �� supp �� then 
�i � 
i� If vi � p� for some � � �� � � � � N � then

�i � �m� �

�
� �

n
� � Since � is non�characteristic for A� we conclude that the

di�erential operator A is elliptic with respect to 
��
We next reduce the divisor � � pm�

� � � � pmN

N to its part �� supported away
from the set of singular points� Namely� pick � � �� � � � � N � If p� �� singM �
then we allow p� to occur in the new divisor �� with just the same weight m� �
If p� � singM � then we assign the weight 
 to p�� thus refusing p� to be a part
of ��� The divisor �� so obtained does not meet the set singM �
Now� a trivial veri�cation shows that the space L��� A	 referring to the op�

erator A � A
 coincides with the space L���� A
�	� the operator A here being
A
� � Thus�

L��� A	 � L���� A
�	�

L����� A	 � L������ A�
�	�

The operator A
� and the divisor �
� ful�l the condition of Theorem ���� hence

����	 yields

dimC L��� A	 � indA
� � deg �
� � dimC L����� A�	� ����	

On the other hand� we can assert� by the Relative Index Theorem �cf� ibid	�
that

indA
� � indA�
IX
i��

sign �
i � 
�i	
X

z	spec �M�A��vi���

�z	� n��
i�
n
�
�
�i	

rank z� ����	

Combining ����	� ����	 and Lemma ���� we arrive at equality ����	� as re�
quired�

�

From Theorem 
�� and Lemma ���� one may conjecture that formula ����	
is still true for the points p� lying on the smooth part of M � now with 
i any
number in the interval

�
a� n

� �
n
�

�
� We postpone this discussion until Section ��

	 Rigged Divisors

In this section we extend Theorem ��� to point divisors � carrying informations
on asymptotics of solutions at the points occurring in �� Since asymptotic
expansions like �
��	 near points p lying on the smooth part of M are very
special cases of those at singular points and since each point p � M n singM
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can be thought of as an arti�cial conical point� we will restrict our attention to
the divisors � supported on the set singM �
As described in Section �� a solution u � Hs�
�M�V 	 of the equation Au � 


bears asymptotics of the form ����	 close to a conical point v �M � The sum in
����	 is over all points z� of the spectrum of the conormal symbol �M�A	�v� �	�
which lie in the strip n

� � 
 � l � �z � n
� � 
� while j� � � is the order of the

pole z� of the inverse symbol �cf� ����		� Thus� the number �j� � �	 dimC #� is
in fact equal to the rank of the pole z��
A divisor � � pm�

� � � � pmN

N speci�es only the strips in the complex plane�
in which asymptotics at p� are allowed� As for the spaces #� at each point
p�� they depend on the particular splitting of coordinates close to p� � Indeed�
the representation of a solution in the form ����	 depends on the choice of
coordinates� It follows that in order to specify the spaces #� at the points
occurring in the divisor we have to �x cylindrical structures near these points�
When specifying the spaces #� � we arrive at what Gromov and Shubin GS��b�
called the rigged divisors�
Let us recall the concept of an asymptotic type which is relevant to our

theory �cf� Schulze Sch��� ������	� Pick a conical point v �M � A weight datum
at v is a pair w � �
� �l� 
		 consisting of a number 
 � R and a �nite interval
�l� 
	� l � 
� on the real axis� By an asymptotic type associated with the weight
datumw is meant any collection as � �z�� j��#�	��������M � where z� are complex
numbers in the strip n

� � 
 � l � �z � n
� � 
� j� are non�negative integers� and

#� are �nite�dimensional subspaces of C��Xv	  Vv� For simplicity we ignore
the dependence of �as� on the vector bundle V � e�g� in notation�

De�nition �� The rank of an asymptotic type as � �z�� j��#�	��������M is
de�ned to be

rank as �
MX
���

�j� � �	 dimC #��

If u is a section of V in a punctured neighbourhood of the point v� then we
write as�u� v	 � as if u �

PM
���

Pj�
j�� r

�z��log r	jc�j�x	 modulo H
s�
�l
loc �U� V 	�

for some c�j � #� and some neighbourhood U of v� To deal with such sections�
one invokes a concept of weighted Sobolev spaces with asymptotics on a manifold
with conical points�
Given an asymptotic type as � �z�� j��#�	��������M � we denote by Aas the

�nite�dimensional space spanned by the functions�
��t	 r�z� �log r	j c�j�x	

�
��������M
j���������j�

�

with c�j � #� and � a cut�o� function for the point v� We can certainly assume
that � is supported in a su!ciently small neighbourhood U of v� and so Aas can
be identi�ed within the space H��


comp�U� V 	� Obviously� the dimension of Aas is
equal to the rank of the asymptotic type �as��
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Now� we assign a weight datum wi � �
i� �li� 
		 to every conical point
vi� i � �� � � � � I� Let asi be an asymptotic type associated with wi and let as �
�as�� � � � � asI	� For every i � �� � � � � I� we �x a cut�o� function �i close to vi� such
that supp�i��supp�i�� � � unless i� � i��� Then� the sum Aas � Aas��� � ��AasI

is direct because the spaces involved are supported by disjoint sets� the space
Aasi relying on �i� We set

Hs�

as �M�V 	 � Hs�
�l�M�V 	� Aas� ����	

where l � �l�� � � � � lI	� We endow Hs�

as �M�V 	 with the topology of the direct

sum of two normed spaces�
This de�nition of a space with asymptotics is slightly di�erent from that in

the cone theory �cf� Schulze Sch��� ������	� However� ����	 seems to suit better
the purposes of the present paper�
An elliptic di�erential operator A � Di�a�V� �V 	 is known to behave properly

in the spaces with asymptotics� Namely� suppose A is elliptic with respect to
a weight tuple 
 � RI and let as � �as�� � � � � asN 	 be a tuple of asymptotic
types� asi being associated with a weight datum wi � �
i� �li� 
		� Then� there
exists a unique tuple �as � � �as�� � � � � �asN 	 of asymptotic types associated with
weight data �wi � �
i � a� �li� 
		� now for the bundle �V � such that the operator
A � Hs�


as �M�V 	� Hs�a�
�a

as �M� �V 	 is Fredholm and� moreover� u � Hs�
�M�V 	

and as�Au� vi	 � �asi imply as�u� vi	 � asi� For more details we refer the reader
to Schulze Sch��� �������
The point divisors we consider are of the form � � pas�� � � � pasNN � where p� �

singM and as� is an asymptotic type at p� associated with a weight datum
w� � �
i � l� � �l�� 
		� the number i being de�ned by p� � vi� They are no
longer elements of any natural group generated by points of M �
A divisor � is said to be non�characteristic for A if �M�A	�p� � z	 is invertible

on the line "n
�
��
i�l� �� for each � � �� � � � � N � If such is the case� we de�ne the

degree of � to be

deg � �
NX
���

�rank as� � rank �as�	 �

�as� being chosen for as� as described above�
As mentioned� asymptotic expansion ����	 is a good substitute for �
��	 in

the case where p is a singular point of M � It is worth pointing out that the
de�nition of deg � in this section agrees with �
��	�
We now proceed as we did before� For a point divisor � � pas�� � � � pasNN � we

introduce two spaces

L��� A	 �fu � H��

loc �M nsupp �� V 	 � Au � 
� as�u� p�	 � as�g�

L����� A�	�fg � H��a�

loc �M nsupp �� �V �	 � A�g � 
� ord �g� p�	� l��
i�

n
��

�
��ag�

�ord � being as in De�nition ����
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Theorem �� Suppose A is a di�erential operator onM elliptic with respect
to a weight tuple 
 � RI � Then� for each point divisor � supported on singM
and non�characteristic for A� we have

dimC L��� A	 � indA� deg � � dimC L����� A�	� ����	

The proof of Theorem ��� is completely independent of Theorem ���� in fact
it is even simpler in this generality�

Proof Let the weight tuple 
� � �
��� � � � � 

�
I	 be de�ned as follows� Pick

i � �� � � � � I� If vi � supp �� i�e�� vi � p� for some � � �� � � � � N � then 
�i � 
i� l��
If vi �� supp �� then 
�i � 
i�
In a similar way we de�ne the tuple as� � �as��� � � � � as

�
N 	 of asymptotic types�

Namely� if vi � p� for some � � �� � � � � N � then as�i � as� � Otherwise we put
as�i � 
� the corresponding weight interval being empty�
Set

H� � Hs�
�

as� �M�V 	�

H� � Hs�a�
��a

as� �M� �V 	

and denote by T the operator H� � H� induced by A�
Since � is non�characteristic for A� the operator A is elliptic with respect

to the weight tuple 
�� Hence it follows that T is a Fredholm operator� and so
indT � dimkerT � dimcokerT is �nite�
It is clear from the de�nition of the space L��� A	 that L��� A	 � kerT �

Moreover� a simple veri�cation shows that L����� A�	 coincides with the kernel
of the operator A� � H�s�a��
��a�M� �V �	� H�s��
��M�V �	�
We next claim that dimcokerT � dimL����� A�	� To prove this� it is su!�

cient to show� by a familiar argument from functional analysis� that a section
f � H� belongs to the range of T if and only if f is �orthogonal� to L����� A�	
under the pairing H�s�a��
��a�M� �V �	�Hs�a�
��a�M� �V 	� C�
Indeed� let f � Au for some u � H�� Choose a sequence �u�	��������� in

C�comp�M n singM�V 	� such that u� � u in the norm of Hs�
��M�V 	� Then�

hg� fi � hg�Aui

� lim
���

hg�Au�i

� lim
���

hA�g� u�i

� 


for all g � H�s�a��
��a�M� �V �	 satisfying A�g � 
� Hence f is �orthogonal� to
L����� A�	�
On the other hand� suppose f � H� is �orthogonal� to L����� A�	� By the

above� L����� A�	 coincides with the annihilator of the range of the operator
A � Hs�
��M�V 	� Hs�a�
��a�M� �V 	� Hence we can assert that there is an u �
Hs�
��M�V 	 such that Au � f � However� as�f� vi	 � �as

�
i implies as�u� vi	 � as

�
i�

showing u � H�� as required�
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We have thus proved that dimC L��� A	 � dimC����� A�	 � indT � What is
left is to show that indT � indA� deg ��
Since

deg � �
IX
i��

�
rank as�i � rank �as

�
i

�

�
IX
i��

dimAas�
i
�

IX
i��

dimA 
as�
i
�

we shall have established the desired equality if we prove the following�

indT � indA� �dimAas� � dimA 
as�	 � ����	

To this end� write

H� � Hs�
��M�V 	� Aas� �

H� � Hs�a�
��a�M� �V 	� A 
as�

and let

T �

�
T�� T��
T�� T��

�
be the corresponding splitting of the operator T � Obviously� T�� � A� Moreover�
T�� � 
 since the restriction of T to H

s�
��M�V 	 operates to Hs�a�
��a�M� �V 	�
Were T�� zero� this allow us to conclude immediately that

indT � indT�� � indT��� ����	

which is just ����	 because the index of T�� � Aas� � A 
as� is equal to the di�erence
dimAas� � dimA 
as� �
To derive equality ����	 in the general case� we make use of the fact that

T�� � A is an elliptic� and consequently Fredholm� operator� Fix a parametrix
T���� for T��� i�e�� the inverse modulo compact operators� Then�

� 

�T��T

��
�� �

�
T

�
� �T���� T��

 �

�
�

�
T�� 


 T�� � T��T

��
�� T��

�

holds modulo compact operators� As the �rst and the third factors on the left
are isomorphisms� ����	 follows �cf� Proposition ������ in Schulze Sch���	� This
completes the proof�

�


 Spectrum of the Conormal Symbol at a Reg�

ular Point

When comparing ����	 and �
��	� one may ask whether the spectrum of the
conormal symbol of A at an arti�cial conical point is of a particular structure�
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The program be to identify the arti�cial conical points� via the spectrum of the
conormal symbol� within a larger class of conical points which still bear the same
property of the spectrum� Rather than discuss this in full generality� let us look
at the spectrum of the conormal symbol of geometric di�erential operators�
Suppose thatM is a two�dimensional manifold with conical singularities and

A � Di���V� �V 	 is an elliptic di�erential operator of geometric nature on M �
Let p be a point on the smooth part of M � We will restrict our attention to a
coordinate neighbourhood U of p over which both V and �V are trivial� Hence�
we can identify A with a matrix of scalar partial di�erential operators in U �
namely A �

P
j�j��A��y	D�� where A� are matrices of smooth functions in U �

We blow up M at p by introducing polar coordinates y � ��r� 	 with centre at
p� i�e�� ��r� 	 � p� r �cos� sin	� where r � 
� �	�  � 
� ��	� The pull�back
of the di�erential operator A under this change of coordinates is

��A �
X
j�j��

�

ij�j
��A�

�
cos

�

�r
�
�

r
sin

�

�

��� �
sin

�

�r
�
�

r
cos

�

�

���

whence

�M�A	�p� z	 �
X
j�j��

�

i
A��p	

�
�cosz � sin

�

�

����
�sinz � cos

�

�

���

� ��F �A	 �p� �� sin� cos		
�

�
� ��F�A	 �p� �cos� sin		 z�

for z � C�
The spectrum of the conormal symbol at the point p is easily seen to consist

of all z � C such that the operator �M�A	�p� z	 � C��S�	k � C��S�	k is not
invertible� k being the rank of V � Here� we identify C��S�	 with the space of
all C� functions on the real axis� periodic with period ��� Since the transpose
is induced by the di�erential operator

��M�A	�p� z		
�
u

� �
�

�

�
��F �A	 �p� �� sin� cos		u

�
� ��F�A	 �p� �cos� sin		 zu

� ���F �A	 �p� �� sin� cos		
�u

�
� ��F�A	 �p� �cos� sin		 �z � �	u

� ��M�A	�p� �� z	u�

we are reduced to looking for complex values z such that the problem�
��F�A	 �p� �� sin� cos		

�u
��

� z ��F �A	 �p� �cos� sin		u�  � R�

u�� ��	 � u�	�  � R
����	

has a non�trivial solution in C��S�	k�
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To do this� we make use of the ellipticity of A at the point p� which enables
us to conclude that the matrix ��F �A	 �p� �	 is invertible on the unit circle in the
cotangent plane T �p �M 	� Set

M �	 �
�
��F�A	 �p� �� sin� cos		

���
��F �A	 �p� �cos� sin		 �

it follows that M �	 is a �k � k	�matrix of C� functions on R� periodic with
period �� Then� the general solution of the di�erential equation in ����	 is known
to be

u�	 � e
z
R
�

�
M���d�

u�� u� � C
k�

We next substitute this solution u into the periodicity condition of ����	�
As

u�� ��	 � e
z
R
����

�
M���d�

u�

� e
z
R
�

�
M���d���z

R
�

�
M���d�

u��

this gives �
e
z
R
�

�
M���d���z

R
�

�
M���d�

� e
z
R
�

�
M���d�

�
u� � 


for all  � R� In particular� taking  � 
� we deduce that � is an eigenvalue of
the matrix

e
�z
R
�

�
M���d�

� ����	

for we require non�trivial solutions to ����	�
Conversely� if � is an eigenvalue of matrix ����	 and the matrices

R �
� M ��	d�

and
R �
�
M ��	d� commute� for each  � �
� �	� then problem ����	 has non�trivial

solutions�
We now proceed with the study of matrix ����	� The following properties of

the matrix M �	 are straightforward�

M
�
 � �

�

�
M �	 � �Ik�
M ��	 � �M �		� � Ik�

Ik being the identity �k � k	�matrix� It follows from any one of these prop�
erties that M �	 is constant� i�e�� independent of � if and only if it satis�es
�M �		� � �Ik� Such is the case for classical di�erential operators associated
to a Riemannian metric�
Indeed� notice that the principal symbol of a geometric di�erential operator

A satis�es �
��F �A	�p� �	

��
��F �A	�p� �	 � j�j�Ik� � � T �p �M 	�

which is equivalent to the system of equalities

�A��p		
�
A��p	 � �A��p		

�
A��p	 � ����Ik� j�j � j�j � ��
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��� being the Kronecker delta� In particular� the inverse of ��F�A	�p� �	 coincides

with the adjoint
�
��F�A	�p� �	

��
� for � � S��� Now� an easy computation shows

that

M �	 � �A����p		
�A����p	�  � R�

as required�
Returning to ����	� we expand the exponential function of a matrix as power

series� Since M is independent of  and satis�es M� � �Ik� we obtain

e
�z
R
�

�
M���d�

� e��zM

�
�X
���

�

�&
���zM 	�

�
�X
���

���	�
�

���	&
���z	�� Ik �

�X
���

���	�
�

���� �	&
���z	���� M

� cos ��z Ik � sin ��z M�

for  � R� Consequently� in order that � be an eigenvalue of matrix ����	� it is
necessary and su!cient that z � 
���� � � ��
We have thus proved that spec�M�A	�p� �	 � Z which is symmetric relative

to each line �z � i or �z � i � �
�
� where i � Z�

In the general case the spectrum of �M�A	�p� �	 is among the roots of the
characteristic equality

det

�
e
�z
R
�

�
M���d�

� Ik

�
� 
� ����	

Our last example demonstrates rather strikingly that even in the general
case it is to be expected that the spectrum coincides with the set of all integers�

Example �� Suppose A is a scalar elliptic di�erential operator of order
�� i�e�� k � �� Then� ��F�A	�p� �	 � A����� � A����� up to a non�zero complex
factor� where A��� and A��� are real numbers di�erent from zero� It follows that

M �	 �
A��� cos � iA��� sin

�A��� sin� iA��� cos

which is no longer constant in � We write this as M �	 � �M �	 � i�M �	�
with

�M �	 �
�A�

��� �A�
���	 cos sin

A�
����sin	

� � A�
����cos	

�
�

�M �	 �
�A���A���

A�
����sin	

� � A�
����cos	

�
�
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Since �M �� � 	 � ��M �	 for all  �
�

� ��

�
� we conclude that

Z �

�

�M ��	d� � 
�

On the other hand�Z �

�

�M ��	d� � �� sign �A���A���	

Z �

�

dt

t� � �

� �sign �A���A���	 ��

as is easy to check� Thus� the integral ofM �	 is an integer multiple of �i while
the matrix M �	 is itself of rather general nature� Therefore� equation ����	
becomes

e���i sign �A���A���� z � � � 
�

showing spec�M�A	�p� �	 � Z�
�

� Applications

We will touch only a direct consequence of Theorems ���� ��� and ��� along the
classical line�

Corollary �� �Riemann inequality�

dimC L��� A	 � indA� deg �� ����	

In particular� if indA � deg � � 
� then the space L��� A	 is non�trivial�
So this space will be always non�trivial if we �x the orders of �zeros� and
allow �poles� of su!ciently high order to make the degree deg � su!ciently
large� For example� in the setting of Section �� we can �x any set of points
p�� � � � � pN�� and any weights m�� � � � �mN��� but take mN su!ciently large to
arrive at dimC L��� A	 � 
�
In case A bears a unique continuation property� even the equality in ����	

can be claimed if one has a su!ciently large number of �poles��
For a deeper discussion of applications of the Riemann�Roch Theorem we

refer the reader to Gromov and Shubin GS��a��
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