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Abstract

The aim of this book is to develop the Lefschetz fixed point theory for

elliptic complexes of pseudodifferential operators on manifolds with edges.
The general Lefschetz theory contains the index theory as a special case,

while the case to be studied is much more easier than the index problem.
The main topics are:

The calculus of pseudodifferential operators on manifolds with edges,
especially symbol structures (inner as well as edge symbols).

The concept of ellipticity, parametrix constructions, elliptic regularity
in Sobolev spaces.

Hodge theory for elliptic complexes of pseudodifferential operators on
manifolds with edges.

Development of the algebraic constructions for these complexes, such
as homotopy, tensor products, duality.

A generalization of the fixed point formula of Atiyah and Bott for the
case of simple fixed points.

Development of the fixed point formula also in the case of non-simple
fixed points, provided that the complex consists of differential opera-
tors only.

Investigation of geometric complexes (such as, for instance, the de
Rham complex and the Dolbeault complex).

Results in this direction are desirable because of both purely mathe-
matical reasons and applications in natural sciences.

Ziel des Buches st es, die Lefschetz-Theorie der Fizpunkte fur ellip-
tische Komplere von Pseudodifferentialoperatoren auf Mannigfaltigkeiten
mit Kanten zu gewinnen. Die allgemeine Lefschetz-Theorie enthalt die
Indez-Theorie als Spezialfall, aber der Fall, den wir analysieren werden,
st viel leichter als das Index-Problem. Ergebnisse in dieser Richtung sind
wtnschenswert, einerseits aus innermathematischen Grunden, aber auch
wm Hinblick auf Anwendungen in den Naturwissenschaften.
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Introduction

If M is a closed manifold and f: M — M is a continuous mapping, then the
Lefschetz number of f is defined by L(f) = >_,(=1)%tr (H f);, where (H f);
denotes the induced endomorphism in the cohomology with real coefficients
HY(M,R) and tr the trace. In 1926 Lefschetz published his famous fixed
point formula (cf. [Lef26]) expressing this global characteristic of f in case
all fixed points of f are isolated as the sum of local indices at fixed points
(these indices are mapping degrees of 1 — f considered as a mapping between
small spheres centered at the fixed points). His argument is based on the
intersection theory applied to the cycles A and I'y representing the diagonal
and the graph of f in M x M, respectively. Their homological intersection
number corresponds via the Kunneth formula and the Poincaré duality to
the Lefschetz number, and a straightforward calculation yields the equality
of the geometric intersection number and the sum of the local indices.

A few years later, considering simplicial mappings of finite simplicial
complexes, Hopf proved an alternating sum formula which by simplicial
approximation lead to an alternative proof of the Lefschetz formula (cf.
[Hop29]).

In their paper [AB67], Atiyah and Bott established an analogue of the
Lefschetz fixed point formula for geometric endomorphisms of elliptic com-
plexes. The original proof of the formula in [AB67] can be considered as a
generalisation of Hopf’s argument. Its central point is again an alternating
trace formula for endomorphisms of elliptic complexes given by pseudodif-
ferential operators.

There is a well-established relationship between homological traces of
mappings and their fixed point sets. This relationship comes from two
results: first, the relation between the fixed points of a function and its
trace as a composition operator on a space of functions; and second, the
relation between traces on spaces in a complex and associated traces on
the homology of the complex. The Atiyah-Bott fixed point formula goes
through these two steps in its proof; the middle step, involving the meaning
of the trace of a composition operator, requires some extensions of the
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notion of a trace. To this end, Atiyah and Bott made essential use of
the structure and the properties of classical pseudodifferential operators
introduced by Kohn and Nirenberg [KN65] and Hormander [Hor66].

In the ’80s the interest in the Atiyah-Singer index theorem and closely
related to 1t Atiyah-Bott formula increased enormously. This is first of
all explained by the connection discovered between the index theorem and
sypersymmetric quantum theories (cf. Alvarez-Gaumé [AG83] and Witten
[Wit82]). There appeared new proofs of the Atiyah-Singer index theorem
(cf. Atiyah, Bott and Patodi [ABP73], Berline and Vergne [BV85], Bismut
[Bis84a], Getzler [Get83]) as well as of the Atiyah-Bott formula (cf. Atiyah
and Segal [AS68], Bismut [Bis84b, Bis85]).

In their celebrated paper [APS75], Atiyah, Patodi and Singer proved an
index theorem for Dirac operators on compact manifolds with boundary,
under the assumption that the metric is a product near the boundary and
using a global boundary condition arising from the induced Dirac operator
on the boundary. In their formula the index-defect, i.e. the difference be-
tween the analytic index and the interior term (which is the integral over the
manifold of the form representing the appropriate absolute characteristic
class), is expressed in terms of the ‘eta’ invariant of the boundary operator
and the dimension of its null space. Their definition of the ‘eta’ invariant
extends directly to all “admissible” Dirac operators and was later shown to
extend to all self-adjoint elliptic pseudodifferential operators on compact
manifolds without boundary. In the Dirac setting there are various fur-
ther extensions to non-compact manifolds (by Briining and Seeley [BS88],
by Miiller [Miil87], by Stern [Ste89] and by Melrose [Mel93]), to singular
manifolds (by Cheeger [Che87]), to boundary value problems (by Branson
and Gilkey [BG92], by Douglas and Wojciechowski [DW91] and by Mdiiller
[Miil94], by Grubb [Gru92], by Grubb and Seeley [GS95]), to families (by
Bismut and Cheeger [BC89, BC90], by Melrose [Mel95]) and also to define
“higher” ‘eta’ invariants (by Lott [Lot92], by Getzler [Get93] and by Wu
[Wu93]).

Melrose [Mel93] reinterpreted and systematized the proof of the original
Atiyah-Patodi-Singer theorem using the calculus of b-pseudodifferential op-
erators. One advantage of this method is the natural way the ‘eta’ invariant
appears in the course of the proof.

The index theorem for deformation quantisation by Fedosov [Fed95]
sheds new light to the Atiyah-Singer index theorem. It associates to every
element of the K-functor with compact support on a symplectic manifold
some topological invariant which in the simplest case is a polynomial in
inverse powers of the Planck constant. This invariant is similar to the
topological index of an elliptic operator. There is no analogue of the an-
alytic index in deformation quantisation unless the deformation quantum



Introduction 3

algebra springs up from a “genuine” operator quantisation. In this case
the index theorem asserts the coincidence of the analytic and topological
indices. Thus, the quantisation conditions arise: the Planck constant may
take only the values at which the topological index is an integer.

In [FS96, FST96] Fedosov’s techniques (cf. [Fed74, Fed78]) is used to
obtain analytic index formulas for elliptic operators on a cone and on a
wedge.

Elliptic complexes of pseudodifferential operators on manifolds arise in
various problems of geometry and analysis rather than single elliptic op-
erators. For example, the well-known de Rham and Dolbeault complexes
appear as resolutions of the natural sheaves of constant and holomorphic
functions, respectively (cf. Wells [Wel73]).

Elliptic complexes of differential operators are a necessary tool in the
study of overdetermined elliptic systems of partial differential equations
(Spencer’s resolution, cf. [Spe69]). Elliptic complexes of boundary value
problems appear as solvability conditions of overdetermined elliptic bound-
ary value problems (cf. Samborskii [Sam81]). They were studied in the
papers of Dynin [Dyn72], Pillat and Schulze [PS80], Dudnikov and Sam-
borskii [DS91].

The classical fixed point theorem of Lefschetz [Lef26] is easily formulated
in terms of the de Rham complex. Indeed, let M be a closed compact
smooth manifold of dimension n and let A* = C@rA"T* M be the bundle of
complex-valued exterior forms of degree i over M. The operator of exterior
derivation d, when restricted to differential forms of degree ¢, provides a
mapping d; : £(A?) — £(A*?) satisfying d;y1d; = 0. The de Rham complex

EA): 00— EAY) 5 e(Aly &5 I e(An) — 0

ker d;
m d;_1
sional and isomorphic to the i-dimensional cohomology of the manifold

X with coefficients in C (cf. de Rham [dR55]). FEach smooth mapping
f: M — M has a natural lift to the complex £(A") given by the “pull-back”
operator f! on differential forms. In other words, f! restricts to a family of
mappings fZ»tI 1 E(AY) — E(A) commuting with the differential of £(A’), i.e.,
difitI = ff_l_ldi. Hence it follows that f* induces an endomorphism (H f*); of
the de Rham cohomology H*(E(A')), for each i = 0,1,...,n. As described
above, the Lefschetz number of f is the alternating sum of the traces of
(Hf*");, i =0,1,...,n. In particular, if f = Id is the identity mapping of
M, then L(f) coincides with the Euler characteristic of the manifold M.
The Lefschetz theorem deals with a situation which is, in a sense, at the

is known to be elliptic, its cohomology H(£(A")) = is finite-dimen-

opposite extreme from the case of the identity mapping. It asserts that if

f 1s a smooth mapping of M of “general position,” i.e., each fixed point of
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f 1s simple, then

L(f) = ) sign det(l—df(p));
f(p)=p

thus, L(f) is equal to the number of fixed points of f taken along with their
multiplicities.

As mentioned, Atiyah and Bott [AB67] extended the Lefschetz fixed
point formula to arbitrary elliptic complexes over a closed compact smooth
manifold M. To state their result, let

EWVY): 00— (V) Lo evly By D e(vNy 0

be such a complex, where V7 are complex vector bundles over M and d; clas-
sical pseudodifferential operators of type Vi — Vit! satisfying d; 1d; = 0.
The ellipticity of £(V") means that the corresponding sequence of principal
symbols
0 — 70 L eyt A lvs) N
is exact in the complement of the zero section of 7* M. Here, 7V — T* M
stands for the pull-back of the bundle V¢ under the canonical mapping
m:T*M — M. Just as in the case of the de Rham complex, the cohomology
HYEWV)) = ﬁ of an elliptic complex is finite-dimensional at each step
i. Suppose F is an endomorphism of the complex £(V"), i.e., a sequence
E;: (V) — &(V?) of linear mappings such that d;E; = E;;1d;. Then
E preserves the spaces of cocycles and coboundaries of £(V"), hence after
passing to quotient spaces it induces an endomorphism (H E); of the coho-
mology H'(£(A")), for every i = 0,1,...,n. As these are finite-dimensional,
the traces tr (HE); are well-defined which yields the Lefschetz number of
E by
N
L(E) = (=1)'tr (HE);.
=0
Once again, if ' =Id is the identity endomorphism of £(V"), then

L(ld) = Z(_midimﬂi(s(V'))
= x(&(V)

is just the Euler characteristic of the complex £(V"). In particular, if N = 1,
this becomes the index of the elliptic operator dy. The question of how



Introduction 5

to compute L(FE) is therefore a generalisation of the index problem for
elliptic operators. Atiyah and Bott [AB67] evaluated the Lefschetz number
L(E) in the case when F is a geometric endomorphism of £(V"). The
latter is constructed via a smooth mapping f of the underlying manifold
M and a family of smooth bundle homomorphisms Ay : f*V — V. For
abbreviation, let us use the same letters hy: to designate the corresponding
mappings £(f*V?) — £(V?) of sections. An endomorphism E is said to be
geometric if all F; are of the form E; = hy. o f*. Then, the Atiyah-Bott
formula reads

N .

5 (-1 by

L(E) = f%;p | det(1 — df(p))]

(0.0.1)

provided f is of general position. Note that the bundle homomorphism
hyi: f*VP — Vi is just a family of linear mappings hy«(p) : Vfi(p) — Vpi.
Hence, at a fixed point p of f we have V;(p) = fo, and so hyi(p) is an
endomorphism of the vector space fo. Thus, tr Ay (p) is defined.

In the case of the de Rham complex we have hy-i(p) = A'df(p)’, the i th
exterior power of the transpose to df(p).

Thus, the Atiyah-Bott formula expresses the Lefschetz number of a ge-
ometric endomorphism of an elliptic complex on a closed compact manifold
via infinitesimal invariants of f and hy. at the fixed points of the map-
ping f. Tt is worth pointing out that formula (0.0.1) does not explicitly
involve the pseudodifferential operators d;. Thus it 18 much simpler than
the Atiyah-Singer index formula. Of course the d; are implicitly involved
by the condition d; F; = Fj41d;.

In [AB67] two more ways are sketched to prove the fixed point for-
mula for elliptic complexes. The first approach relies on the results of
Seeley [See67] on complex powers of pseudodifferential operators and the
¢-function. A closely related approach was chosen by Kotake in [Kot69];
it consists of the study of the fundamental solution for the heat equation
defined by the Laplacians of the complex after having transformed the Lef-
schetz number by means of the Hodge theory.

Taking up the second suggestion of Atiyah and Bott is what the paper
of Nestke [Nes81] aims at. It runs along the lines of the original proof of
Lefschetz for the classical formula.

Toledo went one step further in proving a fixed point formula only as-
suming isolated fixed points (cf. [Tol73]). He constructs a differential form
on the complement of the set of fixed points, of which the differential can
be extended to the whole manifold and gives the Lefschetz number by inte-
gration. The formula then follows from Stokes’ theorem by taking the limit
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for a contracting family of neighbourhoods.

A fixed point formula for higher-dimensional sets of fixed points was
found by Gilkey in [Gil79] by means of heat equation methods.

A particular case of (0.0.1) is the Lefschetz fixed point formula for the
Dolbeault complex which is referred to as the holomorphic Lefschetz for-
mula. For direct constructions along more classical lines we refer the reader
to Patodi [Pat73], Toledo and Tong [TT75], Inoue [Ino82], et al. Donnelly
and Fefferman [DF86] found an analogue of the holomorphic Lefschetz for-
mula for strictly pseudoconvex domains in C" provided with the Bergman
metric. This corresponds to the case of a non-compact manifold (cf. also
Donnelly and Fefferman [DF83b, DF83a], Donnelly and Li [DL84] and Don-
nelly [Don88]).

In the paper of Efremov [Efr88] the Atiyah-Bott fixed point formula is
extended to universal coverings of a closed manifold.

In the L?-cohomology setting there are various further extensions of the
Atiyah-Bott formula to non-compact manifolds (by Briining [Bru90], by
Shubin [Shu92] and by Shubin and Seifarth [SS90]).

A new idea suggested by Fedosov [Fed93] is to consider endomorphisms
of elliptic complexes which are induced by classical Hamiltonian flows
t: T*"M — T*M rather than by a mapping f of the underlying manifold.
He showed an asymptotic expansion of the Lefschetz number as i — 0, in
terms of fixed points of £. Such endomorphisms can be realized on sections
of vector bundles as Fourier integral operators obtained by quantising these
symplectic canonical transformations. Sternin and Shatalov [SS94b] gener-
alized this result to arbitrary symplectic canonical transformations of 7™ M
whose sets of fixed points are allowed to be compact smooth submanifolds
of T* M of various dimensions.

Yet another aspect of the general Lefschetz theory consists of general-
1sing the classical Riemann-Roch theorem to solutions of elliptic equations
with point singularities (cf. Gromov and Shubin [GS92, GS93a, GS93b]
and Shubin [Shu93]).

In 1971, following his construction of an algebra of pseudodifferential
boundary value problems for operators satisfying the transmission property,
Boutet de Monvel [BAM71] gave an analogue of the Atiyah-Singer index
theorem for boundary value problems. For elliptic complexes on a compact
smooth manifold with boundary whose differentials are operators in the
Boutet de Monvel algebra, Brenner and Shubin [BS81] proved an analogue
of the Atiyah-Bott formula. We also mention the infinitesimal version of the
classical Lefschetz formula for manifolds with boundary by Arnold [Arn79].

In this book elliptic complexes on manifolds with fibred boundaries are
studied, whose differentials are operators of a pseudodifferential algebra in-

troduced by the first author (cf. Rempel and Schulze [RS82b] and Schulze
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[Sch91, Sch94, Sch97b]). As but a few instances of manifolds with fibred
boundaries, we mention smooth manifolds with boundaries, closed man-
ifolds with conical points and those with edges. For such complexes we
prove an analogue of the Lefschetz fixed point theorem.

In Chapter 1 we give a brief exposition of manifolds with fibred bound-
ary. By such a manifold we mean a smooth compact manifold M whose
boundary is a fibred space over a smooth closed compact manifold S. Let
F: OM — S stand for the fibration mapping. We assume that [ is smooth
and that all the fibres F~1(y), y € S, are diffeomorphic to a smooth closed
compact manifold X. The Riemannian metric on a manifold with fibred
boundary degenerates along the boundary fibres. Such manifolds arise, as
will be shown, in various ways. Constructions leading to manifolds with
fibred boundary include the desingularisation of singular varieties via a
blow-up procedure and the compactification of non-compact spaces. In the
‘category’ of manifolds with fibred boundary, local diffeomorphisms of M
and smooth bundles over M are required to respect the boundary fibration.

Chapter 2 is devoted to the study of Sobolev spaces on manifolds with
fibred boundary. By the theorem on a collar neighbourhood, the manifold
M close to the boundary can be identified with the product [0,1) x M.
We say that a function or a distribution on M 1s supported close to the
boundary of M if it vanishes away from a compact subset of the collar neigh-
bourhood of M. Fix a smooth function w on M which is supported close
to the boundary and equal to 1 in a smaller neighbourhood of M. Then,
each distribution u in the interior of M can be written as u = uy + us,
where u; = wu is supported close to the boundary and the support of
uz2 = (1 —w)u does not meet the boundary. For s,y € R, we introduce a
weighted Sobolev space H*7 (M) of smoothness s and weight v on M. To
this end, let NydM stand for the bundle of inner normals to the bound-
ary of M and let FuNyIM be the push-forward of this bundle under the
fibration F'. Thus, F.N.OM is a bundle over S whose fibre over a point
y € S is the semicylinder N} dM x F~1(y). Denote by H*7(F.N;OM) the
Hilbert bundle over .S whose fibre over a point y € S is H*V((Fx Ny OM),),
a weighted Sobolev space on the semicylinder over F~!(y). The defini-
tion of the space H*7V((F.N;tO0M),) relies on the nature of the fibration
mapping ' : OM — S. Then, a distributions u belongs to H*7 (M) if
uy € H*(H*V(F NyOM)) and us € H*(M), where H*(H*Y(F.NLOM))
stands for a “twisted” Sobolev space of sections of H*V(F.NyOM) over S
and H*(M) for the usual Sobolev space on M. A central result of Chapter
2 is that the space H*7 (M) is locally invariant under smooth mappings of
M (cf. Schrohe [Sch97al). This definition is naturally extended to sections
of smooth vector bundles over M.

In Chapter 3 we discuss pseudodifferential operators on a manifold M
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with fibred boundary. We start with typical differential operators close to
the boundary of M, i.e., in the collar neighbourhood [0,1) x M. This
neighbourhood inherits a fibration from the boundary, whose base 1s S and
whose fibre over a point y € S is [0,1) x F~1(y). Then, typical differential
operators are generated by vector fields along the normal direction to dM
and those along the base S| which are smooth up to the boundary, and by
vector fields along the fibers F'~!(y) which are blown up on the boundary.
These are spanned by b 9/0z; in local coordinates of X, where b is a positive
function in the collar neighbourhood of M growing at the boundary. In
order to get asymptotic results, we ignore the dependence of b on = and
y thus requiring b to be a smooth positive function on the interval (0, 1)
with 6(04+) = co. We specify the singularity of b at £ = 0 by assuming
that 1/b is smooth up to ¢ = 0. The explicit form of b originates with
the “singular” nature of the fibration mapping F': M — S. The typical
differential operators give rise to a symbol class Symb™ (T* M) consisting
of those classical symbols of order m € R in the interior of M which have
prescribed degeneracy on the boundary of M. More precisely, these are of
the form

1
at,z,y, 7, &) =€ " fbd (t, z,y, ET,&, efbn) (0.0.2)

in local coordinates close to the boundary of M, where a is a classical
symbol of order m smooth up to ¢ = 0 and [b stands for a primitive of
b. Tt is a simple matter to see that symbol classes Symb™ (7= M) form an
algebra with respect to the Leibnitz product modulo symbols of order —co
in the interior of M. Our task is then to find a proper quantisation of the
symbol algebra as an operator algebra over Sobolev spaces H*7(M). To
any symbol a € Symb™ (T* M) we can assign a classical pseudodifferential
operator op(a) of order m in the interior of M. In fact, op(a) is defined
up to smoothing operators in the interior of M. Set ¢p = w, ¢; = 1 —
w and pick C'*° functions ¢3, ¥; on M such that i is supported close
to the boundary of M, ; is supported away from the boundary of M
and ¢, “covers” ¢,. This yields op(a) = @rop(a)ys + wiop(a)y; up to
a smoothing operator in the interior of M. The operator p;op(a)y; is
well-defined on the standard Sobolev spaces H*(M) and thus extends to
the weighted spaces H*Y(M). The operator ypop(a)ys has in general no
extension to H*Y(M). To cope with those difficulties, the idea suggested by
the first author in [Sch89, Sch90] and elaborated recently by Gil, Schulze
and Seiler in [GSS96] is to reformulate, modulo smoothing operators in
the interior of M, the operator op(a) in the collar neighbourhood of the
boundary as a pseudodifferential operator along S with a symbol taking its
values in an algebra of pseudodifferential operators in the fibres of M over
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S. In fact, we obtain a bundle homomorphism
ag: T HYY(F NLOM) = n* H 7Y™ (F NLOM)

over T*S, where m* H*7(F,NydM) denotes the pull-back of the Hilbert
bundle H*Y(F.N;IdM) under the canonical projection 7: 7*S — S. This
function satisfies symbol estimates which include a group action in the fibres
H*V((FyNyOM),) given by

kau(t, ) = const(A) u(6~(logA +6(t)),x), A€ Ry, (0.0.3)

where § is a diffeomorphism of Ry onto R which agrees with [ for small
t > 0. ' The property of “being homogeneous” for operator-valued sym-
bols always refers to a given group action in the fibres. When referred to
the group action (0.0.3), the symbol ag is not classical while it admits a
principal symbol. The latter can be written (at least formally) as a limit

os(op(as))(y,n) = lim A" wx-ras(y, An)rx,  (y,n) € TS\ {0},

(0.0.4)
and thus may be thought of as a homogeneous component of ag(y, n) of the
highest degree m. In fact, the “twisted” homogeneity of og(op(ag)) away
from the zero section of TS is easily seen from (0.0.4). The advantage of
using the representation ppop(a)ys = gpop(ag)ys modulo smoothing oper-
ators in the interior of M lies in the fact that the operator in the right side
behaves properly on the spaces H*(H*7Y(F,N;y0M)) and hence extends to
a continuous mapping H*Y(M) — H*~™7~™(M), for all s,y € R. Tt
follows that the operator A = wpop(ag)iys + wiop(a)y; provides the de-
sired quantisation of a symbol @ € Symb™(M). Such operators form an
operator algebra over weighted Sobolev spaces on M with two symbolic
levels. The inner symbol opr(A) of A is well-defined because the operators
op(as) and op(ag) are compatible as described above. In fact, oar(A) is
given by the principal symbol of the operator op(a) in the interior of M, of
which the “compressed” version is defined up to ¢ = 0. Yet another symbol
os(A) of A is given by the principal symbol of op(as) (cf. (0.0.4)) and
will be referred to as the singular symbol of A along S. The invertibility
of the singular symbol (Lopatinskii condition) is a necessary condition for
the Fredholm property of the operator in question. From this we deduce
that the parametrix construction, when carried out on the symbolic level,
invests the class of admissible operator-valued symbols along S. While the

ITo achieve the property [lerullzsv((F, NyoM)y) = [Jull 255 (s Nyob),) forall A>
0, put const(A) = A7,
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symbols ag originating with symbols in Symb™ (M) are families of pseu-
dodifferential operators on the semicylinders (FyLNy0M), with holomor-
phic symbols relative to the Fourier transform lifted to the semiaxis R4 by
the diffeomorphism &, their inverses have poles in the complex plane. It is
therefore adequate to have all the inverse symbols from the very beginning
in the class. This results in forbidding the weights v € R such that the
line I'y = {# € C: Iz = ~} meets a pole. Moreover, for fixed weight
data, we add so-called Green symbols with asymptotics, ¢(y,n). These
are classical operator-valued symbols of order m defined via their mapping
properties between Sobolev spaces in the fibres. The corresponding opera-
tors op(g) : H*V(M) — H®7~™(M) are smoothing in the interior of M.
Having thus completed the algebra of operator-valued symbols along S, we
arrive at an operator algebra UDiff™" (M ; w), where w stands for weight
data. In this way we obtain what is known as pseudodifferential operators
on a manifold with fibred boundary. We also define pseudodifferential op-
erators between weighted Sobolev spaces of sections of vector bundles V
and V over M and write UDiff™ (V, v, w) for the corresponding operator
algebra.

In Chapter 4 we give a brief exposition of elliptic boundary value prob-
lems on a manifold M with fibred boundary. In the ‘category’ of manifolds
with fibred boundary, the boundary data are required to be constant along
the fibers F~1(y), y € S. Therefore, they are actually interpreted as data
on the underlying manifold .S which leads to the concept of an “edge prob-
lem” (cf. Schulze [Sch91, 3.3.4]). To be more precise, let A = op(a) be
a typical differential operator of order m on M. We say that A is elliptic
if the inner symbol oar(A) is invertible away from the zero section of the
(compressed) cotangent bundle 7*M. For the boundary points (0, z,y),
this means that

om(A) (O,x,y, befbr, efbé’,n) #0 if (r,&n)#0 (0.0.5)

(cf. (0.0.2)). Under this last condition, for each point y € S there is a
discrete set D(y) in the complex plane such that

os(A) ) : BV (FN4OM)y) = =" (RN, OM),)

is a Fredholm operator for all s € R and for all y € R with I', N D(y) = 0,
unless 7 = 0. It is now a topological condition on the original operator A
that there exist smooth vector bundles W and W over S and homogeneous
operator-valued symbols p, ¢t and b on T*S such that

T HO(FNLOM)  w HS == (F, N, 0M)
( ”SEA) y ) ® — =) (0.0.6)
oW W
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is an isomorphism outside the zero section of TS, for each s € R. This
isomorphism can be used as the singular symbol of some boundary value
problem associated with A. By such a problem we mean an operator

AZS%(@? g)%-l—%(glg)l/% (0.0.7)

where A € UDIiff(M;w) and As, P, T, B are pseudodifferential operators
along S whose symbols are bundle homomorphisms as in (0.0.6). Thus,
P has the meaning of a potential or corestriction operator with respect to
S, T of a trace operator, and B is nothing else than a pseudodifferential
operator between sections of vector bundles W and W along S. It 1s worth
pointing out that these last three operators are “classical.” We require the
operators Ag and A to be compatible close to the boundary, hence A has a
well-defined principal inner symbol given by oar(A) = oar(A). Moreover,
A has a principal singular symbol og(A) defined by (0.0.6). In this way
we obtain what looks like the operators in Boutet de Monvel’s theory of
boundary value problems and encompasses this theory when F' 1s a point
fibration. Let Alg™(M; W, W; w) denote the resulting operator algebra,
w being weight data. Each operator A € Alg™ (M;W, W, w) defines a
continuous linear mapping

HS,’Y(M) HS—m,’Y—m(M)
A e o ® , (0.0.8)

H* (W) o= (W)

the weight exponent v € R being from the weight data w. An opera-
tor A is said to be elliptic if both symbol mappings o3 (.A) and og(A)
are isomorphisms away from the zero sections of T*M and TS, respec-
tively. The main result of Chapter 4 is that the ellipticity of A is equiva-
lent to the Fredholm property of the corresponding boundary value prob-
lem (cf. (0.0.8)), for all s € R. Namely, under ellipticity there is an
operator P € Alg™"(M; W, W;w) such that both PA —1 and AP — 1
are compact operators in the corresponding Hilbert spaces. Such an op-
erator is called the regularizer or parametriz of the boundary problem A.
The compactness is obtained as a consequence of the fact that P4 — 1
and AP — 1 are smoothing operators improving also the weight exponents
~ and vy — m, respectively. Moreover, the nature of the parametrix P
makes it obvious that .4 behaves properly in weighted Sobolev spaces with
asymptotics HY(M) & H*(W), ‘as’ being an asymptotic type subordi-
nated to w. The concept of function spaces with continuous asymptotics
was first introduced by Schulze [Sch88b]. For a recent account of the the-
ory the reader can consult Dorschfeldt [Dor95] and Schulze [Sch97b]. We
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also consider boundary value problems for operators in ¥Diff™ (V] V; w) and
write Alg™(V, VW, W; w) for the corresponding operator algebra. As men-
tioned, a bundle V' € Vect(M) is required to respect the boundary fibration,
whence F*(V]g) = V|sar. In particular, the fibres of V are constant along
the fibres of F, i.e., V|p-1¢,) = F~Y(y) x V, is a trivial bundle, for each
y € S. Thus, the singular symbol of an operator A € Alg™(V,V; W, W; w)
is a well-defined bundle homomorphism

HS YV (F,NLOM) © Vg He=m=m(F, N, OM) @ Vg
os(A): 7 D - 57

w w

over T™S. Yet another important point to note here is the order-reducing
isomorphisms within the algebra. More precisely, given any m € R and
smooth vector bundles V' and W over M and S, respectively, there is an
elliptic operator R’y € Alg™(V,V; W, W;w) such that

HY(V)  HS=m=m(Y)
Pw: & - @ (0.0.9)
H* (W) Hemm(W)

is an isomorphism for all s € R. One can even choose R™ without potential
and trace conditions.

Chapter b deals with elliptic complexes of boundary value problems
on a manifold M with fibred boundary. This idea goes back at least as
far as Schulze [Sch88a] where elliptic complexes on manifolds with conical
singularities are studied. We consider complexes of the form

HSW(VO) Hslm(vl) . HSN,WN(VN)
L:0— o % @ Sy Ly @ N
HS(WO) Hsl(Wl) HsN(WN)
(0.0.10)
where
S5 = S$§—Myg—...— My,
i = Y—mMy—...— M-

and d; € Alg™ (VI VL W Wit w;). The weight data w; are assumed
to be compatible in order that all the compositions d; 11 o d; be defined. In
fact, the value v € R is specified by the weight data while s € R can be
chosen arbitrary. As described above, we associate two symbol sequences
with complex (0.0.10). The first of the two is the sequence of inner symbols
compressed close to the boundary, namely

on(do) M (dy) on(dn_1)

0 — 7" VO TS eyt AR MRS ey N 50, (0.0.11)
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m: T*M — M being the canonical projection. It follows from the multi-
plicative property of the symbol mapping that (0.0.11) is a complex. The
exactness of this complex away from the zero section of 7% M 1s a straight-
forward generalisation of ellipticity in the interior of the manifold M up to
its boundary. In general, this is not sufficient for (0.0.10) to be a Fredholm
complex. To cope with those difficulties, we introduce yet another symbol
sequence which controls the lack of the Fredholm property on the boundary
of M. This is

H0®V0|5 H1®V1|S HN®VN|S
0 * os(do) os(dy)  os(dn-1)
—T D —'r D — ... = D —0,
wo wit wh

(0.0.12)
where H' = H®*"i(F,NydM) and 7: T*S — S is the canonical projec-
tion. Once again (0.0.12) is a complex. The principal significance of this
complex is that its exactness outside the zero section of T*S is a gener-
alisation of Lopatinskii’s condition for classical boundary value problems.
We call a complex (0.0.10) elliptic if both (0.0.11) and (0.0.12) are ex-
act sequences away from the zero sections of the corresponding cotangent
bundles. To prove that any elliptic complex is a Fredholm complex, i.e.,
it has finite-dimensional cohomology H!(L'), the usual way is to reduce
the matter to a single elliptic operator. For this purpose, one uses the
Laplacians A; = d¥d; + d;_1d;_; of the complex. However, for an operator
A € Alg™(V,V; W, W;w), only the transpose A’ is well-defined within the
algebra. We can conjugate it by conjugate linear isomorphisms of bundles
* (cf. Hodge’s “star” operator), thus arriving at the “formal adjoint” op-
erator A* = %1 A’x. But A* is defined on the weighted Sobolev spaces
of opposite weights, hence the compositions A*A and AA* are not de-
fined unless A is of order zero. To cope with these difficulties, we invoke
order-reducing isomorphisms R; = Rq/’hwl (cf. (0.0.9)):

HSW(VO) Hslm(vl) . . HSN,WN(VN)
L:0— & — o 5.3 ¢ —0
HS(WO) Hsl(Wl) HsN(WN)
|= 2 | R | R
) Hs—w,O(vO) p Hs—w,O(vl) P _ Hs—w,O(vN)
L':0— & — o 5.3 ¢ —0.
HS_IY(WO) Hs—w(wl) HS_IY(WN)
(0.0.13)

The operators d; are defined so as to make diagram (0.0.13) commutative.
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Then, d; = Rit1d;R;* belongs to Alg®(VE VL W Wit 4;) and satis-
fies ciH_lciZ' = 0, for each 2. It follows that Lisa complex of operators of
order zero on the manifold M. Moreover, this complex is elliptic, which
is clear from the ellipticity of the operators R; and the fact that the co-
homology of complex (0.0.12) is independent of s. We develop the Hodge

theory for the complex L , thus obtaining a very special parametrix (772)

up to operators of finite rank being orthogonal projections onto spaces of
harmonic sections. Then, P; = R;_lmmi provides the desired parametrix
to the original complex L. We have

Piprdiu+di—1Piu=u—Su forall we L (0.0.14)

Si being a smoothing operator in the algebra improving also the weight
exponent (Green operator). As but one consequence of this we conclude that
the cohomology of an elliptic complex is finite-dimensional and independent
of s€ R.

In Chapter 6 we introduce the Lefschetz fixed point theorem for a man-
ifold M with fibred boundary. Let L be an elliptic complex of boundary
value problems on M as in (0.0.10). By an endomorphism of the complex
L' is meant a family E = (F;) of linear mappings F;: L' — L' such that
d;i F; = Fiy1d;. Then E induces an endomorphism (H E); of the cohomol-
ogy HY(L'), for every i = 0,1,...,n. As described above, these are finite-
dimensional vector spaces, and SO the traces tr (HE); are well-defined. We
introduce the Lefschetz number of E by L(E) = va o(=Ditr (HE);. If L
is a complex homotopically equivalent to L, then each endomorphism E of
L induces a unique endomorphism F of L' via the mappings establishing
the equivalence. Moreover, the Lefschetz number of E is equal to that of
E. In particular, the sequence F; = RZEZRl_l gives us an endomorphism
of complex (0.0.13) and L(FE) = L(F). We are thus reduced to evaluating
the Lefschetz number L(FE) for elliptic complexes of zero order operators
but perhaps for “twisted” endomorphisms. This 1s disadvantageous in our
case because we are interested in evaluating the Lefschetz number for ge-
ometric endomorphisms of L'. Suppose then that f is a smooth mapping
of the underlying manifold M preserving the fibration F': dM — S of the
boundary. This means that f(S) C S and f(F~1(y)) C F~1(f(y)) for all

y € 5. Let we be also given smooth bundle homomorphisms

hyi: frVE = VY

hwe: [*W' — W
and set Ayigw: = hyi @ hy:. Using the same notation for the induced
mappings on sections, we can then define linear mappings F;: L' — L* as
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the composition

BV ESV ()
o L o ey &
HS,(WZ) HS,(f*WZ) HS,(WZ)

Thus, if u = uy Gus € L', then E;u is given by hy-iui(f(2)) ® hyiua(F(y))-
The point to note here is 'that ul(f(a:)) ® us(fly)) € Vfi(x) & W;(y), but
hyigw: takes us back to V; @Wé. If further d; E; = F;41d;, then the family
(E;) defines an endomorphism of the complex L. An endomorphism of this
type we call a geometric endomorphism. Returning now to the mapping f,
we need further specifications of its fixed points on the boundary. Let p be
such a point, i.e., p € OM and f(p) = p. Then df(p) induces a mapping
doar f(p): ToOM — T,0M and hence a mapping

(df /don f) (p) : NpOM — N,oOM (0.0.15)

of the quotient space N,0M = T, M/T,0M. The latter can be identified
with the normal space to the boundary at the point p. As N,0M is one-
dimensional, (0.0.15) can be regarded as the multiplication by a number
q(p) € R. Tt is clear that ¢(p) > 0, for M is invariant under f. Moreover, if
p is a simple fixed point of f, then ¢(p) # 1. A simple fixed point p € M
is said to be attracting, if ¢(p) < 1, and repulsing, if ¢(p) > 1. Denote by
Fix(f, M \ OM) the set of all interior fixed points of f, by Fix(a)(f, IM)
the set of all attracting boundary fixed points of f and by Fix(f, S) the set
of all fixed points of f on S. The main result of Chapter 6 states that, if f
is a smooth mapping of M with only simple fixed points, then

iJZ::()(_l)itr hy+(p) iJZ::()(—l)itr hyyi(p)
HE = pEFix(%:VI\aM) | det(1 — df(p))| +pEF§(:f,S) |det(1 = ds S

OFix(*) (f,0M)

(0.0.16)
Note that if M is a closed compact manifold, then the second term in
the right side of (0.0.16) is absent and this equality becomes the Atiyah-
Bott formula (cf. (0.0.1)). The proof of (0.0.16) follows in the large the
scheme suggested in [AB67], though we meet some difficulties caused by the
boundary. To cope with them we use the material on pseudodifferential
operators in the algebra Alg™(V, VW, W; w). The proof falls naturally
into three parts. We first show the formula

N N

S (=Dt (HE); =) (-1)'ir E; (0.0.17)

1=0 =0
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for those endomorphisms E of the complex L~ which are given by Green
operators in our algebra. Then, with the help of the parametrix of L', we
derive an approximation E) of a geometric endomorphism E by Green
endomorphisms in the strong operator topology. Such an approximation
is constructed via approximations of the identity operators in H*®7(V?)
and H*(W?') by Green operators. For H®7Y(V?), this is done locally in
a neighbourhood of a boundary point by means of convolution operators

Rgf,) with a delta-like sequence consisting of functions with supports in
the half-space ¢ < 0, provided the coordinates (¢, z,y) are so chosen that
M = {t > 0}. Using such an approximation results in the cancellation of
contributions of the repulsing boundary fixed points. This idea goes back
at least as far as Brenner and Shubin [BS81]. Finally, since equality (0.0.17)
holds for each endomorphism E)| e > 0, and lim. o L(F®)) = L(E), we

are reduced to evaluating the limit in the right-hand side of (0.0.17), i.e.

N
I —1)itr B
lim ' (—1)'tr E,
1=0
For this step we make essential use of the nature of pseudodifferential op-
erators on M.

Chapter 7 presents a general approach to fixed point theory which ap-
plies to complexes on a manifold with fibred boundary whose differentials
are local operators in the algebra Alg™ (V, V; W, W;w). Since the potential
operators are non-local by the very nature, we consider elliptic complexes

(0.0.10) with
d; = ( _jffi M ) (0.0.18)

where A; € Diff(VE Vit B, € Diff” (Wi Witl) and T; is the com-
position of a differential operator of order m; along S with the restriction
operator to S. In fact operators (0.0.18) go beyond the range of the alge-
bra Alg™(V, VW, W; w), however they can be handled in much the same
framework. Such complexes arise as cones of cochain mappings

0 —H(VO) Ay e (V)AL | S e ()

l n = |

0—Hs (WO LS gy s o2y 2o — 0
(cf. Dold [Dol72]) and were first investigated by Dynin [Dyn72]. Suppose

f: M — M be a smooth mapping possessing a lift £ to the complex L.
Formula (0.0.16) expresses the Lefschetz number of E as L(F) = Zp t(p),
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where the sum runs over the fixed points p of the mapping f and ¢(p) are
infinitesimal invariants of f at p. It is natural to ask whether their local
index can be explained as a special case of a cohomological formula which
always makes sense for isolated fixed points, as in the classical theorem
where sign det(1 — df(p)) = deg(l — f,p). As mentioned, Toledo [Tol73]
gave an exposition of the fixed point theory on a closed compact manifold
which applied to isolated fixed points gives both the Atiyah-Bott formula
and cohomological formulas. This method is based on a classical formula of
de Rham [dR55, §33] which expresses intersection numbers in Riemannian
manifolds in terms of the Green kernel. We develop the theory for elliptic
complexes (0.0.18) on manifolds with fibred boundary. It leads to an inte-
gral representation for the Lefschetz number from which formula (0.0.16)
can be derived by some delicate but quite elementary analysis. Moreover
assuming that the Poincaré lemma holds, i.e., the local cohomology of the
complex L' is concentrated at the step 0, we derive a cohomological ex-
pression for the index of an isolated fixed point. For simple fixed points
this reduces of course to the infinitesimal description. Finally, we apply the
general theory to the classical elliptic complexes. For the de Rham complex
it just gives the classical formula. But for the relative de Rham complex we
arrive at a new formula which in the case of point fibrations (i.e., S = dM)
was shown by Brenner and Shubin [BS81].

In the larger program of analysis on manifolds with singularities there
always 1s a certain freedom in the choice of the algebra one intends to
work with. Let us recall that, in 1967, Kondrat’ev published his paper
[Kon67] on elliptic differential operators on manifolds with conical singu-
larities. Although concrete examples had already been treated by other
authors in the early ’60s, he was the first to treat these questions sys-
tematically. The calculation of the asymptotics of solutions near conical
points by means of the meromorphic inverses of the conormal symbols 1s
often referred to today as Kondrat’ev technique. Another version of the
analysis of operators near conical singularities in the boundaryless case was
developed by Plamenevskii [Pla89]. He paid much attention to the point of
view of C'*-algebras and considered also pseudodifferential operators with
discontinuous symbols. This approach was extended by Derviz [Der90] to
the case of boundary value problems. The desingularisation of closed com-
pact manifolds with singularities leads to compact smooth manifolds with
fibred boundary. The fibration of the boundary gives rise to a fibration
of the manifold M itself close to the boundary via a collar neighbourhood
of M. The fibre of M is therefore the semicylinder over a smooth closed
compact manifold. Then, the local algebra near the boundary is deter-
mined by the fibration of M, which is the only relevant point here. On the
other hand, a compact manifold with an edge S on the boundary, when
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“desingularized” close to S, has the structure of a bundle over S whose
fibre is the semicylinder over a compact manifold with boundary, X. Then,
the local algebra near S is organized as the Fourier calculus along S with
operator-valued symbols taking their values in the algebra of pseudodiffer-
ential operators over Ry x X. In turn, this latter algebra is organized as
the Mellin calculus along the semiaxis with operator-valued symbols tak-
ing their values in the Boutet de Monvel algebra on X (cf. Schrohe and
Schulze [SS94a, SS95]). The strategy for obtaining the operator theories on
manifolds with higher singularities 1s described in the books of the first au-
thor [Sch91, Sch94, Sch97b]; it relies on the concepts of “conification” and
“edgification” of an operator algebra. The paper [Mel81] by Melrose has es-
tablished another approach to the analysis of pseudodifferential and Fourier
integral operators with totally characteristic symbols (‘b’-calculus, ‘b’ in-
dicating to ‘boundary’). Applying these techniques, Melroze and Mendoza
[MA83] established a Fredholm theory including ellipticity and parametrix
construction for an algebra of pseudodifferential operators on closed com-
pact manifolds with conical singularities. In recent years, Melrose et al.
investigated some algebras of ‘cusp’ pseudodifferential operators on com-
pact manifolds with boundary (cf. Mazzeo and Melrose [MM], Melrose and
Nistor [MIN96]). In [MN96], the Hochschild and cyclic homology groups are
computed for the ‘cusp’ algebra. The index functional for this algebra is
interpreted as a Hochschild 1-cocycle and evaluated in terms of extensions
of the trace functional on the two natural ideals, corresponding to the two
filtrations by interior order and vanishing degree at the boundary, together
with the exterior derivations of the algebra. This leads to an index for-
mula which is a pseudodifferential extension of that of Atiyah, Patodi and
Singer for Dirac operators. It is to be expected that the Lefschetz fixed
point theory makes sense also in these algebras. As above, the desingu-
larisation of compact manifolds with singularities on the boundary leads
to compact manifolds with piecewise smooth boundary. (Strictly speaking,
by a desingularisation is just meant the resolution of an arbitrary singular-
ity by transversal intersections.) Moreover, smooth pieces of the boundary
inherit different fibrations induced by the desingularisation. This leads to
operator algebras more intricate than (0.0.8); they carry function spaces
over various fibred components of the boundary. The important point to
note here is the proper definition of being attracting for boundary fixed
point lying in the intersection of several boundary hypersurfaces, each of
them being smooth. This follows automatically from the construction of
the approximation of the identity operator in spaces of smooth functions
on M by Green operators. Namely, a boundary fixed point p is said to
be attracting if it is attracting with respect to each boundary hypersurface
which meets p. Then, a kind of (0.0.16) is still true. In particular, for the
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pEFIx(f,M\OM)

> ¢(p)
pEFix (@) (f,0M) 0 1 0 1 0 2

Fig. 0.1: The Lefschetz number of a mapping f: [0, 1] — [0, 1].

de Rham complex on a compact manifold with piecewise smooth boundary,
this gives
L(f) = > sign det(1 — df(p)), (0.0.19)

pEFix(f,M\oM)
uFix (@) (£ aM)

f being a smooth mapping of M of general position. Certainly, formula
(0.0.19) can be deduced from the general Lefschetz fixed point theorem for
C'W-complexes (cf. Proposition 6.6 in Dold [Dol72, Ch.7]). However, this
theorem gives no explicit description of the contribution of a non-interior
fixed point while permitting f with arbitrary fixed sets. It is interesting
to have look at the right-hand side of (0.0.19) in the one-dimensional case
where M = [0, 1] (cf. Brenner and Shubin [BS81]). The identity boundary
fibration we choose corresponds to the setting of a manifold with boundary.
Figure 0.1 presents the graphs of 6 possible mappings f : [0,1] — [0,1]
preserving the boundary. In fact these are different classes of mappings
from the point of view of classification of boundary fixed points. In the
first example there is no boundary fixed points, in the second example
there is one attracting boundary fixed point, in the third example there is
one repulsing boundary fixed point, in the fourth example there are one
attracting boundary fixed point and one repulsing boundary fixed point, in
the fifth example there are two repulsing boundary fixed points and in the
sixth example there are two attracting fixed points. The table shows the
summary contributions of interior fixed points and of attracting boundary
fixed points. Formula (0.0.19) then means that the Lefschetz number of f
(cf. the first line) is equal to the sum of the second and third lines. On the
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other hand, the boundary fibration with one-point base, F': M — {0},
corresponds to the setting of a stretched manifold with a conical point. In
this case the first mapping in Fig. 0.1 is not compatible with the boundary
fibration and is thus forbidden.
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