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  Abstract 

Abstract 
The past decades are characterized by various efforts to provide complete sequence information of 

genomes regarding various organisms. The availability of full genome data triggered the development 

of multiplex high-throughput assays allowing simultaneous measurement of transcripts, proteins and 

metabolites. With genome information and profiling technologies now in hand a highly parallel 

experimental biology is offering opportunities to explore and discover novel principles governing 

biological systems. Understanding biological complexity through modelling cellular systems 

represents the driving force which today allows shifting from a component-centric focus to integrative 

and systems level investigations. The emerging field of systems biology integrates discovery and 

hypothesis-driven science to provide comprehensive knowledge via computational models of 

biological systems.    

Within the context of evolving systems biology, investigations were made in large-scale 

computational analyses on transcript co-response data through selected prokaryotic and plant model 

organisms. CSB.DB - a comprehensive systems-biology database - (http://csbdb.mpimp-

golm.mpg.de/) was initiated to provide public and open access to the results of biostatistical analyses 

in conjunction with additional biological knowledge. The database tool CSB.DB enables potential 

users to infer hypothesis about functional interrelation of genes of interest and may serve as future 

basis for more sophisticated means of elucidating gene function. The co-response concept and the 

CSB.DB database tool were successfully applied to predict operons in Escherichia coli by using the 

chromosomal distance and transcriptional co-responses. Moreover, examples were shown which 

indicate that transcriptional co-response analysis allows identification of differential promoter 

activities under different experimental conditions. The co-response concept was successfully 

transferred to complex organisms with the focus on the eukaryotic plant model organism Arabidopsis 

thaliana. The investigations made enabled the discovery of novel genes regarding particular 

physiological processes and beyond, allowed annotation of gene functions which cannot be accessed 

by sequence homology. GMD - the Golm Metabolome Database - was initiated and implemented in 

CSB.DB to integrated metabolite information and metabolite profiles. This novel module will allow 

addressing complex biological questions towards transcriptional interrelation and extent the recent 

systems level quest towards phenotyping. 
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Chapter I - General Introduction:   
- Genomics & Post-Genomics - 

Abstract 

The past decades have seen a growing number of organisms with available complete genome 

sequences. The accessibility of those resources triggered the development and recent maturation of 

high-throughput assays. Multi-parallel analyses of transcripts, proteins and metabolites are central for 

functional genomics. This highly parallel experimental biology is offering opportunities to explore and 

discover underlying governing principles of biological systems. The following sections give a brief 

overview of past and recent developments of high-throughput approaches and bioinformatics which 

take advantage from the availability of entire genome sequences and multi-parallel techniques.      

 

Introduction 

Recent biological research is characterized by a noteworthy alteration which is mainly driven by the 

massive increase of sequence information and the development of high-throughput assays. 

Consequently, new types of experiments are made possible and allow scientists discoveries and 

explorations of biological processes and functions on an unprecedented scale. In the past decades 

various multinational coordinated efforts have focused on genome sequencing and initial gene 

analyses. Recently, theses large investments led to a public release of more than 30 entire or partial 

genome sequences (see http://www.ncbi.nlm.nih.gov/Genomes/index.html). Those breakthroughs have 

been made for Escherichia coli (Blattner et al., 1997), Saccharomyces cerevisiae (Goffeau et al., 

1996), Arabidopsis thaliana (The Arabidopsis Genome Initiative, 2000), Oryza sativa (Yo et al.,2002), 

Drosophila melangolaster (Adams et al, 2000), Caenorhabditis elegans  (The C. elegans Sequencing 

Consortium, 1998), Homo sapiens (The International Human Genome Sequencing Consortium, 2001), 

and many other species. Further progress of genome sequencing, in both public and private efforts, 

will be made for at least another hundreds of organisms in the near future (see 

http://www.ncbi.nlm.nih.gov/Genomes/index.html), e.g. Lycopersicon esculentum [Solanaceae 

Genome Network, (http://www.sgn.cornell.edu/index.html)]. The limitations of large-scale EST 

(expressed sequence tags, partial cDNA [complementary DNA] sequences) sequencing projects and 

the desire to gain additional information about the genome structure, such as regulatory elements, 

forced the initiation of genome sequencing programs (Sommerville and Sommerville, 1999). Despite 

the availability of having an entire list of genes for an organism, the highly complex biological 

processes and responses of cells and organisms still remain undiscovered. Arising from this limitation 

functional genomic efforts are initiated to take advantage of the entire sequence information. Instead 
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of providing lists of genes and gene function the main objective is to understand how components 

work together and comprising complex cellular functions and organisms. To gain insight into complex 

biological processes and to take complete advantage of sequence information novel tools and 

technologies are required. Although the sequencing projects are mainly focusing on the discovery of 

genes they have triggered the development of a variety of high-throughput assays. The recent ongoing 

developments and maturation of the analytical technologies in conjunction with entire genome 

sequences will allow us to study genetic systems in its entirety. Now, multi-parallel approaches are 

used to study genes and gene functions at transcript (Lockhart and Winzeler, 2000; Breyne and Zabeau, 

2001), protein (Pandey and Mann, 2000; Tyers and Mann, 2003) or metabolite level (Fiehn et al., 

2000; Kopka et al., 2004). Moreover, these technologies open up the possibility to monitor a large 

amount or all elements of the cellular inventory towards these levels. Those demands have driven the 

need for bioinformatics tools and computational analyses to extract biological meaningful information 

from the vast amount of complex data obtained.        

Here we give a very brief overview of the past and recent developments, implementation and 

application of these techniques with the main emphasis on plant field. 

  

Molecular Technologies 

Since the discovery of the DNA structure (Watson and Crick, 1953) rapid progress has been made in 

the development of molecular and genomics tools used to uncover biological processes on cellular 

levels. The description of restriction enzymes (e.g. Arber and Linn, 1969; Nathans and Smith, 1975) in 

conjunction with the development of cloning (e.g. Bolivar et al., 1977) and transformation 

technologies (e.g. Hanahan, 1983; Mattanovich et al., 1989) in the seventies and eighties allows for 

experimental characterization of single genes or small sets of genes on molecular as well as 

biochemical level. Further breakthrough technologies such as reverse transcriptase (RT) polymerase 

chain reaction (PCR) (e.g. Mullis et al., 1986; Mullis und Faloona, 1987) open up the possibility to 

detect and quantify weakly expressed genes. In conjunction with biophysical methods transcript 

analyses and cDNA library generation are made possible at few as well as single cell level 

(Dresselhaus et al., 1994; Karrer et al., 1995; Richert et al., 1996). Enormous progress has been made 

in the development of tools to create and characterize genetic diversity. Transgenic knock-out 

populations or transposon insertions lines have paved the way to broader bases of diversity (Aarts et 

al., 1993; Strepp et al., 1998; Cho et al., 1999; Zhu et al., 1999). Recently, putative loss of function 

lines for favourite genes can be easily ordered from resource centres, which harbours background 

information and provide access regarding transgenic organisms (e.g. Alonso et al., 2003). The 

development of DNA sequencing technologies enabled analysis of the nucleic acid composition of 

genes. Sequence storage and public access [e.g. NCBI, (Wheeler et al., 2004); TIGR, (Quackenbush et 

al., 2000)] in conjunction with computational tools for sequence comparison [e.g. BLAST, (Altschul et 
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al., 1990)] enabled scientist to assign a putative function for novel discovered genes as well as to infer 

hypotheses. With the arising of automated sequencers, sequencing was scaled-up to entire genomes of 

various organisms (see http://www.ncbi.nlm.nih.gov/Genomes/index.html).   

 

Functional Annotation 

Assigning a basic function to the multiplicity of novel genes discovered by gene or entire genome 

sequencing project are, and will continue to be, an important goal in biology both now and in the 

future. Functions of genes can be researched from a multitude of different scientific perspectives and 

therefore can be implemented by a variety of technologies developed (Vukmirovic and Tilghman, 

2000). Since the development of protein (Edman, 1950) and efficient DNA sequencing methods 

(Maxam and Gilbert, 1977; Sanger et al., 1977) protein as well as nucleic acid sequences were 

collected (Dayhoff, 1972; Erdman, 1978). With the gaining of sequence information various 

computational programs and algorithms have been developed which enabled improved experimental-

driven research, for instance algorithm to translate DNA into protein sequences, to detect restriction 

enzyme recognition sites and promoter sites (see Roberts, 2000; Stormo, 2000). Pairwise sequence 

comparisons and multiple alignments by various algorithms (see Hodgman, 2002) in conjunction with 

amino acid relatedness matrices (see Hodgman, 2002) allowed functional prediction for genes or gene 

products by annotation transfer from homologous sequences (McGeoch and Davidson, 1986; Bork and 

Gibson, 1996). Sequence searches by conserved sequence signatures e.g. PROSITE (Bairoch, 1991) 

and PFAM (Sonnhammer et al., 1997) libraries enabled the identification of common motifs in novel 

discovered genes or gene products. Further algorithm developments open up the possibility of protein 

structure and functional segment predictions, e.g. based on biophysical characteristics such as charge 

or hydrophobicity (Hodgman, 2002). With the arising of entire genome sequences computational 

biology and bioinformatics were challenged with the handling of large information. Despite this it 

opened the way to extend and improve analyses regarding to repetetive elements, regulatory regions as 

well as gene prediction from genomic DNA. Furthermore, investigations have been directed to 

pathway reconstruction or protein interactions which are reviewed i.e. by Bork et al. (1998).    

Despite the continually improved basic functional assignments and prediction of genes and gene 

functions the term ‘function’ is loosely defined. In the past years, it arises that ‘function’ makes only 

sense in a context. The emerging of improved functional assignments at higher order processes 

required additional information from experimental research. The lack of comprehensive technology 

platforms in the past did not enable such bioinformatics approaches. 
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Transcript Analysis 

The public availability of complete genome sequence information inspired and facilitates the 

development of novel technologies to take the full advantage of the gained sequence information. 

Recently, the most prominent amongst these new technologies is transcript profiling, which allow in-

parallel measurement of transcript levels of large portion or entire genomes. At this data, there are 

numerous analytical approaches available used for global transcript profiling (Meyers et al., 2004). 

These approaches can be primarily grouped in (Breyne and Zabeau, 2001; Lockhart and Winzeler, 

2000):  

(i) hybridization-based approaches,  

(ii) sequence-based approaches, 

(iii) fragment-based approaches (PCR-based approches). 

Hybridization-based approaches have been used in biological science for many years and comprise 

high-density arrays of oligonucleotides or complementary DNAs (Schena et al., 1995; Lockhart et al., 

1996). The basic principle they are based on is in-parallel hybridization of labelled (c)RNA or (c)DNA 

in solution to specific localized, surface-bound nucleic acid molecules (normally DNA). In general, it 

based on the same principle of Watson-Crick base pairing as other traditional techniques such as 

Northern and Southern blotting (Southern, 1975; Alwine et al., 1977). First arrays consisted of spotted 

DNA fragments (e.g. from genomic DNA, cDNA, plasmid libraries) on porous membrane, normally 

nylon, and were hybridized with radioactive labelled material (e.g. Thimm et al., 2001). Recent 

microarrays use glass as surface and the hybridized material is labelled with at least one fluorescent 

dye (Lockhart and Winzeler, 2000). The maturity of technologies for synthesizing and deposition of 

nucleic acids allowed miniaturization by increasing information content. Currently used array 

technologies enabled the deposition of more than 250,000 oligonucleotide probes or 10,000 cDNAs 

per square centimetre (Lockhart and Winzeler, 2000). Arrays with more than 800,000 oligonucleotides 

have been successfully used for whole-genome expression analysis in plants (Yamada et al., 2003). 

Beyond it, various modifications of the hybridization procedure and surface material used are 

described in the literature (Lockhart and Winzeler, 2000).  

Recently, microarrays are probably the most popular and widely used technique for genome-wide 

high-throughput transcript profiling. In contrast, with the arising of these techniques the results of 

those are critically discussed (Breyne and Zabeau, 2001, Ding and Canter, 2004). The criticism is 

mainly targeted to possible cross hybridizations of genes with similar sequences, which is not 

completely resolvable but can be minimized by careful probe design. Despite these critics microarrays 

are successfully used for various biological applications including e.g. cancer classification (e.g. 

Golub et al., 1999), signal pathways discovery (Lee et al., 1999), gene function prediction (Wu et al., 

2002). Initial experiments in plants were performed for expression comparison of e.g. light- and dark-

grown seedlings (Desprez et al., 1998) and different tissues (Ruan et al., 1998) and different biotic and 
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abiotic treatments (e.g. Reymond et al., 2000). Recently, the multinational coordinated AtGenExpress 

consortium has generated approximately 1200 full-genome transcript profiles covering a broad range 

of conditions (http://www.uni-frankfurt.de/fb15/botanik/mcb/AFGN/atgenex.htm). Despite the main 

usage of microarrays for steady-state transcript profiling this technique allows hybridization of 

genomic DNA (Ding and Canter, 2004). Such approach were used to analyses the replication fork 

movement in Escherichia coli (Khodursky et al., 2000), applied in medical research and in genetic 

diagnostics (Ding and Canter, 2004).         

Sequencing-based approaches, like serial analyses of gene expression [SAGE, (Velculescu et al., 

1995)] and massively parallel signature sequencing [MPSS, (Brenner et al., 2000)], represent another 

main technology group to measure transcript levels. SAGE is based on counting sequence tags of 14-

15 bases from cDNA libraries and gives an absolute measure of gene expression. This technology is 

based on double-stranded cDNA synthesis by using biotinylated oligo(dT) primers and various 

digestion and ligation steps to obtain concatenated sequences which will be sequenced. Similar to 

SAGE MPSS is a parallel sequencing methods which generates short sequence signature in the range 

of 16-20 bases. The sequence information is obtained by a complex ligation - cleavage work flow 

involving hybridization of specific phycoerythrin-decoder probes. For each step image(s) are taken for 

base identification (Brenner et al., 2000). SAGE has been widely used for expression analyses in 

clinical and mammal research, but was only sporadically applied to plants (Breyne and Zabeau, 2001). 

MPSS application was initially described for yeast (Brenner et al., 2000). Despite the advantage of 

absolute quantification and generation of SAGE libraries (as well as MPSS libraries) the high amount 

of input RNA required restricts application to large tissues. Moreover, the obtained short sequence 

tags may not be unambiguous and identification requirs large EST libraries. MPSS may be more 

accurate due to longer sequence tags.                

Fragment (PCR) -based approaches based mainly on differential display techniques and covering 

approaches such as arbitrarily primed (AP) PCR (Welsh et al., 1992) or cDNA-amplified fragment 

length polymorphism (AFLP) (Bachem et al., 1996). Basically, these approaches have been 

successfully applied to unravel differential gene expression of various particular biological processes 

applied to a broad range of organisms (Ding and Canter, 2004). Despite the time-consuming procedure 

the possibility of genome-wide expression analysis without the demand of a-priory sequence 

knowledge enabled broad application. 

Another, often called PCR-based approaches, cover real-time PCR and real-competitive PCR (rcPCR) 

(Ding and Canter, 2004). Whereas real-time PCR is a kinetics-based quantification technique rcPCR 

based on competitive PCR of a ‘true’ and a mimic fragment with single base exchange followed by 

matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Real-

time PCR approaches have been successfully applied to analyze the expression of transcription factors 

or for weakly expressed genes (Czechowski et al., 2004) as well as were commonly used for 
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independent examination of changed expression levels or co-responses derived from microarray 

experiments (Lisso et al., 2004). 

      

Protein Analysis 

Beyond the recent advances in genome-wide gene expression technologies, ongoing developments and 

substantial progress has been made in protein analysis and developments are still ongoing (Tyers and 

Mann, 2003). These developments are mainly triggered by genome sequencing and functional 

annotation efforts. Proteomics was first coined to describe the set of proteins encoded by the genome 

(Wilkins et al., 1996). Today, proteomics is a versatile, rapidly developing and open-ended effort with 

expanded views to e.g. protein interactions, protein isoforms and modifications as well as higher-order 

complexes (Schwikowski et al., 2000; Eisenberg et al., 2000; Pandey and Mann, 2000). Arising from 

the broader field of activity novel technologies have been introduced for qualitative and quantitative 

proteomics (Tyers and Mann, 2003). Traditionally, descriptions of the protein complement tend to rely 

on gel electrophoreses prior to subsequent identification via mass spectrometry based protocols. For 

efficient separation of proteins, two-dimensional gel electrophoresis which utilises protein properties, 

e.g. isoelectric points and apparent molecular mass, were applied and successfully used for plant 

proteome research (Thiellement et al., 1999). High sensitive staining protocols enabled the detection 

of less abundant proteins and in combination with mass spectrometry (e.g. MALDI) allowed the 

identification of individual spots. The drawbacks of these long-standing biochemical techniques are 

limited quantitative estimations, relative labour intensive and time-consuming work, partial inaccuracy 

as well as the difficulty to automate (Mann, 1999). Despite the possibility of relative comparison of 

protein extracts from treated and untreated cells by different fluorescent markers (Unlu et al., 1997) 

new separation and identification protocols have been developed (Tyers and Mann, 2003). The novel 

techniques can be predominantly assigned to (i) mass spectrometry-based and (ii) array-based 

proteomics technologies. Mass spectrometry-based proteomics technologies rely on electrospray 

ionisation in conjunction with liquid-based (e.g. chromatographic, electrophoretic) separation tools 

(Opiteck et al., 1997; Link et al., 1999; Aebersold and Mann, 2003). Despite a significant increase in 

sensitivity, speed, and the enabling of large-scale identification of proteins from complex mixtures 

accurate quantification is still limited. Recently, approaches for stable-isotope protein labelling for 

quantitative proteomics have been introduced which allow accurate measurements of small changes in 

protein levels when comparing two different cell types (Aebersold and Mann, 2003). One of these 

methods used a class of reagents termed isotope-coded affinity tags (ICAT) fused to the proteins 

(peptides) of the protein samples (Gygi et al., 1999). Array-based proteomics technologies 

complement the mass spectrometry approaches and allows to test for protein interaction partners or 

activities (e.g. enzyme) (Pandey and Mann, 2000). Kersten et al. (2003) demonstrate the feasibility of 

the protein chip technology for plants by a small set of heterologously expressed proteins. The 
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application of mass spectrometry methods and proteome arrays for plant proteomic research will be a 

growing field in plant post-genomics and will increase the number of reports (Thiellement et al., 1999; 

Rose et al., 2004). 

 

Metabolite Analysis 

The availability of entire genome sequences of organisms opens up the possibility to introduce genetic 

diversity or altered gene expression within theses organisms. To take full advantage of the developed 

resources powerful phenotyping platforms are required including approaches for systematic analyses 

of metabolites. As metabolites can be regarded to mirror ultimate responses of biological systems to 

environmental or genetic perturbations metabolome analyses may allow the linkage of genotypes to 

their respective phenotypes (Fiehn, 2002). Whereas this field was mostly oversight across all 

biological disciplines and only few approaches were successfully applied in medical research (e.g. 

Duez et al., 1996) stronger attempts have been made in the past few years (Fiehn et al., 2000; Kopka et 

al., 2004; Fernie et al., 2004). These ongoing developments and the recent maturation of technology 

platforms have enabled the in-parallel analysis of hundreds or up to thousands of known or unknown 

metabolites (Kopka et al., 2004). The metabolome of an organism is the complete set of metabolites 

produced by the organism during life under all possible conditions. Whereas the genome is rather 

constant and nucleic acids and proteins can be described by a relative simple chemistry the 

metabolome is the result of a highly complex chemistry conducted by noteworthy highly interlinked 

biochemical reactions. The highly complex nature and the enormous chemical diversity of compounds 

do not technically enable us to measure all metabolites in an organism by a single analytical platform. 

Currently, no comprehensive platform can be envisioned which can measure all metabolite in a 

selective and sensitive manner (Weckwerth, 2003). Unravelling the entire metabolome of an organism 

may not be computable and probably requires combination of different analytical technologies. This 

will include separation systems like gas chromatography (GC) and liquid chromatography (LC), and 

numerous detection systems, including mass spectrometry (MS), nuclear magnetic resonance 

spectroscopy (NMR), UV, and visible light spectroscopy, and enzyme based assays (Tretheway et al., 

1999; Fiehn et al., 2000; Weckwerth, 2003; Kopka et al., 2004). Recently, GC-MS (Roessner et al., 

2000) is the most advanced and widespread technology platform for metabolite analyses and enabled 

relatively broad analysis of metabolites. Metabolite profiling with GC-MS involves six main steps, 

namely (i) extraction, (ii) derivatization, (iii) separation, (iv) ionization, (v) detection, and (vi) 

evaluation which are described in more detail by Kopka et al. (2004).  

High-throughput metabolite profiling by GC-MS has been initially demonstrated in the context of 

plant functional genomics (Fiehn et al., 2000). Recently, GC-MS profiling of plant metabolites has 

mainly focused on hydrophilic compounds, which were recovered in the methanol-water phase of 

methanol-water/chloroform extractions. GC-MS based metabolite profiling of potato (Roessner et al., 
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2000; Roessner et al., 2001a), tomato (Roessner-Tunali et al., 2003), Arabidopsis (Taylor et al., 2002), 

Lotus (Colebatch et al., 2004) and various others have provided insights into the effects of genetic 

manipulation on plants, highlighting metabolic diversity amongst natural populations, and metabolic 

differentiation during nodulation and symbiotic nitrogen fixation.  

 

Bioinformatics: Data Management and Analysis 

The vast amounts of data obtained by recently developed high-throughput assays in conjunction with 

the flood of information generated by genome sequencing projects inundate researchers with data. 

Despite the date flood obtained in past and recently information will be rapidly accumulating by 

further experiments or novel technologies developed. Whereas publications now often provide data 

overviews publicly accessible web resources and data archives stored and gives access to these data. 

Main attempt has been made in the establishment of databases harbouring data derived from transcript 

profile measurements [SMD, (Gollub et al., 2003); NCBI-GEO, (Edgar et al., 2002)]. Recently, 

comprehensive resources allowing access to other profiling date are still limited but will be yielding in 

the next years. Despite the successfully data integration and public access standardized formats are 

required for cross-experiment comparison and data exchange of the structurally complex profiling 

information. In the past years various initiatives suggested minimal information for profiling 

experiments, e.g. the MIAME or MIAMET standard (Brazma et al., 2001; Bino et al., 2004), and 

developed mark-up languages for data exchange, such as SBML (http://sbml.org) or XML 

(http://www.xml.org).   

Beside data storage and exchange the biggest challenge is directed towards data analysis. Hence, 

bioinformatics and computational analyses will be playing a more and more significant role in modern 

biology. Recently, the design of research project requires querying of bioinformatics databases. On the 

other hand, proper handling and automated analyses of high-throughput data are necessary for efficient 

data analyses and hypotheses extraction. The main goal is to uncover biological knowledge underneath 

the experimental data. In the recent years rapid progress has been made in development and 

application of computational algorithms to extract biological meaningful information (i.e. Yu et al., 

2003), which cannot be briefly reviewed here. In general, computational data analyses encompass data 

normalization procedures allowing comparisons to correct for technical and biological variations. The 

detailed procedures are depended on profiling technology and their resulting outputs, technical design 

and what scientists want to know. Normalization will be followed by specific data analysis methods 

which are manifold but can mainly be grouped in (i) projection methods, e.g. principal [PCA, (e.g. 

Yeung and Ruzzo, 2001; Roessner et al., 2001b)] and independent component analyses [ICA, (e.g. 

Scholz et al., 2004)], (ii) classification methods, such as support vector machines (e.g. Brown et al., 

2000) or discriminate analyses (e.g. Simonis et al., 2004), and (iii) clustering procedures, for instance 

hierarchical [HCA, (e.g. Roessner et al., 2001b)] or K-means clustering (e.g. Tavazoie et al., 1999). In 
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recent publication cluster procedures have been successfully applied to group genes or experiments 

according functional context, in conjunction with identification of regulatory networks (e.g. Pilpel et 

al., 2001) or used by co-clustering (Hanisch et al., 2002). In metabolomics PCA became a commonly 

used tool to visualize metabolite profiling data sets and for extracting of relevant information (Ward et 

al., 2003; Urbanczyk-Wochniak et al., 2003). Scholz et al. (2004) successfully applied ICA to 

metabolite profiling data. Beside these few examples there are vast amounts of reports which have 

applied the aforementioned methods, used combinations of them or different approaches, such as 

Bayesian networks (Bockhorst et al., 2003).   

 

Outlook 

With the ever growing sequence and profile data it was more and more evident that understanding 

biological processes will not be possible with compendia of cellular elements (Oltvai and Barabási, 

2002). Furthermore, the distinctness of the cellular levels, namely the genome, the transcriptome, the 

proteome and the metabolome, were critical discussed (Bhalla and Iyengar, 1999). An all-in-one 

access regarding data from all the aforementioned level is required to decipher the highly complex 

interactions of heterogeneous cellular components (Ideker et al., 2001). Recently, the cellular 

complexity is accounted as expression of a large number of functionally diverse, differently active and 

frequently multifunctional sets of elements which interact selectively and (non-)linearly to execute 

cellular function (Stephanopoulos et al., 2004; Alberghina et al., 2004). The cellular responses seem to 

be coherent rather than complex (Kitano, 2002). The improved multiplex high-throughput assays in 

conjunction with a changing perspective to approach and understand biological systems a ‘new’ field 

emerged - Systems Biology was reborn (see Chapter VII).  

 

Objectives and Outline of this Thesis 

With the evolving of systems level approaches in conjunction with rapidly increasing data obtained 

from high-throughput assays new challenges emerge for biological science (see above, and Chapter 

VII). The vast amount of data generated and the demands to create holistic views of the interplay 

between cellular elements and organization levels make cross-disciplinary research activities 

inevitable and highly attractive. Especially the maturity of transcript profiling technologies which 

allow simultaneous measurement of transcripts at full genome level enables scientists to investigate in 

comparative gene expression analyses. Unravelling gene-to-gene interactions will represent the basis 

to decipher functional modules and regulatory networks underlying biological processes. The main 

focus of this thesis is directed towards uncovering gene-to-gene interaction taking phylogenetic 

relationships into consideration. The five chapters II-VI describe the results obtained during this PhD 

work. Chapter II introduces the methodology as well as the implementation and development of an 
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open and worldwide accessible platform to the methods and results obtained (http://csbdb.mpimp-

golm.mpg.de). Chapter III shows the proof the concept for investigations of gene-to-gene interactions 

by using the biological facile prokaryote Escherichia coli. With the experience made in a bacterium 

the concept of gene-to-gene interaction was applied to a more complex eukaryotic organism, namely 

Arabidopsis thaliana. Chapter IV outlines the attempts made to identify brassinosteroid-related genes 

by means of transcriptional co-responses. Chapter V describes the investigations to possible assign 

gene functions regarding the subtilase family which has hitherto no known function. Finally, chapter 

VI focuses on integration of metabolite profiling data and the provided prerequisite tools. 
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Abstract 

Summary: The open access comprehensive systems-biology database (CSB.DB) presents the results 

of bio-statistical analyses on gene expression data in association with additional biochemical and 

physiological knowledge. The main aim of this database platform is to provide tools that support 

insight into life’s complexity pyramid with a special focus on the integration of data from transcript 

and metabolite profiling experiments. The central part of CSB.DB, which we describe in this 

application note, is a set of co-response databases, which currently focus on the three key model 

organisms, Escherichia coli, Saccharomyces cerevisiae and Arabidopsis thaliana. CSB.DB gives easy 

access to the results of large-scale co-response analyses, which are currently based exclusively on the 

publicly available compendia of transcript profiles. By scanning for the best co-responses among 

changing transcript levels, CSB.DB allows to infer hypotheses on the functional interaction of genes. 

These hypotheses are novel and not accessible through analysis of sequence homology. The database 

enables the search for pairs of genes and larger units of genes, which are under common 

transcriptional control. In addition statistical tools are offered to the user, which allow validation and 

comparison of those co-responses that were discovered by gene queries performed on the currently 

available set of pre-selectable datasets.  

Availability: All co-response databases can be accessed through the CSB.DB web server 

(http://csbdb.mpimp-golm.mpg.de/). 

Contact: Steinhauser@mpimp-golm.mpg.de  
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Introduction 

The availability of full genomic information (Goffeau et al., 1996; Blattner et al., 1997; Arabidopsis 

Genome Initiative, 2000; Lander et al., 2001) facilitated the development and spurred application of 

multi-parallel techniques to monitor the cellular inventory. Functional assignment of novel and 

partially characterized genes will continue to be, the most important goal in biological science (Wu et 

al., 2002; Shen-Orr et al., 2002). Modern functional genomics encompasses technologies designed for 

the systematic investigation of gene function at all levels of a living cell, namely the genome, the 

transcriptome, the proteome and the metabolome (Fiehn et al., 2000; Lockhard and Winzeler, 2000; 

Corbin et al., 2003). The combined and multi-parallel analyses allow the investigation of complex 

biological processes at full systems level (Kitano, 2002) and may become the empirical basis of 

understanding the paradigm of life’s complexity pyramid (Oltvai and Barabási, 2002). A future task 

will be the discovery of functional interaction within and among the levels of the cellular inventory, 

e.g. among metabolome and transcriptome (Urbanczyk-Wochniak et al., 2003), and to extend 

knowledge from an organism-specific level towards general, organism-independent principles (Oltvai 

and Barabási, 2002). Hypotheses on units of genes with common function need to be associated with 

the currently available public knowledge of the complete cellular inventory. This information is made 

available in highly frequented but separate biological databases, which harbour genomic data (Mewes 

et al., 2004), gene expression data (Sherlock et al., 2001), information on protein properties 

(Schomburg et al., 2004), metabolites, and metabolic pathways (Kanehisa et al., 2004). To gain insight 

into the functional organization of biological networks specialized databases are required that are 

designed to store, handle, analyse and display the data derived from multi-parallel measurements. The 

comprehensive systems-biology database (CSB.DB) was developed to integrate biostatistical analyses 

on multi-parallel measurements of different organisms, such as Escherichia coli, Saccharomyces 

cerevisiae and Arabidopsis thaliana. The present goal of CSB.DB is to present a publicly accessible 

resource for large-scale computational analyses on transcript co-response data, which mirror the large 

functional network of the cellular inventory and may serve as the basis for more sophisticated means 

of elucidating gene function. 

  

Project Overview 

The main focus of the CSB project is the generation of easily accessible knowledge about apparent 

gene-to-gene interactions in sets and subsets of publicly available transcript profiling data. We 

implicitly make the assumption that common transcriptional control of genes is reflected in co-

responding, synchronous changes in transcript levels (Steinhauser et al., 2004). For future 

implementations we will extent this concept to the interaction of genes with other elements of the 

cellular inventory, such as metabolites (Urbanczyk-Wochniak et al., 2003). Currently, no public 
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convention exists as to which numerical approach is best applied to detect and validate the co-response 

of changing transcript levels. For this reason we integrated a range of different statistical and 

computational algorithms, which are routinely applied in various research areas, such as Pearson’s 

correlation, Kendall’s correlation, Spearman’s correlation, Euclidian distance and mutual information. 

Furthermore we selected a range of different datasets, which comprise three organisms and which 

were generated by different microarray technology platforms. Thus, the user of our co-response 

calculations is free to test results on different datasets and species.  

The basic aim of the CSB project is to supply researchers in the field of systems biology, molecular 

and applied biology with statistical tools to access transcriptional co-response. We concentrate on the 

validation of gene co-response without requirement for the user to have a-priori knowledge about 

statistic methods and computational algorithms. We decided to preferentially facilitate access for those 

biologists who are interested in a specific gene of interest or small sets of genes. In this sense our 

approach is similar to simple BLAST searches (Altschul et al., 1990) of single or small number of 

genes. However, our approach towards the generation of novel functional hypotheses is based 

exclusively on simultaneous changes in transcript levels and does not require structural or sequence 

information. 

  

Implementation and Structure 

CSB.DB is accessible via the internet without the need to download special software to the client 

computer. The only system requirements are a JavaScript enabled recent web-browser and the ability 

to display PDF files. Only some advanced features require the JAVA extension. CSB.DB operates on 

a multiprocessor SuSE Linux (http://www.suse.de/de/index.html) system under an Apache web server 

(http://www.apache.org), and uses SAPDB (http://www.sapdb.org) as the database management 

system that stores the results of co-response analyses. CGI scripts, which connect the user queries with 

the database, are implemented in the PERL language (http://www.perl.com). The dynamic validation 

of discovered co-responses, graphical visualization as well as statistic algorithms, such as bootstrap 

and jack-knife analyses, are implemented as R (http://www.r-project.org) scripts, and can be invoked 

upon user selection to generate a PDF output. These files can be optionally downloaded by the user for 

further reference and documentation.  

CSB.DB currently contains only co-response analyses, which are derived from publicly available 

expression profiling data. The calculated co-response data comprise pair-wise gene correlations of 

three model organisms, namely E.coli (Steinhauser et al., 2004), S.cerevisiae, and A.thaliana (Fig. 1A). 
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Databases and Queries 

Co-response calculations based on changes in mRNA levels are the basis of functional annotation in 

CSB.DB and extend conventional predictions of gene function by analysis of gene homology (Wu et 

al., 2002). Publicly available expression profiles of various organisms represent a rich resource for 

cross-experiment co-response analysis of genes, but need to be critically appraised. We used transcript 

profiles that were quality checked according to the recommendations of the respective technology 

platform. Furthermore, we included only accurately measured gene spots for the assembly into multi-

conditional expression data matrices. For example, our data matrices comprise approximately 20 - 50 

independent transcript profiling experiments and contain only 5% missing values per gene. Besides 

quality checking and reduction of missing data we chose two general strategies for combining 

transcript datasets prior to correlation analysis. (1) We selected representative transcript profiles of as 

many different experimental conditions as possible. This approach allowed the search for general, 

constitutive gene-to-gene correlations in each organism. (2) If available we selected subsets of only 

those profiles, which were generated in a single set of biological experiments or under common 

biological conditions. These datasets allowed investigations of conditional changes in gene-to-gene 

co-responses as compared to constitutive co-responses. Correlations were computed with the 

cCoRv1.0 software (Steinhauser et al. unpublished data) and stored in organism specific co-response 

databases (Fig. 1A).  

Rank ordered tables of pairwise gene correlations according to the selected correlation measure can be 

obtained using the single gene query option and using a selection of pre-defined ranking strategies 

(sGQ; Fig. 1B). Similar to typical BLAST queries, sGQ allows to define a gene of interest and to 

retrieve all genes associated by co-response, if the gene of interest is represented among the set of 

quality checked genes. Moreover, the variant of sGQ made available for the Arabidopsis co-response 

databases allows to select filtering according functional categories, which were reported previously 

together with the visualization tool MapMan (Thimm et al., 2004). The sGQ output (Fig. 1C) is 

presented as a HTML table, which contains the rank, the gene identifier of the co-responding gene, the 

correlation measure, the gene description, the number of pairs (n), the covariance (cov), the probability 

(P-value), the confidence interval (CI), the power, the mutual information [d(M), converted into 

distance range], and the normalized Euclidean distance [d(E)]. These statistical parameters are 

dynamically calculated based on the underlying test distribution of the respective pre-selected 

correlation coefficient (Sokal and Rohlf, 1995; Bonett and Wright, 2000). Graphical summaries of the 

set of co-responding genes are based on various external functional classification efforts (Thimm et al. 

2004; Peterson et al., 2001; Christie et al., 2004) and/or the text search of the returned gene 

annotations (Fig. 1C). This survey of gene categories present in the hit list is presented below the sGQ 

table.  
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Upon user request a detailed statistical analysis may be obtained for a selected gene pair of interest. 

This additional validation on demand supports the detection of experimental outliers, which may be 

associated with technical errors or with the specific nature of a biological experiment. For this purpose 

a variety of graphical plots are offered (Fig. 1D).  

The multiple gene query option (mGQ) allows pre-definition of up to 15 genes of interest and returns 

the complete set of available correlations among these genes. This option may be used to discover 

interdependencies of genes, which are known to contribute to a common function or pathway. To 

visualize data, the interrelationship is also displayed as a co-response network with extensive filtering 

and layout options in JAVA enabled browsers (Fig. 1C). 

Finally an intersection gene query tool (isGQ) extracts those genes, which exhibit common 

correlations to at least two pre-defined genes of interest. The threshold settings, which are available 

for sGQ, may also be used for isGQ. The isGQ query may be used, if a few genes with a common 

function are already known. Using the intersection mode that allows finding of novel genes, which 

may be involved in this function, but can not be discovered based on sequence homology.   

 

Fig. 1. Summarized overview of the current structure of CSB.DB (A) and selected examples of the available 

functionalities of the organism-specific co-response databases (B-D). (B) Represents one of the three possible 

query types, e.g. the single gene query sGQ in its HTML layout. The output of the queries is a HTML table, 

which contains in the case of A.thaliana a pie-chart summary on functional categories of the retrieved best 

ranking genes (C). (D) Shows examples of available gene-to-gene (bi-) plots, which can be invoked upon user 

request. 
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Outlook 

We named CSB.DB ‘A Comprehensive Systems-Biology Database’, because we are convinced that 

the interpretation of gene co-response, which we currently make available to potential users, will in 

future require the integration of additional public resources on the present knowledge of the cellular 

inventory. Upon starting to use external functional classifications of genes, which among others 

include pathway and enzyme information, we implemented first access in our database to functional 

gene annotations. Thus, we laid the ground to retrieve biochemical reactions from publicly accessible 

metabolite databases starting from result lists of highly correlated genes.  

In addition, we previously described that the combined correlation analysis of changes in metabolite 

and mRNA levels may be highly informative and provide novel information (Urbanczyk-Wochniak et 

al., 2003). Therefore, we will proceed to integrate profiling experiments and datasets into our database, 

which comprise measurements of changes in metabolite and transcript levels. Starting to use the same 

principles, which we apply to discover co-response in transcript datasets, we hope to unravel novel 

interactions between transcripts and metabolites. Thus, we are convinced that CSB.DB will develop 

into a highly useful and informative public resource. 
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Abstract 

Summary: A major issue in computational biology is the reconstruction of functional relationships 

among genes, for example the definition of regulatory or biochemical pathways. One step towards this 

aim is the elucidation of transcriptional units, which are characterised by co-responding changes in 

mRNA expression levels. These units of genes will allow the generation of hypotheses about 

respective functional interrelationships. Thus, the focus of analysis currently moves from well-

established functional assignment through comparison of protein and DNA sequences towards 

analysis of transcriptional co-response. Tools that allow deducing common control of gene expression 

have the potential to complement and extend routine BLAST comparisons, because gene function may 

be inferred from common transcriptional control. 

Results: We present a co-clustering strategy of genome sequence information and gene expression 

data, which was applied to identify transcriptional units within diverse compendia of expression 

profiles. The phenomenon of prokaryotic operons was selected as an ideal test case to generate well 

founded hypotheses about transcriptional units. The existence of overlapping and ambiguous operon 

definitions allowed investigating in constitutive and conditional expression of transcriptional units in 

independent gene expression experiments of Escherichia coli. Our approach allowed identification of 

operons with high accuracy. Furthermore, both constitutive mRNA co-response as well as conditional 

differences became apparent. Thus, we were able to generate insight into possible biological relevance 

of gene co-response. We conclude that the suggested strategy will be amenable in general to the 

identification of transcriptional units beyond the chosen example of E.coli operons.  

Availability: The analyses of E.coli transcript data presented here are available upon request or at 

http://csbdb.mpimp-golm.mpg.de/. 

Contact: Steinhauser@mpimp-golm.mpg.de  

                                                      
* To whom correspondence should be addressed. 
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Introduction 

Public availability of complete genome sequence information (Perna et al., 2001; Blattner et al., 1997) 

inspired and facilitated the development and utilization of multi-parallel techniques for monitoring the 

complete cellular inventory. Recent results of these technologies are made available in biological 

databases that harbour genomic data, gene expression data, and information about proteins, 

metabolites, and metabolic pathways. This information will become an empirical basis of 

understanding the paradigm of life’s complexity pyramid (Oltvai and Barabási, 2002). Functional 

assignment of novel genes, which were discovered by genome sequencing projects, will continue to be 

the most important goal of the genomic area (Vukmirovic and Tilghman, 2000). One of the central 

challenges in computational biology is the discovery of regulatory networks which control gene 

transcription in biological model systems.  

Accumulation of publicly available microarray data led to the development of a range of 

computational approaches to retrieve biologically meaningful information from co-responding 

changes of mRNA expression. A variety of computational approaches were previously applied to 

predict operons from full genome and transcriptome information (Zeng et al., 2002; Moreno-Hagelsieb 

and Collado-Vides, 2002; Ermolaeva et al., 2001; Yada et al., 1999). Tjaden et al. (2002) utilized 

Escherichia coli microarrays to monitor expression of both coding and non-coding intergenic regions. 

Hidden Markov models were applied to estimate gene boundaries. However, the lack of intergenic 

probes in routine microarray experiments currently restricts general application of this approach. 

Yamanishi et al. (2003) applied a generalized kernel canonical correlation analysis to group genes, 

which share similarities with respect to position within the genome and gene expression. However, 

this method was restricted to subsets of E.coli genes which comprised known metabolic pathways. 

Bockhorst et al. (2003a,b) successfully predicted operons by applying models of transcriptional units 

to gene sequence and expression data (Bockhorst et al., 2003a) and reported an approach based on 

Bayesian networks (Bockhorst et al., 2003b). Sabatti et al. (2002) re-addressed operon prediction by 

Bayesian classification and described required features.  

Till today, no attempt has been made to assign transcriptional units by hierarchical clustering and co-

clustering. Here we present a strategy (Fig. 1), which was designed to monitor occurrence of 

constitutive and conditional usage of transcription units in independent gene expression profiling 

experiments. Co-clustering was demonstrated to be a versatile tool to investigate how prokaryotic 

genome organization is reflected within compendia of gene expression data. Moreover, we show 

effects of additional, currently unknown mechanisms on gene co-response, which will be targets of 

further experimental verification. 
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Fig. 1. Flow scheme of adopted data management and processing strategy. Initial data (level I) were converted 

into pairwise gene distance measures (level II), which were subsequently normalized, arranged into distance 

matrices and matrix combinations (level III). Finally matrices were subject to hierarchical cluster analyses and 

resulting cluster memberships of genes compared (level IV). 

 

Methods 

Data management and processing 

Data management, subsequent data integration, and processing is summarized within a flow scheme 

(Fig.1). Primary data were: operon annotations, gene expression data, and gene positions within the 

E.coli genome (Fig.1, level I). These primary data were converted into pairwise gene distances: (1) 

common operon membership of gene pairs, (2) Pearson’s linear correlation coefficient (ρ), Kendall’s 

correlation coefficient (τ), or Euclidean distance (δE) of gene pairs as detected within transcript 

profiles, and (3) pairwise intergenic nucleotide distance of genes (Fig.1, level II).  Pairwise gene 

distances were normalized and combined into distance matrices (Fig.1, level III). Finally, different 

combined and non-combined distance matrices were subject to hierarchical (co-)clustering and 

subsequent comparison of cluster memberships of genes. (Fig.1, level IV). The procedures were as 

follows: 
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Data source and pre-processing 

Two data sources of E.coli gene expression profiles were used (Table 1). The first dataset, called M45 

in the following, was derived from the Stanford Microarray Database using ratio 2 values only [SMD, 

(Sherlock et al., 2001)]. M45 contained 74 expression profiles encompassing 4264 genes, which were 

analyzed by colour-coded cDNA hybridization technology. M45 comprised experiments mainly 

related to aminoacid metabolism (Khodursky et al., 2000), DNA metabolism (Courcelle et al., 2001), 

and RNA decay (Bernstein et al., 2002). M45 was quality checked as recommended by the SMD 

tutorial (http://genome-www5.stanford.edu/help/index.html) and consequently had 43% missing data. 

In order to reduce the number of missing data two subsets were generated, each of which each had 

only 6% of missing data. M4501 was designed to maximize the number of experiments and comprised 

43 experiments, which were described by 929 genes. M4502, designed to maximize the number of 

genes, comprised 34 experiments, which were described by 1845 genes. Data were normalized and 

log-transformed as suggested (Sherlock et al., 2001).  

Table 1. Overview of the expression datasets and subsets. 

Dataset  M45a M4501a M4502a M96b M96Ab M96Bb

microarray platformc  cc cc cc cc, on on cc 
number of experiments  74 43 34 66 16 50 
number of genes  4264 929 1845 4241 4345 4290 
% of missing data  43 6 6 0 0 0 
Experiment categories subcategories       
  Miscellaneous: Miscellaneous 4 2     
  Amino acid metabolism: Tryptophan 29 13 9    
  DNA metabolism: UV radiation 15 10 8    
  RNA decay: RNA 10 10 9    
 Rifampicin 12 8 8    
  Stress / Antibiotics: Acid shock    8 1 7 
 Cipro    8 1 7 
 Cold shock    4  4 
 Heat shock    1 1  
  Growth curve: Growth    10 4 6 
  Media comparison: Media 4   8  8 
  Strain / mutant analyses: Strains    27 9 18 
aStanford Microarray database (SMD).  
bASAP database.  
cTechnology platforms: cc (colour-coded EST hybridizations), on (oligonucleotide hybridizations). 
 

The second dataset, M96, was from the ASAP collection (Glasner et al., 2003) and originated from 

colour-coded cDNA hybridization and oligonucleotide microarray technology (Affymetrix, Santa 

Clara, CA, USA). M96 consists of 66 experiments comprising 4241 genes, was log transformed, and 

lacked missing data. The transcript profiling experiments of M96 covered miscellaneous stress 
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treatments, application of antibiotics, comparison of media and growth conditions, as well as 

characterization of mutants (Allen et al., 2003). Two subsets of M96 were formed to separate profiles 

from different technology platforms, M96A and M96B (Table 1). 

Topological overlap matrices of operon annotations 

The operon annotations and predictions were retrieved from Regulon (Salgado et al., 2001; 

http://www.cifn.unam.mx/Computational_Genomics/regulondb/), EcoCyc (Karp et al., 2002; 

http://biocyc.org/ecoli/), and KEGG (http://www.genome.ad.jp./kegg/) databases as well as from 

Moreno-Hagelsieb and Collado-Vides (2002). All operon assignments were combined into two 

matrices. First, overlapping and conflicting operon annotations from different sources were maintained 

within a topological operon overlap matrix, OTtu, according to Ravasz et al. (2002). OTtu harbours the 

combined hypotheses of the maximum possible number and size of operons in E.coli. Second, an 

intersection operon matrix, IStu, was constructed to comprise the hypotheses of the non-ambiguous and 

commonly accepted minimum set of E.coli operons. 

Genome information and weighted intergenic distance (δig
ω) 

The EcoCyc database (Karp et al., 2002) was accessed to retrieve gene position and intergenic 

distances. Intergenic distance of any two genes was defined as follows: genes were separated into the 

two co-linear groups positioned on the two opposite circular genomic strands of E.coli. Within each 

group, the smaller of the two possible sums of all non-coding nucleotides (nt) in between any two 

genes was calculated. The distance of overlapping genes on the same strand was set at zero. A 

weighted intergenic distance (δig
ω) was generated from nt distances by normalization to 0 < δig

ω < 1. 

Above an nt threshold δig
ω was set to 1, below this threshold δig

ω was calculated by dividing non-

coding intergenic nt by the respective threshold value. Four threshold values were chosen, 2 × 2250 nt, 

2 × 7250 nt, 2 × 70 000 nt, and 2 × 655 596 nt. The rationale for choosing theses thresholds reported 

below. 

Co-response matrices 

Pearson’s product moment linear correlation (ρ), non-parametric Kendall’s coefficient of rank 

correlation (τ) without correction for ties (Sokal and Rohlf, 1995), and Euclidean distance coefficients 

(δE) (Mirkin, 1996) were applied to log transformed gene expression data. Significance of correlation 

was tested as recommended by Sokal and Rohlf (1995). In order to generate normalized distance 

matrices correlation coefficients were converted according to Mirkin (1996) and Sokal and Rohlf 

(1995). Largest distance was assigned to negative Pearson’s or Kendall’s correlation coefficients. The 

converted distances were marked with the index of used correlation coefficient (e.g. δτ). Then all 

distance measures were normalized to the maximum distance value. Thus, all resulting normalized 

distances (δν) were in the range of 0 ≤ δν ≤ 1. 
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Joining function (λψ) and combined distance (δ∆) 

Normalized distance matrices were combined as suggested by Hanisch et al. (2002) applying a 

modified function, (λψ), Equation (1), extended to n dimensions. The resulting combined distance 

function δ∆ of each gene pair, gi, gj, with ψ ∈ {δρ
ν, δτ

ν, δE
ν, δOTtu

ν, δig
ω

 ,…} was defined as follows: 
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For co-response distances the control parameters of the shape of the logistic curve (νψ, sψ) were 

adjusted to the median of distance distribution (νψ) and to a moderate slope of sψ = νψ/6. The control 

parameters of the δig
ωs were adjusted to νψ = νψweighting - νψcorrection = 0.5 – 0.17578 = 0.32422 and to sψ 

= (νψweighting/6) = 0.08. The correction term νψcorrection was empirically determined by fitting νψweighting to 

the formula described above and the setting of parameters to λig = 0.9 and δig
ω = 0.5. For generation of 

OTtu the parameter were set to νψ = 0.5 and sψ = νψ/6. An a priori weighting of 50% (n=2) was 

assigned to combine, OTtu or δig
ω, with distance matrices describing transcriptional co-response. Two 

transcriptional co-response matrices of each expression dataset were combined, i.e. 25% weight was 

given to either a normalized distance matrix based on Pearson’s or Kendall’s coefficients and residual 

25% weight was assigned to the normalized Euclidian distance matrix (see above). 

Hierarchical cluster analysis and cluster validation 

For the classification of genes, the unweighted average linkage clustering algorithm (UPGMA) was 

applied to normalized distance matrices (Mirkin, 1996). Expected operon clusters (eC) were generated 

by use of δOTtu of the operon overlap matrix (see above). Cluster validation was performed by 

measuring the degree of correspondence between the expected cluster (eC) and the obtained cluster 

(oC). In detail, the cluster specific match coefficient (CMC) reflects the ratio of elements, i.e. genes, 

from eC which are observed to occur within oC. For example, if eC = oC, obtained clusters perfectly 

match expectations. The combined match coefficient (MC) was defined at selected clustering heights 

as the sum of all CMCs divided by the number of expected clusters. MC represents the portion of all 

genes which were found to belong to expected operons, for example, if MC = 1.0, all genes were 

found to group into respective expected clusters. The cluster specific reassignment coefficient (CRC) 

is the ratio of those genes that are not expected to occur in eC as compared to the genes that are 

correctly grouped into oC. CRC is indicative of the portion of novel genes which were unexpectedly 

assigned to any given cluster. The sum of all CRCs at a specific clustering height divided by the 

number of expected clusters yields the reassignment coefficient (RC). For example, if RC = 1.0, the 

number of mis-assigned genes is equal to the number of correctly assigned genes. 

Page - 32 - 



Bioinformatics, 20, 1928-1939  Chapter III: Identification of transcriptional units  

Statistical analysis and software 

The Mantel test and respective analysis of variance, the non-parametric Kruskal-Wallis and two-

sample Wilcoxon rank sum tests, tests of homogeneity as well as parametric three-way factorial 

ANOVA were computed as described by Sokal and Rohlf (1995). The Cramer-test was performed 

according to Baringhaus and Franz (2004). All statistical tests were applied to iterated random 

selections of data subsets.   

Computations were performed using the statistical software environment R (http://www.r-project.org) 

version 1.6.1. and 1.6.2 with the libraries ‘mva’, ‘exactRankTests’, ‘vegan’, ‘e1071’, ‘tseries’, ‘ctest’ 

and ‘cramer’. Calculations were executed with PERL scripts. 

 

Results 

The goal of this work was to investigate how the prokaryotic genome organisation, namely 

polycistronic operon structure, is reflected within different compendia of gene expression profiles 

from E.coli and whether functional linkage of genes can be detected by clustering technologies. We 

selected the prokaryotic operon structure because genes that are co-regulated in physical units of 

common polycistronic messenger RNA (mRNA) can be expected to high correlation in transcriptome 

analyses independent of the nature of underlying biological experiments. This strong co-regulation 

should allow precise classification by clustering technologies irrespective of the nature of distance 

measure applied. However, initial attempts to retrieve clusters of genes that constitute operons within 

combined sets or subsets of M45 and M96 failed. 

Operon classification by clustering 

The co-response matrices of four data subsets M4501, M4502, M96A and M96B were generated using, 

Kendall’s τ, Pearson’s ρ, and Euclidean distance δE. These matrices were subject to HCA and 

subsequently cluster membership of genes was compared to expected clusters as represented by OTtu. 

Criterion for clustering quality was MC (cluster match coefficient), criterion for gene mis-assignment 

was RC (reassignment coefficient; refer to the earlier section ‘hierarchical cluster analysis and cluster 

validation’). Only results of M4501, which were representative of all other data subsets, are shown 

(Fig. 2). Irrespective of the applied distance measure, only a minority of genes was correctly assigned 

to expected operons, e.g. MC < 0.08, when accepting 50% mis-assignments (RC = 1.0) (Fig. 2).  
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The analysis of best pairwise gene associations according to Kendall’s τ, Pearson’s ρ (data not shown), 

or Euclidean distance δE demonstrated, that only 50% 

of those gene associations, which were expected to 

result of genes belonging to the same operons, ranked 

among the top 5 – 10% (Fig. 3). We tested whether 

this observation was caused by applying OTtu, which 

included ambiguous as well as predicted operon 

definitions. For this purpose we applied IStu, i.e. we 

restricted our analysis to the minimum intersection of 

available operon annotations (refer to ‘topological 

overlap matrices of operon annotations’). MC 

however, only increased approximately 2-fold at RC 

= 1.0 and frequency distributions of relative rank 

positions were independent of choice of either OTtu or 

IStu as was supported by a non-parametric Cramer 

test. Therefore, we had to assume other factors than 

precision of current operon annotation, which either 

cause absence of expected pairwise gene associations 

or which are caused by other regulatory mechanisms 

of coordinated gene expression, such as transcription 

factors or mRNA processing. We ruled out an 

artefact caused by the choice of transcript profiling 

technology because datasets M96A, and M96B, did 

not show fundamental differences (Fig. 3). In the 
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 2. Plot of match coefficient (MC) (bottom)

the reassignment coefficient (RC) (top)

lting from HCA of distance matrices from

set M4501 at increasing relative heights (h).

is shown in the range of 0 to 1.0 with 1.0

esenting 50% novel gene assignments. Inset

s applied distance measures. 
wing we first characterize the nature of the datasets, unravel properties, which obscure operon 

s, and demonstrate that co-clustering and the use of data subsets allowed overcoming this inherent 

lem of transcriptome analyses. 

perties of transcript datasets 

performed a comparison of the datasets M45 and M96 by applying hierarchical cluster analysis to 

 association matrix of the respective compendium experiments (Fig. 4). In dataset M4501 the 

ority of nodes are in the heterogeneity range of 0 ≤ he ≤ 0.2 and experiment grouping strongly 

cts the nature of underlying biological experiments (Fig. 4a). Similar results were obtained from 

er M45 or subset M4502 (data not shown). M96 exhibited higher inherent heterogeneity, 0.2 ≤ he ≤ 

 Biological experiments were partially reflected by clustering, but experiments from different 

nology platforms were clearly separated (Fig. 4b). Non-parametric analysis of variance by Mantel 
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testing revealed a highly significant (τ = 0.5668, P << 0.001) difference of variance between the 

experiments of different technology platforms within M96, as measured by median Kendall’s τ 

association; in detail, among experiments of Affymetrix technology τmedian = 0.558, among 

experiments of cDNA technology τmedian = 0.453, and in between experiments of different technology 

platforms τmedian = 0.222. Therefore, dividing M96 into M96A and M96B according to technology 

platform was justified.  

 

Fig. 3. Histogram plots and cumulative frequency of the relative rank distributions of all gene pairs, which 

belong to same operons. Best ranking was according to normalized Kendall distance δτ
ν and normalized 

Euclidean distance δE
ν. Dashed lines mark 50% cumulative frequency. Relative rank was rank of gene divided 

by total number of genes available in respective dataset, M4501, M96A, and M96B. 

Analysis of gene pair association within the different datasets revealed significantly different data 

structures. The Kendall’s τ distribution of gene pair association in M4501 (τmedian = 0.452) and M4502 

(τmedian = 0.537) exhibited strong shifts to positive values, whereas M96A (τmedian = 0.075) and M96B 

(τmedian = 0.068) were centered approximately to zero (Fig. 5a). In all datasets we observed more 

significant positive gene associations than significant negative associations. Furthermore, even though 

the datasets appeared to be of highly diverse structure, the datasets tested positive for the presence of 

common gene pair associations, when the Mantel test was applied to compare the gene co-response 

matrices. In addition, test of homogeneity applied to gene pair associations from the above matrices 

revealed homogeneity levels of 47.8% − 90.1%. Thus, all datasets contained portions of similar 

information on pairwise gene associations. This observation was incentive of subsequent comparative 

analyses. 
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Fig. 4. Comparison of dataset M4501 and M96 by hierarchical clustering of experiments applying Euclidean 

distance δE (top) to a Kendall’s τ association matrix (bottom). The experiment categories are colour-coded to the 

left: M4501 (a), RNA decay – Rifampicin (red), RNA decay – RNA (yellow), miscellaneous (black), amino acid 

metabolism – tryptophan (blue), and DNA metabolism – UV radiation (grey); M96 (b) cold-shock (blue), 

various strain/mutant characterization (black), media comparison (green), acid-shock (yellow), antibiotic (red), 

heat-shock (purple), and growth curve (grey). 

F

c

 

(a) (b) 

ig. 5. (a) Histograms (top) and box-plots (bottom) of all gene-pair association from three Kendall’s τ 

orrelation matrices, M4501, M96A, and M96B. The bold lines represent smoothed frequency distributions. (b) 
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Scatter-plots and box-plots of median Euclidean distances δ  representing heterogeneity among experiments and 

median Kendall’s τ of pair wise gene associations from subsets of gene expression data, marked according to 

source, M45 (grey), M96 (white). Subsets were created at random, comprised approximately 200 genes each, 

and were characterised by average numbers of gene pairs (n , inset). The dashed vertical line represents the 

critical significance threshold of gene associations for n = 22 at probability α = 0.05. 

E

∅

Distribution of gene associations 

A major concern of our investigation was the positive shift of the distribution of Kendall’s τ gene pair 

associations evident within M4501 (Fig. 5a) and M4502 (data not shown). We investigated whether 

the choice of gene expression experiments and experimental diversity (Fig. 5a) had an impact on the 

shift of Kendall’s τ distribution of gene pair association (Fig. 5a). In other terms we asked, whether 

prevailing positive associations in dataset M4501 might reflect higher suitability of this dataset to 

investigate prokaryotic operon organization as compared to M96.  

For this purpose, we created 10 random gene sets, comprising approximately 200 genes each. Genes 

were chosen only once and had to be present in both datasets. Transcript data of each gene set were 

extracted separately from M96 and M45. Experiments of each dataset were chosen at random to 

comprise data subsets that had average numbers of gene pairs as follows: 47.0, 42.5, 37.5, 32.5, 28.5, 

and 23.0. The numbers of gene pairs were smaller than the numbers of experiments, because of 

missing data in M45. Heterogeneity among experiments of each selection was determined by median 

δE (Fig. 5b). Our analyses revealed a relation of median δE and median Kendall’s τ (τmedian), e.g. 

reduced heterogeneity of experiments coincided with a positive shift of τmedian of gene pair 

associations. The portion of significant positive gene pair associations was increased in M45 (Fig. 5b) 

as compared to M96. Subsequently, by application of parametric ANOVA on τmedian distributions we 

tested the factor that might influence the above observation, namely choice of gene subsets, number of 

gene pairs, i.e. 23.0 - 47.0, or data source, i.e. M96 or M45. No first- and second-order interactions 

among these factors were found. Only the data source had a significant influence, ANOVA: Fs > 293, 

P = 2.50e-15. A subsequent non-parametric Kruskal-Wallis test (P < 7.00e-06) substantiated this finding. 

In conclusion, the shift of τmedian distributions of pair wise gene associations was inherent to datasets 

and not biased by different numbers of experiments or choice of technology (see above). 

However, on comparing Kendall’s τ distribution of all genes from M96, either M96A or M96B (Fig. 

5a), with the distributions of gene subsets from M96 (Fig. 5b), we observed that the τmedian shifted from 

0.053 (M96, 4241 genes) to approximately 0.25 - 0.4 (M96, approx. 200 genes each). Thus, shifts of 

τmedian can be caused by the choice of gene subsets. In order to investigate this observation, we 

subdivided gene associations into one group that represents gene associations by operon structures 

(type I associations) and a second much larger group of all gene associations which do not describe 

operon structures (type II associations). Comparative analysis of Kendall`s τ  distributions indicated 
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fundamentally different 

properties (Fig. 6). While type 

II associations were 

approximately normal 

distributed and exhibited 

almost equal numbers of high 

positive and negative 

Kendall’s τ , type I associations 

were predominantly positive as 

was supported by Wilcox rank 

sum testing and shown 

previously with an 

independent dataset (Sabatti et 

al., 2002). A portion of 75 % 

of type I associations were overlapping with significant and positive type II associations and thus, the 

high numbers of type II associations were obscured (Fig. 7). In addition to previous observations we 

found evidence of bi-modal type I associations (Fig. 6; M96A), indicative of a mechanism, which 

apparently uncouples associations based on polycistronic mRNA. We define these associations as type 

III, i.e. those associations that according to operon annotations were expected to be significantly 

positive, but were found to be non-significant or had even negative and significant Kendall’s τ. The 

type III associations were variable in numbers, as was exemplified by M96A and M96B (Fig. 6), 

highly operon specific, and dependent on the choice of experiments (Fig. 7). 

Fig. 6. Kendall’s τ distribution of type I associations, i.e. related to operon 
structure, and type II associations, i.e. not related to operon structure 
apparent in data subsets M96A and M96B. Dashed lines indicate median 
of Kendall’s τ for the combined type I and type II associations. The bold 
lines represent smoothed frequency distributions. 

Fig. 7. Colour-coded partial 

visualization of Kendall’s τ 

association matrix of genes from the 

chromosomal section nt 15.995 - 

16.718. Nearest neighbour 

associations (section 3) and selected 

distant associations (sections 1, 2, 

4-8) from data subsets M96A (left) 

and M96B (right) are shown. 

Sections were: (1) operon 

cyoABCDE, (2) nmpC, (3) region 

ybgI to tolA, (4) region flgB to flgJ, 

(5) trpD, trpE and trpL, (6) operon 

ivbL-ilvBN, (7) metH, and (8) malE. 

Section 1 represents operons: A - ybgIJKL-nei, B - ybgPQ, C - sdhCDAB-b0725-sucABCD, D - hrsA-ybgG, E - 

cydAB, and F - yvgC-tolQRA. Alternative or ambiguous operon annotations are marked by boxes. 
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Operon classification by co-clustering 
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We demonstrated above that type I and type II associations cannot be differentiated without utilization 

additional knowledge. Co-clustering was suggested to integrate multiple information sources for 

cluster analyses (Hanisch et al., 2002). We modified this technology to allow overlay of operon 

annotation, intergenic distance and transcriptional co-response data into combined matrices and 

subsequent HCA (Fig. 1). We first adjusted co-clustering to enforce classification of genes belonging 

to the same operons (Fig. 8; OpOVLP). The choice of joining function and weighting were as 

described earlier (refer to the section ‘joining 

function and combined distance’). Consequently MC 

approximated 1.0 and RC was 0.0 at clustering height 

0.5. The stringency of co-clustering was set to merge 

even those genes that exhibited negative correlation 

to other members of these operons into correct 

operon clusters. Representative results from M4501 

are shown (Fig. 8). Instead of adjusting joining 

function and weighting of co-clustering to allow 

novel association to operon clusters or rule out 

previous annotations, we maintained settings but 

substituted OTtu for matrices, which described 

physical proximity and co-linearity of genes on 

chromosomal strands. The maximum nt allowed 

applied to construct matrices of weighted intergenic 

distances (δig
ω) was optimized to approximate the co-

clustering results obtained by OTtu (Fig. 8). Use of the 

maximum nt distance threshold, namely 655 596 nt 

representing the average of non-coding nt divided by 

2 of both DNA strands, improved results markedly, 

MC > 0.3 at RC 1.0 as compared to direct clustering 

(Fig. 2). Applying a 70 000 nt threshold doubled MC 

at RC = 1.0. The number of 70 000 nt is equal to the 

maximum of non-coding nt observed in between any 

set of 16 co-linear and adjacent genes. The choice of 

16 genes was motivated by the largest known operon 

th

re
 
g. 8. Plot of match coefficient (MC) (bottom)

d the reassignment coefficient (RC) (top)

sulting from HCA of distance matrices from

taset M4501 at increasing clustering heights

). RC is shown in the range of 0.0 to 1.0 with

 representing 50% mis-assigned genes.

ndall’s τ distance measure was applied. Inset

ows different co-clustering: OpOVLP forced

-clustering by OTtu. 

of E. coli, which has 15 genes. The choice of further 

resholds, 2250 and 7250 nt, was equal to the maximum length of 95% or of all E. coli genes, 

spectively. Application of these thresholds mimics MC traces obtained with OTtu (Fig. 8), whereas 
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RC, i.e. the percentage of novel reassignments, can be fine-tuned by selecting the threshold number of 

nt (data not shown). MC traces obtained with equal settings were mostly independent of datasets. For 

example, when we applied the 2250 nt threshold, MC only ranged from 0.87 to 1.0 at RC = 1.0. In 

contrast, RC traces varied widely. RC traces of M96A and M96B had steeper slopes as compared to 

M4501 and similarly M96B had a steeper RC slope as compared to M96A (data not shown). This 

observation was indicative of RC slopes increasing with heterogeneity of experiments, hM4501 < hM96A 

< hM96B. 

Analysis of operon structures 

The clustering results can now be used to investigate operon annotations as well as compare and 

validate transcriptional co-response in different datasets, e.g. under different experimental conditions. 

In the following, we analyse two exemplary E. coli operons in detail using combined matrices (δ∆) of 

δig
ω at 2250nt threshold with Kendall’s τ matrices of the different transcript datasets. Gene clusters 

were created with clustering heights set at RC = 0.5, i.e. allowing a portion of 33.3% novel gene 

assignments. Because M96 had a more complete representation of the full genome and most of the 

genes discussed below were only partially represented in M45 we focussed our investigations on M96.  

The complex operon sdhCDAB-(b0725)-sucABCD (Fig. 7, section 3C) codes for succinate 

dehydrogenase (sdhCDAB), components of the 2-oxoglutarate dehydrogenase complex (sucAB), and 

parts of succinyl-CoA synthetase (sucCD) (Cunningham and Guest, 1998). This operon allows control 

of a major constituent of the tricarboxylic acid cycle in central metabolism. Prevoius experimental 

characterization identified two promotor elements, Psdh and the internal Psuc, as well as the co-

transcription of the entire operon into a ‘nine-cistron’ mRNA (Cunningham and Guest, 1998). 

RegulonDB assigned three possible transcripts: (1) the entire sdhCDAB-b0725-sucABCD mRNA, (2) a 

sucABCD mRNA and (3) a single-gene b0725 transcript. In contrast, EcoCyc annotates only the first 

two mRNAs. Co-clustering of δ∆ of M96A supports activity of Psdh and expression of the full ‘nine-

cistron’ transcript (b0721 - b0729). All genes of this operon were merged into one cluster (Table 2) 

and respective type I gene associations were all significant (P << 0.001). Dataset M96B and 

underlying experiments revealed differential regulation of transcriptional co-response (Fig. 7; Table 2). 

This dataset supports transcriptional activity of Psuc, as is evident through significant type I 

associations of the sucABCD operon (b0726 - b0729). All other expected associations were type III, 

e.g. absent or strongly reduced. Indeed we can propose one possible underlying mechanism of type III 

associations: differential use of stacked promoters in E.coli. These promoters control overlapping 

subsets of genes, which can be differentially controlled under varying experimental conditions, as was 

demonstrated.  

As a second example, we selected operon nlpB-dapA, which according to RegulonDB may be 

controlled by PdapA (Salgado et al., 2001). NlpB (b2477) encodes lipoprotein-34 and dapA (b2477) 

code for dihydrodipicolinate synthase (EC 4.2.1.52). Co-cluster analyses of M96A and M96B merged 
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both genes into one cluster (Table 3). In addition, adjacent purC (b2476), which encodes a subunit of 

phosphoribosylaminoimidazole-succinocarboxamide synthase, was assigned to this cluster irrespective 

of choice of dataset (Table 3). All associations of purC with nlpB-dapA were significant. Based on the 

proximity of purC and nlpB-dapA we can propose a transcriptional unit purC-nlpB-dapA. Two 

mechanisms may be the cause of this unit, either operon structure or a strong transcriptional control of 

two adjacent genes by a common transcription factor. The mechanism remains to be investigated by 

experimental analyses of transcript length. 

both genes into one cluster (Table 3). In addition, adjacent purC (b2476), which encodes a subunit of 

phosphoribosylaminoimidazole-succinocarboxamide synthase, was assigned to this cluster irrespective 

of choice of dataset (Table 3). All associations of purC with nlpB-dapA were significant. Based on the 

proximity of purC and nlpB-dapA we can propose a transcriptional unit purC-nlpB-dapA. Two 

mechanisms may be the cause of this unit, either operon structure or a strong transcriptional control of 

two adjacent genes by a common transcription factor. The mechanism remains to be investigated by 

experimental analyses of transcript length. 

Table 2. Kendall’s τ association of operon sdhCDAB-(b0725)-sucABCD and co-clustering using combined 

matrices (δ∆) of δig
ω at 2250 nt threshold with Kendall’s τ matrices derived from M96A and M96B. 

Table 2. Kendall’s τ association of operon sdhCDAB-(b0725)-sucABCD and co-clustering using combined 

matrices (δ∆) of δig
ω at 2250 nt threshold with Kendall’s τ matrices derived from M96A and M96B. 

  b0721 b0721 b0722b0722 b0723 b0723 b0724 b0724 b0725b0725 b0726b0726 b0727b0727 b0728b0728 b0729b0729 Type Type RICa rel hb RCcRICa rel hb RCc

M96A            
b0721             2 0.00 0.07 
b0722 0.88  

avg.   0.84 
    

operon avg. 
0.80   2 0.00 0.07 

b0723 0.83 0.92            4 0.03 0.09 
b0724 0.75 0.80 0.88           3 0.02 0.08 
b0725 0.88 0.90 0.88 0.80           I 1 0.00 0.06 
b0726 0.80 0.85 0.83 0.78 0.85      avg. 0.81    1 0.00 0.06 
b0727 0.63 0.68 0.77 0.85 0.72 0.73       4 0.03 0.09 
b0728 0.72 0.77 0.85 0.83 0.77 0.82 0.92      5 0.15 0.13 
b0729 0.72 0.73 0.82 0.87 0.73 0.78 0.78 0.80     4 0.03 0.09 

M96B              
b0721             5 0.69 0.26 
b0722 0.21  

avg.   0.81 
    

operon avg. 
0.41   3 0.05 0.10 

b0723 0.17 0.09            5 0.69 0.26 
b0724 0.16 0.72 0.13           3 0.05 0.10 
b0725 0.21 0.47 -0.02 0.45           I 4 0.17 0.13 
b0726 0.11 0.64 0.09 0.66 0.43    avg. 0.73    2 0.01 0.08 
b0727 0.06 0.57 0.19 0.65 0.34 0.74       1 0.00 0.07 
b0728 0.14 0.62 0.03 0.63 0.38 0.82 0.72      2 0.01 0.08 
b0729 0.13 0.61 0.19 0.71 0.41 0.70 0.74 0.68     1 0.00 0.07 

   aRank of merger into operon cluster. bRelative height at merger. cReassignment coefficient of data set at           
merging height. 
 

 

M96
b24
b24
b24

M96
b24b24
b24b24
b24b24

Table 3. Kendall’s τ association of transcriptional unit purC-nlpB-dapA (operon nlpB-dapA) and co-clustering 

of combined matrices (δ∆) of δig
ω at 2250nt 

threshold with Kendall’s τ matrices derived 

from M96A and M96B. 

 
 
aRank of merger into operon cluster. 
bRelative height at merger. 
cReassignment coefficient of data set at 
merging height. 
b2476 b2477 b2478 Type RIC a rel hb RC c

A       
76   2 0.06 0.10 
77 0.88 

avg.   0.81 
I 1 0.02 0.08 

78 0.83 0.72   1 0.02 0.08 

B         
76 76     1 1 0.02 0.02 0.08 0.08 
77 77 0.52 0.52 

avg.   0.59 avg.   0.59 
I I 2 2 0.16 0.16 0.13 0.13 

78 78 0.66 0.66 0.59 0.59     1 1 0.02 0.02 0.08 0.08 
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Discussion 

In this paper we choose a hypothesis-driven co-clustering approach for the identification of 

transcriptional units. As ideal test cases of co-transcribed genes we used operon structures which result 

in physically linked co-transcription. Furthermore, we applied our approach to three independent sets 

of biological experiments using an overlap matrix OTtu, which represents the combination of all 

available annotations of polycistronic E.coli operons. We clearly demonstrate the failure of the 

assumption, that polycistronic mRNA inevitably results in high gene-to-gene correlation of transcript 

measurements. We unravel two major mechanisms that contribute to obscure operon structures within 

transcript profiles. First, presence of type II associations, which include synergistic (positive Kendall’s 

τ ) and antagonistic (negative Kendall’s τ ) control of distant genes by common transcription factors. 

These associations dominate in numbers any correlation matrix and overlap with type I associations. 

Second, type III associations exist. Expected high transcriptional co-response due to operon structures 

may indeed be conditional, because of known or still undiscovered stacked promoters. An example of 

the differential use of stacked promoters under different experimental conditions is shown. Moreover, 

additional mechanisms contributing to type III associations might be functional, such as post 

transcriptional mRNA processing and degradation.  

We conclude that only recruiting additional information will allow extraction of operon structures 

from gene expression data. We successfully applied co-clustering technology to include gene distance 

information and demonstrated that gene distance as suggested earlier by Sabatti et al. (2002) can 

effectively substitute information about known operon annotations (Fig. 8). Furthermore, we show 

evidence, that comparative analyses on data subsets, which describe defined experimental 

interventions, will be highly informative as compared to global analyses of compendium datasets. The 

presence of binding sites for multiple transcription factors within many promoter regions as well as 

occurrence of stacked promoters driving different gene subsets of operons indicate that many 

overlapping transcription units may exist and can be used in response to varying stimuli. Our analyses 

demonstrate differential as well as constitutive use of exemplary transcriptional units. Transcription 

units were shown to be highly dependent on experimental conditions (Fig. 7, Table 1). We envision 

that analyses of constitutive activity or conditional use of operons and transcriptional units controlled 

by transcription factors will be imminent task of transcriptome analyses and will lead to further 

experimental investigations. 
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Abstract 

Brassinosteroid (BR) effects are largely mediated at the level of transcriptional regulation. Previous 

expression profiling experiments identified several BR-responsive genes in Arabidopsis. However, 

BR-responsiveness of the vast majority of identified genes depends on the genotype and specific 

choice of experimental conditions, and for numerous genes likely remained uncovered hitherto. In this 

study, the comprehensive systems-biology database (CSB.DB) was used to reveal BR-related genes 

from 51 gene expression profiles exploiting the concept of co-response analysis – genes exhibiting 

simultaneous changes in transcript levels are assumed candidates of common transcriptional regulation. 

In the present study CSB.DB was queried for transcriptional co-responses with the BR-signalling 

components BRI1 and BAK1. A total of 301 genes out of 9694 genes represented by transcript 

measurements in the database showed co-responses with both genes, including several known BR-up-

regulated genes. The identified genes point towards roles of BR in cell wall modification, water 

transport, dehydration/cold response, transcriptional control, light signalling, and protein degradation, 

and imply interactions with auxin and ethylene signalling. Affymetrix expression profiling and real-

time RT-PCR analysis of BR-mutants, BR-, and brassinazole treated plants confirmed the BR-

dependent expression of 72 genes. Analysis of GA- and paclobutrazol-treated plants demonstrated that 

the identified genes were virtually unaffected by GA and secondary effects such as altered growth. 

Our results demonstrate that transcript co-response analysis presents a valuable public resource to 

uncover common regulatory patterns of genes. 
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Introduction 

BR-deficient and BR-insensitive mutants in Arabidopsis, pea, tomato, barley, and rice show dwarfism 

(Bishop, 2003). The growth-promoting effect of BR was assigned to changes in transcript levels of 

genes involved in cell wall modifications such as xyloglucan endotransglucosylase/hydrolases and 

expansins. Other BR-regulated genes point to further mechanisms contributing to growth. Enhanced 

resistance of BR-treated plants to temperature, salt, water, phytopathogens, and other environmental 

stresses was reported (Khripach et al., 2000; Nakashita et al., 2003; Sasse, 1999). However, the 

underlying molecular basis is unknown. The growth effect of exogenous BR is light-dependent. For 

instance, exogenous BR stimulates growth of Arabidopsis hypocotyls in the light, but inhibits growth 

in the dark (Choe et al., 2001; Wang et al., 2002). Arabidopsis mutants such as det2, cpd, and bri1 

display short hypocotyls, opened cotyledons, and emergence of primary leaves in darkness. These 

findings suggest a crosstalk between photomorphogenesis and steroid signal transduction (Turk et al., 

2003).  

More than 50 BR-responsive genes have hitherto been identified in Arabidopsis. However, the 

majority of these genes do not show consistent BR-dependent expression in different BR-mutants, 

under different environmental conditions, and upon BR-treatment (Müssig et al., 2002). These 

inconsistencies suggest additional regulatory effects, secondary events in BR-deficient dwarf mutants, 

and not physiological responses upon BR-treatment, for instance of tissues which normally contain 

low levels of BR. Thus, the usually applied approaches are limited. On the other hand, the identified 

genes most likely present only a subset of genes involved in the mediation of BR-effects such as 

growth promotion. One major reason for incomplete uncovering of genomic effects is the limited 

number of experiments, since gene expression can vary even under highly controlled conditions and 

many genes probably fail to meet the stringent selection criteria routinely applied in expression 

profiling experiments.  

Cross-experiment co-response analysis provides an alternative approach which is based on the 

assumption that common transcriptional control of genes is reflected in co-responding, synchronous 

changes in transcript levels. Thus co-response analysis describes common changes of transcript levels 

among gene pairs. Publicly available expression profiles represent a rich resource for such cross-

experiment investigations. In this study, the CSB.DB (http://csbdb.mpimp-golm.mpg.de/; Steinhauser 

et al., 2004) was used to identify BR-responsive genes. The CSB.DB provides access to co-response 

analysis based on 51 expression profiles representing numerous independent experiments which were 

generated with Affymetrix ATH1 arrays.  

In order to identify BR-responsive genes co-response analyses could be performed with known BR-

responsive genes or genes involved in BR-signalling. The use of known BR-responsive genes for co-

response analyses may result in the identification of further BR-responsive genes. However, BR-

responsive genes are positioned downstream within the signalling cascade. The use of BR-signalling 
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components presents a superior alternative. BR responses depend on signalling components such as 

BRI1, BAK1, BIN2, BZR1, and BES1. BRI1 is an essential receptor (component) for BR-responses. 

The BR-insensitivity of the bri1 mutant (Clouse et al., 1996; Kauschmann et al., 1996; Li and Chory, 

1997) indicates that major BR-responses depend on BRI1. BAK1 is a receptor-like kinase which 

forms a heterodimer with BRI1 (Li et al., 2002; Nam and Li, 2002). BAK1 was identified 

independently by a yeast two-hybrid screen for BRI1-interacting proteins (Nam and Li, 2002) and as 

suppressor of a weak bri1 allele (Li et al., 2002). In the presence of BR a phosphorylation cascade is 

initiated which receives additional input of proteins such as BSU1 (Mora-Garcia et al., 2004), and 

finally results in the regulation of BR-responsive genes. Components such as BZR1 and BES1 

regulate subsets of BR-responsive genes (Yin et al., 2002). However, these downstream components 

could mediate responses to other stimuli as well, since the complex phosphorylation cascade likely 

receives additional input and certainly serves to modulate BR-responses with respect to tissue 

specificity, environmental conditions, and developmental stages. The use of upstream signalling 

components for transcript co-response analyses can be expected to result in a more robust 

identification of BR-related genes.  

In this study, both the BRI1 gene and the BAK1 gene were used to identify associated genes by 

transcript co-responses. Only the intersection of genes showing co-responses with both BRI1 and 

BAK1 were considered because the parallel use of two genes allows removing BR-independent 

transcriptional co-responses associated with either gene. As a pre-requisite for co-response analysis 

both genes showed changes in transcript levels throughout the set of expression profiles. The BRI1 and 

BAK1 genes show variable transcript levels in different organs (Li and Chory, 1997; Li et al., 2002; 

Nam and Li, 2002), however, further parameters affecting BRI1 and BAK1 transcript levels as well as 

the molecular basis of the regulation of transcript levels are barely known.  

In the following we describe discovery of common co-responsive genes through CSB.DB. We 

demonstrate supportive crosschecking with publicly available Affymetrix expression profiles provided 

by the AtGenExpress consortium (http://www.uni-frankfurt.de/fb15/botanik/mcb/AFGN/atgenex.htm). 

Pairwise comparisons were performed with transcript profiles of BR-, GA-, brassinazole (BRZ) - and 

paclobutrazol (PAC) - treated plants. Furthermore, 44 cell wall and growth-related genes were selected 

for experimental validation by means of real-time RT-PCR. 

 

Results 

Identification of potential BR-induced genes by means of transcript co-
response analyses 

The central part of CSB.DB is a set of co-response databases (CoR.DBs) which are based on publicly 

available transcript profiles. By scanning for the best co-responses among changing transcript levels 
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CSB.DB allows to infer hypothesis on common regulation of gene expression. In this study, CSB.DB 

was used to identify BR-regulated genes. Our analysis was restricted to positive transcript co-

responses. As mentioned above, from a biological point of view the use of genes encoding upstream 

signalling components (such as BRI1 and BAK1) appears superior in comparison to genes encoding 

downstream signalling components (such as BZR1). In fact, the BRI1 and BAK1 genes showed 

consistent co-responses with known BR-responsive genes such as AGP4, BEE1, GTL1, KCS1, PRO1, 

and TIP2.1 (δ-TIP) (Friedrichsen et al., 2002; Goda et al., 2002; Müssig et al., 2002), whereas BZR1 

barely did. Transcript patterns of BRI1 and BAK1 were similar (Fig. 1). 

BRI1 and BAK1 were used to screen for co-responses with all 9694 genes represented in the data 

matrix. The data matrix (termed nasc0271) comprised 51 manually selected expression profiles 

(http://csbdb.mpimp-golm.mpg.de/csbdb/home/matrices/ath_nasc0271.html; Experimental 

procedures). It contained a wide range of 

experimental conditions and minimal 

overlap of identical experiments. 

Importantly, expression profiles of BR-

mutants or BR-treated plants were not 

included. Since a gene had to be 

measured with high quality, i.e. a 

detection call of Marginal or Present 

(according to standard parameters of the 

MAS 5.0 software) in at least 85% of the 

experiments, the matrix contained 

information on 9694 genes rather than on 

the total of > 22.000 genes represented 

on the ATH1 array. Several statistical 

parameters were applied to retrieve genes 

displaying co-responses. In particular, 

the Spearman’s non-parametric rank 

correlation coefficient (rs), the p-value, 

and the power were used. The exclusion 

criteria for these parameters were >0.35, 

<0.01, and >0.7, respectively. 720 and 

1179 genes showed co-responses with 

BAK1 and BRI1, respectively, whereas 

301 genes showed co-responses with 
experiment
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Fig. 1. BRI1 (At4g39400) and BAK1 (At4g33430) transcript 
levels denoted as log2 signals in 51 expression profiles 
(incorporated in the CSB.DB data matrix nasc0271) (top). Lines 
are drawn to aid interpretation. Scatter plot of the log2 signals 
(bottom). 
both genes. Public databases contained 
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information that allowed functional categorisation of more than 50 % of these genes (Fig. 2 and 

supplementary EXCEL file sheet 1 [301 genes]).  

Non-parametric bootstrap analysis with 2.000 bootstrap samples was performed with 135 functionally 

classified genes (including BRI1 and BAK1). The resulting Spearman correlation coefficients (rs), p-

values, and power values confirmed the correlated behaviour of both the BAK1 gene and the BRI1 

gene with the respective other 134 genes, and also resulted in a complete matrix of all pairwise gene 

correlations (supplementary EXCEL file sheet 2 [Spearman rs], sheet 3 [pvalue], and sheet 4 [power]). 
Distribution within Matrix amino acid metabolism

cell
cell wall
co-factor and vitamine metabolism, tetrapyrrole
development
dna
glycolysis / tca
hormone metabolism
lipid metabolism
major / minor CHO metabolism
metal handling
misc
misc C, S, N metabolism
mitochondrial electron transport / ATP synthesi
not assigned
nucleotide metabolism
protein
photosynthesis
redox
RNA
secondary metabolism
signalling
stress
transport

Distribution within Intersection

not assigned

 
Fig. 2. Functional classification of 301 genes showing co-responses with the BRI1 and BAK1 genes. Categories 

were deduced from the MapMan software (Thimm et al., 2004) but slightly modified (supplementary 

information Table S1). 

Expression analysis of identified genes by means of Affymetrix expression 
profiles 

AtGenExpress is a multinational coordinated effort to uncover the transcriptome of the multicellular 

model organism Arabidopsis thaliana (http://www.uni-frankfurt.de/fb15/botanik/mcb/AFGN/ 

atgenex.htm). Several groups contributed expression profiles based on the Affymetrix ATH1 full 

genome chip technology. For this study expression profiles from AtGenExpress, which were 

established by Hideki Goda (Plant Science Center and Plant Functions Laboratory, RIKEN, Japan), 

and 2 previously published profiles (Coll-Garcia et al., 2004) were used.  

Expression profiles were analyzed using the stringent settings of the statistical algorithms applied in 

the GCOS software. The detection P value (with standard parameters) was applied to remove genes 

with Absent and Marginal calls. Induced genes were expected to be Present in experimental 

hybridisations, i.e. experiments representing higher phytohormone levels in comparison to the 

corresponding baseline experiments. Repressed genes were expected to be Present in baseline 

experiments, i.e. experiments representing lower phytohormone levels in comparison to the 

corresponding experimental hybridisations. Simultaneously, change P values with an exclusion limit 
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of <0.01 or >0.99 and signal log ratios of ≥0.8 or ≤ 0.8 were used in pairwise comparisons in order to 

identify changes in transcript levels with high reliablity.  

30 expression profiles of brassinolide (BL)-, 24-epibrassinolide (EBL)-, castasterone (CS)- or control-

treated wild-type and BR-deficient det2 plants were used for 15 pairwise comparisons. The results 

were screened for intersections with the 301 genes identified by means of transcript co-responses with 

BRI1 and BAK1. Upon BR-treatment 55 genes showed stronger expression in at least two independent 

situations (supplementary EXCEL file sheet 7 [Affx results BRs, BRZ]), whereas 13 genes including 

the BRI1 homolog At1g72180 revealed weaker expression in at least 2 independent experiments. 

Moreover, the BRI1 gene also showed reduced transcript levels upon BR-treatment. These up- or 

down-regulated genes did not show any conflicting expression pattern, i.e. were not down- or up-

regulated in other situations.  

Exogenous BR strongly promotes growth. The observed transcript co-responses could be related to the 

growth response rather than to specific BR action. In this case expression may be induced by other 

growth-promoting compounds such as GA. To unravel this 24 expression profiles of GA3- or control-

treated wild-type and ga1-5 plants were used for 12 pairwise comparisons. Genes with significantly 

increased or decreased transcript levels were compared with the 301 candidate genes. Only one gene 

showed stronger expression upon GA-treatment according to the criteria applied for the BR-treatments 

(supplementary EXCEL file sheet 8 [Affx results GA3, PAC]).  

Reduced BR-levels should result in weaker expression of BR-related genes. Brassinazole (BRZ) is a 

specific BR biosynthesis inhibitor (Asami et al., 2000). We analysed 12 expression profiles of BRZ- or 

control-treated wild-type plants and performed 8 pairwise comparisons. According to the obtained 

results 17 of the 301 candidate genes showed reduced expression in the presence of BRZ in at least 

two independent situations (supplementary EXCEL file sheet 7 [Affx results BRs, BRZ]). In order to 

test whether reduced GA-levels also affect transcript levels of the 301 genes 8 expression profiles of 

paclobutrazol (PAC)- or control-treated wild-type plants were used for 4 pairwise comparisons. The 

results were filtered for significantly altered transcript levels of the 301 candidate genes. Only 2 genes 

showed weaker expression in the presence of PAC according to the criteria used for BRZ treatments 

(supplementary EXCEL file sheet 8 [Affx results GA3, PAC]). Thus, transcript levels of identified 

genes were marginally affected by GA and GA-mediated growth processes. The obtained Affymetrix 

results are also given in an all-inclusive table (supplementary EXCEL file sheet 6 [complete Affx 

results]). 

Expression analysis of 44 growth-related genes in BR-mutants by means of 
real-time RT-PCR 

Given these findings the transcript co-response data allowed to dissect the molecular basis of BR-

promoted growth. Since BR-promoted growth represents a focus of our current work (Coll-Garcia et 

al., 2004; Müssig et al., 2003), we subjected growth-related genes to experimental examination. The 
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301 candidate genes were manually screened. 44 genes with predicted or known functions in growth 

processes and cell wall modifications were selected for real-time RT-PCR analysis. BR-induced genes 

were expected to display reduced transcript levels in different BR-deficient and BR-insensitive 

mutants. The combination of different genotypes provides means to exclude changes in transcript 

patterns which are restricted to a specific genotype. In fact, previous expression profiles revealed 

different changes in BR-mutants (Goda et al., 2002; Müssig et al., 2002), and only a subset of genes 

showed consistent changes. This finding is in agreement with phenotypic differences of BR-mutants. 

BR-treated plants were also analysed. Wild-type and dwf1-6 plants were treated with 300 nM EBL and 

plant material was harvested 5 h after treatment.  

We performed 3 sets of independent experiments. Firstly, wild-type, dwf1-6, cbb3, and cbb2 plants (all 

C24 background, mutants allelic to the dim, cpd, and bri1 mutants; Kauschmann et al., 1996) were 

grown in half-concentrated Murashige and Skoog medium. Plant material was harvested 14 d or 19 d 

after sowing. Secondly, wild-type, dwf1-6 plants, and CPD-antisense plants (Schlüter et al., 2002) 

were grown in soil. Plant material was harvested 28 d after sowing. Thirdly, wild-type and dwf1-6 

plants were grown in half-concentrated Murashige and Skoog medium and either treated with a control 

solution or 300 nM EBL.  

Transcript levels were determined by means of real-time RT-PCR. The amplification efficiency E of 

each primer pair (Table 1) was determined from the log slope of SYBR Green fluorescence versus 

cycle number in the exponential phase, and was used to normalise the readout for each primer pair and 

run (Czechowski et al., 2004; see Experimental procedures). 8 fold change values from 3 sets of 

experiments were established (Table 2 and Table 3). Underlying CT values are provided in Table 4. 

Pairwise comparisons were organized like the Affymetrix pairwise comparisons (i.e. wild-type versus 

BR-mutant and BR-treatment versus control treatment). Therefore, fold change values greater than 1.0 

indicate a positive BR-effect on transcript levels.  

23 genes showed reduced transcript levels in different BR-mutants (Table 2). These genes include the 

known BR-responsive KCS1 and TIP2.1 (δ-TIP) genes (Coll-Garcia et al., 2004; Goda et al., 2002) 

(encoding a β-ketoacyl-CoA synthase required for wax biosynthesis and an aquaporin, respectively), 

genes presumably involved in cell wall modifications (At1g27600, AGP21 [At1g55330], At2g06850, 

AGP9 [At2g14890], At3g05910, At3g24480, At3g28180, At3g57790, FLA2 [At4g12730], At4g13340, 

and At4g18670), 4 aquaporins (TIP1.1 [At2g36830], PIP1.2 [At2g45960], TIP2.1 [At3g16240], and 

TIP1.2 [At3g26520]), and a KCS1 homologue [At5g43760]). In general, fold changes of growth-

related genes were more pronounced in 14 and 19 d old plants in comparison to 28 d old plants, likely 

due to reduced growth rates in older plants (Table 2). 6 (of 23) genes also displayed higher mRNA 

levels in BR-treated plants (Table 2). 18 genes did not exhibit BR-dependent expression or showed 

variable transcript levels (Table 3). 3 genes displayed stronger expression in BR-mutants or weaker 

expression upon BR-treatment (Table 3). The 44 genes subjected to RT-PCR analysis were 

highlighted in the supplementary tables to aid comparisons with Affymetrix data (supplementary 
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EXCEL file sheet 6 [complete Affx results], sheet 7 [Affx results BRs, BRZ], and sheet 8 [Affx results 

GA3, PAC]). 

 
Table 1. Primers used for real-time RT-PCR analysis. The amplification efficiency (E) was determined for each 

primer pair (see Experimental procedures). 

Gene sense primer antisense primer E ± SD 

At1g01120 ACCGAAGCTAAGGGTCGGGTTA GTAACTCTTTCCAAACCGCACT 0.838 ± 0.007 
At1g01620 CGGAACCTTCGTCCTTGTCT ATTGGGAGTGGTGCCAAAAT 0.936  ± 0.007 
At1g03870 GGTGAGATGTTCGGAGAGCA TGACTTATCCGACGGTGACG 0.862  ± 0.003 
At1g27600 CGACGTCCCTTTTCACATCC TCCATCTCGCTTTCATCAGC 0.906  ± 0.003 
At1g31310   TGTGGAGGAGGTTGGACGTA CTCTCCCTAATCGCGTTTGC 0.857  ± 0.005 
At1g55330   CAGCTCCAAGCCCAACTTCT TGAAACCAGATGCCAAAGCA 0.896  ± 0.049 
At1g70210   ACGAGAGCCCTGAGACTTGG GGCCATCGCTTTCATCAGTC 0.861  ± 0.012 
At2g06850   CTGAACAATGGCGTCGTCTC CTGGCATAACCGGGAACCTA 0.894  ± 0.016 
At2g14890   TTGGATCTGTTCTCGTCTGG TCCCAAGCAATACAGTGGAA 0.936  ± 0.002 
At2g16850   AGAAGTGCCCGTGACTCTCA CCAAAGCTTCTGGCTGGATT 0.868  ± 0.001 
At2g22840   GCGATGCGTGGATCAGATAA GAAGCCCCTCGAGAATTTTG 0.757  ± 0.011 
At2g36400 TTTTGGTGGTGGTGGTGGTA TCTTGCTTCATCTCCGAACA 0.833  ± 0.021 
At2g36830   TCGCTTGCCTCATCCTTAAA TCGAAAACGAAAGCGTTCAA 0.981  ± 0.000 
At2g45960   CCAAGAGAAACGCTCGTGAC CCAGTAATGGGGATGGTTGC 0.898  ± 0.036 
At3g05910   CGGTGGCAATAGCTGTAGGA CACCAAGTTGTGGCAGCTCT 0.874  ± 0.011 
At3g16240   CACAGTCATCACCGGAGTTT GATCCTAGTCCAGCCGCAAC 0.934  ± 0.012 
At3g24480   ACCGCCAGTCCATCACAGTT GTGGTGGGGGAGATGCATAG 0.892  ± 0.018 
At3g26520   GTTTCTGGCCGTTGGATCAT TTGCACAAAAGCCTTCCAGA 0.991  ± 0.000 
At3g28180   GCAACAACATCGTTGGCATT CGCCTTCTTCCAAACCGATA 0.907  ± 0.005 
At3g53420   CCACCAATTCGTTCTGAGAG GTGTTTAGACGTTGGCAGCA 0.887  ± 0.014 
At3g57790   TTACAGTGCAGGGCTTGTGG AACCCGTTCACATGCTCCAT 0.917  ± 0.014 
At3g61430   GACCATTCCTGGGATGACCA TGGCTCTGATGACAACCACA 0.953  ± 0.026 
At4g02500   CGGTGTTCGAAGCTGATGAT GAATCCCCCAGTAACCGTGA 0.952  ± 0.006 
At4g12420   TCGGACACCCTGACAATGTT CGTGAATCCAATGCTCTTCG 0.854  ± 0.003 
At4g12730   CGTGGCATTTACCTCGCTTT TTCCAAATCTCCACACCAAG 0.899  ± 0.000 
At4g13340   AGGACCACTACCACCGGTCA CGATCTGTTCGTGTCACGTC 0.791  ± 0.004 
At4g14130   CTGGAGACCCCAACACATCA TGGGTTGACTCTTTGGGAAA 0.842  ± 0.013 
At4g18670   GCCGTCGTCACCTAGTCCTC GGTGGGGATGGAGGAGAGTA 0.724  ± 0.001 
At4g19410   CTTGGTCCGGTGACAAAGGT ATGCACTCCGGCCATAAAAC 0.704  ± 0.000 
At4g23400 ATTAACCCGGCCAGGAGTCT GATGGTACAGAGCAGCAAGC 0.917  ± 0.001 
At4g25260   TTGAGCAATTCGCTGAAGGA GCGGTCTCATCTGTCAGTGC 0.897  ± 0.000 
At4g25620 ACGGGTCGTCAAGGCATAAT AACCGGAACGGTTTAGCTTG 0.833  ± 0.001 
At4g31590   CGGGACCTATGCAGCTTTTC TCAGATTCGCCTTCTTCCAT 0.890  ± 0.001 
At5g01210   GGGGAAAACCGTTAGCTGTG ACTTCCAGATCCACGCTTCC 0.832  ± 0.008 
At5g05170   ATTGCCAGCCGTTTGTCTCT TATACCCGTGGCGAAAATGG 0.949  ± 0.007 
At5g07830   CAGCTACGGGTTTACGCACA CCACGTTTATGCCATTGCTG 0.870  ± 0.022 
At5g12250   GGACAATGAAGCCCTTTACG CCGGGAACCTAAGACAGCAT 0.773  ± 0.042 
At5g19770   TCTCCGTCCGTCGAAGAAGT GACCTGGATCCCAGCTTGTC 0.884  ± 0.001 
At5g20250   AACTCGCGATTGTTTGTTCG CACGCCAAGAACTCCAGTGT 0.892  ± 0.016 
At5g26670   GGAGCTGTCACAATCTGGTC ACGAATGCAGCAAAATGTCA 0.838  ± 0.007 
At5g43760   AATCTTGGTGGAATGGGATG GCGTATGAGTTTGGTTGCAC 0.872  ± 0.027 
At5g55730   TAATGTCGGCTCATGGATGC CATTGCATCATCTCCTGGAC 0.986  ± 0.002 
At5g60390 TTGACAGGCGTTCTGGTAAGG CAGCGTCACCATTCTTCAAAAA not determined 
At5g64740   CCCTGCCATCTGTCTTCTCA AGAAGAGCGCCATGAAGAGG 0.884  ± 0.006 
At5g67260   CCGTATGTTTCTCGATGTGC ATTGTAGCCGATGGCCGATA 0.822  ± 0.009 
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Table 2. Real-time RT-PCR analysis of cell wall and growth-related genes. For comparison of basal transcript 

levels wild-type plants and different BR mutants were grown under aseptic conditions (columns 1 – 6) or in soil 

(columns 7 and 8) and harvested after 14 days (column 1), 19 days (columns 2 – 6), and 28 days (columns 7 and 

8), respectively. For BR-treatments (columns 5 and 6) plant material was either treated with a control solution or 

300 nM 24-epibrassinolide. Plant material was harvested 5 h after treatment. Control treatments were also used 

to compare basal transcript levels in wild-type and dwf1-6 plants (column 4). Fold change ratios were calculated 

taking into account amplification efficiency (E) of all primer pairs (Table 1). RT-PCR data (i.e. CT values) are 

given in Table 4. 

 sterile culture sterile culture  soil 

Gene 

 

WT vs  
dwf1-6 

 
14d 

WT vs  
cbb2 

 
19d 

WT vs 
cbb3 

 
19d 

WT vs  
dwf1-6 
controls 

19d 

WT  
BR vs 
control 

19d 

dwf1-6  
BR vs 
control 

19d 

 

WT vs 
dwf1-6 

 
28d 

WT vs  
αCPD 

 
28d 

Weaker expression in at least two mutants, stronger expression upon BR-application: 
KCS1 At1g01120 1.7 1.5 2.2 1.1 1.6 1.4  3.1 1.6 
 At1g27600 2.0 0.9 1.6 1.9 2.3 1.4  1.4 2.0 
 At3g24480 1.4 1.6 1.7 1.4 2.5 1.8  1.6 1.3 
CSLC4 At3g28180 1.4 0.9 1.9 2.5 1.5 3.0  0.8 1.1 
 At3g57790 1.3 1.5 1.5 7.3 2.1 3.9  2.6 1.8 
 At4g13340 1.6 1.1 2.9 1.2 1.7 1.9  0.8 1.7 
           
Weaker expression in at least two mutants: 
PIP1.3 At1g01620 3.7 1.4 1.8 2.5 0.9 1.6  0.9 0.8 
AGP21 At1g55330 2.1 3.7 4.1 1.9 1.0 1.7  1.2 2.3 
EXT At2g06850 2.5 1.3 2.0 1.6 1.2 1.2  1.0 0.8 
AGP9 At2g14890 1.8 1.9 1.7 1.6 0.7 1.0  1.2 2.0 
PIP2.8 At2g16850 3.6 2.3 3.7 2.5 0.8 1.5  0.8 1.2 
TIP1.1 At2g36830 1.4 1.6 1.2 1.7 0.7 1.2  0.7 1.2 
PIP1.2 At2g45960 1.9 1.8 1.8 1.8 0.7 1.0  1.5 1.0 
 At3g05910 1.2 1.2 1.5 1.6 1.1 1.6  1.7 1.4 
TIP2.1 At3g16240 2.8 1.5 2.3 1.9 0.9 1.3  0.8 1.0 
TIP1.2 At3g26520 1.6 2.2 1.7 1.8 1.5 1.2  1.4 1.8 
PIP2.1 At3g53420 2.6 1.4 1.9 1.5 0.7 0.6  1.7 1.0 
PIP1.1 At3g61430 2.7 1.5 1.7 1.9 0.9 1.0  1.6 1.1 
SKU5 At4g12420 1.4 1.3 2.0 1.0 1.1 1.0  0.8 0.9 
FLA2 At4g12730 1.5 2.5 2.7 0.8 1.2 1.0  1.3 1.7 
 At4g18670 1.1 1.5 2.1 1.4 0.8 1.0  1.0 1.2 
 At4g25260 1.3 1.9 1.1 1.3 0.7 0.9  1.0 1.9 
 At5g43760 1.8 1.6 1.7 1.3 0.9 1.0  0.8 0.7 
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Table 3. Real-time RT-PCR analysis of cell wall- and growth-related genes. Experiments and methods as 

described in legend of Table 2. 

 sterile culture sterile culture  soil 

Gene  

WT vs 
dwf1-6 

 
14d 

WT vs  
cbb2 

 
19d 

WT vs 
cbb3 

 
19d 

WT vs 
dwf1-6 
controls 

19d 

WT:  
BR vs 
control 

19d 

dwf1-6:  
BR vs 
control 

19d 

 

WT vs 
dwf1-6 

 
28d 

WT vs  
αCPD 

 
28d 

No consistent BR-dependent or variable expression: 
FLA9 At1g03870 1,6 1.1 0.8 1.0 1.5 1.5  1.1 1.0 
 At1g31310 0.9 0.5 0.6 1.1 1.8 1.1  0.6 1.0 
CYCD1.1 At1g70210 2.3 0.8 1.2 2.8 0.4 0.8  0.9 1.0 
 At4g02500 1.1 1.0 1.1 0.8 0.8 1.1  1.2 0.8 
 At4g19410 1.1 0.9 1.1 1.1 2.3 1.1  1.0 1.5 
PIP1.5 At4g23400 2.0 1.7 1.4 1.3 0.7 0.5  0.7 0.7 
 At4g25620 1.0 0.7 1.1 1.0 1.1 0.8  0.6 0.6 
CSLC5 At4g31590 1.2 1.0 1.5 1.8 0.5 0.7  1.5 1.0 
 At5g01210 1.0 1.1 1.0 0.5 1.1 0.7  1.1 0.9 
CESA3 At5g05170 1.4 1.0 1.3 1.1 1.0 1.0  1.3 1.2 
 At5g07830 0.8 1.0 1.2 1.0 1.0 1.4  1.8 1.4 
TUB6 At5g12250 1.2 1.2 1.4 1.3 0.9 1.0  1.5 1.7 
TUA3 At5g19770 1.2 1.3 1.1 1.3 0.6 1.1  1.5 1.8 
DIN10 At5g20250 1.7 1.4 2.2 0.5 2.3 1.3  0.4 1.4 
 At5g26665 1.0 0.8 1.3 1.5 0.8 0.8  1.2 1.2 
FLA1 At5g55730 1.0 1.2 1.0 0.8 1.1 0.6  1.3 1.8 
CESA6 At5g64740 1.2 1.1 1.8 1.4 1.0 1.2  1.2 0.7 
CYCD3.2 At5g67260 1.5 1.0 1.1 1.7 0.5 0.7  0.7 1.0 
            
Stronger expression in mutants or weaker expression upon BR-application: 
GRL1 At2g22840 1.2 1.1 1.6 1.4 0.5 0.7  0.6 0.6 
GRL3 At2g36400 1.2 1.0 1.3 1.2 0.6 0.6  0.4 0.5 
XTR7 At4g14130 0.4 0.4 1.1 0.2 3.8 0.3  0.1 0.6 
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Table 4. RT-PCR analysis of 44 cell wall and growth-related genes in 12 situations used for the calculation of fold change values in Tables 2 and 3. CT values were calculated 

from 3 technical replicates per experiment. CT values of the eIF1α control gene were subtracted from CT values of the genes of interest to account for different cDNA 

amounts. The resulting nCT values were subtracted from an arbitrary value (i.e. 30). Numbers give the difference (30 − nCT) and the standard error (SE) of CT values for each 

gene of interest. Higher numbers indicate stronger expression. 

 

  sterile culture sterile culture  sterile culture soil 
WT cbb2 cbb3   

          
             

WT  WT WT  dwf1-6
 

  dwf1-6 dwf1-6
 

WT dwf1-6 αCPD 
control BR control BR

Gene    19d 19d 19d 14d 14d 14d 14d 14d 14d 28d 28d 28d
KCS1 At1g01120 8.8 ± 0.0 8.1 ± 0.0 7.5 ± 0.0 9.4 ± 0.0 9.0 ± 0.0 9.7 ± 0.0  8.5 ± 0.0 8.8 ± 0.0 9.4 ± 0.0 8.6 ± 0.0 6.7 ± 0.0 7.8 ± 0.0 
PIP1.3 At1g01620 7.2 ± 0.0 6.6 ± 0.0 6.2 ± 0.0 8.3 ± 0.0 7.9 ± 0.0 7.8 ± 0.0  6.3 ± 0.1 6.5 ± 0.0 7.2 ± 0.0 7.3 ± 0.0 7.5 ± 0.0 7.8 ± 0.0 
FLA9 At1g03870 6.1 ± 0.0 6.0 ± 0.0 6.5 ± 0.0 6.2 ± 0.0 5.9 ± 0.1 6.6 ± 0.1  5.5 ± 0.0 5.9 ± 0.0 6.5 ± 0.1 6.3 ± 0.0 6.1 ± 0.1 6.3 ± 0.0 
 At1g27600 7.0 ± 0.0 7.2 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 7.6 ± 0.0  5.2 ± 0.0 5.4 ± 0.0 5.9 ± 0.0 6.2 ± 0.0 5.7 ± 0.0 5.1 ± 0.0 
 At1g31310 3.2 ± 0.0 4.3 ± 0.0 4.0 ± 0.0 3.5 ± 0.0 3.7 ± 0.1 4.7 ± 0.0  3.7 ± 0.0 3.5 ± 0.1 3.7 ± 0.0 3.8 ± 0.1 4.7 ± 0.0 3.7 ± 0.0 
AGP21 At1g55330 10.3 ± 0.0 8.3 ± 0.0 8.1 ± 0.0 11.0 ± 0.0 11.1 ± 0.0 11.2 ± 0.0  9.8 ± 0.0 10.2 ± 0.1 11.0 ± 0.0 10.5 ± 0.0 10.2 ± 0.0 9.2 ± 0.0 
CYCD1.1 At1g70210 4.5 ± 0.1 4.9 ± 0.1 4.2 ± 0.0 4.8 ± 0.0 4.9 ± 0.0 3.5 ± 0.0  3.4 ± 0.0 3.2 ± 0.0 2.8 ± 0.0 4.4 ± 0.0 4.5 ± 0.0 4.4 ± 0.0 
EXT At2g06850 6.8 ± 0.0 6.4 ± 0.0 5.7 ± 0.0 8.4 ± 0.0 8.1 ± 0.0 8.3 ± 0.0  7.0 ± 0.0 7.4 ± 0.0 7.7 ± 0.0 7.6 ± 0.0 7.6 ± 0.0 8.0 ± 0.0 
AGP9 At2g14890 10.2 ± 0.1 9.2 ± 0.0 9.4 ± 0.0 11.3 ± 0.4 10.8 ± 0.0 10.4 ± 0.0  10.4 ± 0.0 10.1 ± 0.0 10.1 ± 0.0 10.4 ± 0.0 10.2 ± 0.0 9.3 ± 0.0 
PIP2.8 At2g16850 5.7 ± 0.0 4.3 ± 0.0 3.6 ± 0.0 5.6 ± 0.0 5.8 ± 0.1 5.4 ± 0.1  3.6 ± 0.2 4.3 ± 0.1 5.0 ± 0.0 5.4 ± 0.0 5.8 ± 0.0 5.1 ± 0.0 
GRL1 At2g22840 5.9 ± 0.0 5.7 ± 0.2 5.1 ± 0.1 5.2 ± 0.0 5.3 ± 0.0 4.2 ± 0.0  4.9 ± 0.0 4.7 ± 0.0 4.0 ± 0.0 5.6 ± 0.1 6.5 ± 0.0 6.6 ± 0.1 
GRL3 At2g36400 5.0 ± 0.0 5.0 ± 0.0 4.6 ± 0.0 5.9 ± 0.0 6.0 ± 0.1 5.1 ± 0.0  5.5 ± 0.0 5.7 ± 0.0 4.9 ± 0.0 5.0 ± 0.0 6.3 ± 0.1 6.2 ± 0.0 
TIP1.1 At2g36830 7.5 ± 0.0 6.7 ± 0.0 7.2 ± 0.1 7.7 ± 0.0 7.9 ± 0.0 7.3 ± 0.0  7.2 ± 0.1 7.1 ± 0.0 7.5 ± 0.0 8.0 ± 0.0 8.5 ± 0.0 7.7 ± 0.0 
PIP1.2 At2g45960 9.5 ± 0.0 8.6 ± 0.1 8.6 ± 0.0 9.2 ± 0.0 9.2 ± 0.1 8.6 ± 0.0  8.2 ± 0.1 8.3 ± 0.0 8.3 ± 0.0 9.7 ± 0.1 9.0 ± 0.0 9.6 ± 0.0 
 At3g05910 8.4 ± 0.0 8.1 ± 0.0 7.7 ± 0.0 8.8 ± 0.0 8.9 ± 0.1 8.9 ± 0.0  8.5 ± 0.0 8.2 ± 0.1 8.9 ± 0.0 8.8 ± 0.0 7.9 ± 0.0 8.2 ± 0.1 
TIP2.1 At3g16240 7.9 ± 0.0 7.2 ± 0.0 6.6 ± 0.0 9.5 ± 0.0 9.1 ± 0.1 8.9 ± 0.1  7.9 ± 0.1 8.1 ± 0.3 8.5 ± 0.0 9.4 ± 0.0 9.8 ± 0.0 9.4 ± 0.0 
 At3g24480 9.8 ± 0.0 9.0 ± 0.1 9.0 ± 0.0 9.5 ± 0.0 9.5 ± 0.1 11.0 ± 0.0  9.0 ± 0.0 9.1 ± 0.0 10.0 ± 0.1 9.2 ± 0.0 8.4 ± 0.0 8.8 ± 0.4 
TIP1.2 At3g26520 10.9 ± 0.0 9.8 ± 0.2 10.1 ± 0.1 11.9 ± 0.0 12.3 ± 0.0 11.7 ± 0.0  11.2 ± 0.0 11.5 ± 0.0 11.2 ± 0.0 11.5 ± 0.0 11.0 ± 0.0 10.7 ± 0.0 
CSLC4 At3g28180 3.5 ± 0.0 3.8 ± 0.1 2.5 ± 0.0 3.8 ± 0.1 4.4 ± 0.0 5.0 ± 0.0  3.3 ± 0.1 2.9 ± 0.0 4.6 ± 0.1 5.2 ± 0.0 5.5 ± 0.0 5.1 ± 0.0 
PIP2.1 At3g53420 7.7 ± 0.0 7.1 ± 0.0 6.7 ± 0.0 8.6 ± 0.0 8.3 ± 0.0 7.7 ± 0.0  7.1 ± 0.0 7.7 ± 0.0 6.8 ± 0.0 8.9 ± 0.1 8.1 ± 0.0 8.9 ± 0.0 
 At3g57790 7.3 ± 0.0 6.7 ± 0.0 6.6 ± 0.0 7.1 ± 0.2 7.5 ± 0.3 8.6 ± 0.0  6.7 ± 0.2 4.4 ± 0.0 6.5 ± 0.1 7.9 ± 0.0 6.4 ± 0.0 7.0 ± 0.0 
PIP1.1 At3g61430 9.6 ± 0.0 9.0 ± 0.0 8.8 ± 0.0 9.6 ± 0.0 9.4 ± 0.0 9.2 ± 0.0  8.1 ± 0.0 8.4 ± 0.0 8.4 ± 0.1 9.7 ± 0.0 9.0 ± 0.1 9.5 ± 0.0 
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 At4g02500 7.9 ± 0.0 8.0 ± 0.0 7.7 ± 0.2 7.9 ± 0.0 8.0 ± 0.0 7.7 ± 0.0  7.8 ± 0.0 8.3 ± 0.0 8.4 ± 0.0 8.5 ± 0.0 8.2 ± 0.1 8.7 ± 0.0 
SKU5 At4g12420 9.7 ± 0.0 9.2 ± 0.0 8.5 ± 0.0 10.4 ± 0.0 10.3 ± 0.0 10.5 ± 0.0  9.9 ± 0.0 10.3 ± 0.0 10.4 ± 0.0 9.3 ± 0.0 9.6 ± 0.1 9.4 ± 0.0 
FLA2 At4g12730 10.2 ± 0.0 8.8 ± 0.0 8.7 ± 0.0 10.7 ± 0.0 10.2 ± 0.0 10.4 ± 0.0  10.1 ± 0.0 10.6 ± 0.0 10.6 ± 0.0 10.0 ± 0.0 9.6 ± 0.0 9.2 ± 0.1 
 At4g13340 6.0 ± 0.1 5.8 ± 0.0 4.2 ± 0.2 7.0 ± 0.0 7.0 ± 0.0 7.9 ± 0.0  6.2 ± 0.1 6.6 ± 0.1 7.7 ± 0.0 7.0 ± 0.0 7.4 ± 0.0 6.1 ± 0.0 
 At4g14130 6.0 ± 0.0 7.5 ± 0.0 5.9 ± 0.0 6.3 ± 0.1 5.9 ± 0.0 8.1 ± 0.0  7.9 ± 0.0 8.9 ± 0.0 6.9 ± 0.0 5.2 ± 0.0 9.0 ± 0.0 6.0 ± 0.0 
 At4g18670 4.1 ± 0.0 3.4 ± 0.0 2.8 ± 0.2 3.2 ± 0.0 3.6 ± 0.0 3.2 ± 0.0  3.0 ± 0.1 3.0 ± 0.0 3.0 ± 0.0 3.4 ± 0.0 3.5 ± 0.0 3.2 ± 0.0 
 At4g19410 8.5 ± 0.0 8.7 ± 0.3 8.3 ± 0.0 7.7 ± 0.1 7.9 ± 0.1 9.5 ± 0.0  7.4 ± 0.1 7.7 ± 0.0 7.8 ± 0.0 9.4 ± 0.0 9.3 ± 0.0 8.6 ± 0.0 
PIP1.5 At4g23400 8.9 ± 0.0 8.1 ± 0.0 8.3 ± 0.0 9.8 ± 0.0 9.5 ± 0.1 8.9 ± 0.0  8.8 ± 0.0 9.1 ± 0.0 8.1 ± 0.0 9.1 ± 0.0 9.7 ± 0.0 9.5 ± 0.0 
 At4g25260 7.1 ± 0.0 6.1 ± 0.0 5.9 ± 0.2 8.0 ± 0.0 7.6 ± 0.0 7.1 ± 0.1  7.6 ± 0.0 7.2 ± 0.4 7.0 ± 0.1 7.0 ± 0.0 6.1 ± 0.1 7.1 ± 0.0 
 At4g25620 7.3 ± 0.0 7.8 ± 0.0 7.2 ± 0.0 7.8 ± 0.0 7.9 ± 0.0 8.1 ± 0.1  7.7 ± 0.0 7.9 ± 0.0 7.6 ± 0.0 7.3 ± 0.0 8.2 ± 0.1 8.1 ± 0.0 
CSLC5 At4g31590 7.0 ± 0.0 7.0 ± 0.1 6.4 ± 0.0 5.8 ± 0.0 6.3 ± 0.0 5.2 ± 0.0  5.6 ± 0.0 5.4 ± 0.0 4.9 ± 0.4 6.1 ± 0.0 5.5 ± 0.0 6.1 ± 0.1 
 At5g01210 6.7 ± 0.0 6.4 ± 0.1 6.7 ± 0.0 8.6 ± 0.0 7.9 ± 0.0 8.1 ± 0.0  8.6 ± 0.0 9.0 ± 0.0 8.4 ± 0.1 7.5 ± 0.0 7.4 ± 0.1 7.7 ± 0.0 
CESA3 At5g05170 10.1 ± 0.2 10.1 ± 0.1 9.7 ± 0.1 10.3 ± 0.0 10.2 ± 0.0 10.2 ± 0.0  9.8 ± 0.0 10.1 ± 0.0 10.1 ± 0.0 9.4 ± 0.0 9.1 ± 0.0 9.2 ± 0.0 
 At5g07830 6.6 ± 0.1 6.6 ± 0.0 6.3 ± 0.0 6.1 ± 0.1 6.1 ± 0.0 6.1 ± 0.0  6.4 ± 0.1 6.1 ± 0.0 6.7 ± 0.0 7.5 ± 0.0 6.5 ± 0.1 7.0 ± 0.1 
TUB6 At5g12250 9.3 ± 0.0 8.9 ± 0.0 8.7 ± 0.0 9.1 ± 0.0 9.4 ± 0.0 9.1 ± 0.0  8.7 ± 0.1 8.8 ± 0.0 8.9 ± 0.0 9.5 ± 0.0 8.8 ± 0.0 8.5 ± 0.1 
TUA3 At5g19770 7.3 ± 0.0 7.0 ± 0.0 7.1 ± 0.0 7.0 ± 0.1 7.6 ± 0.1 7.0 ± 0.0  6.8 ± 0.0 7.2 ± 0.0 7.3 ± 0.0 8.0 ± 0.0 7.3 ± 0.0 7.1 ± 0.0 
DIN10 At5g20250 7.2 ± 0.1 6.7 ± 0.0 6.0 ± 0.0 9.2 ± 0.1 8.3 ± 0.0 9.5 ± 0.1  8.4 ± 0.0 9.3 ± 0.0 9.8 ± 0.0 7.6 ± 0.0 9.2 ± 0.0 7.1 ± 0.1 
 At5g26665 5.8 ± 0.0 6.1 ± 0.0 5.4 ± 0.1 5.3 ± 0.0 5.3 ± 0.0 5.0 ± 0.0  5.4 ± 0.1 4.6 ± 0.0 4.3 ± 0.0 5.8 ± 0.0 5.5 ± 0.0 5.5 ± 0.1 
 At5g43760 7.2 ± 0.0 6.4 ± 0.0 6.3 ± 0.0 7.4 ± 0.0 7.4 ± 0.1 7.3 ± 0.0  6.5 ± 0.0 7.0 ± 0.0 7.1 ± 0.0 6.7 ± 0.0 7.2 ± 0.0 7.3 ± 0.1 
FLA1 At5g55730 7.2 ± 0.0 6.9 ± 0.0 7.2 ± 0.0 7.2 ± 0.0 6.8 ± 0.0 6.9 ± 0.0  7.2 ± 0.0 7.2 ± 0.0 6.5 ± 0.0 7.4 ± 0.0 7.0 ± 0.1 6.6 ± 0.0 
CESA6 At5g64740 8.6 ± 0.0 8.5 ± 0.1 7.7 ± 0.0 8.1 ± 0.0 8.4 ± 0.0 8.4 ± 0.0  7.9 ± 0.1 7.8 ± 0.0 8.1 ± 0.0 8.8 ± 0.0 8.5 ± 0.0 9.3 ± 0.0 
CYCD3.2 At5g67260 7.1 ± 0.0 7.0 ± 0.0 6.9 ± 0.1 6.8 ± 0.0 7.0 ± 0.0 5.7 ± 0.0  6.1 ± 0.0 6.1 ± 0.0 5.4 ± 0.0 6.5 ± 0.0 7.0 ± 0.0 6.6 ± 0.0 
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Transcript co-responses point at additional BR functions 

Transcript co-responses with BRI1 and BAK1 point to the molecular basis of additional BR-effects. 

The positive impact of BR on plant growth upon cold stress and salt stress has been reported (Kamuro 

and Takatsuto, 1999). The ERD4 (EARLY RESPONSIVE TO DEHYDRATION 4), ERD6, ERD15, and 

At1g29470 (similar to ERD3) showed transcript co-responses with BRI1 and BAK1 (supplementary 

EXCEL file sheet 1 [301 genes]). In addition, transcript co-responses were detected for genes involved 

in the auxin response (IAA7, IAA14, IAA16, TIR1 homologs [At3g26810 and At4g03190], and GRH1 

[At4g03190]), auxin transport (PIN3 and AUX1), and ethylene response (EIL1, AtER6 [At3g11930], 

ERF7, and EIN2), providing further evidence for phytohormone interactions. The expression of the 

IAA14 and AtER6 (At3g11930) genes was previously reported to be weaker in roots of the dwf1-6 

mutant in comparison to roots of wild-type plants (Müssig et al., 2003). Several transcription factors 

showed co-responses, including BEE1, GTL1, and MYC1 which have been shown to be BR-induced 

(Friedrichsen et al., 2002; Müssig et al., 2002). The co-responses of genes encoding ubiquitin-

conjugating enzymes (At1g63800 and At1g64230), the ubiquitin-ligase RMA1, and F-box proteins 

(At1g30200, At1g67480, At2g18280, At3g06380, At3g61060, At5g27920, and At5g60570) indicate a 

role of BR in protein degradation. In fact, protein levels of positive mediators of BR responses such as 

BZR1 and BES1 depend on the presence of BR (He et al., 2002; Wang et al., 2002; Yin et al., 2002). 

 

Discussion 

Transcript co-response analysis reveals BR-related genes 

Genomic BR-effects depend on several parameters. A major determinant is the genotype. Different 

BR-mutants show different transcript patterns. BR-treatment of BR-deficient plants results in largely 

different changes of transcript patterns in comparison to BR-treated wild-type plants. BR-responses 

depend on the developmental stage, environmental conditions, and tissue (Müssig et al., 2002; Müssig 

et al., 2003). Transcript co-response analysis with various expression profiles allows ruling out outliers 

and conditional changes of transcript levels, because the matrix combines different genotypes, 

environmental conditions, and other factors.  

The observed transcript co-responses partly differ for components of the BR-signalling pathway. 42 % 

(301 of 720) of genes correlating with BAK1 also showed a co-response with BRI1. In case of BRI1 

26 % (301 of 1179) of co-responding genes also showed a co-response with BAK1. This discrepancy 

could reflect differences in the signalling crosstalks in which both proteins are involved. BRI1 is an 

indispensable BR-receptor component, whereas a null allele of BAK1 results in reduced (but not 

abolished) sensitivity to BR (Li et al., 2002). The BRI1 protein might interact with other proteins (i.e. 

BAK1 homologs). BRI1 could also bind another ligand, since tomato BRI1 perceives both BR and the 
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peptide hormone systemin (Montoya et al., 2002; Scheer and Ryan, 2002; Wang and He, 2004). 

Conversely, BAK1 could interact with proteins different from BRI1. Thus, use of more than one BR-

signalling component for co-response analyses is essential in order to exclude correlations not related 

to BR action.  

301 genes showed co-responses with both BRI1 and BAK1. More than 50 % of them could be 

functionally classified (Fig. 2 and supplementary information). The robust estimation of co-responses 

of 135 functionally classified genes (including BRI1 and BAK1) was confirmed by means of bootstrap 

analyses (supplementary EXCEL file sheet 2 [Spearman rs], sheet 3 [pvalue], and sheet 4 [power]). A 

subset of genes (such as AGP4, BEE1, GTL1, KCS1, PRO1, and TIP2.1) was already described as BR-

induced and validates the relevance of co-response analysis. However, the majority of identified genes 

were hitherto not regarded as BR-related. 

Analysis of 301 co-responding genes in Affymetrix expression profiles  

A large set of publicly available Affymetrix expression profiles was used to address the question 

whether the expression of identified candidate genes are BR-dependent and not regulated by GA. 21 % 

of the genes (62 of 301) turned out as BR-induced in at least two experiments (criteria: Present in 

experimental hybridisation, signal log ratio ≥0.8, change P value <0.01; supplementary EXCEL file 

sheet 7 [Affx results BRs, BRZ]). In contrast, only 3 genes (1 %) were affected by altered GA-levels 

(criteria as aforementioned; supplementary EXCEL file sheet 8 [Affx results GA3, PAC]). Thus, the 

identified genes are not regulated by GA or GA-mediated growth processes.  

In-depth analysis of 44 growth-related genes by means of real-time RT-PCR 

Since the observed transcript co-responses were not a consequence of altered growth but rather 

reflected BR-dependent effects we proceeded to analyze the molecular basis of BR-promoted growth. 

BR promotes growth in all plant organs at early developmental stages. BR promotes both cell division 

(Hu et al., 2000; Oh and Clouse, 1998) and cell elongation (Asami et al., 2000; Kauschmann et al., 

1996). There is increasing evidence for the involvement of a multitude of molecular mechanisms, e.g. 

cell wall loosening (Wang et al., 1993), acidification of wall space (Cerana et al., 1983), carbohydrate 

allocation (Goetz et al., 2000), carbon assimilation (Schlüter et al., 2002), and control of aquaporin 

activity (Morillon et al., 2001). BR apparently coordinates and integrates diverse processes required 

for growth. Transcript levels of 44 growth-related genes were analyzed in 4 BR-mutants. Correlated 

behaviour of these genes in the nasc0271 data matrix is shown in Fig. 3. 23 genes (52 %) showed 

weaker expression in BR-mutants in comparison to wild-type plants and partly also showed increased 

mRNA levels after BR application (Table 2). 13 (of 23) genes were also BR-induced in at least 2 

microarray experiments (supplementary EXCEL file sheet 7 [Affx results BRs, BRZ]). These genes in 

particular point at BR-effects on cell wall metabolism and water transport across membranes. The low 

fold changes comply with previous findings, which consistently showed subtle BR effects on 
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transcript levels (Goda et al., 2002; Müssig et al., 2002). The Affymetrix data along with the real-time 

RT-PCR data demonstrated a positive BR-effect on mRNA levels of 72 genes. 
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Fig. 3. Transcript levels of 44 cell wall and growth-related genes denoted as log2 signals in 51 expression 

profiles (incorporated in CSB.DB data matrix nasc0271). Dots and bars give average log2 signals of all genes 

and standard deviations, respectively. Lines are drawn to aid interpretation.   

 

A subset of positive co-responding genes points at antagonistic signalling 
events 

The statistical approach was based on a wide range of experiments but did not include BR-mutants or 

BR-treated plants. One single group of 301 genes was identified which showed positively correlated 

expression (supplementary EXCEL file sheet 1 [301 genes]). Experimental evaluation using BR-

mutants, BR- and BRZ-treated plants divided this homogenous group into 3 groups: BR-induced genes 

(in total different 72 genes [24 %]), BR-repressed genes (in total 16 genes [5 %]), and genes which 

were not affected by altered BR-levels or showed variable expression (213 genes [71 %]) (Table 2, 

Table 3, supplementary EXCEL file sheet 7 [Affx results BRs, BRZ]). 

Weaker expression in plants upon BR-treatment and stronger expression in BR-mutants appears to 

contradict BR-induction inferred from positive transcript co-responses with BRI1 and BAK1. However, 

it could indicate antagonistic signalling events. Antagonistic regulation could be switched off in the 
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presence of physiological BR-levels (i.e. in the experiments used for CSB.DB). Upon BR-treatment 

antagonistic signalling events may occur which serve to limit responses and counter toxic BR-effects. 

Remarkably, expression of BRI1 and a BRI1 homolog (At1g72180) is also repressed upon BR-

treatment (supplementary EXCEL file sheet 7 [Affx results BRs, BRZ]). However, the BRI1 protein is 

essential for BR-responses. Thus, BR-repressed genes at least partly represent components required 

for BR-responses, and repression in the presence of elevated BR-levels does not exclude their function 

as positive mediators of BR-responses.  

213 genes did not show significantly altered expression or transcript levels varied. Expression of these 

genes is not strictly BR-dependent. Positive transcript co-responses with BRI1 and BAK1 may reflect a 

context dependent functional environment. Interestingly, several genes showing high sequence 

similarity to BR-signalling components also showed co-responses but did not display significant 

changes of mRNA levels in the Affymetrix and RT-PCR experiments (genes similar to BRI1: 

At1g28440, At1g72180, and At2g01950; BAK1: At1g07650 and At3g14840; BRZ1/BES1: 

At1g78700). However, pseudo-correlations cannot be excluded.  

CSB.DB: a valuable public resource to uncover genomic effects  

In this study, we focused on the analysis of genes showing positive transcript co-responses. Numerous 

genes were identified, which point towards previously known BR-effects, such as promotion of 

growth and stress resistance, and expected phytohormone interactions. In addition BR appears to 

affect processes such as protein degradation. Besides investigating positive co-responses CSB.DB also 

allows screening for genes which display negative correlation coefficients. Following the presented 

approach 404 genes would have had negative transcript co-responses with both BRI1 and BAK1 (rs 

<[-0.35], p-value <0.01, power >0.7). For the sake of clarity these genes were not reported in the 

current study. These 404 genes point towards novel BR actions. For instance, several genes encode 

transcriptional regulators or proteins involved in chromatin remodelling. Future work will not only 

address the analysis and experimental verification of negative co-responses, but will also include the 

analysis of other data matrices. We currently construct subsets of expression experiments which will 

allow screening for co-responses under specific experimental conditions, for example temperature 

stress or comparison between root and leaf thus facilitating the identification of tissue specific effects. 

These data matrices will be made publicly available through CSB.DB. 
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Material and Methods 

Co-response analyses 

Transcript co-responses were retrieved from the CSB.DB (a comprehensive systems-biology database; 

http://csbdb.mpimp-golm.mpg.de; Steinhauser et al., 2004) for data matrix nasc0271. 51 publicly 

available expression profiles were obtained from NASCarrays (http://affymetrix.arabidopsis.info/; 

Craigon et al., 2004) and used for the generation of the data matrix. The profiles were originated 

through the 22k Affymetrix Chip technology (Affymetrix, La Jolla, CA). The data matrix was 

established in October 2003. At that time 123 expression profiles from 22 experiments were available. 

The number of Present and Marginal calls (according to the MAS 5.0 algorithm) was calculated for 

each profile. Profiles from 21 experiments were included into the database. In the majority of cases 2 

or 3 profiles per experiment with the highest numbers of Present and Marginal calls were selected. 

Thus nasc0271 covers 9694 genes out of > 22.000 genes represented on the ATH1 array, which are 

well measured in at least 85% of the underlying expression profiles. Co-responses were obtained via 

the intersection gene query (isGQ) tool of CSB.DB which allows the extraction of those genes 

exhibiting common correlation to BAK1 and BRI1. The correlations are based on non-parametric 

Spearman’s rank-order correlation (rs). For both genes positive transcriptional co-responses with an 

uncorrected probability for multiple comparisons of <0.01 (99%) and a power of test of >0.7 (70%) 

were retrieved. Out of the initial result (which covers 301 genes) 135 genes were selected and used for 

statistical in-depth analyses. To test for influence of individual or small subsets of underlying 

expression profiles transcriptional co-responses were confirmed with bootstrap analyses. The 

bootstrap spearman correlation, the probability, the confidence interval and the power of the test were 

re-computed with the statistical software environment R (http://www.r-project.org) by non-parametric 

bootstrap analyses with 2,000 numbers of bootstrap samples (Efron and Tibshirani, 1993) on the log 

base 2 and range normalised signal intensities. 

Distribution of functional categories 

The manually curated assignments into bins were used from the MapMan software (Thimm et al., 

2004). The obtained assignments of genes into bins were slightly modified for those bins, which cover 

few genes. The merging of bins and the resulting descriptions is illustrated in Table SI (see 

supplementary information). Genes without assignment or with unclear classification were termed 

‘unclassified’. The relative impact (ri) of a gene with multiple assignments (nassign) onto each category 

was defined as: ri = 1 / nassign. The distribution of retrieved genes into functional categories was 

computed by adding-up the relative assignment coefficient for each gene per category. 
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Plant material and growth conditions 

Two growth conditions were applied. Firstly, Arabidopsis thaliana cv. C24 (wild-type), dwf1-6 (cbb1), 

cbb2, and cbb3 mutants (Kauschmann et al., 1996) were grown in half-concentrated MS medium 

supplemented with 1 % sucrose and solidified with 0.7 % agar under a 16 h day (140 µE, 22°C)/8 h 

(22°C) night regime. Plants were harvested 14 d or 19 d after sowing. Roots were discarded. Secondly, 

Arabidopsis thaliana cv. C24, the dwf1-6 mutant (Kauschmann et al., 1996), and CPD-antisense plants 

(Schlüter et al., 2002) were grown in soil under long day conditions (16 h fluorescent light, 180 µE, 

20°C, 70% relative humidity/8 h dark, 16°C, 75% relative humidity). Above ground organs were 

harvested 28 d after sowing. BR-treatments were conducted as described (Müssig et al., 2002). 

Real-time RT-PCR analysis 

Total RNA was isolated with the Invisorb Spin Plant RNA kit (Invitek, Berlin, Germany). One µg of 

total RNA was then reverse-transcribed with the Superscript II reverse transcriptase (Invitrogen) in a 

reaction volume of 28.5 µl to generate first-strand cDNA. Real time RT-PCR was performed with 1 µl 

of a 1:3.5 dilution of the first-strand cDNA reaction and the SYBR Green reagent (Applied 

Biosystems, Foster City, CA) in a 25 µl volume on a Perkin Elmer Geneamp 5700 machine. Primer 

sequences were given in Table 1. Data were normalized to the eIF1a gene (At5g60390) and then 

compared according to the formula (considering as example the KCS1 gene): 

nCT = CT KCS1 – CT eIF1a

∆CT = signal log ratio = nCT mutant – nCT WT

Amplification efficiency (E) was checked for all primer pairs (Czechowski et al., 2004). In short, the 

E-values were derived from the log slope of the fluorescence versus cycle number curve for a 

particular primer pair, using the equation (1 + E) = 10slope. The E-values for all primer pairs are 

summarized in Table 1 and used to calculate normalised fold change values, using the equation (1 + 

E)∆CT. Control experiments showed that the use of different control genes (either eIF1α or eIF4A1 

[At3g13920 primers: ACAATGTGGTTGTCGAAGAGCTG and GCAGAGCAAACACAGCAAC 

AGAA]) did not bias the results with respect to the signal log ratios. 

Analysis of Affymetrix expression profiles 

Expression analysis was performed with the MAS 5.0 and GCOS software (Affymetrix). The output of 

every experiment was multiplied by a scaling factor to adjust its average intensity to a target intensity 

of 100. Results of Absolute and Comparison expression analysis were imported into MS Access2003 

and screened for significant changes according to the criteria mentioned in the text. Table 5 specifies 

the AtGenExpress CEL files used for this study. Plant material was grown in liquid MS medium for 7 

d at 23°C prior to the BL-, CS-, BRZ-, GA- and PAC-treatments. Two own profiles were used (7 h 

EBL and control treatment of wild-type [Col-0] plants grown in half-concentrated MS medium 

supplemented with 1 % sucrose and solidififed with 0.7 % agar; Coll-Garcia et al., 2004). 
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Table 5. CEL files from AtGenExpress used in this study. 

Experiment Genotype Experiment Baseline 
10 nM BL 
30 min 
1 h 
3 h 

Wild-type (Col-0) 
 

 
BL30-2 and BL30-3 
BL1-2 and BL1-3 
BL3-2 and BL3-3 

 
mock 30-2 and mock 30-3 
mock 1-2 and mock 1-3 
mock 3-2 and mock 3-3 

10 nM BL 
30 min 
1 h 
3 h 

det2-1 
 
 
 

 
det2BL30-1 and det2BL30-2 
det2BL1-1 and det2BL1-2 
det2BL3-1 and det2BL3-2 

 
det2m30-1 and det2m30-2 
det2m1-1 and det2m1-2 
det2m3-1 and det2m3-2 

1 µM GA3 
30 min 
1 h 
3 h 

Wild-type (Col-0)  
GA3 30-2 and GA3 30-3 
GA3 1-2 and GA3 1-3 
GA3 3-2 and GA3 3-3 

 
mock 30-2 and mock 30-3 
mock 1-2 and mock 1-3 
mock 3-2 and mock 3-3 

1 µM GA3 
30 min 
1 h 
3 h 

ga1-5  
GA1-5G30-1 and GA1-5G30-2 
GA1-5G1-1 and GA1-5G1-2 
GA1-5G3-1 and GA1-5G3-2 

 
GA1-5m30-1 and GA1-5m30-2 
GA1-5m1-1 and GA1-5m1-2 
GA1-5m3-1 and GA1-5m3-2 

100 nM CS det2-1 CS3h-1 and CS3h-2 m3h-1 and m3h-2 
10 µM BRZ220 
3 h 
12 h 

Wild-type (Col-0)  
mock 3h-1 and mock 3h-2 
mock12h-1 and mock 12h-2 

 
2203h-1 and 2203h 
220 12h-1 and 220 12h-2 

10 µM BRZ91 
3 h 
12 h 

Wild-type (Col-0)  
mock 3h-1 and mock 3h-2 
mock12h-1 and mock 12h-2 

 
91 3h-1 and 91 3h-2 
91 12h-1 91 12h-2 

10 µM PAC 
3 h 
12 h 

Wild-type (Col-0)  
mock 3h-1 and mock 3h-2 
mock12h-1 and mock 12h-2 

 
pac 3h-1 and pac 3h-2 
pac 12h-1 and pac 12h-2 
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Abstract 

The gene family of subtilisin-like serine proteases (subtilases, AtSBTs) in Arabidopsis thaliana 

comprises 56 members, which were identified by homology and motif searches. Hence, it is among the 

largest multigene protease family in Arabidopsis, divided into six distinct subfamilies. Whereas five 

families are similar to pyrolysins, two genes share stronger homology to animal kexins. 31 (53%) of 

the subtilase genes are organized in tandem clusters, 18 (32%) are located in segmental duplicated 

genomic regions. Mutant screens confirmed 144 T-DNA insertion lines with knockouts for 55 out of 

the 56 subtilases. Apart from sdd1, none of the confirmed homozygous mutants revealed any obvious 

visible phenotypic alteration during growth under standard conditions. Computational analyses based 

on transcriptional co-expression and co-response pattern revealed at least two expression networks of 

subtilases. Network analyses suggest that functional redundancy may exist among subtilases by less 

homolog genes. Furthermore, two hubs were identified, which may be involved in signalling or 

represent higher order regulatory factors involved in responses to environmental cues. A particular 

enrichment of co-regulated genes with metabolic functions was observed for four subtilases possibly 

representing late responsive elements of environmental stress. The kexin homologs show stronger 

associations with genes of transcriptional regulation context. Based on the analyses presented here and 

in accordance with previously characterized subtilases, we propose three main functions of subtilases: 

Involvement in (I) control of development, (II) protein turnover, and action as (III) downstream 

components of signalling cascades.  

                                                      
* The authors wish to be known that, in their opinion, the first two authors should be regarded as joint First 
Authors. 
† To whom correspondence should be addressed. 
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Supplemental material is available in the Plant Subtilase Database (http://csbdb.mpimp-

golm.mpg.de/psdb.html) as well as from the CSB.DB Homepage (http://csbdb.mpimp-golm.mpg.de/). 

 

Introduction 

Subtilisin-like proteases (subtilases), first charcterized in Bacillus licheniformis, are serine proteases 

with a catalytic triad of the three amino acids aspartate, histidine, and serine (Dodson and Wlodawer, 

1998). Eukaryotic subtilases belong to the S8 serine protease family (http://merops.sanger.ac.uk) and 

can be grouped into the pyrolysins and the kexins. Nine subtilases, the pro-protein convertases, have 

been characterized in mammals. Of these seven belong to the kexin subfamily (Barr, 1991; Seidah and 

Chretien, 1999). More recently, two mammalian subtilases were identified within the pyrolysin 

subfamily. They carry out specific cleavage and processing reactions on sterol regulatory elements, 

binding proteins and pro-brain-derived neurotrophic factors, respectively (Sakai et al., 1998; Seidah et 

al., 1999). Currently, all identified plant subtilases are grouped into the pyrolysin subfamily within the 

S8 serine protease family (Siezen and Leunissen, 1997).  

Despite the recent advances, our current understanding of subtilase functions in plants is still very 

limited. Currently, there are evidences for involvement of subtilases in both, general protein turnover 

(Bogacheva, 1999) as well as highly specific regulation of plant development (Berger and Altmann, 

2000). A few proteases have been purified from plant tissues and classified as subtilases based on their 

catalytic properties and primary structure. For instance, macluralisin (Rudenskaya et al., 1995), 

taraxalisin (Rudenskaya et al., 1998), plantagolisin (Bogacheva et al., 2001), subtilases from green 

malt (Terp et al., 2000; Fontanini and Jones, 2002), developing tung fruits (Dyer et al., 1999), bean 

(Popovic et al., 2002), soybean (Beilinson et al., 2002; Boyd et al., 2002), and Arabidopsis (Hamilton 

et al., 2003). Most of these enzymes are highly abundant and exhibit broad substrate specificity. Thus, 

a functional involvement in general protein turnover was forecasted for these abundant proteins 

(Bogacheva, 1999). Cucumisin, which constitutes up to 10% of the soluble proteins in melon fruit, 

represents the primary example for a degrading functional role of subtilases. Cucumisin was 

characterised extensively enzymatically and was the first subtilase to be cloned from any plant species 

(Kaneda and Tominaga, 1975; Yamagata et al., 1994). The tomato subtilase P69, a pathogenesis-

related protein, is one of several subtilases which are specifically induced following pathogen 

infection (Vera and Conejero, 1988; Tornero et al., 1996a; Jordá et al., 1999). P69 processes a leucin-

rich repeat cell wall protein in virus-infected tomato plants and thus is one of the very few plant 

subtilases for which an endogenous substrate has been identified (Tornero et al., 1996b). The direct 

consequences of this processing event for pathogenesis are still unknown. The P69 enzymes form a 

distinct subgroup among the 15 subtilases that have hitherto been cloned from tomato (Meichtry et al., 

1999). 
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Forward genetics has identified subtilases as highly-specific regulators of plant development. In the 

Arabidopsis sdd1 mutant (stomatal density and distribution 1) the pattern of stomata formation is 

disrupted, resulting in clustering of guard cells as well as in a dramatic increase of stomatal density 

(Berger and Altmann, 2000). The SDD1 protease is expressed in meristemoids and guard mother cells, 

the precursor cells of stomates. SDD1 is probably secreted into the apoplast of the cells, where it 

probably acts as a processing protease in the generation of signals responsible for stomata density and 

distribution (von Groll et al., 2002). Likewise, the gene disrupted in the ale1 mutant (abnormal leaf 

shape 1) was cloned and found to encode a subtilase. ALE1 is required for cuticle formation and 

epidermal differentiation during embryo development in Arabidopsis. A role for ALE1 was suggested 

in the generation of peptide signals required for proper differentiation of the epidermis (Tanaka et al., 

2001). The mutant phenotypes of sdd1 and ale1 demonstrate that at least some subtilases carry out 

highly specific functions in plant development. Their modes of action in the regulation of the 

respective developmental processes are still unknown but SDD1 and ALE1 may be required for the 

generation of (poly-)peptide signals, which act non-cell autonomously to control plant development. 

Computational prediction based on sequence homology led to the identification of other 53 (in all 55) 

Arabidopsis thaliana subtilases (Beers et al., 2003).  

Despite this recent progress, there is still uncertainty about the functions of the majority of plant 

subtilases including those of the model organism Arabidopsis. To investigate the physiological and 

developmental processes involving subtilase functions in Arabidopsis, a multinational Arabidopsis 

Subtilase Consortium (TASC) was initiated between laboratories in Germany, Great Britain, Spain, 

and the US. It is the goal of TASC to characterize the function of all the Arabidopsis subtilases 

(AtSBTs) in a functional genomics program by using experimental and computational approaches. 

Here we describe first results obtained with gene knock-out mutants and expression analysis. The 

main focus of our report is directed towards the initial computational analysis of the so far 

uncharacterized A.thaliana subtilase gene family. We have extended common classification of gene 

families by sequence similarity towards investigation into co-responding synchronous changes of 

transcript levels (co-response analyses). These analyses enabled us to infer hypotheses about the 

respective functional involvement of subtilases, which were described here and will be the attracting 

point for further experimental-driven characterization. 

 

Result and Discussion 

The goal of this work was to investigate in the initial functional characterization of the Arabidopsis 

subtilase family. Assigning a basic function to novel discovered genes can be approached from a 

multitude of different scientific perspectives and therefore can be implemented by a variety of 

technologies developed (Vukmirovic and Tilghman, 2000). A traditional approach based on pairwise 

or multiple sequence comparisons and alignments by various algorithms (Hodgman, 2000) which 
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allowed functional prediction for genes or gene products by annotation transfer from homologous 

sequences (McGeoch and Davidson, 1986; Bork and Gibson, 1996). We applied this approach to 

identify and classify Arabidopsis subtilase genes according sequence homology. However, initial 

attempts to annotation transfer gave us no strong clues for experimental approaches due to the lack of 

characterized candidate genes. Moreover, verified homozygote knock-out lines revealed no visible 

phenotype under standard growth condition and therefore, do not support basic functional assignment. 

The Arabidopsis thaliana Subtilase Family comprises 56 Genes (AtSBTs) 

Our initial effort to identify subtilases was based on sequence comparisons with well known and 

characterized Arabidopsis subtilase genes. Subtilases contain a catalytic triad (S8 domain) of the 

amino acid residues aspartate (Asp, D), histidine (His, H) and serine (Ser, S), as well as an asparagine 

(Asn, N) suggested as substrate binding site. Sequence comparisons to identify sequences homologous 

were performed against AGI proteins [TAIR, (Rhee et al., 2003)] using the Blast algorithm (Altschul 

et al., 1990) with the S8 domain of the SDD1 amino acid sequence. The identified sequences were 

evaluated for the presence of the conserved D-, H-, S- and N-regions and resulting in 56 genes that 

encodes for subtilases (http:// csbdb.mpimp-golm.mpg.de/psdb.html). From the entire members 55 

genes contain all conserved motifs, while At5g45640 (AtSBT5.5) lacks the central Asp residue of the 

D-region. Hence, the subtilase family is among the largest multigene protease family known in 

Arabidopsis. Recently 55 subtilase genes were identified for A.thaliana (Beers et al., 2003). We 

identified one further gene containing the S8 domain, namely At4g20850 (AtSBT6.2). 

Beyond the sequence homology, the subcellular targeting of a gene product allows hints for a 

functional involvement. Primary structure analysis using TargetP (Emanuelsson et al., 2000) indicated 

that 46 Arabidopsis subtilases possess a signal sequence for targeting to the secretory pathway (see 

http://csbdb.mpimp-golm.mpg.de/psdb.html). Six subtilases do not contain any known protein 

targeting motifs. Three genes are predicted to be targeted to mitochondria and one to chloroplasts. 

Experimental data for the subcellular localization of Arabidopsis subtilases are presently available 

only for SDD1 and for ARA12, which were both shown to be exported to the apoplast (von Groll et al., 

2002, Hamilton et al., 2003) for generation of (poly-)peptide mediated signals. 

The Arabidopsis thaliana Subtilase Family consist of 6 Subfamilies 

Analyzing all 56 Arabidopsis subtilase sequences we wanted to investigate whether groups of genes 

are more strongly associated based on sequence homology and therefore could have overlapping or 

similar functions. We performed a multiple alignment with the deduced complete amino acid 

sequences by using ClustalX (Thompson et al., 1997). This analysis revealed six distinct subtilase 

subfamilies in A.thaliana (Fig.1). The assignment of a gene to a specific subfamily was based 

primarily on the position within the phylogenetic tree, as defined by the degree of homology between 

the deduced full length amino acid sequences. When a gene could not be assigned to a particular clade 
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with a significant bootstrap value, the assignment to a certain subfamily was made by ranking BLAST 

search results of queries for family members against the gene. Repeating the analysis by comparing 

only the conserved peptidase S8 domain we could confirm the assignments for all A.thaliana subtilase 

genes into these six subfamilies. The assignments were further supported by distance matrices 

obtained by pairwise global alignments of the nucleic acid and amino acid sequences (http:// 

csbdb.mpimp-golm.mpg.de/psdb.html). 

 
Fig. 1. Bootstraped neighbor-joining tree with 1,000 bootstrap replicates generated from an alignment of the 

predicted 56 AtSBT full-length protein sequences using ClustalX 1.81. The tree was displayed by TreeView and 

edited manually. Neighboring genes are distinguished by specific colors. 

 

The protease associated domain (PA) is supposed to determine the substrate specificity of subtilases or 

to form protein-protein interactions (Mahon and Bateman, 2000; Luo and Hofmann, 2001). Most 

proteins of the subtilase family contain a sequence region of about 120 amino acids inserted into their 

catalytic domain. Therefore, to uncover similar substrate specificities within the Arabidopsis subtilase 

family, the PA domain was used for the assignment into subfamilies (Fig. 2). Apart from AtSBT4.1, 

AtSBT 6.1, and AtSBT 6.2 all Arabidopsis subtilases contain an insertion, consistent with a PA domain. 

Apart from members of the heterogeneous subfamily 5, all subtilases were again assigned to the same 

subfamilies as before with only minor changes (compare Fig.1 and Fig.2). 
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The general consistency of phylogenetic trees derived from the full-length and the PA domain 

sequences suggests that the PA domain insertion was already present in the ancestral subtilases. These 

results are consistent with those reported by Beers et al. (2003), who performed sequence analysis of 

the Arabidopsis peptidase S8 serine, C1A cysteine and A1 aspartic protease families. The AtSBT1 and 

AtSBT2 subfamilies are identical with the S8-2 and S8-3 groups (Beers et al., 2003). The large 

heterogeneous S8-1 group, however, was subdivided further into AtSBT families 3, 4, and 5. The 

AtSBT6 subfamily includes just two members, i.e. AtSBT6.1, which had not been assigned to any 

group by Beers et al. (2003), and AtSBT6.2, a previously unrecognized Arabidopsis subtilase. Both 

genes are characterized by a stronger homology to (mammalian) kexins (http://csbdb.mpimp-

golm.mpg.de/psdb.html). In yeast Kex2p, the first eukaryotic identified kexin, is required for the 

processing of the precursors of α-mating factor and of killer toxin (Fuller et al., 1988). In analogy to 

Kex2p kexin-like subtilases have been postulated in plants involved in killer toxin processing (Kinal et 

al., 1995). Mammalian kexin homologs have been identified required in formation of functional 

proteins from precursor polypeptides (Barr, 1991, Seidah and Chretien, 1999). 

 
Fig. 2. Bootstraped neighbor-joining tree generated with 1,000 bootstrap replicates from an alignment of the 

predicted Protease-Associated (PA) domain using ClustalX 1.81. The tree was displayed by TreeView and edited 

manually. Notice that AtSBT6.1, 6.2 and 4.1 do not contain a PA domain. Neighboring genes are marked by 

specific colors. 
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Subtilase Families in Plants exceed Complexity in Animals 

Phylogenetic relationships may help to unravel the basic functions of genes based on annotation 

transfer from orthologous sequences. Blast searches via the NCBI O.sativa BLAST page (Wheeler et 

al., 2004) by using the peptidase S8 domain and several full-length amino acid sequences of 

Arabidopsis revealed 34 non-redundant rice subtilase genes. A multiple alignment of the 14 known 

tomato (Meichtry, et al., 1999), the 34 identified rice, and the 56 Arabidopsis subtilases was performed 

to elucidate the phylogenetic relationships within the plant subtilase family. Four major clusters of 

orthologous groups (MCOG) were identified that includes all members of the AtSBT subfamilies 1-3 

and 5, whereas AtSBT4 seems to be a subfamily specific for A.thaliana. The obtained neighbour 

joining tree enabled us to identify putative orthologous gene pairs and groups of genes (see http:// 

csbdb.mpimp-golm.mpg.de/psdb.html). However, the lack of functionally characterized orthologs in 

the subtilase family among the three plants species gave us no strong hints for functional annotation. 

Interestingly, all three plant species are characterized by significant increase in the number of 

subtilases compared to animal organisms, e.g. human (9), Caenorhabditis (4) or Drosophila (3) 

obtained by blast search. This fact could suggest that the number of Arabidopsis subtilase genes is the 

results of duplication events with overlapping (‘redundant’) functions or strong functional 

diversification may occur in evolution. 

Chromosomal Distribution and Gene Duplications of the AtSBTs 

To unravel a possible redundancy we investigated in chromosomal distribution and gene duplication 

events. Arabidopsis subtilase genes are distributed over all 5 chromosomes (http://csbdb.mpimp-

golm.mpg.de/psdb.html). The genes occur isolated or in tandem repeats, indicating that segmental and 

tandem duplication events may have contributed to the evolution of the Arabidopsis subtilase gene 

family. In contrast to the observed average of 17% on genome scale (AGI, 2000) 54% of AtSBT genes 

occur in clusters of 2 up to 5 genes. These arrangements suggest that also local duplications events 

contributed to the AtSBT family expansion. Furthermore, several highly similar sequences are found 

on different chromosomes. Similar situations indicative of a complex evolutionary history have been 

observed in other Arabidopsis gene families, too (Shiu and Bleecker, 2001; Mladek et al., 2003).  

Macro-scale duplication and rearrangement of chromosomes as well as micro-scale translocation and 

duplication are thought to be the major modes of plant genome evolution (Bancroft, 2000). Analyses 

of the chromosomal distribution revealed that at least 18 AtSBT genes are located in suggested 

segmental duplicated regions within the Arabidopsis chromosomes.  

The results confirm local and segmental duplication events as the cause for expansion of the subtilase 

gene family in the course of the Arabidopsis genome evolution. As the two copies of a duplicated gene 

initially are identical and functional redundant, the structure of the subtilase gene family poses the 

question to what extent the divergence of duplicated genes led to the acquisition of novel and specific 

functions of subtilases in Arabidopsis. 
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Mutant Identification and Evaluation 

To elucidate the functions of all Arabidopsis subtilases, T-DNA insertion mutants have been collected 

and analyzed for morphological traits expressed under standard cultivation conditions. A total of 179 

T-DNA insertion lines of 55 AtSBTs have been retrieved from the SIGnAL (Alonso et al, 2003), the 

GABI-KAT (Rosso et al, 2003), the SAIL (Syngenta Biotechnology Inc., NC), the INRA FLAGdb 

collections and the University of Wisconsin Knockout Facility. All lines were tested by PCR with 

gene-specific primers for the presence of the proposed insertion, which was confirmed in 144 lines. 

For 44 genes, more than one verified T-DNA line is available and for 55 AtSBT genes homozygous T-

DNA insertion lines have been collected. Aerial organs of all homozygous lines grown in standard soil 

cultivation conditions were visually and microscopically examined at several developmental stages. 

Except for AtSBT1.2 (sdd1), no visible phenotypic alterations linked to the insertion were detectable 

under these conditions. These observations suggest that either most AtSBT genes mediate specific, 

conditional responses or else that a large degree of functional redundancy exists among or within 

subsets of the subtilase family. Indications for the latter possibility of redundancy were obtained by the 

sequence analyses that identified groups or pairs of closely related genes (see above). To test for 

potential homology-based functional redundancies we created and confirmed double knockouts and 

knockout / RNAi lines (http://csbdb.mpimp-golm.mpg.de/psdb.html). However, none of the obtained 

transgenic lines exhibited any morphological phenotypic alterations upon growth under standard 

cultivation conditions. While further in-depth analysis will be necessary including monitoring of the 

responses to various environmental challenges and investigation of metabolic perturbations to 

complete the phenotypic characterization, these observations may indicate that (partial) functional 

redundancy may exist even among more family members showing higher sequence divergence. In 

order to obtain further indications as to which pairs or groups of genes may perform similar or 

overlapping functions despite low degrees of sequence similarity, and what their physiological roles 

may be, gene expression co-response analyses were performed. 

Ubiquitous and Conditional Expression of AtSBTs 

The increasing number of publicly available expression profiles analyzed in the frame of specific 

experiments enables scientists to use and to re-analyze the data for certain different questions. We 

investigated in such a cross-experimental approach by computational analyzes of the co-expression 

and co-response behaviour of subtilases using 123 gene expression profiles publicly available from 

NASCArrays (Craigon et al., 2004). The expression profile data were generated using the Ath1 gene 

chip technology platform (Affymetrix, La Jolla, CA), which contains oligonucleotides for 54 of the 56 

annotated AtSBT genes. Not represented are AtSBT3.10 and AtSBT4.6. We focused initially only on 

the AtSBT genes to compare the expression within the subtilase family. This analysis was first 

performed using the qualitative attributes “present”, “marginal”, and “absent” and was then extended 

to quantitative values of expression levels. In a third step, the co-response analysis was widened to 
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include all other genes allowing us to assign subtilases to certain functional classes based on their co-

response behaviour. 

Cluster I.2

Cluster I.1

Cluster II.2

Cluster II.1

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ 0 ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ 0 ´ 0 ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ 0 0 0 ´ ´ ´ 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ ´ ´ ´ 0 ´ 0 ´ ´ ´ ´ ´ ´ 0 ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 ´ ´ ´ ´ 0 0 ´ ´ 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ 0 ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´ ´ ´ 0 0 ´ ´ 0 ´ ´ ´ 0 ´ 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 ´ ´ ´ ´ ´ ´ ´ 0 ´ 0 ´ 0 0 0 0 0 ´ 0 0 ´ ´ ´ 0 ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´ ´ ´ ´ 0 ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 ´ 0 0 0 0 ´ ´ 0 ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ 0 ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ 0 0 ´ ´

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 ´ 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ 0 0 ´ 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ 0 ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0

0 ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ 0 ´ ´ ´ 0 0 0 0 ´ 0 ´ ´ 0 ´ ´ 0 0 0 0 0 0 ´ 0 0 0 ´ 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ 0 0 0 ´ ´ ´ ´ 0 ´ 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ 0 0 0 0 ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 ´ ´ 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 ´ ´ ´ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 ´ 0 0 0 ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´

0 0 0 ´ ´ 0 ´ 0 ´ ´ 0 0 ´ 0 ´ 0 ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

´ ´ ´ ´ ´ ´ ´ ´ 0 ´ 0 0 0 0 0 0 ´ ´ 0 0 0 0 ´ ´ 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0

0 ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ´ 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 ´ 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 ´ 0 0 0 ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ 0 0 0 0 0 0 ´ 0 0 0 ´ 0 0 0 0 0 0 0

´ ´ ´ 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´ ´ 0 0 0 ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ 0 0 ´ 0 ´ 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 ´ ´ 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ 0 0 ´ ´ ´ ´ ´ 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 ´ 0 0 0 ´ ´ ´ ´ ´ ´ 0 0 ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ 0 0 0 0 0 ´ 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 ´ 0 0 0 0 0 0 0 0 0 ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ 0 0 ´ ´ ´ ´

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

actin

R  Sd  RL IS CL  F   S

actin

R  Sd  RL IS CL  F   S

actin

R  Sd  RL IS CL  F   S
ACT2

R  Sd  RL IS CL  F   S

n.d.

n.d.

n.d.

n.d.
n.d.
n.d.
n.d.
n.d.
n.d.

n.d.
n.d.
n.d.

n.d.
n.d.

n.d.
n.d.
n.d.

n.d.
n.d.

n.d.
n.d.
n.d.
n.d.
n.d.

n.d.

n.d.

Cluster I.2

Cluster I.1

Cluster II.2

Cluster II.1

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ 0 ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ 0 ´ 0 ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ 0 0 0 ´ ´ ´ 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ ´ ´ ´ 0 ´ 0 ´ ´ ´ ´ ´ ´ 0 ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 ´ ´ ´ ´ 0 0 ´ ´ 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ 0 ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´ ´ ´ 0 0 ´ ´ 0 ´ ´ ´ 0 ´ 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 ´ ´ ´ ´ ´ ´ ´ 0 ´ 0 ´ 0 0 0 0 0 ´ 0 0 ´ ´ ´ 0 ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´ ´ ´ ´ 0 ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 ´ 0 0 0 0 ´ ´ 0 ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ 0 ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ 0 0 ´ ´

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 ´ 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ 0 0 ´ 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ 0 ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0

0 ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ 0 ´ ´ ´ 0 0 0 0 ´ 0 ´ ´ 0 ´ ´ 0 0 0 0 0 0 ´ 0 0 0 ´ 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ 0 0 0 ´ ´ ´ ´ 0 ´ 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ 0 0 0 0 ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 ´ ´ 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 ´ ´ ´ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 ´ 0 0 0 ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´

0 0 0 ´ ´ 0 ´ 0 ´ ´ 0 0 ´ 0 ´ 0 ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

´ ´ ´ ´ ´ ´ ´ ´ 0 ´ 0 0 0 0 0 0 ´ ´ 0 0 0 0 ´ ´ 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0

0 ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ´ 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 ´ 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 ´ 0 0 0 ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ 0 0 0 0 0 0 ´ 0 0 0 ´ 0 0 0 0 0 0 0

´ ´ ´ 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´ ´ 0 0 0 ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ 0 0 ´ 0 ´ 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ 0 0 0 ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 ´ ´ 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 ´ 0 0 ´ ´ ´ ´ ´ 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 ´ 0 0 0 ´ ´ ´ ´ ´ ´ 0 0 ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ 0 0 0 0 0 ´ 0 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 0 ´ 0 0 0 0 0 0 0 0 0 ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 ´ 0 0 ´ ´ ´ ´

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 ´ ´ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ ´ 0 0 0 0 ´ 0 0 0 0 0 0 0 0 0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

actin

R  Sd  RL IS CL  F   S

actin

R  Sd  RL IS CL  F   S

actin

R  Sd  RL IS CL  F   S
ACT2

R  Sd  RL IS CL  F   S

n.d.

n.d.

n.d.

n.d.
n.d.
n.d.
n.d.
n.d.
n.d.

n.d.
n.d.
n.d.

n.d.
n.d.

n.d.
n.d.
n.d.

n.d.
n.d.

n.d.
n.d.
n.d.
n.d.
n.d.

n.d.

n.d.

 
Fig. 3. Cluster tree from converted detection call matrix of 123 Affymetrix (Ath1) microarray experiments into 

Boolean values. The detection calls absent and medium were assigned to be 0 and present as one. Distances 

among genes were obtained by applying the S9 index of Gover and Legendre (1986). Sub-cluster SC1 (top main 

cluster) covers ubiquitously expressed genes whereas SC2 (bottom main cluster) represents low or specific 

expressed genes. These results were validated independently by semi-quantitative RT-PCR (sqRT-PCR) 

analysis: (root(R), seedling(Sd), rosette leaves(RL), inflorescence stem(IS), cauline leaves(CL), flower(F), 

siliques(S), and not determined (n.d.). 

 

For the co-expression analysis we converted the detection calls into qualitative Boolean values: (i) 

absent and marginal detection calls were set to null and (ii) present calls to one. Pairwise distances 

among all genes were computed by use of the S9 index of Gower and Legendre (1986). The 

corresponding distance matrix was subjected to hierarchical clustering (HCA) of the genes. As a result 

of this analysis we identified two most distantly related AtSBT gene clusters (Fig. 3). The gene cluster 

I contains 16 (30%) of the 54 represented subtilase genes and showed the following sub-family 

representation: AtSBT1: 7 (78%), AtSBT2: 2 (33%), AtSBT3: 0 (0%), AtSBT4: 2 (14%), AtSBT5: 3 

(50%), AtSBT6: 2 (100%). In contrast, gene cluster II contained 32 (70%) AtSBT genes, all belonging 

to the sub-families AtSBT2, AtSBT3 and AtSBT4. Whereas cluster I.1, a part of the main cluster I, 

mainly represents ubiquitously expressed genes and some of them expressed at high levels, the cluster 
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II.1, a part of the main cluster II, primarily contained genes with specific expression pattern and / or 

low expression levels. Moreover, both main clusters contained subsets of genes, namely cluster I.2 and 

II.2, which are well measured in an equal number of expression profile experiments. In contrast, genes 

of these two clusters show a co-expression in only 50% of the same experiments and therefore 

revealed slightly different expression patterns. To confirm the obtained co-expression behaviour of 

AtSBTs we performed semi-quantitative RT-PCR (sqRT-PCR) analyses on RNA extracted from 

different Arabidopsis organs. The obtained organ-specific expression patterns of the analyzed genes 

revealed ubiquitous expression for cluster I.1 genes (Fig. 3). The genes assigned to cluster II.1, on the 

other hand, exhibited expression primarily in one organ or in a subset of the analyzed organs. For 

some genes assigned to cluster II, namely AtSBT2.6, 3.13, 4.11, 2.6, 3.5, and 1.1, we confirmed 

expression pattern for most of the analyzed organs. According to the results obtained by both analyses 

we concluded that the genes of cluster I.1 are constitutively expressed, both, in terms of organ 

specificity as well as according to various conditions. In contrast, the genes of cluster II mainly show 

specific expression patterns. Moreover, genes assigned to cluster I.2 and II.2 are ubiquitously 

expressed throughout all or most organs, but vary in expression in response to different conditions (Fig. 

3). 

Transcriptional Interrelation among AtSBTs revealed by Co-Response 
Analyses 

While through the (qualitative) co-expression the global activity profiles of the AtSBT genes were 

revealed, the (quantitative) co-response analysis was performed to identify pairs or groups of AtSBT 

genes that show similar transcript changes among a multi-conditional set of expression. For our 

subsequent analyses we implicitly make the assumption that common transcriptional control of genes 

is reflected in co-responding, simultaneous changes in transcript levels (Steinhauser et al., 2004a). To 

investigate in co-response analysis the expression levels of genes have to vary across the data sets used 

and valid measures of expression, i.e. above the detection limit, have to be available for the genes in 

question in most, ideally all profiles. The three generate multi-conditional gene expression data 

matrices (replicates) consist of approximately 50 out of 123 expression profiles from an approximate 

equal contribution of each examined experimental condition. These matrices generated were thus 

maximised for the diversity of the represented experimental conditions. Each of them comprises 

approximately 10,000 genes, including 12 AtSBT genes, with valid measured transcript levels (see 

Materials and Methods).  

Our numerical approach to detect transcript co-responses is based on the non-parametric Spearman’s 

rank order correlation (rs), which is a robust estimation of correlation. For bias estimation as well as 

for a more exact approximation of the statistical probability, we performed iterative computation of rs 

based on bootstrap analysis. Test of homogeneity applied to compare the co-responses derived from 

the three data matrices revealed no significant differences among the pairwise transcript co-responses.  
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As the test of homogeneity can only detect larger differences we applied in addition the mantel test, 

performed as non-parametric Spearman correlation of matrices. This analysis showed highly 

significant correlations (P << 0.001) in the range of 0.87 ≤ rs ≤ 0.90 with an average of 0.89±0.02 

among the data matrices. Both statistical tests revealed that similar information on transcript co-

responses can be deduced from the data matrices. Therefore, the average of transcript co-response can 

be computed and used for hierarchical cluster analysis.  
Fig. 4a-b. Fig. 4a shows a cluster tree of the 

correlated behaviour among transcript amount 

for ubiquitously expressed genes in multi-

conditional 22k Affymetrix expression 

profiles. The correlations were obtained by 

computation of the Spearman correlation. 

Negative correlations were assigned to be 

most distant. The cluster tree based on the 

average Spearman correlation among the data 

matrices nasc0271, nasc0272 and nasc0273. 

Fig. 4b. shows a network of all significantly 

associated SBTs of the average Spearman 

correlation obtained from data matrices 

nasc0271, nasc0272, and nasc0273. Green 

coloured lines mark significant positive 

associations; red coloured lines significant 

negative correlations. Joint probabilities were 

obtained by combining probabilities from 

independent tests of significance. Significance 

threshold was 0.5 / number of combined 

probabilities, i.d. p < 0.0167. 

b
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Fig. 4a shows the cluster tree drawn on the basis of the average co-responses for the three data 

matrices. Negative co-responses were taken as measure of maximal distant pairs of genes, which 

showed opposing changes of transcript levels. The 12 represented AtSBT genes are grouped into three 

well separated clusters: (I) with AtSBT2.5, AtSBT1.4, AtSBT1.7, AtSBT1.6, AtSBT5.6, (II) with 

AtSBT2.1, AtSBT1.8, AtSBT1.5, AtSBT1.3, and (III) with AtSBT6.1, AtSBT4.14 and AtSBT6.2. The 

joints are at relative large heights and reflect that the corresponding changes in transcript levels were 

not identical but similar among pairs and groups of AtSBT genes. For in-depth analysis we visualized 

only the Bonferroni corrected (Bonferroni, 1935) significant correlations among the AtSBT genes with 

the Pajek software (http://vlado.fmf.uni-lj.si/pub/networks/pajek/, Fig. 4b). In conjunction with the 

cluster tree drawn on the basis of the average co-response (Fig. 4a) the obtained network revealed two 

cliques, where each gene member shows significant correlation to the other members. Clique I covers 
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AtSBT1.4, AtSBT1.6, AtSBT1.7, AtSBT5.6 and AtSBT2.5, whereas the clique II enclose the genes 

AtSBT1.3, AtSBT1.5, AtSBT2.1, and AtSBT2.5. The subtilase AtSBT2.5 is shared between both cliques 

and represents a hub, which shows significant connections to all genes of the two main cliques and 

interconnects both (Fig. 4a, b). The average co-response of AtSBT2.5 to both cliques is 0.47±0.08. 

Exclusion of AtSBT2.5 revealed an average co-response for the clique I of 0.69±0.08 and for the clique 

II of 0.43±0.01. Moreover, for AtSBT1.8 similar correlations are detectable but this gene shows less 

connectivity to both cliques.  

The statistical analyses revealed significant co-responses among AtSBT genes, but the causality of the 

interrelations remains to be shown. Non-parametric Kendall’s tau (τ) correlation of Escherichia coli 

operon genes controlled by common cis-elements revealed a co-response distribution over a broad 

range (Steinhauser et al., 2004a). Considering the relationship of Spearman’s rs and Kendall’s τ (rs~ 

3/2 τ), the co-responses among AtSBT genes of the clique I are in the upper range of these 

distributions and therefore, allows assuming a biological relevance within the network. In conjunction 

with the results of sqRT-PCR and the co-expression analysis (see above, Fig. 3) we conclude that the 

genes of clique I are ubiquitously but not constitutively expressed and that they respond to similar cues. 

The revealed associations and the central positions of AtSBT2.5 and AtSBT1.8 in the network suggest 

that both genes might be involved in the same functional context and may complement each other. 

However, the amino acid (32.9%) and the nucleic acid sequences (50.0%) do not show any higher 

homology between these genes than to other AtSBT genes (avg. 34.7% / 50.5%; see http:// 

csbdb.mpimp-golm.mpg.de/psdb.html). In contrast, AtSBT2.5 is highly related to AtSBT2.6 (aa: 

88.1%; nt: 83.7%), both are ubiquitously expressed and probably evolved from a sequential 

duplication. Consequently, they might be of redundant complementary function but a verified double 

homozygous T-DNA insertion line did not show any visible phenotype under standard cultivation 

conditions. Therefore, both genes may not share the same function which is supported by expression 

pattern analysis (Fig. 3). Similarly, AtSBT5.6 is highly related to AtSBT5.5 at the sequence level (aa: 

62.3%; nt: 68.0%) but only AtSBT5.6 is a member of clique I. Sequence similarities between AtSBT5.6 

and other member of clique I (avg. aa: 40.5%; avg. nt: 52.9%) are not notably higher than to other 

AtSBT genes (avg. aa: 36.9%; avg. nt: 51.3%). In contrast, AtSBT1.4, AtSBT1.6, and AtSBT1.7 

represent an example of evolutionary related genes with higher than average homology on amino acid 

(46.8 to 54.3%) and nucleic acid (57.7 - 59.7%) level that are members of the clique I and show 

significant co-regulation. Nevertheless, AtSBTs with even higher sequence homology but lower co-

response are present in the subfamily 1. The co-response analysis of the AtSBT gene family thus 

revealed potential functional relationships, which in some cases clearly contradicted the predictions 

made on the basis of sequence analysis. In conclusion, we suggest that even minor differences in 

sequence similarity may confer functional divergence and that functional redundancy within the 

Arabidopsis subtilase family may be better revealed by transcriptional co-response analysis than by 

high sequence similarity. It is well conceivable that few amino acid changes could alter the substrate 
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specificity of a protease. A striking example of the consequences of a single amino acid change on the 

enzymatic properties is provided by the stilbene synthases (Suh et al., 2000). 

Co-Response based Transcriptional Neighbourhood Search of AtSBTs 

0.0

0.2

0.4

0.6

0.8

1.0
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0.4

0.6

0.8
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a b

 
Fig. 5a - b. Result of the co-response based Transcriptional neighbourhood search for the best two percent of 

positive associated (Fig. 5a) and the best two percent of negative associated (Fig. 5b) correlated genes. The 

upper part represents the cluster tree resulting from our HCA analysis based on conversion of the enrichment of 

genes of particular functional categories into the Euclidean distance range. On the bottom a vertical stacked bar 

plot illustrate the distribution of associated genes to each represented AtSBT for the individual functional 

categories. For comparison the average distribution of genes belonging to functional categories among the 

underlying data matrices is shown on the left of each display. 
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As a third step we extended our co-response analyses to the characterization of the co-responses of 

AtSBT genes with all other genes represented in the underlying data matrices. This was done to 

identify sets of co-regulated genes, that are assigned to certain functional categories and that may 

provide information on the functional context of individual or groups of AtSBT genes.  

Whereas the degrees of transcript co-responses may be influenced by the selection of the experiments 

used for generating the (multi-)conditional data matrices and predictions based on nearest neighbours 

may be of equivocal nature, we assumed that the enrichment of transcriptionally correlated genes of a 

certain functional category should be a more robust marker of the functional context of a gene of 

interest. To obtain such indications for the AtSBT genes the top two percent of the most strongly 

positive as well as negative correlated genes to each AtSBT gene were selected. The numerical 

computation of enrichment was done by summation of the relative impacts (RIs) of the genes assigned 

to particular functional categories, where the gene-specific RI was defined as the reciprocal of the 

number of assignments of a gene to different categories. As reference we calculated the enrichment as 

mentioned above over all genes represented in the underlying data matrices. 

Application of the G-test of independence for the positive best two percent correlated genes (Fig. 5a) 

revealed that genes belonging to the category ‘unclassified’ are significantly enriched (P << 0.001) for 

each of the 12 AtSBT genes with an average of 1.78 fold. A significant (P < 0.05) enrichment of genes 

assigned to ‘metabolism’ and ‘energy’ was observed for AtSBT5.6. For AtSBT1.6, a member of the 

clique I (Fig. 4a, b). We detected a tendency (P < 0.1) of enrichment for ‘metabolism’ and for 

AtSBT1.5, a member of the clique II (Fig. 4a, b), a significant enrichment for ‘control of cellular 

organisation’. To categorise AtSBT genes according to their neighbourhood we normalised each 

category-specific sum of RIs and expressed it as the fraction of the sum of all RIs over all categories. 

The co-responding matrix was subsequently used for hierarchical cluster analyses on the basis of the 

functional context in the neighbourhood by computing the Euclidean distances. According to the 

obtained cluster tree for positive associated neighbourhood (Fig. 5a), we suggest a similar functional 

context for AtSBT2.5, the major hub connecting the cliques I and II (Fig. 4b), and AtSBT1.8. 

Interestingly, analysis based on the two percent of strongly negative associated genes (Fig. 5b) 

revealed different neighbourhoods for the two genes. According to theses results and in conjunction 

with co-expression (Fig. 3) and co-response (Fig. 4a,b) analyses we suggest that AtSBT2.5 and 

AtSBT1.8 have overlapping but not identical functions. The hub AtSBT2.5 and AtSBT1.8 are 

characterized by an enrichment of positively correlated genes assigned to ‘cellular communication / 

signal transduction mechanism’ as well as ‘cellular organization’, which are ranked at position 2 and 3. 

Moreover, for the genes AtSBT1.4 and AtSBT1.7 as well as for AtSBT1.6 and AtSBT5.6, the members 

of the cliques I (Fig. 4b), we observed early joining, according to the representation of functional 

classes by both, the strongly positive and, with exception of AtSBT1.4, the strongly negative associated 

genes. According to a significant enrichment of genes assigned to the functional category 

‘metabolism’ (Fig. 4a, see http:// csbdb.mpimp-golm.mpg.de/psdb.html), we suggest that these genes 
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are embedded in the functional context of metabolism. These four genes were also correlated in 

expression with genes enriched for functions in ‘cell rescue, defence and virulence’ and in ‘transport 

facilitation’, which are ranked at positions 3 and 4 (see http:// csbdb.mpimp-golm.mpg.de/psdb.html). 

The correlated behaviour and similar functional neighbourhoods of this set of AtSBTs hints to an 

involvement within the physiological context of pathogen response or / and general stress related 

responses. The indications obtained for the functional contexts of these two sets of AtSBT genes lead 

us to suggest the hypothesis that AtSBT2.5 and AtSBT1.8 may be involved in sensing mechanisms or 

be early responsive elements and AtSBT1.4, AtSBT1.6, AtSBT1.7 and AtSBT5.6 may be related to more 

specific downstream components. The experimental verification of this hypothesis will be one of the 

goals of our continuing functional genomics project on the characterization of plant subtilases. 

 

The Plant Subtilase Database (PSDB) 

The multiple levels of comprehensive data accumulated in this project by members of TASC need a 

specialized web interface to store and distribute data related to plant subtilases. Accomodating this 

data we established the Plant Subtilase Database (PSDB), an associated database of CSB.DB, a 

comprehensive systems-biology database (http://csbdb.mpimp-golm.mpg.de; Steinhauser et al., 

2004b). PSDB contains confirmed results of replicated experiments related to plant (Arabidopsis) 

subtilase genes and allows open access to the science community. PSDB will be regularly updated 

with the results of co-response analyses, performed on the increasing number of publicly available 

gene expression profiles. Furthermore, validated information of tissue specific expression patterns of 

AtSBT genes, cellular localisation of encoded proteins, as well as phenotype information of the 

mutants and transgenic plants will be displayed and regularly updated. Further information and 

supplemental material will be available at PSDB (http:// csbdb.mpimp-golm.mpg.de/psdb.html). 

 

Material and Methods 

Sequence analysis 

Nucleic acid and amino acid sequences were retrieved by searching public databases with the BLAST 

algorithm (Altschul and Lipman, 1990; Altschul et al., 1997) at TAIR (http://www.arabidopsis.org/), 

TIGR (http://www.tigr.org/), NCBI (http://www.ncbi.nlm.nih.gov) and MIPS (http://mips.gsf.de/). 

Subcellular localization was predicted using TargetP (http://www.cbs.dtu.dk/services/TargetP/). The 

deduced amino acid sequences were aligned using the CLUSTALX program (Thompson et al., 1997) 

with the default parameter settings and manually improved in respect to all known conserved subtilase 

motifs. The phylogenetic tree was obtained with the neighbour-joining method (bootstrap values have 
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been generated from 1000 replicates). The tree representation was generated by using the TreeView 

application (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). 

Plant material and growth conditions 

Seeds of Arabidopis thaliana ecotype Columbia (Col-0), Wassilevskiya (Ws) and the appropriate T-

DNA mutant lines were surface-sterilized and germinated on half-concentrated Murashige and Skoog 

(MS) medium (M02 555, pH 5.6; Duchefa, Haarlem, The Netherlands) supplemented with 1% 

Sucrose and solidified with 0.7% agar under a 16-h day (140 µmol·m−2·s−1, 22°C)/8-h night (22°C) 

regime. The plates were incubated at 21/15 °C day/night, under a 16/8 h light/dark. After two weeks 

plants were transferred to standard soil (Einheitserde GS90; Gebrüder Patzer, Sinntal-Jossa, Germany) 

and further grown in a growth chamber under a long-day light regime (16 h of fluorescent light [120 

µmol·m−2·s−1] at 20°C and 60% RH/8 h of dark at 16°C and 75% RH). 

Mutant collection, confirmation and phenotypic analysis 

T-DNA insertion mutants were retrieved from the SIGnAL (Alonso et al., 2003), the GABI-Kat 

(Rosso et al., 2003), the Genoplante FST/FLAGdb (Balzergue et al., 2001), the SAIL collection 

(Syngenta Biotechnology Inc, http://www.tmri.org/en/partnership/sail_collection.aspx), and the 

University of Wisconsin Knockout facility (http://www.hort.wisc.edu/krysan/DS-Lox/). Genomic 

DNA was isolated using the Dneasy 96 Plant Kit (Qiagen, Hilden, Germany) and subsequently used 

for PCR analysis. The T-DNA insertion lines were screened for the appropriate insert using the 

required T-DNA and a gene specific primer. Gene specific flanking primers were used to confirm 

homozygousity. Primer sequences are available at PSDB (http://csbdb.mpimp-

golm.mpg.de/psdb.html). In respect to phenotypic alterations, homozygous insertion lines were 

evaluated in the following developmental stages (Boyes et al., 2001): 1.03 for seedlings grown on 

synthetic media, 3.9 for rosette leaves and at stage 6.9 for inflorescence stem, cauline leaves, flower 

and siliques. Plants were investigated regarding to leaf number, shape and size, epidermal constitution 

in respect to trichome and guard cell number and distribution, flowering time as well as flower and 

silique constitution. 

Data source and pre-processing 

Transcript co-responses were retrieved from the CSB.DB - a comprehensive systems-biology database 

(http://csbdb.mpimp-golm.mpg.de; Steinhauser et al., 2004b) for data matrix nasc0271. Co-responses 

for the additional matrices nasc0272 and nasc0273 were computed within this work. 123 publicly 

available expression profiles from 22 experiments were obtained from NASCarrays 

(http://affymetrix.arabidopsis.info/; Craigon et al., 2004; October 2003) and used for the generation of 

the data matrices. The profiles were originated through the Affymetrix Ath1 chip technology 

(Affymetrix, La Jolla, CA). The number of Present and Marginal calls (according to the MAS 5.0 
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algorithm) was calculated for each profile. In the majority of cases 2 or 3 profiles per experiment with 

the highest numbers of Present and Marginal calls were selected for nasc0271. In analogy, nasc0272 

and nasc0273 were generated by experiments with 2nd and 3rd highest numbers of Present and 

Marginal calls. Thus the data matrices comprised approximately 50 out of 123 experiments with 

approximately 10,000 out of > 22.000 genes: nasc0271: 51 experiments with 9694 genes, nasc0272: 

51 experiments with 8927 genes, and nasc0273: 49 experiments with 8691 genes. Each well measured 

in at least 85% of the underlying expression profiles. Transcript co-responses were computed on data 

matrices with log base two transformed and range-normalised transcript intensities, i.e. log base two 

transcript intensities for each gene were in range of 0 to 1. 

Co-Expression analysis 

For co-expression analysis the detection calls were converted into Boolean values. The numerical 

value null was assigned to absent and marginal calls, whereas present call were set to be one. Pairwise 

distances among entities, i.e. genes, of the Boolean matrix were computed by use of the S9 index of 

Gower and Legendre (1986) and subsequently used for hierarchical cluster analysis (HCA, Mirkin, 

1996). Computation was executed with the statistical software environment R (http://www.r-

project.org) version 1.8.1. Distances were computed with the function ‘dist.binary’ of the ‘ade4’ 

package. HCA was performed as unweighted average linkage clustering algorithm (UPGMA) by use 

of the ‘hclust’ function implemented in the ‘mva’ package. 

Semi quantitative RT-PCR expression analysis 

Sample material of the appropriate organs from Arabidopsis plants (Col-0) were harvested at the same 

stage used for mutant screening (see above). Total RNA was isolated with TRIzol® reagent (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s protocol. 1µg of total RNA was pre-treated with 

DNaseI (Ambion, Austin, Texas) and reverse transcribed with SuperScriptII® reverse trascriptase 

(Invitrogen, Carlsbad, CA) and d(T)15. The cDNA reaction was diluted 1:5 with water and 5 µl of the 

diluted cDNA was used as template for PCR analysis applying the Advantage 2 PCR Enzyme System 

(BD Biosciences, Palo Alto, CA) according to the manufacturer’s protocol. In general, due to the low 

abundance of subtilase transcripts, up to 40 cycles were performed with a PTC-200 thermal cycler (MJ 

Research, Waltham, MA). Primers, AGI gene name, and the size of cDNA and genomic amplicons are 

available via PSDB (http:// csbdb.mpimp-golm.mpg.de/psdb.html). ACT2 was used as external 

standard. 20µl each PCR reaction was analysed by agarose gel electrophoreses. 

Co-Response analyses 

According the observation that a general bivariate normality can not be assumed for each pair of genes, 

respectively analysed with the Cramer-test (Baringhaus and Franz, 2004), transcript co-response 

analyses were performed by determination of non-parametric Spearman’s rank order correlation (rs) 
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(Sokal and Rohlf, 1995). Co-Response analysis among AtSBT genes were computed by non-

parametric bootstrap analyses with 2,000 numbers of bootstrap samples (Efron and Tibshirani, 1993). 

Transcript co-responses of AtSBT genes with all other genes represented in the respective matrix were 

computed with cCoRv1.0 (Steinhauser et. al., unpublished). Mantel test and test on homogeneity 

(Sokal and Rohlf, 1995) were used to compare and compute the average of correlations among 

different co-response matrices. The test of homogeneity was performed with Microsoft Excel. The 

mantel test, computed as non-parametric Spearman correlation of (dis-)similarity matrices, was 

executed in R by use of the ‘mantel.test’ function of the ‘vegan’ package. The average Spearman 

correlations and the joint probabilities among the data matrices were calculated as recommended 

(Sokal and Rohlf, 1995). In order to generate normalised distance matrices for HCA correlations were 

converted into distance range according to Sokal and Rohlf (1995). Negative Spearman correlations 

were assigned to be most distant and were converted into the largest distances: distance = 1 – rs. 

Normalisation of the obtained distance matrix was done by dividing all distances with the obtained 

maximum distance. HCA was performed as mentioned above. Visualisation of significant associations 

among AtSBT genes was done with the software Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). 

The multiple comparison performed required the adjustment of α to accept significant associations, 

which was done by application of the Bonferroni correction α’ = α / k. The corrected α’ was 0.00416 

(12 comparisons). 

Transcriptional Neighbourhood Search 

The assignment of gene products to functional categories was retrieved from MAtDB (Schoof et al., 

2004; December 2003). The functional categorisation is tree-like structured and each category is 

subdivided into sub-categories. We used only the highest branch (level) for each category which 

yielded to 99 categories, 29 described with a category name. Categories without category name were 

merged into the ‘undefined’ category and the categories 40, 43, 45, 47 were merged into the class 

‘localisation’. Genes without assignment or with unclear classification were treated as ‘unclassified’. 

Genes assigned into more than seven categories, which represents 5% of the whole annotation, were 

also treated as ‘unclassified’. The relative impact (RI) of a gene with multiple assignments (nassign) 

onto each category was defined as: ri = 1 / nassign. 

The transcriptional neighbourhood search was performed as follows: The best two percent of 

positively and negatively correlated genes to each represented AtSBT gene were extracted and 

grouped according their assigned functional category separately for each AtSBT gene. For calculation 

of the enrichment into functional categories the sum of all RIs for each category was computed. The 

sum of all RIs for each category over all represented genes was used as reference. Comparisons of the 

observed enrichment for each AtSBT genes to the reference were done by G-test of independence 

(Sokal and Rohlf, 1996) and separately for each functional category. 
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Abstract 

Summary: Metabolomics, in particular gas chromatography – mass spectrometry (GC-MS) based 

metabolite profiling of biological extracts, is rapidly becoming one of the cornerstones of functional 

genomics and systems biology. Metabolite profiling has profound applications in discovering the 

mode of action of drugs or herbicides and in unravelling the effect of altered gene expression on 

metabolism and organism performance in biotechnological applications. As such the technology needs 

to be available to many laboratories. For this, an open exchange of information is required, like that 

already achieved for transcript and protein data. One of the key-steps in metabolite profiling is the 

unambiguous identification of metabolites in highly complex metabolite preparations from biological 

samples. Collections of mass spectra, which comprise frequently observed metabolites of either known 

or unknown exact chemical structure, represent the most effective means to pool the identification 

efforts currently performed in many laboratories around the world. Here we present GMD - The Golm 

Metabolome Database, an open access metabolome database, which should enable these processes. 

GMD provides public access to custom mass spectral libraries, metabolite profiling experiments as 

well as additional information and tools, e.g. regarding to methods, spectral information or compounds. 

The main goal will be the representation of an exchange platform for experimental research activities 

and bioinformatics to develop and improve metabolomics by multidisciplinary cooperation.  

Availability: The Golm Metabolome Database can be accessed through the following URL 

http://csbdb.mpimp-golm.mpg.de/gmd.html. 

Contact: Steinhauser@mpimp-golm.mpg.de 
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Introduction 

The sequencing and annotation of whole genomes of various organisms (Goffeau et al., 1996; Blattner 

et al., 1997; Arabidopsis Genome Initiative, 2000; Lander et al., 2001) facilitate the development of 

technology platforms to monitor the cellular inventory (Fiehn et al., 2000; Lockhard and Winzeler, 

2000; Corbin et al., 2003). Since the dawn of genomic technology in the past decade in conjunction 

with enhancing genomic information a vast amount of diverse data has been generated and released to 

the public community. The improving knowledge of gene functions in concurrence with global 

expression analyses is allowing phenotypes to be linked to their co-responding genomic data. However, 

our knowledge of the molecular basis of biological functions and their respective contribution to 

observed phenotypes is, as yet, relatively rudimentary. Recently, the mining and exploitation of data 

by multi-parallel ‘omics technologies open up the possibility to gain comprehensive insight into 

understanding biological systems (Kitano, 2002; Oltvai and Barabási, 2002; Fernie et al, 2004). The 

flood of information obtained worldwide by scientists for this purpose urgently requires user friendly 

public data access. In the past decades much progress has been made on the storage of information 

derived from the various levels of the cellular hierarchy. For instance, databases like BRENDA 

(Schomburg et al., 2004), KEGG (Kanehisa et al., 2004) or MetaCyc (Krieger et al., 2004) harbour 

information concerning metabolic pathways, chemical reactions including inventory of the genes and 

enzymes involved. Genomic databases, such as MIPS (Mewes et al., 2004), TAIR (Rhee et al., 2003) 

and TIGR (Quackenbush et al., 2000), provide public access to protein sequences based on whole 

genome analyses, maps of protein-protein interactions, protein localization and many further features. 

Recent developments in transcript profiling technologies have led to the adoption of largely similar 

experimental platforms that are used worldwide. The commonality of experimental approach 

facilitated the establishment of expression profile related databases, such as the Stanford Microarray 

Database [SMD, (Gollub et al., 2003)], TAIR or NCBI-GEO (Edgar et al., 2002). Similarly the 

availability of proteome data has driven the establishment of various databases [e.g. SWISS-PROT, 

(Boeckmann et al., 2003)] or initiatives [e.g. HAP, (Hermjakob et al., 2004)] focussing on the 

functional annotation of proteins. 

In contrast to the multitude of well established databases which comprises information gathered on 

genome, transcriptome and proteome level, no attempt has been made to store the flood of data arising 

from metabolome analyses of biological samples. As already outlined, metabolites have an enormous 

range of structures. These are measured using a wide range of technology platforms (Kopka et al., 

2004). There is an urgent need for publicly accessible metabolome databases that harbours underlying 

information on metabolites. Here we describe the Golm Metabolome Database (GMD), an open access 

metabolome database for exchange and presentation of metabolomic and related information. In the 

current build the main emphasis focuses on GC-MS (Roessner et al., 2000), the most advanced and 

widespread technology platform for metabolomics. The collected information (i) covers knowledge 
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concerning analytical technologies (Analytics), (ii) harbours underlying evidence and information that 

supports unequivocal metabolite identification (MSRI). In addition, GMD (iii) provides access to 

stored metabolite profiles (Profiles). 

 

GMD - Structure and Data available 

Affiliation and Implementation 

The Golm Metabolome Database (GMD) platform is affiliated to CSB.DB - a comprehensive systems-

biology database, which is hosted at the Max-Planck-Institute of Plant Molecular Physiology, Golm-

Potsdam, Germany. GMD complements the currently available transcriptional co-response databases 

and uses a similar system for data storage and handling as described earlier (Steinhauser et al., 2004).  

Analytic – information concerning analytical technologies   

The highly complex nature and the enormous chemical diversity of compounds obtained when 

analyzing the metabolome of organisms constitutes one of the main challenges in metabolomics 

(Oksman-Caldentey et al., 2004; Fernie et al., 2004). Current estimations vary however it is thought 

that between 4000 - 25000 compounds may represent the metabolome of any given organism 

(Trethewey, 2004; Fernie et al., 2004). The plant kingdom as a whole is believed to have in excess of 

200,000 metabolites (Fiehn, 2002; Trethewey, 2004). The range of the highly diverse chemical 

characteristics in conjunction with the vast amount of potential measurable compounds has large 

implications for metabolite extractability and stability. Any one protocol for measurement thus 

represents a balance between accuracy and coverage of metabolites. The GMD analytic pages allow 

access to expert knowledge for an overview of applied methods by the GMD contributors. They 

include information related to different technology platforms, publicly available methods, as well as 

contact information for individual, tailor-made knowledge exchange. Furthermore, an overview of the 

potential available resources is given for scientists who are unfamiliar in this field of experimental 

biology or interested in setting-up a metabolomics facility. 

MSRI – mass spectra and retention time index libraries   

Following analytical measurements, data processing algorithms are applied to detect peaks in spectral 

data. The identification and characterization of the hundreds to thousands of metabolites obtained from 

diverse biological samples represents a major challenge in metabolomics. These identification efforts 

required a large-scale analysis of standard substances to generate customized spectral libraries for 

further identification of unknown metabolites. To overcome this current limitation of individually 

customized mass spectral libraries the GMD mass spectra information pages are developed to 

exchange information on the underlying evidences that supports metabolite identification in complex 
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GC-MS profiles from diverse biological sources. The MSRI web platform provides access to 

customized mass spectral and retention time index (MSRI) libraries, which were generated using 

identical capillary GC columns using two different electron impact ionization GC-MS technologies, 

namely quadrupole GC-MS (Fiehn et al., 2000; Roessner et al., 2000) and GC-TOF (time of flight)-

MS (Wagner et al., 2003). Currently, five downloadable libraries are available, which may be 

imported into the NIST02 mass spectral search program or AMDIS, the automated mass spectral 

deconvolution and identification system (National Institute of Standards and Technology, 

Gaithersburg, MD, USA). The (pre-computed) libraries are split according to the technology platform 

and the degree of manual mass spectral identification. The Q_MSRI and T_MSRI libraries contain 

MSTs, which were either generated on four identically configured quadrupole (Q_MSRI) GC-MS 

systems or on a single time of flight (T_MSRI) system which run with identical settings but slight 

modifications. Mass spectral libraries, which exclusively consist of manually evaluated, identified or 

classified MSTs are assigned to ID-libraries. In contrast, libraries which were generated by automated 

deconvolution using AMDIS software were assigned to NS libraries, indicative of the non-curated 

mode of construction. The currently available libraries covering data from mammals, yeast, 

corynebacterium, model plants, crop plants and related wild species, as well as from suitable non-

sample controls. More than 2000 evaluated mass spectra data from the two technology platforms 

featuring 1089 non-redundant and 360 identified MSTs are included in the current available version of 

these libraries. 

GMD Profiles – the metabolite profiling platform 

The recent maturity of GC-MS (and other) technology platforms has facilitated the development of 

metabolomics into an important technology for functional genomic efforts. The vast amount of 

complex data obtained from metabolite profiling experiments in conjunction with the ongoing 

developments on analytical technologies requires the public availability of those data for cross-

comparisons and cross-experimental approaches. According to these demands we started to implement 

metabolic fingerprinting and metabolite profiling experiments, which can be currently searched by 

compound names or browsed by a list of experiments (see below).  

For the exchange of the highly complex experimental background information and data from 

metabolite profiling experiments we implemented the MIAMET description, the Minimum 

Information About a METabolomics experiment, as suggested by Bino et al. (2004). Similar to the 

MGED effort to standardize microarray data by the MIAME standard (Brazma et al., 2001) MIAMET 

may evolve to a general accepted and recommended MIAME format for the metabolomics field. 
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GMD - Features and Queries 

Content Browsing: The GMD content can be explored by browsing the HTML content through lists 

or a simple site map, a hierarchical tree representation, which is linked to the available second level of 

HTML pages. Information regarding downloadable MSRI libraries as well as related supplementary 

information, such as technologies, method descriptions and acknowledgements, is made accessible. 

Both, the MSRI libraries as well as the currently integrated metabolite profiling experiments are 

presented in a list format, which provides links to associated detailed information.  

A more sophisticated way to explore the GMD content is offered through the available query pages. 

Currently, five different types of queries are implemented which can all be accessed by the GMD site 

map. 

MSRI Compound Search: The compound search tool allows searching by compound name and 

provides access to the linked mass spectral information harboured at GMD. Various filter options can 

be applied to restrict the query results, for example to the available technology platforms, particular 

libraries or methods. The retrieved mass spectral entries are presented as a table which contains basic 

mass spectral information for a particular compound, such as compound role, i.e. metabolite or 

internal standard, observed retention time index (RI) and technology platform. This basic information 

can be sorted upon user invocation. All information is linked to the detailed physicochemical 

characteristics of the available mass spectra. This final level of information facilitates the 

identification of a particular compound in profile analyses. The in-depth mass spectral information 

encompasses in addition the recommended quantifier and qualifier masses, and access to available 

replicate mass spectra of the same compound.  

MSRI Mass Spectrum Search: For analysis of user provided mass spectra we implemented a query 

tool which allows comparison to all available curated mass spectra of our libraries. Mass spectra may 

be submitted in either NIST02 or AMDIS format (Ausloos et al., 1999; Stein, 1999). The search is 

performed by computing the fragment-intensity agreement, measured as dynamically normalized 

Euclidean distance [Euclid], as S12 [s12] index (Gover and Legendre, 1986; Ochiai, 1957), Hamming 

(Hamming, 1950) and Jaccard distance (Jaccard, 1908). The result set is presented as a sortable HTML 

table containing information such as the rank, the identifier for each spectrum, the retention time index 

(RI), the method information, the compound name in case of identified metabolites, and all computed 

similarity measures. All types of information can be used for sorting. Moreover, additional criteria for 

comparison are given based (1) on absolute RI differences to the observed RI taken from an optional 

user input and (2) alternatively to the best hit found. If available, analysis of occurrence of qualifier as 

well as quantifier masses is performed. A head-to-tail plot of the query and selected hit spectra can be 

invoked. Depending on the chosen sorting a colour-coded graphical representation of the 10 best hits 

is generated below the result table. The graphical out-put is similar to a typical BLAST (Altschul et al., 

1990) result. The ratio plot mirrors the occurrence of the masses and their co-responding ratios of 
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intensities in comparison to the query spectrum. The result table can be downloaded by an exporter 

function as a tab delimited and zipped file. The file contains the identical information as the HTML 

table but extends beyond the HTML display to all available mass spectra. Various filter options, 

especially restriction to a pre-defined RI window or set of major fragments, can be invoked by the user 

to limit the search to relevant results. 

MSRI Customized Library Generation: In contrast to the (pre-computed) MSRI libraries GMD 

allows the user to generate customized mass spectral library from the list of curated mass spectral 

entries. The results can be downloaded as a zipped text file and handled and used like a pre-computed 

MSRI library (see above). The search input is restricted to the MPIMP-IDs which can be obtained by 

the above-mentioned queries or by using the compound name converter (see below). The result can be 

limited according to the technology platform or the methods used to obtain a curated spectrum. 

Profile Compound Search: As mentioned above GMD has started to integrate metabolite profiling 

experiments generated on a quadrupole GC-MS technology platform. Currently, 69 profiles of nine 

replicate sets are included describing metabolic changes under different light conditions. The profiles 

can be queried by a particular compound name and allows searching for the co-responding compound 

levels within an experiment. Various filter options are available to restrict computation to high-quality 

mass traces by using the default or user modified values. Moreover, the user can select between 

parametric or non-parametric statistics for the dynamically computation of the treatment-control 

comparisons. The result set covers information regarding to the experimental backgrounds, 

comparisons done as well as information concerning the probability of the difference in the observed 

compound levels. Furthermore, treatment-control ratios are given and colour coded to mark decreased 

or increased levels. In analogy to the Affymetrix oligonucleotide technology platform we use different 

masses as representatives for a particular compound. Each of the used masses is represented in the 

results tables as well as is characterized by their co-responding behaviour in relation to each other 

mass.         

Compound Name Converter: According to the usage of different (identifier for) compound names 

for a metabolite we implement a converter which allows converting user compound names to MapMan 

names for stand-alone visualization of the results with the MapMan software (Thimm et al. 2004) or to 

MPIMP-IDs for customized library generation. 

 

Outlook 

GMD will frequently be updated with new mass spectra, metabolite identifications, mass spectral 

libraries of biological samples and metabolite profiling experiments. GMD is intended as a repository 

for experiments performed at the Max-Planck-Institute of Molecular Plant Physiology and for data 

made available through collaborating scientists. We offer our already well characterised GC-MS 

technology platforms specifically for co-operations on metabolite identification in complex biological 
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samples. As suggested by Bino et al. (2004) we envision to share biological samples and metabolite 

identifications between laboratories engaged in GC-MS metabolite profiling. Thus we provide a public 

platform for future advances and developments in metabolomic science.  In-depth analysis and 

understanding of metabolome data at systems level will require a multidisciplinary effort, especially 

integration of proteome and transcriptome data. Such interdisciplinary cooperation and data mining is 

in preparation and in the case of steady state transcript analysis already in place (Steinhauser et al., 

2004). We are convinced that GMD will represent a crucial building block for CSB.DB 

(http://csbdb.mpimp-golm.mpg.de). CSB.DB, a comprehensive systems-biology database project, will 

harbour and allow joined access to metabolome, proteome and transcriptome data. 

Thus CSB.DB will develop into a highly useful and informative public resource for researchers 

focusing on experimental biology as well as for computational biology and bioinformatics. 
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Chapter VII - General Discussion & Outlook:   
- Systems Biology: From Inside to Outside - 

Preface 

The work of this PhD thesis was done within the context of the rapidly evolving field of systems 

biology as the gaining number of references mirror. The following chapter introduces systems biology 

and outlines the investigations made in conjunction with the trends in systems biology. For discussion 

of the chapter specific topics the critical reader is refereed to the discussion section of the respective 

chapter. 

   

Introduction 

Biological systems are generally regarded as complex systems, with an enormous potential to adjust 

intracellular processes in relation to internal and external signals of biotic or abiotic origins (Kitano, 

2002a; Oltvai and Barabási, 2002). The organism specific responses generated will be in the range of 

the ‘physiological competences’ of the individual species and are influenced by multiple 

environmental and genetic factors (Trewavas, 2000). Furthermore, these responses are strongly 

dependent on the status of an organism, such as the developmental stage or the energy status 

(Trewavas, 2000). The complexity of organization and systems responses increase from prokaryotic to 

eukaryotic organisms and from a single cell to multicellular organisms. The structural complexity of 

multicellular organisms is a result of the variation and function of the cells (Esau, 1953 in Edwards 

and Coruzzi, 1990). The bases of the cellular complexity and their responses are included and 

executed by the basic sets of cellular elements, namely the genome, the transcriptome, the proteome 

and the metabolome (Oltvai and Barabási, 2002).  

In the past decades with the arising of molecular biology the function of genes or their respective gene 

products have been mainly studied by approaching single or small sets of cellular elements. Nowadays 

molecular tools and their application in unravelling biological questions have enabled the discovery of 

regulatory processes and their basic biological principles (see Buchannan et al., 2000). Despite this 

highly successfully applied component-centric approach many important biological processes are still 

unknown or only partially understood. For instance, the observed differences among ‘identical’ cells 

from the same tissue (Fricke et al., 1994; Kehr, 1998) can not be explained by the function of a 

particular gene or more general an element. The surprisingly low estimate of up to 25.000 genes of the 

human genome (The International Human Genome Sequencing Consortium, 2004) compared to 

Arabidopsis thaliana with approximately 26.000 genes (The Arabidopsis Genome Initiative, 2000) in 

conjunction with the observed complexity pointed to further more complex processes and mechanisms 
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despite single gene function. Arising from the demand to unravel complex biological mechanisms the 

concept of ‘systems biology’ was re-discovered in the past years (Kitano, 2002b). The renewed 

interests to look at the entire biological system(s) is currently treated as equivalent to a (r)evolution in 

biological science (Butler, 2001; Westerhoff and Palsson, 2004). The focus of understanding 

biological systems at holistic level is not a new field in biology (Kitano, 2002b) and may be one of the 

important challenges in the post-genomic era (Forst, 2002). The movement into systems biology is 

mainly driven by the availability of whole genome sequences for various organisms (Pennisi, 2003). 

The annotation of entire genomes facilitates ongoing developments and the maturation of multiplex, 

high-throughput profiling technology platforms (Ideker et al., 2001; Hood and Perlmutter, 2004). 

Instead of analyzing single or small sets of cellular elements these technology platforms enable 

scientists to simultaneously monitor the whole or a vast amount of the cellular compounds, such as 

transcripts (Lockhart and Winzeler, 2000) or metabolites (Kopka et al., 2004a). First it was thought 

that high-throughput technology driven analyses will be sufficient for systems level understanding. 

Currently, the necessity emerges to access the cellular level by integrative approaches (Kitano, 

2002b,c; Oltvai and Barabási, 2002). In combination with the ongoing efforts to unravel the molecular 

basis of organism responses at full systems level a shift in the central paradigm for molecular biology 

is supposed to be absolutely necessary (Henikoff, 2002; Oltvai and Barabási, 2002; Westerhoff and 

Palsson, 2004). 

Understanding the biological complexity and modelling the cellular systems represents the driving 

force to move away from component-centric focus to a systems level quest (Nature, 2000; Hwa, 2004). 

Whereas ‘systems biology’ is not consentiently defined it represents an analytical approach to unravel 

the interrelations of the cellular elements of a biological system (Weston and Hood, 2004; Hood and 

Perlmutter, 2004). The main objective is to offer a comprehensive knowledge backbone for 

understanding the basic principles of biological systems without abstracting the essential aspects in 

biology (Kitano, 2002b,c). To understand how a limited number of cellular elements work together 

and form complex processes research at different areas need to be carried out (Kitano, 2002b; 

modified): 

(1) Genomics and molecular biology research,  

(2) Network analysis to unravel the structure, properties and dynamic of biological networks (e.g. 

transcript or metabolite networks) over time and under various conditions, 

(3) Analyses related to robustness and control of biological systems, 

(4) Advances in simulation, modelling, algorithm and easily-useable tool development, 

(5) Ongoing development of high-precision, high-throughput and comprehensive measurements 

technologies, and 

(6) Databases, allowing public access to data from all cellular levels as well as to statistical and 

computational results. 
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Research at these different areas demands cross-disciplinary scientists, expertises from different 

research activities and specialists in various fields of natural science, e.g. biology, physics, 

mathematics, chemistry, computer science. Furthermore, high-throughput facilities are required for 

implementing systems approaches. These requirements represent the most challenging aspects in the 

evolving field of system biology (Hood and Perlmutter, 2004). 

The following part of this thesis will give a brief overview of previous and recent developments and 

investigations to integrate the different cellular levels for improved analyses and more holistic 

understanding of biological systems. Requirements will be defined to open up the possibility to 

understand and successfully predict complex biological processes in conjunction with the recent and 

future developments of CSB.DB - a comprehensive systems-biology database and in general with our 

investigations. 

 

CSB.DB - a comprehensive systems-biology database 

CSB.DB - a comprehensive systems-biology database - in conjunction with the underlying 

comprehensive systems-biology project (see Chapter II) focus on the generation of easily accessible 

knowledge and hypotheses about apparent interactions of elements of the cellular inventory 

(Steinhauser et al, 2004a, Kopka et al., 2004b; see Chapter II, VI).  

Recently, the majority of high-throughput multi-parallel transcript profiling technologies (Lockhart 

and Winzeler, 2000; see Chapter I) developed to a common and worldwide used tool to uncover 

biological questions conveying the generation of thousands of transcript profiles. For instance, the 

AtGenExpress is a multinational coordinated effort to generate a comprehensive set of transcript 

profiles of Arabidopsis thaliana based on the Affymetrix ATH1 full genome chip. The full generated 

data set comprises samples from various biotic and abiotic treatments and multiple developmental 

stages, tissues and organs (http://www.uni-frankfurt.de/fb15/botanik/mcb/AFGN/atgenex.htm). The 

public availability and the continuously increasing amount of expression profiles analyses (Edgar et al., 

2002; Gollub et al., 2003; Rhee et al., 2003; AtGenExpress Consortium) initially determine the focus 

on apparent gene-to-gene interactions. Thus, CSB.DB - a comprehensive systems-biology database 

was developed to open this information to a broad audience. 

In the current build CSB.DB integrates two built-in modules, namely the CoR (Steinhauser et al., 

2004a) and the GMD module (Kopka et al., 2004b). Whereas the CoR module allows access to 

transcriptional co-responses of various key model organisms (see Chapter II) the GMD module 

harbours information regarding to metabolite measurements, metabolite identification as well as 

protocols (Chapter IV). For further developments of CSB.DB into a highly useful and informative 

public resource for researchers from various scientific fields investigations must be made regarding 

different areas. The basic levels of the cellular inventory and the interrelation among and within these 
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levels represent the points of origin for our future improvements. These improvements and novel 

investigations will focus on: 

(1) Collection of results from component-centric approach, 

(2) Transcriptome analyses to allow access to transcript level measurements over time, under 

various growth and treatment conditions as well as developmental stages, 

(3) Proteome analyses to supplement the CoR and GMD modules, 

(4) Metabolite profile analyses and compound identification effort to extend and improve the 

GMD module in parallel to the transcript profile module 

(5) Co-Response analyses in conjunction with promoter and motif analyses, and 

(6) Combined analyses among the different cellular elements and levels.  

‘Component Centric’ driven Systems Biology – A Contradiction? 

The evolution of systems biology is characterized by a trend from component-centric to a systems 

level quest approach (Hwa, 2004). Whereas this shift is important to decipher complex biological 

questions a component-centric research delivers basic information regarding pieces of the whole, e.g. 

promoter activities or enzymatic properties of proteins. Gathering of information from component-

centric driven research is important for various reasons: 

(1) describing the properties and characteristics of particular elements of the cellular inventory, 

(2) assisting, i.e. validate or invalidate, results of high-throughput assays (e.g. metabolic profiling, 

microarray analyses) for particular elements and therefore allow reassigning a new quality 

(independently confirmed) to an element, and 

(3) providing essential information or hypotheses for system quest driven modelling and 

validation. 

Therefore, collecting and providing access to data from component-centric research does not represent 

a contradiction to systems level quest. Recently, various databases provide access to enzymatic 

properties, protein characteristics and sequence information derived from component-centric research, 

multinational annotation projects or literature (e.g. Schomburg et al., 2004; Karp et al., 2002a,b; 

Wheeler et al., 2004). Despite these various activities fewer attempts have been made to gather 

component-centric data regarding to e.g. protein localization or promoter activity. Such efforts were 

accomplished for yeast with the main emphasis to provide access to protein localization data 

(http://yeastgfp.ucsf.edu/; Huh et al., 2003; Ghaemmaghami et al., 2003) but seem to be lacking for 

plants. According to the aforementioned reasons the public access to component-centric experimental 

results is essential for integrative systems biology approaches and represents one of the future 

challenges of CSB.DB. In analogy to the (suggested) standardization of transcript [MIAME, (Brazma 

et al., 2001)] or metabolite [MIAMET, (Bino et al., 2004)] profile analyses integration of component-

centric data require standardization of the experimental parameters. The standardization effort will be 

not trivial, requires strong interaction of computer and experimentally focused scientists and will be a 

Page - 102 - 



   Chapter VII: General Discussion 

long-term goal. Furthermore, novel tools for an efficient search will be necessary. One of the possible 

solutions may be ‘text-mining’ in conjunction with manual curation efforts (i) to group data according 

to their contexts and (ii) to allow a context-dependent search of the harboured data. 

CSB.DB: From Transcriptome to Metabolome 

Transcriptome: In the current build of CSB.DB the main emphasis of transcriptional analyses focuses 

on apparent gene-to-gene interrelation. Despite the possibility to invoke various bi-plots (see Chapter 

II) we have made fewer attempts to usually applied transcript profile analyses, such as up-/down 

regulation under particular condition because various databases and public resources allow access to 

those results, like TAIR (Rhee et al., 2003) or the Stanford Microarray Database (Gollub et al., 2003). 

Despite this highly competitive field basic analyses of changed transcript level are necessary for 

improved validation of observed gene-to-gene interrelations. Our future investigation will be directed 

towards single genes and set of genes regarding to (i) visualization and (ii) statistical analyses of the 

measured transcript levels. First investigations, mainly initiated by B.Usadel, focus on false-colour 

code visualization of expression levels on diagrams. MapExpress, a MapMan-based web-application 

(Thimm et al., 2004), superimposes graphical maps with observed expression levels and allows easy 

overview across various transcript profiles for favourite genes.          

Proteome: As proteins are generally regarded to determine cellular function the exploitation of the 

proteome is one of our future prime interests. The expression of a protein-encoding gene does not need 

to necessarily result in a functional protein and protein function. The path [gene – transcript – protein 

– protein function] is controlled by complex regulatory processes (see Taiz and Zeiger, 2000). For 

instance, Gibon et al., (2004) revealed for various enzymes that changes in transcript levels typically 

led to strongly damped changes of the enzyme activity. Hence, understanding gene functions requires 

deciphering the interrelation of transcripts and proteins as well as understanding post-transcriptional 

and post-translational mechanisms. Analyses regarding to the proteome or joint analyses of transcript 

and proteins have been applied to few organisms, for instance to Escherichia coli (Yoon et al., 2003; 

Corbin et al., 2003) and Saccharomyces cerevisiae (Gygi et al., 1999). Recently, the limited number of 

available proteome profile data restricts those analyses. Novel investigations and developments in 

proteomics, such as mass-spectrometry-based proteomics or protein microarrays (Pandey and Mann, 

2000; Aebersold and Mann, 2003), will lead to a rapid increase of available proteome profiles. These 

profiles will be targets for investigations regarding protein relationships or protein-transcript 

interrelations. 

Metabolome: Metabolites represent the end products of various cellular processes and can be signals 

for further responses. Their levels mirror responses of biological systems to environmental or genetic 

perturbations. Recently, the substantial progress made in metabolomics by gas chromatography 

combined with mass spectrometry (GC-MS) allow quantitative determination of hundreds of known or 

unknown metabolites (Fiehn et al., 2000; Roessner et al., 2001a,b, Kopka et al., 2004b). In the current 
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build of the GMD module we have started to integrate profiles obtained from quadrupole GC-MS 

technology platform (Kopka et al., 2004a). The profile technology platform will be frequently updated 

with new metabolite profiles from the quadruple GC-MS platform as well extended to GC-MS-TOF 

(time-of-flight) platform.  

Co-Responses: Context and Causality 

The first step to gain insight into understanding biological systems at entire level has been done with 

the implementation of the transcriptional co-response databases. By scanning for best co-responses 

among changing transcript levels the transcriptional co-response databases allow to infer hypotheses 

on functional interaction of genes. The basic assumption underlying this analysis is that common 

transcriptional control of genes is reflected in co-responding, synchronous changes in steady-state 

transcript levels. To investigate in apparent gene-to-gene interaction we are currently using publicly 

available transcript profiles generated on two-colour cDNA or oligonucleotide technology platforms 

(Lockhart and Winzeler, 2000; see Chapter I). Most of the underlying experiments are based on 

steady-state transcript measurements. The steady-state level of a transcript depends on the rate of 

synthesis (transcription) and degradation, which is influenced by the transcript stability. Synthesis and 

degradation can be transcript specific and therefore, can influence the co-response. For instance, 

stability of transcripts and expression in different time frames can mimic co-responding, synchronous 

changes in transcript levels which can lead to significant co-responses. Moreover, microarray 

measurements are noisy which can lead to imprecise transcript and resulting co-response 

measurements. Although these facts can influence the strength of a particular co-response, in general 

this analysis allows inferring precise hypotheses as demonstrated (Chapter III, IV, and V). Moreover, 

the ever growing amount of transcript profiles generated used to study the influence of factors by time-

series analyses will help to address the aforementioned limitations. 

In co-response analyses we want to determine whether two variables, such as transcripts, are 

interdependent or covary, i.e. vary together. A typical statistical assumption of co-response analyses is 

that both variables are effects of a common cause. The computed coefficient reflects the strength of 

co-response among two variables, but the common cause still remains unknown. To gain insight into 

unravelling causality variables can be grouped according their co-response behaviour (see Chapter I). 

Based on our initial assumption, that common transcriptional control is reflected in co-responding 

transcript changes, we can use these analyses to extract common motifs within promoter elements. 

Such analyses have been successfully accomplished for few key model organism, such as Escherichia 

coli (Pilpel et al., 2001; Shen-Orr et al., 2002) and Saccharomyces cerevisiae (Segal et al., 2003). 

Deciphering the transcriptional control in Arabidopsis thaliana will be one of our future focuses, 

which will include joint promoter and co-response analyses as it was shown earlier (e.g. Segal et al., 

2003). In addition, joint analyses allow us to elucidate (overlapping) functional modules and therefore 

may lead to a better understanding of gene function. The analyses of transcription units in E.coli 
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revealed context dependent promoters usage, gene expression and transcript co-response (see Chapter 

III). Currently a project is running to compare co-responses across conditional data matrices to 

contextualize co-responses of Arabidopsis thaliana. Such analyses may help to better understand the 

stability of co-responses as well as the dynamics of networks. 

The ‘Cellular Inventory’ Project 

The substantial developments and maturation of recent multi-parallel high-throughput assays in 

conjunction with the dawn of genomic technology will encourage us to take the understanding of 

biological systems one step further (see Chapter I, and VI). To overcome the evidently contrary 

viewpoints of assigning a single given gene function and unravelling control points in complex 

biological processes the flood of information from the different technologies needs to be made 

publicly available to all researchers without demanding bioinformatics expertise. Combined and 

integrative analyses of data derived from all levels of the cellular inventory are required to understand 

biological systems from an entire point of view (Kitano, 2002a-c, Oltvai and Barabási, 2002). Data 

from the same biological sample needs to be collected and analysed to gain insight into deciphering 

the interrelation among and within these cellular levels.   

The ‘Cellular Inventory’ project is a joint and multidisciplinary effort aimed at addressing these 

complex biological questions. It is a united initiative of CSB.DB (see chapter II) and GMD (see 

chapter VI) and involved scientist from the field of experimental and computational research as well 

as cross-disciplinary scientists. The main emphasis is directed towards paired analyses of the 

transcriptome and the metabolome of biological samples. Whereas various attempts have been made to 

combine transcript and protein data (Gygi et al., 1999; Yoon et al., 2003; Corbin et al., 2003), only 

few studies successfully integrated transcript and metabolite measurements to extract biological 

meaningful information. Askenazi et al. (2003) applied an integrated approach for improved fungal 

strain engineering and correlated transcript and metabolite measurements. Similar to this approach 

Urbanczyk-Wochniak et al. (2003) applied transcript-to-metabolite correlations for inferring complex 

hypotheses on multi-parallel high-throughput measurements of Solanum tuberosum.  

Within the framework of the cellular inventory project we investigate in transcript-metabolite and 

metabolite-metabolite co-response of plant organisms as described earlier (Urbanczyk-Wochniak et al., 

2003). Thus, a step further into better understanding of biological systems may be done by extension 

the transcriptional co-responses towards metabolite or transcript-metabolite co-responses. The bases 

for such investigations are represented by the particular databases harbouring profile measurements of 

the different cellular elements (see above).  

In conjunction with this project and the possible extension to proteomics we may able to investigate in 

comprehensive network analyses within and among the cellular levels. Beyond it, further 

investigations regarding flux analyses may open up the possibility to modelling pathways at holistic 

level.     
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From Bacteria to Plants 

CSB.DB - a comprehensive systems-biology database - is an open access tool which may serve as the 

basis for more sophisticated means of elucidating gene function. Once developed, it was indented to 

apply the implemented algorithms and developed tools (e.g. cCoRv1.0; Steinhauser et al., 

unpublished) to proof the concept, that common transcriptional control is reflected in synchronous 

changes of transcript levels. To investigate, we selected the prokaryotic operon structure of the well 

characterized key model organism Escherichia coli (Steinhauser et al., 2004b; Chapter III). Because, 

genes which are co-regulated in physical units of common polycistronic messenger RNA (mRNA) can 

be expected to reveal high correlations in transcriptome analyses. High correlations should be 

observed independent of the nature of underlying biological experiments (see Chapter III). In 

conjunction with the work of Bockhorst et al. (2003a,b) and Yamanishi et al. (2003) we found that 

prediction accuracy of transcriptional analyses can be significantly increased by using additional 

information, such as genomic information (e.g. sequence data, intergenic distances [Bockhorst et al., 

2003a; Yamanishi et al., 2003; Steinhauser et al, 2004b]) or complex models (Bockhorst et al., 2003b). 

Using biological facile organisms to infer hypotheses 

According to the aforementioned observation we can conclude, that learning from the facile can help 

to better approach complex organisms (see Chapter IV, V). Beyond it, most of the basic functional 

assignments of gene discovered by genome sequencing projects have been realised by annotation 

transfer from homologous sequences (McGeoch and Davidson, 1986; Bork and Gibson, 1996; Bork et 

al., 1998). Many orthologous genes can be found across species and often informational pathways in 

biological facile organisms are similar to those in complex organisms. Furthermore, Ueda et al. (2004) 

have shown that gene expression dynamics follows the same principle from bacteria to human. The 

observed principle, namely that gene expression changes are proportional to their expression levels, 

regenerate the complexity and dynamic organization of the transcriptome of various phyla (Ueda et al., 

2004). Analyses of gene co-expression networks of human, yeast, worm and fly deciphered the 

existence of more than 22,000 conserved genetic modules (Stuart et al., 2003). These modules are 

characterized by pairs of genes whose expression is significantly correlated in multiple organisms. 

Stuart and co-worker (2003) have shown that multiple-species networks enabled discarding spurious 

gene interrelations from functional relevant associations. Thus, it is feasible to use genetically and 

biologically facile organisms to infer hypotheses on gene function and functional interrelation of genes 

from higher, more complex organisms. In contrast, comparing of functions or interrelation among 

different phyla may enable fundamental insights into mechanisms of evolution or physiology, e.g. as it 

was shown for the TCA cycle (Forst, 2002).  
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From biological facile to complex organisms 

The using of biological facile organisms and comparisons across various phyla (see above) open up 

the possibility to extract and characterize universal and general biological processes and phenomena. 

Despite these opportunities various processes or genes are organism specific and recently, can not be 

approached efficiently by global techniques.  

A widespread phenomenon in eukaryotic organisms is the coordinated expression of genes with 

common function (DeRisi et al., 1997; Eisen et al., 1998; Niehrs and Pollet, 1999). These sets of genes, 

called synexpressed groups, showing parallels to operons and may enable to understand the 

evolutionary changes to eukaryotic diversity (Niehrs and Pollet, 1999). Despite this, the transcriptional 

co-responses among genes transcribed as polycistronic mRNA (operons) are strongly overlapped with 

non-operon genes. As we have shown, prediction accuracy for genes transcribed as polycistronic 

mRNA (operons) can be significantly increased by use of additional information, i.e. intergenic 

distances between the genes (Chapter III). The choice of selecting the appropriate additional 

information depends on the biological question which scientists have and the availability of such data 

or background knowledge. In a first collaboration regarding the identification of brassinosteroid-

related genes (Lisso et al., 2004) we queried for transcriptional co-responses with the BR-signalling 

components BRI1 and BAK1 (chapter IV) instead of using additional information. This approach 

strongly reduced the list of candidate genes which share common co-response to both and enabled the 

identification and confirmation of 72 genes showing BR-dependent expression. Our second 

collaboration focused on basic functional assignment of Arabidopsis subtilase genes. The lack of 

additional information as well as of anchor points, i.e. genes, restricts the general application of the 

above-mentioned approaches. Classification based on the co-response based functional neighbourhood 

enabled us to assign a basic function to the ubiquitous expressed subtilase genes (Chapter V). In 

contrast to the successful applications there are some pitfalls. For instance, the assumption that 

transcription factors exhibit a strong co-response to their targets may lead to a wrong set of possible 

regulated genes. In general, we can assume that regulator and target genes may not be correlated in 

steady-state expression profiles. To overcome this limitation Segal et al. (2003) described and 

successfully applied an iterative approach to identify regulatory modules and their regulators to yeast 

expression data. They identified 50 functional modules and described novel regulators by 

simultaneous partitioning of genes into modules and identification of the co-responding regulation 

program. Furthermore, transcript stability and degradation can mimic or mask biological meaningful 

co-responses. Genes regulated by common cis-elements need not necessarily reflect strong co-

responses based on steady-state transcript measurement if the transcript stability different.  

Despite the entire factor influencing transcriptional co-responses our applied method in conjunction 

with the developed web platform CSB.DB enabled easy access to large-scale statistical analyses of 

apparent gene-to-gene interactions. Furthermore, it allows inferring hypotheses for characterized as 
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well as uncharacterized gene which can not be accessed by sequence homology. These hypotheses can 

be successfully tested as shown in the chapters III-V. 
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   Summary  

Deutsche Zusammenfassung 
Die vergangenen Jahrzehnte waren gekennzeichnet durch umfangreiche Bemühungen, die 

Genomsequenz verschiedener Organismen vollständig zu entschlüsseln. Die Verfügbarkeit 

vollständiger genomischer Daten löste die Entwicklung von modernen Hochdurchsatzmethoden aus, 

welche die gleichzeitige Messung von verschiedenen Transkripten, Proteinen und Metaboliten 

erlauben. Mittels genomischer Informationen und Hochdurchsatztechnologien erlaubt eine hoch 

parallelisierte experimentelle Biologie die Erforschung von Gesetzmäßigkeiten, welchen biologischen 

Systemen zugrunde liegen. Das Verständnis biologischer Komplexität durch Modellierung zellulärer 

Systeme repräsentiert die treibende Kraft, welche heutzutage den Element-zentrierten Focus auf 

integrative und ganzheitliche Untersuchungen lenkt. Das sich entwickelnde Feld der Systembiologie 

integriert Entdeckungs- und Hypothesen-getriebene Wissenschaft um ein umfangreiches Wissen durch 

Computermodelle biologischer Systeme bereitzustellen.  

Im Kontext der sich neu entwickelnden Systembiologie investierte ich in umfangreiche 

Computeranalysen zur Transkript Co-Response bezüglich ausgewählter prokaryotischer und 

pflanzlicher eukaryotischer Organismen. CSB.DB - a comprehensive systems-biology database - 

(http://csbdb.mpimp-golm.mpg.de/) wurde initiiert, um freien Zugang zu den biostatistischen 

Ergebnissen als auch zu weiterem biologischem Wissen zu bieten. Die Datenbank CSB.DB ermöglicht 

potentiellen Anwendern die Hypothesengenerierung bezüglich der funktionalen Wechselbeziehungen 

von Genen von Interesse und kann zukünftig die Grundlage für einen fortgeschrittenen Weg der 

Zuordnung von Genfunktionen darstellen. Unter Verwendung chromosomaler Distanzen und 

Transkript Co-Response konnte das Konzept und CSB.DB angewandt werden, um bakterielle Operons 

in Escherichia coli erfolgreich vorherzusagen. Darüber hinaus werden Beispiele gezeigt, die andeuten, 

dass die Transkript Co-Response Analyse eine Identifizierung differentieller Promoteraktivität in 

verschiedenen experimentellen Bedingungen ermöglicht. Das Co-Response Konzept wurde, mit dem 

Schwerpunkt auf die eukaryotische Modellpflanze Arabidopsis thaliana, erfolgreich auf komplexere 

Organismen angewandt. Die durchgeführten Untersuchungen ermöglichten die Identifizierung neuer 

Gene hinsichtlich physiologischer Prozesse und darüber hinaus die Zuweisung von Genfunktionen, 

welche nicht durch Sequenzhomologie ermöglicht werden kann. GMD - The Golm Metabolome 

Database - wurde initiiert und in CSB.DB implementiert, um Metaboliten Informationen als auch 

Metaboliten Profile zu integrieren. Dieses neue Modul ermöglicht die Ausrichtung auf komplexere 

biologische Fragen und erweitert die derzeitige systembiologische Fragestellung in Richtung 

Phänotypus-Zuordnung.
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   Supplemented Material  

Appendix 
Further information and supplemented material is available from the CSB.DB Homepage: 

http://csbdb.mpimp-golm.mpg.de. 
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