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Zusammenfassung

Das Forschungsthema Synchronisation bildet einen Schnittpunkt von Nichtlinearer Dyna-
mik und Neurowissenschaft. So hat zum einen neurobiologische Forschung gezeigt, daß
die Synchronisation neuronaler Aktivität einen wesentlichen Aspekt der Funktionsweise
des Gehirns darstellt. Zum anderen haben Fortschritte in der physikalischen Theorie zur
Entdeckung des Phänomens der Phasensynchronisation geführt. Eine dadurch motivierte
Datenanalysemethode, die Phasensynchronisations-Analyse, ist bereits mit Erfolg auf em-
pirische Daten angewandt worden.

Die vorliegende Dissertation knüpft an diese konvergierenden Forschungslinien an. Ih-
ren Gegenstand bilden methodische Beiträge zur Fortentwicklung der Phasensynchronisa-
tions-Analyse, sowie deren Anwendung auf ereigniskorrelierte Potentiale, eine besonders
in den Kognitionswissenschaften wichtige Form von EEG-Daten.

Die methodischen Beiträge dieser Arbeit bestehen zum ersten in einer Reihe spezia-
lisierter statistischer Tests auf einen Unterschied der Synchronisationsstärke in zwei ver-
schiedenen Zuständen eines Systems zweier Oszillatoren. Zweitens wird im Hinblick auf
den viel-kanaligen Charakter von EEG-Daten ein Ansatz zur multivariaten Phasensynchro-
nisations-Analyse vorgestellt.

Zur empirischen Untersuchung neuronaler Synchronisation wurde ein klassisches Ex-
periment zur Sprachverarbeitung repliziert, in dem der Effekt einer semantischen Verlet-
zung im Satzkontext mit demjenigen der Manipulation physischer Reizeigenschaften (Schrift-
farbe) verglichen wird. Hier zeigt die Phasensynchronisations-Analyse eine Verringerung
der globalen Synchronisationsstärke für die semantische Verletzung sowie eine Verstärkung
für die physische Manipulation. Im zweiten Fall läßt sich der global beobachtete Synchro-
nisationseffekt mittels der multivariaten Analyse auf die Interaktion zweier symmetrisch
gelegener Gehirnareale zurückführen.

Die vorgelegten Befunde zeigen, daß die physikalisch motivierte Methode der Phasen-
synchronisations-Analyse einen wesentlichen Beitrag zur Untersuchung ereigniskorrelier-
ter Potentiale in den Kognitionswissenschaften zu leisten vermag.

Abstract

The topic of synchronization forms a link between nonlinear dynamics and neuroscience.
On the one hand, neurobiological research has shown that the synchronization of neuronal
activity is an essential aspect of the working principle of the brain. On the other hand,
recent advances in the physical theory have led to the discovery of the phenomenon of
phase synchronization. A method of data analysis that is motivated by this finding—phase
synchronization analysis—has already been successfully applied to empirical data.

The present doctoral thesis ties up to these converging lines of research. Its subject
are methodical contributions to the further development of phase synchronization analysis,
as well as its application to event-related potentials, a form of EEG data that is especially
important in the cognitive sciences.

The methodical contributions of this work consist firstly in a number of specialized sta-
tistical tests for a difference in the synchronization strength in two different states of a sys-
tem of two oscillators. Secondly, in regard of the many-channel character of EEG data an
approach to multivariate phase synchronization analysis is presented.

For the empirical investigation of neuronal synchronization a classic experiment on lan-
guage processing was replicated, comparing the effect of a semantic violation in a sentence
context with that of the manipulation of physical stimulus properties (font color). Here
phase synchronization analysis detects a decrease of global synchronization for the seman-
tic violation as well as an increase for the physical manipulation. In the latter case, by means
of the multivariate analysis the global synchronization effect can be traced back to an inter-
action of symmetrically located brain areas.

The findings presented show that the method of phase synchronization analysis mo-
tivated by physics is able to provide a relevant contribution to the investigation of event-
related potentials in the cognitive sciences.
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Chapter 1

Introduction

The topic of synchronization has recently achieved an outstanding role in neurobi-
ology and cognitive science as well as in nonlinear dynamics. In cognitive neuro-
science, synchronization is more and more considered to be one of the basic mecha-
nisms of brain function, from visual perception up to highest cognitive processes.
In physics, the long known phenomenon of synchronization of periodic oscillators
has in the last years been extended to chaotic systems. These recent advances have
led to a cooperation of the two research fields which forms the background of the
present thesis.

This chapter gives a short introduction into this converging research. It for-
mulates the main theoretical ideas that have led to the current interest in synchro-
nization processes in neuroscience and summarizes a number of important studies
that have been published in this context. This includes the findings of the physical
theory of synchronization in nonlinear dynamics and the application of the result-
ing analysis methods to neurophysiological data. Finally, the chapter states the
specific aims of this work and gives an outline of the following.1

1.1 Temporal binding

Neurobiological research has shown (cf. Engel et al., 1991) that in the visual cortex
there exists a hierarchy of neurons that detect increasingly complex features of the
scene registered by the eyes. On the simplest level, they just copy the activation
patterns of sensory neurons in the retina, but subsequent cells react to contrasts,
movements, linear structures in a specific direction, and so on, each in a specific
area of the visual field. If one assumes that this hierarchical pattern of accumulat-
ing complexity is the functional principle of the whole brain, one has to conclude
that at the highest level for each object that is possibly relevant to the organism
there exists a single dedicated neuron that detects the special complex combination
of properties this object consists of. Since such a scheme leads to an absurdly high
number of combinations, it calls for far more neurons than are actually present in
the brain (the “combinatorial explosion”), and it implies the strange notion that
every contingent item of the world gets hard-coded into the brain (presumably
during maturation), which has been caricatured by the idea of the “grandmother
neuron”—a neuron that is active if and only if one’s grandmother is present.

On the other hand, for complex perception and cognition it is not sufficient that
only basic stimulus features are detected in specialized brain areas. If a number of

1In this introduction, the understanding of the concepts referred to has to be presumed. Many of
them will be explained in Ch. 2.
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8 1 Introduction

Figure 1.1: The concept of binding, illustrated by a “bistable” image. The image
(a) has two possible interpretations: a face partially occluded by a candlestick (b),
or two opposing faces (c). Both interpretations are distinguished by the way the
edges that are detected at different places (marked by bold circles) are associated
with each other to make up a contour—that is, how they are “bound” into object
representations. Reproduced with permission from Engel et al. (2001), Dynamic
predictions: Oscillations and synchrony in top-down processing. Nature Reviews
Neuroscience, 2(10), Box 2. Copyright c© 2001 Macmillan Magazines Ltd. and c©
1990 Palgrave Macmillan.

objects is perceived at the same time, and an activation pattern indicates the pres-
ence of a certain set of stimulus features in the perception, there is no information
about what features combine with which other features to make up the different
objects (the “superposition catastrophe”). For instance, if there is a green ball and
a red cube, the detection of “ball”, “cube”, “green”, and “red” could also be inter-
preted as the presence of a red cube and a green ball. This necessity to specifically
combine detected features into object representations is called the binding problem
(see Fig. 1.1). Because of the combinatorial constraint, binding cannot be achieved
by the activity of neurons that are specifically sensitive to certain feature combi-
nations. There has to be a means to encode the belonging-together of low level
feature representations directly into the corresponding neuronal activity. That is,
the alternative to the representation of an object by a detector neuron is its repre-
sentation by an assembly of associated neurons that may be distributed over large
areas of the brain.

Based on theoretical considerations (cf. von der Malsburg, 1985) as well as ani-
mal experiments and an increasing number of findings in human neurophysiologi-
cal data (see below), it is nowadays widely believed that the mechanism of binding
employed in the brain is synchronization, or temporal binding. While the activity of
single neurons consists of bursts of firing (considered stronger the higher the fir-
ing rate is), in most cases these bursts have oscillatory character. According to
the theory of temporal binding the activation of an assembly consists in the syn-
chronization of the oscillatory activity of the associated cells. Since this temporal
adjustment of firing activity of the cells is not necessarily affecting their individual
mean firing rates, synchronization is suitable as a marker of belonging-together of
features that are represented by the single neurons.

Though the concept of binding has been introduced in the context of percep-
tion to understand the mechanism of sensory integration (of features into an object
representation) and segmentation (of one object from another), today the theory of
binding has to be seen in the broader context of the functional integration of special-
ized, spatially separated brain areas (cf. Varela et al., 2001). Large-scale cooperation
in the brain seems to be necessary to achieve perception-related object representa-
tions as well as more complex cognitive processes like the planning of actions, the
understanding of music and language, or for being conscious.

http://www.nature.com/reviews
http://www.nature.com/reviews
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References: Von der Malsburg (1985) introduces the idea of dynamic neuronal con-
nectivity patterns as the basis of brain function. Von der Malsburg and Schneider (1986)
describe neural synchronization as a means of sensory segmentation under the title of a
“Correlation Theory” of brain function. (Interestingly, von der Malsburg (1995) argues that
temporal binding is not only present in real brains, but is also efficient in improving the
capabilities of artificial neural networks.) Damasio (1990) gives a model of memory re-
trieval by synchronous activation of distributed neural networks, representing the different
modality-related aspects of a recollection in the respective specialized brain areas. Varela
(1995) discusses the concept of temporal binding (synchrony) in relation to cognitive opera-
tions, wherein distributed cell assemblies underlie the coherence of cognition. Singer (2000)
proposes that the brain uses two complementary strategies for representations: single cells
specific to frequently occurring items of low complexity and transient cell assemblies for
infrequent high-complexity items, while the relatedness of distributed neurons in the latter
case is encoded by the synchronization of their responses. Engel et al. (2001) discuss experi-
ments on synchrony in the context of a “dynamicist” idea of top-down processing of stimuli.
They give an explanation of the functional role of synchrony (temporal coding) in the oper-
ation of the brain, concerning the causes as well as consequences of synchrony. Varela et al.
(2001) propose phase synchronization over multiple different frequency bands as a mech-
anism of large-scale integration in the brain, to enable the emergence of coherent behavior
and cognition. Thompson and Varela (2001) discuss the concept of synchronous cell assem-
blies in the context of their “enactive” approach to the theory of consciousness. Engel and
Singer (2001) as well as Singer (2001) investigate the relevance of temporal binding for the
understanding of consciousness in the sense of sensory awareness.

Following early theoretical approaches pointing to this direction, it was a num-
ber of pioneering studies around 1990 that provided concrete evidence for the ex-
istence of a temporal binding mechanism in the brain. These studies were mainly
based on single cell and multi-unit recordings in the visual cortex of cats. Engel
et al. (1991) give a review of experiments performed by their group (see there for
further references). They found oscillations on the spike burst level in the fre-
quency range 40–60 Hz with synchronizations that were specific to neurons with
similar feature preferences. Especially compelling was their demonstration (see
Fig. 1.2) of a simple form of sensory integration (by synchronization) and segrega-
tion (by desynchronization), i.e. direct evidence for the theory of temporal bind-
ing. Similar results were obtained by another group; see Eckhorn et al. (1991) for a
review and references.

These findings in animal experiments have inspired studies aimed at demon-
strating synchronized activity in response to sensory and cognitive processing in
humans. Because measurements on the cellular level are strongly invasive and
can only in special cases be applied to human subjects, most of the studies have
used EEG (electroencephalography, see Sec. 2.1) and similar data. Since EEG sig-
nals represent the summed up activity of large local neuron populations, the band
power (signal power in a selected frequency band) of the EEG response at a single
recording site may be regarded as an indirect measure of synchronization within
this population. Terminology related to this interpretation dates back to the in-
vestigation of event-related changes in alpha band power starting in the 1970s,
so-called event-related desynchronization and synchronization (cf. Pfurtscheller,
1998). In contrast to this, most newer studies have been oriented at the findings
in the cat visual cortex and therefore have focused on band power in the gamma
range (above 30 Hz).

References: Lutzenberger et al. (1994) find reduced band power for the perception of
pseudowords (word-like sounds without a meaning) compared to words in the EEG gamma
band; Pulvermüller et al. (1996) repeat this finding for the MEG (magnetoencephalogram)
gamma and beta band. Herrmann et al. (1999) report increased EEG gamma band power
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Figure 1.2: Temporal binding in the cat visual cortex. Activity was measured from
four cells that are detecting moving bars, with preferences regarding the orienta-
tion of the bars of 157 ◦ (1), 67 ◦ (2), 22 ◦ (3), and 90 ◦ (4). Cross-correlograms of
signals from pairs of cells are shown; an oscillatory cross-correlogram indicates
synchronization. A)–C) Moving bars at different orientations cause synchroniza-
tion between those cells that are activated. D) Two superimposed moving bars at
orientations 0 ◦ and 67 ◦ cause synchronization in cell pairs 1-3 and 2-4, but not be-
tween cells 2 and 3. That is, neuron activities are synchronized only if they respond
to the same object. Reproduced with permission from Engel et al. (1991), Tempo-
ral coding by coherent oscillations as a potential solution to the binding problem:
Physiological evidence, Fig. 5. In Schuster, editor, Nonlinear Dynamics and Neuronal
Networks. Copyright c© 1991 Wiley-VCH.



1.2 Synchronization 11

for Kanizsa figures compared to similar visual stimuli without illusory contours. Herrmann
and Mecklinger (2000) find increased MEG gamma band power for (visually presented)
target stimuli compared to other stimuli. Lachaux et al. (2000) investigate LFP (local field
potentials) gamma band responses to stimulation in a visual discrimination task. For further
references see Müller (2000), who gives an overview of the findings regarding gamma band
responses.

Even if changes in local synchronization are indicated by changes in EEG band
power, it still is an indirect measure and results are confounded with changes in
the overall activity of the underlying neuron population. Though local synchro-
nization effects like those found in the cat visual cortex cannot be expressly de-
tected in EEG because of its low spatial resolution, EEG data seem to be feasible
to investigate long-range synchronization between different brain areas as an indi-
cator of their functional integration. Going a step beyond band power analysis, a
number of studies have applied coherence (the correlation coefficient applied in the
frequency domain) as a linear measure of bivariate synchronization. Coherence
gives frequency-specific information on the degree of linear dependency between
pairs of signals recorded at different sites. Other than most studies on band power,
many of these studies report findings that are not confined to the gamma band.

References: Sarnthein et al. (1998) find increased EEG coherence in the theta band in
a delayed response task and relate it to working memory operation. Miltner et al. (1999)
report increased EEG gamma band coherence in an associative learning task, between those
brain areas that are processing the two classes of stimuli given. Weiss et al. (1999) find dif-
ferent coherence patterns in the EEG alpha-1 and beta-1 band for the processing of concrete
vs. abstract nouns and sentence processing vs. pseudo speech. Von Stein and Sarnthein
(2000) review several different studies on EEG band power and coherence and argue for
a relation between the spatial scale on which synchrony-mediated functional integration
takes place and the frequency band of the involved oscillations; these range from the theta
to the gamma band. Schack et al. (2000) interpret the phase component of coherence in the
EEG alpha-1 band; in the experiment, abstract nouns are visually and auditorily presented
to the subject for memorization. Weiss and Müller (2003) give a review of language pro-
cessing research that is employing coherence: clinical studies on dyslexia, studies on word
processing, text processing, and sentence processing.

1.2 Synchronization

By most authors, the mechanism of temporal binding as introduced above is de-
scribed as synchronization of neuronal oscillations, that is as the dynamical adjust-
ment of the rhythms of different oscillators (see Sec. 2.3). The theory of synchro-
nization processes has a long tradition in physics, having been founded in the 17th
century by Huygens for the case of periodic oscillators. In recent years the theory
has been updated in the context of nonlinear dynamics and especially regarding
the synchronization of chaotic oscillators. (For an introduction and further refer-
ences, see Pikovsky et al., 2001). Here, Pecora and Carroll (1990) have shown that
sufficiently strong coupling may cause two chaotic oscillators to follow identical
trajectories (so-called complete synchronization). Subsequent research has led to
the discovery by Rosenblum et al. (1996) of a specific form of chaotic synchroniza-
tion that has become especially important for the investigation of neuronal pro-
cesses: the phenomenon of phase synchronization. In this case, a small coupling of
the oscillators causes an adjustment of their phases, while the amplitudes remain
uncorrelated and chaotic.

References: The first investigations of phase synchronization and related phenomena
have been performed in numerical simulations, mainly employing Rössler oscillators: Ro-
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senblum et al. (1997) describe lag synchronization as an intermediate regime between phase
and complete synchronization. Pikovsky et al. (1997) give a broad discussion of phase syn-
chronization of chaotic oscillators. Pikovsky et al. (1996) investigate phase synchronization
in a population of globally coupled chaotic oscillators and Osipov et al. (1997) in a lattice
of chaotic oscillators. Zhou and Kurths (2002) find phase synchronization induced by com-
mon noise. Zaks et al. (1999) describe imperfect phase synchronization between noniden-
tical chaotic oscillators.—Phase synchronization has also been demonstrated in laboratory
experiments and in models of as well as empirical data from natural systems, including the
human body: Parlitz et al. (1996) observe phase synchronization of chaotic Rössler oscilla-
tors implemented in an electronic circuit. Rosa et al. (2000) show chaotic phase synchroniza-
tion in a plasma discharge tube, DeShazer et al. (2001) in a laser array. Wang et al. (2000)
describe phase synchronization and clustering in globally coupled chaotic electrochemical
oscillators. Blasius et al. (1999) find phase synchronization in models of spatially extended
ecological systems, Lunkeit (2001) in climate models. Paluš et al. (2000) investigate synchro-
nization between the sunspot cycle and the solar inertial motion. Bhattacharya et al. (2001)
apply phase synchronization and other nonlinear analysis methods to intensity oscillations
of chromospheric bright points. Schäfer et al. (1999) show phase synchronization between
the heart beat and the respiration cycle. Tass et al. (1998) demonstrate phase synchronization
in MEG and muscle activity in Parkinsonian patients. Laird et al. (2002) describe synchro-
nization between fMRI (functional magnetic resonance imaging) data and the presentation
of a stimulus.—For a comprehensive overview of the literature on chaotic synchronization,
see Boccaletti et al. (2002).

As noted above, in a number of studies synchronization in EEG has been inves-
tigated using the coherence measure. This use can be justified by the observation
that in the synchronization of two periodic oscillators, their phases are adjusted to
each other while the amplitudes are constant. In this case, synchronization can be
detected using coherence because the phase adjustment leads to an increased cor-
relation of the two time series. But, as Tass et al. (1998) point out, synchronization
of two oscillators is not equivalent to the linear correlation of two signals that is
measured by coherence. If the participating oscillators are chaotic and in the phase
synchronized regime, such that their amplitudes are varying with time but are not
correlated to each other, the noise inherent in the amplitudes will reduce coher-
ence changes related to synchronization. On the other hand, if the amplitudes of
the two oscillators are changing with time in a regular way (for instance, because
the number of neurons recruited for the local oscillator increases or decreases) and
similar changes take place in both sites, such an amplitude correlation will cause
an increase of coherence that is not related to synchronization.2

For these and related reasons, coherence is not to be regarded as a specific mea-
sure of synchronization. Because the core of synchronization is the adjustment of
phases and not of amplitudes, it should be detected by a measure neglecting ampli-
tude variations (see Sec. 3.3). Such methods of data processing, that are necessary
to specifically detect phase synchronization and that are applicable to synchroniza-
tion in general, are called phase synchronization analysis.

References: In the last years, there has been an increasing number of studies in cog-
nitive neuroscience employing measures of phase synchronization for the analysis of EEG
and similar data: Rodriguez et al. (1999) show specific patterns of long-range phase syn-
chronization in the EEG gamma band related to the perception of upright vs. upside-down
“Mooney” faces (black & white outline pictures of faces). Lachaux et al. (1999) find large-
scale and local LFP phase synchronization in a visual discrimination task. Haig et al. (2000)
demonstrate a late response in the degree of global and regional EEG gamma band phase

2Empirical evidence supporting these considerations is given by Quian Quiroga et al. (2002), who
report that phase synchronization analysis (among other nonlinear methods) differentiates better be-
tween different degrees of synchronization in rat EEG than linear measures.
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synchronization for task-relevant vs. irrelevant stimuli. Bhattacharya and Petsche (2001)
find increased EEG gamma band phase synchrony in musicians while listening to mu-
sic. Braeutigam et al. (2001) describe events of stimulus-locked MEG gamma band activ-
ity associated with a semantic violation. Breakspear (2002) presents evidence of nonlinear
contributions to the EEG based on phase synchronization analysis. Chavez et al. (2003)
apply network cluster analysis to MEG phase synchronization relations in a binocular ri-
valry experiment.—Another field in which phase synchronization analysis is effective and
increasingly popular is the clinical evaluation of EEG, especially related to epilepsy: Mor-
mann et al. (2000) find changes in phase synchronization before the onset of an epileptic
seizure. Jerger et al. (2001) review the effectivity of several different nonlinear measures for
seizure prediction and find that phase synchronization provides the most robust indicator.
Le Van Quyen et al. (2001b) give an overview of nonlinear methods in seizure prediction
including the approach based on phase synchronization. By Lee et al. (2003), EEG phase
synchronization analysis is also proposed as a means of investigating the neural basis of
schizophrenia.

1.3 Aims and outline

The subject of the present thesis can be specified related to the research summa-
rized above in a number of different respects:

1) As a contribution to nonlinear dynamics, this work is analyzing empirical
data obtained from a natural system (the human brain), but not investigating
details of the theory of synchronization or specific phenomena in numerical
simulations of model systems.

2) The data are obtained by EEG, and therefore describe the electrical activity
of the brain on a relatively large-scale, or coarse-grained level. This is in con-
trast to studies analyzing signals recorded at single cells or in small neuron
populations, by macroelectrodes inside of the skull (LFP), or by MEG.

3) This work is interested in synchronization effects correlated with cognitive
processes. In this it differs from studies on pathological conditions like epi-
lepsy, where neuronal synchronization comes into view as a mainly physio-
logical phenomenon.

4) Accordingly, the data are collected following the experimental paradigm of
cognitive science, that is comparing the effects of slightly different versions
of a cognitive process. Practically this means that responses are related to
different classes of stimuli, each of which is realized many times. This form
of EEG recording is called event-related potential (ERP).

5) The subject matter of the main experiment is defined by research interests of
psycholinguistics. This choice has been determined by the author’s coopera-
tion in the interdisciplinary DFG research group “Conflicting Rules”, part B1:
“Diagnosis in Language Processing”. In this respect, this work tries to make
theory and methods of physics useful for the purposes of another scientific
discipline.

6) Regarding methodology, this work is looking for explicit effects of phase syn-
chronization in the EEG. This is in contrast to the use of the band power and
the coherence measure, that for reasons given above are only of limited use
for the detection of synchronization processes.
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The aims of this thesis are twofold: to adapt and apply the methods of phase syn-
chronization analysis to event-related EEG data, and at the same time to contribute
to these methods in a way that is also relevant in other fields of application.

The composition of the text is as follows:
In Ch. 2, the concepts underlying this work are introduced. This includes the

basics of electroencephalography (Sec. 2.1), the definition of event-related poten-
tials as well as an explanation of the established form of ERP analysis (Sec. 2.2),
and the main topics of synchronization theory (Sec. 2.3). Since the research re-
ported in the following lies at the intersection of (at least) two different disciplines,
the purpose of this introductory chapter is to lay a common ground for readers
with different backgrounds.

Chapter 3 presents elements of the data analysis method used here that are still
of a basic nature, but that could have been done in another way: an algorithm em-
ployed to reduce correlations in EEG due to mixing (Sec. 3.1), the use of wavelets
to determine the instantaneous phase of a time series (Sec. 3.2), and the statistical
measure of synchronization strength (Sec. 3.3). These elements represent decisions
that continue the specification of the author’s approach sketched above.

In the next two chapters, contributions to the methods of synchronization ana-
lysis are presented. Chapter 4 discusses a number of different approaches to test
for statistically significant changes in synchronization strength between two oscil-
lators. Methods of increasing precision, but also increasing complexity are intro-
duced, explained and checked in numerical simulations.

In Ch. 5, an approach to multivariate phase synchronization analysis is derived
and discussed, including a check of the underlying model in a numerical simula-
tion. As a first empirical test of the method, an experiment on the visual process-
ing of illusory contours (Sec. 5.2) was performed. Here, the multivariate analysis
proves to deliver useful results in showing the emergence of a synchronization
cluster as a response to the visual presentation.

The subject of the last chapter (Ch. 6) are empirical findings obtained by syn-
chronization analysis of event-related potentials in language processing. A clas-
sic experiment comparing the effect of a semantic incongruity in a sentence con-
text with that of a physical mismatch (Kutas and Hillyard, 1980b) was replicated.
The stimulus presentation is shown to elicit a transient increase of synchronization
strength. Each type of deviation causes a specific modification of the basic pattern
of synchronization.



Chapter 2

Basic Concepts

In this chapter, the concepts that are defining the subject matter of this work are
introduced and explained. The data to be analyzed are obtained by electroen-
cephalography; some technical and physiological aspects of this are described in
Sec. 2.1. In the form of event-related potentials (Sec. 2.2), EEG is conceptualized
as a random process (with respect to experimental events). The standard method
of ERP analysis and its main findings are explained, especially in relation to cog-
nitive processes. This method is to be supplemented by a new analysis procedure
that looks for phase synchronization between brain areas. An introduction to the
physical theory of synchronization focused on phase synchronization is given in
Sec. 2.3.

2.1 Electroencephalography

The electroencephalogram (EEG) is the derivation and recording of time-varying
voltages on the human scalp that are generated by the electrical activity of the
brain, especially the neocortex (following Nunez, 1995). The (neo-) cortex or “gray
matter” is the phylogenetically newest part of the brain; its functions include sen-
sory and cognitive information processing, motor control, and conscious experi-
ence. The cortex consists of a thin (2–3 mm) layer of neuronal tissue that is partly
stretched out under the skull, partly folded into itself thereby increasing its surface.
(Fig. 2.1)

80 % of the neurons in the neocortex are so-called pyramidal cells, whose cell
bodies are roughly of pyramidal (or rather conical) form. Pyramidal cells and the
other neurons in the cortex are locally connected by short-range intracortical fibers
(ca. 1 mm long) as well as globally connected by long-range corticocortical fibers
(up to 20 cm), the latter making up the “white matter” directly below the cortex.
Only a comparatively small amount of fibers comes out of or leads into other parts
of the brain. The pyramidal cells are oriented perpendicular to the cortex surface
and organized in local groups called columns, as well as larger populations, the
so-called macrocolumns of ca. 3 mm diameter and containing 105 to 106 neurons.
(Fig. 2.2)

The electric field of the cortex is caused by the current flows within a pyramidal
cell and between it and the neighboring extracellular medium, making the cell an
electrical dipole along its axis. Because of their parallel orientation, simultaneous
activation of many pyramidal cells generates large correlated dipole layers whose
electric field can be measured on the scalp (Fig. 2.1). Since this field reflects the de-
gree of simultaneous activation in the local neuron population, the EEG recorded
at a scalp electrode can be regarded as a relatively direct measure of the neocortical

15
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Figure 2.1: Recording of EEG and MEG (magnetoencephalography). The EEG
electrode is attached to the scalp surface and separated from the cortex by scalp
tissue and skull. The EEG is most sensitive to correlated dipole layers in that parts
of the cortex that lie directly under the skull (the so-called gyri; a–b, d–e, g–h).
Reproduced with permission from Nunez (1995), Quantitative states of neocortex,
Fig. 1-4. In Nunez, editor, Neocortical Dynamics and Human EEG Rhythms. Copy-
right c© 1995 Oxford University Press.

Figure 2.2: A macrocolumn containing up to 106 neurons, with one pyramidal
cell shown explicitly. The insert shows a synaptic input that is causing microcur-
rent sources and sinks. In EEG, the effect of the macroscopic net current density
~J of macrocolumns is measured in the form of a potential difference ∆Φ. From
Nunez (1995), Fig. 1-11. Reproduced with permission from Sato, editor, Magne-
toencephalography, Raven Press. Copyright c© 1990 Lippincott Williams & Wilkins.
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Figure 2.3: Characteristic EEG rhythms, depending on the state of consciousness.
From Nunez (1995), Fig. 1-6. Reproduced with permission from Penfield and
Jasper, Epilepsy and the functional Anatomy of the Human Brain, Little, Brown. Copy-
right c© 1985 Lippincott Williams & Wilkins.

function of the underlying cortex area.
The spatial resolution of EEG lies roughly between 1 and 5 cm. This is markedly

lower than the resolution that can be obtained with electrodes directly on the cor-
tex surface (the so-called electrocorticogram applied in brain surgery patients), be-
cause scalp electrodes have a distance of about 1 cm from the cortex and because of
the low conductivity of the skull that causes a smearing of the potential distribu-
tion (Nunez, 1981, Ch. 1 & 8). This loss in resolution between cortex and scalp can
in part be compensated for by different methods of postprocessing of EEG data
(for a description of the “spherical spline Laplacian” algorithm used in this work,
see Sec. 3.1). With high density electrode arrays and efficient postprocessing, the
possible resolution of scalp EEG lies in the order of magnitude of macrocolumns,
making them the natural theoretical units of cortical dynamics from the point of
view of EEG interpretation (Nunez, 1995). For the purposes of this work, this ob-
servation also specifies the spatial scale of the neuronal oscillators whose operation
is to be examined in synchronization analysis.

The temporal resolution of EEG lies at about 1 ms, its spectral content being
in the range from below 1 Hz up to approximately 100 Hz. The spectral composi-
tion of EEG depends strongly on the state of consciousness, with a low-amplitude
broadband spectrum being typical for awake persons with open eyes or perform-
ing cognitive tasks (Fig. 2.3 & Fig. 2.4, “excited”). The EEG spectrum is traditio-
nally differentiated in a number of frequency bands: delta, below 4 Hz; theta, from
4 to 8 Hz; alpha, from 8 to 13 Hz; beta, from 13 to 30 Hz; gamma, beyond 30 Hz
(Fig. 2.4). Some of these wave bands are associated with characteristic dominant
rhythms, the most prominent being the alpha rhythm, a high-amplitude sinusoidal
oscillation of about 10 Hz that is coherent over posterior areas and that is observed
in awake but relaxed subjects with closed eyes (Fig. 2.3 & Fig. 2.4, “relaxed”). EEG
amplitudes are in the range from 10 to 100µV (Niedermeyer, 1998).

EEG electrodes are positioned according to the International 10-20 System that
originally defined 21 locations but that has been updated by the American Elec-
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Figure 2.4: EEG power spectral density (electrode CZ). Gray lines indicate the bor-
ders between the frequency bands delta, theta, alpha, beta, and gamma. “relaxed”:
The subject is resting with closed eyes. Note the strong peak at about 9 Hz corre-
sponding to the alpha rhythm. Even in this relatively coherent case, EEG spectral
content is still rather broadband. “excited”: The subject is in a state of percep-
tional attention and mental operation. The peak at 50 Hz is not caused by neuronal
activity but by the disturbance of the measurement by the power line.
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Figure 2.5: The modified combinatorial nomenclature. Letters refer to the main
areas of the cortex, the frontal (F), left and right temporal (T), parietal (P) and oc-
cipital (O) lobes and include additional designations for the topmost area (C for
central) and the foremost region (FP: frontopolar, AF: anterior frontal). These terms
are also used in the description of the topography of EEG effects. The number part
of the electrode labels indicates the distance from the midline, using odd numbers
on the left and even numbers on the right, and is replaced by the letter Z on the
midline. NZ and IZ denote the anatomical landmarks, nose bone (Nasion) and
back of the skull (Inion). After American Electroencephalographic Society (1991).
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troencephalographic Society (1991) to include 75 different placements. The posi-
tions of the electrodes are determined relative to anatomical landmarks like the
nose bone or the backmost part of the skull and separated by fixed fractions of the
distances between these reference points (originally, 10 and 20 %) to ensure that
an electrode is placed above the same anatomical structure of the brain in subjects
with differently sized heads. The electrodes are named according to the modified
combinatorial nomenclature (MCN) that uses a combination of letters and num-
bers to indicate the position (Fig. 2.5). The selection of electrodes actually included
in an EEG recording depends on its specific purpose. It can range from just a few
electrodes (if one is looking for effects whose topography is known) to a full mon-
tage (if as much information as can be obtained is useful, e.g. for localization of
cortical sources).

The electrodes are directly attached one-by-one to the scalp or they are embed-
ded in an elastic cap with a predefined montage that is fixed on the subject’s head.
An electrolyte gel is applied to the attached electrodes to establish a low impedance
contact between them and the scalp (usually below 5 kΩ). Leads connected to the
electrodes are plugged into an amplifier. In the past the resulting signals have
been fed into writing machines producing graphs of the voltage time series on pa-
per; today, they are sampled (at 250 to 1000 Hz) and digitized (up to 32 bits, in
units of about 0.1µV) and stored on a computer for further processing. Voltages
are recorded either between each electrode and a reference electrode placed where
almost no brain electrical activity is to be expected, e.g. at the mastoid bones be-
hind the ears (unipolar or reference recording), or between pairs of neighboring
electrodes (bipolar recording). Absolute voltage values are in the range of several
thousand µV. (cf. Reilly, 1998; Lopes da Silva, 1998a)

Frequently, the EEG record is contaminated by traces of electric signals that are
not generated in the brain. The most important type of those artifacts is that caused
by movements of the eyes, because the eye balls constitute electrical dipoles. Eye
movements cause strong deflections in the voltage recordings especially for the
frontal electrodes, and are monitored by special electrodes positioned close to the
eyes (electrooculogram, EOG). Other origins of artifacts include electric activity of
muscles in the forehead, the heart beat, as well as disruptions in the skin contact
of the electrodes caused by movements of the subject. Most of these artifacts can
be identified by visual inspection of the recorded data (in part even by automatic
processing), such that the corresponding parts of the record can be marked not to
be included in further analysis (so-called rejections). Another type of interference
are slow variations in the electrode impedances due to sweating and chemical re-
actions at the skin surface. For the most part, they can be eliminated by linear
detrending over recording segments in the order of seconds to minutes or by a
high-pass filter at about 0.1 to 0.5 Hz.

2.2 Event-related potentials

The EEG is continuously generated in the human brain all of the time, accompany-
ing different mental states and different actions. Part of the interest in EEG lies in
the fact that characteristics of this ongoing activity can give insight into the general
neurological state of a person that can be utilized in the diagnosis of neuronal dis-
orders like epilepsy. In contrast to this, in neuroscience and especially in cognitive
research the interesting aspect of EEG is that it can give detailed information about
the workings of the brain in a specific situation. Here, the changes in EEG related
to a certain event like a mental process or the presentation of a stimulus come into
focus. The term event-related potential (ERP) denotes the study of EEG in relation
to such events that are defined in an experimental setting.
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Figure 2.6: Event-related potentials and the ERP average. a) A section of a con-
tinuous EEG record at one electrode (OZ). The vertical lines with numerical codes
mark the presentation times of different types of stimuli. b) Superimposition of 20
epochs corresponding to one of the stimuli (101) for pre- and poststimulus inter-
vals of lengths Tpre = 300 ms and Tpost = 650 ms. c) Average of 177 epochs. The ERP
response is starting about 100 ms after stimulus presentation.

To investigate ERPs, a stimulus or a set of stimuli that are equivalent in a certain
respect is repeatedly presented to a subject, and the sections of the EEG record
around the time of the stimulus presentation, the so-called epochs, are cut out and
collected into an ensemble. If x(t) is the EEG time series and ti (i = 1 . . . n) are the
presentation times of a stimulus, then

xi(t) = x(ti + t) for − Tpre ≤ t ≤ Tpost (2.1)

is the ith epoch for the given lengths of the pre- and poststimulus interval. (In
the case of several EEG channels x is to be taken as a vector whose components
correspond to the electrodes.) The common method to analyze the epoched data
is to calculate the mean over stimulus presentations,

x̄(t) =
1
n

n

∑
i=1

xi(t), (2.2)

and to interpret the time course of the result (Fig. 2.6).1 Specific features of this
time course that can be associated with physiological or cognitive processes are
called ERP components (see below).

There seems to be no exact, generally accepted definition of the term event-
related potential (cf. Lopes da Silva, 1998b). In the common use especially in stud-
ies interpreting the epoch average, the mean x̄(t) is looked at as the event-related
potential, and it is more or less implicitly interpreted as a signal that is generated
by a neuron population specifically activated in the processing of the given stimu-
lus, and that is superimposed onto an unchanged “ongoing background EEG” re-
garded as noise. In this view, the averaging method is just a straightforward way to

1To compensate for drifts and to prepare the ERP average for comparison between conditions (see
below), it is common to additionally perform a “baseline correction”: The time average of the mean
over the prestimulus interval is subtracted: x̄(t)−

∫ 0
−Tpre

x̄(t) dt.
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Figure 2.7: Schematic time course of averaged event-related responses to visual
stimuli. ERP components are differentiated into exogenous and endogenous,
the latter including the N100, P300, and N400 (see text). Longer lasting voltage
changes are referred to as DC-shifts (direct current shifts). Note the inverted verti-
cal scale plotting negative voltage to the top, which is customary in ERP research.
Reproduced with permission from Altenmüller and Gerloff (1998), Psychophysiol-
ogy and the EEG, Fig. 32.1 A. In Niedermeyer and Lopes da Silva, editors, Electro-
encephalography: Basic Principles, Clinical Applications, and Related Fields. Copyright
c© 1998 Lippincott Williams & Wilkins.

increase the signal-to-noise ratio of the ERP measurement. Other authors assume
that event-related potentials are not just an independent addition to a background
EEG, but the result of a transient reorganization of the ongoing activity.2 Lopes da
Silva (1998b) tries to reflect this controversy in his concept of ERPs as slight EEG
changes that are related to a particular event. Though this definition is fairly gen-
eral, it, too, implicitly refers to an analysis procedure that distinguishes between
those changes and some normal state the changes are related to.

A neutral alternative is to consider as an event-related potential just the en-
semble of epochs, that is the collection of voltage (potential) recordings that are
temporally related to a given event. In the language of statistical time series analy-
sis, the processing of the EEG record to generate epoch ensembles corresponds to
the definition of a stochastic process X(t), and each epoch xi(t) constitutes a reali-
zation of this process. As such, the ensemble of realizations is open to a multitude
of different data analysis approaches. In this view, the calculation of the ensemble
average is just the most basic statistical evaluation that can be applied, the statisti-
cal moment of first order. This and any other descriptive statistic can be connected
with certain theoretical assumptions, or it can simply be looked at as an empirical
quantity that may be correlated with experimental variations. Therefore, even if
the common ERP theory of an invariant signal embedded in random noise would
prove not to be valid, the findings regarding ERP components would still be valu-
able.

As noted above, the ERP average exhibits characteristic wave forms (with am-
plitudes in the range from 2 to 20µV) that have been shown to correlate with cer-

2Makeig et al. (2002) present results indicating that ERPs are generated by phase-resetting of compo-
nents of the ongoing brain dynamics. See Penny et al. (2002) for a short review of the recent discussion.
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Figure 2.8: The N400 component in the experiment of Kutas and Hillyard. The
graph shows the ERP average for the three experimental conditions that are illus-
trated with a sample sentence below. The presentation of a semantically incongru-
ent noun at the end (dashed line) elicits a negativity around 400 ms compared to
a noun that makes sense (continuous line). In the third condition, the noun at the
end is semantically congruent but physically deviant (printed in a larger font, dot-
ted line); this elicits a late positivity (“P560”). Reproduced with permission from
Kutas and Hillyard (1980b), Reading senseless sentences: Brain potentials reflect
semantic incongruity. Science, 207. Copyright c© 1980 AAAS.

tain physiological or cognitive processes (Fig. 2.7).3 ERP components can be differ-
entiated into “exogenous” and “endogenous”, where the former depend directly
on physical properties of the stimulus while the latter are determined by psycho-
logical variables and therefore are related to cognitive processes. Exogenous ERP
components generally occur up to ca. 100 ms after stimulus presentation, endoge-
nous components after this point. Components are normally named following
their polarity (N for negative, P for positive) and their approximate latency, that is
the delay of their occurrence relative to the presentation of the stimulus, but they
are also distinguished according to their topography (distribution over the scalp)
and morphology (shape of the waveform).

The earliest endogenous ERP component is the N100, a negativity with a la-
tency of about 90 to 200 ms. It corresponds to an initial “orienting” response that is
the reaction to an unexpected stimulus. The N100 habituates (that is, its amplitude
gets smaller over time during an experiment) and it is modulated by the selective
attention of the subject. An N100 follows not only the onset but also the offset of a
stimulus.

The P300 is the most prominent ERP component. Its latency lies between 280
and 700 ms such that probably the P300 actually consists of a general “late positive
complex” of subcomponents. Its common (“oddball”) paradigm is the infrequent
presentation of one stimulus embedded in a sequence of many presentations of
another stimulus. If the subject attends to the stimuli, the infrequent one elicits a
P300 component whose amplitude is inversely related to the stimulus probability.

An important language-related component is the N400 that has originally been
found by Kutas and Hillyard (1980b,a). They presented sentences to their subjects,
word by word with an interstimulus interval of 1 s. In some of the sentences, the
last word was semantically incongruent, that is it did not make sense in the given
context. In this case, the ERP response to the last word shows a strong negativity
around 400 ms after stimulus presentation compared to a sentence ending with a
semantically appropriate word (Fig. 2.8). The N400 has since been demonstrated
to show up not only in response to incongruent words, but to reflect a low de-

3The presentation in this and the next paragraphs is following Altenmüller and Gerloff (1998).

http://www.sciencemag.org
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gree of semantic expectancy in general. It can be elicited by printed, spoken, as
well as sign language and occurs not only with words in sentences, but also in a
so-called priming paradigm, where a single word presented first provides the se-
mantic context for a second one (cf. Altenmüller and Gerloff, 1998). Though it is
an ERP component specific to language, which is generally associated with areas
in the left hemisphere of the brain, the N400 shows no preponderance on the left
but is broadly distributed temporoparietally4 on both sides (Friederici, 1995).

In the description of the N400 component, a detail has already been mentioned
that is generally important in the utilization of ERP averages and other quanti-
ties for the purposes of cognitive science. Up to now, ERP components have been
presented as absolute responses to a given stimulus. But in the context of the expe-
riment of Kutas and Hillyard (1980b), the response to the semantically incongruent
noun can only be interpreted in comparison to the response to a noun that fits into
the sentence. That means the N400 observed here is a relative negativity.

Generally speaking, each trial of an experiment—the presentation of a stimu-
lus or a sequence of presentations that form a unit, like the parts of a sentence—
belongs to one of the so-called conditions of an experiment. These experimen-
tal conditions correspond each to a different stimulus (in the simplest case) or to
classes of stimuli that are equivalent in a certain respect within each group and
define certain variations between groups. EEG epochs are sorted into ensembles
according to the experimental condition of the trial, and the average ERP (or other
quantities) are calculated for each condition separately. Important for the inter-
pretation of the experimental results is then the difference in the stimulus response
for the different experimental conditions that is caused by a small variation of the
stimulus class.5 This difference can be quantified on a generic scale by relating it
to the variation over trials or over subjects, determining its statistical strength.

The reason for this approach is that the ERP response to a set of stimuli pre-
sented in an experiment does not solely correspond to those specific aspects that
the experimenter has in mind, but includes a manifold of operations necessary for
stimulus processing as well as the “background” activity of the brain that is not
related to the stimulus at all. Part of this may be reduced by the averaging tech-
nique or other statistical procedures, diminishing the impact of random influences
or of the individual features of a stimulus belonging to a class. But still much of the
remaining activity is related to stimulus processing in general, for instance char-
acter recognition or retrieval of lexical information. These processes are common
to all experimental conditions, and so the part corresponding to their experimen-
tally relevant aspects can only be filtered out by comparing the responses in the
conditions.

The experiment of Kutas and Hillyard defines three experimental conditions,
the first containing normal sentences ending with a semantically appropriate noun,
the second sentences with a semantic incongruity, and a third group of sentences
with a noun that fits in but is shown in a larger font (Fig. 2.8). Looking at the ERP
average elicited by the terminal noun (the so-called critical item) in the second con-
dition (dashed line), there is an early negative peak that can be labeled as an N100
component, but that is apparently not related to the semantic incongruity because
it shows up in almost exactly the same form in the control condition (continuous
line). The N400 component observed here is therefore to be taken as the negativity
of the average in the “semantic incongruity” experimental condition relative to the
average in the control condition.

As noted above, event-related potentials may be conceptualized as stochastic

4For an explanation of this and related terms used to describe the topography of ERP components,
see Fig. 2.5.

5See Coles and Rugg (1995). Analogous considerations are valid for the cognitive sciences in general;
for an introduction into experimental design, see Campbell and Stanley (1963).
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processes, the epoch ensembles being samples of realizations. The ERP average
is the traditionally most important statistic of the process used in its analysis, and
accordingly there is a large number of studies presenting averages in different ex-
perimental contexts, defining ERP components and associating them with brain
processes. Nonetheless, the mean is just one of the moments of a stochastic pro-
cess and there are other statistics possibly illuminating different aspects of brain
dynamics. Some of these have been employed in ERP analysis for quite some time,
most notably the calculation of event-related nonstationary band power, determin-
ing effects of so-called event-related desynchronization and synchronization (ERS
/ ERD, cf. Pfurtscheller, 1998; Altenmüller and Gerloff, 1998). Despite their name,
these effects do not refer to the observation of synchronization processes in the
strict sense. Their labels are based on the notion that changes in band power at a
single electrode are caused by variations in the strength of local synchronization
in the neuron population subserving it, generating a stronger or weaker collective
effect at the scalp.

More recent alternative evaluation methods of ERPs are inspired by concepts
of nonlinear dynamics, like the approach of beim Graben (2001), who encodes
ERP epochs into symbol strings and applies entropy measures of complexity to
determine the symbolic dynamics of ERPs (see also beim Graben et al., 2000). In
a similar way, the subject matter of the present work is to apply the theory of
phase synchronization to event-related potentials. Here, instead of calculating the
mean of voltages, event-related phase synchronization is analyzed by computing
the frequency-specific instantaneous phase of ERP epochs (Sec. 3.2) and quantify-
ing the peakedness of the distribution of the phase difference between electrodes
as a measure of the statistical strength of phase synchronization (Sec. 3.3). The
physical theory underlying this approach will be introduced in the next section.

2.3 Phase synchronization

Synchronization is a subject of physics with a long tradition, going back to its dis-
covery by Huygens in 1665. It is an essentially nonlinear phenomenon that can
be observed in a multitude of technical as well as natural systems, including the
human brain. The presentation in this section follows the monograph by Pikovsky
et al. (2001). It is aimed at the notion of phase synchronization as the reference
point of the analyses presented in this work.

In general terms, synchronization is the adjustment of the rhythms of self-
sustained oscillators due to coupling. A self-sustained oscillator is a dynamical
system that generates oscillations out of itself, rather than adhering to an externally
provided rhythm. A classic example of a periodic self-sustained oscillator is the
pendulum clock. It possesses an internal energy reservoir in the form of weights
and uses that energy to generate the periodic motion of its pendulum. Amplitude
and frequency of this oscillation are specific properties of the clock mechanism and
as such are constant within certain bounds.

In the theoretical description, a periodic oscillator corresponds to the limit cycle
of a nonlinear dynamical system (cf. Pikovsky et al., 2001, Ch. 7). Combining the
different variables describing the system state into a vector ~x, the dynamics of a
system can generally be described by the differential equation ~̇x = ~f (~x). If this
equation possesses a periodic solution with period T0,

~x0(t) = ~x0(t + T0),

that attracts neighboring system states, this solution is called a limit cycle (Fig. 2.9).
The phase φ of the oscillator is a coordinate along the limit cycle (a function of ~x)
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Figure 2.9: The limit cycle (black) of a two-dimensional dynamical system (~x =
(x1, x2)). Neighboring trajectories (gray lines) approach the cycle and join the peri-
odic motion along it.
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Figure 2.10: The phase on a circle-shaped limit cycle with uniform motion is the
angle between a fixed direction (e.g. positive x1 axis) and the current system state
(•). The motion on the circle corresponds to a sinusoidal time series. Periodically
recurring system states (• connected with dashed line) are assigned the same value
of the circular phase by resetting it after increasing with time over a period of 2π.

whose value is uniformly increasing with time, gaining 2π with every oscillation:

φ̇ = const. = ω0, where ω0 =
2π

T0
. (2.3)

The constant derivative of the phase ω0 is called the natural frequency of the oscil-
lator.6 In the simplest case of a circle-shaped limit cycle with uniform motion the
phase is the angle within the circle between the current system state and an arbi-
trary reference direction (Fig. 2.10). The complementary coordinate in the radial
direction is called amplitude.

In the notion of phase that has just been established there is an ambiguity. On
the one hand, the phase is an ever-increasing variable that describes the continuing
oscillations on the limit cycle. With every oscillation the phase gains 2π, such that
the integral part of φ/2π can be seen as the number of full oscillations the system
has performed. This may be called the linear aspect of the phase. On the other
hand, the motion described by the phase is periodic, and the system states of a
periodic oscillator corresponding to phases φ, φ + 2π, φ + 4π, . . . are physically
identical so that these values are equivalent. In this respect, calculations and com-
parisons concerning the phase have to be taken modulo 2π. (The circular aspect

6Normally, the quantity f = 1/T (where T is the period) is called the frequency of an oscillation.
In this and the following methodological sections, by the term frequency the author is referring to the
angular frequency ω = 2π f instead, which is directly specifying the increase of the phase per time unit.
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of the phase.) Since consecutive intervals of length 2π are equivalent, it is often
convenient to wrap the linear phase into one of these intervals, e.g. [0,2π[ (the
fractional part of φ/2π) or [−π, π[. In the following, the linear and the circular
interpretation of phase (including phase differences) will not be distinguished ex-
plicitly as long as the relevant aspect can be concluded from the context. With time
series, a linear phase can be reconstructed from the circular phase by “unwrap-
ping”, i.e. shifting the phase time series by 2π at each discontinuity.

Because the limit cycle is stable, deviations from it in the radial direction will be
compensated quickly, while modifications of the phase will be retained. Therefore,
if the periodic oscillator is subjected to a small external force ~p of strength ε that
depends on the system state and varies with time,

~̇x = ~f (~x) + ε ~p(~x, t),

this force will mainly affect the phase. Because the amplitude remains unchanged,
the modified dynamics of the system can be described in terms of phase only:

φ̇ = ω0 + ε Q(φ, t), (2.4)

where Q represents the effect of the force on the phase.
Two self-sustained oscillators A and B can be bidirectionally coupled if each of

them exerts a force on the other one. Since the time dependence of these forces
bears on the respective oscillator’s phase, the dynamics of phases φA,B can be writ-
ten as

φ̇A = ωA + ε QA(φA, φB), φ̇B = ωB + ε QB(φB, φA),

where ωA,B are the natural frequencies of the uncoupled oscillators (corresponding
to ε = 0) and the functions QA,B represent the coupling forces. These equations
can be further simplified if the natural frequencies are close to each other, ωA ≈ ωB.
Approximating by time-averaging over fast variations in the coupling forces one
retains only the resonant terms in the Fourier expansion of QA,B (cf. Pikovsky et al.,
2001, Ch. 7 & 8). As a result, the phase dynamics depends on the difference of the
oscillator phases only:

φ̇A = ωA + ε qA(φA − φB), φ̇B = ωB + ε qB(φB − φA).

Introducing the phase difference ∆φ = φB − φA as a new variable, its dynamics can
be described by

∆̇φ = ∆ω + ε q(∆φ), (2.5)

where ∆ω = ωB −ωA is the difference between the natural frequencies (the “detun-
ing”) and q(∆φ) = qB(∆φ)− qA(−∆φ) is the coupling function that is 2π-periodic in
∆φ.7 This is the basic equation describing the phenomenon of bivariate synchro-
nization which is further analyzed in the following.

Synchronization sets in if the frequency detuning is not too large or the cou-
pling is strong enough. If the extremal values of q(∆φ) are denoted by qmin,max, the
synchronization condition is given by the inequality

− ε qmax < ∆ω < −ε qmin, (2.6)

defining a triangular synchronization region in the space of parameters (ε,∆ω). In
this case, the dynamics of the phase difference has a stable fixed point ∆φs and
after a transition time the phase difference stays constant:

∆φ → ∆φs = const., φB = φA + ∆φs.

7Synchronization is also possible if the natural frequencies are close to a rational ratio different
from 1: ωA/ωB ≈ m/n, where m, n ∈ N. In this case of m : n synchronization Eq. 2.5 still holds with
∆φ = mφB − nφA, ∆ω = mωB − nωA, and q(∆φ) = mqB(∆φ)− nqA(−∆φ).

Equation 2.5 also holds for the phase difference between an oscillator (B) and an external periodic
force (A) acting onto it. This can be seen as an extreme case of asymmetric coupling, qA = 0.
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Figure 2.11: Dynamics of the phase difference with the coupling q(∆φ) =− sin(∆φ)
for different frequency detunings ∆ω = −1.001, 0, 1.01, 1.1 ε (from bottom
to top). In the synchronized regime |∆ω| ≤ ε the phase difference is constant.
Close to the synchronization transition it is nearly constant for most of the time,
interrupted by phase slips ±2π occurring with a constant period (here T∆φ ≈
140, ∞, 44.3, 13.7 ε−1, corresp.). Time is given in units of ε−1, frequency in units
of ε. After Pikovsky et al. (2001), Fig. 7.5.

Here, synchronization manifests itself in a fixed relation of the two oscillator pha-
ses, a phenomenon that is called phase locking. The rhythms of the oscillators are
perfectly adjusted to each other, implying that their instantaneous frequencies are
identical, the so-called frequency entrainment φ̇B = φ̇A.

This is an idealized result due to the approximations that were made in the
derivation of the phase difference dynamics. In general in the synchronized regime
the phase difference is not constant but performs small oscillations around a con-
stant value. The phases are not exactly locked to each other, but still the phase
difference is bounded within one oscillation cycle:

∆φmin ≤ ∆φ ≤ ∆φmax with ∆φmax − ∆φmin < 2π (2.7)

(cf. Rosenblum et al., 1996). Though in this case the instantaneous frequencies
φ̇A,B are not identical, the condition of frequency entrainment still holds for time-
averaged frequencies,

ΩB = ΩA with ΩA,B = lim
t→∞

φA,B(t)− φA,B(0)
t

, (2.8)

because the contribution of the oscillating phase difference vanishes in the limit.
If the synchronization condition (Eq. 2.6) is not met, the phase difference in-

creases (or decreases) all the time. Close to the transition to synchronization it
stays almost constant for long periods of time, but then performs a full cycle rather
quickly, gaining (or losing) 2π. These phase slips (Fig. 2.11) occur regularly, giving
rise to a difference of the average oscillator frequencies of

∆Ω = ΩB −ΩA =
2π

T∆φ
, where T∆φ =

∫ 2π

0

d∆φ

∆ω + ε q(∆φ)
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Figure 2.12: The synchronization diagram shows the difference of the average fre-
quencies ∆Ω as a function of the coupling strength ε and the frequency detuning
∆ω. If the oscillators are not coupled (ε = 0) the average frequency difference is
just the detuning, ∆Ω = ∆ω. For larger coupling strength ε > 0, the range of de-
tunings for which synchronization is achieved (frequency entrainment, ∆Ω = 0)
increases linearly, forming the triangular synchronization region. In the unsyn-
chronized state, ∆Ω is different from zero but still smaller than ∆ω. The diagram
was calculated for sine coupling, q(∆φ) = − sin(∆φ).

is the fixed period of the phase slips. Close to the transition points at ∆ωc =
−ε qmin,max the average frequency difference depends on the difference of the nat-
ural frequencies according to

∆Ω ∼= ±
√
|∆ω2 − ∆ω2

c |.

The full dependence of ∆Ω on ε and ∆ω including the synchronization region is
depicted in Fig. 2.12 for the case of sine coupling.

Up to this point, synchronization has been considered in the case of determin-
istic periodic oscillators only. In contrast, most natural systems are exposed to
irregular external perturbations. The straightforward way to include such influ-
ences in the model is to add a noise term to the phase difference dynamics (cf.
Pikovsky et al., 2001, Ch. 9):

∆̇φ = ∆ω + ε q(∆φ) + ξ(t), (2.9)

where ξ represents mean-free noise (〈ξ(t)〉 = 0). By this, Eq. 2.5 is turned into a
Langevin equation describing a stochastic process. Now, in addition to the fre-
quency detuning, the coupling has also to overcome the effect of the noise to
achieve synchronization. If the noise is strong enough, it can drive the phase dif-
ference out of one cycle into the next one, causing a sequence of irregular phase
slips. The phase difference is then performing a random walk from cycle to cycle,
that is biased into one direction if the detuning is different from zero (Fig. 2.13a).
For unbounded noise this is possible (with a small probability) even for arbitrar-
ily high coupling strengths. In this case the phase difference is not bounded, and
synchronization in the sense that has been introduced above (Eq. 2.7) can not be
achieved. Still the coupling has an effect on the phase difference dynamics that
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Figure 2.13: The dynamics of the phase difference of coupled noisy oscillators.
a) The linear phase difference performing a random walk. 1: The oscillators are
uncoupled. 2: Coupled oscillators with small noise and moderate frequency mis-
match; there are rare phase slips of −2π. 3: Stronger noise than for curve 2, phase
slips are occurring frequently. b)–d) Histograms of the circular phase difference,
corresponding to curves 1–3. In the uncoupled case the distribution is uniform.
Stronger noise is smoothing out the peak caused by coupling. Reproduced with
permission from Pikovsky et al. (2001), Synchronization: A Universal Concept in Non-
linear Sciences, Fig. 9.2. Copyright c© 2001 Cambridge University Press.

can be recognized in the probability distribution of the circular phase difference
(Fig. 2.13b–d). In Sec. 3.3, this effect will be used to introduce a statistical measure
of synchronization strength as an alternative to the strict definition.

Not only noisy, but also chaotic oscillators can be synchronized (cf. Pikovsky
et al., 2001, Ch. 10). The main issue in this case is to obtain a suitable definition
of the phase of such a system. A common example of a chaotic oscillator is the
Rössler system (Fig. 2.14). Here, in place of a limit cycle we find a tangle of trajec-
tories forming the chaotic attractor. Though in the projection onto the x, y-plane
it resembles a smeared circle-shaped limit cycle, in this case it is not possible to
introduce a variable in the state space that is uniformly increasing with time. Still,
there are a number of different methods to calculate a quantity whose properties
are close to that of the phase of a periodic oscillator and that can be utilized to
analyze chaotic synchronization; some of them are discussed in greater detail in
Sec. 3.2. A simple approach is to define

φ = arctan
y
x

and A =
√

x2 + y2, (2.10)

that is, to take the angle8 around the origin in the projection plane as the phase,
and correspondingly the distance from the origin as the instantaneous amplitude
A.

An important phenomenon of chaotic synchronization can be observed with

8The arctan is the common formulation of this definition, though this function only gives values in
the range [− π

2 ; π
2 [. To obtain the full circular phase, one should use φ = arg(x + i y) or the equivalent

atan2(y,x) function of many computer languages.
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Figure 2.14: The attractor of the Rössler oscillator for standard values of the pa-
rameters (Eqs. 2.11). The right panel is showing the projection onto the x, y-plane.
The angle between the positive x axis and a particular system state (•) is indicated,
which is one possible definition of the phase of this chaotic oscillator.
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Figure 2.15: Phase synchronization of coupled Rössler oscillators (Eqs. 2.11 with
ω1,2 = 1± 0.015). a) The phase difference φ1 − φ2 of the oscillators over time. For
coupling strength C = 0.035 there are no phase slips. b) In the synchronized regime
the amplitudes A1, A2 remain chaotic and are almost uncorrelated. Reproduced
with permission from Rosenblum et al. (1996), Phase synchronization of chaotic
oscillators. Physical Review Letters, 76, Fig. 1. Copyright c© 1996 American Physical
Society.

http://link.aps.org/abstract/PRL/v76/p1804
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two coupled Rössler oscillators 1 and 2:

ẋ1,2 = −ω1,2 y1,2 − z1,2 + C (x2,1 − x1,2),
ẏ1,2 = ω1,2 x1,2 + 0.15 y1,2, (2.11)
ż1,2 = 0.2 + z1,2 (x1,2 − 10).

The parameters ω1,2 determine the natural frequencies of the two oscillators, while
C is the strength of their coupling. For a small frequency mismatch ω2 − ω1 and a
coupling that is also small but strong enough to overcome the detuning this system
reaches a synchronized regime where the phase difference seems to be bounded
(Fig. 2.15a). Interestingly, the dynamics of the two oscillators is still chaotic and
their amplitudes are uncorrelated (Fig. 2.15b). This specific regime in the dynamics
of two coupled chaotic oscillators has been found by Rosenblum et al. (1996). The
authors have called it phase synchronization to distinguish this form of synchroniza-
tion from other types that can be obtained with stronger coupling, like the perfect
coincidence of the two oscillators’ states. In the system of coupled Rössler oscilla-
tors with ω1 = ω2, in contrast to complete synchronization, phase synchronization
can be achieved with very small coupling.

The phase dynamics of a chaotic oscillator like the Rössler system can be de-
scribed by a dependency of the instantaneous frequency on the chaotic amplitude
(cf. Rosenblum et al., 1996):

φ̇ = ω0 + F(A).

Because the dynamics of the amplitude can formally be made independent of the
phase,9 its effect on the phase can be regarded as an external irregular influence (cf.
Pikovsky et al., 2001, Ch. 10). Therefore, the chaotic aspect of the phase dynamics
can effectively be treated as noise, so that chaotic synchronization can be described
in the framework of synchronization of noisy periodic oscillators (Eq. 2.9).

In the preceding, the basic mechanisms of bivariate synchronization have been
described for the cases of periodic, noisy and chaotic oscillators. Concluding, the
author wants to remark that the notion of phase synchronization has a threefold
meaning. Firstly, the term phase synchronization analysis used in the title of this
work denotes the approach to the processing of empirical data, in which phases are
calculated and their statistical properties are evaluated while the corresponding
amplitudes are disregarded (Sec. 3.3). This approach is, secondly, grounded on the
notion that synchronization in the sense of adjustment of rhythms is always “phase
synchronization”, because the rhythm of an oscillator is to be described in terms
of a phase. Thirdly, this approach is further motivated and justified by the finding
of the concrete phenomenon that occurs in coupled chaotic oscillators, that weak
coupling may effect a boundedness of the phase difference while the amplitudes
remain free. Because weak coupling affects the phases but not the amplitudes, it
can be detected by phase synchronization analysis, removing the noise inherent in
the amplitudes.

9This is achieved by turning the amplitude dynamics into a discrete-time map, where the time points
are determined by the return of the circular phase to a chosen value (corresponding to a Poincaré section
in state space). Because at these time points the phase has a pre-determined value, the future evolution
of the amplitude is determined only by its own current value.





Chapter 3

Data Processing and Bivariate
Analysis

While the previous chapter has described the data to be analyzed and the phys-
ical theory underlying this analysis, the present chapter goes into the details of
the procedures of data processing that are applied. Though these sections are still
concerned with basic methodical aspects, in contrast to the preceding sections they
already contain relevant decisions that have been made in order to adapt method
and data to each other. Their sequence follows the logical order of the processing
steps. Section 3.1 describes a remedy to the problems (with respect to synchroniza-
tion analysis) caused by the low spatial resolution of raw EEG by interposing a step
of data decorrelation. Section 3.2 continues the discussion of the definition of an os-
cillator’s phase started in Sec. 2.3. It introduces the wavelet transform as a method
to obtain an instantaneous phase from measured time series and explains why in
the case of EEG data this method is to be preferred over others. The final section
(3.3) establishes the statistical measure of bivariate synchronization strength that
is applied in this work. Its choice in preference over other approaches is accounted
for by an excursion into the statistics of directional data.

3.1 Reduction of spurious correlations

EEG is a problematic type of data for the calculation of correlations and other quan-
tifications of dependency between signals from different locations, including phase
synchronization. The reason for this is that the voltage time series measured at a
given scalp site does not solely correspond to the activity of the neuron population
directly underneath, but is a combination of influences that can be widespread in
the cortex. Therefore, a high level of baseline correlations between different sites
is to be expected that does not correspond to correlated activity within the brain.

There are two causes for this. Firstly, the electric potentials produced by the dy-
namically changing currents in the neural tissue can not be measured as such, but
have to be related to a reference. EEG recordings are measurements of voltages, that
is differences of the electric potential at different places. The common approach to
this problem is to put the reference electrode at a place where one can expect to
find only very weak local electric activity like the ear lobes, the mastoid bones be-
hind the ears, the neck, or the nose. But, as Nunez et al. (1997) have shown based
on numerical simulations, measurements are reference-dependent even if the rele-
vant neural field sources are not close to the reference electrode, and so practically
there is no such thing as a “quiet reference”. Because the variations of the potential

33
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at the reference electrode are included in the voltage measurements at every other
electrode this activity can lead to spuriously high correlations that are uniformly
distributed over the scalp.

The other cause of spurious correlations is more localized. It is due to volume
conduction, the circumstance that currents generated by cortical activity are pas-
sively spread over the scalp because of the lower conductivity of the skull (Nunez,
1981, Ch. 1). This leads to a smearing of the electric potential as it can be found
under the skull (the dura potential). Measurements at neighboring electrodes are
highly correlated because the current spread acts as a mixing-in of activity from
the surrounding areas. As an active reference electrode can induce spurious long-
range correlations, volume conduction leads to spuriously high short-range corre-
lations.

There are a number of methods aimed at reducing these spurious correlations
with different levels of sophistication. Regarding the reference electrode problem,
as part of the postprocessing of EEG recordings one can compute an improved
reference and re-reference the data according to it; possibilities include the mean
of the two ear lobe voltages, or the average over all electrode sites. For volume
conduction, detailed models of the electric properties of the cortical and scalp tis-
sue and the skull can be designed to simulate their effect on the dura potential
and reconstruct it from the scalp voltage measurements. But according to Nunez
et al. (1997), it is an approach in between that delivers very good results, namely
the surface spline Laplacian, the calculation of the surface Laplacian of spline-
interpolated scalp measurements. This method is able to completely remove ref-
erence problems, and though it does not directly aim at recovering inner surface
potentials, simulations have shown that with dense electrode arrays it provides an
excellent estimate of dura potentials (cf. Nunez, 1995).

According to Nunez (1981, Ch. 8), more than the scalp potential itself it is the
density of currents flowing into the scalp from below that is indicative of the lo-
cation of neuronal generators (cf. Perrin et al., 1987). Therefore it is interesting to
look at the sources and sinks of the resulting currents that are tangential to the
scalp surface, i.e. the surface divergence of the current density ~J. This quantity is
commonly called source current density:

SCD = ~∇surface · ~J

(where ~∇surface is the surface component of the Nabla operator). The current den-
sity represents the Ohmic current corresponding to the potential gradient

~J = −σ ~∇ Φ

(where σ is the conductivity of the scalp and Φ the electric potential), and therefore

SCD = −σ ∆surface Φ

(where ∆surface is the surface component of the Laplace operator). Since the mea-
sured voltages U = Φ−Φ0 are the potential with respect to a (spatially) constant
reference Φ0 and the Laplacian is a spatial derivative, the SCD can be calculated
on the voltages,

SCD = −σ ∆surface U. (3.1)

The source current density does not depend on the reference potential Φ0 any
more, and because the surface Laplacian acts as a spatial high-pass filter, local
correlations are reduced.

To apply the Laplacian, the voltages Ui measured at the electrode locations ~ri
have to be interpolated to obtain a continuous function on the scalp surface. The
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Figure 3.1: Reduction of correlations in experimental data by the spherical spline
Laplacian algorithm with m = 4. The squared correlation coefficient of signals is
plotted for each pair of electrodes within a set of 30 against the spherical angle be-
tween the electrodes. For raw data (gray×) a strong dependence of the correlation
on the electrode distance is visible that is largely removed after processing (black
+).

available methods to calculate the surface Laplacian (cf. Nunez et al., 1997) differ
in the type of interpolation used. The author is following the approach of Per-
rin et al. (1989) that is characterized by a simple, straightforward mathematical
ansatz. They assume that the scalp surface is approximately spherical with a ra-
dius normalized to unity and assign idealized positions to the electrodes. These
are obtained by transferring the procedures of electrode localization of the Inter-
national 10-20 System (Sec. 2.1) onto the unit sphere (cf. Lagerlund et al., 1993).
With electrode locations ~ri = r̂i for electrodes i = 1 . . . N, the voltage on the whole
sphere surface is interpolated by

U(r̂) = c0 +
N

∑
j=1

c j gm(r̂ · r̂ j), (3.2)

where c0 to cN are the interpolation coefficients that have to be chosen such that
U(r̂i) = Ui and ∑N

i=1 ci = 0, and

gm(z) =
1

4π

∞

∑
l=1

2l + 1
lm(l + 1)m Pl(z) (3.3)

is the spherical spline function of order m; Pl(z) denotes the lth degree Legendre
polynomial.

Since for the spherical geometry holds

∆surface ∝ ∆θ,φ =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

where θ and φ denote the angles in a spherical coordinate system and

∆θ,φ Pl(cos θ) = −l(l + 1) Pl(cos θ),
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the surface Laplacian of this spline interpolation has the same form as the interpo-
lation itself, and for the source current density estimation follows:

SCD(r̂) = −σ ∆surface U(r̂) ∝ −∆θ,φ U(r̂) =
N

∑
j=1

c j gm−1(r̂ · r̂ j).

The value of the last term evaluated at the electrode positions,

Li =
N

∑
j=1

c j gm−1(r̂i · r̂ j) (3.4)

is then used in place of the original recordings Ui for the subsequent analysis.
The calculation is computationally cheap, because for given electrode positions

the relation between ~U = (Ui) and ~L = (Li) can be written as a matrix multiplica-
tion. With ~C = (ci) for i = 1 . . . N, G = (gm(r̂i · r̂ j)), ~T denoting a column vector of
ones, and I denoting the identity matrix, the interpolation condition is fulfilled by

~C = G−1

(
I − ~T

~T+G−1

~T+G−1~T

)
~U and c0 =

~T+G−1

~T+G−1~T
~U,

where + is the transposition operator. Therefore the calculation of the Laplacian
can be written as ~L = L ~U, where

L = HG−1

(
I − ~T

~T+G−1

~T+G−1~T

)
,

with H = (gm−1(r̂i · r̂ j)). The author has chosen m = 4 for the spline order based
on the recommendation of Perrin et al. (1989) and experiments with empirical data
(Fig. 3.1).1

3.2 Determination of the instantaneous phase

To be able to apply phase synchronization analysis to empirical data, it is neces-
sary to assign an instantaneous phase φ(t) to the measured scalar time series x(t).
In the literature there is no generally adopted method to do so, but a number of
methods that are more or less adapted to specific situations. In this section two ba-
sic approaches are presented that have a well-founded mathematical background,
the analytic signal method and the wavelet method, and their close relationship is
detailed. Based on this systematic presentation some of the procedures that have
been used by other authors are commented on.

As has been explained in Sec. 2.3, the notion of phase stems from the theory
of the periodic oscillator corresponding to a limit cycle in a nonlinear dynamical
system. Here the phase describes the periodicity of the system’s behavior and in
the simplest case equals an angle in state space. If the movement on the limit cycle
is not uniform or the shape of the trajectory is not circular, the phase can still be
unambiguously defined as a periodic variable whose value is constantly increasing
in time, corresponding to the evolution of the system state along the limit cycle. For
chaotic dynamics with a complex attractor geometry it is generally not possible to

1For a comment on the possible use of generic methods like independent component analysis (ICA;
cf. Ziehe and Müller, 1998) as a preprocessing step for synchronization analysis to reduce mixing-
related dependencies in EEG data, see Ch. 7.
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consistently define such a variable.2 Nonetheless, in many cases an approximate
definition can be found, based on the observation that the attractor in a certain
planar projection can be considered as a limit cycle that has been “smeared out”
but still clearly orbits around a center. In this situation, the direct way to define a
phase is to take the angle in the projection plane with respect to the orbit’s center.

In empirical data often the full state of the oscillatory system is not accessible,
but only one scalar observable. Also, because the data are noisy and/or nonsta-
tionary, methods to reconstruct the state space from an observable (cf. Kantz and
Schreiber, 1997) do not give usable results. In this case it is necessary to determine
the phase based not on the system state, but directly on the measured signal x(t).
A general framework to do so is to transform the real valued signal into a com-
plex signal z(t) and to consider the argument of the complex value (correspond-
ing to the angle in the complex plane) as the instantaneous phase of the signal:
φ(t) = arg z(t). Different methods of phase definition then reduce to differences in
the applied transform x(t) → z(t).

Real valued signals may be characterized as such by their symmetry in the
frequency domain: x̃(−ω) = x̃(ω)∗, where x̃ is the Fourier transform of x and ∗

denotes the complex complement. Since the range of negative frequencies ω < 0 is
totally redundant, the most direct way to obtain a complex signal without losing
any of the signal’s information is to delete the negative frequency components by
applying a linear filter with a transfer function of

f̃ (ω) = 2 Θ(ω) =
{

0 ω < 0
2 ω ≥ 0 ,

where Θ is the Heaviside step function (cf. Carmona et al., 1998, Sec. 1.1.2). The
result of this transform is called the analytic signal; it can also be written as a con-
volution

z(t) = (x ∗ f )(t) with f (t) = δ(t) +
i
πt

. (3.5)

The analytic signal is a common tool in signal processing. In phase synchronization
analysis this approach has been introduced by Rosenblum et al. (1996).

The real part of the analytic signal is identical to the original real valued signal,
Re(z(t)) = x(t). Its imaginary component is called the Hilbert transform H of x, so
that

z(t) = x(t) + i Hx(t), where Hx(t) =
1
π

P.V.

∫ ∞

−∞

x(t′)
t− t′

dt′

and P.V. denotes the principal value integral. The effect of the Hilbert transform
can be described as the application of a π/2 phase lag separately to all frequency
components. Therefore, it transforms any cosine signal cos(ωt) into the sine and
the analytic signal is the corresponding complex harmonic exp(iωt), which means
that the resulting phase φ(t) = ωt is identical to the one commonly assigned to a
sinusoidal oscillation. The approach is equally successful if the spectrum of the
given signal shows only a single narrow peak because the underlying process de-
viates only weakly from a harmonic oscillation, like it is the case for instance with
the Rössler system (for standard values of the parameters; see Fig. 2.14). Pikovsky
et al. (1997) have shown that the instantaneous phase of this chaotic oscillator is
well-defined in the sense that the analytic signal approach, the definition based on
an angle in state space (Eq. 2.10), as well as a third method using a Poincaré sec-
tion give very similar values and equivalent results in the phase synchronization
analysis.

2In the language of nonlinear dynamics, at every place in state space the phase increases in that local
direction that corresponds to the zero Lyapunov exponent, which is always present in the Lyapunov
spectrum of a time-continuous autonomous system (Pikovsky et al., 1997). Still, these local directions
can not necessarily be merged to globally define the phase as a variable in state space.
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Figure 3.2: Determination of the instantaneous phase from data. a) A section of a
continuous EEG record at one electrode; the measured data are scalar, real-valued,
and broadband (noisy). b) The data have been filtered with a band-pass for 13 Hz,
the result is an amplitude-modulated sinusoidal wave. c) The Hilbert transform
has been applied to obtain the imaginary part (gray line) of the analytic signal
complementing the given real part (black line, equals b). d) The transformed signal
z(t) performs orbits in the complex plane, so that the instantaneous phase can be
defined as an angle.—The transform a→c has actually been done by convolution
with a complex Morlet wavelet for η = 10, scaled such that the center frequency is
ω = 2π · 13 Hz.

On the other hand, for many complex natural systems the signals that can be
obtained do not have such a simple composition. Especially for EEG, the measured
data are a superposition of a large number of components with extremely different
frequencies (Sec. 2.1), and those oscillations that are engaged in the synchroniza-
tion processes that are of interest in the given experimental context make up only a
small part of the broadband signal. In this case, it is necessary to apply a band-pass
filter to emphasize the signal components in a specific frequency band (Fig. 3.2).3

In many cases it is not known in advance which frequencies characterize the oscil-
latory processes one is looking for and so the band-pass has to be applied several
times in versions that are adjusted to the different frequencies. A framework for
such signal analysis at different frequencies retaining a high temporal resolution is
given by wavelet theory.

A wavelet (following Mallat, 1998, Sec. 4.3) is a function Ψ(t) with zero mean∫ ∞

−∞
Ψ(t) dt = 0

that is normalized according to a square norm:

〈Ψ|Ψ〉 =
∫ ∞

−∞
Ψ(t) Ψ∗(t) dt = 1

(〈·|·〉 denotes the scalar product of two complex-valued functions). The wavelet
transform W analyzes a signal x by correlating it with so-called time-frequency
atoms that are rescaled (parameter s) and translated (parameter u) versions of the
wavelet:

Wx(u, s) = 〈x|Ψu,s〉 =
∫ ∞

−∞
x(t) Ψ∗

u,s(t) dt (3.6)

with Ψu,s(t) =
1√
s

Ψ
(

t− u
s

)
.

3For the case of MEG/EMG signals, cf. Tass et al. (1998).
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Figure 3.3: a) The complex Morlet wavelet for η = 10 (black line: real part, gray
line: imaginary part). b) Transfer functions of the filters corresponding to a con-
volution with a scaled Morlet wavelet for two different scales, s = η/ω with
ω/2π = 13 Hz, 30 Hz. The filter with the higher center frequency also has a larger
bandwidth (increased time and reduced frequency resolution). Note that the value
of the transfer functions for ω < 0 is practically 0, such that the calculation of the
analytic signal implicit in the filtering is almost perfect.

For a fixed scale s, the transform can be written as a convolution

Wx(u, s) = (x ∗Ψs)(u) with Ψs(t) =
1√
s

Ψ∗
(
− t

s

)
that is, as a filter with a transfer function of Ψ̃s(ω) =

√
s Ψ̃∗(s ω).

A wavelet is called analytic if Ψ(t) is an analytic signal, i.e. if it does not contain
any negative frequency components (Ψ̃(ω) = 0 for ω < 0). In this case, the wave-
let transform Wxs(u) as a function of u is the analytic signal corresponding to x(t)
that has additionally been filtered according to the scale s. That means the ana-
lytic wavelet transform comprises the effect of a band-pass filter and of the Hilbert
transform (Fig. 3.2).

In this work, the Gabor4 or complex Morlet wavelet is used (Fig. 3.3a). It is a
complex harmonic modulated with a Gaussian-shaped envelope:

Ψ(t) = 4

√
2
π

exp(−t2) exp(iηt) (3.7)

(Carmona et al., 1998, Sec. 4.3.1). This wavelet is not strictly analytic, but for
the relevant applied case η > 5 it is analytic in a very good approximation. The
constant parameter η distinguishes variants of the wavelet and has to be chosen
according to the purpose of the application (see below).

The time-frequency atoms of the Morlet wavelet transform are

Ψu,s(t) = 4

√
2

s2π
exp

(
− (t− u)2

s2

)
exp

(
iη

t− u
s

)
.

Considering the modulus squared of the atom

|Ψu,s(t)|2 =
√

2
s2π

exp
(
−2

(t− u)2

s2

)
4Interestingly, the two approaches to the definition of an instantaneous phase discussed in this sec-

tion have a common source: The analytic signal was introduced by Gabor in the same study (Gabor,
1946) that presented an early form of a wavelet-based time-frequency analysis.
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as a distribution over time, one can see that it is localized around t = u with a pre-
cision of σt = s/2. In the frequency domain the wavelet is also Gaussian-shaped,
and the transfer function corresponding to the wavelet transform is

Ψ̃s(ω) =
√

s Ψ̃∗(s ω) = 4

√
s2

2π
exp

(
−1

4
(s ω− η)2

)
(3.8)

(Fig. 3.3b). Considering now the modulus squared of the transfer function

|Ψ̃s(ω)|2 =

√
s2

2π
exp

(
−1

2
s2
(
ω− η

s

)2
)

as a distribution over frequency, one can see that the time-frequency atom is local-
ized around ω = η/s with a precision of σω = 1/s.

The Morlet wavelet transform corresponds to the parallel application of a num-
ber of Gaussian band-pass filters with different center frequencies (a “filter bank”).
The scaling implicit in the wavelet transform leads to a constant ratio of center fre-
quency to bandwidth ω/σω = η. Because of this, the frequency resolution of the
analysis σω = ω/η gets finer with decreasing center frequency and the time resolu-
tion σt = η/2ω gets finer with increasing center frequency. The constant combined
time-frequency resolution of the Morlet wavelet is σtσω = 1

2 , which is the optimum
of the general uncertainty relation σtσω ≥ 1

2 for time-frequency analyses (Mallat,
1998, Sec. 2.3.2). The tradeoff between time and frequency resolution can be ad-
justed by the parameter η.

Since the Morlet wavelet is approximately analytic, the wavelet transform en-
compasses the calculation of the analytic signal and the application of band-pass
filters in an elegant way. Other than the analytic signal approach, the wavelet
transform Wx(u, s) gives not only one complex signal z(t), but one for every scale
s: zs(t) = Wx(t, s). Because the scale corresponds to a frequency ω = η/s, this can
be used to define a frequency-specific complex signal z(t, ω) = Wx(t, η/ω) and, ac-
cordingly, a frequency-specific instantaneous phase:

φ(t, ω) = arg z(t, ω) = arg Wx
(

t,
η

ω

)
. (3.9)

This definition of the phase based on the complex Morlet wavelet will be used as
the basis of the synchronization analyses presented in the following chapters.

The wavelet transform has been used in a large number of studies analyzing
empirical data, including EEG (cf. Lopes da Silva, 1998a). For instance, Tallon-
Baudry et al. (1996) have used it for computing a time-frequency energy den-
sity E(t, ω) = |z(t, ω)|2 of event-related potentials as well as indices of phase lock-
ing (but without calculating an instantaneous phase; see also Braeutigam et al.,
2001). In the context of phase synchronization analysis, Rodriguez et al. (1999)
resp. Lachaux et al. (1999) have used a Morlet wavelet and advocated it as an al-
ternative to the analytic signal, but have redundantly combined it with a band-pass
filter for the same frequency band. On the other hand, DeShazer et al. (2001) have
modified the analytic signal approach by using a Gaussian transfer function in
place of the Heaviside, thereby effectively computing a Morlet wavelet transform
but without relating their method to wavelet theory. Similarly Haig et al. (2000)
have computed instantaneous phases by using one component of a windowed
Fourier transform of the signal, which is equivalent to a wavelet transform that
is confined to a single frequency η with a wavelet of the form Ψ(t) = exp(iηt) g(t),
where g is the window function. Though Le Van Quyen et al. (2001a) had em-
pirically compared the wavelet method with the one using combined band-pass
and analytic signal, finding that there are only small differences, and though some
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of the authors had already recognized the close relationship between the analytic
signal and wavelet transform approaches, the first study contributing to the field
of phase synchronization analysis to correctly state the mathematical relations was
Quian Quiroga et al. (2002).

A special case in synchronization analysis is Schack et al. (2000) and related
studies (Weiss and Müller, 2003; Weiss et al., 2004). To obtain frequency- and
time-dependent phases for two channels, the authors fit a two-dimensional ARMA
(autoregressive moving average) model to the data that features time-varying pa-
rameters. It is questionable whether this laborious procedure provides an advan-
tage over the more direct, mathematically elegant and transparent approach of the
wavelet transform. Moreover, the authors interpret a constant phase difference be-
tween oscillators as an indicator of the “speed of information transfer”. Such an
interpretation corresponds to an understanding of the observed process in terms
of signal propagation, but not of synchronization, where the most important cause
for a phase lag is a difference in the natural frequencies of two oscillators.

3.3 Quantification of bivariate phase synchronization
and directional statistics

In Sec. 2.3 synchronization has been introduced as a phenomenon occurring in cou-
pled self-sustained oscillators and has originally been defined as the boundedness
of the phase difference (Eq. 2.7). It has also been stated that in noisy oscillators
it is possible that this condition is never exactly met, even though the coupling
has a clear effect on the probability distribution of the circular phase difference
(Fig. 2.13). Although the basic phenomenon of chaotic phase synchronization ob-
served in coupled Rössler oscillators consists also in a bounded phase difference,
for other chaotic oscillators irregular phase slips similar to the noisy case may
occur (imperfect synchronization, cf. Pikovsky et al., 2001, Ch. 10). Still another
and in practice the most important reason why it may be impossible to observe
a bounded phase difference is noise that is affecting the data acquisition. Strong
measurement noise is common in many types of empirical data, and this is clearly
the case for EEG. In all of these circumstances, the original definition of (phase)
synchronization has to be replaced by a quantitative statistical concept. In this
perspective, phase synchronization is a gradual phenomenon whose strength cor-
responds to the degree of dynamical dependence between the phases of the two
oscillators. This section introduces the basic measure of bivariate phase synchro-
nization that will be used subsequently, and it gives an overview of the mathemat-
ical background and statistical properties of this measure.

In the bivariate case,5 we are concerned with a system that consists of two
self-sustained oscillators, A and B. For each of them a phase φA, φB is defined
(Sec. 3.2). The oscillators are coupled to each other such that the phase difference
∆φ = φB − φA tends to a preferred value (in the most simple case, to 0). This ten-
dency is disturbed by dynamical noise or by chaos—that both can conceptionally
be considered in the framework of stochastic dynamics—and the determination
of the phases is subject to measurement noise. Therefore the phase difference is a
random variable characterized by a probability distribution which is empirically
accessible in the form of a number of realizations ∆φ j, j = 1 . . . n (a sample). In
the examination of a single time series of a phase difference ∆φ(t), the different
time points may be looked at as these (statistically dependent) realizations. In
the context of this work about synchronization analysis of event-related potentials
(Sec. 2.2) the realizations correspond to the epochs of an experimental condition,

5An approach to multivariate statistical phase synchronization analysis will be introduced in Ch. 5.
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Figure 3.4: The measure of synchronization strength R̄. If points on the unit circle
(◦) are assigned to the values of the phase difference ∆φ j in a sample, R̄ can be
visualized as the distance between the center of gravity of the points (×) and the
circle center. Weak synchronization corresponds to a nearly uniform distribution
of the phase difference and a small value of the measure (here, R̄ = 0.12), strong
synchronization to a distribution concentrated on one side and a high R̄ value
(here, 0.88). (Histogram and ×-location are based on 1000 samples, of which 30
are plotted on the circle.)

while time is treated as an additional independent parameter of the nonstationary
process.

Tass et al. (1998) have introduced a measure of synchronization strength that
quantifies the deviation of the phase difference distribution from a uniform one. It
is based on the Shannon entropy S of the phase difference distribution, estimated
on a sample histogram with N equal bins. The measure is then defined to be the
normalized entropy

Smax − S
Smax

with Smax = log N

that can obtain values in the range from 0 corresponding to the uniform distri-
bution (no synchronization) to 1 corresponding to a δ distribution (perfect syn-
chronization). The entropy measure has been successfully used by the authors to
observe neural and muscular synchronization processes in MEG and EMG data.
Nonetheless, it has some disadvantages: the definition includes a parameter (the
number of histogram bins N) whose value has to be appropriately chosen, and the
binning procedure makes the calculation of the entropy measure computationally
expensive, which is important in the processing of large amounts of data.

In this work another measure of synchronization strength is used whose com-
putation is much more straightforward, the mean resultant length:

R̄ =

∣∣∣∣∣ 1n n

∑
j=1

exp(i ∆φ j)

∣∣∣∣∣ . (3.10)

R̄ also takes on values in the range from 0 to 1, describing a continuum between no
and perfect phase synchronization. But in contrast to the entropy measure, R̄ does
not quantify the general nonuniformity of the distribution but the magnitude of
its (single) peak (Fig. 3.4).6 Under different names, the mean resultant length has
been used as a measure of bivariate synchronization in a number of studies ana-
lyzing EEG data (Rodriguez et al., 1999; Lachaux et al., 1999; Mormann et al., 2000;

6Because of this, the use of R̄ as a synchronization measure presumes that the phase difference
distribution is unimodal, which may be seen as drawback against the entropy measure. On the other
hand a multimodal distribution is an indicator of m : n synchronization (Sec. 2.3, Fn. 7). If the locking
ratio defining ∆φ is correctly chosen, the distribution of the generalized phase difference should be
essentially unimodal.
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Quian Quiroga et al., 2002). The R̄ statistic has also been applied directly to phases
as a global measure of phase synchronization in a population of oscillators (Haig
et al., 2000). For the author, the most important property of the mean resultant
length is that it has a well elaborated background of mathematical theory, describ-
ing its statistical properties. This background is the field of directional statistics.

Directional statistics (Mardia, 1972; Mardia and Jupp, 2000) deals with a spe-
cial type of random variable which is defined on a circular scale, such that values
whose difference is an integral multiple of a certain period (in general 2π) are re-
garded the same, and for convenience all values are wrapped into a single period.
The circular phase difference ∆φ (Sec. 2.3) is an example of such a random variable;
another example are directions in space which are a common object of investiga-
tions in science, for instance the directions of the flight of birds or that of geologic
formations. For the purposes of this discussion the circular random variable may be
generically denoted by θ.

To such a variable standard linear statistical measures and moments like mean
and variance are not applicable, because they yield different values depending on
the way the values of the circular variable are mapped onto a linear scale (Fig. 3.5).
Instead of these classical moments, directional statistics studies the statistical pro-
perties of the values of trigonometric functions applied to the circular variable θ,
the trigonometric moments of order p (p = 1,2, . . .) of its distribution

αp = 〈cos p θ〉 and βp = 〈sin p θ〉.

The combined complex form of cosine and sine moments αp + iβp is equivalent
to the characteristic function of the distribution (its Fourier transform). The first
element of this series is of special importance, because the polar components

µ = arg(α1 + iβ1) and % = |α1 + iβ1| (3.11)

can be regarded as indices of the mean direction of the distribution and of its con-
centration onto this mean direction, respectively. (Mardia and Jupp, 2000, Sec. 3.4)

These are the theoretical moments of the circular distribution. The correspond-
ing quantities on a sample θ j ( j = 1 . . . n) are

ap =
1
n ∑ cos p θ j and bp =

1
n ∑ sin p θ j,

which are estimators of the moments αp and βp. The components of the first em-
pirical moment are

C̄ = a1 =
1
n

n

∑
j=1

cos θ j and S̄ = b1 =
1
n

n

∑
j=1

sin θ j
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or, in polar representation,

θ̄ = arg(C̄ + i S̄) and R̄ = |C̄ + i S̄| =
∣∣∣∣∣ 1n n

∑
j=1

exp(i θ j)

∣∣∣∣∣ .
Since R̄ is the length of the mean of the unit vectors corresponding to the sample
values it is called mean resultant length. R̄ is an estimator of the population mo-
ment % and as such an empirical measure of the concentration of the underlying
distribution. (Mardia and Jupp, 2000, Sec. 2.2 ff.) Applied to a sample of the phase
difference distribution of two oscillators, it turns into a measure of synchronization
strength.

Since R̄ is based on a finite sample of the distribution, it is just an estimate of
the true concentration %. To be able to assess the precision of this estimation or to
perform a statistical test (see Ch. 4) it is necessary to know about the distribution
of R̄ as a random variable. Because of the simple definition of this statistic, it is
possible to derive basic properties of its sampling distribution. Since C̄ and S̄ are
sums of identically distributed contributions, due to the central limit theorem their
asymptotic (n →∞) joint distribution is a two-dimensional normal. The moments
of this distribution depend on the trigonometric moments of θ:

〈C̄〉 = α1

n var C̄ = 1
2 (1 + α2 − 2α2

1)
〈S̄〉 = β1

n var S̄ = 1
2 (1− α2 − 2β2

1 )
n cov(C̄, S̄) = 1

2 (β2 − 2α1β1)
(3.12)

For % > 0, the transformation from (C̄, S̄) to (R̄, θ̄) is locally linear, and so R̄ is
asymptotically normally distributed, too. If the distribution of θ is symmetrical
about 0, it holds

〈R̄〉 = α1 +
1− α2

4α1n
+ O(n−3/2) ∼= α1 = % and n var R̄ ∼=

1
2

(1 + α2 − 2α2
1).

For the uniform distribution (% = 0), 2nR̄ is asymptotically distributed as χ2
2. (Mar-

dia and Jupp, 2000, Sec. 4.8) Beyond this, the sampling distribution of R̄ can only
be specified if something is known about the distribution of θ.

In linear statistics the normal distribution plays a central role, which is justified
by its special statistical properties. In its place in directional statistics there are two
similar but different distributions, each of them sharing some of these properties
(Mardia and Jupp, 2000, Sec. 3.5). The first is the von Mises distribution M(µ,κ),
defined by the probability density function (Fig. 3.6a)

pM(θ;µ,κ) =
1

2πI0(κ)
exp(κ cos(θ− µ)). (3.13)

Ip denotes the modified Bessel function of the first kind of order p. µ specifies the
mean direction of the distribution and κ its concentration; the moments are

αp =
Ip(κ)
I0(κ)

cos(pµ), βp =
Ip(κ)
I0(κ)

sin(pµ),

and especially

% = A(κ) =Def
I1(κ)
I0(κ)

.

For a centered von Mises distribution M(0, κ) with κ > 0, the moments of the sam-
pling distribution of R̄ are

〈R̄〉 ∼= A(κ) and n var R̄ ∼= 1−A(κ)2 − A(κ)
κ

.
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Figure 3.6: The probability distribution functions of the centered von Mises (black
line) and wrapped normal (gray line) distributions for three values of the con-
centration moment %. a) % = 0.2: M(0,0.41), W(0,1.79). b) % = 0.5: M(0,1.16),
W(0,1.18). c) % = 0.8: M(0,2.87), W(0,0.67).

Main properties of the von Mises distribution in analogy to the normal distribution
are that it is the one with maximum entropy for fixed moments % and µ (that is,
it is the best estimate of a distribution if only these moments are known) and the
one under which the sample moment θ̄ is the maximum likelihood estimator of a
shifting parameter like µ.

For the application in the context of phase synchronization it is of special im-
portance that the simplest stochastic model of phase synchronization, deriving
from Eq. 2.9 with detuning ∆ω = 0, coupling q(∆φ) = − sin(∆φ), and ξ(t) being
standard normal white noise:

∆̇φ = −ε sin(∆φ) + ξ(t), (3.14)

the so-called von Mises process, results in a stationary solution that is a von Mises
distribution: ∆φ ∼ M(0,2ε).

The second circular distribution corresponding to the linear normal one is the
wrapped normal distribution W(µ,σ) with the probability density (Fig. 3.6b)

pW(θ;µ,σ) =
1√
2πσ

k=∞

∑
k=−∞

exp
(
−1

2
(θ− µ + 2πk)2

σ2

)
. (3.15)

Again µ specifies the mean direction of the distribution and σ its dispersion. The
moments are

αp = %p2
cos(pµ), βp = %p2

sin(pµ) with % = exp
(
−1

2
σ2
)

.

For a centered wrapped normal distribution W(0, σ), the moments of the sampling
distribution of R̄ are

〈R̄〉 ∼= % and n var R̄ ∼=
1
2

(1− %2)2 with % = exp
(
−1

2
σ2
)

.

Main properties of the wrapped normal distribution corresponding to those of the
normal distribution are that it is additive and that there exists a central limit theo-
rem which describes convergence to the wrapped normal distribution.

The von Mises and the wrapped normal distribution can be related to each
other by equating their concentration moments A(κ) = % = exp(− 1

2σ2). For ex-
treme values % → 0 or % → 1 they converge to each other and to the uniform or δ
distribution, respectively. For intermediate values the peak of the von Mises distri-
bution is sharper (Fig. 3.6). Since the von Mises and the wrapped normal distribu-
tion are closely related to basic statistical properties of circular random variables,
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there is some possibility that empirical distributions of circular random variables
may be described sufficiently well by one of them, including the phase difference
of coupled oscillators (see Sec. 4.1). Even if this is may not be so, they retain their
importance as paradigmatic circular random distributions.

The concepts and insights of directional statistics are used at several places in
the following chapters. Chapter 4 describes a number of hypothesis tests concern-
ing R̄ which rely in different degrees on the properties summarized above. Chap-
ter 5 introduces an approach to multivariate phase synchronization based on the
idea of a synchronization cluster that is specified in terms of directional statistics.



Chapter 4

Statistical Tests for Bivariate
Phase Synchronization

In Sec. 3.3, a statistical measure of phase synchronization strength has been intro-
duced and its background in the theory of directional statistics has been given. As
detailed there, the measure of synchronization strength R̄ is an estimator of the
trigonometric moment % of the phase difference distribution, quantifying the mag-
nitude of its peak. Since such a statistical measure is in itself a random variable, a
deviation of its empirical value from zero (corresponding to no synchronization)
does not suffice to state an effect of phase synchronization. This means that a sta-
tistical test has to be applied.

In the literature, there are some approaches to test for the significance of a mea-
sured synchronization level (cf. Paluš, 1997; Paluš and Hoyer, 1998; Tass et al., 1998;
Rodriguez et al., 1999; Lachaux et al., 1999; Mormann et al., 2000; Bhattacharya
et al., 2001). Though these studies differ in the exact specification of the null hy-
pothesis, in all cases it corresponds to a system state of no synchronization. In
practice this null hypothesis often proves to be too strong (to be too easily rejected),
because there is a base level of synchronization which is always present in the sys-
tem. Therefore the test is not able to distinguish between different system states.
Moreover, most of these approaches1 do not include a theoretical analysis of their
test statistic, and calculate critical values based on the method of surrogate data,
whose statistic validity (not only in this context) has recently been challenged.2

This chapter presents tests improving this situation in three respects:

1) A measure known from the context of directional statistics is used and its
simple and defined statistical properties are utilized (see Sec. 3.3).

1An exception are Mormann et al. (2000), who apply a Rayleigh test for uniformity (cf. Mardia and
Jupp, 2000) to the phase difference distribution.

2Surrogate data (cf. Kantz and Schreiber, 1997, Sec. 7.1) have been introduced into nonlinear data
analysis by Theiler et al. (1992). They are random data conforming to the null hypothesis of the test,
that have been generated by processing the original time series. The classic and still most widely used
method is that of phase randomization in the frequency domain (FT-based surrogates) that generates
data according to the null hypothesis of a circular (with respect to the time variable), linear, Gaussian,
stationary random process.

While this null hypothesis seems not to be really adequate in the context of testing for synchroniza-
tion, recent research by Mammen and Nandi (2004) has led to even more severe objections. Especially
for FT-based surrogates they have been able to show that critical values estimated from surrogate data
do not asymptotically stabilize. So even though FT-based surrogate data tests are valid (i.e., result in
correct rejection probabilities) for circular stationary Gaussian processes, for many test statistics the
variance of the estimated critical value is of the same order of magnitude as the variance of the test
statistic itself. This means that a surrogate data test may operate essentially on chance level.

47
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2) A two-sample approach is used, testing against the null hypothesis that the
synchronization strength is the same in the two samples.

3) Testing procedures based on proven statistical theory are used. In the non-
parametric case, they rely on resampling techniques.

A number of tests is presented that differ in generality and precision, but also
in computational complexity. The different tests are graded with respect to their
applicability and usefulness in a given situation and their correctness is checked in
numerical simulations.

In contrast to the other parts of this work, this chapter is not directly aimed
at the processing of EEG data. On the one hand, the testing procedures described
here are applicable in all fields concerned with statistical analysis of bivariate phase
synchronization, regardless of the type of data. On the other hand, in the following
chapters the multivariate character of EEG will come into focus, and the statistics
that become relevant there and which will be the subject of significance testing will
be quantities derived, but different from the bivariate measure R̄ and will have dif-
ferent properties. Still, some of the insights and methods that are described in this
chapter will be utilized again at later points.3

The two-samples test setup

The mean resultant length (see Sec. 3.3)

R̄ =

∣∣∣∣∣ 1n n

∑
j=1

exp(i ∆φ j)

∣∣∣∣∣
is a measure of phase synchronization based on a sample ∆φ j of size n ( j = 1 . . . n)
of the phase difference ∆φ = φB −φA of two coupled oscillators A and B. It reflects
the synchronization strength in a certain state of the system. Since only in special
cases it makes sense to compare against a state of unsynchronized behavior, it is
necessary to obtain a reference level of synchronization. This is given by a second
sample of the phase difference from another state of the same system of two os-
cillators. For each of the samples ∆φ1, j, ∆φ2, j the value of the measure R̄1, R̄2 is
calculated, and the question to be answered by the test is whether the difference of
these two values is significant.

The corresponding null hypothesis is that the population values of the synchro-
nization measure are equal,

H0 : %1 = %2.

The test decides if this hypothesis is to be rejected or accepted based on the given
information (the samples), and the important part of the test design is to ensure
that the probability for erroneous rejection of the null hypothesis, the so-called
error of the first kind, does not exceed a chosen value, the significance level α of the
test.

In the given form the different tests to be presented in the following assume
that both samples are of equal size, but they are easily generalized to different
sample sizes n1 and n2. Initially, all of the tests assume that the samples consist of
independent values, that is they are obtained from independent realizations of the
process of phase synchronization. In this way the number of samples is also the
number of degrees of freedom inherent in the data (in total 2n). This is a strong
constraint, and so in the last section some of the tests are generalized to the case of
partly dependent samples, so that the data from the underlying time series can be
fully utilized.

3An earlier version of the work presented in this chapter is being published as Allefeld and Kurths
(2004b).
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Accuracy and power of the tests

In several respects, the quality of the tests will be judged on theoretical grounds.
But in many cases the performance of a test cannot be theoretically deduced. There-
fore the tests have been checked in a numerical simulation using random numbers
generated according to the wrapped normal distribution with the specified %.4 The
essential parameter to be calculated is the probability for the rejection of the null
hypothesis. If the null hypothesis %1 = %2 is true, this probability is called error of
the first kind, which has to be equal to or at least smaller than the significance level.
For the general case in which both %s are arbitrarily chosen it is called the power
function, because the power of the test to recognize a situation not conforming to
the null hypothesis corresponds to this probability for %1 6= %2.

Figure 4.1 presents the results of the simulations. Two samples of size n = 100
from the wrapped normal distribution for the given values of %1 and %2 have been
generated, the respective test for a significance level of 5 % has been performed
and the relative frequency of rejection as an estimator of the probability has been
calculated in 4 000 repetitions. Panel a) shows the rejection probability depending
on % with %1 = %2 = % (error of the first kind), panel b) depending on %1 with
%2 = 0, and panel c) the same for %2 = 0.4 and %2 = 0.8 (three sections through
the two-dimensional power function). Since the scale is much smaller in panel a),
the randomness of the probability estimation appears stronger here; the horizontal
black lines mark the mean ± s.d. to be expected from a binomial distribution.5

In Fig. 4.1a it can be seen that all of the tests are valid for all values of % in the
sense that the chosen significance level is not exceeded (within the accuracy of the
simulation). On the other hand, four of the tests show errors that in the vicinity of
% = 0 lie strongly below α. This leads to a decreased power of these tests for testing
against %2 = 0, as can be seen in panel b). For higher values of %2, this weakness is
no longer relevant; the different lines are almost indistinguishable. What can also
be seen in panel c) is that the power of the tests increases (the valley of the power
function gets narrower) for those higher values. The following sections will refer
to these results in more detail.

4.1 Parametric tests

A direct way to construct a test is to assume that the distribution of ∆φ belongs to a
certain family which can be described by a small number of parameters, of which
the concentration moment % is the most important. This is the approach taken by
Mardia in his monographs on directional statistics (Mardia and Jupp, 2000; Mardia,
1972). It is mathematically justified, but it will be seen that its applicability is rather
limited.

As has been derived in Sec. 3.3, R̄ is asymptotically normally distributed for
% > 0. Based on the assumption that ∆φ follows one of the two standard circular
distributions, the moments of the corresponding sampling distributions of R̄ can
be calculated. For the von Mises distribution M(µ,κ), they are

〈R̄〉 ∼= A(κ), n var(R̄) ∼= 1−A(κ)2 − A(κ)
κ

4For a definition of the wrapped normal distribution, see above Eq. 3.15. It is important to note that
except for the parametric test there is nothing in the derivation of the test procedures that relies on the
specific properties of this distribution. For the numerical simulation it has been necessary to choose
a specific distribution family, and the wrapped normal has been chosen because random numbers are
easily obtained and because it can be considered as a typical circular random distribution. Calculations
based on the von Mises distribution produced equivalent results.

5s.d. = standard deviation
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Figure 4.1: Investigation of the properties of the presented tests in a numeri-
cal simulation based on wrapped normally distributed samples of size n = 100.
a) Empirical error of the first kind in samples conforming to the null hypothesis
%1 = %2 = %. b) Power function for testing against a sample with %2 = 0. c) Power
functions for testing against a sample with %2 = 0.4 and %2 = 0.8, respectively. Each
probability has been estimated based on 4000 simulations of the test for a signifi-
cance level of α = 5 %.
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with A(κ) = I1(κ)/I0(κ). For the wrapped normal distribution W(µ,σ) holds

〈R̄〉 ∼= %, n var(R̄) ∼=
1
2

(1− %2)2

with % = exp
(
− 1

2σ2
)
; in both cases, plus terms of order 1/n.

Following Mardia and Jupp (2000), a variance-stabilizing transformation is used
to define a suitable test statistic. Such a transformation can be defined for a statistic
Z on a sample of a random variable which follows a distribution with a parameter
a. The moments of the statistic are functions of this parameter:

〈Z〉 = f (a) and n var(Z) = g(a).

Now, if the transformation

h(x) =
∫ x

0

1√
g( f−1(x))

dx

is applied to the statistic Z, the result is a quantity with an approximately constant
variance: n var(h(Z)) ∼= 1.

In the case of the statistic R̄ on a von Mises or a wrapped normal distribution,
the corresponding transformations are

hM(x) =
∫ A−1(x)

0

√
A′(κ) dκ and hW(x) =

√
2 artanh x, (4.1)

respectively.6 Interestingly, the latter is up to a factor identical to the variance-
stabilizing transformation of the linear correlation coefficient, the Fisher Z trans-
form (Sheskin, 1997).

The result of these transformations is now used to perform a test for a signifi-
cant difference of the synchronization measure in the two samples R̄1,2. Under the
null hypothesis %1 = %2 the statistic√

n
2
(
h(R̄2)− h(R̄1)

)
(4.2)

follows asymptotically a standard normal distribution. The hypothesis of equal
synchronization strength in the two samples has to be rejected if the modulus of
this quantity exceeds a certain value, which is given by the quantiles of the normal
distribution for a chosen significance level (i.e., a Gauss test is to be performed).

The variance-stabilizing transformation test is applicable if both samples fol-
low the supposed distribution and if the sample size is large enough so that the
asymptotic approximation can be applied. An additional restriction follows from
the presupposition % > 0 in the derivation of the sampling distribution of R̄; for a
finite sample size it is necessary that circa %1,2 > 3/

√
2n. For smaller values, the

asymptotic distribution assumption as well as the variance estimation implicit in
the test are no longer correct. In Fig. 4.1 (blue lines) it can be seen that this leads
to a decrease of the error of the first kind below the significance level and a corre-
sponding suboptimal power for testing against %2 = 0. Still, the test seems to be
valid in all cases.

To check if the parametric test based on the von Mises or the wrapped normal
distribution is applicable to typical phase difference distributions caused by syn-
chronization, they are compared to simulation results from a classic example, two

6The first integral can not be written in a closed form, but can be calculated numerically.
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Figure 4.2: Histograms of the phase difference distribution of two coupled Rössler
oscillators in a numerical simulation (black), with fitted von Mises (blue) and
wrapped normal (green) probability distribution functions. a) Weak coupling
ε = 0.005. b) Stronger coupling ε = 0.015. c) Stronger coupling with additional
measurement noise of s.d. 5.

coupled chaotic Rössler oscillators (see Eqs. 2.11):

ẋA,B = −ωA,B yA,B − zA,B + ε (xB,A − xA,B),
ẏA,B = ωA,B xA,B + a yA,B,

żA,B = f + zA,B (xA,B − c),

where a = 0.15, f = 0.2, c = 10, with a small frequency mismatch ωA,B = 1∓ 0.01.
Phases are defined to be φA,B = arctan yA,B/xA,B.

Figure 4.2 shows the distribution of the phase difference (which depends on the
strength of the coupling ε) in a numerical simulation. For a small value of ε = 0.005,
the resulting distribution may be well described by a fitted von Mises as well as a
wrapped normal distribution (a). If the coupling is increased to ε = 0.015, the peak
of the distribution is sharper than both of the fitted distributions (b). To make the
simulation more realistic for empirical data, artificial measurement noise in phase
space has been added (two-dimensional normal in the (x, y)-plane with s.d.= 5).
As a result, the distribution for the stronger coupling may again be described by
a fitted von Mises distribution, but not as well by a wrapped normal distribution
(c). It seems that measurement noise may improve the applicability of the standard
distributions in phase synchronization systems.

As can be seen from this, there surely are synchronization phase differences
which can be described by one of the standard normal distributions, but this is
not always the case. Not only that the parametric test may be inapplicable; to be
precise, one would have to perform a separate test for goodness of fit in each case.
Though the parametric approach of Mardia is elegant and simple, it is therefore
necessary to look for a nonparametric means to test for phase synchronization.

4.2 A simple nonparametric test

There is a classic nonparametric approach in statistics which is designed to test
for a significant difference of the means of two samples, the t-test. Mean values
and variances are calculated from the samples and the difference of the means is
divided by the standard deviation of its estimation, resulting in the t statistic. If
the sample values are normally distributed, t is distributed according to a Student
distribution with f = 2 (n− 1) degrees of freedom (Sheskin, 1997).

Formally, it is possible to write the equation for R̄ in the form of a mean value:

R̄ =
1
n ∑ cos(∆φ j − θ̄) with θ̄ = arg∑exp(i ∆φ j).
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Correspondingly the variance of the estimation can be directly calculated:

s2
R̄
∼=

1
n(n− 1) ∑

(
cos(∆φ j − θ̄)− R̄

)2
. (4.3)

With this, a t-like statistic is defined as

t =
R̄1 − R̄2√
s2

R̄,1 + s2
R̄,2

. (4.4)

This approach has two faults: The randomness of the mean direction θ̄ of the phase
differences is neglected, which leads to deviations especially for small values of %
and therefore inaccuracies in the calculation of the variance s2

R̄; and the distribution
of cos(∆φ j − θ̄) is certainly not normal.

However, the t-test proves to be very robust against deviations from the distri-
bution assumption for large samples, and so one can approximately assume that
the given statistic is distributed like a standard t random variable. Based on this,
the hypothesis of equal concentration has to be rejected if the modulus of this quan-
tity exceeds a certain value, which is given by the quantiles of the t f distribution
with f = 2 (n− 1) for a chosen significance level. In this approximation, the test is
applicable for a sufficiently large sample size.

The advantage of this approach is that it is generally applicable, but at the ex-
pense of theoretical accuracy. Despite of this, in the simulation (Fig. 4.1, green
lines) the test proves to have properties very similar to those of the parametric test
for the wrapped normal distribution. The tests presented in the following are non-
parametric with increasing accuracy, but also increasing computational demands,
and so the simple t-test may be an option where precision is not that important.

4.3 Bootstrap techniques

The basis of the two testing approaches presented so far is the theoretical deriva-
tion of statistical properties of the used measure. This is also the cause for their
limitations, because either the specific distribution of ∆φ has to be known or the
applied approximations are not generally valid. There is a group of computational
techniques introduced by Efron and Tibshirani (1993) under the name bootstrap
that make it possible to investigate those statistical properties empirically, replac-
ing theory by the use of computer power. In the following some of these techniques
will be used, but in a way that additionally includes general theoretical knowledge
about R̄ to reduce the computational expense.

The basic idea is to generate “bootstrap replications” of the statistic of inter-
est, and to calculate its variance and other properties on the set of these replica-
tions. To compute the sampling distribution of the statistic R̄, it is necessary to
somehow estimate the underlying distribution of the sample values, the popula-
tion distribution of the random variable ∆φ. The best available knowledge about
this distribution is the sample ∆φ j itself, and so the best (nonparametric) estimate
of the population is a discrete distribution with probability 1/n for each of the
sample values. To generate new samples according to this estimate, one simply
has to draw values from the original sample with replacement. Formally, if k j
( j = 1 . . . n) are uniformly distributed independent integer random numbers in the
range 1 . . . n, then ∆φk j

is a bootstrap replication of the sample, and the statistic
calculated on this sample is a bootstrap replication of R̄. This technique is called
resampling.

As a variant of the bootstrap, it is also possible to use a parametric estimate of
the distribution of ∆φ. The parameters of the distribution are estimated from the
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sample, and the replications of the sample are taken from random numbers fol-
lowing the distribution with those parameter values. For the present application,
this would not be a relevant improvement over the parametric approach explained
above; it would increase the complexity of the computations but only marginally
improve the accuracy of the test. But the special form of the statistic of interest,
R̄, makes it possible to perform a “parametric” bootstrap at an intermediate level.
As has been shown in Sec. 3.3, the asymptotic joint distribution of (C̄, S̄) is two-
dimensional normal, and the parameters of this distribution depend on the first
and second trigonometric moments of the distribution of ∆φ. This description is
an approximation based on the central limit theorem, but it is very good also for
relatively small sample sizes (about n ≥ 30); it is valid for every distribution of ∆φ
and for all values of %. With this, it is possible to generate parametric bootstrap
replications of R̄ in a very direct way: The moments7 α1, α2, β1, and β2 are esti-
mated from the sample by the empirical moments, replications of (C̄, S̄) are gen-
erated according to the corresponding two-dimensional normal distribution (see
Eqs. 3.12), and the replication of R̄ is calculated as R̄ =

√
C̄2 + S̄2. In this way, it

is not necessary to generate replications of the sample itself, which drastically re-
duces the computation time (in calculations performed by the author, up to a factor
40). Such an improvement in speed is especially important if the quantiles of the
sampling distribution are to be calculated.

Bootstrap t-test

A very straightforward application of these techniques is to modify the t-test by
replacing the direct variance estimation (Eq. 4.3) by the variance estimated from
bootstrap replications. About 200 replications are generated for R̄1 and R̄2 each,
and the variance of these replications is used as s2

R̄,1 and s2
R̄,2, respectively, in Eq. 4.4.

In this way, the inaccuracy of the direct variance estimation is removed.
The consequence of this becomes visible in the simulation (Fig. 4.1, red lines).

The threshold for % below which the error of the first kind is smaller than necessary
gets nearer to 0, and therefore the power of the test is increased. But the theoretical
objections to the application of the t-test remain valid, and this improved version
is still just a low-precision approximation.

Bootstrap H0 simulation

Another approach is to use the bootstrap techniques to simulate the distribution of
the test statistic |R̄1 − R̄2| under the null hypothesis. The underlying assumption
is that if %1 = %2, then the distributions of ∆φ1 and ∆φ2 are also the same. This
same distribution gets estimated by the distribution of the combined sample ∆φ0,k,
k = 1 . . .2n, where

∆φ0,k =
{

∆φ1,k for k ≤ n,
∆φ2,(k−n) for k > n.

(4.5)

Bootstrap H0 “replications” for R̄1 and R̄2 are generated by resampling or via the
“parametric” approach from this combined sample (but with sample size n), and
the replication of |R̄1 − R̄2| is calculated. About 200/α values (4 000 for α = 5 %)
are generated, and the 200th largest of them is used as the rejection threshold of
the test. That is, the null hypothesis is to be rejected if the actual value of |R̄1 − R̄2|
exceeds this threshold.

It is important to see that the generated R̄ values are not replications of the
value on the original sample, but that they correspond to a distribution according
to the null hypothesis, which is simulated by the union of the two samples. The

7Not to be confounded with the significance level of the test α.
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theoretical basis of this test is much better than that of the bootstrap t-test, because
there is no assumption for the distribution of the test statistic, but this distribu-
tion is simulated explicitly. However, in the simulation (Fig. 4.1, cyan lines) their
performances seem to be essentially the same, and this at a much higher compu-
tational expense. Like before, there is a range of small % values for which the error
of the first kind is smaller than necessary, decreasing the power of the test. The
cause for this is that the bootstrap H0 simulation is not exact. This is improved in
the next section.8

The permutation test

According to Efron and Tibshirani (1993), the bootstrap simulation of the null hy-
pothesis distribution of a statistic like R̄1 − R̄2 is not exact, because the properties
of the original sample are not preserved. In the general bootstrap case this cannot
be achieved, because to preserve them exactly would make impossible the random
variation that is necessary to estimate the sampling distribution. But in the two-
samples situation it is possible to introduce random variation and still preserve
the statistical properties of the combined sample representing the null hypothesis
distribution. The trick is to generate new samples ∆φ1, j and ∆φ2, j by randomly ex-
changing sample values between them. That is, the new samples are the first and
second half of a random permutation of the combined sample ∆φ0,k. Formally, if
k` is a random permutation of the integers 1 . . .2n, then the “replication” of R̄1 is
calculated on ∆φ0,k`

with ` = 1 . . . n and of R̄2 on ∆φ0,k`
with ` = (n + 1) . . .2n. The

following calculation is the same as for the bootstrap H0. Such a testing procedure
for the comparison of two samples is called a permutation test; it is very similar to
the standard bootstrap approach, but is much older than bootstrap theory.9

The theoretical accuracy of this test is reflected in the simulation results (Fig. 4.1,
magenta lines). The permutation test is the only one that perfectly adheres to the
chosen significance level for all values of %. Accordingly, its power for testing
against %2 = 0 is the highest of all tests presented, which is especially important
for small differences in %. The price of this superior performance is the high com-
putational effort. Since every two simulated samples as well as the sample values
in them are not independent of each other because of the permutation underlying
their selection, the computation cannot be cut short by the intermediate paramet-
ric step introduced above for the bootstrap computations. The permutations have
really to be carried out and the replications of the test statistic have to be calculated
directly from the generated samples.

4.4 Data from time series

As has been mentioned in the beginning, in the form presented all of the tests pre-
sume that the sample values in every sample are independent of each other, and
that means they have to be obtained from independent realizations of the process
of phase synchronization. The phase difference in a given realization is a function
of time, ∆φ(t). There are a number of different realizations of the process, ∆φ j(t),
j = 1 . . . n, and each of the sample values has to be obtained from another reali-
zation, typically corresponding to the same time point t0: ∆φ j = ∆φ j(t0). This is

8In addition to the tests based on bootstrap variance estimation and H0 simulation, it is possible to
perform a test based on bootstrap confidence intervals. These methods proved to be unreliable in the
simulation and therefore have been left out.

9See Efron and Tibshirani (1993), Ch. 15. For a practically oriented introduction to permutation
tests in many variations, see Good (1994). The proof of exactness of permutation tests can be found in
Lehmann (1997).
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necessary because in this way the sample size n is also the number of degrees of
freedom inherent in the data. If one would use time series data from consecutive
time points, the amount of statistical dependency reducing the number of degrees
of freedom below the sample size would not be known. In the case of the para-
metric tests, the simple t-test, and the “parametric” bootstrap tests this number
directly enters into the equations, determining the variance of the test statistic.

In the case of the resampling-based version of the bootstrap tests, the situation
is slightly different. Here, the aim is to produce replications of the sample that have
the same statistical properties as the original. Since resampling works by drawing
with replacement, the new sample values are statistically independent, and by
making the size of the new samples equal to n, the equivalence is granted. This
would no longer work if one simply put partly dependent data into the original
samples used for resampling, because the structure of those dependencies would
be destroyed in the resampling process.

But there is a version of resampling which takes this into account. If the reali-
zation of the process ∆φ j(t) is sampled at certain time points tm, then the original
sample gets a two-dimensional structure: ∆φ jm = ∆φ j(tm). The resampling now has
to be performed in a way that does not destroy the dependency structure within
the rows (constant j). This is accomplished by simply treating each row as a single
vector-valued sample value ~∆φ j = (∆φ j•), and to perform the resampling by draw-
ing from the set of these row vectors in the original sample. The same method can
be used to adapt the permutation test to partly dependent data.

In this way, the full information from time series data can be utilized in the test,
increasing its power. The number of realizations that is needed to distinguish two
states in a test is decreased because of the increased statistical power inherent in
each sample value. But it is important to see that one still needs multiple inde-
pendent realizations of the process; if the sample just contains one vector sample
value, there is nothing to resample or to permute.10

Since in this case the parametric bootstrap can no longer be used but the re-
sampling has actually to be performed, the advantage in terms of computational
expense of the bootstrap H0 simulation versus the permutation test gets lost, and
so practically the latter is the method of choice because of its superior accuracy.
Eventually, the bootstrap t-test may still be an alternative, if it is known in advance
that all % values are sufficiently different from zero.

10For recent approaches to the adaptation of resampling methods to single-realization time series
data, see Härdle et al. (2003).



Chapter 5

Multivariate Phase
Synchronization Analysis

The basic form of statistical phase synchronization analysis as it has been intro-
duced in Sec. 3.3 applies only to the bivariate case. Two autonomous oscillators
are coupled to each other, and the effect of the coupling is registered in the dynam-
ics of the oscillators’ phases, especially in the distribution of their phase difference.
EEG data, on the other hand, are essentially multivariate. There is a large number
of common electrode sites on the scalp, and unless there is very clear information
on the location of the neuronal oscillators relevant in a given experimental context,
a reduction of the number of EEG channels taken into consideration for synchro-
nization analysis would be artificial.

The literature on EEG synchronization analysis is characterized by this lack of
appropriate methods. Because until now statistical phase synchronization analy-
sis was constrained to the bivariate case, the examination of empirical multivariate
data has been accomplished by the simple repeated application of bivariate syn-
chronization measures. For instance, Rodriguez et al. (1999) tested for significant
increases and decreases in the strength of phase synchronization between EEG sig-
nals obtained in a visual attention task, separately for each pair of electrodes, and
displayed the results as colored lines between the sites in a schematic map of the
scalp. This approach gives detailed information on the topographic structure of
synchronization relations, but it has at least two drawbacks: The visualization can
get incomprehensible if a large number of lines has to be drawn, and this analy-
sis in itself gives no information on a common integrating structure that may be
present in the data. In the other extreme, Haig et al. (2000) computed an index
of global phase synchronization which is meant to indicate synchronization phe-
nomena between all recording sites at once, but fails to give topographic details
and effectively destroys much of the information present in the data.

The assessment of synchronization processes in multivariate data requires a
genuinely multivariate method of phase synchronization analysis. In this chap-
ter, the author introduces his approach to such a method, that combines the global
with the topographically detailed perspective. To this end, the concept of a statisti-
cal phase synchronization cluster is introduced and a method to identify this struc-
ture in a given data set is derived. In contrast to studies concerning the dynamics
and stability of clusters of perfect (phase) synchronization and the coexistence and
interaction of multiple clusters (e.g. Osipov and Kurths, 2001), the present chapter
tries to describe the form of a single statistical cluster, in which the oscillators par-
ticipate in different degrees, ranging from no to perfect agreement with the cluster
dynamics. The goal is to derive a general structure whose application to empirical

57
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data can be seen as a generic multivariate analysis in the field of phase synchro-
nization.1

5.1 Synchronization cluster analysis

In statistical phase synchronization analysis, the relevant information is given by
the phase φik of the N oscillators i = 1 . . . N in a number of realizations k = 1 . . . n of
the stochastic process that is considered. The strength of synchronization between
each two oscillators i and j can be quantified by the measure introduced in Sec. 3.3:

R̄i j =

∣∣∣∣∣ 1n ∑
k

exp(i (φ jk − φik))

∣∣∣∣∣ . (5.1)

The objective of multivariate phase synchronization analysis is to derive from this
matrix (R̄i j) of bivariate indices some information about the synchronization state
of the whole of N oscillators.

In the following, the approach of synchronization cluster analysis will be pre-
sented in three steps. The general definition of a synchronization cluster is fol-
lowed by its concretization in a specific dynamical model, which in turn motivates
a generally applicable method of data analysis. Each step does not directly derive
from the preceding, but introduces a significant modification.

The concept of a synchronization cluster

The basic idea is to conceive of the oscillators as constituting a cluster in which
they participate in different degrees ci. The cluster consists of a common rhythm, a
mean of the oscillations of the single oscillators, and it is described by the dynamics
of a cluster phase.

In each realization, this reference phase of the cluster is defined as a circular weigh-
ted mean of the oscillator phases,

Φk = arg∑
j

c j exp(iφ jk), (5.2)

while the participation indices ci are calculated as a (monotonously increasing) func-
tion of the synchronization strength between an oscillator and the cluster,

ci = f (R̄iC) with R̄iC =

∣∣∣∣∣ 1n ∑
k

exp(i (φik −Φk))

∣∣∣∣∣ . (5.3)

In this way, the participation index quantifies both how close an oscillator follows
the common rhythm as well as how important it is in its contribution to the cluster.

A self-consistent solution of this set of equations would represent a synchro-
nization cluster analysis of the given data set φik. A problem for this ansatz is that
while the definition of the cluster phase Φ is quite straightforward, it is not obvi-
ous which function f should be chosen for the relation between the R̄iC and the
ci.

A dynamical perspective

To fill this gap, a look at the process leading to the formation of a synchronization
cluster may be helpful. The model given below does not maintain the generality of

1An earlier version of the work presented in this chapter is being published as Allefeld and Kurths
(2004a).
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the first approach, but clarifies the dynamical meaning of the statistical quantities
introduced above. This concretization will also lead to a modification of the given
ansatz.

The model consists of an ensemble of coupled noisy phase oscillators,

φ̇i = ω0 + ∑
j

ki j sin(φ j − φi) + ξi, (5.4)

where the coupling coefficients can be written as a product, ki j = ci c j. It can be
seen as a generalization of the von Mises process (Eq. 3.14).2 The ξi are taken to be
mutually independent Gaussian white noises with the same variance, normalized
to unity by an appropriate choice of the time unit. Because the coupling matrix
factorizes, the differential equations can be decoupled by a mean field approach
such that

φ̇i = ω0 + ci M sin(Φ− φi) + ξi,

where

M =

∣∣∣∣∣∑j
c j exp(iφ j)

∣∣∣∣∣ and Φ = arg∑
j

c j exp(iφ j) (5.5)

are the amplitude and the phase of the mean field, respectively. By this transfor-
mation, the coupling between oscillators has been formally replaced by a coupling
to the mean field. If the number of oscillators is large enough and the system is in
its stationary state, the mean field is approximately independent of the dynamics
of the individual oscillators, and so it can be treated as a common external driving
with a constant amplitude M = 〈M 〉.

The phase of the mean field Φ can be eliminated from the equations by looking
at the phase difference between an oscillator and the mean field, ∆φi = φi −Φ. Its
dynamics obtains the form

˙∆φi = −ci M sin(∆φi) + ξi.

That means that the multivariate generalization of the von Mises process given
above can be reduced to a number of one-dimensional von Mises processes inde-
pendent of each other. The stationary distribution resulting from this dynamics
is a von Mises distribution, ∆φi ∼ M(0,2ciM ), and the corresponding population
value of the oscillator-mean field synchronization strength is

%iC = |〈exp(i ∆φi)〉| = A(2ciM ) with A(κ) = I1(κ)/I0(κ).

Since this derivation assumes that the system reaches a stationary state, its predic-
tion has been checked in numerical simulations of the model system (Eq. 5.4). One
of the results is shown in Fig. 5.1, demonstrating that theoretical and empirical
distributions of the ∆φi agree well with each other.

The parts of this dynamical model can be easily identified with those of the
original approach. The synchronization cluster corresponds to the mean field,
which effectively rules the dynamics of the individual oscillators, and the cluster
phase Φk is a realization of the phase of the mean field Φ. The “participation” of an
oscillator in the cluster is given by the coefficient ci, which specifies its contribution
as well as its coupling to the mean field. And the oscillator-cluster synchronization
strength R̄iC is an empirical estimator of %iC, which depends on the participation
index.

2It can also be related to the well-known Kuramoto model (Kuramoto, 1984; Strogatz, 2000). The
differences are: The strength of the coupling between two oscillators ki j is not the same for each pair of
oscillators, but has the form of a factorizable matrix. The natural frequencies of the oscillators are iden-
tical. And, replacing this source of incoherence, the dynamics has been complemented by a stochastic
part.
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Figure 5.1: Results of a numerical simulation of the model system (Eq. 5.4) with
N = 16 and ci = 0.05 i. Each plot corresponds to the oscillator whose index i is
given at the upper left corner. Histograms (black lines) show the distributions of
the ∆φi after t = 20 (starting from random initial conditions) in 1000 independent
realizations of the process. They are in good agreement with the theoretical distri-
butions (gray lines).

As a modification of the original concept of a synchronization cluster, the rela-
tion between ci and %iC is not a simple function, but additionally depends on the
amplitude of the mean field M , whose value in the stationary state is a result of
the couplings of all oscillators in the cluster to each other. Because of the form of
M as a weighted sum it can be used to define a normalized index of the overall
cluster strength

rCluster =
1

∑ |c j|
M =

∣∣∣∣∣ 1
∑ |c j|∑j

c j exp(iφ j)

∣∣∣∣∣
(values from 0 to 1), which can be seen as a generalization of the global synchro-
nization index rGlobal =

∣∣ 1
N ∑ exp(iφ j)

∣∣ used by Haig et al. (2000). Its expectation
value can be expressed as a weighted mean of the %iC:

〈rCluster〉 =
1

∑ |c j|∑j
|c j|% jC.

The data analysis algorithm

The dynamic approach did not lead to a simple specification of the function f , and
the first definition of the cluster phase (Eq. 5.2) is only in a specific model identical
to the phase of the mean field (Eq. 5.5). But the dynamical perspective enables
us to modify the idea of synchronization cluster analysis in a way that is much
more generally applicable. It is based on another theoretical observation. For the
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population values of the bivariate synchronization indices R̄i j holds

%i j = |〈exp(i (φ j − φi))〉| = |〈exp(i (∆φ j − ∆φi))〉|.

If in the given dynamics it is possible to introduce in some specific way a mean
field, then the dynamics of the phase differences are decoupled. If additionally
each oscillator is driven by noise independent of that acting on the other oscillators,
then ∆φi and ∆φ j become independent random variables, and so

%i j = |〈exp(i ∆φ j)〉| |〈exp(−i ∆φi)〉| = %iC % jC for i 6= j (%ii = 1),

that is, the synchronization matrix (apart from the diagonal) factorizes.
This leads to a version of synchronization cluster analysis in which the quan-

tity to be estimated from the data is no longer the participation index ci, which de-
pends on the specific dynamics, but the strength of the synchronization between
an oscillator and the cluster %iC. Like ci, this quantity is a measure of the degree of
participation of the oscillator in the cluster.

The corresponding algorithm is as follows: R̄i j is an empirical estimate of %i j =
%iC % jC which is asymptotically normally distributed (see Sec. 3.3), R̄i j ∼N(%i j, σ

2
i j).

A maximum likelihood estimation of the %iC then reduces to minimizing the sum
of square weighted errors

∑
i, j>i

E2
i j with Ei j =

R̄i j − %iC % jC

σi j
,

where
σi j =

1√
2n

(1− %2
iC %2

jC)

is based on the assumption that due to the central limit theorem the difference of
two independent circular random variables can in sufficiently good approximation
be described by a wrapped normal distribution. The residual errors can then be
used to check whether the model may be applied to the given data set. In the
following, the estimate of %iC based on this algorithm will be denoted by R̄iC.

In this form, synchronization cluster analysis is independent of most of the de-
tails of the dynamical model used for its motivation. The basic premises that are
relevant to this approach are that the dynamics of the oscillators can be decoupled
by introducing a mean field and that its stochastic part is independent for each
of them. In this sense, the factorization of the matrix of bivariate synchronization
indices R̄i j by estimating the synchronization strengths to the cluster %iC can be
regarded as the generic multivariate phase synchronization analysis aimed at in
the beginning. This does not mean that it is necessarily applicable to every data
set, since there still are specific assumptions. But even in cases where the applied
structure is not perfectly adequate, it may serve as a first approximation and spe-
cific deviations from the applied model may be detected by large values of the
residual errors Ei j. Another favorable characteristic of this analysis is that its result
maintains a direct relation to the bivariate synchronization indices: An approxi-
mation of the synchronization strength between two oscillators R̄i j is given by the
product of the estimates of the synchronization strengths to the cluster R̄iCR̄ jC. In
the following we will see that the method can be successfully applied to EEG data.

5.2 Application to ERP data

To obtain data to check the applicability of the method described in the last sec-
tion, a test experiment was performed. Though the main aim of this work is to
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Figure 5.2: The stimuli: Kanizsa, Triangle, Non-Triangle, and Target. The cross at
the center is used to suppress eye movements. The first three stimuli define the
experimental conditions.

analyze ERPs in language processing, for reasons of simplicity and robustness
of the effects a visual attention experiment following Tallon-Baudry et al. (1996)
was chosen for this purpose. In this experiment, four different stimuli (Fig. 5.2)
were presented on a computer screen. The stimuli corresponding to experimen-
tal conditions consisted of a Kanizsa triangle with an illusory contour (“Kanizsa”;
cf. Kanizsa, 1976), a similar shape with triangle edges drawn (“Triangle”), and a
shape consisting of the same parts as the Kanizsa without forming an illusory con-
tour (“Non-Triangle”). The task of the subject was to count silently the number of
occurrences per experimental block of the fourth stimulus (“Target”, a variant of
the Kanizsa), to ensure that he/she remained attentive. The idea of this experimen-
tal setup is that the perception of a Kanizsa figure, consisting of three elements that
are non-contiguous but that belong together and define a virtual triangle-shaped
contour, requires an increased effort of visual binding (see Ch. 1).

Data was obtained from one female subject of 23 years, right-handed and with
normal vision. Stimuli were presented in a randomized order for 700 ms with
a random interstimulus interval of 2–3 s. There were eight blocks of 90 stimu-
lus presentations each. EEG was recorded with a sampling rate of 500 Hz at 30
electrodes (see Fig. 5.6, rightmost panel) and artifact-free epochs (Sec. 2.2) from
−300 ms to 650 ms relative to the stimulus presentation were selected for process-
ing. The scalp current density estimation procedure described in Sec. 3.1 was ap-
plied and frequency-specific instantaneous phases φ(t, f ) were calculated by the
Morlet wavelet method with η = 10 (Sec. 3.2).3 The resulting data were reduced to
epochs from −150 ms to 500 ms to remove boundary effects.

For each experimental condition, frequency, and time instant separately, the
phases φik at an electrode i in a trial k were taken as input to the procedures of
phase synchronization analysis described above. That is to say, the electrodes were
assumed to represent autonomous oscillators and the epochs were treated as rea-
lizations of the process.

Though the synchronization cluster analysis reduces an N×N matrix to a vec-
tor with N elements, in combination with the variation of time, frequency, and

3In this section and the following chapter that are describing experimental results, frequencies will
be given as f = ω/2π instead of the angular frequency ω.
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experimental condition there is still a very large amount of information to be as-
sessed. This can be reduced by selecting a specific frequency (see below), but be-
cause there is no prior information one first needs to get an overview of the pro-
cesses in the different frequency bands. For this purpose, three measures of the
overall synchronization strength were calculated for each frequency and time instant:

1) The bivariate mean, the mean of the bivariate synchronization indices for all
pairs of electrodes,

2
N(N− 1) ∑

i, j>i
R̄i j, (5.6)

2) the threshold ratio, that is the ratio of electrode pairs with an R̄i j whose t-
statistic difference from the value at −150 ms exceeds a certain threshold,
corresponding to a significance test at a level of 5 % (see Sec. 4.2), and

3) an estimate of the expectation value of the cluster strength:

1
∑ A−1(R̄ jC) ∑

j
A−1(R̄ jC) R̄ jC. (5.7)

These quantities can be conveniently displayed in time-frequency plots.
The results for the Kanizsa condition are shown in Fig. 5.3. All of the quantities

reveal two distinct increases in synchronization related to the stimulus presenta-
tion, one below 10 Hz with a latency of 100–200 ms, and a second one around 13 Hz
and a latency of about 300 ms. Interestingly, there seem to be no synchronization
effects in the higher frequency bands. The increased values of bivariate mean and
cluster strength around 50 Hz are a result of a direct influence of the power line
onto the EEG voltage recordings; this effect disappears in the threshold ratio which
describes the difference to the prestimulus level.

For a more detailed examination of the analysis results, the author chose the
band around 13 Hz of the higher-frequency response. Since the cluster analysis
delivers indices R̄iC attributed to the electrodes, their values can be displayed in a
conventional scalp map to give an easily apprehensible representation of the topo-
graphic information obtained. Figure 5.4 shows the time evolution of the synchro-
nization topography for the Kanizsa condition. The emergence of the synchroniza-
tion cluster around 150 ms can clearly be seen. Its distribution seems to be almost
constant until its disappearance at 450 ms and involves mainly parietal as well as
right frontotemporal areas, with a maximum in the left parietal region.

Figure 5.5 shows a comparison of the overall measures in the three different ex-
perimental conditions. All the measures indicate that there is a difference between
the Kanizsa condition and the two other conditions. A bootstrap-based4 statistical
analysis of the threshold ratio at 300 ms shows strong significance p = 0.007 for
the difference between Kanizsa and Triangle and standard significance p = 0.05
for the difference between Kanizsa and Non-Triangle conditions; for the other two
measures the statistical differences are weaker. Disregarding scaling, the informa-
tion given by bivariate mean and cluster strength seems to be almost the same.
This suggests that the generic analysis giving the R̄iC should not be complemented
by the cluster strength, that relies on further details of the dynamical model, but
by the seemingly equivalent bivariate mean. The threshold ratio gives a slightly
different time structure; because of its definition, there is no apparent difference
between conditions in the prestimulus interval (and even until 200 ms poststimu-
lus).

4Variances of the measures were calculated for each condition separately by generating bootstrap
replications of the set of epochs (cf. Efron and Tibshirani, 1993), and p-values corresponding to a t-test
were computed.
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Figure 5.3: Time-frequency plots for the Kanizsa condition of the three measures
of the overall synchronization state: bivariate mean, threshold ratio, and cluster
strength (see text for definitions). All three measures show a similar pattern of
increased synchronization related to the stimulus presentation.
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Figure 5.4: Time evolution of the cluster synchronization topography at f = 13 Hz
for the Kanizsa condition. The continuous colors correspond to an interpolation
of the R̄iC-values attributed to the electrodes, whose positions are marked by ×-
symbols. For a chart of the electrode names, see Fig. 5.6.
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Figure 5.5: Comparison of the time courses at f = 13 Hz of the measures of overall
synchronization, bivariate mean, threshold ratio, and cluster strength, for the three
experimental conditions: Kanizsa (blue), Triangle (green), and Non-Triangle (red).
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Figure 5.6: Comparison of the synchronization topography at f = 13 Hz and t =
300 ms for the experimental conditions. The rightmost panel gives the MCN names
(Sec. 2.1) of the electrodes included in the recording.

The different synchronization clusters in the three conditions at 300 ms are
shown in Fig. 5.6. The basic topography seems to be the same in all conditions,
with overall higher values in the Kanizsa condition. The corresponding residual
errors Ei j are between −0.32 and 0.58 s.d.; these small values show that there is a
basic agreement between the assumptions underlying the analysis and the empi-
rical data.

These results indicate that the approach to multivariate phase synchronization
analysis introduced in this chapter can be successfully applied to ERP data. Since
the main purpose of the experiment was to provide a test case for the method,
the results shall only briefly be interpreted in relation to neuronal processes: The
mainly parietal distribution of the observed cluster fits in nicely with the loca-
tion of visual areas in the backmost part of the brain. The different strengths of
overall synchronization in the conditions can be understood in such a way, that
the perception of the Kanizsa triangle requires increased synchronization related
to visual binding—in contrast to the triangle with physically present edges—and
allows binding to be successful—in contrast to the Non-Triangle, where no virtual
contour can be constructed.

While the focus of this chapter has still been on methodology, the next chapter
will present the main empirical results on language processing.





Chapter 6

A Language Processing
Experiment

In the preceding chapters, the theoretical and methodical foundations of phase
synchronization analysis have been described and methodical contributions to this
field have been presented, including a first test application of these methods to
EEG data. In this final chapter of the thesis, its main empirical aim comes into fo-
cus: the investigation of synchronization processes related to language processing.

The first ERP effect that has been specifically associated with language com-
prehension was found by Kutas and Hillyard (1980b); it is the N400 component
that has already been briefly described in Sec. 2.2. The N400 consists of a negativ-
ity in the ERP average that occurs about 400 ms after the presentation of a word
stimulus that is inappropriate in the given semantic context. Kutas and Hillyard
presented English sentences to their subjects in which the last word, a noun, was
either semantically inappropriate, physically deviant, or both (see Fig. 2.8). By this
design they were able to show that the response to a semantic deviation, the N400,
is clearly distinct from the effect of an otherwise unexpected stimulus, a positivity
that is usually called P300. The physical variation in their experiment, the use of
a larger font size, elicited a late positive complex that was called “P560” by the
authors.1

Since these early findings, a number of other ERP components has been identi-
fied that provide information on different aspects of language processing. Friede-
rici (1995, 2002) discusses them in the context of a three-stage model of language
comprehension. The first phase results in an initial syntactic structure that is based
on word category information only. This process is reflected in an early left an-
terior negativity (ELAN) about 200 ms after stimulus presentation. After the full
lexical information has become available, in the second phase semantic informa-
tion (corresponding to the N400) as well as the syntactic properties of the words
are processed, the latter being reflected in a left anterior negativity (LAN) that also
occurs around 400 ms. Finally, in the third phase syntactic and semantic aspects
are mapped onto each other. If this integration fails, syntactic reanalysis or repair
is induced, eliciting a late centroparietal positivity (called P600).

Irrespective of the substantial progress in the neurophysiological investigation
of language processing that has been made in the last two decades, resulting in
detailed models like that of Friederici briefly sketched above, the findings of Kutas
and Hillyard are still of central importance. The N400 is one of the best known
and reliably reproduced language-related ERP components. Because of this, for
the purposes of this thesis the classic study of Kutas and Hillyard (1980b) was

1For a detailed discussion of their findings, see also Kutas and Hillyard (1980a).
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replicated, to provide a basis for a first exploration of neuronal synchronization
processes in language comprehension. Their experiment was modified insofar as
the physical variation consisted in a change of the font color instead of the font size,
and the sentences were in German. Nonetheless the basic experimental design
was the same and as we will see, the findings of Kutas and Hillyard have been
reproduced.

6.1 Experimental setup and analysis

In the experiment,2 German language sentences of the form “Der Priester wurde
geholt.” (“The priest was called.”) were visually presented word-by-word to the
subject on a computer screen. In these sentences the terminal verb either made
sense, or it did not, and the verb was either presented in the same color as the
beginning of the sentence (green or red), or in the other color. The combination of
these two variations defines the four experimental conditions. After each sentence
a probe word was presented. By this, the subject was prompted to indicate by a
button press if this word occurred in the preceding sentence in the same way, in-
cluding color. The purpose of this was to check if the sentence had been perceived
correctly.

The conditions of the experiment are:

1) the control condition,

2) the semantic incongruity condition,

3) the physical mismatch condition, and

4) the combined condition.

Figure 6.1 shows sample trials belonging to the four conditions. In (1) the sentence
is completed by the verb “geholt”, which makes sense. In (2) this is substituted
by the verb “asphaltiert”. This verb would make sense in another sentence, “Die
Straße wurde asphaltiert.” (“The road was asphalted.”), but not here; in this con-
text the verb is semantically incongruent. In both (1) and (2), the whole sentence
is shown in a uniform color. The sentence in (3) is identical to that of (1), but here
the beginning is shown in green, while the verb is in red color; thus the verb is
physically mismatching. In (4) both manipulations are combined: the sentence
contains an inappropriate verb and it is colored differently. The last column of
Fig. 6.1 shows sample probe words; in (1) and (2) the subject should answer “did
occur”, in (3) and (4), “did not occur”.

The language material (see App. A) used in the experiment consisted of 52
pairs of sentences. They were chosen such that by exchanging the terminal verbs
in each pair a semantic incongruity is generated. Each of the 4 resulting sentences
was shown in matching and mismatching colors, such that there were 416 different
trials in total, 104 of them for each condition. The trials were presented in a ran-
domized order, divided into eight blocks of 52 trials each. To familiarize the subject
with the experimental procedure, there were two warm-up blocks of 12 trials each.

In a trial, a warning stimulus “x x x x x” was presented for 500 ms followed by
300 ms with a blanked screen. The words of the sentence were presented for 400 ms
each, with 100 ms in between. After the verb a pause of 800 ms was interposed,
followed by the presentation of the probe word. Then the subject had 3.5 s to give
an answer. The screen was blanked for 1 s before the next trial started.

2The experimental setup and language material were adopted in a modified form from Friederici
et al. (1999). Special care was taken to achieve a balanced design to rule out alternative explanations of
the effects.
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1 x x x x x Der Priester wurde geholt.∗ geholt
2 x x x x x Der Priester wurde asphaltiert.† asphaltiert
3 x x x x x Der Priester wurde geholt. Priester
4 x x x x x Der Priester wurde asphaltiert. asphaltiert

∗The priest was called.
†The priest was asphalted.

Figure 6.1: Sample trials illustrating the four experimental conditions of the expe-
riment, including its warning (second column), sentence (third column), and probe
word (fourth column) parts.
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Figure 6.2: Average ERPs at nine electrodes, displayed in their topographic ar-
rangement. The lower panels show the average ERPs (mean over subjects) for the
control (black), semantic incongruity (blue), and physical mismatch (red) condi-
tions. In the upper panels, p-values of the statistical difference between an experi-
mental condition and the control condition are plotted (in corresponding colors),
calculated with respect to a pointwise two-sided paired t-test (over subjects). Ave-
rages were filtered with a low-pass at 10 Hz and baseline-corrected (300 ms presti-
mulus).
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The experiment was performed with 16 subjects. They were right-handers, uni-
versity students, and grown up monolingually (German). The subjects differed in
gender (male / female) and reading span3 (low: 2.5–3 / high: 4–6); for each combi-
nation there were four subjects. They were between 20 and 27 years old, and had
normal or corrected to normal vision.

EEG was recorded with a sampling rate of 250 Hz from 59 scalp electrodes. Af-
ter application of the spherical spline Laplacian algorithm (Sec. 3.1), out of these 27
electrodes were selected for the analysis to further diminish the likelihood of spu-
rious correlations (for an electrode chart, see Fig. 6.6d). For those trials in which
the subject had given the correct response to the probe word, artifact-free epochs
from −600 to 1300 ms relative to the presentation of the critical item (the verb clos-
ing the sentence) were selected for processing, resulting in 85 to 103 epochs per
condition and subject. To determine frequency-specific instantaneous phases, the
Morlet wavelet transform (Sec. 3.2) was used with η = 7. The phase data were
reduced to shorter epochs before further processing to remove boundary effects.

For each subject, experimental condition, frequency, and time instant sepa-
rately, the phases φik at an electrode i of an epoch k were taken as input for the
phase synchronization analysis. The results for the single subjects were aggre-
gated by calculating the mean over subjects for one condition, or measures of the
statistical difference between two conditions based on the variance over subjects.

To check if the replication actually reproduced the results of Kutas and Hill-
yard (1980b), ERP averages were computed. Figure 6.2 shows the results for nine
electrodes. As expected, the semantic incongruity elicited a negativity from 300
to 500 ms relative to the stimulus presentation, the known N400 component. It is
broadly distributed but seems to be strongest in the left parietal area (electrode
P5). Distinct from this, the effect of the physical mismatch was found to be a long
lasting P300-like positivity (250–550 ms) that appears to be strongest in the parietal
region (electrode PZ). Though the morphology of this effect (with a peak latency of
about 300 ms) seems to be different from the “P560” found by Kutas and Hillyard
(see Fig. 2.8), such a variation was to be expected because of the different imple-
mentation of the physical mismatch (color instead of font size). The fundamental
finding of Kutas and Hillyard was reproduced, namely that a semantic incongruity
elicits an N400 component that is clearly different from the effect of a comparable
manipulation regarding the physical properties of the stimulus.

6.2 Results

To get a first overview of the different frequency bands, it is useful to look at time-
frequency plots of measures of overall synchronization. The following two indices
were computed:

1) The bivariate mean
2

N(N− 1) ∑
i, j>i

R̄i j, (6.1)

introduced in Sec. 5.2, and

2) the cluster mean, the mean of the indices of oscillator-cluster synchronization
strength (Sec. 5.1),

1
N ∑

i
R̄iC. (6.2)

3The “reading span” (Daneman and Carpenter, 1980) is a measure of a subject’s reading-related
memory capacity.
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The purpose of the latter measure is to obtain information on the overall synchro-
nization state that is directly linked to the topographic data resulting from the
synchronization cluster analysis (see below). In contrast to the index of cluster
strength used before (Eq. 5.7), its definition does not include any specific features
of the dynamical model of a synchronization cluster. We will see that bivariate and
cluster mean give very similar results, which provides further evidence that the
cluster analysis algorithm preserves the information given by the bivariate syn-
chronization matrix R̄i j.

Figure 6.3 displays the results for the control condition. For both measures,
the time-frequency plot gives a similar pattern: At low frequencies (below circa
4 Hz) there is a relatively strong sustained synchronization. It seems to slightly
increase in response to the stimulus but has a base level that is apparently not
related to stimulus presentation. This is supplemented by a transient increase in
overall synchronization around 100–300 ms that extends up to circa 10 Hz. There is
also an increased synchronization level in the prestimulus interval for frequencies
around 10 Hz that disappears about 300 ms after presentation.

The evolution of the cluster topography (described by the index of participa-
tion R̄iC) corresponding to these processes is shown in Fig. 6.4 for two selected
frequencies. At 6 Hz there is a pronounced transient increase of synchronization
elicited by the stimulus. In the evolution of the topography over time (panel a)
this appears as an increased left parieto-occipital participation at circa 120–300 ms.
Additionally, there seems to be an increased right frontotemporal synchronization
in the time window 480–660 ms that can not be observed in the overall measure,
followed by a return to the prestimulus level. The topographies corresponding to
the stimulus-related desynchronization at 10 Hz are shown in Fig. 6.4b. The higher
participation in the left and right parieto-occipital areas found in the prestimulus
interval is further enhanced by the stimulus until 180 ms, but is then followed by
a short transient desynchronization (around 420 ms) in the left and a sustained de-
synchronization in the right area.

These plots for the control condition give a first insight into the frequencies and
the time structure of synchronization processes, but there are no distinct events at
specific time-frequency locations comparable to those found for the Kanizsa ex-
periment presented in the previous chapter. In addition, from the viewpoint of
cognitive science the relevant information is concerning differences between con-
ditions (see Sec. 2.2). The time-frequency plots of Fig. 6.5 represent the statistical
difference between the semantic incongruity and physical mismatch conditions,
respectively, and the control condition. Taking the threshold corresponding to a
two-sided t-test (over subjects, at a level of 1 %) as an indicator of the relevant time
windows and frequency bands, with respect to the bivariate mean there are three
prominent effects related to the experimental manipulations:

1) The semantic incongruity condition exhibits a decrease of synchronization at
90–280 ms and 5.7–7 Hz.

2) The physical mismatch condition shows an increase of synchronization at 0–
250 ms and 4–6.3 Hz as well as

3) a second increase at 120–270 ms and 8.3–12 Hz.

The effects for the cluster mean are almost identical.
To determine the scalp distribution of these effects, three specific time-frequen-

cy locations were chosen: For the semantic incongruity condition, t = 188 ms and
f = 7 Hz; for the physical mismatch condition, t = 128 ms and f = 5 Hz, as well as
t = 200 ms and f = 10 Hz. For these three cases, the synchronization topography
R̄iC for the control condition, the respective experimental condition and the statis-
tical difference of both is shown in Fig. 6.6. The effect of the semantic incongruity
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Figure 6.3: Time-frequency plots of the overall measures of synchronization, bi-
variate mean and cluster mean (Eq. 6.1 & 6.2), for the control condition (mean over
subjects).
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Figure 6.4: The evolution of the synchronization cluster topography over time for
the control condition (mean over subjects), at 6 Hz (panel a) and 10 Hz (panel b).
The colors correspond to an interpolation of the R̄iC-values attributed to the elec-
trodes. For an electrode chart, see Fig. 6.6d.
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Figure 6.5: Time-frequency plots of the statistical difference between conditions
for the overall measures of synchronization, bivariate mean and cluster mean (left
and right column; Eq. 6.1 & 6.2). The upper row shows the difference between the
semantic incongruity and the control condition, the lower row that between the
physical mismatch and the control condition. The plotted quantity is the pointwise
paired t statistic (over subjects); contours indicate the threshold corresponding to
a two-sided test at a level of 1 %.
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Figure 6.6: Synchronization topographies (first and second column) and statisti-
cal difference between conditions (third column) for: a) semantic incongruity vs.
control condition at 188 ms and 7 Hz, b) physical mismatch vs. control condition
at 128 ms and 5 Hz, and c) physical mismatch vs. control condition at 200 ms and
10 Hz. The difference measure is a statistic based on a pointwise paired permu-
tation test (over subjects); contours indicate the threshold for a two-sided test at
levels 5 % and 1 %.—Panel d) shows the locations of all electrodes included in the
recording. Those retained for analysis after the decorrelation step are labeled with
their MCN names.



74 6 A Language Processing Experiment

can not be attributed to a specific location, it appears to be broadly distributed. For
the physical mismatch at 5 Hz, there is an increased participation in the left and
right temporoparietal areas (p < 0.01 at TP7); at 10 Hz, an increase mainly in the
left parieto-occipital area (p < 0.01 at PO3).4

6.3 Discussion

The results reported above indicate that ERP average and synchronization analysis
deliver comparable but not identical information about the underlying processes.
The synchronization indices allow one to observe the modification of the neuronal
process that is brought about by the semantic and physical deviations. Similar to
the ERP components, the responses to both types of variation are clearly distinct
from each other and point to opposite directions, decreased and increased syn-
chronization.

However, the processes underlying the synchronization effects can not be sim-
ply identical to those observed in the ERP average. This is already indicated by the
fact that the waveforms of the ERP components correspond to oscillations with fre-
quencies that are lower (< ca. 4 Hz) than those readily accessible by the wavelet
transform (using the given epoch length). Moreover, all of the effects of decreased
or increased synchronization take place before the effects in the ERP average. While
the earliest onset of an ERP component observed in this experiment takes place at
about 250 ms poststimulus, at this time the synchronization effects are almost over.
Apparently, with the new analysis method processes are observed that precede
and probably prepare for those visible in the averages.

The findings regarding the synchronization topography also fit into this pic-
ture. For the physical mismatch, both methods identify effects located in the tem-
poroparietal region. This is consistent with the location of secondary visual cortex
areas, that can be expected to be involved in the processing of the color change.
The symmetrically increased participation may be interpreted as indicating the
functional integration of homologous areas in the left and right hemispheres. For
the semantic incongruity, unfortunately there is no information on the location of
the decreased synchronization that appears in the overall measures. This may be
because this effect is generally weaker than that of the physical deviation, so that
the topographic resolution overstrains the statistical power of the data. Also, the
difficulty to localize this effect is consistent with the broad distribution of the N400
ERP component (Sec. 2.2).

Regarding frequency, the synchronization effects reported here belong to the
EEG theta and alpha bands (see Sec. 2.1). Higher frequencies than those shown in
the time-frequency plots were originally included in the analysis, but the results
above 15 Hz proved to be statistically unstable. The indications found there were
confined to very small regions of the time-frequency plane and scattered about in
a way that did not allow a clear identification, let alone interpretation. Therefore
they have been left out of the presentation.

A study that is in some respects similar to the research reported in this chapter
was recently performed by Weiss and Müller (2003).5 They auditorily presented

4For the determination of statistical differences between conditions in the ERP average (Fig. 6.2) and
the bivariate and cluster mean (Fig. 6.5), the standard t statistic was applied (cf. Sheskin, 1997) because
these quantities can be expected to be normally distributed in a good approximation. Since this does
not necessarily hold for the R̄iC as a result of the synchronization cluster analysis, the p-values given
here were computed by the quantile estimation underlying a permutation test (cf. Good, 1994). For the
visualization (Fig. 6.6) the estimated quantile was transformed into a statistic that under H0 follows a
standard normal distribution, so that the usual thresholds of a Gauss test can be applied.

5This overview article only briefly describes the study (Sec. 3.2.2.1, pp. 336–337) in the context of a
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German sentences with or without a semantic incongruity. EEG was recorded at 19
electrodes and processed to obtain a time- and frequency-dependent coherence.6

The authors found a decrease in coherence for the semantic incongruity compared
to normal sentences around 30 Hz at 300–500 ms after presentation of the critical
stimulus.

The study of Weiss and Müller exhibits some methodical shortcomings. Their
experimental design does not include a physical mismatch condition, so that it
is not possible to check whether the observed effect is caused specifically by a
semantic deviation. Secondly, the EEG signals were filtered with an analog band-
pass at 0.3–35 Hz before sampling. Such an analog filter is very likely to distort
the phase component, especially if one takes into account that the frequency band
of the main effect lies only shortly below the upper cut-off frequency of the band-
pass. And finally, the validity of the bivariate ARMA approach of Schack et al.
(2000) used by the authors to compute the time-frequency coherence is problematic
(for a short comment, see Sec. 3.2).

Irrespective of this criticism, the finding of Weiss and Müller is materially dif-
ferent from the results obtained by the synchronization analysis presented here:
The effect appears at a much higher frequency, and it occurs concurrently to the
N400 ERP component. This disagreement may be due to the fact that stimuli were
presented auditorily instead of visually, but those aspects of language processing
targeted in the experiments should be largely independent of the modality. From
the viewpoint of synchronization theory taken in this thesis, which argues that
coherence is not to be regarded as a genuine measure of synchronization, a more
likely explanation is that the coherence measure simply quantifies a different as-
pect of the neuronal dynamics than the phase synchronization indices employed
here (see Sec. 1.2). The temporal coincidence suggests that the decreased coher-
ence found by Weiss and Müller is more directly linked to the known N400 than
the decreased synchronization effect demonstrated above.

In conclusion, the synchronization analysis has shown to provide information that
can be related to the findings of the conventional method, but that goes beyond
what has been known before. Especially the observation of an effect of the seman-
tic incongruity preceding the N400 suggests that first hints at a semantic process-
ing problem are available earlier than the time window 300–500 ms poststimulus
inferred from the ERP average (Friederici, 2002). An interpretation of this finding
is that the decreased synchronization marks the beginning of an attempt to the
semantic integration of the verb into the sentence context, whose final failure is in-
dicated by the N400 ERP component. Further research will be necessary to clarify
this issue.

general report on the use of coherence for the investigation of language processing; the full details are
not published at the time being. See also Weiss et al. (2004).

6Classically, coherence is the linear correlation of signals computed in the frequency domain
(Sec. 1.2) and does not depend on time. The authors used a generalization of this quantity resulting
from a time-frequency analysis of the signals based on a bivariate ARMA model. For details, see Weiss
and Müller (2003), Sec. 2 and Schack et al. (2000).





Chapter 7

Conclusion and Outlook

The aim of the present thesis has been to contribute to the methods of phase syn-
chronization analysis and to apply these methods to event-related potentials.

The topic of Ch. 4 have been statistical tests to detect a change in the strength
of bivariate synchronization, with the aim to obtain procedures improved in theo-
retical validity and applicability over the approaches known from the literature.
The key elements to achieve this have been a two-samples test setup, the use of a
test statistic with a background in directional statistics, as well as the application of
modern statistical methodology (resampling techniques). Several tests have been
presented that differ in precision and applicability, but also in the computational
cost of the underlying algorithm. The tests have been checked in numerical si-
mulations, finding that an approach based on a permutation test delivers the best
results. In the last section, the application of the tests to partially dependent sam-
ple data (time series) has been discussed.

Chapter 5 has motivated the need for a multivariate phase synchronization ana-
lysis (not only) for EEG data and has described a specific approach to this problem.
Starting from a first notion of a statistical synchronization cluster, the considera-
tion of clustering in coupled noisy phase oscillators has led to a straightforward
specification of the data analysis algorithm. Because this approach incorporates
relatively few theoretical assumptions, the author has argued for it to represent a
generic multivariate phase synchronization analysis. The algorithm has been ap-
plied to event-related potentials from a visual attention experiment, detecting the
transient formation of a synchronization cluster elicited by the stimulus presenta-
tion.

In the last chapter (Ch. 6), the method of synchronization cluster analysis has
been applied to event-related potentials from a language processing experiment.
A replication of a classic study comparing the effect of a semantic and a physical
deviation was performed and has been shown to reproduce the known effects in
the average ERP. The application of phase synchronization analysis to this data set
has proved to provide information on the neuronal processes that can be related to
the established findings but that goes beyond, identifying effects that are preceding
those known from the conventional method. The cluster analysis has been shown
to reveal the topographic distribution of the effect of the physical deviation. A
similar study using coherence has been discussed, arguing that its results do not
provide the additional information found by synchronization analysis.

In the following the author wants to comment on some topics that are related to
the work presented, but that are beyond the scope of this thesis. In part these
comments are concerned with methodical improvements and further research that
may be addressed in the future; the other briefly discuss the results of this work in

77



78 7 Conclusion and Outlook

a broader context or give remarks of a more speculative nature.

Generic decorrelation methods

A serious problem for the synchronization analysis of EEG is the strong linear
correlation (due to the low spatial resolution of scalp potentials) between sig-
nals recorded from neighboring electrodes. This issue has already been treated in
Sec. 3.1; the remedy described there was the spherical spline Laplacian algorithm,
an approach that has a good theoretical background and works well in practice.
Still, there are methods to reduce linear dependencies in multivariate data that are
not specific to EEG, and that therefore do not incorporate any assumptions that
may only be approximately fulfilled. Regarding these generic methods, the clas-
sic principal component analysis (that is restricted to orthogonal transforms) has
in the last years been complemented by approaches trying to obtain statistically
independent signals, so-called independent component analysis (ICA; cf. Ziehe
and Müller, 1998). A drawback of these methods with respect to synchronization
analysis is that algorithms generating independent signals are likely not only to re-
duce unwanted correlations, but also those corresponding to dynamical relations
like synchronization. However, ongoing research (Meinecke, 2004) suggests that it
is possible to avoid this effect by adapting ICA methods to the specific properties
of phase synchronization. Therefore, phase synchronization analysis may in the
future be combined with an ICA-based decorrelating step instead of the spherical
spline Laplacian or similar methods.

Performance comparison of coherence and synchronization measures

In the introduction (Sec. 1.2) the preference for a genuine measure of phase syn-
chronization in contrast to coherence has been established theoretically, based on a
specific interest in neuronal synchronization. On the other hand, from a pragmatic
viewpoint of EEG analysis it is important which of the measures provides more
information on the underlying neuronal processes—a question that can only be
answered empirically. Though there are studies using coherence as well as those
employing synchronization analysis, because of the multitude of possible expe-
rimental subjects there are only single cases in which both methods have been
applied in exactly the same context.1 A first empirical comparison has been given
by Quian Quiroga et al. (2002). The authors apply several linear and nonlinear
measures to rat EEG and report that the separation between different levels of
synchronization is “more pronounced with nonlinear measures” including phase
synchronization. This opinion speaks in favor of the theoretical argumentation.
However, it is based on a visual inspection of the analysis results and there is no
quantitative measure of separation that would allow an objective rating. Further
work will try to derive such a quantification based on statistical considerations.

Significance testing on time-frequency measures

Chapter 6 has shown time-frequency plots of the statistical difference between con-
ditions for the measures of overall synchronization, along with a contour indicat-
ing the threshold corresponding to a pointwise hypothesis test at a level of 1 %
(see Fig. 6.5). If the statistical difference compared to the threshold was to be in-
terpreted as actually representing a statistical test for each (t, f )-point separately,
the nominal significance level of all these tests taken together would be far higher
than 1 %. Therefore the measure of statistical difference has been shown as such,

1This is not the case for the experiment of Ch. 6 and the study of Weiss and Müller (2003) because of
the different modality of presentation, data preprocessing, etc.
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the contour being just an indication of the possibly relevant regions of the time-
frequency plane.2 This practice, to report exact p-values or equivalent quantities
without explicitly deciding on a hypothesis, is advocated by some statisticians (cf.
Cohen, 1994). In this way, the decision if the effects “are significant” is left to the
reader. Still, it would be preferable if the assessment that comes to mind in inter-
preting these plots—that there is a significant increase in overall synchronization
in certain regions—could be formulated in conformance with the traditional proce-
dure of hypothesis testing. This may be possible by defining the compound H0 for
the whole plot not as a conjunction of elementary null hypotheses corresponding
to each (t, f )-point (the compound alternative not as a disjunction), but for instance
by regarding contiguous areas where a threshold is exceeded.

“40 Hz” versus lower frequency bands

The findings reported in Ch. 5 and 6 belong to the EEG frequency bands theta
and alpha. In contrast to this, the synchronized oscillations found by single cell
and multi-unit recordings in the cat visual cortex (Engel et al., 1991; Eckhorn et al.,
1991) were in the range 40–60 Hz, and accordingly most early EEG studies aimed
at synchronization focused on the EEG gamma band (above 30 Hz; see Ch. 1 for
references). However, neuronal oscillations on the microscopic and macroscopic
level are of a substantially different nature (see Sec. 2.1), and as Habeck and Srini-
vasan (2000) point out, there is little reason to expect direct agreements between
data obtained at different scales. Though there actually is a large number of find-
ings on synchronization in the gamma band, this may largely be because in many
studies effects in the lower frequency bands were “not investigated, not reported,
or dismissed as an epiphenomenon” (Habeck and Srinivasan). Hopefully, this at-
titude will change in the future. An indication of such a change is the review of
von Stein and Sarnthein (2000), who propose a framework for the interpretation of
effects in the different frequency bands from theta to gamma, including a relation
between the scale and the frequency of synchronization-related interaction.

The nature of neuronal oscillators

As has been explained in Ch. 1, the interest in synchronization analysis of neuro-
physiological data including EEG was motivated by findings with microelectrode
recordings in the visual cortex. The extension of this approach from single cell
and multi-unit recordings to other types of data presupposes that synchroniza-
tion processes can be found on multiple different scales of neuronal activity. In
particular, in the application of synchronization analysis to EEG data this thesis
assumes that—after decorrelation and band-pass filtering—the signals recorded at
different electrodes can approximately be attributed to different autonomous os-
cillators. As has been mentioned in Sec. 2.1, according to the observation of Nunez
(1995) that the spatial resolution of decorrelated EEG lies in the order of magnitude
of a macrocolumn, the natural theoretical candidate for the macroscopic neuronal
oscillator whose dynamics can be observed in the EEG is the macrocolumn.

In this context, a recent finding by Montbrió et al. (2004) may become rele-
vant. The authors show that an ensemble of mutually coupled oscillators in the
synchronized regime behaves like a single macro-oscillator, and as such can be
synchronized to another macro-oscillator. Interestingly, the natural frequency of
a macro-oscillator may be substantially lower than that of the single oscillators it
is constituted of. This finding may provide theoretical backup for the notion of

2The alternative of selecting only specific (t, f )-pairs for statistical analysis was not taken because
this research is of an explorative character and at the time being there is no prior evidence to guide
such a selection.
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neuronal synchronization at different spatial scales, and also account for the ob-
servation that these scales are associated with different frequencies (see previous
section).

Investigation of synchronization effects in sentence comprehension

Until now, there are only few studies on neuronal synchronization related to sen-
tence processing (cf. Weiss and Müller, 2003). For phase synchronization analysis,
to the author’s knowledge the research reported in Ch. 6 is the very first contri-
bution. Because of this lack of context, at the time being it is hardly possible to
give a detailed interpretation of the results. Further experiments will be neces-
sary to achieve a deeper insight into synchronization processes related to sentence
comprehension.

Even now, phase synchronization analysis has shown to be able to provide in-
formation that is not present in the ERP average, and therefore to contribute to the
investigation of language comprehension. A possible use of this supplementary
information is the dissociation of ERP components. For instance, the N400 com-
ponent that was elicited by a semantically incongruous verb in the experiment of
Ch. 6 can also be observed with many other types of semantic violation, and even
with manipulations that do not represent a semantic violation in the proper sense.
Röhm et al. (2004) have recently shown that it is possible to distinguish different
types of the N400 by a frequency band analysis of the event-related potential at
single electrodes. Further work will try to establish whether a similar dissociation
of the N400 or other ERP components can be achieved by synchronization analysis.
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Appendix A

Language Material

This appendix gives the language material of the experiment described in Sec. 6.1.
It was adopted in modified form from Friederici et al. (1999). Each table row gives
two sentences that are meaningful as they are. By exchanging the verbs between
them, sentences with a semantic incongruity are constructed. The correct probe
words for each sentence are its noun and its verb. Alternative incorrect probe
words are given in the second column of the table; they were chosen to be seman-
tically related to the correct words.

1 Die Straße wurde asphaltiert. Weg, betoniert
Der Priester wurde geholt. Pfarrer, gerufen

2 Die Wand wurde bemalt. Mauer, gestrichen
Die Suppe wurde versalzen. Soße, verdorben

3 Das Beet wurde bepflanzt. Feld, bebaut
Die Maus wurde gejagt. Ratte, verfolgt

4 Die Wolke wurde durchflogen. Nebel, durchstoßen
Die Tinte wurde vergossen. Farbe, verschüttet

5 Die Sprache wurde entschlüsselt. Code, verstanden
Das Eis wurde geschleckt. Lutscher, geleckt

6 Der Docht wurde entzündet. Kerze, angesteckt
Die Sitzung wurde vertagt. Treffen, verschoben

7 Der Besucher wurde erschreckt. Gast, schockiert
Die Torte wurde gezuckert. Kuchen, verziert

8 Der Bär wurde ertränkt. Löwe, erschossen
Die Aufgabe wurde verlesen. Auftrag, verkündet

9 Die Frau wurde erwürgt. Dame, erdrosselt
Die Flagge wurde gehisst. Wimpel, aufgezogen

10 Die Luft wurde geatmet. Brise, eingesogen
Der Stein wurde geschleppt. Brocken, getragen

11 Die Mauer wurde gebaut. Wand, errichtet
Der Briefträger wurde gebissen. Postbote, angeknurrt

12 Das Fleisch wurde gebraten. Filet, gegrillt
Das Gestell wurde verschraubt. Gestänge, verschweißt

13 Die Bluse wurde gebügelt. Hemd, gewaschen
Die Katze wurde umsorgt. Hund, gepflegt

14 Das Schiff wurde geentert. Kahn, erobert
Die Kuh wurde geschlachtet. Kalb, gemästet

15 Die Zitrone wurde geerntet. Orange, gepflückt
Das Flugzeug wurde gelandet. Hubschrauber, gestartet
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16 Das Abwasser wurde gefiltert. Abfall, gereinigt
Der Strafzettel wurde zerrissen. Strafmandat, verlegt

17 Das Baby wurde gefüttert. Säugling, gestillt
Das Metall wurde verzinkt. Karosserie, vergoldet

18 Die Marmelade wurde gegessen. Konfitüre, gekocht
Das Kriegsschiff wurde torpediert. Zerstörer, bombardiert

19 Das Papier wurde geheftet. Dokument, einsortiert
Das Klavier wurde gestimmt. Piano, justiert

20 Das Brett wurde gehobelt. Balken, abgeschliffen
Der Urlaub wurde genossen. Ausflug, gebucht

21 Das Haar wurde gekämmt. Bart, geschnitten
Die Bank wurde überfallen. Geschäft, ausgeraubt

22 Der Kaffee wurde gekocht. Tee, zubereitet
Der Leser wurde verwirrt. Zuhörer, abgelenkt

23 Das Kabel wurde gelötet. Draht, angeschlossen
Der Strumpf wurde gestrickt. Socke, gehäkelt

24 Das Gebäude wurde gemauert. Haus, gebaut
Die Mahlzeit wurde verdaut. Essen, genossen

25 Der Felsen wurde gemeißelt. Granit, gesprengt
Der Pudding wurde gerührt. Brei, gekocht

26 Das Bonbon wurde genascht. Schokolade, gelutscht
Die Liste wurde geschrieben. Aufstellung, aufgestellt

27 Der Ofen wurde geputzt. Kamin, angezündet
Der Autofahrer wurde verwarnt. Taxifahrer, geblitzt

28 Die Polizei wurde gerufen. Notarzt, alarmiert
Die Hecke wurde verpflanzt. Busch, beschnitten

29 Das Holz wurde gesägt. Material, zugeschnitten
Der Autor wurde zitiert. Schriftsteller, rezensiert

30 Der Apfel wurde geschält. Birne, geschnitten
Die Harfe wurde gezupft. Zither, gestimmt

31 Der Sand wurde geschaufelt. Erde, ausgehoben
Der Helfer wurde verständigt. Arzt, benachrichtigt

32 Die Abteilung wurde geschlossen. Filiale, erweitert
Der Sohn wurde verheiratet. Tochter, verlobt

33 Die Rose wurde geschnitten. Blume, gebrochen
Der Walzer wurde getanzt. Tango, geprobt

34 Die Strophe wurde gesungen. Text, rezitiert
Der Reifen wurde zerstochen. Schlauch, aufgeschlitzt

35 Die Geisel wurde getötet. Opfer, ermordet
Die Massage wurde verschrieben. Behandlung, verordnet

36 Der Saft wurde getrunken. Wasser, gepresst
Der Teppich wurde gewebt. Matte, geklopft

37 Der Kaktus wurde gewässert. Pflanze, eingetopft
Der Vorschlag wurde verdeutlicht. Vorlage, erläutert

38 Die Hose wurde gewaschen. Rock, gebügelt
Der Vortrag wurde verstanden. Erklärung, abgesagt

39 Die Lampe wurde repariert. Fernseher, renoviert
Die Gazelle wurde verletzt. Antilope, getötet

40 Die Halle wurde vergrößert. Raum, ausgebaut
Der Mörder wurde verurteilt. Täter, bestraft

41 Der Baum wurde gefällt. Wald, abgeholzt
Das Buch wurde kopiert. Werk, vervielfältigt
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42 Das Brot wurde gebacken. Brötchen, geschnitten
Die Zeitung wurde abonniert. Zeitschrift, bestellt

43 Der Computer wurde eingeschaltet. Rechner, hochgefahren
Die Flasche wurde ausgetrunken. Glas, geleert

44 Das Geschenk wurde verpackt. Gabe, eingepackt
Die Krankheit wurde geheilt. Leiden, behandelt

45 Der Verdächtige wurde befragt. Zeuge, vernommen
Der Rasen wurde gemäht. Wiese, gewässert

46 Das Geschirr wurde gespült. Besteck, abgewaschen
Der Gast wurde begrüßt. Besucher, empfangen

47 Die Glocke wurde geläutet. Klingel, betätigt
Die Zitrone wurde ausgepresst. Orange, ausgedrückt

48 Der Ball wurde geworfen. Speer, getreten
Das Haus wurde abgerissen. Gebäude, gesprengt

49 Die Zigarette wurde geraucht. Zigarre, gepafft
Der Beamte wurde beleidigt. Angestellte, bestochen

50 Das Essen wurde verdaut. Mahl, verschlungen
Der Verbrecher wurde bestraft. Sünder, verurteilt

51 Die Pizza wurde aufgetaut. Lasagne, bestellt
Das Problem wurde gelöst. Schwierigkeit, umgangen

52 Der Braten wurde serviert. Steak, aufgetragen
Das Märchen wurde erzählt. Geschichte, vorgelesen
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