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Abstract
Adherent cells constantly collect information about the mechanical properties

of their extracellular environment by actively pulling on it through cell–matrix

contacts, which act as mechanosensors. In recent years, the sophisticated use

of elastic substrates has shown that cells respond very sensitively to changes

in effective stiffness in their environment, which results in a reorganization of

the cytoskeleton in response to mechanical input.

We develop a theoretical model to predict cellular self-organization in

soft materials on a coarse grained level. Although cell organization in principle

results from complex regulatory events inside the cell, the typical response to

mechanical input seems to be a simple preference for large effective stiffness,

possibly because force is more efficiently generated in a stiffer environment.

The term effective stiffness comprises effects of both rigidity and prestrain in

the environment. This observation can be turned into an optimization principle

in elasticity theory. By specifying the cellular probing force pattern and by

modeling the environment as a linear elastic medium, one can predict preferred

cell orientation and position.

Various examples for cell organization, which are of large practical in-

terest, are considered theoretically: cells in external strain fields and cells close

to boundaries or interfaces for different sample geometries and boundary con-

ditions. For this purpose the elastic equations are solved exactly for an infinite

space, an elastic half space and the elastic sphere. The predictions of the model

are in excellent agreement with experiments for fibroblast cells, both on elastic

substrates and in hydrogels.

Mechanically active cells like fibroblasts could also interact elastically

with each other. We calculate the optimal structures on elastic substrates as a

function of material properties, cell density and the geometry of cell position-

ing, respectively, that allows each cell to maximize the effective stiffness in its

environment due to the traction of all the other cells. Finally, we apply Monte

Carlo simulations to study the effect of noise on cellular structure formation.

The model not only contributes to a better understanding of many

physiological situations. In the future it could also be used for biomedical

applications to optimize protocols for artificial tissues with respect to sample

geometry, boundary condition, material properties or cell density.





Zusammenfassung
Gewebezellen sammeln ständig Informationen über die mechanischen Eigen-

schaften ihrer Umgebung, indem sie aktiv an dieser ziehen. Diese Kräfte wer-

den an Zell–Matrix–Kontakten übertragen, die als Mechanosensoren fungieren.

Jüngste Experimente mit Zellen auf elastischen Substraten zeigen, dass Zellen

sehr empfindlich auf Veränderungen der effektiven Steifigkeit ihrer Umgebung

reagieren, die zu einer Reorganisation des Zytoskeletts führen können.

In dieser Arbeit wird ein theoretisches Model entwickelt, um die Selbst-

organisation von Zellen in weichen Materialien vorherzusagen. Obwohl das

Zellverhalten durch komplexe regulatorische Vorgänge in der Zelle gesteuert

wird, scheint die typische Antwort von Zellen auf mechanische Reize eine ein-

fache Präferenz für große effektive Steifigkeit der Umgebung zu sein, möglicher-

weise weil in einer steiferen Umgebung Kräfte an den Kontakten effektiver

aufgebaut werden können. Der Begriff Steifigkeit umfasst dabei sowohl Ef-

fekte, die durch größere Härte als auch durch elastische Verzerrungsfelder in

der Umgebung verursacht werden. Diese Beobachtung kann man als ein Ex-

tremalprinzip in der Elastizitätstheorie formulieren. Indem man das zelluläre

Kraftmuster spezifiziert, mit dem Zellen mit ihrer Umgebung wechselwirken,

und die Umgebung selbst als linear elastisches Material modelliert, kann damit

die optimale Orientierung und Position von Zellen vorhergesagt werden.

Es werden mehrere praktisch relevante Beispiele für Zellorganisation

theoretisch betrachtet: Zellen in externen Spannungsfeldern und Zellen in der

Nähe von Grenzflächen für verschiedene Geometrien und Randbedingungen des

elastischen Mediums. Dafür werden die entsprechenden elastischen Randwert-

probleme in Vollraum, Halbraum und Kugel exakt gelöst. Die Vorhersagen des

Models stimmen hervorragend mit experimentellen Befunden für Fibroblast-

zellen überein, sowohl auf elastischen Substraten als auch in physiologischen

Hydrogelen.

Mechanisch aktive Zellen wie Fibroblasten können auch elastisch

miteinander wechselwirken. Es werden daher optimale Strukturen als Funktion

von Materialeigenschaften und Zelldichte bzw. der Geometrie der Zellpositio-

nen berechnet. Schließlich wird mit Hilfe von Monte Carlo Simulationen der

Einfluss stochastischer Störungen auf die Strukturbildung untersucht.

Das vorliegende Model trägt nicht nur zu einem besseren Verständnis

von vielen physiologischen Situationen bei, sondern könnte in Zukunft auch für

biomedizinische Anwendungen benutzt werden, um zum Beispiel Protokolle

für künstliche Gewebe im Bezug auf Substratgeometrie, Randbedingungen,

Materialeigenschaften oder Zelldichte zu optimieren.
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Chapter 1

Introduction

1.1 Self-Organization of Cells and Tissues

Cells are the basic units of life and the first primordial cells existed on earth

about 3.5 billion years ago. During the course of evolution life took ever more

complex forms and about 1.5 billion years ago, the first multi-celled eukaryotes

developed. Today the human body comprises about 1013 cells with more than

200 different cell types [1]. All complex organisms are hierarchically structured:

the organism is composed of several organs each fulfilling a specialized function.

Organs contain specialized tissues and a tissue consists of cells of different types

as well as the extracellular matrix (ECM). The ECM is a network of protein

filaments (like collagen or fibronectin) secreted by the tissue’s resident cells

and is constantly remodeled by cells. What distinguishes a clot of cells and

matrix from a tissue is the well defined organization of cells and ECM, which

is closely associated with the tissue’s function. Within a tissue cells adopt well

defined morphologies, positions and orientations, and loss of cell organization

leads to tissue malfunction.

Tissues form de novo during embryonic development. In adult organ-

isms, major tissue reconstructing and replacement occurs after injury. More-

over, tissue is constantly remodeled by cells, e.g. fibroblasts remodel the con-

nective tissue and osteoblasts and osteoclasts the bone tissue, respectively.

The goal of the emerging field of tissue engineering is the construction, re-

pair or replacement of damaged tissue, which may take place in the body or

a bioreactor [2]. The key question in understanding—and also technologically

exploiting—tissue formation is how cells communicate with each other and

the environment to build up organized structures. The research in cell and

tissue organization principles has a long history and today we know that cells

communicate through many different channels. Fig. 1.1 shows an overview of

known factors influencing cell and tissue organization.

The best studied way for cells to exchange specific information is via
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Chemotaxis
• soluble ligands Mechanical forces

• body motion
• fluid shear stress + pressure
• cell traction

Haptotaxis
• adhesiveness
• immobilized ligands

Cell and Tissue
Organization

Mechanical properties
• elasticity of environment
• viscoelasticity of environment

(Wilkinson, 1983)

Topography
• curvature (Dunn, 1976)

Contact guidance
• extracellular matrix (ECM): fibrous hydrogel
• cell orientation along ECM-fibers (Weiss 1924)

Figure 1.1: Self-organization principles of adherent cells. The focus of this

work is on cell and tissue self-organization driven by the mechanical properties

of the environment and through cellular traction forces.

release and uptake of biochemical molecules at specific cell receptors [3]. Gra-

dients in ligand concentration encode spatial information, e.g. in development

morphogen gradients can induce spatially dependent cell differentiation [1].

Moreover, attractor or repellent gradients can induce directed cell locomotion

towards or away from the emitter (chemotaxis). For instance, after wounding

neutrophils and monocytes crawl into the wounded site attracted by a variety

of chemotactic signals released by platelets. In case of an infection, they are

attracted by chemotactic signals originating from the presence of pathogens [4].

In the early 20th century biologists favored the idea of cell–cell com-

munications via diffusible chemicals and it was mainly through the work of

Peter Weiss that biologists became aware of the importance of biophysical sig-

nals originating from the environment, in particular the ECM. Weiss observed

that cells preferentially orient along ECM-fibers, an organization principle he

termed contact guidance [5,6]. Moreover, he observed that two tissue explants

”condense” the collagen gel between them into aligned parallel fiber bundles

and that cells leaving the explants migrate and orient along the aligned fibers

(”two center effect”) [5]. Contact guidance therefore could serve both as a cue

for organization on cellular scales and as a large-scale organization principle
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in tissue development by guiding motile cells along aligned ECM-bundles [5].

Although Weiss associated contact guidance with differential adhesiveness and

interfacial tensions [6,7], the term has now gained a strong topographical con-

notation: in 1976 Dunn conclusively demonstrated that cells react to surface

curvature and prefer to align along the axis of minimal curvature, where min-

imal distortion of the cytoskeleton occurs [8, 9]. This mechanism also favors

orientation of cells along thick fiber bundles. However, contact guidance pro-

vides only a bidirectional cue for cell migration. A unidirectional cue could

originate from spatial variations in adhesiveness (haptotaxis) [10]. Haptotaxis

could be supplemented by specific biochemical information encoded in an in-

homogenous spatial distribution of immobilized ligands. Contact guidance and

haptotaxis were the first cell organizing principles discovered for adherent cells

that attributed a role to biophysical cues in the environment.

Moreover, it has long been implied that adherent cells could also re-

spond to mechanical properties of their environment [11]. However, for a long

time this idea received little attention, mainly because convincing model sys-

tems have been lacking. During recent years the sophisticated use of elastic

substrates has provided strong evidence that cells respond to purely elastic

features in their environment, including rigidity, rigidity gradients and pre-

strain in the environment [12–14]. Recent work using tools from molecular

biology to study biochemical signaling now provides strong evidence that cells

are able to actively sense and respond to the mechanical properties of their

environment [15–17].

Finally, it is well known—especially in the medical and bioengineering

communities—that mechanical forces play a major role in tissue development,

remodeling an reconstruction. Cells in the body are constantly subject to ex-

ternal forces like those induced by body motion or fluid shear stress. These

forces are essential to ensure proper functioning for many different tissues in-

cluding bone, lung and blood capillaries. Besides, anchorage-dependent cells

like fibroblasts in the connective tissue show a remarkable degree of mechanical

activity. The large traction forces exerted by fibroblasts were first quantified

by Harris in 1980, pioneering the elastic substrate method [18]. Fibroblasts are

believed to maintain the integrity of connective tissue by mechanically pulling

on the collagen fibers. Moreover, they are an integral part of the wound

contraction process. Harris and coworkers also noticed that cells react to me-

chanical changes in their environment caused by traction of other cells. Since

cells align along topographical features in their environment, they suggested

that cells react to traction-induced reorganization of collagen fibers via contact

guidance. In this way they reinterpreted the Weiss two center effect, as caused

by traction induced fiber rearrangement and not by a matrix compaction due

to a local dehydration of the matrix through cells. This mechanism therefore

amounts to a mechanical interaction of cells [19, 20].



4 CHAPTER 1. INTRODUCTION

1.2 Cells, Forces and Elasticity

1.2.1 Cells in Soft Environments: Observations

While much attention is focused on biochemistry for the design of artificial tis-

sues, physical cues like topography, force or the mechanical properties of the

environment might be equally important for cellular decision making. During

recent years, rapid advances in materials science, including the development

of microcontact printing, soft lithography, micro-fluidics and nano-technology,

improved the control of cues in the micro-environment of adherent cells and

thereby provided new tools to study the basic principles of cell organization

and to design new artificial and biomimetic environments for cells. The de-

velopment of technologies to control surface chemistry and topography has

allowed to systematically study their effects on cell organization [21–23]. In

contrast, the influence of substrate mechanics on cell organization has been

appreciated by a wider community only very recently and much less is known

about it. A systematic study of substrate elasticity on cell behavior requires

new technologies to create substrates with well defined mechanics on micro-

and mesoscale in combination with accurate measurement methods to quan-

tify the local mechanical properties of the substrates on the microscale [24].

Today, three materials are commonly used as model substrates to study the

effects of substrate elasticity on cell organization: polyacrylamide (PAAM),

polydimethylsiloxane (PDMS) and agarose gels. All materials are synthetic

hydrogels and by adjusting the degree of cross-linking their mechanical proper-

ties can be easily tuned within and beyond the physiologically relevant rigidity

ranges of sub-kPa (nerve tissue) up to several MPa (pressurized arteries). In

order to promote cell adhesion, the gel surfaces have to be modified, usually by

covalent modification with specific ligands, since these surfaces usually are re-

sistant to protein absorption from solution [24]. This allows to vary mechanics

independently from surface chemistry.

The first strong evidence that substrate compliance could be used to

modulate cell behavior came from Yu-li Wang’s group in 1997 [12]. They ob-

served that cell morphology changed remarkably when reducing the substrate

rigidity of a PAAM gel. In Fig. 1.2 a) and b) we show the typical change

of fibroblast morphology from a round unspread cell on a very soft PAAM

substrate to a well spread cell morphology with several distinct adhesion sites

on a stiff substrate. Note the reorganization of the actin cytoskeleton (stained

in red), which on very soft substrates is localized beneath the cell membrane

in a cortical shell (similarly to non-adherent cells). On stiffer substrates long

straight actin bundles (stress fibers) form, which run straight through the cy-

toplasm, often connecting two adhesion sites. The distinct morphology change

was first observed in Ref. [12] for endothelial cells and fibroblasts and recently a
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(a) (b)

100µm(d)(c)

40µm

Figure 1.2: Examples for cell organization in soft media. (a, b) Cell mor-

phology on elastic substrates depends on substrate rigidity. Images from Jens

Gerdelmann, University of Leipzig, Germany. (a) On stiff substrates cells

spread and actin organizes to form stress-fibers typically connecting two ad-

hesion sites. (b) Fibroblasts on a very soft PAAM gel are round and actin

localizes beneath the cell membrane to form a cortical shell similar to non-

adherent cells. (c) Durotaxis: cells respond to rigidity gradients. In a step

gradient fibroblasts migrate from the soft to stiff side, but reorient to move

along the boundary when placed on the stiff side as shown here [13]. (d) Cells

in collagen gels orient along the direction of external strain [26].

similar observation has been reported for vascular smooth muscle cells (VSMC)

by Dennis Discher’s group [25].

Wang’s group also showed that migrating cells respond to rigidity gra-

dients and tensile strain in the substrate [13]. They termed this phenomenon

durotaxis. In the vicinity of a step gradient in rigidity, fibroblasts migrated

from the soft to the stiff side. However, cells on the stiff part did not cross over

to the soft side, but rather reoriented by 90 degrees to move along the interface

as shown in Fig. 1.2c). Moreover, by gently pulling or pushing the substrate

with a micro-needle, the direction of locomoting cells could be reversed through

substrate strain.

Very recently, a lot of progress has been made in the field through the

application of micro-fabrication techniques to control the mechanical proper-
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ties of the substrate on the micron scale. Joyce Wong was able to modulate

substrate compliance of elastic substrates on a micron scale using a combi-

nation of photopolymerization and micropatterning/microfluidics tools, which

allows for spatial control of the degree of gel crosslinking [14, 27]. Her lab ob-

served durotaxis for VSMCs on a continuous radial gradient substrate and also

observed an accumulation of cells on the stiff parts of the gel [14]. Christopher

Chen’s lab created an orientational variation in compliance by culturing cells

on a bed of small compliant ellipsoidal posts of PDMS [28]. They observed

that cells preferentially orient along the long axis of the posts [29]. In this

case however, topography may also contribute to the orientation effect be-

cause of the anisotropic post shape. Mathis Riehle used micro-fabrication to

create an angular anisotropy in rigidity in a compound gel by pouring a soft

gel on top of a topographically structured stiffer gel. Cells aligned along the

stiffer lines, when lines were separated by 25µm or more [30]. Taken together

these experimental results provide strong evidence that cells respond to the

mechanical properties of their environment. While more systematic studies

are clearly needed, it appears that many cell-types show similar phenomena

with a common dependence on substrate properties.

Interestingly, similar observations have been reported numerous times

also for tissue cells in physiological hydrogels. In 1979 Eugene Bell and cowork-

ers introduced 3D collagen assays as model systems for studying tissue equiv-

alents [31]. For fibroblasts in collagen gels, they not only found that traction

considerably contracts the gel, but also reported orientational effects: cells

align along the direction of pull between fixed points and parallel to free sur-

faces [31]. As shown in Fig. 1.2d), when a collagen gel is stretched uniaxially,

cells polarize in the direction of principal strain [26]. Moreover, cells align in

a nose-to-tail configuration, thus forming strings running in parallel to the di-

rection of external strain. If a collagen gel is cut perpendicular to the direction

of tensile strain and if cells are present in sufficient numbers, they round up

and reorient parallel to the free surface introduced [32].

1.2.2 Force, Regulation and Mechanosensation

How do adherent cells respond to mechanics? This question is at the heart

of understanding cellular self-organization due to mechanical effects on a sub-

cellular level. Moreover, it is also of interest to cell biologists interested in

cell motility, which is an important process involved e.g. in development and

metastasis. In order for the cell to interact with the substrate mechanically

there must be forces involved.

In 1980 Harris and coworkers succeeded in giving a first estimate of cel-

lular traction forces by studying cells on thin cross-linked polymer films, which

buckle under the action of cellular tractions due to their small thickness [18]
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(see also Fig. 1.4, left panel). They found an inverse relationship between the

degree of cellular motility and the magnitude of overall cellular forces. For in-

stance, they estimated that fibroblasts exert 100-1000 times larger forces than

actually needed for cell locomotion and concluded that these large cellular

forces must be required to fulfill the cell’s specific function in the organism.

Clearly, force is important for many physiological processes including cell lo-

comotion, wound contraction, tissue remodeling or body motion.

During recent years, the elastic substrate method for traction force mea-

surements has been improved considerably [33, 34]. In particular, it turned

out that many cell types from higher organisms exert forces in a highly non-

homogeneous fashion, i.e. localized at discrete adhesion spots [16]. These dis-

crete cell–matrix contacts preferentially localize to the cell periphery. Cell–

matrix contacts are based on transmembrane proteins from the integrin family,

which bind to the RGD-motif presented by several extracellular ligands, includ-

ing collagen, fibronectin and vitronectin. On the cytoplasmic side they connect

to the actin cytoskeleton via linker proteins like talin or α-actinin. Since in-

tegrins connect to both the extracellular matrix and the actin cytoskeleton,

they can transmit internal forces to the environment and external forces to the

cell. According to their location, size and maturation cell-matrix contacts are

classified into focal complexes (< 1µm2), focal adhesions and fibrillar adhe-

sions [35]. The dynamics of cell-matrix contacts is a subject of much current

research [36]. Anchorage-dependent cells constantly assemble and disassemble

focal adhesions, thereby probing the mechanical properties of their environ-

ment. Initial focal adhesions (focal complexes) are local processes based on

integrin clustering. If initial clustering is stabilized by the properties of the

extracellular environment, focal complexes can mature into focal adhesions. In

this case, they connect to the actin cytoskeleton and a contractile force pattern

builds up that is actively generated by myosin II molecular motors interacting

with the actin cytoskeleton. Often one bundle of actin filaments (stress fiber)

connects two focal adhesions that leads to a pinch-like force pattern. In some

sense, stress fibers act like little cellular muscles and indeed, cross-striation,

a characteristic feature of skeletal muscle cells, has been observed for stress

fibers by staining for α-actinin.

Using a new variant of traction force measurements, involving micro-

patterned elastic substrates, individual forces exerted at single focal adhesions

could be resolved [16,37]. It was found that fibroblasts typically exert forces of

10 nN at mature focal adhesions [16,37]. Using a bed of flexible micro-needles,

similar values were found for smooth muscle cells [28]. Since adherent cells

can have up to hundreds of focal adhesions, the overall force exerted by the

cell can amount to µN. The forces exerted by cells on their environment result

from non-equilibrium processes inside the cell and are actively generated by

myosin-II molecular motors interacting with the actin cytoskeleton. Myosin
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actin + myosin motors
chemical energy is converted into

mechanical work
(active force generation)

focal adhesions
= cell-matrix contacts

= large protein aggregate of more 
than 50 different proteins

integrins
connect to the actin cytoskeleton 

via linker proteins and to the
extracellular matrix (ECM)

Figure 1.3: Left: Fluorescence staining of an adherent fibroblast with actin

(green) and the focal adhesion protein vinculin (red). Numerous stress-fibers

connecting two focal adhesions are clearly visible. Stress-fibers cause a pinched

force pattern. Image: Weizman Institute, Israel. Right: Schematic zoom into

a cell-matrix contact: force is actively generated by myosin II molecular mo-

tors interacting with actin filaments. Force is transmitted to the extracellular

environment at cell–matrix contacts. Cell–matrix contacts contain numerous

proteins with different functions and are spots of high signaling activity. Cell–

matrix contacts have been shown to act as mechanosensors. Cartoon taken

from Ref. [39].

motors convert chemical energy in form of the cellular fuel ATP into mechanical

work. As part of stress fibers, they are known to be activated by signals from

focal adhesions, in particular by the small GTPase RhoA. Since typical forces

produced by molecular motors are in the pN-range [38], there must be up to

106 myosin II molecular motors contributing to overall cell traction. In Fig. 1.3

we show an image of an adherent fibroblast with numerous contractile stress

fibers usually connecting two focal adhesions. The actin cytoskeleton is stained

in green and the focal adhesion protein vinculin is stained in red.

A growing body of evidence suggests that focal adhesions act as

mechanosensors which directly feed into cellular regulation [36]. In partic-

ular, it has been shown that application of external force leads to growth of

focal adhesions and therefore to strong signaling activity [15,17,40]. The same

aggregation has been found for mature focal adhesions under internally gen-
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erated force [16,28,37], suggesting that focal adhesions act as mechanosensors

that convert force into biochemistry and vice versa. Therefore, the mechan-

ical activity of cells is not only related to the physiological function of their

specific cell type, as Harris and coworkers concluded from their first trac-

tion force measurements [18], but is also a general way to collect information

about the mechanical properties of the environment (active mechanosensing).

There is strong evidence that this mechanism is involved in many important

physiological situations, including tissue maintenance, wound healing, angio-

genesis, development and metastasis [41–43]. Although focal adhesions are

characteristic for cells cultured on flat and rigid substrates, cells in a soft

environment develop similar cell-matrix contacts which presumably have the

same mechanosensory function [44]. As a result of active mechanosensing at

cell–matrix contacts, cells remodel their contacts and cytoskeleton. In partic-

ular, they might change position and become polarized in a certain direction,

depending on the mechanical properties of their environment.

1.3 Elastic Interactions

In order for the cell to learn about its mechanical environment, there has to be

some kind of interaction of the cell with the elastic medium. From a physicist’s

point of view, elastic interactions are very well known from the theory of

point defects in traditional condensed matter materials, including hydrogen in

metal [45], atoms adsorbed to crystal faces [46] and intercalation compounds

[47]. Indeed, Fig. 1.4 suggests that there exists a strong analogy between a

fibroblast distorting a soft elastic substrate and a defect-atom distorting its

elastic environment.

The interaction of a classical defect with its elastic environment is spec-

ified by a defect-substrate interaction potential, which might originate from

e.g. Born repulsion or van der Waals interactions. Independent of the exact

interaction mechanism, the basic nature of the interaction is reflected by the

specific force pattern exerted by the defect on the environment. The equilib-

rium configuration follows by minimizing the sum of the elastic energy of the

strained medium and the direct interaction energy between defect and elastic

environment. This results in an indirect, elastic interaction between the de-

fect and other defects, sample boundaries or external strain fields and allows

to study self-assembly of defects by minimizing the total (free) energy. For

artificial or inert cells, that is for physical particles with a static force pattern,

but without any internal dynamic or regulatory response, a similar behavior

might be expected [48].

In contrast, the interaction of active cells with their elastic environment

is clearly more complicated than for physical defects. In particular, the forces
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Elastic interactions

• active force by myosin II
• complex regulation
• self-organization of cells

50µm

of classical defects of active cells

u

Harris et. al, Science 1980

• direct interaction potential

• minimization of total energy 

• self-assembly of defects

Figure 1.4: Schematic comparison of the interactions of a classical defect

(black) with its elastic host lattice (left) and an active cell with its elastic

environment (right). Right image: traction forces of a (single) fibroblast cause

compression wrinkles of a thin elastic silicone rubber film [18]. Arrows included

for illustration purposes.

exerted by the fibroblast in Fig. 1.4 are actively generated and involve dynamic

and tightly regulated non-equilibrium processes inside the cell. In addition,

cellular behavior in principle results from very complex regulatory processes.

Therefore, the reaction of cells to input signals usually cannot be described

with an energy functional as for passive particles. The organization of cells

in and on soft materials follows from true self-organization rather than self-

assembly.

The theoretical description of active particles provides a huge challenge

for theoretical physicists. Stochastic equations are one promising approach

to treat these systems [49, 50]. In this work, we will present a different ap-

proach and describe the active response of cells to elastic input by deriving

an ”effective interaction potential” for cells with their elastic environment.

For this purpose, a certain, careful analogy of the interaction of cells with

their environment to the case of classical defects might still prove very helpful:

firstly, the interaction of the defect with its elastic environment is specified

by the defect force pattern. Similarly, during mechanosensation the cell inter-

acts with the medium by force and the probing force pattern will determine

how and what kind of mechanical information the cell is able to interpret.

Secondly, defect self-assembly follows from energy minimization. Although

cellular behavior in principle results from very complex regulatory processes,
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we will show that the typical cellular reaction to mechanical input seems to be

a simple preference for large effective stiffness. Hence, the overall principle un-

derlying self-organization of cells in soft materials is not energy minimization,

but maximization of effective stiffness, which similarly to the physical case can

be expressed as an extremum principle in linear elasticity theory. This defines

our effective interaction potential for cells with their environment.

1.4 Objective, Outline and Main Results

While the study of cell and tissue organizing principles has a long history,

systematic studies of the effects of mechanical properties of the environment

on cell behavior is a relatively new field. New methods from materials science

allow to study cell organization with respect to physical cues now in much

more detail than previously possible. Ideally, one would like to have a pre-

dictive model, which not only would contribute to a better understanding of

many physiological situations, but also would be of large practical value for

application in tissue engineering. Whereas the role of contact guidance and

haptotaxis in tissue organization have been theoretically addressed in coupled

transport equations for cell and fiber degrees of freedom [51,52], there exists lit-

tle theory for elastic effects. The main objective of this thesis is to investigate

how the mechanical information gathered at cell-matrix contacts translates

into cell behavior and to develop a predictive model for cell organization in

soft media [53,54].

In Chapter 2 we introduce the basic concepts of our modeling: effec-

tive stiffness to describe the mechanical properties of the environment and

anisotropic force contraction dipoles to model the mechanical action of cells.

We then present a unifying formalism using extremum principles in linear elas-

ticity theory to model elastic interactions of both passive defects and active

cells. While the basis of the extremum principle for defects is energy minimiza-

tion, the effective behavior of cells is to maximize the effective stiffness in their

environment. This allows to calculate optimal cell organization as a function

of cell position and orientation. In particular, we consider interactions with ex-

ternal strain fields, sample boundaries and other cells or defects, respectively.

Although there are marked conceptual differences between the physical and

cellular cases, they both require to solve the elastic boundary value problem

to predict the resulting structure formation. Finally, we propose a mecha-

nism that links the concept of effective stiffness to active mechanosensation at

cell–matrix contacts and which could explain why cells prefer stiffness. Cells

can make use of the fact that the mechanical properties of the environment

modulate the build-up of their own force patterns. In a stiff environment, the

build-up of force at focal adhesions is more efficient, which leads to a stronger
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signaling response at these sites. This could trigger a corresponding reorga-

nization of the cytoskeleton to (bi)polarize along the direction of maximal

effective stiffness.

In Chapter 3 we theoretically consider various situations of cell orga-

nization in soft media, which are of large practical interest: cells in external

strain fields and cells close to boundaries or interfaces for different geometries

and boundary conditions. For this purpose, the elastic equations for an in-

finite space, the elastic half space and the elastic sphere are solved exactly.

The results are then used to predict optimal cell and defect configurations.

Our predictions are in excellent agreement with experiments for fibroblasts

both on elastic substrates and in hydrogels: e.g. in strained substrates fibrob-

lasts orient along the direction of external strain and close to interfaces they

orient perpendicular and in parallel with respect to clamped and free bound-

aries, respectively. In the case of classical defects, this behaviour is inverted,

in accordance with earlier findings [45, 55]. We finally argue that our results

indicate that the principle of contact guidance might have to be re-evaluated

and compare our theory to existing models for cell organization in the litera-

ture [51,52].

In Chapter 4 we consider elastically mediated interactions between cells.

We derive elastic interaction laws and potentials for cells and physical defects,

respectively, and study the resulting basic structure formation. While defects

with anisotropic force patterns show aggregation behavior similar to electric

quadrupoles, cells prefer to align in strings similar to electric dipoles because

each cell maximally stiffens its environment along the direction of pull. Elastic

interactions are long-ranged, i.e. they decay with a power-law. However, we

find that the elastic fields generated by a string of aligned cells screen each

other very effectively, such that the interaction between strings is short-ranged

and decays exponentially on a length scale only determined by geometry.

In Chapter 5 we study pattern formation of cells on elastic substrates

due to elastic effects as a function of material properties, cell density and the

geometry of cell positioning, which could be controlled experimentally by re-

stricting cell positions using microcontact printing on elastic substrates. We

calculate the optimal structures on a lattice semi-analytically and apply Monte

Carlo simulations to study the effect of noise and positional disorder on cellular

structure formation. Our calculations suggest that cellular force patterns can

be engineered to yield qualitatively different structures. For example, we pre-

dict the formation of a nematic structure on highly compressible substrates at

high cell densities, while on incompressible substrates isotropic patterns dom-

inate. We expect that our theory will be used for biomedical applications in

the future, for example to optimize protocols for the design of artificial tissues

or implants with respect to sample geometry, boundary condition, material

properties and cell density.



Chapter 2

Modeling

In this chapter we introduce the basic concepts, which will be applied in the

following chapters in order to model cell behavior in a soft environment. In

particular, we compare the interactions of physical defects and active cells

with an elastic environment and show that they can be modeled within the

same theoretical framework using force multipoles and extremum principles

in linear elasticity theory. The extremum principle for cells follows from the

experimental observation that their effective behavior amounts to a simple

preference for large effective stiffness in their environment. At the end of this

chapter we will discuss one possible subcellular mechanism in more detail,

which could provide an explanation for this effective behavior.

2.1 Basic Concepts

2.1.1 Effective Stiffness and Linear Elasticity Theory

Effective Stiffness and Effective Interaction Potential

Cell organization in soft media is an active and regulated process which in-

volves mechanosensation at cell-matrix contacts and subsequent information

processing in the cellular signal transduction machinery. This certainly im-

plies a severe complication for theoretical modeling. However, it depends on

the kind of questions one is interested in, how many details of the regulatory

machinery have to be taken into account. The focus of tissue engineering is

on the overall cell response (e.g. preferred cell orientation and cell position).

Typical questions asked by a tissue engineer are: “What are the environmental

stimuli a cell responds to ?” and “How must we design the environment in

order to obtain a well defined cell and tissue organization ?”. To answer ques-

tions on a tissue scale a coarse-grained, phenomenological modeling is better

suited than a detailed biochemical one. Thus, in our model we do not consider

any internal biochemistry. Instead, motivated by recent experiments with cells
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mechanical
INPUT

overall cell
RESPONSE

(orientation, position)

cellular preference for large
effective stiffness

self-organization 
(=optimization) principle

Regulation

Figure 2.1: Cell organization results from complex regulatory processes in-

side the cell. However, the typical cell response to mechanical input seems to

be a simple preference for large effective stiffness. In our model the concept

of stiffness preference is expressed as an extremum principle in linear elastic-

ity theory. This allows to predict preferred cell position and orientation in

response to different kinds of mechanical input.

on elastic substrates [12–14], we suggest that the typical overall cell response

to mechanical input seems to be simple preference for large effective stiffness.

At this stage, stiffness preference enters our model as an assumption that me-

diates a relationship between the mechanical “input” and the overall cellular

“output”, i.e. cell orientation and position, as shown in Fig. 2.1. Starting

from this principle, we are able to explain many experimental results, which

have been reported in the literature both for cells on elastic substrates and in

physiological hydrogels, within a unifying theoretical framework.

We will focus on describing the mechanical input rather than on complex

regulation issues. In particular, we aim to define a quantity which describes

the kind of information which the cell can extract from its soft environment

with the help of its contractile machinery. We suggest that an appropriate

scalar quantity to characterize the environment is the work W the cell has

to perform in order to build up a certain level of force against the elastic

environment. Experimental observations suggest that active cell behaviour

amounts to a simple preference for large effective stiffness, which corresponds to
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a minimization of this energy. Therefore, W can be interpreted as an effective

interaction potential for cells interacting with their elastic environment.

As a simple analogue, consider a linear spring. In order to build up a

certain force F , the energy W = Kx2/2 = F 2/2K has to be invested into the

spring, where x is the displacement and F = Kx is the force at equilibrium.

If there is a choice of different springs with different spring constants K, the

smallest amount of energy W to build up F has to be invested into the spring

with the largest value for K. Thus, W and K are inversely related. In the

case of cells, the different springs correspond to different directions as probed

by different stress fibers as depicted e.g. in Fig. 2.2, and, on the long run, the

cell will orient in that direction that corresponds to the largest value of K

(smallest W ), possibly because in this direction, the build-up of force is most

efficient.

The example of the linear spring can also be used to illustrate the main

difference to the interactions of defects with their elastic environment. In

this case, the defect–substrate interaction potential is V d = −Fx and the

final configuration is determined by the overall energy V t = Kx2/2 − Fx =

−F 2/2K = −W . Thus, in contrast to the case of cells, for defects minimal

values of K are most favorable.

There are two main reasons why we characterize the environment by

the energy W rather than the spring constant K. First, as we will show in

Section 2.3.2, the quantity W can be used to describe the effects of increased

rigidity (here, K) and strain in the elastic environment on an equal basis,

i.e. W allows to describe various sources of mechanical input within a unified

theoretical framework. Thus, W is a measure for the effective properties of

the material as probed by the cell and thereby defines an effective interaction

potential. The effective stiffness is inversely related to W , i.e. minimization

of W corresponds to maximization of effective stiffness. Secondly, W may not

only serve as a characterization of the external environment, but might be a

relevant quantity for some internal mechanism in the cell. Thus, W could be

used to connect our coarse-grained modeling to the subcellular scale in the

future.

It is important to note that conceptually the principle suggested here

does not imply that the cell actually minimizes the work W invested into its soft

environment. Instead we suggest that calculating the quantity W for different

situations of interest is an appropriate measure for the kind of information a

cell can extract from its elastic environment through active mechanosensing.

The real justification of our model will be its success in explaining a large

body of experimental data (see Chapter 3). Nevertheless, in Section 2.3.3 we

will also present some potential microscopic mechanism to explain the cellular

preference for large effective stiffness.
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Linear Elasticity Theory

In order to describe the mechanical properties of the extracellular environment,

we model it as a linear, isotropic elastic material. This is a good assumption

for elastic substrates. It also captures some of the properties of physiological

hydrogels and will keep our analytic calculations in the upcoming chapters

feasible.

Elasticity theory as part of continuum mechanics describes the influence

of external forces on the shape and the volume of solid bodies. Under defor-

mation a body point located initially at ~r is displaced by a vector ~u(~r) = ~r′−~r.

Changes in the relative distance between points after deformation define the

strain tensor uij(~r), which for small deformations can be linearized according

to [56]:

uij(~r) =
1

2
(ui,j + uj,i). (2.1)

The indices after the comma denote partial derivatives with respect to posi-

tion, i.e. uj,i =
∂uj

∂ri
. The eigenvalues of the symmetric tensor uij give the local

relative length changes along the principal axes and the trace uii gives the

relative volume change. Here and in the following, summation over repeated

indices is always implied. Every deformation can be decomposed in a homo-

geneous dilation or hydrostatic compression mode uii, where only the volume

changes, and a shear mode uij − 1
3
δijukk, specifying shape changes only.

Elastic bodies resist deformations, i.e. strain leads to internal stress that

tries to push molecules back to their initial positions. The internal forces can

result either from atomar or molecular interactions, the main contribution in

hard solids, or from entropy, the main source of elasticity in many soft matter

materials like rubber. We will assume a linear elastic material, characterized

by a generalized Hooke’s law, i.e. stress is a linear function of strain [56]:

σij(~r) = Cijklulk(~r), (2.2)

where Cijkl is the elastic constant tensor. For an isotropic material Cijkl is

invariant under arbitrary translations and rotations, i.e. Cijkl = λδijδkl +

µ(δikδjl + δilδjk), where µ and λ are the so called Lamé coefficients. Thus,

there are only two elastic constants characterizing the two elastic modes. An

alternative set are the shear rigidity µ and the compression modulus κ = λ+ 2
3
µ.

Experimental values for elastic constants of materials are often given

as the Young modulus E = 9κµ/(3κ + µ) (elastic rigidity) and the Poisson

ratio ν = (3κ − 2µ)/(6κ + 2µ) (which describes the relative weight of shear

and compression mode), since they can be determined from a simple uniaxial

stretch experiment. E can be measured from the relative lengthening along

the direction of stretch, i.e. ∆lz
lz

= F
EA

, where F/A is the applied stress, i.e.

the force F acting on the area A. The Poisson ratio corresponds to the lateral
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contraction coefficient, ν = −∆lx/lx
∆lz/lz

. The value of ν ranges from ν = 0 to 1
2

for

highly compressible to incompressible media, respectively. In practice E will

be of the order of a few kPa (the typical range of tissue rigidity) and ν close

to 0.5 both for elastic substrates and physiological hydrogels. However, future

developments in material science may well lead to materials with smaller values

of ν.

For our purpose, it is convenient to define another pair of elastic con-

stants, Λ = λ/µ and c = 2µ + λ = µ(2 + Λ). The Poisson ratio is then given

by ν = Λ/2(Λ + 1) and ν = 1/2, 1/4 and 0 correspond to Λ →∞, Λ = 1 and

Λ = 0, respectively.

2.1.2 Force Multipoles

In order for the cell to learn about the mechanical properties of its environment

there must be forces involved. In the following, we model a mechanically active

cell as a localized force distribution in an elastic medium. In order to describe

its mechanical action, we use the concept of a force multipolar expansion,

which has been applied before for the description of point defects in condensed

matter systems [45–47]. Consider a force distribution localized around the

origin. Then the force multipoles are defined as [57,58]

Pi1...ini =

∫
si1 · · · sinfi(~s) d3s, (2.3)

where fi is the force density and d3s denotes a volume integral. The first order

term is the vector of overall force, Pi, and the second order term is the force

dipole, Pij, a tensor of rank two.

For both cells and defects we are interested in, we can assume local

forces. For point-like defects, one can moreover assume that the overall force

vanishes, because due to Newton’s Third Law, the forces exerted by the de-

fect on the elastic medium and by the elastic medium on the defect have

to balance each other (the same argument applies to point defects in a fluid

medium [59–61]). For cells, the situation is more complicated because they are

at the same time in contact with the elastic matrix and an aqueous medium.

Thus, unbalanced forces might appear in the elastic matrix, which are balanced

by viscous forces in the aqueous medium. However, viscous processes in the

fluid medium decay very rapidly on the timescale of cell movement. Therefore

unbalanced forces might occur for short periods of time, e.g. during back re-

traction of a locomoting cell, but during most of the time, cells can be expected

to be in mechanical equilibrium, as suggested by experiments measuring force

patterns of both stationary and locomoting cells on elastic substrates [34, 37].

Then overall force vanishes and the force dipole is the first relevant term in

the multipolar expansion Eq. (2.3).
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(a) (b) (c)

Figure 2.2: Schematic representation of physical and cellular force dipoles

(a) Physical case: an intercalated defect deforms the simple cubic host lattice,

thus acting as an isotropic force expansion dipole. (b) Cellular case: anchorage

dependent cells probe the mechanical properties of their environment through

their contractile machinery. Actin stress fibers (lines) are contracted by myosin

II molecular motors and connected to the environment through focal adhesions

(dots). In isotropic environments cells often show round or stellate morphol-

ogy. Even in this case, different stress fibers probe different spatial directions

and the probing process can be modeled by anisotropic contraction dipoles.

(c) In an elastic anisotropic environment cells orient along the direction of

maximal effective stiffness in the environment. Cells may also spontaneously

break symmetry, e.g. during locomotion or during periods of large mechanical

activity. Then most stress fibers run in parallel and the whole cells appears as

an anisotropic contraction dipole.

In general, force dipoles are classified according to their symmetry prop-

erties into isotropic dipoles (centers of contraction or dilation), anisotropic

dipoles without moment and anisotropic force dipoles with moment [58]. Force

dilation and force contraction dipoles have only positive and only negative

eigenvalues, respectively. For example, in three dimensions three pairs of jux-

taposed forces, one for each coordinate direction, form an isotropic force dipole,

where Pij = Pδij. Such a force dipole describes a spherical inclusion in a sim-

ple cubic lattice, see Fig. 2.2(a) [45]. Applied to two dimensions, it describes

atomic defects adsorbed onto a substrate [46]. An anisotropic force dipole

without moment is a non-diagonal, but symmetric tensor. For example, for

a couple of juxtaposed forces with a dipole strength P and an orientation in

direction ~l, we can write the force dipole tensor as Pij = P l̂il̂j. An anisotropic

force dipole without moment oriented in the z-direction reads Pij = Pδizδjz

and describes for example an atomic defect intercalated in graphite [47]. Fi-
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nally, an anisotropic force dipole with an angular moment describes a set of

two opposing forces ~F separated by a distance ~l oriented arbitrarily with re-

spect to ~F , which leads to Pij 6= Pji. In this work, we only consider force

dipoles without such moments.

The basic cellular probing force pattern during mechanosensing is a

contractile stress fiber connecting two focal adhesions. Obviously this minimal

system obeys mechanical equilibrium and can be described as an anisotropic

force contraction dipole. Cells in an isotropic environment often show isotropic

(i.e. round or stellate) morphologies as shown in Fig. 2.2(b). However, since the

focal adhesion dynamics is local, even in this case there is an anisotropic prob-

ing process that can be modeled by anisotropic force contraction dipoles. As we

will argue below, only an anisotropic probing process can react to anisotropies

in the environment. The anisotropy of focal adhesion dynamics becomes ap-

parent when stress fibers start to orient in one preferential direction, either

spontaneously during a period of large mechanical activity, or as a response to

some external anisotropy (e.g. stiffness variation), or during cell locomotion

(Fig. 2.2(c)). In this case, cellular dipoles have been measured to be of the or-

der of P ≈ −10−11J (this corresponds to two forces of 200 nN each, separated

by a distance of 60 µm) [37,62].

2.2 Elastic Interactions of Defects

The elastic medium surrounding a particle can mediate an elastic interaction

with other particles, sample boundaries or external strain fields. It is impor-

tant to note that this effect requires a direct interaction of the particle with its

elastic environment. In traditional condensed matter systems, the direct inter-

action is usually a quantum effect (e.g. Born repulsion for defects intercalated

into a crystal lattice or van der Waals attraction for defects adsorbed onto a

crystal lattice). The interaction of a single particle localized at ~r with the elas-

tic medium can be described by an interaction potential V d(~r, ~u), which not

only depends on position ~r, but which also is a functional of the displacement

field ~u(~r′) of the elastic medium. For a fixed particle position ~r, we can expand

the interaction potential with respect to the displacement field:

V d(~r, ~u) ≈ −
∫

fi(~r + ~s)ui(~r + ~s) d3s , (2.4)

where fi = −δV d/δui|ui=0 is the force density exerted by the defect onto

the elastic medium in its undeformed reference state. The expansion can be

terminated after the linear term because we assume small deformations, or,

equivalently, small forces. This linearized interaction potential is widely used

in the literature on elastic defects in traditional condensed matter materials
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[45–47]. For later use, we also note that Eq. (2.4) can be rewritten in terms

of the force multipoles defined in Eq. (2.3), if one makes the assumption that

the interaction of the defect with the medium is short-ranged. Then

V d(~r, ~u) ≈ −
∞∑

n=0

1

n!
Pi1...iniui,i1...in(~r) . (2.5)

In this way, all the details of the direct interaction between medium and defect

are subsumed in the defect force pattern and one can study elastic effects in

different materials within a common theoretical framework, as long as the two

assumptions of small and localized forces are valid.

The displacements of the elastic medium are controlled by a competi-

tion between the direct interaction between defect and medium and the elastic

strain energy of the medium under the constrains of adequate boundary con-

ditions. The strain energy is [56]

V e =
1

2

∫
d3r Cijkluij(~r)ukl(~r). (2.6)

Consider now the general case of an elastic medium subject to loading with

defects with an overall volume force density ~f({~rα}, ~r) =
∑

α
~fα(~r), where α

numbers the different defects and {~rα} specifies the defect configuration. Then

the total energy of the system is

V t =
1

2

∫
d3r Cijkluij(~r)ukl(~r)−

∫
d3r fi({~rα}, ~r)ui(~r)

−
∮

dS f s
i (~r)ui(~r), (2.7)

where the first term is the strain energy V e and the second term the direct

interaction V d =
∑

α V d(~rα). The surface force density ~f s in the third term

acts as a Lagrange multiplier that enforces the boundary conditions at the

sample surface S. For a fixed defect configuration, the displacements ~u(~r) are

determined from δV t/δ~u = 0, which defines mechanical equilibrium:

Cijklukl,j(~r) = −fi({~rα}, ~r) ~r in V , (2.8)

and the boundary condition at the surface of the elastic material:

Cijklukl(~r)nj(~r) = f s
i (~r) ~r on S, (2.9)

where ~n is the outward directed surface normal of the surface element dS. For

an isotropic elastic material, Eq. (2.8) is conveniently rewritten using a vector

notation as:

4~u(~r) + (1 + Λ)∇∇ · ~u(~r) = −
~f(~r)

µ
~r in V. (2.10)
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By combining Eq. (2.8) and Eq. (2.6), one finds V e = 1
2

∫
d3r fiui = −1

2
V d.

Therefore the overall energy V t = V d + V e = 1
2
V d = −V e and the overall

energy can be written as function of the defect configuration only. In this way,

the direct interactions of the particles with the medium can be transformed

into an indirect interaction between defects. This also allows the calculation

of the interaction of a single defect with a boundary induced strain field or an

external strain field applied at the boundary. The ground state configuration

of elastically interacting defects is obtained by minimizing the total energy V t.

2.3 Elastic Interactions of Cells

2.3.1 An Extremum Principle

The forces exerted by mechanically active cells on the environment are mainly

due to actomyosin contractility. Thus, in contrast to the interaction of physical

force dipoles with the elastic medium, where the force can be derived from con-

ventional interaction potentials, cellular forces are continuously and actively

generated by the cell and involve non-equilibrium processes, that are tightly

regulated by biochemical events inside the cell. Hence, the interactions of cells

with an elastic environment are more complicated than for physical defects

and there is little a priori reason why they should be described by Eq. (2.4).

Motivated by recent experiments with cells on elastic substrates [12–14], we

have already argued that despite these complications, a similar description as

for defects can be employed for cells. In Section 2.1 we introduced the concept

of effective stiffness and effective stiffness preference as an self-organization

principle for cells. We now explain our reasoning in more detail for the case

of cells in a three-dimensional environment described by continuum elasticity

theory. In analogy to the simple harmonic spring model, the local effective

stiffness of the elastic environment is the inverse of the work W required to

build up a given force pattern in the elastic medium. The deformation work

W required to build up an arbitrary force distribution ~f(~r) is given by:

W =

∫
d3r

∫ u
~f
ij

0

Cijklukl(~r)duij(~r), (2.11)

which in the absence of external prestrain is equivalent to the energy stored in

the elastic medium given in Eq. (2.6). Then integration by parts gives

W = −1

2

∫
d3r ui(~r)Cijklukl,j(~r) +

1

2

∮
dS njCijklukl(~r)ui(~r) . (2.12)

Applying the mechanical equilibrium conditions of the elastic medium,

Eqs. (2.8,2.9), yields

W =
1

2

∫
d3r ui(~r)fi(~r) +

1

2

∮
dS ui(~r)f

s
i (~r) . (2.13)
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In an infinite medium the boundary condition at the surface yields a vanishing

surface integral. Hence for a force distribution centered around ~r, the vol-

ume integral can be turned into a local expression by using the definitions of

Eq. (2.3):

W∞ =
1

2

∫
fi(~r + ~s) ui(~r + ~s) d3s =

1

2

∞∑
n=0

1

n!
Pi1...iniui,i1...in(~r). (2.14)

In particular, for a force monopole and a force dipole one finds W∞ = 1
2
Piu

∞
i (~r)

and W∞ = 1
2
Piju

∞
ij (~r), respectively, where ~u∞ and u∞ij are the displacement

and strain tensor fields caused by the respective force multipole in an infinite

homogeneous medium. Formally, W∞ is a self-energy term and diverges for a

point force, but this divergence can easily be removed by assuming distributed

force.

Since strain scales inversely with elastic constants, W∞ decreases if the

elastic constants increase. For an elastically anisotropic medium, W∞ varies

with the direction of force application, which provides an orientational clue for

cell orientation. As we will see below, tensile prestrain or boundary-induced

tensile image strain also leads to an increased W∞. Therefore minimization of

W∞ as a function of position and orientation of force application corresponds

to the experimentally observed cellular preference for large effective stiffness.

In this way, W can be interpreted as an effective interaction potential that

describes the elastic interaction of cells with their environment.

In analogy to the case of elastic interactions of physical defects, where

the overall interaction energy could be written as a function of the defect con-

figuration only, one can calculate the strain tensor in Eq. (2.14) by solving

the elastic boundary value problem. The mechanical equilibrium condition

Eq. (2.8,2.10) states that the body forces fi(~r) applied to an elastic medium

are balanced by the internal restoring forces σij,j(~r). This equation has to be

solved under the appropriate boundary conditions. Since the differential equa-

tion Eq. (2.10) is linear, the superposition principle applies and the boundary

value problem is formally solved by determining the Green tensor Gij(~r, ~r′),

i.e. the kernel for a point-like body force fi(~r) = fiδ(~r − ~r′). The elastic fields

of more complicated force distributions can be obtained by convolution of the

Green tensor with the force density, i.e. ui(~r) =
∫

Gij(~r, ~r′)fj(~r′)d
3r′. The

elastic fields resulting from force dipoles are obtained by differentiation of Gil,

ui(~r) = Gil,k(~r, ~r′)Pkl and uij(~r) = Gil,kj(~r, ~r′)Pkl. In general, the determina-

tion of Green functions in elasticity theory for a given geometry and boundary

condition is rather difficult, since the second term in Eq. (2.10) couples different

components of the displacement field. By taking the Laplacian of Eq. (2.10),

one arrives at the biharmonic equation 44~u = 0 for the displacements. Thus,

harmonic potential theory is frequently used, for instance in the stress func-

tion χ-method [56] and in the Galerkin-vector approach [63], in addition to
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other methods like expansion of ~u in terms of a suitable complete basis set of

orthonormal functions [55].

2.3.2 Contributions to the Effective Stiffness

External Strain

We now consider how a cell establishes a force pattern in a prestrained ho-

mogeneous medium. The work required to generate a force pattern ~f , which

results in strain u
~f
ij, in the presence of an externally imposed strain field ue

ij(~r)

is given by:

W =

∫
d3r

∫ ue
ij+u

~f
ij

0

Cijklukl(~r)duij(~r)

−
∫

d3r

∫ ue
ij

0

Cijklukl(~r)duij(~r) = W∞ + ∆W e (2.15)

with

∆W e =

∫
d3r Cijklu

~f
iju

e
kl(~r) =

∞∑
n=0

1

n!
Pi1...iniu

e
i,i1...in(~r). (2.16)

The derivation of Eq. (2.16) proceeds along the same lines as for Eq. (2.14).

In particular, for a single force dipole one gets ∆W e = Piju
e
i,j(~r). Because of

contractile cell activity, Pij has negative eigenvalues (P < 0). Thus, tensile

prestrain (ue
ij > 0) decreases W as does a larger rigidity E and hence is in-

terpreted by the cell as an increase in effective stiffness (strain-stiffening). In

contrast, compressive prestrain corresponds to a decrease in effective stiffness

and hence is avoided by the cell.

Boundary-induced Image Strain

We now consider the energy involved to deform an elastic medium in the

presence of a sample boundary. In order to quantify the effect introduced

by the boundary, we split uij = u∞ij + ub
ij into a contribution arising in an

infinite medium u∞ij and a boundary induced strain field ub
ij (image strain)

that depends on sample geometry and boundary condition. ~u∞ ensures that

the force balance is satisfied everywhere in the sample volume V . However,

~u∞ will not satisfy the boundary condition at S. For this purpose ~ub has to

be introduced. In order to keep the force balance in the sample, the image

displacements ~ub have to be homogeneous solutions of Eq. (2.10). Otherwise

they can be chosen in such a way that the boundary conditions are satisfied.

Now W = W∞ + ∆W b, where W∞ is the energy of the infinite medium and
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∆W b is the additional energy due to the boundary effect. For the latter, we

have

∆W b =
1

2

∫
d3r fi(~r)u

b
i(~r) +

1

2

∮
dS f s

i (~r)ui(~r) (2.17)

which includes both the effects of fixed boundary strain and fixed boundary

forces. In principle, the boundary conditions in a physiological context can

be very complicated. In our calculations we will restrict ourselves to two

fundamental reference cases, namely free boundaries, where the normal traction

vanishes at the boundary, i.e. f s
i (~r) = 0, and clamped boundaries, where the

displacements vanish at the boundary, i.e. ui(~r) = 0. We will refer to the former

as the Neumann problem and to the later as the Dirichlet problem. In both

cases, the surface integral in Eq. (2.17) vanishes. Thus, the effective interaction

potential for a cell interacting with a boundary is given by ∆W b = 1
2
Piju

b
i,j(~r),

which is inversely related to the change in effective stiffness induced by the

boundary. In this way, cells can actively sense not only the presence of a

close-by surface, but also its shape and boundary condition.

Cellular Traction Fields: Elastic Interactions

Strain fields produced by other cells may be large enough to be detected as

external strain by other cells, which gives rise to an elastic interaction of cells.

The change in W encountered by a force pattern ~f centered around ~r caused

by a second force pattern ~f ′ centered at ~r′ is given by:

∆W
~f ~f ′ =

∫
d3sfi(~r + ~s)ui(~r + ~s)

=

∫ ∫
d3sd3s′fi(~r + ~s)Gij(~r + ~s, ~r′ + ~s′)f ′j(~r

′ + ~s′)

=
∞∑

n=0

∞∑
m=0

1

n!

1

m!
Pi1...iniGij,i1...inj′1...j′m(~r, ~r′)P ′

j1...jmj , (2.18)

where the indices i1 . . . in denote derivatives of the Green function with re-

spect to the unprimed coordinates and j′1 . . . j′m derivatives with respect to the

primed coordinates. For translationally invariant geometries, for instance in

infinite space, Gij(~r, ~r′) = Gij(~r− ~r′) and derivatives for j′k become equivalent

to derivatives for −ik.

Even if cells have initially isotropic force patterns, they will sense

anisotropic strain and begin to polarize. As a model for elastically interacting

cells, we consider how identical, static anisotropic contraction dipoles organize

in a soft medium in order to sense maximal effective stiffness in their environ-

ment. The force dipolar interaction corresponds to the case n = m = 1 in

Eq. (2.18):

∆W PP ′
= Pliui,l(~r) = PliGij,lk′(~r, ~r′)P

′
kj (2.19)

and will be discussed in more detail in Chapter 4.
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2.3.3 Mechanosensing and Effective Stiffness

Our modeling starts from the phenomenological observation that cells seem to

prefer maximal effective stiffness in their environment. Although it can be jus-

tified a posteriori by its large success in explaining experimental observations

(see Chapter 3), we also want to motivate a possible mechanism for our main

assumption.

Biology of Mechanosensing at Cell–Matrix Contacts

The biology of active mechanosensing is quite complicated and not yet fully

understood. Interesting questions from the point of view of molecular biology

are how the mechanical signal is transduced into a biochemical one and which

pathways are subsequently triggered that lead to a cell response.

The first evidence that cells respond to forces (of strength typically

generated by the cytoskeleton) exerted on nascent attachment sites came from

the Sheetz-lab in 1997 [15]. The rearward movement of small fibronectin coated

beads on the lamellipodium was restrained with a laser tweezer, which resulted

in a rapid proportional reinforcement of the integrin-cytoskeletal linkages, such

that after escape from the laser trap on average a three times larger force was

required to move the bead.

Reinforcement could be caused either by an increase in the number

of integrin-cytoskeletal linkages (clustering response) or by a strengthening

of existing links (recruitment response), e.g. by the recruitment of proteins

enhancing the interaction between integrins and the cytoskeleton, or both [15].

Recent experiments suggest that recruitment of actin-binding proteins like

filamin and in particular talin-1 [64] to attachment sites and the subsequent

recruitment of the focal adhesion protein vinculin [65] seem to be critical for

early reinforcement of initial adhesions. On the other hand, for mature focal

adhesions there exists a clear correlation between size (i.e. the number of links)

and the force exerted on the adhesion [16, 28]. Moreover, by blocking cellular

contractility, focal adhesions shrink [16], while the application of an external

(inward directed pulling) force to focal complexes causes contact growth in the

direction of force application [17].

The initial transduction of the mechanical signal into biochemistry is

not yet resolved. Experimental evidence points to several non-exclusive mech-

anisms for mechanosensation including stretch sensitive ion channels [66, 67],

incorporation of focal adhesion proteins into the tensed cytoskeleton [68], struc-

tural rearrangement of the whole dynamic adhesion aggregate [39, 69, 70] or

force-dependent transitions between an active and inactive conformations of

focal adhesion proteins. Several proteins localizing to focal adhesions exist in

two conformational states including integrin [71,72], vinculin [73,74], talin [75]

and the Src-phosphatase pp60src [76]. Typically transitions between active and
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inactive states are triggered by binding events of other signaling molecules, but

these transitions may also be induced by force [16].

Force dependent modifications within cell–matrix contacts may then

trigger a signaling cascade, which is responsible for reinforcement or destabi-

lization of the cell–matrix adhesion, respectively. An important pathway for

regulating the stability of cell–matrix adhesions seems to be the focal adhe-

sion kinase (FAK)–Src–pathway [35]: the receptor-like tyrosine phosphatase

(RPTP-α), which is involved in activation of Src-family kinases, was recently

shown to act as a transducer of mechanical force and required for early rein-

forcement [77]. On the other hand, e.g. the activation of FAK seems to be

important for adhesion site turnover [78].

Finally, the force-dependent signaling cascade may feed back on the

force generating actin cytoskeleton, in particular via the activation of the

small GTPase RhoA, which promotes focal adhesion growth through its down-

stream targets MLCP (myosin light chain phosphatase) and MLCK (myosin

light chain kinase), which both enhance myosin II contractility, and the ac-

tivation of mDia, a member of the formin homology protein family, whose

role in promoting aggregation is less clear [17, 79]. Force dependent MLCK-

activation at cell–matrix contacts is also implied by a recent study observing

periodic lamellipodial contractions for spreading cells [80,81]. Force-dependent

signals may also effect the microtubule cytoskeleton, which might be involved

in destabilizing adhesions and promoting adhesion site turn-over and thus on

the long run might counteract the positive feedback loop provided by Rho-

signaling [79,82,83].

Possible Origin of Optimization Principle

Stabilization of contacts under force seems at first paradoxical, since the ap-

plication of force to adhesion clusters typically destabilizes them and above

a critical force the contact is expected to rupture [84, 85]. The property of

focal adhesions to act as mechanosensory devices is attracting the attention of

several physicists [85–88].

In order to develop a model for active mechanosensation, it might be

helpful to separate the process into three parts: the force generation system,

the force sensing system, which transduces force into a biochemical signal, and

the effector system, responsible for reinforcement. Most theoretical efforts have

focused on providing a biophysical explanation for the force sensory mechanism

at focal adhesions. For example, the clustering response might be a result of

a force induced phase-separation of proteins [86]. The asymmetric growth of

focal adhesions could be caused by an inhomogenous strain distribution at

focal adhesions, which leads to a higher protein density at the rear than at the

front [87,88]. In this work we are primarily interested in how the environment
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Figure 2.3: Simple model for force build-up at cell–matrix contacts. Myosin

motors pull on a closed bond stretching extra- and intracellular components,

which act as two springs in series with stiffness Kext and Kint, respectively. The

bond is highly dynamic and opens and closes with typical rate constants kon

and koff . With increasing load myosin motors slow down, which is described

by the force-velocity relation v(F ).

effects cellular behavior. Since the stiffness of the environment affects force

build-up, we will focus on the force generation process by introducing a simple

deterministic model for force generation at cell–matrix contacts.

Consider a single bond connected to a soft spring with spring constant

Kext representing the soft external environment as shown in Fig. 2.3. One

might also include an internal spring with spring constant Kint to represent the

typical mechanical resistance of some cytoplasmic elements that get stretched

during force build-up. Kext and Kint act as two springs in series with a total

spring constant K given by 1
K

= 1
Kext

+ 1
Kint

. The bond is loaded by forces

generated by the cytoskeleton. Force generation by the acto-myosin apparatus

occurs via the “filament-sliding” mechanism, i.e. myosin heads row against

actin filaments powered by ATP-hydrolysis, which causes filaments to slide past

each other. When the bond is open, filaments move with a typical velocity v0

and no force is generated. When the bond is closed at time t = 0, the filament

starts to move, thereby stretching the two springs and force builds up. The

restoring force exerted by the stretched springs on the filament results in a

slowing down of the motors until finally the stall force Fs is reached. The

force-velocity curve for the filament under load can be linearized according

to [38]:

v(F ) = v0

(
1− F

Fs

)
. (2.20)

The load F acting on the contractile filament is determined by the displacement

x = xext + xint of the springs via F = −Kx. Thus, the energy dW required to

displace the filament by dx is given by dW = −Fdx = F
K

dF . The dynamics

of force generation by a single filament is therefore governed by

L = Fv(F ) =
dW

dt
=

F

K

dF

dt
, (2.21)
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where L is the power invested by myosin motors into stretching the springs.

Thus, dF
dt

= v0K
(
1− F

Fs

)
and the force as a function of time can be calculated

to be:

F (t) = Fs

(
1− exp(− t

tK
)

)
. (2.22)

Eq.(2.22) shows that there exists a typical time scale tK for force build-up

given by:

tK =
Fs

v0K
. (2.23)

The larger the stiffness K and the higher myosin activity, the faster force is

built up. The asymptotic force at t →∞ is only determined by the stall force

Fs.

However, bonds at cell–matrix contacts are highly dynamic [69, 70].

Thus, there may exist a competing time scale tk, which is determined by

the reaction kinetics of all bonds involved in linking actin to the extra-cellular

environment (e.g. actin-talin-integrin-fibronectin). The dominant contribution

arises from the weakest bond, i.e. from the bond with the largest off-rate koff ,

which, in fact, for initial adhesions might be the talin-actin bond [89]. We

therefore may replace the complicated coupling/decoupling dynamics of actin

filaments to the environment by a single binding and unbinding process with

effective rates kon and koff . In principle the dissociation rate could also depend

on force. A simple model for bond rupture is described by Kramers theory,

where the closed and open state are separated by a finite energy barrier ∆E

(characterizing the bond strength, which typically is a few kBT ) along a one-

dimensional reaction coordinate x. The transition rate from the closed to

the open state is determined by an Arrhenius law k0
off = k0e

−∆E/kBT . When

force F is applied to the bond, the potential landscape is tilted and the height

of the barrier is reduced by Fxb. This facilitates the escape of the bond

from the closed state and the transition rate becomes koff = k0
offeF/Fb , where

Fb = kBT/xb defines a typical force scale for the bond. For a constant force the

mean life-time of the bond therefore decreases exponentially with force. For

the time dependent loading protocol by motors given in Eq. 2.22, the situation

is more complicated. Two parameters determine whether tk is affected by

force, the ratio of the forces α = Fs/Fb and the ratio of time scales β = tk/tK .

When αβ � 1 the bond is not affected by loading (i.e. the bond dissociates

before sufficient force is built up), when αβ � 1 the mean life-time decreases.

A lower bound for the mean life-time can be estimated from the linear loading

protocol, then tk → tk
1
µ

ln µ, where µ = αβ represents a dimensionless loading

rate [90].

Taking into account the competition between force generation dynamics

tK and contact dynamics tk and assuming for simplicity αβ < 1, the averaged

force 〈F 〉 attained during filament attachment becomes a simple hyperbolic
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Figure 2.4: Deterministic force build-up dynamics for loading of a single bond

by myosin-powered contractility with v0 = 10µm/s and Fs = 10pN for different

values of the spring constant K = 1, 5, 10, 20, 100 pN/µm (bottom to top). The

competing time scale from bond adhesion dynamics shown as a vertical line is

taken to be tk = 5s (and for simplicity assumed to be not effected by force).

We also include a putative force threshold F ? that the cell has to reach to

trigger signaling. Only bonds encountering a stiff environment can reach F ?

within the time tk.

function of the ratio of the two time scales tk and tK :

〈F 〉 =

∫ ∞

0

P (t)F (t)dt =
Fs

1 + tK
tk

(2.24)

where P (t) = e−t/tk

tk
dt is the probability that the bond breaks at time t in an

interval dt. When αβ > 1, 〈F 〉 is expected to decrease as a function of α and

β.

Suppose now that the cell is initially pulling at several cell–matrix con-

tacts with a similar investment of resources (myosin, actin, ATP), such that

tK at a given contact is only determined by the stiffness of the external spring.

In Fig. 2.4 we plot F (t) for several values of Kext by keeping the other pa-

rameters fixed. Some competing time scale tk is shown as vertical line. The

stiffer the spring, the faster force builds up and the larger the attained force

will be on average. If a certain threshold in force F ? triggers reinforcement,

then larger stiffness is more favorable and only bonds in a stiff environment

can reach F ? on average. Positive feedback loops from the effector to the force

generating system could additionally enhance force build-up dynamics. For ex-

ample, a force induced enhancement of myosin activity, e.g. through activation

of RhoA [17,79] or myosin light chain kinase (MLCK) [80], increases contrac-

tility and thus force build-up dynamics through an effectively increased v0 and
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Fs, respectively. Similarly, the recruitment response, e.g. of vinculin [65], to

nascent attachment sites strengthens links at cell-matrix contacts and thus

decreases koff , i.e. increases tk which tends to increase 〈F 〉, and thus also may

constitute a positive feedback loop. Positive feedback may enhance the dy-

namics of adhesion site maturation and contact growth at stiff compared to

soft sites, such that contacts in a stiff environment grow faster and eventually

might outgrow competing contacts. In the long run, this could trigger a corre-

sponding reorganization of the cytoskeleton and could be the reason why cells

in an mechanically anisotropic environment orient their cytoskeleton along the

direction of maximal stiffness. The positive feedback loop(s) could be coun-

teracted by microtubules, which seem to be attracted to focal adhesions with

some time delay and involved in destabilizing contacts [79, 82,83].

This simple model already makes some more interesting predictions:

first, it shows that active mechanosensation is a ”relative” process, which is

affected both by the stiffness of the environment and by the cell itself through

contractility, adhesion dynamics and internal stiffness. Possible targets for

feedback from the effector to the force generating system can be identified using

this model. The model also suggests that the internal stiffness Kint of cells may

affect how the mechanical environment is perceived by cells. Kext and Kint

act as two springs in series, such that the overall stiffness is dominated by the

softer spring. This implies that internally soft cells paradoxically may interpret

a stiff environment as being soft rather than stiff because not sufficient force

for signaling can be generated. One therefore may expect that cells adapt the

internal stiffness to the external stiffness in order to optimize the detection

of stiffness variations in their environment. Finally, the model predicts that

there exists an optimal range in stiffness determined by tK ≈ tk, where cells

are most susceptible to variations in stiffness, i.e. small changes in K lead to

large changes in F .

The main purpose of introducing this model was to show how the con-

cept of effective stiffness represented by W can be linked to mechanosensation

and stiffness preference. W enters into Eq.(2.21), which determines the dy-

namics of force generation. Thus, W is not only a convenient quantity to

characterize the mechanical properties of the environment, but could be an

integral part of cellular decision making.

The single bond picture might be a good approximation for nascent

adhesions with only a few bonds, where v0 ≈ 0.1µm/s, fs ≈ 10pN [15, 89].

When K ≈ 10pN/µm, tK is on the order of seconds, which compares to typical

biological dissociation rates for actin binding proteins of koff ∼ s−1 [91]. For

large focal adhesions, cooperativity between bonds should be included [85]. In

this case the relevant time scales might be replaced by the typical life time tk
of a contact compared to the typical time scale tK for force build-up. Both

time scales are expected to increase. Experimentally one finds that tK is on
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the order of ≈ 10 minutes for K ∼ nN/µm [28], which is on the same order

as typical maturation times for focal adhesions [69]. In the future one might

extend this simple deterministic model to include strong cooperativity between

bonds and stochastic effects [85] and perhaps also introduce explicit equations

for feedback between effector and force generating system.

2.4 Summary

Both physical defects and active cells respond to elastic deformations in their

environment and we suggest that the same mathematical formalism based

on force multipoles and linear elasticity theory can be used to describe both

situations. In fact, all formulae derived in this Chapter for interactions of

cells with external strain, sample boundaries and other cells as quantified by

W describe the corresponding interactions of physical dipoles as quantified by

V t, with W and V t being related to each other simply by a switch in sign.

For different situations of interest we found the same result ∆W = Pijuij,

where uij is the strain tensor evaluated at the position of the force dipole

Pij. Depending on the situation of interest, this strain tensor can correspond

to externally imposed strain, image strain induced by a sample boundary or

strain due to the traction of other force dipoles. Our formula shows that

cells can sense anisotropies in their environment only through an anisotropic

probing process: if the probing process were isotropic, Pij = Pδij, we would

find W = Puii and cells could only sense the scalar quantity uii describing

the local relative change in volume, but not any tensorial quantity like the

direction of external strain.

It is important to note that the above equations for active cells are not

interaction potentials in a strict physical sense. Rather these equations try to

quantify information that cells can gain by pulling on their environment and

show how external perturbations result in changes in effective stiffness. The

experimental observation that active cells prefer large effective stiffness in their

environment leads to the interaction laws for cells given in Eqs. (2.16,2.17,2.18).

In this way, we can predict cellular self-organization in soft media from an ex-

tremum principle in elasticity theory, in excellent agreement with experimental

results [53]. The structure formation for defect dipoles follows simply by in-

verting the sign of the interaction laws derived for active cells. This case

might also apply to artificial or inert cells [48], e.g. for biomimetic systems,

one might think of vesicles or nanocapsules which contract on adhesion to an

elastic environment.

In regard to modeling of active cells, we assume that they probe their

elastic environment through an anisotropic process in which force is of central

importance, and that this process results in a cellular preference for large
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effective stiffness in the environment. Although the phenomena described here

are closely related to cell morphology and the dynamics of focal adhesions,

these aspects are not the focus of this work. In particular, the magnitude P

of the cellular force dipole tensor does not enter our predictions, in contrast

to the positions and orientations represented by the dipole tensor Pij. This

reflects the fact that our model focuses on the extracellular properties that can

be sensed by the cell. Since we avoid modeling cell morphology and dynamics

of focal adhesions, we are able to describe the active behavior of cells in the

same mathematical framework developed before to describe physical defects

in a deformable medium. In particular, both cases require the solution of the

corresponding elastic boundary value problem given in Eq. (2.8) and Eq. (2.9).

In the next chapter, we present exact solutions for different cases of interest.

The assumption of a linear elastic medium holds true for most synthetic

elastic substrates like PAAM or PDMS. The typical physiological environment

for anchorage-dependent cells are physiological hydrogels like collagen matri-

ces, whose mechanical properties are more difficult to model, in particular due

to their viscoelastic and non-linear behaviour. Yet our calculations will show

that our model has large predictive power also for this case, possibly because

elastic deformations of hydrogels become encoded in plastic changes that later

can be detected by active mechanosensing in a similar way as persistent elastic

deformations.

Finally, in Section 2.3.3 we outlined how stiffness preference, the main

assumption of our model, might be linked to mechanosensation at cell–matrix

contacts by presenting a simple model for force build-up. During recent years,

the regulated response to mechanical input by single cells has been studied

experimentally in larger detail. There is a growing body of evidence that

integrin-based cell-matrix contacts act as local mechanosensors which channel

mechanical information about the environment directly into cellular decision

making. Although this does not concern our modeling directly, we suggested

that the preference of large effective stiffness might be a result of more effi-

cient force generation in a stiffer environment favoring mechanical activity of

cells. This might result in a larger signaling activity at cell–matrix contacts

encountering a stiffer response from their environment, possibly enhanced by

positive feedback loops favoring cell–matrix growth at stiff sites. In the long

run, this could trigger a corresponding reorganization of the cytoskeleton. The

main purpose of introducing the simple model was to illustrate how our coarse-

grained phenomenological modeling might be extended to the subcellular scale

in the future. However, these aspects are not the focus of the present work,

where we aim at effects on the tissue scale. Thus, we prefer to keep stiffness

preference as an assumption, since the exact underlying mechanism does not

affect the results of the following chapters.



Chapter 3

Examples of Cell Organization

In this chapter we will study examples for cell organization of single cells and

compare our predictions to experimental results. We are particularly inter-

ested in stiffness variations in homogeneous substrates with a constant Young

modulus E, where anisotropies in effective stiffness are induced by external

strain or sample boundaries. We first consider cells in a static homogeneous

strain field. External strain fields could arise for example in a wounded part

of a tissue. In a physiological context cells are often close to a boundary of a

tissue or organ. To predict the effect of boundaries we study a semi-infinite

space with a planar surface. As an example for a finite sized sample, we then

consider the elastic sphere. In both cases, the elastic equations can be solved

exactly. Since cells are modeled as anisotropic force dipoles, these calcula-

tions are in general more involved than similar calculations for isotropic force

dipoles. Moreover, in contrast to earlier calculations for the physical case, we

are interested not only in the effect of free, but also of clamped boundaries,

which are known to induce mechanical activity of cells by increasing the ef-

fective stiffness. We conclude this chapter with a summary of our results and

compare our theory to existing models of cell organization in the literature

which are based on contact guidance.

3.1 External Strain

As an example for cell organization in a prestrained environment, we consider

a homogeneously prestrained elastic slab with an uniaxial stress p acting along

the z-axis. The other faces are traction free, i.e. the stress tensor has only

one non-zero component, σzz = p . Then the corresponding strain tensor has

only diagonal components ue
ij = p

E
{(−ν, 0, 0), (0,−ν, 0), (0, 0, 1)} independent

of position. Contraction of this external strain tensor with the force-dipole
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p

θ

Figure 3.1: ∆W e induced by a homogeneous strain field as a function of prob-

ing direction θ. Independent of ν, cells prefer to orient along the direction of

stretch on top of a prestrained elastic substrate or inside a strained physiolog-

ical hydrogel.

tensor Pij according to Eq. (2.16) leads to:

∆W e =
pP

E
[(1 + ν) cos2 θ − ν] , (3.1)

where θ is the orientation of the dipole relative to the direction of externally

applied strain. Eq. (3.1) applies to both a cell on the top surface of the strained

slab (elastic substrate) or inside a strained infinite elastic material (hydrogel).

For tensile strain (p > 0), the cell senses maximal effective stiffness

along the direction of stretch θ = 0, thus cells orient preferentially in the

direction of stretch in a prestrained environment. On the other hand, cells in

a precompressed environment (p < 0) will orient perpendicularly to the axis

of compression, which is a combined effect of compressive strain avoidance

in the z-direction and maximal tensile strain detection in the perpendicular

directions, which will be most pronounced for incompressible media (ν ≈ 1/2).

Experimentally it is indeed observed that cells orient preferentially along the

direction of stretch both for fibroblast on elastic substrates [11] and in collagen
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gels [26,31]. Since ∆W decreases with increasing rigidity E, the elastic effects

discussed here will be observed only in a soft environment, namely with rigidity

E around kPa, which is a typical physiological value for tissue stiffness. For

stiffer substrates the variations in ∆W for different probing directions might

become too small to induce an orientation response and cells are expected

to stay unpolarized. Note that if cells were probing the environment in a

”pushing” P > 0 rather than ”pulling-mode” P < 0, compressive strain, rather

than tensile strain, would be interpreted as an increase in effective stiffness.

Finally, we would like to mention that there exists a huge number of

studies investigating the response of cells to oscillatory strain fields [92–95].

Usually studies are performed at 1Hz frequency, which is the physiological

value of blood pulsation. Since here, cells are passively strained and deformed

by forces acting from the outside, the response might be very different to

the case discussed here, where cells actively sense and respond to a static

stress in the environment. In fact, experiments suggest that cells in dynamic

strain fields may avoid both tensile and compressive strain, i.e. minimize

|Pijuij| [92, 93]. Apart from +Pijuij as for cells and −Pijuij as for physical

defects, this expression constitutes a third alternative of how cell orientation

could be linearly coupled to an external strain field [48].

In contrast to cellular dipoles, a physical anisotropic contraction dipole

causing a local contraction of the environment along its axis, is repelled (at-

tracted) by tensile (compressive) strain, because the negative interaction en-

ergy with the medium is reduced (increased) due to the expansion (compres-

sion) of the environment caused by the external field. Physical defects there-

fore orient in the opposite way as mechanosensing cells with respect to external

homogeneous strain.

3.2 Sample Boundaries: The Elastic Half

Space

In a physiological context cells are often close to boundaries, such as the surface

of a tissue or organ. In addition to that, boundaries induced by implants

could also alter cell organization in the surrounding tissue. Boundaries alter

the strain with respect to an infinite homogeneous medium by a boundary

induced image strain. To predict the effect of boundaries on cell organization

we study here the interaction of a force dipole embedded in a semi-infinite

space close to the surface with the planar boundary, which might be either

rigidly fixed (clamped) or free.
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3.2.1 The Elastic Boundary Value Problem

The elastic isotropic half space with a clamped surface at r3 = 0 constitutes

a Dirichlet problem with vanishing displacements at the planar boundary,

ui(~r) = 0 for r3 = 0, whereas the free surface leads to a Neumann bound-

ary value problem with vanishing surface tractions, σij(~r)nj = 0 for r3 = 0

with ~n = (0, 0, 1) being the surface normal. The boundary value problem of

the semi-infinite space can be solved using the concept of image singularities.

Image approaches are well known from electrostatics: the simplest example

is the charge in front of a metal plate. Here, the field due to a charge Q at
~r′ = (r′1, r

′
2, r

′
3) with the boundary at r3 = 0 is equivalent to the field of the

charge and an image charge −Q at ~r′im = (r′1, r
′
2,−r′3) without a boundary [96].

In analogy, the displacement field due to a unit force at ~r′ close to a planar

surface of a semi-infinite space is equivalent to the superimposed fields of a set

of force nuclei placed in a homogeneous infinite substrate, i.e.:

Gij(~r, ~r′) = G∞
ij (~r, ~r′) + Gim

ij (~r, ~r′), (3.2)

where G∞
ij is the Green function in an infinite medium and Gim

ij specifies its

image system, which is a sum of functions derived from G∞
ij by differentiation

(point images, i.e. forces and force dipoles) or integration (line images, i.e. a

line of force nuclei). The Green function for an infinite medium is given by the

Thompson solution [56]:

G∞
ij (~r, ~r′) = a∞1

{
a∞2 δij +

RiRj

R2

}
1

R
, (3.3)

where ~R = ~r − ~r′ and

a∞1 =
1 + ν

8πE(1− ν)
=

Λ + 1

8πc
, a∞2 = (3− 4ν) =

3 + Λ

1 + Λ
. (3.4)

Despite its rather simple geometry, the image system of the elastic half-space is

rather complicated and consists of up to 15 image nuclei, including point nuclei

located at ~r′im = (r′1, r
′
2,−r′3) and line images running normal to the surface and

extending from −r′3 to infinity. The image system of the free half space was

calculated by Mindlin using a Boussinesq-Galerkin representation [63]. The

Green function of the clamped half-space has been derived by Phan-Thien

applying a Papkovitch-Neuber ansatz, however without revealing the image

system in detail [97]. Quite recently, Walpole [98] used methods of general

harmonic potential theory and presented the image system for two joined half-

spaces, which includes the clamped or free half-space as limiting cases of infinite

or vanishing shear rigidity in one of the joined spaces.

Introducing the harmonic functions:

1

s
=

1

|~r − ~r′im|
, (3.5)
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where s is the distance from the image point, and

Φ = ln(r3 + r′3 + s)

Ψ = (r3 + r′3)Φ− s, (3.6)

the image Green tensor Gim
ij of the isotropic elastic half space reads [98]:

Gim
ij (~r, ~r′) = MG∞

ij (~r, ~r′im) +

+
Jr′3(1 + ν)

4πE(1− ν)

[
s,ij3 − 2δj3s,i33 − 4(1− ν)δi3

[(
1

s

)
,j

− 2δj3

(
1

s

)
,3

]]
−

− Jr′3(1− 2ν)(1 + ν)

2πE(1− ν)
δj3

(
1

s

)
,i

−

− Jr′23 (1 + ν)

4πE(1− ν)

[(
1

s

)
,ij

− 2δj3

(
1

s

)
,i3

]
−

− C(1− 2ν)(1 + ν)

4πE(1− ν)
(Ψ,ij − 2δj3Ψ,i3) +

B(1 + ν)

2πE
δj3Φ,i +

+
B(1 + ν)

2πE
(δi3Φ,j − δijΦ,3)), (3.7)

where the coefficients M, J, C,B depend on the boundary condition (sub-

scripts: free f , clamped c) and the Poisson ratio ν [98]:

M f = (3− 4ν) M c = −1

Jf = −1 J c = 1/(3− 4ν)

Cf = 2(1− ν) Cc = 0

Bf = 2(1− 2ν) Bc = 0. (3.8)

For a fixed j, each line in Eq. (3.7) represents the i-th component of the dis-

placement field of one fundamental strain nuclei of an infinite medium. For

a free surface, five image singularities contribute to a surface tangential or

normal force component. A tangential force j = 1, 2 introduces, in the or-

der of lines of Eq. (3.7), three point images (force, double force with moment

and a doublet) and two line images (line of doublets and line of double forces

with moment) [63]. A normal force j = 3 induces four point images (force,

double force, doublet, center of compression/dilation) and a line of compres-

sion/dilation centers [63]. In a clamped half space the line images disappear

(B = C = 0) and there are only the three or four point images for a tangen-

tial or normal force component, respectively. Interestingly, the strength of the

higher order point singularities is proportional to the distance r′3 of the source

point from the surface. Hence their relative contribution to the displacement

field with respect to the image force increases with increasing distance of the

source force from the surface. Note that for r′3 → 0, i.e. for a force acting at a
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(a) (b) (c)

d

θ

Figure 3.2: Image fields ~ub for a contraction dipole Pij positioned at ~r′ =

(0, 0, d) in front of a clamped surface of a semi-infinite space for Poisson ratio

ν = 1/2. Dipole orientations are (a) θ = 0, (b) θ = π
4

and (c) θ = π
2

with

respect to the surface normal. At the clamped surface the image displacements

~ub balance the displacements ~u∞ of an infinite space. Inside the sample, they

are homogeneous solutions of the elastic equations. The interaction of a dipole

with the clamped surface is equivalent to the interaction of the dipole with a

set of image singularities placed at ~r′im = (0, 0,−d). For a free surface, the

normal tractions vanish and all image displacements change sign. For ν < 1/2,

there is an additional contribution to ~ub derived from line images. However, the

interaction of force dipoles with the boundary does not change qualitatively

as ν is varied.

free surface of a semi-infinite space, Eq. (3.7) yields the well know Boussinesq

Green function [56] for tangentially applied forces and the solution of Cerruti

for normally applied forces [58]. The dominant terms to the image displace-

ment field far away from the surface arise from the image force and the line

images ∼ 1/s, followed by the dipole type defects (double force, compression

center) ∼ r′3/s
2 and finally the doublet ∼ r′23 /s3. The Poisson ratio ν changes

the relative magnitude of the image singularities with respect to each other,

but does not change their type (i.e. their sign). Therefore, strain propaga-

tion in the half space is expected to stay qualitatively similar with varying

ν. Changing the boundary condition from free to clamped, the point images

flip their sign, which indicates that clamped and free boundary will induce

qualitatively opposite effects. Indeed, for the special case of an incompressible

medium, ν = 1/2, clamped and free half space induce the same boundary

fields, but with opposing signs.

The image displacements ~ub induced by a force dipole Pij at ~r′ are ob-

tained from Eq. (3.7) by differentiation with respect to the primed coordinates.
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Note that the planar surface at r3 = 0 breaks the translational invariance along

the z-axis, which means that differentiation of Gb
ij with respect to r3 and r′3

are not equivalent. Since the strength of the dipolar singularities in Gim
ij is

proportional to r′3, taking the derivative with respect to r′3 will lead to dipole

images of r′3-independent strength that are proportional to the dipole strength

P . Therefore, the far field image displacements produced by a force dipole

in front of a planar surface are dominated by image dipole terms ∼ 1/s2 of

strength proportional to M and J and additional images derived from the line

image terms. In Fig. 3.2 we plot ~ub for three different dipole orientations with

respect to the surface normal of a clamped half space for Poisson ratio ν = 1/2.

In this case, for a free surface all image displacements point in the opposite

direction.

3.2.2 Interactions with the Boundary

The change in effective stiffness encountered by a force dipole Pij positioned

a distance r′3 = d away from the surface is inversely related to the effective

interaction potential ∆W b(~r′), which according to Eq. (2.17) is proportional

to the induced image strain at the position of the dipole, i.e. ∆W b(~r′) =
1
2
Pij

∂2Gim
ik (~r,~r′)

∂rj∂r′l
Pkl|~r→~r′ . Because of rotational symmetry with respect to the

surface normal, the surface induced change in effective stiffness sensed by a

dipole depends only on its distance d to the surface and the angle cos θ = ~n ·~l
between dipole orientation and surface normal. We find:

∆W b(d, θ) =
P 2

256πEd3
(aν + bν cos2 θ + cν cos4 θ), (3.9)

with the coefficients

af
ν =

(1 + ν)(5 + 2ν(6ν − 1))

1− ν
ac

ν = −(1 + ν)(15 + 32ν(ν − 1))

(1− ν)(3− 4ν)

bf
ν =

(1 + ν)(22 + 4ν(2ν − 9))

1− ν
bc
ν = −(1 + ν)(34 + 32ν2 − 72ν)

(1− v)(3− 4ν)

cf
ν =

(1 + ν)(13(1− 2ν) + 12ν2)

1− ν
cc
ν = −(1 + ν)(7− 8ν)

(1− ν)(3− 4ν)
(3.10)

being rational function of the Poisson ratio ν. ∆W b scales quadratically in

P because the image strain scales linearly in P , in other words, the force

dipole interacts with its own images. The interaction of the force dipole with

the surface is a long-ranged effect and scales like a dipole-dipole interaction

potential, that is ∼ d−3 . For free and clamped surfaces, all coefficients in

Eq. (3.10) are positive and negative, respectively, irrespective of ν. Therefore,

the preferred cell orientation close to the surface , i.e. the configurations of

minimal ∆W b, are parallel (θ = π/2) and perpendicular (θ = 0) orientation
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Figure 3.3: Angular dependence of image interaction with the boundary, ∆W b

from Eq. (3.9), for a cellular force dipole positioned a distance d away from

the surface of an elastic half space, plotted in units of P 2/Ed3 and rescaled by

1/256π. Curves above and below the θ-axis correspond to free and clamped

boundaries, respectively. Solid and dashed lines correspond to ν = 1/2 and

ν = 0, respectively (all other Poisson ratios yield curves lying in between those

shown). A clamped (free) surface effectively rigidifies (softens) the medium

towards the surface. Hence, irrespective of the value of ν, cells close to a

clamped surface prefer to orient perpendicular (∆W b minimal for θ = 0) while

cells close to a free surface prefer parallel orientation (∆W b minimal for θ =

π/2).

for free and clamped boundaries, respectively. In Fig. 3.3 we plot the angular

dependence of ∆W b for ν = 1/2 and ν = 0. Since |∆W b| ∼ 1/d3 increases if d

decreases, the overall mechanical activity of a cell increases towards a clamped

surface (∆W < 0), but decreases towards a free surface (∆W > 0). Thus

we predict that cells preferentially locomote towards a clamped boundary, but

tend to migrate away from a free boundary. In general, free and clamped

boundaries have always opposite effects. One may think of a clamped (free)

surface as the interface between the medium and an imaginary medium of

infinite (vanishing) rigidity, which effectively rigidifies (softens) the medium

towards the boundary. Thus for clamped (free) boundary conditions, the cell

senses maximal stiffness towards (away) from the boundary. For clamped

boundaries, mechanical activity of cells is favored and cells can amplify this

effect by adjusting orientation. For free boundaries, mechanical activity of cells

is disfavored and the orientation response is an aversion response, see Fig. 3.4.
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Experimentally, it is well known that mechanical activity of cells in-

creases for clamped boundary conditions [99]. The predicted orientation ef-

fects close to boundaries have been observed numerous times, e.g. the parallel

orientation of cells close to free surfaces [31]. Our model predicts the same

orientation effects for an elastic substrate with two regions of different rigidi-

ties, see Fig. 3.4(c): cells on the soft and stiff sides of the boundary orient

perpendicular and parallel to it, respectively. The transition from parallel to

perpendicular orientation is a discrete transition and occurs, when the two

Young moduli become equal, i.e. at E1 = E2. Indeed fibroblasts migrating

from a soft to a stiff region keep their perpendicular orientation and cross

over to the stiff side, while fibroblasts migrating from a stiff to a soft region

do not cross the boundary, but turn by 90 degrees and move parallel to the

boundary [13].

For the interaction of a physical dipole with the surface, we simply have

to switch sign in Eq. (3.9). Hence, physical dipoles are attracted by free and

repelled from clamped surfaces. A clamped surface prevents the defect from

displacing its environment to lower its potential energy, which results in a

repulsive interaction. In contrast, a free surface favors displacements close to

the surface, since at a free surface there exist no internal restoring forces acting

normal to the surface. This results in an attractive interaction of the defect

with the surface. Since V t ∼ P 2, the sign of P does not matter, i.e. dilation

and contraction dipole interact in the same way with the surface.

3.3 Sample Geometry: The Elastic Sphere

3.3.1 The Elastic Boundary Value Problem

As an example for a finite sized sample, we consider the elastic sphere with

radius R. For the elastic sphere, no image system has been constructed that

solves the elastic boundary value problem and it is not clear whether such

an image system exists. Nevertheless, the elastic equations for the elastic

sphere can be solved analytically by applying an expansion in terms of vector

spherical harmonics. This approach has been used by Hirsekorn and Siems [55]

to solve the von Neumann problem of an anisotropic force dipole in an elastic

sphere with a free boundary. We will follow this approach in order to solve

the Dirichlet problem of a force dipole in a clamped sphere. Both results are

then used to calculate the change in effective stiffness encountered by a force

dipole in clamped and free spheres, respectively.

Analytical solutions to differential equations for scalar fields in spherical

coordinates can be obtained by an expansion in terms of spherical harmonics,

which form a complete orthonormal basis set on the unit sphere. In a similar
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Figure 3.4: Predicted cell orientation in a physiological hydrogel close to a

surface (a,b). Note that the additional cubic faces have only been included

for illustration purposes. (a) Cells prefer the direction of maximal effective

stiffness. Thus, they orient perpendicular to a clamped surface and motile

cells prefer to locomote towards a clamped surface. (b) For a free surface, this

direction is parallel to the surface and motile cells tend to avoid the boundary.

(c) Cells on an elastic substrate close to a boundary between soft (left) and

rigid (right) regions prefer analogous orientations as cells close to clamped and

free surfaces in a physiological hydrogel, respectively.

way, the general solution to the equilibrium condition Eq. (2.10) for the vector

field ~u(~r) can be expressed as a sum over so-called vector spherical harmonics

(VSH):

~u(r, Ω) =
∑
lm

(
flm(r)Y†

ll+1m(Ω) + glm(r)Y†
ll−1m(Ω) + hlm(r)Y†

llm(Ω)
)

.

(3.11)

Vector spherical harmonics YJLM(Ω) form a complete orthonormal basis set

on the unit sphere [100]:∫
YJLM(Ω)Y†

J ′L′M ′(Ω)dΩ = δJJ ′δLL′δMM ′ . (3.12)

They are the eigenfunctions of the angular momentum operator J of a vector

field as spherical harmonics Ylm are the eigenfunctions of the (orbital) angular



3.3. SAMPLE GEOMETRY: THE ELASTIC SPHERE 43

momentum L of a scalar field. J is the vector sum J = L + S of the orbital

momentum L and the intrinsic spin S. The eigenvectors of S are the spherical

basis vectors eα:

e±1 = − 1√
2
(ex ± ey) , e0 = ez (3.13)

and represent a spin S = 1 system. Since J is an example of angular momen-

tum addition, one can construct the VSH with the help of Clebsch Gordon

coefficients C l
M−α

1
α

J
M [100]:

YJlM(Ω) =
∑

α

C l
M−α

1
α

J
MYlM−α(Ω)eα. (3.14)

This implies that for a given J there are only three classes of VSH, namely

l = J, J ± 1, which in retrospective justifies our ansatz Eq. (3.11).

In order to solve the boundary value problem, we split ~u again into a

contribution in an infinite substrate ~u∞ and a boundary induced field ~ub. ~u∞ is

the solution to the inhomogenous differential equation Eq. (2.10) with a body

force density and thus ensures force balance everywhere inside the sample.

For a force dipole P ′ located at ~r′ the VSH-expansion of the displacement field

~u∞(~r) reads for r′ < r [55]:

~u∞(~r) =
1

c

∑
lm

Y†
ll+1m(Ω)

(2l + 1)r2
Xαβ

lm (η′, Ω′)P ′
α

β −

− 1

c

∑
lm

Y†
ll−1m(Ω)

(2l + 1)r2
(3l + 2 + (l + 1)Λ)C l−1

m−α
1
α

l
mAαβ

l−2m(Ω′)η′l−2P ′
α

β −

− 1

c

∑
lm

Y†
llm(Ω)

r2
(2 + Λ)C l

m−α
1
α

l
mAαβ

l−1m(Ω′)η′l−1P ′
α

β, (3.15)

where η′ = r′

r
< 1 and

Aαβ
lm(Ω) =

√
l + 1

2l + 1
C l+1

m−α
1
β

l
l−α+βYlm−α+β(Ω)

Bαβ
lm (Ω) =

√
l

2l + 1
C l−1

m−α
1
β

l
m−α+βYlm−α+β(Ω) (3.16)

Xαβ
lm (r, Ω) = −(3l + 1 + lΛ)C l+1

m−α
1
α

l
mAαβ

lm(Ω)rl +
√

l(l + 1)(1 + Λ)C l−1
m−α

1
α

l
m

· [Bαβ
lm (Ω)rl +

1

2
Aαβ

l−2m(Ω)rl−2((2l − 1)− (2l + 1)r2)].

Sums over repeated indices are always implied except for Clebsch-Gordon co-

efficients. P ′
α

β is the force dipole tensor in the spherical basis set given by

Eq. (3.13). The reciprocal basis vectors are eα = e†α = (−1)αe−α and the
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metric tensor is gαβ = (−1)βδα,−β. Spherical coordinates transform via the

unitary operator Uαi = (eα · ei) into cartesian coordinates, i.e.

Pij = UαiU
β

jP
α

β. (3.17)

In order to satisfy force balance inside the sphere volume, the boundary

induced field ~ub must be a homogenous solution to Eq. (2.10). Thus, inserting

Eq. (3.11) into Eq. (2.10), one obtains a set of differential equations for the

radial functions flm(r), glm(r) and hlm(r) of the boundary induced field [55]:

0 = (3l + 2 + (l + 1)Λ)(f ′′lm +
2

r
flm′ − (l + 1)(l + 2)

r2
flm)−

−
√

l(l + 1)(1 + Λ)(g′′lm −
2l − 1

r
glm′ +

(l − 1)(l + 1)

r2
glm) (3.18)

0 = (3l + 1 + lΛ)(g′′lm +
2

r
glm′ − l(l − 1)

r2
glm)−

−
√

l(l + 1)(1 + Λ)(f ′′lm +
(2l + 3)

r
flm′ +

l(l + 2)

r2
flm) (3.19)

0 = h′′lm +
2

r
hlm′ − l(l + 1)

r2
hlm. (3.20)

The general solution to Eq. (3.18)-Eq. (3.20) with a ~ub which is analytic at the

sphere origin is [55]:

flm(r) = alm
3l + 1 + lΛ

(1 + Λ)(2l + 3)
rl+1 (3.21)

glm(r) = alm
1

2

√
l(l + 1)rl−1(r2 −R2) + blm

1

2
rl−1

hlm(r) = clmrl,

where R is the radius of the sphere and the remaining constants alm, blm and

clm must be determined by the boundary conditions at the sphere surface.

The Dirichlet problem of a clamped sphere yields:

~ub(R, Ω) = −~u∞(R, Ω), (3.22)

i.e. the expansion coefficients ac
lm etc. of the boundary induced field can be

found by matching ~u∞ and ~ub at the sphere surface:

ac
lm = − 1

cR3

(2l + 3)(1 + Λ)

(2l + 1)(3l + 1 + lΛ)Rl
Xγδ

lm(ρ′, Ω′)P ′
γ

δ

bc
lm =

2

cR3

3l + 2 + (l + 1)Λ

2l + 1

(
ρ′

R

)l−2

C l−1
m−γ

1
γ

l
mAγδ

l−2m(Ω′)P ′
γ

δ (3.23)

cc
lm =

1

cR3
(2 + Λ)

(
ρ′

R

)l−1

C l
m−γ

1
γ

l
mAγδ

l−1m(Ω′)P ′
γ

δ,
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(a) (b)

Figure 3.5: Deformation of an elastic sphere (R = 1, Λ = 2, c = 1) with

a free surface by a contraction dipole oriented in the z-direction. In (a) the

dipole is placed at the origin, ~r = (0, 0, 0). In (b) the dipole is placed off-center

at ~r = (R
4
, 0, 0). The pictures show a cut through the x-z-plane, but it has

rotational symmetry only in (a).

where ρ′ = r′/R is the ratio of the distance r′ of P ′ to the sphere center and

the sphere radius R. For a sphere with a free surface normal stress has to

vanish and the corresponding Neumann boundary condition reads:

σb
ij

(xj

r

)
r=R

= −σ∞ij

(xj

r

)
r=R

. (3.24)

To determine af
lm etc. one first has to calculate the stress-tensor σ∞ij and then

balance the normal stress with the corresponding boundary induced stress σb
ij

at r = R. The final result for the expansion coefficients in a free sphere is [55]:

af
lm =

1

cR3

2(1 + Λ)(2l + 3)(l + 2)

(2l + 1)M(l)Rl
Xγδ

lm(ρ′, Ω′)P ′
γ

δ

bf
lm = − 1

cR3

2(l2 + l + 1) + (2l2 + 1)Λ

(l − 1)(2l + 1)
C l−1

m−γ
1
γ

l
m

(
ρ′

R

)l−2

Aγδ
l−2m(Ω′)P ′

γ
δ

cf
lm = − 1

cR3

(l + 2)(2 + Λ)

l − 1

(
ρ′

R

)l−1

C l
m−γ

1
γ

l
mAγδ

l−1m(Ω′)P ′
γ

δ (3.25)

with

M(l) = 2(l2 + 1 + l) + (2l2 + 4l + 3)Λ . (3.26)

For both boundary conditions the image displacements scale ∼ 1/R2 with

the sphere radius and the VSH-expansion of ~ub converges as ∼ l2(ρρ′)l. Thus,

higher l-moments dominate if the dipole is close to the surface (ρ′ → 1). These

are localized near the surface and decay rapidly towards the sphere center.

We furthermore see that for a dipole close to the surface the convergence
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properties of the series expansion are rather poor and more l-terms need to

be considered to approximate the displacement field near the surface. Again

clamped and free boundary induce opposing boundary fields as indicated by

the opposite signs of the expansion coefficients: a clamped surface decreases ~u

to zero at the boundary whereas a free boundary enhances the displacements

at the boundary. In Fig. 3.5 we plot two examples for a deformed elastic sphere

with free boundaries under the action of a contraction dipole.

3.3.2 Effects in an Elastic Sphere

The change in effective stiffness sensed by a contraction dipole at ~r′ in an

elastic sphere is inversely related to the effective boundary interaction potential

∆W b(~r′) = Piju
b
ij. To calculate ∆W b(~r′), we need to contract the gradient-

displacement tensor of the boundary induced field with the dipole tensor. This

is most conveniently done using the spherical representation, i.e.:

∆W b(~r′) =
1

2
Pα

βub
α,β (~r → r′, ~r′) =

1

2
Pα

β(e†β · ∇)(eα · ub) . (3.27)

Starting from the ansatz Eq. (3.11) for ~u, uα
β(~r, ~r′) can be derived by applying

the gradient formula for spherical harmonics [100]:

∇Φ(r)Ylm(Ω) = −
√

l + 1

2l + 1

(
d

dr
− l

r

)
Φ(r)Yll+1m(Ω)

+

√
l

2l + 1

(
d

dr
+

l + 1

r

)
Φ(r)Yll−1m(Ω), (3.28)

and furthermore the symmetry relationships of Clebsch Gordon coefficients

[100]:

Cj1
m1

j2
m2

j3
m3

= (−1)j2+m2

√
2j3 + 1

2j1 + 1
Cj2
−m2

j3
m3

j1
m1

(3.29)

Cj1
m1

j2
m2

j3
m3

= (−1)j1+j2−j3Cj1
−m1

j2
−m2

j3
−m3

.

We finally find:

ub
α

β(~r, ~r′) =
∑
lm

Rl alm

1 + Λ
X∗ αβ

lm(
r

R
, Ω) (3.30)

− (2l + 3)rlA∗ αβ
lm(Ω)

(
bl+2m

2
C l+1

m−α
1
α

l+2
m + cl+1mC l+1

m−α
1
α

l+1
m

)
.

Note that the m-sums over blm and clm run in the intervals [−l− 2, l + 2] and

[−l − 1, l + 1], respectively.

The effective interaction potential ∆W b for an elastic sphere is then

found by inserting the appropriate expansion coefficients alm, etc. given in
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Figure 3.6: Image interaction ∆W b from Eq. (3.31) between the surface and a

cellular force dipole embedded in an elastic sphere of radius R with ν = 1/3,

plotted in units of P 2/ER3 as a function of distance r/R to the sphere surface

and rescaled by 15/8. Curves above and below the r-axis correspond to free and

clamped boundary conditions, respectively. Solid and dashed line correspond

to orientations θ = π/2 and θ = 0 with respect to the surface normal. As for

the half space, optimal cell orientation yields θ = 0 (clamped) and θ = π/2

(free) respectively.

Eqs. (3.23,3.25) and contracting uα
β with Pα

β = P ′ α
β. We may rewrite

∆W b to indicate the important scaling laws of the interaction of the dipole

with the sphere surface by:

∆W b =
P 2

ER3
fν(

r

R
, θ) , (3.31)

where r is the distance to the sphere center and θ is the dipole orientation

with respect to the surface normal. The function fν contains the sum over all

angular momenta and does not vary qualitatively as ν (or, equivalently, Λ) is

varied.

With regard to cell orientation, we find the same results as for the

elastic half space: cells will orient parallel (perpendicular) to a free (clamped)

surface, respectively. As shown in Fig. 3.6, we also find a similar result for

the effect of distance to the surface: for free (clamped) boundary conditions, a
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small (large) distance to the sphere center is more favorable, since the surface

favors (disfavors) mechanical activity. The new aspect here is the role of the

sphere radius R. Since |∆W | increases when R decreases, one can effectively

rigidify (soften) a material with a clamped (free) surface by reducing system

size. Our predictions could be tested using e.g. fibroblast-populated collagen

microspheres, an assay which has been introduced to study compaction of

tissue equivalents at high cell density [101]. Since here we are mainly concerned

with single cell effects, we suggest to modify this assay in such a way as to

monitor the organization of isolated cells close to the sphere surface at low cell

density and as a function of varying sphere radius.

For the interaction of a physical dipole with the surface embedded in an

elastic sphere, we once more obtain the opposite results. Dipoles are attracted

(repelled) and orient towards (away from) a free (clamped) surface.

3.4 Summary and Discussion

We have applied the general formalism from Chapter 2 to derive predictions

for the organization of single cells in response to mechanical input for different

situations of practical interest. In general, we found that physical and cellular

force dipoles interact in opposite ways with external strain field or sample

boundaries because Vt = −W . We also found that in general, free and clamped

boundaries will have opposite effects. For example, cellular anisotropic force

dipoles are repelled and attracted by free and clamped boundaries, respectively.

In the vicinity of these boundaries, they will align in parallel and perpendicular,

respectively. In general, all the interaction laws derived here show the universal

scaling W ∼ (P 2/El3)fν(θ), where f is a non-trivial function of Poisson ratio

ν and the orientation angles θ, which has to be calculated for each situation

of interest. Except for the case of external strain, the cellular force pattern

interacts with itself (case of boundaries) or with another cellular force pattern

(case of elastic interaction of cells as will be discussed in Chapter 4), therefore

W ∼ P 2. The scaling W ∼ 1/l3 is typically for force dipoles. Here the length l

can either be distance (e.g. between cell and boundary or between two cells) or

sample size (in the elastic sphere). Finally, W ∼ 1/E. Although W decreases

with increasing Young modulus E, that is elastic effects become smaller, at the

same time mechanical activity of cells usually increases. For this reason, we

expect that there exists a range of optimal values for E for which the elastic

effects in cell adhesion described here should be most pronounced (possibly

around E = kPa, the physiological order of magnitude for cell and tissue

stiffness).

Our model is able to explain numerous experimental observations that

have been reported for organization of cells (especially fibroblasts) both on
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elastic substrates and in physiological hydrogels [53]. The excellent agreement

of our results with experiments suggests that cell organization can be pre-

dicted from local mechanical properties which the cell actively senses in its

environment. The only property of cellular regulation which enters our model

is the assumption that cells locally prefer large effective stiffness. Otherwise

our modeling focuses on the elastic properties of the extracellular environment.

Modeling the soft environment of cells as an isotropic elastic medium is cer-

tainly a good assumption for elastic substrates. However, the situation is more

complicated for physiological hydrogels, in particular because they might not

behave elastically and because they feature fiber degrees of freedom.

In fact, cell organization in gels is often explained by contact guidance,

the alignment of cells along topographic features like collagen fibers. Since

fibers can become aligned due to cell traction, contact guidance provides a

long-ranged and persistent mechanism for cellular self-organization in tissue

equivalents [51]. This process has been modeled before. In the theory of

Ref. [51], flux equations for cellular and matrix densities are combined with

mechanical equations which include cells as centers of isotropic contraction.

This might be a good model for chondrocytes, which tend to show a spherical

morphology. The anisotropic biphasic theory (ABT) from Ref. [52, 102] aims

at cells like fibroblasts and smooth muscle cells, whose typical morphology in

tissue equivalents is bipolar. ABT introduces a cell orientation tensor, which is

coupled to a fiber orientation tensor, since cells are assumed to react foremost

to fiber degrees of freedom. In our model, the force dipole tensor represents

cell orientation as does the cell orientation tensor in ABT, but it is coupled to

elastic degrees of freedom, since cells are assumed to react foremost to large

effective stiffness. Since models for contact guidance in tissue equivalents focus

on fiber degrees of freedom and high cell densities, they do not explain the

single cell responses observed on elastic substrates, where contact guidance

usually is ruled out [11,13,14].

The large predictive power of our model for elastic substrate experiments

suggests that active mechanosensing by single cells might also be involved with

cell organization in hydrogels. However, for the collagen assay from Ref. [103] it

has been shown that as a response to external strain, fibers become rearranged

and stress relaxes towards zero. In a matrix which cannot support any stress,

our elastic considerations do not apply and contact guidance through formerly

aligned fibers might be the only relevant clue for cell organization [103]. How-

ever, it is important to note that in our model, stress is actively generated by

cells and thus needs to be supported only over time scales in which the cell

actively senses the mechanical properties of its environment. In particular, if

fiber alignment has resulted in some anisotropic mechanical environment, the

cell might sense the anisotropic mechanical response of the matrix and orient

itself correspondingly. This might explain why cells have been found to align to
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a greater extent with respect to external strain than the surrounding collagen

fibrils [103] and why our modeling is also successful for hydrogels.

We also want to point out that contact guidance is a bidirectional clue

and provides only guidance, in contrast to external elastic strain, which pro-

vides taxis. In our model, taxis is reflected by the position dependence of ∆W .

For example, our theory not only predicts that cells prefer to orient parallel to

free boundaries, but also that cells prefer to move away from them. Moreover a

simple preference for cell alignment along fibers does not predict what cells do

if they encounter a fiber junction in the gel. Our modeling would suggest that

cells prefer the fiber under largest tension, exactly as has been observed exper-

imentally for neutrophils migrating in human amnion [104]. In general, future

experiments are needed to clarify the relative importance of topographic versus

mechanical clues for cell organization in physiological hydrogels, while future

modeling is needed to account for the mechanical (in particular, viscoelastic)

properties of physiological hydrogels.



Chapter 4

Elastic Interactions of Cells

So far, we have focused on the organization of single cells due to elastic effects

and found that cells interpret strain as variations in effective stiffness. Strain

might be caused by external forces or induced by a boundary as studied in

the previous chapter. Cellular traction forces also cause strain, which acts as

external strain for other cells. This amounts to an elastic interaction between

cells. Elastic interactions provide an appealing alternative to biochemical sig-

nals, since they are long-ranged, propagate quickly, and often provide spatially

anisotropic signals. From this chapter on we will focus on collective effects of

cells. We first derive elastic interaction laws for force dipoles on an elastic

half-space (2D) and in an infinite medium (3D) and study the resulting struc-

ture formation analytically. We then focus on strings of aligned dipoles. Using

methods of complex analysis we present analytical results for the interaction

between two parallel strings and a string and and a stack of dipoles, respec-

tively.

4.1 Elastic Interactions of Force Dipoles

Mechanically active cells adhering to an elastic substrate can interact elas-

tically with each other according to Eq. (2.18). However, although active

mechanosensing might be used by any cell-type in principle, elastic interac-

tions are likely to be limited to adhesion-dependent cells with strong mechan-

ical activity like fibroblasts, such that strain fields become large enough to

be detectable by other cells. To study elastic interactions we need to model

the overall force patterns of cells in addition to the cellular probing pattern.

Even if cells are initially isotropic, they sense anisotropic strain and start to

polarize (this sometimes happens also spontaneously, e.g. in the presence of

certain growth factors). The typical overall force pattern of a bipolarized fi-

broblast is shown in Fig. 4.1. The overall mechanical activity of fibroblasts

resembles an anisotropic force contraction dipole oriented along the long axis of
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60 µm
200 nN

200 nN

Figure 4.1: Typical force pattern of a fibroblast measured with the elastic

substrate method in combination with microstructuring techniques [37]. The

overall force pattern of a (bi)polarized fibroblast reflects an anisotropic con-

traction dipole with P ≈ 10−11J, which corresponds to two opposing forces of

200nN separated by 60µm. In this chapter we model the overall mechanical

activity of cells in the framework of the force dipole concept and study elastic

interactions of contraction dipoles.

the cell. Whereas in the preceding chapters the force dipole concept was used

to model cellular probing during active mechanosensing, we apply the same

concept here to model typical force patterns of cells in order to study elastic

interactions between contraction dipoles. For simplicity we assume that the

dipole strength P ≈ 10−11J is a constant. In analogy to the previous chapters,

we ask: in what way does a cell orient its mechanical activity in order to sense

maximal effective stiffness in its environment due to the traction of other cells?

We will now first derive elastic interaction laws between contraction dipoles

on elastic substrates and in 3D hydrogels by calculating ∆W for arbitrary

configurations of the two dipoles. These interaction laws will play the same

role as interaction potentials for physical defects and might be considered as

effective interaction potentials. By switching the signs of the interaction laws

we obtain the corresponding interaction potentials V t for physical dipoles.
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4.1.1 Dipoles on Elastic Half Space

We first consider cells on top of an elastic substrate. If the thickness of the

substrate is much larger than the elastic displacements on the top surface, it

can be modeled as a semi-infinite elastic space [37]. The Green function for a

force applied to the surface of a semi-infinite space is given by the well known

Boussinesq solution [56]. Since tangential forces are expected to be much larger

than normal forces, i.e. the x and y-components of Pij = Plilj are much larger

than the z-components, the Green function can be restricted to the x-y-plane.
~l denotes the orientation of the dipole. Moreover the normal displacement

component contributes very little to the elastic interaction and we may use

the two-dimensional (2D) Green function, i.e. only the x- and y-components

of the Boussinesq solution:

G2D
ij (~r, ~r′) = a1

{
a2δij +

RiRj

R2

}
1

R
, (4.1)

where ~R = ~r − ~r′ and

a1 =
ν(1 + ν)

πE
=

Λ(Λ + 2)

4πc(1 + Λ)
, a2 =

1− ν

ν
=

2 + Λ

Λ
. (4.2)

It is convenient to define the angles θ, θ′ and α via the scalar products cos θ =
~l · ~R/R, cos θ′ = ~l′ · ~R/R and cos α = ~l · ~l′. Then the effective interaction

potential ∆W PP ′
for cells interacting through elastic media is derived from

Eq.(2.19), which relates inversely to change in effective stiffness encountered

by one cell due to the traction of the other. We find

∆W PP ′
= a1

PP ′

R3
f(θ, θ′, α) (4.3)

with the angular dependence:

f(θ, θ′, α) = 3

(
cos2 θ + cos2 θ′ − 5 cos2 θ cos2 θ′ − 1

3

)
− (1− a2) cos2 α− 3(a2 − 3) cos α cos θ cos θ′. (4.4)

Since the displacements of a force dipole scale ∼ R−2, the strain field scales

∼ R−3 with distance, which leads to the long-ranged elastic interaction

(W PP ′ ∼ R−3) typical for dipolar interactions. The complicated angular de-

pendence in Eq. (4.4) results in a highly anisotropic interaction. Note that for

the planar geometry, there are only two independent angles. Nevertheless we

prefer to write the interaction symmetrically in the primed and unprimed coor-

dinates, since this is favorable for numerical implementations because, instead

of the computationally expensive cosine-functions, one only has to evaluate

the respective scalar products, given above.
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Figure 4.2: Density plots of cellular interactions on an elastic half space given

by ∆W PP ′
from Eq. (4.3) for (a,b) parallel and (c,d) perpendicular orienta-

tions. In (a,c), Poisson ratio ν = 1/2, and in (b,d), ν = 0. One dipole oriented

along the y-axis is fixed at the origin, while the other is moved in space, see

right panels. Black denotes areas of attraction (strain-stiffening) and white ar-

eas of repulsion (strain softening). The interaction potential for defect dipoles

simply differs in sign, thus black and white exchange meaning.

In Fig. 4.2 we show a density plot of the interaction between force dipoles

for ν = 0.5 and ν = 0. Black (white) denotes areas of strain stiffening (soft-

ening), which mediate an attractive (repulsive) interaction between cellular

dipoles. In contrast, for physical dipoles black areas are repulsive and white

areas are attractive. We see that the angular part of the interaction in 2D varies

significantly with Poisson ratio as strain is propagated differently on compress-

ible and incompressible media. For example as shown in Fig. 4.2(a,b), for par-

allel oriented dipoles a side-by-side (or railway-track) configuration is favorable

for cellular dipoles on incompressible, but highly disfavored for dipoles on com-

pressible substrates. Moreover, towards highly compressible media (ν → 0),

the transverse shear mode upon contraction along the y-axis (Poisson effect)

is strongly suppressed, i.e. uxx → 0. Thus, for ν = 0 the interaction vanishes

for two perpendicularly oriented dipoles as shown in Fig. 4.2(d), while the

corresponding dipoles on incompressible substrates strongly interact (c). For
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(c)(b)(a)

Figure 4.3: Different structures arising from elastic interactions of anisotropic

force dipoles on top of an elastic half space. (a) Cellular force dipoles align

in strings, similar to electric dipoles and independent of the value for ν. (b)

Physical force dipoles for Poisson ratio ν ≈ 0 align side-by-side in a railway

track like configuration. (c) Physical force dipoles for Poisson ratio ν ≈ 1/2

locally form a T-configuration. The resulting structure is compact and similar

to the one favored by electric quadrupoles. The crossover between (b) and (c)

occurs at ν = 1/5.

incompressible substrates (ν = 0.5), the Poisson effect results in large compres-

sive strain fields along the x-axis, i.e. uxx < 0, leading to a strongly repulsive

interaction between perpendicularly oriented dipoles. Interestingly, there also

exists an attractive region, which is centered around the xy-direction.

Despite these differences in ∆W PP ′
with ν, we find that the optimal

configuration for cellular dipoles is independent of the Poisson ratio. By min-

imizing ∆W PP ′
we can identify the preferred cell configuration. We find that

∆W PP ′
has a pronounced minimum for aligned dipoles (θ = θ′ = α = 0), inde-

pendent of ν. The contraction of a dipole always causes maximal tensile strain

(and thus maximal strain stiffening) along the axis of contraction uyy < 0, see

Fig. 4.2(a,b). Thus, the optimal state for cells are two aligned dipoles, see

Fig. 4.3(a). At low cell densities, a common pattern for the organization of

elastically interacting cells will therefore be the formation of strings of cells,

similar to the case of electric dipoles [105, 106]. Strings might close into rings

such that each cell is fully activated by its neighbors.

The case of defects with anisotropic dipole moments is described by

the negative of Eq. (4.3). Then the ground state configuration strongly de-

pends on the Poisson ratio ν via the angular dependence of Eq. (4.4). For

highly compressible media, ν → 0 (Λ → 0), dipoles prefer to align side-by-side

in a railway track configuration, see Fig. 4.3(b). For incompressible media,

ν = 1/2 (Λ → ∞), dipoles arrange with perpendicular orientations in a local

T-configuration, see Fig. 4.3(c). This leads to rather compact structure forma-

tion, with a square lattice pattern at intermediate densities and a hexagonal

herringbone pattern at high dipole densities (not shown), similar to the situa-
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tion with electric quadrupoles [48]. For ν = 1/5 (Λ = 2/3), the T-configuration

and the side-by-side configuration have degenerate energies.

Finally, for isotropic physical dipoles the 2D case has been discussed

before [46]. Then

V t = −PδliG
2D
ij,lk′(~r, ~r

′)P ′δkj = −PP ′G2D
ij,ij′(~r, ~r

′) = +PP ′G2D
ij,ij = a1a2

PP ′

R3
,

(4.5)

where we used the fact that G2D
ij is translationally invariant. Thus, for identical

isotropic defects the interaction is isotropic and repulsive, while for cells with

isotropic force patterns the interaction would be isotropic and attractive.

4.1.2 Dipoles in Elastic Full Space

Strain propagation in an elastic three-dimensional (3D) infinite medium is de-

scribed by the Thomson Green function [56], which was introduced in Eq. 3.3.

Due to the structural similarity between the Thompson Green tensor G∞
ij and

the Boussinesq tensor G2D
ij , the interaction law in 3D is very similar to the 2D

case. We find for the effective interaction potential:

∆W PP ′
= a∞1

PP ′

R3
f∞(θ, θ′, α) (4.6)

with the angular function f∞(θ, θ′, α) given by Eq. (4.4) by replacing the con-

stants a1 and a2 with a∞1 and a∞2 , respectively, given in Eq. 3.4. Note that in

3D there are three independent orientational degrees of freedom.

In Fig. 4.4 we show the corresponding density plot of ∆W PP ′
for dipoles

with relative orientations α = 0 and α = π/2 positioned in the x-z-plane for

two different values of the Poisson ratio, ν = 0 and ν = 1/2. In contrast to

2D, the interaction of perpendicularly oriented dipoles diminishes with ν → 0,

but does not vanish in 3D. For parallel dipoles, the interaction profiles look

very similar for 2D and 3D.

We may now explicitly give the formulas for ∆W for two identical

dipoles interacting in the three basic configurations depicted in Fig. 4.3.

(a) For two parallel dipoles in z-direction placed along the z-axis, we find

∆W PP ′
= −2a∞1 P 2(a∞2 + 1)

(
1

z

)3

= −(1 + ν)P 2

2πEz3
= −(Λ + 2)P 2

2πcz3
, (4.7)

which yields the optimal configuration independent of the value for Λ or, equiv-

alently, ν. Thus, like on 2D substrates, cells in 3D favor to align along a com-

mon axis. Again this behaviour is similar to the one of electric dipoles [106].

(b) For two parallel dipoles in z-direction placed along the x-axis (side-by-side

configuration), we find

∆W PP ′
= a∞1 P 2(a∞2 − 2)

(
1

x

)3

=
(1 + ν)(1− 4ν)P 2

8πE(1− ν)x3
=

(Λ− 1)P 2

8πcx3
. (4.8)
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Figure 4.4: Density plots of cellular interactions in infinite space as specified by

∆W PP ′
from Eq. (4.6) for (a,b) parallel and (c,d) perpendicular orientations.

In (a,c), Poisson ratio ν = 1/2, and in (b,d), ν = 0. One dipole oriented

along the z-axis is fixed at the origin, while the other is moved in space. Black

denotes areas of attraction (repulsion) and white areas of repulsion (attraction)

for cellular (physical) dipoles. (a,b) Independent of the value for ν, two cells

prefer alignment (black region along z-axis). The interaction in the side-by-

side configuration (along x-axis) changes sign at ν = 1/4, when the black cone

vanishes. (c,d) The T-configuration is the ground state for physical dipoles in

3D independent of the value for ν (white regions along z- and x-axes).

Thus ∆W PP ′
changes sign as Λ varies through 1 or ν = 1/4, respectively.

(c) Finally, in the T-configuration, where the first dipole is fixed in z-direction

at the origin and the second dipole is positioned in the x-y-plane oriented

perpendicular to the z-axis, we find:

∆W PP ′
= 2a∞1 P 2

(
1

r

)3

=
(1 + ν)P 2

4πE(1− ν)r3
=

(Λ + 1)P 2

4πcr3
, (4.9)

where r =
√

x2 + y2. In this case ∆W PP ′
is always positive and yields a

globally maximal ∆W PP ′
. Therefore it corresponds to a globally minimal

V t = −∆W PP ′
and the T-configuration is the ground state of two physical

anisotropic contraction dipoles, independent of the value for ν. The aggre-

gation of physical dipoles in 3D is more complicated than in 2D, since the
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Figure 4.5: Elastic interaction of cells: cells interact elastically to form strings

because in nose-to-tail alignment the mechanical activity of one cell triggers

the one of the other cell, thereby forming a positive feedback loop for cell

alignment.

T-configuration cannot be continued in 3D without causing frustration. This

leads to the existence of many metastable states. Finally, we would like to

mention that the elastic interaction of two isotropic dipoles in 3D vanishes,

since G∞
ij,ij = 0 [57].

4.1.3 Discussion: A Biomechanical Feedback Loop

We have applied the force dipole concept to cells to derive effective interaction

potentials for cells on elastic substrates (2D) and in hydrogels (3D). We find

that independent of the Poisson ratio and dimension, elastic interaction be-

tween cells favor alignment. This might be intuitively clear, since a contractile

cell causes a local compression of the substrate underneath the cell along the

contraction axis and tensile strain at more distant points. Hence at distant

points maximal strain-stiffening occurs along the axis of contraction. A second

cell will therefore upregulate its mechanical activity along the same direction.

This scenario constitutes a positive mechanical feedback loop for cell align-

ment, since in the aligned configuration the mechanical activity of one cell

upregulates the activity of the other and vice versa as depicted in Fig. 4.5.

Thus, at low cell densities we expect cells to preferentially form strings and

rings, similar to electric dipoles [106]. In fact in Ref. [107] the formation of

short strings was recently observed for fibroblasts in a collagen gel.

We have also studied the interaction of physical force dipoles, which

are related to the cellular case by switch of sign in the interaction potential,

i.e. V = −W . In contrast to the cellular case, the ground state for physical

dipoles depends on dimension and Poisson ratio. In Fig. 4.6 we summarize
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ν = 0.5ν = 0 ν = 0.5ν = 0

Figure 4.6: Optimal configuration for cellular dipoles (top) and physical dipoles

(bottom) for interactions in 2D and 3D and as a function of Poisson ratio. Cells

always prefer to align. In 3D physical dipoles always prefer the T-configuration,

while in 2D at small Poisson ratio the ground state is the rail-way track con-

figuration.

our results for the optimal states. From the structural similarity between 2D

and 3D Green function, one may expect that strain propagation in 2D and 3D

occurs rather similarly. Indeed at ν = 0.5 the Green functions in 2D and 3D are

identical up to a constant prefactor. However, there are also some important

differences. In general, we find that in 3D strain propagation is less effected by

variations of the Poisson ratio and the optimal structures for both cellular and

physical particles are conserved. For the elastic half space the situation is more

interesting. In particular the transverse shear mode is strongly suppressed on

highly compressible substrates, such that perpendicularly oriented dipoles do

not interact. Therefore, the ground state for physical dipoles changes from the

T- to the side-by-side configuration. Another important difference between 2D

and 3D is that the elastic interaction of isotropic dipoles vanishes in 3D [57],

but not in 2D [46]. Therefore, the interaction of isotropic dipoles in 3D is

completely determined by boundary-induced interactions, like for hydrogen in

metal samples of finite size [45].

4.2 Strings of Dipoles

At low dipole density the angular dependence of the (cellular) elastic dipole–

dipole interaction favors the formation of strings of aligned dipoles both on

elastic substrates and in hydrogels. Therefore, in this section we will focus on

the collective behaviour of strings and derive analytic results for interactions

with strings using methods of complex analysis.
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4.2.1 Single String

To calculate the effective interaction potential ∆W for N dipoles in a string,

we can apply the superposition principle, since the medium is assumed to be

linear. Thus, ∆W is given by the sum over all pairwise interactions between

dipoles:

∆W =
1

2

N∑
α=1

N∑
β 6=α

∆wαβ, (4.10)

where the factor 1
2

is required to avoid double counting. In a finite string

composed of N identical dipoles with a uniform distance a between adjacent

dipoles as shown in Fig. 4.7, there are N − 1 interactions between dipoles

separated by the distance a, N − 2 interactions between dipoles separated by

2a, etc. Thus, ∆W reads:

∆W = −2a1(a2 + 1)
P 2

a3

(
N − 1

13
+

N − 2

23
+ ... +

1

(N − 1)3

)
, (4.11)

where a1 and a2 are the coefficients of the respective Green function in 2D

and 3D given by Eq.(4.2,3.4). We can split Eq.(4.11) into two sums ∼ N
i3

and

∼ −1
i2

. We then extend the string to an infinite length and finally subtract the

finite remainder due to the finite length of the chain:

∆W =
−2a1(a2 + 1)P 2

a3

(
N

∞∑
i=1

1

i3
−

∞∑
i=1

1

i2
+

∞∑
i=N−2

i− 1

i3

)
(4.12)

The limits of the first two sums are well known and can be expressed in terms

of the Riemann Zeta-function ζ(z). The last sum can be expressed in terms of

the Γ–function Γ(z) =
∫∞

0
tz−1e−tdt. One finds:

∆W =
−2a1(a2 + 1)P 2

a3

(
Nζ(3)− ζ(2) + Ψ(1)(N − 2) +

1

2
Ψ(2)(N − 2)

)
,

(4.13)

where ζ(3) ≈ 1.29296 and ζ(2) = π2/6 ≈ 1.6449, respectively and Ψ(n)(z) is

the (n + 1)-th logarithmic derivative of the Γ–function.

The first two summands in Eq.(4.13) have a simple meaning: for an

infinite string, the first term ∆w = −2a1(a2 + 1)P 2/a3ζ(3) relates to the

change in effective stiffness experienced by one dipole in an infinite string due

to the presence of all the other dipoles. The second term ∆w = −2a1(a2 +

1)P 2/a3ζ(2) relates to the loss in effective stiffness when an infinite string is

broken into two strings and thus, yields the penalty of creating a ”free” chain

end. Very similar considerations also apply to the case of electric dipoles,

which also show a strong tendency to align in dipolar strings [106,108].
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Figure 4.7: We study the elastic interactions of a single dipole and an infinite

string composed of identical dipoles with dipolar spacing a. The position of the

second dipole with respect to the string is determined by its horizontal distance

x to the string origin and its vertical off-set y. We consider both parallel (a)

and perpendicular (b) orientation of the dipole with respect to the string. Note

that the elastic interaction per dipole ∆w of two infinite strings or a string and

a stack (c,d) of identical dipolar spacing is the same as the interaction of a

single dipole oriented in parallel (perpendicularly) to an existing string (a,b).

4.2.2 Interactions with Strings

We now focus on the interaction of a single dipole with an infinite string of

identical dipoles with their dipole moment aligned along the vertical axis of the

string as shown in Fig. 4.7. We consider explicitly a parallel and perpendicular

orientation of the second dipole with respect to the string (a,b). The distance

of the dipole to the string is denoted by x and its off-set to the adjacent dipole

by y while the separation between dipoles within the string is denoted by a.

Using the same notation, we can also study the interaction between two infinite

strings or an infinite string with an infinite stack as shown in Fig. 4.7(c,d). In

fact, the interaction between two strings or string and stack of identical dipolar

spacing yields the same results per dipole as for the respective case of a single

dipole shown in Fig. 4.7(a,b).

Interactions of Two Strings

The change in ∆w|| encountered by a single cell oriented in parallel to an

infinite string of cells at the position (x, y) away from the stack’s origin is

given by the sum of all pairwise interactions of the dipole with the string.

We assume that all dipoles are oriented along the y-axis. Then, the pairwise

interactions of the dipole with each dipole in the string can be expressed in
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cartesian coordinates using the Green function representation of the interaction

of two dipoles with parallel orientations, i.e. we write the interaction between

two parallel dipoles in terms of w = Pyyuyy = −P 2∂2
yGyy. Hence:

∆w|| = −a1P
2 ∂2

∂y2

+∞∑
n=−∞

(
a2

(x2 + (na− y)2)
1
2

+
(na− y)2

(x2 + (na− y)2)
3
2

)
, (4.14)

where a1 and a2 are the coefficients of the respective elastic Green function in

2D and 3D given in Eq.(4.2) and Eq.(3.4), respectively. Eq.(4.14) describes also

the string–string interaction (per dipole) of two parallel infinite strings sepa-

rated by a distance x with an mutual off-set y. The first term in Eq.(4.14) de-

scribes the corresponding interaction of electric dipoles, where a1a2 → 1/(8πε0)

and P → µ is the electric dipole moment [108]. For the special case of highly

compressible substrates with vanishing Poisson ratio ν = 0 in 2D, the second

term vanishes for elastic dipoles. However, in all other cases, in particular for

the 3D situation for any ν, the second term is present and moreover dominates

the asymptotic interaction far away from the string.

For electric dipoles, Phil Allen very recently revisited the interaction of

parallel strings using methods of complex analysis [108,109], and we will apply

a similar approach for the case of elastic dipoles. In order to evaluate the sums

in Eq. (4.14), we can make use of the Poisson sum rule [108]:

g(x, y) =
∞∑

n=−∞

f(in) =
1

2i

∮
C

f(z) coth πz, (4.15)

where the contour C surrounds the imaginary axis in the complex plane. The

Poisson sum rule is a special case of the residue theorem: the coth πz has

simple poles at z = in and the residue can be evaluated with the help of the

rule of l’Hospital:

lim
z→in

(z − in)f(z)
cosh πz

sinh πz
=

f(in)

π
. (4.16)

Hence, if f(z) has no singularities inside C the residue theorem yields

Eq.(4.15). For the sums of Eq.(4.14) it is convenient to scale all distances

with respect to a and to evaluate them separately with the help of the Poisson

sum formula, i.e.:

f1(z) =
a2√

(x/a)2 − (z − iy/a)2
(4.17)

f2(z) = − (z − iy/a)2

((x/a)2 − (z − iy/a)2)
3
2

. (4.18)
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Figure 4.8: We evaluate the sum in ∆w|| with help of the Poisson sum rule

and turn the sum into an integral in the complex plane. The path C surrounds

the simple poles of the coth πz. To calculate the integral we replace C by the

keyhole-contour Γ. Since the integrands in g1 and g2 have to branch-points at

u0± x, we introduce two branch-cuts. The keyholes surround the two branch-

cuts.

Substituting u = z − iy/a, the sums are given by the integrals:

g1(x, y) =
a2

2i

∮
C

du
coth π(u + iy/a)√

(x/a)2 − u2
(4.19)

g2(x, y) = − 1

2i

∮
C

u2 coth π(u + iy/a)

((x/a)2 − u2)
3
2

. (4.20)

Since both integrands have branch-points at u0 = ±x, we bend the contour

C of the g-integrals around the branch-cuts shown in Fig. 4.8 and integrate

along the new “keyhole-path” Γ.

We now apply basic symmetry arguments to simplify the above inte-

grals. Let us first split the coth-term in g1 and g2 in its real and imaginary

part:

coth π(u + iy) =
sinh 2πu

cosh 2πu− cos 2πy
+ i

cosh 2πu

cosh 2πu− cos 2πy
. (4.21)

For the imaginary part of Eq.(4.21), both integrands in Eq.(4.19,4.20) be-

have symmetric under the inversion transformation u → −u and hence their

contributions cancel piecewise along Γ. In contrast, for the real part both

integrands behave asymmetric and their contributions add up, i.e. for both

integrals in Eq.(4.19,4.20) we are left with the integration over the real part of

the coth-term. For integration along the square contour we can furthermore

use a reflection symmetry with respect to the imaginary axis: let u = p + iq

and consider a reflection at the imaginary axis, i.e. p → −p, q → q, then
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Re(gi) → −Re(gi) while Im(gi) → −Im(g?
i ) = Im(gi). Hence, the contribu-

tions of the integrals along the square contour cancel piecewise. In conclusion,

we are left with an integration over the real part of the coth-term along one

keyhole contour formed by Γ1 − Γρ − Γ2. Since
√

(x/a)2 − u2 changes sign

across the branch-cut, the integrals along Γ1,2 add up and we finally find for

the dimensionless interaction of a parallel dipole (and string of parallel dipoles

respectively) with an infinite stack:

∆w||

P 2/a3
=

∂2

∂(y/a)2

∫ ∞

x/a

du
−2a1a2 sinh 2πu√

u2 − (x/a)2(cosh 2πu− cos 2πy/a)
(4.22)

− ∂2

∂(y/a)2

(
2

∫ ∞

x
a
+ρ

du +

∫
Γρ

du

)
a1u

2 sinh 2πu(
u2 −

(
x
a

)2) 3
2
(cosh 2πu− cos 2πy/a)

.

We note that for the first summand in Eq. (4.22) the integral along the cir-

cular Γρ-contour vanishes in the limit ρ → 0, while it diverges for the second

summand. However, here it exactly cancels the divergence picked up for small

ρ in the integrals along Γ1,2.

From the exact representation of ∆w|| in Eq. (4.22), we can extract the

asymptotic behavior for large distances x. We first differentiate the integrands

with respect to y, then expand the integrands for leading terms in exp(2πnx)

and (x/a)−m+ 1
2 and finally solve the asymptotic integrals analytically. We find:

∆w|| ≈ 8a1π
2P 2

a3
cos

(
2πy

a

)
e−

2πx
a

(
−2π

√
x

a
+ (a2 + 1)

(x

a

)− 1
2

+ O
(x

a

)− 3
2

)
.(4.23)

The leading term in the interaction is therefore ∆w|| ∼
√

xe−2πx unless ν = 0

in 2D where ∆w|| ∼ e−2πx/
√

x as for electric dipoles [108]. The asymptotic

interaction of parallel elastic strings with zero-offset y = 0 is therefore always

attractive both in 2D and 3D with one exception, namely for ν = 0 in 2D,

when the asymptotic interaction is repulsive. In Fig. 4.9(b,d) we compare

the asymptotic expansion of |∆w| given by Eq. (4.23) with the corresponding

results of the direct numerical evaluation of the sum given in Eq. (4.14) using a

logarithmic plot. We show results for different values of the Poisson ratio ν and

for 2D and 3D situations. Depending on ν, the asymptotic and exact solution

agree already at x/a = 1 within ±2 − 10%, while at x/a = 2 the agreement

is better than 1%. Therefore, the interaction between strings of dipoles is

effectively short-ranged and falls-off exponentially with a length scale λ = a/2π

set by the dipolar spacing a within the string. The transverse interaction

with the string is hence only determined by the geometry of the string and

independent of any special material properties of the elastic medium.

For distances comparable to and smaller than a the asymptotic expan-

sion breaks down and in Fig. 4.9(a,c) we plot ∆w|| for x ≤ a and y = 0 for 2D



4.2. STRINGS OF DIPOLES 65

0.2 0.4 0.6 0.8 1

-3

-2

-1

1

2

3

1 1.4 1.8 2.2
0.00001

0.0001

0.001

0.01

0.1

0.00001

0.0001

0.001

0.01

0.1

0.2 0.4 0.6 0.8 1

-3

-2

-1

1

2

3

x/a

x/a

x/a

x/a
1 1.4 1.8 2.2

w E a3

P 2

w E a3

P 2

w  E a3

P 2

w  E a3

P 2

2D
(a) (b)

(c) (d)

3D

Figure 4.9: Elastic interaction between parallel strings with zero vertical off-

set y = 0 as a function of separation between strings x/a, measured in units

of the dipolar spacing a. Results shown for 2D (a,b) and 3D (c,d), respec-

tively. The left row (a,c) shows a linear plot of w|| close to the string for

ν = 0, 0.2, 0.3, 0.4, 0.5 from top to down evaluated numerically from Eq. (4.14).

For small x � a, the interaction is dominated by the dipole-dipole interaction

of laterally adjacent dipoles. (b,d) The interaction between strings is effec-

tively short-ranged and falls off exponentially with λ = a
2π

for x ≥ a. Right

row shows the corresponding results to (a,c) for |∆w||| for x ≥ a using a log-

arithmic plot. Lines show the first two terms of the asymptotic expansion in

Eq. (4.23) and dots the exact numerical evaluation of Eq. (4.14). ν = 0.4 was

omitted for better visibility.
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Figure 4.10: The string–string interaction ∆w|| oscillates as a function the

vertical off-set y. Strings are separated horizontally by x/a = 2. Lines

show the asymptotic result Eq. (4.23) for 2D (left) and 3D (right) for ν =

0, 0.1, 0.2, 0.3, 0.4, 0.5 from top to down and dots the exact numerical results

Eq. (4.14). Note that ∆w|| is phase-shifted for ν = 0 in 2D.

and 3D, respectively. In this regime the distance law gradually crosses over

from the exponential to the dipolar r−3-powerlaw and the interaction depends

strongly on the material properties. Figs. 4.9(a,c) reveal an interesting depen-

dence of the interaction on the Poisson ratio. While for large x the interaction

of y = 0-strings is always attractive (except for ν = 0 in 2D), the interac-

tion changes sign and becomes repulsive for small x in compressible media.

For distances x closer than the dipolar spacing a within the string, ∆w|| gets

increasingly dominated by the interaction of adjacent dipoles in neighboring

strings. For example, for strings with zero off-set, dipoles are arranged in

the local side-by-side configuration. Recall that for two dipoles in the side-

by-side configuration the interaction changes with the Poisson ratio and is

attractive for incompressible, but repulsive for highly compressible media, see

Fig. 4.2(a,b) and Fig. 4.4(a,b), respectively. This explains why closely spaced

strings with zero-offset are favored for incompressible media, but are disfavored

for highly compressible media. The situation is reversed for strings with maxi-

mal off-set y = 0.5 which attract (repel) each other in (in)compressible media,

again consistent with the respective behavior of the two body interaction of

adjacent dipoles shown in Fig. 4.2(a,b) and Fig. 4.4(a,b).

Due to translational invariance by (0, a) along the axis of an infinite

string, the interaction ∆w|| of a dipole with a string must be a periodic function

of y/a, i.e. ∆w|| ∼ Re[
∑

m am exp(2πimy/a)]. Our calculations show that the

interaction is strictly oscillatory with the offset y and the period a with zero

constant offset, i.e. a0 = 0, and is asymptotically approximated by a simple

cosine for large vertical distances x between strings. The oscillations in ∆w||
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with the off-set y are plotted in Fig. 4.10 for x/a = 2, where the dots represent

the exact (numerical) results and the lines the asymptotic formula. Note, the

π-phase-shift for ν = 0 in 2D. A phase shift also occurs for small x < a in

2D and 3D at small ν (data not shown) when the asymptotic approximation

breaks down and the interaction becomes strongly dependent on the material

properties as discussed above.

Interactions of Strings and Stacks

We now consider the interaction of a dipole oriented perpendicularly with re-

spect to an infinite string of aligned dipoles as shown in Fig. 4.7(b,d). ∆w⊥

is again given by the sum of all pairwise interactions between perpendicularly

oriented dipoles, which in cartesian coordinates is given by w = Pxxuxx =

−Pxx∂x∂yGxyPyy, i.e.

∆w⊥(x, y) = −a1P
2 ∂2

∂x∂y

∞∑
n=−∞

x(na− y)

(x2 + (na− y)2)
3
2

. (4.24)

For the given string geometry, where the distance between dipoles is given by

rn =
√

x2 + (y − na)2, one can show that Eq. (4.24) yields the same result as:

∆w⊥(x, y) = a1P
2 ∂2

∂x2

∞∑
n=−∞

x2

(x2 + (na− y)2)
3
2

(4.25)

= a1P
2(2 + 4x

∂

∂x
+ x2 ∂2

∂x2
)

∞∑
n=−∞

1

(x2 + (n− y)2)
3
2

,

which is more convenient to evaluate analytically. In order to extract the

asymptotic behavior of ∆w⊥ for large x, we determine the asymptotics of the

sum in Eq. (4.26) using the methods of the previous subsection. We find for

the leading terms:

∞∑
n=−∞

1

((x
a
)2 + (n− y

a
)2)

3
2

≈ 2a2

x2
+ 4π cos (2πy/a)

e2πx/a

(x/a)
3
2

(4.26)

and hence

∆w⊥ ≈ 8a1π
2P 2

a3
cos

(
2πy

a

)
e−

2πx
a

(
2π

√
x

a
+ O

(
(x/a)−

1
2

))
. (4.27)

The asymptotic behavior for large x is set by
√

x/ae−
2πx

a , independent of ν. In

Fig. 4.11 the exact numerical results (dots) obtained from Eq.(4.24) are com-

pared with the asymptotic results (line) from Eq. (4.27) for interactions of a

string and a stack with zero off-set y = 0. We find very nice agreement already

for x ≈ a. As for parallel dipoles, the interaction with the string is effectively
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Figure 4.11: ∆w⊥ for a dipole oriented perpendicularly to an infinite string

with zero vertical off-set as a function of the horizontal distance x measured in

units of a. Dots show the exact, numerical results and the line the asymptotic

analytic results evaluated according to Eq. (4.24) and Eq. (4.27), respectively.

The inset shows ∆w⊥ for y/a = 0 (line) and y/a = 0.5 (dashed) for x/a < 1.

screened in the transverse direction and decays exponentially with the same

length scale set by λ = a/2π. ∆w⊥ asymptotically also shows the same oscil-

latory behavior as for parallel strings, but with a π-phase-shift. We find that

the interaction of strings with stacks with zero vertical off-set (”T-strings”) is

asymptotically repulsive, whereas the interaction is asymptotically attractive

for strings and stacks with maximal off-set y = 0.5a. In fact, Eq.(4.27) and

Eq.(4.23) are identical up to the a2(
x
a
)−

1
2 -term (and the sign).

For x < a the asymptotic expansion breaks down and in the inset of

Fig. 4.11 we show exact numerical results obtained from Eq. (4.24) for T-strings

(y = 0) and strings and stacks with maximal off-set y = 0.5a, respectively. The

formation of T-strings is always disfavored, which might be expected consider-

ing the repulsive interaction of locally adjacent dipoles in the T-configuration,

which was the ground state for physical dipoles, and thus a highly disfavored

local configuration for cellular dipoles (see Fig. 4.2, Fig. 4.4). However, strings

and stacks with an offset of y/a = 0.5 attract each other for x/a > 0.4 (see

inset in Fig. 4.11). This might be understood taking into account that there

exist attractive cones in the dipole-dipole interaction of perpendicular dipoles

favoring an offset between perpendicularly oriented dipoles (Fig. 4.4, Fig. 4.2).

For x → 0, the string and the stack merge to yield a single string with dipoles

spaced by 0.5a and alternating orientations. In this case, adjacent dipoles are

again arranged in a local T-configuration, which explains why the interaction
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changes sign and becomes repulsive for small x.

In contrast to the interaction of parallel dipoles, the qualitative behav-

ior of w⊥ does not change as ν is varied. However, the interaction varies

quantitatively via the a1-scaling and in general increases with increasing ν. As

discussed earlier, a special situation occurs for perpendicularly oriented dipoles

on top of an elastic substrate (2D), where the coupling of shear and compres-

sion mode is strongly suppressed towards small ν, i.e. a1 → 0. As a result,

there is no interaction of the string with perpendicularly oriented dipoles (see

Fig. 4.2(d)), but only with dipoles oriented in parallel to the string (via the

a2-term which survives).

4.2.3 Discussion

Although the interaction between isolated dipoles is in principle long-ranged

and falls-off with the typical dipolar power-law ∼ r−3, the transverse inter-

action of a dipole oriented in parallel and perpendicular, respectively, with

respect to an infinite string is effectively short-ranged. In the direction per-

pendicular to the string axis the strain fields of the string screen each other

and elastic effects decay exponentially over the length-scale λ = a/2π set by

the dipolar spacing within the string. This results in an effective short-ranged

interaction of a single dipole with a string and between two parallel strings

respectively. We also find that the interaction is oscillatory with the off-set

along the direction of the string, which follows directly from the translational

invariance along the string axis. Dipoles oriented perpendicular with respect

to the string always prefer to have maximal off-set, while dipoles oriented in

parallel asymptotically prefer to arrange with zero off-set (except for ν = 0 in

2D, where it is reversed).

Our calculations show that the typical length-scale λ is independent

of the material properties, but depends only on the string geometry via the

dipolar spacing a within the string. Although the exponential interaction law

might be reminiscent of a Yukawa potential as obtained for the screening of a

point charge by mobile carriers in electrostatics, the exponential decay in this

case is a pure result of the geometry of the considered defect configuration.

Electrostatic screening implies the attenuation of an external field due to a

redistribution of mobile ”charges” (defects) in the medium. Since screening is

a result of microscopic processes inside the material, the strength of shielding

depends on the material properties, in particular for electrostatic screening it

reflects the polarizibility of the medium [96]. In contrast, here we considered

a fixed configuration of dipoles, which did not induce any rearrangement of

elastic defects (nor did it induce any new ones). While the propagation of

strain fields generated by a single dipole depends on the elastic length scales set

by (P/E)
1
3 , the new distance law is a result of a specific superposition of many
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fields and only determined by the geometry of the given defect arrangement.

To illustrate this point, let us decrease the distance a between dipoles within

the string. Then the strain fields caused by dipoles along the string effectively

cancel each other and the resulting overall strain tends rapidly to zero. From

this perspective it might be hardly surprising to find that the interaction of

two stacks of dipoles with perpendicular orientation with respect to the stack’s

axis, i.e. Pij = Pδixδjx is long-ranged because now the strain fields uxx along

the dipole axis do not cancel, but rather add up. However, in the transverse

direction, i.e. for uyy, uzz, the fields still interfere destructively.

The short-ranged interaction between strings seems to be a rather gen-

eral result of the interaction of dipolar strings and is largely independent

of the exact interaction mechanism. For example, by switching the sign of

∆w we obtain the interaction potential of physical force dipoles, which there-

fore is also short ranged. Secondly, the electrostatic interaction of parallel

strings of electric dipoles exhibits a very similar behavior to strings of elastic

dipoles [108–110]. Thirdly, we expect a similar effect also for the interaction of

strings of hydrodynamic force dipoles embedded in a fluid interacting hydro-

dynamically with each other because elastic and hydrodynamic Green function

are structurally very similar [111].

Although the overall distance dependence of the interaction with a string

of dipoles is independent of the material properties, but only dependent on

geometry, the details of the interaction, in particular whether it is a repul-

sive or attractive interaction, certainly depend on the properties of the elastic

medium. This is particularly true for small distances between strings with

respect to the dipolar spacing within the string. Here the asymptotic expan-

sion of ∆w breaks down and the interaction gets increasingly dominated by

the interaction between adjacent dipoles in the neighboring strings/stacks. In

particular the Poisson ratio effects the way how strain is propagated in the

medium. For example, for two strings the interaction may change sign close

to the string when the substrate is highly compressible. Another important

observation is that on elastic substrates the 2D-interaction of dipoles with per-

pendicular orientation decreases to zero with decreasing Poisson ratio because

the transverse shear mode is strongly suppressed with vanishing ν.

The fast decay of ∆w with distance to the string x provides a strong hint

why dipoles in our model prefer to form 1-dimensional strings at low dipole

density. Along the string axis the interaction is strongly attractive while the

interaction in the perpendicular direction is effectively short-ranged. Thus,

a single cell hardly feels the presence of a string already at distances of the

same order of magnitude than the dipolar spacing a within the string. In the

next chapter we will show that much insight into basic structure formation of

elastically interacting active cells can be gained from our knowledge about the

interaction between dipolar strings.



Chapter 5

Structures on Elastic Substrates

For pattern formation in biology there typically exists an intimate relation-

ship between structure and function, which is particularly true for biological

tissues. Nature evolved many ways to guide cell organization in tissues: via

chemotaxis or haptotaxis, via physical contact or via mechanics by either re-

structuring the overall composition of matrix (contact guidance) or via the

elasticity of medium. Here we focus on structure formation of cells on elastic

substrates due to elastic interactions. We aim to identify the relevant param-

eters governing pattern formation due to elastic effects, which may allow one

to rationally engineer cellular force patterns and cell assemblies with defined

properties in the future. We first study how force dipoles positioned on a reg-

ular lattice arrange their orientations in order to maximize effective stiffness.

By using our results for dipolar strings from the previous chapter, we present a

semi-analytical method to calculate the overall (effective) interaction potential

for lattice structures for both physical and cellular dipoles. We identify opti-

mal patterns as a function of lattice geometry and Poisson ratio ν. We then

use Monte Carlo simulations to investigate the influence of stochasticity and

positional disorder on typical cellular structures formed on elastic substrates.

5.1 Structures on Micropatterned Substrates

The prediction of cellular patterns in an in vivo situation is rather compli-

cated since several organizing principles could apply simultaneously and be of

equal importance. Moreover, different organizing principles might yield similar

structures, which obscures a direct comparison of theoretical predictions and

experiment. In vitro experiments often allow for a better control of environ-

mental stimuli and thus greatly simplify matters.

In order to study elastic interactions of cells, experiments using elastic

substrates seem to be ideal because the effects of competing interactions are

reduced and structures are easy to observe under a microscope. Moreover, a



72 CHAPTER 5. STRUCTURES ON ELASTIC SUBSTRATES

combination of the elastic substrate method with new techniques like microcon-

tact printing provide additional opportunities to design controlled experiments.

Pioneered by Whitesides and Ingber, microcontact printing has been mainly

used in the past to study the effect of cell geometry on cell organization by

culturing cells on small adhesive islands on a non-adhesive substrate [112–114].

Recently microcontact printing was combined with elastic substrates to mea-

sure the dependence of traction force distribution on cell geometry [114]. In

order to study structure formation of cellular force patterns, one could create

regular lattices of adhesive islands on a non-adhesive elastic substrate and in

this way gain control over cell positioning. This reduces the number of cellular

degrees of freedoms and allows to selectively focus on cell orientation.

What kind of patterns would one expect to see if elastic interactions

were the dominant driving mechanism for ordering ? How can one control these

patterns ? We address these questions in the following by studying structure

formation on elastic substrates for force dipoles positioned on a square and

hexagonal lattice, respectively.

5.1.1 Optimal Lattice Structures

Basic Considerations: The String–Stack Decomposition

In order to characterize different structures, we apply the organization principle

of stiffness preference by calculating:

wtot =
1

2N

Nx,Ny∑
i,j 6=i

∆wij, (5.1)

where ∆wij specifies the interaction between dipole i and j and wtot is the

elastic interaction normalized with respect to the total number of particles in

the lattice N = NxNy. Eq.(5.1) can again be considered as an effective total

interaction potential for elastically interacting cells. By flipping the sign of

Eq.(5.1) one obtains the total potential energy (per dipole) vt of a given defect

assembly. In analogy to the defect case, the optimal state for cells (i.e. the

analog to the ground state) is the structure which minimizes wtot, i.e. the

pattern in which dipoles are arranged in such a way that each cell senses the

maximal effective stiffness in its environment due to the traction of all the

other cells.

To calculate wtot for an infinite lattice of dipoles, one first has to check

the convergence properties of the sums in Eq.(5.1). The ∆wij ∼ 1
r3 power-law

provides a sufficiently fast decay that the sums in Eq.(5.1) converge absolutely

for a 2D lattice. For interactions of dipoles on 3D lattices, the situation is

more complicated and the sum converges at best conditionally, which means

that in principle the result of Eq.(5.1) depends on the summing scheme.
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The absolute convergence of the sums in Eq.(5.1) for 2D lattices implies

that one can choose any summing procedure because the result is independent

on the ordering of summands. In the following we introduce a summing scheme,

which decomposes the structure of interest into (sub)lattices of parallel strings.

For example, for a lattice with lattice constant b, composed of identical dipoles

all oriented along a common director ~n, one could decompose the structure into

parallel ~n-strings and first sum the interactions within a string Ni → ∞ and

then add all string–string interactions Nj →∞. Thus, using the results from

Section (4.2), wtot can be decomposed into:

wtot = −2a1ζ(3)(a2 + 1)
P 2

a3
+

1

2

∑
j

∆w||(xj, yj). (5.2)

a is the dipolar spacing along the ~n-string. The first term describes the inter-

actions with dipoles along an infinite string, which was calculated in Eq.(4.13).

∆w
||
j is the interaction with the j-th parallel ~n-string running at a horizontal

distance xj with a vertical offset yj. Note that the string–string interaction

scales with the dipolar spacing a within the string, which in general does not

coincide with the lattice constant b, i.e. a = f(b). As shown in Section 4.2,

the interaction ∆w|| between strings is screened exponentially with horizontal

distance between the strings. Thus, the sum over Nj → ∞ converges very

quickly. Note, if xj ≤ a, i.e. if the distance between adjacent strings is smaller

than the dipolar spacing a, the analytic approximation for ∆w|| derived in

Eq.(4.23) does not hold and one has to evaluate Eq.(4.14) numerically instead.

For lattice structures with dipoles of different orientations (~nA 6= ~nB)

it is often possible to formally decompose the structure into an A-sublattice

of interacting ~nA-strings and a B-sublattice of interacting ~nB-strings. One

could consider the interactions in each sublattice separately and finally add

the interaction between the two sublattices. Suppose A and B-strings have

perpendicular orientations, then the interaction between a string of A-dipoles

and a parallel stack of B-dipoles is also short-ranged as shown in Section 4.2.

Thus, the interactions of A and B-sublattice converge rapidly. Hence:

wtot =
1

2
(wA + wB + w⊥

AB), (5.3)

where wA and wB are the respective effective potentials for the A and B-

sublattice and w⊥AB is the contribution of the string-stack interaction between

the A and B sublattice.

The decomposition of lattice structures into strings has recently been

introduced by Phil Allen to compute the electrostatic energies of 3D string-

like lattice structures of electric dipoles [108]. Here, we transfer this method to

the case of elastic dipoles and extend it to a string-stack decomposition. This

allows to calculate and compare the interaction potentials for a much larger
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class of lattice structures. Since the exponential screening of string-string

interactions seems to apply quite generally to dipolar interactions (e.g. electric,

elastic, hydrodynamic dipoles), we expect that this method will be useful for a

broad class of problems involving structure formation. While here we restrict

ourselves to 2D lattice structures, the method might also apply for 3D lattice

structures, where the sums in Eq.(5.1) are only conditionally convergent. In

Ref. [108], Allen showed that the result for the electrostatic energies of various

string-like 3D lattice structures composed of electric dipoles calculated using

the string-decomposition agrees with the well known Clausius-Masotti result.

Thus, the string-decomposition method could represent a simple alternative

to Ewald sums [115–117] or fast multipole expansions [118, 119], which are

conventionally used for similar problems in electrostatics [115,116] or elasticity

theory [117–119]. Finally, Eqs.(5.2,5.3) imply that string-like structures are

dominated by the interactions along the string and the interaction between the

next neighbor strings or stacks, respectively. Thus, one could try to understand

basic structure formation on 2D lattices from the interactions between strings

and stacks, respectively, as discussed in Section 4.2.

Optimal Structures for Square and Hexagonal Lattices

We now consider a square lattice and a hexagonal lattice of identical dipoles

on top of an elastic substrate. Using the string decomposition introduced

above, we will calculate wtot as a function of the material properties for several

structures of interest.

In order to identify good candidates for the optimal structure, we

first apply a Monte Carlo annealing technique. We initialized about N ≈
1000 dipoles with random orientations on a lattice with periodic bound-

ary conditions. Dipole orientations were then changed at random. Ac-

cording to the Metropolis scheme, a new configuration was always accepted

when wtot decreased and otherwise accepted with the Boltzmann weight

p ∝ exp(−∆wtot/kBT ), where T represents an effective temperature. In order

work at the same area density ρ of dipoles, the lattice constants bs and bh

of square and hexagonal lattice, respectively are related by bh =
√

2√
3
bs. It

is convenient to introduce a reduced temperature T ? = TπEb3

P 2 . In order to

minimize wtot numerically, slowly decrease T ? from T ? = 5 to T ? = 0.001,

using about 30 consecutive annealing steps, where in each step the system was

allowed to equilibrate.

Typical structures for the square and hexagonal lattice obtained by

Monte Carlo annealing are shown schematically in Fig. 5.1. One could broadly

classify them into string-like (a,b) and more ring-like (c) patterns. String-like

structures, in which case all dipoles orient their mechanical activity along a

common axis, exhibit a discrete two-fold rotational symmetry and show strong
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(h-a) (h-b) (h-c)

Figure 5.1: Different structures arising from elastic interactions of cellular

force dipoles positioned on a square lattice (s-a)-(s-c) and on a hexagonal

lattice (h-a)-(h-c) respectively on top of an elastic half space. The lattice

constant is denoted by b. (a) and (b) are string-like structures with a two-

fold rotational symmetry, which will result in anisotropic material properties

of the composite active material of cells and the isotropic elastic substrate.

(c)-structures are ring-like and have a four-fold rotational symmetry yielding

more isotropic material properties.

anisotropic orientational ordering. This will result in anisotropic mechanical

properties of the composite “active” material of elastic substrate and embedded

cells, which makes string-like patterns particularly interesting. This effect will

be less pronounced for structures with a higher order rotational symmetry like

the ring-like structures, which yield more isotropic properties of the active

material.

For the square lattice we found two string-like structures with a discrete

two-fold rotational symmetry, namely (s-a) a lattice of identical s(0, 1)-strings

and (s-b) a lattice of s(1, 1)-strings, respectively, where the (0, 1) and (1, 1) de-

note the direction ~n of the strings. The third structure (s-c) is less anisotropic

and exhibits a discrete four-fold rotational symmetry. Its unit cell is doubled

with respect to the string-like structures and resembles a ring or a hedge-

hog, respectively. We will refer to this structure as the hedgehog- or ring-like

structure, respectively, while (s-a) and (s-b) are pure string-like structures.

For the hexagonal lattice we found analogous patterns and will consider

two string-like structures (h-a) a lattice of parallel h(1, 0)-strings and (h-b) a

lattice of parallel h(1, 1)-strings and (h-c) one more ring-like structure. Note

that the orientation of the string is always expressed with respect to the square
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(s) and hexagonal (h) basis vectors, respectively.

All six structures (s-a) to (h-c) can be formally decomposed into

(sub)lattices of parallel strings with the dipolar spacing a within the string

being a function of the lattice spacing b. For the string-like structures in (a)

and (b) the string decomposition is obvious. (s-c) can be formally decom-

posed into two string-like s(1, 1) and s(−1, 1) sublattices. The interaction

between the two sublattices can be calculated from the interactions of s(1, 1)-

strings with s(1, 1)-stacks. Similarly, (h-c) is decomposed into two sublattices

of h(0, 1) and h(−1, 1)-strings, and the interaction between sublattices follows

from h(1, 0)-string–stack interactions.

Each structure is characterized by its dipolar spacing a within each

string, the separation xi between the zero-th and the i-th string or stack,

respectively, and their offset yi. In Tab.5.1.1 we summarize the characteristics

of the different lattice structures under consideration, where x̃i and ỹi are

normalized with respect to the dipolar spacing a.

Type spacing a w|| w⊥

a x̃i ỹi x̃i ỹi

(s-a) b i 0 -

(s-b)
√

2b i− 1
2

1
2

-

i 0

(s-c) aA =
√

2b i 0 i− 1
2

1
2

aB =
√

2b i 0 i− 1
2

1
2

(h-a) b
√

3(i− 1
2
) 1

2
-√

3i 0

(h-b)
√

3b 1√
3
(i− 1

2
) 1

2
-

i√
3

0 -

(h-c) b i
√

3 0
√

3(i− 1
2
) 1

2√
3b i√

3
0 1√

3
(i− 1

2
) 1

2

From the string decomposition of the lattice structures given in Tab.5.1.1 one

can now calculate wtot semi-analytically applying the procedure outlined in

Eq.(5.1) to Eq.(5.3). Since the vertical distance x of a string to the adja-

cent string or stack, respectively, is typically smaller than the dipolar spacing

a, the string-string (string-stack) interactions are evaluated numerically using

Eq.(4.27). We typically terminate the summation over string-string interac-

tions after x ≈ 5-10a interdipolar spacings.

In Fig.5.2 we plot our results for wtot as a function of the Poisson ratio

ν. For all six structures the interaction between dipoles leads to an overall

strain-stiffening effect, i.e. wtot < 0. We also find that wtot is a non-trivial

function of ν and that the optimal structure is a function of both geometry

and Poisson ratio.
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Figure 5.2: wtot(ν) calculated using the string-stack decomposition technique

for the three square lattice structures (s-a) to (s-c) (dashed lines) and the three

hexagonal lattice structures (h-a) to (h-c) (solid lines) shown in Fig. 5.1. The

optimal structure depends on ν and lattice geometry. String-like structures

(a,b) are favored on highly compressible media, whereas toward larger ν ring-

like structures (c) are increasingly favored and dominate in the hexagonal

lattice.

For the square lattice the string-like (s-a) structure of parallel s(1,0)-

strings has always the minimal wtot independent of ν. For the special case of

ν = 0 the (s-a) structures becomes degenerate to the s(1,1)-structure (s-b). In

contrast, the optimal structure in a hexagonal lattice depends on the Poisson

ratio of the substrate. For highly compressible media (ν = 0) the degenerate

stringy structures (h-a) and (h-b) are optimal, while on incompressible sub-

strates (ν = 0.5) the ring-like structure (h-c) becomes more favorable. The

transition between these structures occurs at ν ≈ 0.32.

In fact, there is a general trend to destabilize string-like structures in

favor of ring-like structures with increasing Poisson ratio in both the hexagonal

and the square lattice. In the square lattice the gap in ∆wtot = wtot
s−a − wtot

s−c

between the string-like optimal structure (s-a) and the hedgehog-structure

(s-c) decreases strongly with increasing Poisson ratio, although the ring-like

structure does not quite overcome the string-like structure as happens in the

hexagonal lattice. This implies that on incompressible substrates the optimal

structure changes qualitatively from a string-like to a ring-like structure as

the geometry of the lattice is changed from the square to the hexagonal lat-

tice. For highly compressible media string-like structures are always favorable

and in particular towards ν = 0 they become (almost) equally favorable, as

indicated by the (almost) degenerate values of wtot. For highly compressible
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materials the number of axis available for rotational symmetry breaking there-

fore increases. For example, for the square lattice on ν = 0.5-substrates the

system might either choose s(1, 0) or the s(0, 1)-axis, while for ν = 0 also the

s(1, 1) and the s(1,−1)-directions are available. Indeed for the special case

of ν = 0 there may be even more string-like structures with equally favorable

wtot and thus more possible symmetry axes, which we did not consider here

explicitly.

Interpretation of Results using The String–Stack Decomposition

The formation of string-like structures for cellular dipoles may have been ex-

pected, since the dipole–dipole interaction favors the formation of strings. In

contrast, the formation of ring-like structures may come more as a surprise.

We now show that a qualitative understanding of the results for wtot as a func-

tion of lattice geometry and Poisson ratio can be gained from the string–stack

decomposition and our knowledge about string–string and string–stack inter-

actions, respectively from Chapter 4. Since the interaction between parallel

strings and string and stacks, respectively, is short-ranged, wtot is dominated

by interactions within the strings and the next neighbor string–string and

string–stack interactions, respectively. Hence, wtot is affected most by vari-

ations in string geometry, i.e. dipolar spacing a, horizontal separation x and

offset y.

For example, in the square lattice strings along s(1, 0) have the minimal

interdipolar spacing possible (a = b) and a favorable string–string interac-

tion because adjacent strings have zero offset. This drives the (s-a) structure

formation. In contrast, for s(1, 1)-strings a =
√

2b, and for ν = 0.5 the cor-

responding string–string interaction is repulsive because adjacent strings have

maximal offset, which strongly disfavors (s-b) structure with respect to (s-a)

on incompressible substrates. Finally, in the (s-c) structure the interaction

between the s(1,1)-strings and the adjacent s(1, 1)-stacks is strongly attractive

because strings and stacks prefer to have maximal offset. This explains the

competition between the hedgehog and the s(1, 0)-string structure on incom-

pressible media because both structures have a favorable string–string (stack)

interaction. The reason why (s-a) is slightly preferred with respect to (s-c), is

probably the smaller dipolar spacing in (s-a).

For the hexagonal lattice, strings both in the (h-a) and (h-b)-structure

have maximal offset and hence are disfavored at large ν. In contrast, in the

(h-c) structure, the interaction of adjacent strings and stacks is attractive

at large ν because they have maximal offset. Thus, in contrast to the square

lattice, where parallel strings were stabilized due to the geometry of the lattice,

they are destabilized in the hexagonal lattice with increasing ν, while the

interactions in (h-c) remain favorable. That could be the reason why the
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(a) (b)

Figure 5.3: Physical force dipoles prefer to form a square T-lattice (a) or a

hexagonal Hering bone-type pattern (b), respectively. Formally both struc-

tures can be decomposed into string-like sublattices, which simplifies the cal-

culation of the elastic interaction energy vtot = −wtot.

ring-like structure is able to overcome the stringy structures in the hexagonal

lattice, but not in the square lattice.

When the Poisson ratio is decreased, the overall interaction strength

decreases and in particular the interaction between strings and stacks goes to

zero. This explains why wtot increases in ring-like structures with decreasing

Poisson ratio. Moreover, for small Poisson ratio the string–string interaction

exhibits a phase-shift with respect to the optimal offset for closely spaced

strings, such that for small ν the interaction of adjacent h(1, 0)-strings is actu-

ally attractive. This explains why wtot hardly varies with ν in (h-a,b) because

the decrease in the overall interaction strength is compensated by an increase

in attractive interaction between strings.

To conclude, although the string–stack decomposition is primarily a

convenient mathematical procedure to calculate wtot, it is also a useful concept

to gain more intuition for structure formation.

Elastic Energy of Defect Lattices

The string-stack decomposition can also be used to calculate the elastic energy

vtot of lattices composed of physical dipoles. For physical dipoles the formation

of aligned strings is a high energy state and thus avoided. Physical dipoles pre-

fer to form compact (isotropic) aggregates: the local T -configuration, which is

the ground-state of two physical dipoles on incompressible substrates can be

continued in a square lattice without causing frustration and thus represents

a good candidate structure for the ground state, see Fig. 5.3(a). By simu-

lation an alternative competing structure was identified, which represents a

hexagonal Heringbone-type pattern [48], see Fig. 5.3(b). The geometric char-

acteristics of the string-stack decomposition of the T-lattice structure (a) and

the Heringbone structure (b) are given in Tab. 5.1.1, where x̃ and ỹ have been
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Figure 5.4: Elastic interaction energy per dipole vtot = −wtot for the T-lattice

(a) and the Heringbone pattern (b) (at the same dipole density). The ground-

state for an incompressible medium (ν = 0.5) is the T-lattice. For low Poisson

ratio the Heringbone pattern takes over.

normalized with respect to the dipolar spacing a. By flipping the sign of Eq. 5.3

we can calculate the elastic interaction energy per dipole vtot in these lattices,

using the values from Tab. 5.1.1. Both in the T-lattice and in the Heringbone

structure a stack is inserted into a string, i.e. x̃ = 0 and ỹ = 1
2
. One can

calculate the interaction energy of this arrangement analytically:

v⊥(0,
1

2
) = −2a1

a3

∞∑
i=1

1

(i− 1
2
)3

= −14a1

a3
ζ(3). (5.4)
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By applying the procedure presented in Section 5.1 we calculate the elas-

tic energy of both structures at equal density as a function of the Poisson ratio

ν. The result is shown in Fig. 5.3. We find that on incompressible substrates

(ν = 0.5) the T-lattice has a significantly lower energy than the Hering-bone

pattern. When the Poisson ratio is decreased the Hering-bone pattern takes

over. This might be intuitively plausible since for ν → 0 the ground state

configuration of two physical dipoles changes from the T-configuration to the
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the side-by-side configuration, which is closer to the local structures realized

in the Heringbone pattern than in the T-lattice.

5.1.2 Effect of Noise: Monte Carlo Simulations

Monte Carlo Simulations

The determination of optimal structures is only a starting point for analyz-

ing and predicting typical structures of elastically interacting cells. In a more

realistic situation one should consider that—even without the presence of an

additional ordering principle—ordering will not be perfect since there are al-

ways sources of external and internal noise. In order to include a stochastic

element into structure formation we perform Monte Carlo simulations, where

the temperature T represents an effective measure for the degree of stochas-

ticity involved. In statistical physics, Monte Carlo simulations are a versatile

tool to simulate the influence of thermal fluctuations. They are frequently used

to numerically study the interplay between energy E and entropy S at finite

temperatures T and to calculate phase-diagrams. At constant temperature a

physical system in equilibrium minimizes the free energy F = E − TS and

the system statistically visits each state µ with the probability pµ =
exp(− Eµ

kBT
)

Z
,

where Z is the partition sum required for normalization. At low temperatures

the energy is the dominant contribution to the free energy and the system

spends most of its time in ordered states close to the ground state, while at

high temperatures (kBT � E), entropy dominates, i.e. all states are equally

probable and the system is in a disordered state. In analogy, for the cellu-

lar structure forming system wtot represents an ordering term and might be

considered as an effective energy term. We already have some insight into

the optimal, ordered state of the system without noise. In the opposite limit

of high noise, elastic signals are too weak to influence cellular orientations

and one expects completely random, disordered structures. The functional F

therefore might be a reasonable starting point to include stochastic effects into

our model, since it accurately describes the T = 0-limit (no noise) and the

T →∞ limit.

Of course there are many caveat associated with this approach. For

example, cells are dynamic, active, non-equilibrium entities and there is no

guarantee that the system is ergodic. Secondly, so far W was only a measure

to characterize the mechanical properties of the environment which relates to

the true cellular decision function in an unknown way. The sole restriction was

that the minimum of W corresponds to the optimal state. We now assume

that W indeed represents an ordering function. Despite these restrictions,

Monte Carlo simulations might still provide useful insight into basic stochastic

effects involved in cellular structure formation. Moreover, from a practical
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point of view they are very convenient, since they allow to use well developed

methods from statistical physics. Finally, the same approach has been used

by others before in a similar context [120,121].

In our Monte Carlo simulations we typically consider N ≈ 1000 dipoles.

In order to minimize the effects of boundaries we apply periodic boundary

conditions (pbcs), such that each dipole has the same number of next

neighbors and experiences the same local geometry. We implement pbcs using

the minimal image convention [122], i.e. we only consider the interactions of

the dipole with its N − 1 nearest (image) particles. For 2D simulations the

r−3-decay of the elastic interactions is fast enough that the correction term

induced by truncating the interactions at a finite distance remains finite, and

the minimal image convention is a good approximation [122]. The minimal

image convention has also been used before to simulate elastic interactions of

physical dipoles in 3D [123].

We use the standard Metropolis algorithm to generate typical configu-

rations, i.e. a Monte Carlo move is always accepted, when it decreases wtot and

otherwise it is accepted with the probability p = exp
(
−∆wtot

kBT

)
. In our case the

temperature T represents a measure for the degree of stochasticity involved in

cellular decision making. It is convenient to define a reduced temperature

T ? =
kBTπEb̄3

P 2
, (5.5)

where b̄ is the average distance between two particles in the simulation box.

b̄ is related to the absolute area density by 〈ρ〉 = 1/b̄2 and in 3D by 〈ρ〉 =

1/b̄3. The reduced temperature T ? measures the relative importance of noise

kBT with respect to the average elastic interaction strength, w ∝ P 2

πEb̄3
. For

simulations with fixed dipole positions, each Monte Carlo move consists of

a random selection of one dipole in the simulation box whose orientation is

subsequently changed at random.

Effect of Noise for Dipoles on a Lattice

In order to study the effect of noise on structure formation for dipoles on

a square and hexagonal lattice respectively, we performed Monte Carlo sim-

ulations for N = 900 dipoles at different values of the Poisson ratio ν =

0, 0.1, 0.2, 0.3, 0.4, 0.5 and at different values of the reduced temperature T ?.

In order to work at the same dipole density, the hexagonal and square lattice

constants are related by bh =
√

2/
√

3bs. Starting from a random configura-

tion typically less than 103 Monte Carlo sweeps were required to reach thermal

equilibrium.
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Figure 5.5: Typical patterns for dipoles fixed on a square lattice on top of an

elastic half space with ν = 0.5 (a-c) and ν = 0.1 (d-f), respectively. Temper-

ature increases from left to right. (a) For ν = 0.5 the dominant fluctuations

around the optimal state are cooperative hedgehog fluctuations. (b,c) With

increasing T ? domains of short strings along (1, 0) and (0, 1) coexist—often

separated by hedgehog domains. (d-f) For ν = 0.1, hedgehogs are less promi-

nent and dipoles typically weakly fluctuate around the optimal orientations.

With increasing T ? numerous domains of short string-like domains along (1,0),

(0,1) and (1,1), (1,-1) coexist.

In Fig. 5.5 and Fig. 5.6 we show typical snapshots for dipoles fixed on a

square and hexagonal lattice, respectively, on top of an elastic half space with

ν = 0.5 and ν = 0.1. The temperature increases from left to right. Note that

for illustration purposes, we only plot a section of the full configuration.

On the square lattice dipoles at low noise levels form string-like struc-

tures, where the rotational symmetry is spontaneously broken along either

direction of the principal lattice vectors (1, 0) or (0, 1). For incompressible

media (ν = 0.5), the typical fluctuations around the optimal string state are

cooperative fluctuations of several dipoles generating hedgehog defects, see

Fig. 5.5(a). Since for incompressible substrates the hedgehog structure is only

slightly disfavored with respect to strings, it is ”excited” very easily at low T ?.

With increasing T ? we find smaller and smaller domains of short (1, 0) and

(0, 1)-strings often separated by hedgehog-like domains, see Fig. 5.5(b,c). The
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Figure 5.6: Typical patterns for dipoles on a hexagonal lattice on top of an elas-

tic half space with ν = 0.5 (a-c) and ν = 0.1 (d-f), respectively. T ? increases

from left to right. (a) At T ? = 0.5 weak fluctuations around the optimal ring-

like structure dominate. (e,f) At T ? = 1 and T ? = 2, ring-like domains form

and typically short isolated string-like and small ring-like structures dominate.

(d) For ν = 0.1 four string-like structures have degenerate wtot and one finds

coexistence of many string-like domains (often with similar orientations) even

at low T ?. (e,f) At T ? = 1 and T ? = 2 complementary string domains form.

structures become increasingly disordered and the orientations are distributed

isotropically.

With decreasing Poisson ratio, hedgehog defects become less frequent

since the penalty for ring-like structures increases with decreasing Poisson

ratio. Typical cooperative fluctuations at low Poisson ratio are domains

derived from the s(1, 0)- and s(0, 1)- as well as from the s(1, 1)- and

s(1,−1)-structures, see Fig. 5.5(d-f). Since the penalty of the diagonal string

structure (s-b) with respect to (s-a) decreases to zero with decreasing ν, it is

excited more easily on highly compressible substrates than on incompressible

substrates.

On the hexagonal lattices the optimal ordered state depends strongly

on the Poisson ratio. For incompressible substrates the ring-like structure

(h-c) dominates and at low noise intensities dipoles typically fluctuate only

weakly around their optimal orientations, see Fig. 5.5(a). Increasing the
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noise level as in Fig. 5.5(b,c), we find coexistence of domains of the two

optimal ring-like structures directed along h(1, 0) or h(0, 1), isolated short

strings running along the hexagonal lattice vectors and various other ring-like

structures.

When the Poisson ratio is decreased, the ring-like structures are again

destabilized with respect to string-like structures at low T ?. An interesting

regime exists around ν ≈ 0.32, where both large ring- and string-like domains

coexist (not shown), since they are almost equally favorable. At even smaller

ν, as shown Fig. 5.6(d-f), we typically find coexistence of domains of short

parallel strings. Since the h(1, 0)- and h(1, 1)-string structures are degenerate,

we often find coexistence of such domains at low T ?, often with similar orien-

tations, e.g. h(0, 1) and h(1, 1). When noise increases, also the complementary

string segments along h(0, 1) and h(−1, 1) are found and the overall structure

becomes isotropic.

Structure and Effective Mechanical Properties

We already mentioned that the mechanical activity of cells is expected to influ-

ence the material properties of the composite material (or tissue equivalent).

In particular, when all cells direct their mechanical activity along a common

direction, this will modify the mechanical properties in an anisotropic way. In

contrast, when cells form disordered or ordered ring-like structures the aver-

aged material properties remain (effectively) isotropic.

In order to address the mechanical properties of the composite mate-

rial of cells and elastic medium, we aim to define a global order parameter

〈p〉, which should be able to distinguish between anisotropic and (effectively)

isotropic structures, which result either from disorder or because of effectively

isotropic orientational ordering as in the ring-like patterns. Suppose all dipoles

point along the director ~n, then 〈cos2 β〉 = 1, where β is the angle of the dipole

orientation with respect to ~n and 〈〉 denotes a configuration average. For dis-

ordered and ring-like structures, one gets 〈cos2 β〉 = 1
2
. Thus, a suitable order

parameter to distinguish these structures is p = 2(〈cos2 β〉 − 1
2
), which yields

p = 1 for string-like and p = 0 for effectively isotropic (ring-like or disordered)

structures. For our lattice structures the director ~n only takes discrete values,

e.g. (1,0) and (0,1) for the square lattice, because the underlying symmetries

of the lattice support only distinct directions for discrete symmetry breaking

(”crystal field effect”). However, for later purpose, it is convenient to calcu-

late p in such a way that the direction of ~n can vary. We therefore define

a 2D analog of the nematic order parameter p used for the theory of liquid
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Figure 5.7: The averaged order parameter 〈p〉 relates the degree of structural

anisotropy to the effective material properties. (a) 〈p〉 on a square lattice as a

function of noise T ? for ν = 0, 0.1, 0.2, 0.3, 0.4, 0.5 (from left to right). (b) On

a hexagonal lattice 〈p〉 = 0 for ν = 0.4, 0.5 and 〈p〉 → 1 for ν = 0.3, 0.2, 0.1, 0

from left to right.

crystals [124]. We introduce the ordering matrix Q:

Qij =
1

N

N∑
α=1

(Pα
ij −

1

2
δij), (5.6)

where Pij is the dipole tensor of the α‘th particle and the sum runs over all

particles in the simulation box. The largest eigenvalue λmax of the symmetric

ordering matrix Q defines the order parameter p = 2λmax. p measures the de-

gree of rotational order with respect to the director ~n, which is the correspond-

ing eigenvector to the maximal eigenvalue. The averaged order parameter 〈p〉
is obtained by averaging p over M configurations:

〈p〉 =
2

M

M∑
J=1

λJ
max. (5.7)

In Fig. 5.7 we plot 〈p〉 for both square (a) and hexagonal (b) lattice

for different values of the Poisson ratio as a function of temperature T ?. The

results were obtained from simulations with 900 dipoles. On a square lattice

〈p〉 approaches 1 for all values of ν when the elastic effects dominate noise

and the system moves from an isotropic disordered into an anisotropic ordered

state. We furthermore observe that in the square lattice ordering is facilitated

with increasing ν. This is expected because the elastic signals increase with

increasing ν. For a hexagonal lattice only substrates with ν = 0.3, 0.2, 0.1, 0

support string-like structures, 〈p〉 → 1, toward low T ?, also revealing a more

complicated temperature dependence with ν. For substrates with ν = 0.4, 0.5

one finds 〈p〉 ≈ 0 at any value of T ?. Here, the orientational ordering transition
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Figure 5.8: Monte Carlo snapshots at T ? = 0.1 for dipoles randomly displaced

from an ideal square lattice for f = 0.1, 0.25, 0.5 from left to right for ν = 0.5

(a-c) and ν = 0 (d-f), respectively. Increased positional disorder destroys

long-ranged orientational order in a similar way as an increase in T ? on an

ideal lattice. Uniform deviations from the square lattice retain some quadratic

order λ4 = 0.95, 0.6, 0.15 (left-right). This could explain, why there occurs no

transition to ring-like structures on incompressible substrates.

with decreasing T ? occurs from an disordered isotropic to an ordered—but

effectively isotropic—ring-like structure.

Effect of Fluctuations around Lattice Positions

A second type of perturbations of the ideal structure might be interesting from

a practical point of view, namely deviations from the ideal lattice positions.

It is known that the shape of islands can influence the cellular force distribu-

tion [113, 114]. Thus, one might be forced to use larger islands to minimize

these effects, which on the other hand means that cells may not adopt the per-

fect lattice positions. To simulate this effect, dipole positions were randomized

around the perfect square lattice by displacing dipoles randomly (uniformly)

within a circle around the lattice positions. Positions were then fixed for the

simulation. The radius r of the circle is a fraction f = r/b of the lattice

constant b. For the calculation in Fig. 5.8, we choose f = 0.1, 0.25, 0.5 and

ν = 0.5 and ν = 0, respectively and show results for a low value of the reduced

temperature, i.e. T ? = 0.1. A 10% uniform deviation from the lattice positions
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has only a minor effect on orientational ordering and we find highly ordered

string-like structures in both cases. In fact, on incompressible substrates the

positional perturbations might suppress cooperative hedgehog fluctuations and

thus increase ordering at low noise intensity. Increasing f , string domains (as

well as hedgehog domains) form and long-ranged orientational order gradually

disappears. With increasing f domains shrink and structures appear increas-

ingly disordered. Thus, positional disorder effects orientational ordering in a

similar way as increasing the temperature T ? on a perfect lattice.

As will be shown in Section 5.2, on incompressible substrates (ν = 0.5),

positional disorder typically favors the formation of rings with respect to

strings. Interestingly, we do not find such a transition in the present case.

The reason probably is that uniform positional disorder around a square lat-

tice still retains some long-ranged quadratic bond-orientational order for the

dipole positions. To quantify this effect one can calculate the quadratic order

parameter λ4, which is defined in analogy to the hexatic order parameter for

hexagonal bond-order [124,125]:

λ4 =
1

N

N∑
i

ni∑
j

e4iθij

ni

, (5.8)

where N is the number of dipoles and ni is the number of neighbors of dipole

i found in a circle of radius r = 1.3b. θij is the angle of the line from particle i

to j with respect to an arbitrary, but fixed global axis. λ4 = 1 corresponds to

perfect long-range quadratic order and λ4 becomes zero when dipole locations

square lattice correlations and become completely disordered. We calculate

λ4 and find λ4 > 0 up to 50% uniform deviations around the square lattice

positions. For the configurations in Fig. 5.8 we find λ4 = 0.95, 0.6, 0.15 for

f = 0.1, 0.25, 0.5, respectively. The persistent quadratic orientation correla-

tions between dipole positions may explain why we do not observe rings on

incompressible substrates, because the square lattice supports string-like struc-

tures even on incompressible substrates. Hence, although string-like structures

are increasingly disfavored with respect to ring-like structures with increasing

Poisson ratio, the square lattice geometry is able to stabilize them and moder-

ate deviations around square lattice positions are not sufficient to destabilize

them. The geometry dependent transition from ring-like to string-like struc-

tures on incompressible substrates might therefore be observable experimen-

tally.

5.2 Structures for Positional Disorder

For typical in vivo and in vitro situations, for example when cells are cultured

on conventional elastic substrates, cellular positions are less well defined than
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for the lattice structures discussed above. We now study structure formation of

contraction dipoles on conventional elastic substrates as a function of material

properties and dipole density using Monte Carlo simulations. We again focus

on orientational degrees of freedom only, since it is generally assumed that

the cellular orientational degrees of freedom relax much faster than positional

degrees of freedom [126]. In more biological terms: significant cell locomotion

occurs on a much slower time scale than orientational reorganization of the

cytoskeleton, which might be further reduced by using less motile cell strains

or appropriate drugs. We therefore again neglect effects of cell locomotion and

fix the dipole positions for the simulations, and vary the orientations only.

The most interesting question is whether and under what conditions

elastic interactions are able to mediate a spontaneous breaking of the rota-

tional symmetry for cellular structures, which contribute to anisotropic mate-

rial properties. For square and hexagonal lattices, discrete two-fold rotational

symmetry breaking occurs as a function of temperature T ?, Poisson ratio ν and

lattice geometry. In this case, the underlying lattice symmetries support dis-

crete space directions for symmetry breaking. Under certain conditions, elastic

interactions might also break the continuous O2-rotational symmetry without

requiring to break the translational symmetry and thus yield a nematic phase

similar to liquid crystals.

Introduction: State Variables of Structure Formation

One might expect that structure formation on elastic substrates depends on

three variables: the reduced temperature T ?, the Poisson ratio ν (as for lattice

structures) and the density ρ. The cell density will affect structure formation

in two ways. On the one hand, a large average density 〈ρ〉 means that dipoles

come closer together, which will increase the elastic signal with respect to noise.

This effect can be subsumed into a decrease in the reduced temperature, since

T ? = TEπ〈ρ〉
3
2

P 2 . On the other hand, depending on the density, some short-

ranged position correlations between dipoles may emerge. For example, at

high cell density, the area occupied by one cell is not accessible to another

(excluded area interaction), which will lead to correlations between dipole

positions. We now associate with each cell a circular disks with radius a and

assume that the mechanical action of the cell (i.e. the force dipole) is located

at the disk’s center. The physical meaning of the disk might either be the cell

area, as mentioned above, or more general, some typical area surrounding cells

that is not accessible to other cells due to some kind of repulsive interaction,

e.g. contact inhibition [127]. One could also implement this situation artificially

by using irregular spaced adhesive islands of circular shape on a non-adhesive

substrate, where islands are not allowed to overlap.
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Figure 5.9: Radial distribution function g(r) obtained from simulations at re-

duced densities of ρ? = 0.34, 0.5, 0.74 (left-right). With increasing packing

fraction ρ? short-ranged pair correlations develop due to the non-overlap con-

straint between disks which are characteristic for a liquid of hard disks [128].

One can then introduce a reduced density ρ? defined as

ρ? =
Nπa2

L2
, (5.9)

which is a dimensionless variable describing the ratio of the area occupied

by N circular disks of radius a to the area of the (simulation) box with side

lengths L. The emergence of short-ranged correlations with increasing ρ? can

be illustrated by calculating the density pair correlation function g(g), which

for an isotropic, translationally-invariant position-distribution only depends on

the distance r between disks [128]:

g(r) =
1

〈ρ〉
〈
∑
α 6=β

δ(|~r − ~rα,β|)〉. (5.10)

~rα,β is the distance between particles α and β.

In Fig. 5.9 we show numerical results for g(r) for different ρ? obtained

by randomly placing N = 1024 disks of radius a into a simulation box of area

L2, where disks are not allowed to overlap. The ρ? = 0 case corresponds to

an ideal gas, where the the probability to find a particle at any distance r is a

constant, i.e. g(r) → 1. With increasing ρ?, short-ranged position correlations

emerge indicated by the short-ranged oscillations in g(r) at small r, which are

typical for a liquid of hard disks [128]. In a dense liquid the probability to

find a second particle at r/a < 2 is zero, while the probability to find a second

particle a distance 2a and subsequently at 4a etc. is enhanced. Thus, with

increasing ρ?, correlations between positions develop due to the non-overlap

constraint. Therefore, ρ? is a measure for geometric correlations between dipole

positions, which may affect structure formation.
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We should mention that the phase-diagram for hard disks has been

obtained by Monte Carlo simulations [125]. It predicts an isotropic liquid

phase for ρ? < 0.88 with short-ranged position correlations and a hexagonal

crystallite phase for ρ? > 0.905, with truly long-ranged position correlations.

The maximal packing fraction for disks in 2D is achieved in a hexagonal lattice,

which yields ρ? ≈ 0.907. In between the solid and liquid phase, there is a

small band of a hexatic phase, with long-ranged bond-orientational, but no

long-ranged translational order [125]. Most results for structure formation

under positional disorder presented in the next section correspond simulations

at values of ρ? in the liquid regime. The solid regime, with perfect positional

long-ranged order, has been considered already by studying the hexagonal

lattice structures in Section 5.1.2.

Monte Carlo Simulations

We now study pattern formation on elastic substrates as a function of the

reduced temperature T ?, the Poisson ratio ν and the reduced density ρ? by

Monte Carlo simulations. For the simulation, N = 1024 disks of radius a are

randomly placed into a the simulation box of length L under the non-overlap

constraint for disks, which yields ρ? = Nπa2

L2 . Dipoles are fixed at the disks’

center and orientations varied as before. All other parameters and conditions

for the Monte Carlo simulation were identical to the ones described in Section

5.1.2.

Fig. 5.10 shows typical snapshots of structures at T ? = 0.1 for dipoles on

an elastic substrate with ν = 0, 0.25, 0.35, 0.5 (top–bottom) at different values

of the reduced density ρ? = 0, 0.4, 0.5 (left–right). At low densities, dipoles

predominantly optimize locally the interaction between them by forming short

string-like clusters, with no obvious long-range correlation between clusters.

This leads to rather robust pattern formation that does not differ qualitatively

as the Poisson ratio is varied, see Fig. 5.10(a). One expects that these patterns

represent typical cellular structures formed, when cells in dilute concentrations

are suspended on an elastic substrate and adhere at random positions (ρ? → 0).

With increasing ρ? the respective structures at low noise intensity show a strong

dependence on the Poisson ratio ν and an increasing similarity to the hexagonal

lattice structures. For incompressible substrates we find isotropic ring-like

structures often composed of only four dipoles reminiscent to the small rings in

the ring-like structure (h-c), see Fig. 5.10(IVc). With decreasing Poisson ratio,

string-like patterns emerge. For example, for ν = 0.35 in Fig. 5.10(IIIc) we find

coexistence of string-like and ring-like domains. String-like structures start to

dominate for ν < 0.32. For ν = 0.25 we observe that with increasing density

strings start to interact and domains of aligned strings form, which increase in

size with increasing ρ?, see Fig. 5.10(IIb,IIc). With decreasing Poisson ratio,
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Figure 5.10: Snapshots of MC-simulations at T ? = 0.1 for N = 1024 dipoles

on an elastic substrate with ν = 0, 0.25, 0.35, 0.5, respectively (top-bottom).

The reduced density increases from left to right as ρ? = 0, 0.4, 0.6, respectively,

while the average density 〈ρ〉 remains constant.
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Figure 5.11: Nematic order parameter 〈p〉 as function of the reduced density

ρ? obtained from MC-simulations with 1024 dipoles. (a) Nematic ordering

occurs only on compressible substrates and above a critical density. Curves

show numerical results for ν = 0, 0.25, 0.3 (left-right) and ν = 0.4, 0.5 (bot-

tom), respectively. (b) Nematic ordering disappears above a certain noise level.

Results shown were obtained for ν = 0 at T ? = 0.1, 0.6, 1.1 (top-bottom).

alignment along a common direction is favored and in Fig. 5.10(Ic) we find an

aligned structure, which could qualify as nematic structure.

In order to quantify these results, we could calculate the nematic order

parameter 〈p〉 defined in Eq. (5.7). Computationally, p is now first thermally

averaged for a fixed configuration of the dipole positions and subsequently

averaged over at least 20 random position configurations obtained for the same

ρ?.

In Fig. 5.11a we plot the averaged nematic order parameter 〈p〉 at T ? =

0.1 as a function of the effective density ρ? for various values of the Poisson

ratio ν. For completeness we also include our numerical results obtained for the

hexagonal lattice structure, which correspond to ρ? ≈ 0.907. We find that 〈p〉
becomes different from zero above a critical density ρ?

c(ν) and below a critical

value of the Poisson ratio ν ≈ 0.32. This indicates the formation of a nematic

structure. The degree of structural alignment increases with increasing ρ?

and approaches 1 toward ρ? = 0.907. In contrast, for ν = 0.4, 0.5 no nematic

ordering occurs at any density ρ? or temperature T ?. In this case, the disorder-

order transition with decreasing T ? does not break the orientational symmetry

with a two-fold axis and ordered structures remain effectively isotropic, since

dipoles form small ring-like structures. Thus, 〈p〉 → 0.

In Fig. 5.11(b) we plot 〈p〉 for ν = 0 at different values of the reduced

temperature T ?. With increasing temperature, entropy dominates and the ne-
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Figure 5.12: Structural phase–diagram for T ? = 0.1 for dipoles on elastic

substrates obtained by Monte Carlo simulations. All points below diamonds

have 〈p〉 < 0.4 and all points above squares yield 〈p〉 > 0.4. The long dashed

line is our estimate for the iso-line with 〈p〉 = 0.4. The horizontal dashed line

marks the maximal ρ? obtained for a hexagonal lattice.

matic structure is destabilized with respect to disordered isotropic structures,

such that above a critical T ?, 〈p〉 = 0.

We may summarize our results by plotting a schematic structural phase

diagram. We do not aim at solving the full thermodynamic problem for our

”effective” potential, although this might be interesting from an academic

point of view. Instead we aim at providing a quantitative estimate, where to

expect nematic or more isotropic structures, experimentally. In Fig. 5.12 we

plot our numerical results for T ? = 0.1 as a function of the state variables

ν and ρ?. Diamonds yield 〈p〉 < 0.4 and squares 〈p〉 > 0.4, the dashed line

denotes our estimate for an isoline with 〈p〉 = 0.4. For substrates with small

Poisson ratio, i.e. below ν < 0.32, an isotropic-nematic transition occurs above

a critical density ρ?
c , which increases with increasing ν. Above ρ?

c strings form

and interact to form an aligned nematic structure. Despite low T ?, structures

with ρ < ρ?
c become increasingly disordered, with the formation of short uncor-

related strings. The nematic-isotropic transition with ρ? represents therefore
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an order-disorder transition. When the Poisson ratio comes close to ν ≈ 0.3

the critical density for a nematic structure shoots up and beyond ν = 0.32 we

do not find a nematic structure at any ρ?. In contrast to highly compressible

substrates (ν < 0.32), the disorder-order transition with ρ? towards incom-

pressible substrates (ν < 0.32) retains effectively isotropic material properties

because the ordered structures are ring- rather than string-like.

Conclusion

In conclusion, we identified three state variables which determine structure for-

mation of elastically interacting contraction dipoles on elastic substrates: the

reduced density ρ?, the Poisson ratio ν and the reduced temperature T ?. For

sparsely populated elastic substrates without position correlations ρ? → 0, the

structure formation is independent on the properties of the elastic substrate.

In this case pattern formation is robust and characteristic structures expected

from elastic interactions is the formation of short strings and sometimes larger

rings. At higher densities structure formation at low noise depends strongly

on the material properties of the elastic substrate. The model predicts an

isotropic-nematic transition beyond a critical density ρ and below a critical

T ?, but only on highly compressible substrates ν < 0.32.

For liquid crystals the isotropic-nematic transition depends on the as-

pect ratio of the asymmetrically shaped molecules and the reduced density. In

this case, the density dependence might be intuitively plausible because the

transition is driven by the (short-ranged) excluded volume interaction of the

asymmetrically shaped molecules causing the alignment of molecules along the

molecules‘ long axis. Thus, molecules have to be close together to interact with

each other. The existence of a critical density to form a nematic phase might

be less obvious for elastic interactions, since elastic interactions are in prin-

ciple long-ranged. However, the formation of a nematic structure for dipoles

requires not only the formation of strings, but also correlations and thus, in-

teractions between strings. Since the interaction between strings is effectively

short-ranged, strings (or the dipoles forming the strings respectively) have to

be close together to cause the common alignment. (”close” means that the dis-

tance between cells within the string should be approximately the same as the

distance between strings). This explains why short-ranged position correlation

between dipoles are necessary to support a nematic structure.

The dependence of the isotropic-nematic transition on the Poisson ratio

of the elastic substrate is essentially the same as found for the hexagonal lattice

structures and occurs around ν ≈ 0.32, where string- and ring-like structures

in the hexagonal lattice have degenerate values. In fact, the patterns formed

on incompressible substrates at high density are ring- rather than string-like

and are often reminiscent of the small four-dipole-rings found in the hexagonal
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ring-like structure (h-c). The typical angular short range correlation in a liquid

are typically hexatic rather than quadratic, i.e. each dipole has approximately

six next neighbors at the same distance a, which is a likely explanation for

the resemblance of the high density liquid structures to the hexagonal lattice

structures. Besides, for small Poisson ratio, the director field in the hexago-

nal lattice was less determined by the lattice symmetries, as more string-like

structures become equally favorable. Thus, the available phase space for string-

like structures increases on highly compressible substrates, which supports the

formation of oriented string-like structures with long-ranged orientation corre-

lations.

5.3 Discussion and Outlook

In this chapter we focused on structure formation of cells due to elastic inter-

actions and studied orientational patterns of force dipoles on elastic substrates

both analytically and numerically by Monte Carlo simulations. We identified

three (state) variables which control pattern formation due to elastic effects:

the (reduced) cell density ρ? or equivalently the geometry of cell positioning,

the material properties of the elastic medium, in particular the Poisson ratio

ν, and the relative strength of elastic signals to the degree of stochasticity

involved in cellular decision making specified by T ?. In principle all state

variables are experimentally accessible.

In particular, the combination of microcontact printing with the elastic

substrate method to control cell positioning provides a well defined protocol, to

test our predictions experimentally. In this case, the spacing between islands

should be large enough that our approximation to model cellular force fields

as contraction dipoles is valid and on the other hand it should be small enough

that elastic cues are strong enough to allow for sufficient self-organizing activity

due to elastic signals. In practice, this means that the spacing between islands

should be of the order of the cell size ≈ 100µm.

Another important parameter is the reduced temperature T ? = kBTπEb̄3

P 2 ,

which determines the relative weight of order and disorder in structure forma-

tion. T ? can be varied in many ways, without altering the degree of internal

cellular stochasticity T . For example, a decrease in the average spacing b̄ be-

tween cells results in larger elastic signals and thus decreases T ?. Moreover,

since large strain fields increase the strength of elastic interactions, it could

be interesting to increase cellular contractility by applying contractile agents

like LPA (lysophosphatic acid) to stimulate Rho-mediated contractility. This

will increase P and thus again decrease T ?. Another way to access the effec-

tive T ? experimentally is to vary the Young modulus E of the material. Since

W ∼ 1/E elastic signals increase on softer materials (as long as the mechanical
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activity of cells is not down-regulated at the same time) and thus effectively

decreases T ?.

Since elastic interactions are propagated via the elastic medium, it

might be not too surprising to find that changing the properties of the

substrate can alter structure formation. For isotropic elastic substrates there

are two constants, the Young modulus E and the Poisson ratio ν. Our results

suggest that E is primarily affecting the reduced temperature T ? and thus,

allows to shift structures between ordered and disordered patterns, but does

not affect the ordered structures qualitatively. In contrast, the Poisson ratio

ν alters ordered structures from string- to more ring-like structures. Most

synthetic substrates have Poisson ratio close to 0.5, however, rapid advances

in material science could allow to realize smaller values in the future.

In our simulations we excluded effects of cell locomotion to keep our

model simple. Cell locomotion is important in many physiological situations

e.g. in development or wound healing. Since our model provides also taxis

through the position dependence of W , a simple way to incorporate cell

locomotion into our model is to allow for positional degrees of freedom in

the Monte Carlo simulations. In this case, one needs to include a repulsive

interaction between dipoles, e.g. a hard-core repulsion, to avoid that at low T ?

dipoles collapse onto a single point. In analogy to the so called Stockmayer

fluids in electrostatics [105,106,129], which are composed of hard spheres with

a electrical dipole moment at their centers, one could study a model of hard

spheres with an associated contraction dipole interacting elastically with each

other. For such a model simulations indicate that typical configurations at

low dipole densities involve the formation of strings. At intermediate densities

one observes the formation of a connected network of dipoles, similar to the

case of electric dipoles. In general, we expect that the phase behavior of such

a model at low to intermediate densities is similar to that dipolar fluids [106].

The Monte Carlo method used in this chapter is a convenient way to

study the influence of perturbations on optimal cell organization. However,

Monte Carlo simulations do not represent any dynamics and the structures

predicted here represent averages one expects to find on large time scales.

In order to treat the dynamics of structure formation and effects of cell

locomotion more explicitly, more quantitative experimental data regarding

cell behavior in response to mechanical cues is needed. Of particular interest

are the dependence of cellular turning behavior, cell speed, persistence length

etc. on rigidity gradients. This will allow us to refine the cellular decision func-

tion W and also to study dynamic aspects of structure formation in the future.

While here we focused on 2D elastic substrates, elastic interactions could

also contribute to in vivo tissue organization in particular in the connective
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tissue, which is sparsely populated by cells of the fibroblast family and rich in

extra-cellular matrix proteins. The connective tissue is the major component

of skin, tendon, the cornea, cartilage, bone and teeth and its organization is

largely determined by the arrangement of collagen fibrils, which is at least

partly driven by self-assembly of fibrils [1]. However, it is well known that the

orientation of e.g. fibronectin fibrils is largely determined by the orientation of

the cell secreting it. Moreover, cells use traction forces to actively rearrange

the matrix after it has been deposited [51].

Although the modeling of cell behavior in fibrous gels is beyond the

scope of this work our model suggests that at low cell density structure forma-

tion is largely independent of the exact material properties (as long as they are

isotropic) and one expects alignment of cells into short strings or rings, with-

out long-ranged correlation between strings because of the effective screening

of elastic signals in the horizontal direction with respect to the string’s axis.

For dipoles in 3D positioned on a simple cubic lattice, simulations show that

the optimal state exhibits a similar transition between effectively isotropic and

aligned structures as a function of Poisson ratio as in 2D. In incompressible

substrates (ν = 0.5), we find a hedgehog-like structure, where all dipoles at

the corners point to the cube’s center, see Fig. 5.13(a), while for ν = 0 spon-

taneous symmetry breaking along a principal lattice lattice vector occurs, see

Fig. 5.13(b). For (isotropic) hydrogels typically ν = 0.5, and we therefore do

not expect cells to spontaneously align due to elastic interactions in gels with

isotropic material properties. However, anisotropic gel properties, e.g. caused

by an alignment of collagen fibers, favor cell alignment because the elasticity

along the fibers is expected to be larger than in the transverse direction. In this

case, cellular traction forces could further stabilize cell alignment by putting

fibers under tension. We indeed observe a similar effect in our simulations,

when an elastic anisotropy is induced by external strain, see Fig. 5.13(c). The

picture shows a snapshot of a Monte Carlo simulations of 100 hard spheres

with an elastic dipole moment at their center, where we allowed for both ori-

entational and positional degrees of freedom (T ? = 2). In the simulation, we

applied a homogeneous strain field along the z-direction (p = 1). We find that

cells not only align along the direction of stretch (as discussed in Chapter 3),

but also form strings running along the stretch direction due to elastic interac-

tions between them. The formation of cell strings along the direction of tensile

strain has indeed been observed experimentally for fibroblasts in a stretched

collagen gel [26].

As an aside we may mention that the collective response of fibroblasts to

external strain could provide another clue how durotaxis or effective stiffness

preference contribute to tissue maintenance. The principle suggests that cells

migrate toward high strain areas and orient their mechanical activity in such

a way as to pull back in response to external tensile strain. External strain
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Figure 5.13: Overview about collective effects in 3D elastic substrates. (a,b)

The optimal structure in a cubic lattice depends on the Poisson ratio ν. In

incompressible substrates (ν = 0.5) the isotropic hedgehog structure is most

favorable (a) while on highly compressible substrates elastic interactions favor

aligned structures (b). (c) Cells in external strain fields form strings running

along the direction of stretch due to interactions with external strain and

elastic cell-cell interactions. (d) Collective effects can modify preferred cell

organization close to a clamped boundary.

is likely to be present in wounded areas. Then fibroblasts are attracted to

this area by mechanotaxis (as well as chemotaxis). Moreover, in anisotropic

strain fields, cells align along the direction of stretch, i.e. they pull against the

external forces, which is probably what one would expect fibroblasts to do in

order to close a wound.

Finally, we would like to point out that structure formation in finite 3D

samples will also be affected by geometry and boundary condition. The direct

interaction of single cells with boundaries given by W b has been discussed in

Chapter 3, while in Chapter 4 and 5 we focused on elastic interactions between

cells without boundaries present. The presence of a boundary modifies the

direct elastic interaction between cells W PP ′
by boundary induced strain

fields, which depending on boundary condition introduce either attractive
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or repulsive contributions W PP ′

b to the elastic interaction [48, 54]. In finite

sized geometries, like the elastic sphere, the boundary term varies on the

macroscopic scale R and can introduce new maxima and minima into the

interaction landscape. In this case, structure formation on elastic and cellular

scales will compete with effects on the macroscopic scale R and we expect the

formation of hierarchical structures [48,54]. A nice example for a competition

between the direct interaction with the boundary W b and cellular interactions

is the elastic half space with a clamped boundary, Fig. 5.13(d). When cells

are lined up close to the boundary, the direct interaction with a clamped

boundary favors cellular orientations pointing toward the surface. On the

other hand, interactions between cells favor the formation of strings and thus,

parallel orientations. Our calculations suggest that the transition between

these two configurations is a function of the ratio b/d, where d is the distance

to the boundary and b is the distance between cells, and the number of

interacting cells N . When b/d > 2 the direct interaction with the boundary

always wins and cells are expected to point toward the surface.

To conclude, in this chapter we showed how elastic interactions be-

tween cells contribute to large scale tissue organization. We also briefly

discussed how collective effects contribute (and sometimes alter) preferred

cell organization with respect to other elastic signals like external strain or

boundaries. In general many predictions of our model are in good agreement

with experimental results [53], and we also proposed new experiments to test

our theoretical ideas, for example to use micropatterned substrates to study

elastic interactions between cells or to observe the behavior of many cells

close to clamped boundaries. We expect that our model will be used to for

biomedical applications in the future, for example to optimize protocols for

tissue equivalents in regard to optimal sample geometry, boundary condition,

material properties or cell density.
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