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Abstract

Landscapes evolve in a complex interplay between climate and tectonics. Thus, the
geomorphic characteristics of a landscape can only be understood if both, climatic and
tectonic signals of past and ongoing processes can be identified. In order to evaluate
the impact of both forcing factors it is crucial to quantify the evolution of geomorphic
markers in natural environments.

The Cenozoic Andes are an ideal natural setting to evaluate tectonic and climatic
aspects of landscape evolution at different time and length scales and in different
natural compartments. The Andean Cordillera constitutes the type subduction orogen
and is associated with the subduction of the oceanic Nazca Plate beneath the South
American continent since at least 200 million years. In Chile and the adjacent regions
this convergent margin is characterized by active tectonics, volcanism, mountain
building, and the impact of geomorphic processes governed by various superposed
climate zones. Importantly, along the coast of Chile megathrust earthquakes occur
frequently and influence landscape evolution. In fact, the largest earthquake ever
recorded occurred in south-central Chile in 1960 and comprised a rupture zone of
~ 1000 km length, a rupture zone that also appears to have been the locus of
preceding large earthquakes. However, on longer time scales beyond historic
documentation of seismicity it is not well known, how such seismotectonic segments
have behaved and how they influence the geomorphic evolution of the coastal realms.
With several semi-independent morphotectonic segments, recurrent megathrust
earthquakes, and a plethora of geomorphic features indicating sustained tectonism, the
subduction margin of Chile is thus a key area to study relationships between surface
processes and tectonics.

In this study, | combined geomorphology, geochronology, sedimentology, as well
as morphometry in order to quantify the Pliocene-Pleistocene landscape evolution of
the tectonically active south-central Chile forearc. With this analysis, | provide (1) new
results about the influence of seismotectonic forearc segmentation on the geomorphic
evolution and (2) new insights in the interaction between climate and tectonics with
respect to the morphology of the Chilean forearc region.

In particular, | show that the forearc of south-central Chile is characterized by
three long-term segments that are not correlated with short-lived earthquake-rupture
zones that may, however, influence forearc morphology over the duration of several
earthquake cycles. In the study area these segments are the Nahuelbuta, Toltén, and
Bueno segments, each recording a distinct geomorphic and tectonic evolution. The
Nahuelbuta and Bueno segments are undergoing active tectonic uplift. The long-term
behavior of these two segments is manifested in form of two doubly plunging, growing
antiforms that constitute an integral part of the Coastal Cordillera and record the uplift
of marine and river terraces. In addition, these uplifting areas have caused major
changes in flow directions or rivers. In contrast, the Toltén segment, situated between
the two other segments, appears to be quasi-stable.

In order to further quantify uplift and incision in the actively deforming Nahuelbuta
segment, | dated an erosion surface and fluvial terraces in the Coastal Cordillera with
cosmogenic ""Be and %Al and optically stimulated luminescence, respectively.
According to my results, late Pleistocene uplift rates corresponding to 0.88 mm a™ are
faster than surface-uplift rates averaging over the last 5 Ma, which are in the range of
0.21 mm a™’. This discrepancy suggests an acceleration of the tectonic processes
during the late Quaternary. Nevertheless, surface uplift is highly variable in time and
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space and might preferably concentrate along reverse faults as indicated by a late
Pleistocene flow reversal which | dated to have taken place ~ 80 ka ago. | infer that this
event is related to uplift above a blind reverse fault.

In addition, the results of exposure dating with cosmogenic '°Be and 2°Al indicate
that the morphotectonic segmentation of this region of the forearc has been established
in Pliocene time, coeval with the initiation of uplift of the Coastal Cordillera about 5 Ma
ago, inferred to be related to a shift in subduction mode from erosion to accretion. This
substantial modification of the subduction process has been attributed to the onset of
global cooling in the late Miocene and an associated increase in sediment supply into
the trench.

Finally, | dated volcanic clasts obtained from alluvial surfaces in the Central
Depression, a low-relief sector separating the Coastal from the Main Cordillera, with
stable cosmogenic *He and ?'Ne, in order to reveal the controls of sediment
accumulation in the forearc. My results document that these gently sloping surfaces
have been deposited 150 to 300 ka ago. Although not very well constrained in this
phase, this deposition may be related to changes in the erosional regime in the
transition between glacial and interglacial episodes.

Taken together, the data indicates that the overall geomorphic expression of the
forearc is of post-Miocene age and may be intimately related to a climatic overprint of
the tectonic system. This climatic forcing is also reflected in the topography and local
relief of the Central and Southern Andes. Both parameters vary considerably along the
margin, determined by the dominant surface process that in turn is eventually
controlled by climate. However, relief also partly mirrors surface processes that have
taken place under past climatic conditions, emphasizing the major importance of
changing paleo-climates and the transient character of the landscape in Chile.
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Zusammenfassung

Landschaften entwickeln sich in einem komplexen Zusammenspiel von Klima und
Tektonik. Demzufolge kann die Geomorphologie von Landschaften nur verstanden
werden, wenn sowohl klimatische als auch tektonische Signale vergangener und
rezenter Prozesse identifiziert werden kdnnen. Um den Einfluss beider Faktoren zu
bewerten, ist es deshalb dufRerst wichtig, die Evolution geomorphologischer Marker in
natlrlichen Umgebungen quantitativ zu analysieren.

Die kédnozoischen Anden sind eine ideale Region, um tektonische und klimatische
Aspekte der Landschaftsentwicklung auf verschiedenen Zeit- und Langenskalen zu
erforschen. Das andine Gebirge ist das Modell-Subduktionsorogen und assoziiert mit
der Subduktion der ozeanischen Nazca-Platte unter den sidamerikanischen Kontinent
seit ca. 200 Millionen Jahren. In Chile und angrenzenden Regionen ist dieser
konvergente Plattenrand gepragt von aktiver Tektonik, Vulkanismus und
Gebirgsbildung sowie geomorphologischen Prozessen, die von verschiedenen
Klimazonen determiniert werden. Bedeutenderweise ereignen sich entlang der Kiste
Chiles haufig Megaerdbeben, die die Landschaftsentwicklung stark beeinflussen.
Tatsachlich ereignete sich das grofte jemals aufgezeichnete Erdbeben 1960 im
sudlichen Zentralchile. Es umfasste eine Bruchzone von ca. 1.000 km Lange, die
anscheinend ebenfalls der Ausgangspunkt vieler vorhergehender Erdbeben gewesen
ist. Nichtsdestotrotz ist auf langeren Zeitskalen, die Uber historische Dokumentationen
von seismischen Ereignissen hinausgehen, nicht bekannt, wie sich solche
seismotektonischen Segmente verhalten und wie sie die geomorphologische
Entwicklung der Kuistengebiete beeinflussen. Mit einigen semi-unabhangigen
morphotektonischen Segmenten, wiederkehrenden Megaerdbeben und einer Fille
geomorphologischer Marker, die aktive Tektonik anzeigen, ist somit der Subduktions-
Plattenrand von Chile ein Schlisselgebiet fir das Studium von Zusammenhangen
zwischen Oberflachenprozessen und Tektonik.

In dieser Arbeit kombiniere ich Geomorphologie, Geochronologie, Sedimentologie
und Morphometrie, um die plio-pleistozane Landschaftsentwicklung des tektonisch
aktiven sld-zentralchilenischen Forearcs zu quantifizieren. Mit dieser Analyse liefere
ich (1) neue Ergebnisse Uber den Einfluss seismotektonischer Forearc-Segmentierung
auf die geomorphologischen Entwicklung und (2) neue Erkenntnisse Uber die
Interaktion zwischen Klima und Tektonik beziglich der Gestaltung des chilenischen
Forearcs.

Ich zeige, dass der Forearc von Sudzentral-Chile durch drei langlebige
morphotektonische Segmente charakterisiert ist, die nicht mit kurzlebigen
Erdbebenbruchzonen korrelieren, die jedoch die Forearc-Morphologie Uber die Dauer
mehrerer Erdbebenzyklen hinweg beeinflussen kdénnen. Die Segmente in meinem
Arbeitsgebiet heiRen Nahuelbuta, Toltén und Bueno Segment, wovon jedes eine
deutlich verschiedene geomorphologische und tektonische Entwicklung durchlauft. Die
Nahuelbuta und Bueno Segmente unterliegen aktiver tektonischer Hebung. Das
langfristige Verhalten dieser beiden Segmente manifestiert sich in zwei beidseitig
abtauchenden, wachsenden Antiklinalen, die integraler Bestandteil des Klstengebirges
sind und die Hebung von marinen und fluvialen Terrassen aufzeichnen. Zusatzlich
verursachte die Hebung dieser Gebiete weitreichende Veranderungen in den
FlieRrichtungen des Gewassernetzes. Im Gegensatz dazu ist das Toltén Segment, das
sich zwischen den beiden anderen Segmenten befindet, quasi-stabil.
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Um desweiteren die Hebung und Einschneidung in dem tektonisch aktiven
Nahuelbuta Segment zu quantifizieren, habe ich eine Erosionsflache und fluviale
Terrassen in dem Kistengebirge mit kosmogenem '“Be und %Al bzw. optisch
stimulierter Lumineszenz datiert. Meinen Ergebnissen zufolge sind die
spatpleistozanen Hebungsraten, die ca. 0,88 mma” betragen, hoher als die
Oberflachenhebungsraten, die Uber die letzten 5 Millionen Jahre mitteln und ca.
0,21 mm a™' betragen. Diese Diskrepanz deutet eine Beschleunigung der tektonischen
Prozesse im Spatquartar an. Die Hebung der Oberflache variiert raumlich und zeitlich
allerdings sehr stark und koénnte sich praferiert an Aufschiebungen konzentrieren.
Darauf deutet eine spatpleistozane Flussumkehr, die vor 80 ka stattfand, hin. Sie steht
meinen Daten zufolge in Beziehung zu Hebung Uber einer blinden Aufschiebung.

Zusétzlich zeigen die Ergebnisse der Expositionsdatierung mit kosmogenem "°Be
und %Al, dass die morphotektonische Segmentierung im Pliozén etabliert wurde,
zeitgleich mit dem Beginn der Hebung des Kistengebirges vor ca. 5 Millionen Jahren
infolge eines Wechsels des Subduktionsmodus von Erosion zu Akkretion. Diese
substantielle Modifikation des Subduktionsprozesses wurde auf den Beginn der
globalen Abkuhlung im spaten Miozdn und einer damit assoziierten erhdhten
Sedimentzufuhr in den Trench zurickgefihrt.

Schlieflich habe ich vulkanische Klasten, die aus alluvialen Flachen im Langstal -
einem Niedrigreliefsektor, der das Kisten- vom Hauptgebirge trennt - stammen, mit
den stabilen kosmogenen Nukliden *He und ?'Ne datiert, um Aufschluss ber die
Faktoren zu erhalten, die die Sedimentablagerung im Forearc bestimmen. Gleichwohl
zu diesem Zeitpunkt noch nicht vollkommen sicher, weisen meine Ergebnisse darauf
hin, dass diese flach einfallenden Oberflachen, die vor 150.000 bis 300.000 Jahren
abgelagert wurden, anscheinend in Zusammenhang mit Anderungen des
Erosionsregimes im Ubergang zwischen glazialen und interglazialen Episoden
entstanden sind.

Zusammenfassend zeigen die Daten, dass der heutige geomorphologische
Ausdruck des Forearcs post-Miozan und eng mit einer klimatischen Uberpragung des
tektonischen Systems verknUpft ist. Der klimatische Einfluss spiegelt sich ebenfalls in
der Topographie und dem lokalen Relief der Zentral- und Sidanden wider. Beide
Parameter variieren stark entlang des Plattenrandes, bestimmt durch den jeweils
dominierenden Oberflachenprozess, der wiederum letztendlich vom vorherrschenden
Klima abhangt. Allerdings reflektiert das Relief teilweise noch Oberflachenprozesse,
die unter vergangenen klimatischen Gegebenheiten aktiv waren. Das betont die grol3e
Bedeutung von Palaoklimaten und Reliktformen im Landschaftscharakter von Chile.
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1. Introduction

Subduction margins constitute the tectonically and seismically most active regions in
the world (Ruff and Kanamori, 1980, 1989; Ishibashi, 1992; McCaffrey, 1994; Cattin et
al., 1997). Landscape evolution along these margins is consequently controlled by a
complex interplay between pronounced tectonics, climate, and superposed surface
processes. However, deciphering the rates of landscape-forming processes and
distinguishing between tectonically and climatically controlled factors has been often
hampered by the difficulty to unambiguously quantify surface processes. Despite these
problems the emergence of new analytical methods, such as cosmogenic-nuclide
dating of geomorphic markers and processes has made the investigation,
quantification, and thus the understanding of surface processes on intermediate
timescales possible. This can be done now at a level of detail that had not been
accessible before. In this context, climate-related processes have become once again
the focus of geomorphic investigations. This is particularly the case since it has been
shown that climate through the effects of surface processes may also affect tectonic
rates and styles (e.g. Molnar and England, 1990; Beaumont et al., 1992; Willett, 1999;
Montgomery et al., 2001; Lamb and Davis, 2003). Accordingly, climate change has not
only a direct impact on vegetation and geomorphic processes, but also implications for
the locus and level of activity of tectonic systems. With a long-term perspective,
modifications of the tectonic system might thereby ultimately alter deformation patterns
and thus influence e.g., the distribution and recurrence of tectonic movements and
tectonically triggered, voluminous landslides or the evolution of drainage networks. Key
questions that arise in this context are for example: (1) How do tectonic and
geomorphic patterns evolve through time? and (2) Which tectonic and geomorphic
processes can be induced by climate or climate-change? In turn, the solution of these
issues requires knowledge about how climatic signals are actually reflected in the
landscape and the depositional record. In order to answer these questions, it is thus
crucial to study those landscapes that evolve in the context of both, tectonic and
climatic influences.

With more than 7000 km length the Andean margin along the west coast of South
America constitutes the longest subduction orogen on Earth. With ongoing mountain
building, megathrust earthquakes at the margin, as well as exceptionally steep climatic
gradients ranging from a hyperarid desert in the north to humid, subarctic conditions in
the south (e.g. Weischet, 1970; Schwerdtfeger, 1976; Khazaradze and Klotz, 2003;
Lomnitz, 2004; Charrier et al., 2007), this region is an outstanding natural laboratory to
investigate landscape evolution in response to climatic and tectonic forcing.

From west to east the margin in south-central Chile comprises the Peru-Chile
trench, the forearc with offshore basins and the onshore coastal ranges; a low-relief
sector, the Central Depression, the main volcanic arc with up to three north-south
trending ranges; and the backarc region with the adjacent foreland. Although the entire
margin and orogen are coupled to the subduction process itself, the forearc constitutes
the most sensitive environment that responds to any changes in the factors
determining mountain building. This region records tectonic and climate-driven
geomorphic processes particularly well (e.g. Gardner et al., 2001; Pazzaglia and
Brandon, 2001; Hampel et al., 2004; Glodny et al., 2005; Melnick and Echtler, 2006a).
In addition to the long-term tectonic processes acting upon this environment, mega-
earthquakes along the subduction zone are the expression of processes in the forearc
above the interplate coupling zone. This setting in south-central Chile is very similar to
the Cascadia subduction zone in North America (e.g. Atwater et al., 1992; Barrientos et
al., 1992; Cattin et al., 1997; Wells et al., 2003; Lomnitz, 2004; Fuller et al., 2006;



1. Introduction 2

Melnick et al., 2006). The largest earthquake ever recorded occurred in south-central
Chile in 1960 (Plafker and Savage, 1970). This event ruptured about 1000 km of the
main thrust between ~ 38° and ~ 44°S and was accompanied by significant coseismic
uplift and subsidence in the forearc (Plafker and Savage, 1970; Cifuentes, 1989;
Barrientos and Ward, 1990; Krawczyk and SPOC-Team, 2003). Thus, from a
landscape-evolution viewpoint and the importance of processes on long time scales,
but also from an earthquake-hazard perspective, it is extremely important to
understand the overall tectonic and geomorphic behavior of forearc regions, because it
may also provide clues regarding the seismotectonic behavior of the margin on much
shorter time scales, involving hundreds of years, which is thus relevant for humans.

Despite the need to better understand these complex relations, our knowledge of
the interaction between subduction and surface processes and their manifestation in
the character of seismo- and morphotectonic segmentation of forearc regions is still
scarce. This also applies to the effects of climate-related forcing of the tectonic system
and the nature of disparate deformation and uplift, as well as subsidence patterns of
forearc regions. Consequently, it is not fully understood yet a) what controls the long-
term evolution of morphotectonic segments; b) over which time scales this
segmentation is maintained; c) how the segments are related to earthquake-rupture
zones; and d) which influence the subduction mode has on the segmentation and the
overall deformation pattern in the forearc. In addition, a related question concerns the
climatic control of certain geomorphic features and landscapes, especially in
mountainous terrains. In order to contribute to solving these issues this thesis aims to
answer some of these questions by investigating the Central to Southern Andean
margin on different spatial and temporal scales, combining geomorphology,
geochronology, sedimentology, and morphometry.

After an introduction to the regional geodynamic, geologic, and climatic setting |
present the results of my research in form of four individual, yet related chapters (3 to
6). Each of these chapters constitutes a manuscript that has been or is in the process
of being submitted. Chapter 3 has already been published. In chapter 7, the last
chapter of this thesis, | summarize the final conclusions of my studies.

In chapter 3, | conducted a morphometric analysis of the Chile margin between
37° and 41°S in order to characterize and define forearc segments by investigating
topography and fluvial systems. | identified different segments that record a distinct
geomorphic and tectonic evolution. Subsequently, | discuss the persistence of this
morphotectonic segmentation and the relation to short-lived earthquake-rupture zones.
However, it remained an open question, when the morphotectonic segmentation was
established, which appears to be closely related to the onset of uplift of the Coastal
Cordillera.

In chapter 4, | focus on one morphotectonic segment that undergoes active uplift
in order to reconstruct the evolution of the Coastal Cordillera on a timescale of 10°
years. The highest sectors of the Coastal Cordillera around 38°S comprise an
extensive, well-preserved erosion surface. Applying '°Be and %Al cosmogenic-nuclide
dating, | derive information on the initiation of range uplift as well as an uplift rate.
Furthermore, | integrate these results in the regional tectonic context and discuss,
whether onshore and offshore forearc sectors uplifted contemporaneously. | also
address the question whether range uplift is related to a shift from subduction erosion
to subduction accretion about 5 Ma ago, possibly related to the onset of global cooling
and glaciations in this sector of the Andes.

Interestingly, the uplift rates | derived from cosmogenic-nuclide dating are
significantly lower than late Quaternary uplift rates calculated from geomorphic
markers, such as marine terraces. This indicates that uplift might have accelerated
through time, which would have important implications for the tectonic evolution of the
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forearc. Hence, in chapter 5, | present the dating of fluvial as well as alluvial sediments
and geomorphic surfaces in order to quantify uplift and incision rates on a time scale of
10° years. This enables me to pin the age of tectonically controlled stream piracy,
compare uplift rates derived by independent methods averaging over different
timescales, and discuss landscape evolution in light of tectonic and climatic forcing.

Chapters4 and 5 emphasize the importance of climate as a factor that
significantly influences the geomorphic development of the Chile forearc, particularly
with respect to the topography and morphology. Nevertheless, in general there is still
no consensus for this and adjacent regions about how topography and relief are in fact
shaped by climate, e.g. the overall evolution of surface processes determined by
rainfall vs. glaciation. In chapter 6 | therefore analyze geometry, relief, and climate
parameters of 120 drainage basins along the watershed of the western Andean flank
between 15.5° and 41.5°S in order to contribute to the understanding of the climatic
control on drainage-basin morphology. | identify segments characterized by different
relief and topography and discuss them in relation to varying surface processes and
transient landscapes.

Chapter 3 (“Morphotectonic segmentation of an active forearc, 37° — 41°S, Chile”
by Katrin Rehak, Manfred R. Strecker, Helmut P. Echtler) is published in
Geomorphology 94 (1-2). Chapter 4 (“Reconstructing surface uplift using cosmogenic
nuclides - the Coastal Cordillera in south-central Chile” by Katrin Rehak, Manfred R.
Strecker, Helmut P. Echtler, Steve Binnie, Michael A. Summerfield, Tibor Dunai, Stuart
Freeman) has been submitted to the journal Earth Surface Processes and Landforms.
Chapter 5 (“Late Pleistocene landscape evolution in south-central Chile constrained by
luminescence and stable cosmogenic isotope dating” by Katrin Rehak, Manfred R.
Strecker, Helmut P. Echtler, Samuel Niedermann, Frank Preusser) will be submitted to
GSA Bulletin. Chapter 6 (“Climatic controls on drainage-basin morphology - the
western Andean flank between 15.5° and 41.5°S” by Katrin Rehak, Bodo Bookhagen,
Manfred R. Strecker, Helmut P. Echtler) is in submission to the journal Earth Surface
Processes and Landforms.
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2. Regional setting

2.1 Geodynamic framework

The western margin of the South American continent comprises the Andes, the
world’s longest mountain chain, and the type subduction orogen (e.g. Mitchell and
Reading, 1969; Dewey and Horsfield, 1970; Windley and Smith, 1976). The study
area is located in Chile; with 4300 km length, the Andean margin of Chile spans more
than 38° of latitude from 17.42°S northeast of Arica to 55.98°S at Cape Horn. Being
among the seismically most active regions in the world, Chile experienced the largest
earthquake ever recorded, the Valdivia-earthquake at approximately 38°S with a M,,
of 9.5 that occurred on May 22, 1960 (Plafker and Savage, 1970; Barrientos and
Ward, 1990; Engdahl and Villasenor, 2002; Krawczyk and SPOC-Team, 2003).

The evolution of the Andes is closely related to the subduction of the oceanic
Nazca Plate beneath the South American continent since ~ 300 Ma, inherited
basement anisotropies, and pronounced north-south-gradients in climate and erosion
(Schwerdtfeger, 1976; Mpodozis and Ramos, 1989). Both lithospheric plates
converge obliquely at N77°E with a rate of currently 66 mm a™', indicated by GPS
modeling data (Angermann et al., 1999; Kendrick et al., 2003). Although the entire
margin undergoes subduction at a spatially similar convergence rate and direction,
the Andes are characterized by pronounced along-strike differences in topography,
architecture, total shortening, and mode of deformation (e.g. Mpodozis and Ramos,
1989; Dewey and Lamb, 1992; Kley et al., 1999; Montgomery et al., 2001; Moreno
and Gibbons, 2007). The factors controlling this segmentation are manifold and still a
matter of debate. In fact, the segmentation of the Andes into distinct morphotectonic
provinces has been related to longitudinal changes in dip and age of the Nazca plate
(Jordan et al., 1983), characteristics of the pre-Andean continental basement
(Mpodozis and Ramos, 1989), and zonal climatic gradients (Montgomery et al.,
2001).

The central part from 14° to 27°S is characterized by crustal shortening in the
Western Cordillera, the Subandean Ranges, and the internally drained Puna-
Altiplano Plateau (Mpodozis and Ramos, 1989). The flat-slab segment of the Nazca
Plate between 27° and 33.5°S exhibits no Quaternary volcanism (Jordan et al., 1983;
Kay and Mpodozis, 2002; Ramos et al., 2002). This region comprises the broken-
foreland province of the Sierras Pampeanas experiencing active shortening and
destructive earthquakes (Jordan and Allmendinger, 1986; Allmendinger et al., 1990).
South of ~31°S, Cenozoic total shortening is significantly reduced and generally
decreases southwards from ~ 300 km in the Central Andes to only ~ 15 km in the
Northern Patagonian Andes (Isacks, 1988; Allmendinger et al., 1990; Diraison et al.,
1998b; Kley et al., 1999; Oncken et al., 2006; Vietor and Echtler, 2006). GPS
measurements corroborate this pattern and document higher shortening rates in the
Central Andes compared to adjacent regions (Dewey and Lamb, 1992; Klotz et al.,
2001; Brooks et al., 2003). Major transitions along the Central to Southern Andes
occur at 33°S, where the southern end of the flat-slab segment and the collision of
the Juan-Fernandez Ridge coincide, and at 38°S, the northern limit of the Patagonian
Andes that delineates significant changes in kinematics and the degree of strain
partitioning (e.g. Jordan et al., 1983; Mpodozis and Ramos, 1989; Dewey and Lamb,
1992; Hervé, 1994; Lavenu and Cembrano, 1999; Kay and Mpodozis, 2002; Ramos
et al., 2002; Rosenau et al., 2006). South of 37°S strain partitioning, controlled by the
Liquinie-Ofqui strike-slip fault zone that developed during the latest Miocene due to
changes in plate-convergence obliquity, is responsible for decoupling the forearc and
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the retroarc, this resulted in minimum shortening and deformation of the foreland
(Dewey and Lamb, 1992; Hervé, 1994; Diraison et al., 1998a; Somoza, 1998; Lavenu
and Cembrano, 1999).
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Fig. 2.1: Topography, geodynamic setting, and rainfall pattern along the Central to Southern
Andes. (A): DEM with Holocene volcanoes marked with black triangles and slab depth
depicted in grey 100-km-contours (modified after Tassara et al., 2006). Note the flat-slab
segment between 27° and 33.5°S showing no Quaternary volcanism. (B): Mean annual
rainfall (TRMM, 2007) with earthquakes M, > 5 denoted as grey dots (after Engdahl et al.,
1998), trench-fill thickness in km marked by the shaded strip (modified after Bangs and
Cande, 1997), and slab depth in grey contours.

Surface uplift and shortening of the Andean mountain range was initiated in the
Eocene to Miocene, starting in the Central Andes and propagating southwards
(Allmendinger et al., 1990; Jordan, 1993; Kley and Monaldi, 1998; Oncken et al.,
2006). Whereas parts of the Central Andean region now constituting the Altiplano-
Puna Plateau have been proposed to have started uplifting already in the Oligocene
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(Allmendinger et al., 1997; Carrapa et al., 2005; Elger et al., 2005; Garzione et al.,
2006; Oncken et al., 2006), extensional basins and syn-contractional deposits south
of 33°S document surface uplift only between 16 to 6 Ma (Jordan et al., 2001;
Giambiagi et al., 2003; Vietor and Echtler, 2006). Here, paleo-elevation data indicate
> 1 km of surface uplift in the Patagonian Andes between ~ 16 to 14 Ma, establishing
the orographic rain shadow on the eastern side of the range (Blisniuk et al., 2005).
Approximately at the same time, pronounced exhumation in the Patagonian Andes
started 16 to 10 Ma ago as constrained by thermochronological data (Thomson,
2002; Adriasola et al., 2006).
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Fig. 2.2: Morphotectonic units of the south-central Chile margin with fault zones (modified
after Melnick and Echtler, 2006b). The stippled line delineates the glacier extent during the
LGM (after Rabassa and Clapperton, 1990).

In my thesis, | mainly concentrate on southern Central Chile, particularly the
VIIl. Regién del Bio-Bio and the IX. Region de la Araucania in south-central Chile
around 38° to 39°S. Southern Central Chile is differentiated in four trench-parallel
morphotectonic units that are representative for large parts of the Andean margin: (1)
Coastal Platform, (2) Coastal Cordillera, (3) Central Depression, and (4) Main
Cordillera (Fig. 2.2) (Darwin, 1846; Briggen, 1950; Gansser, 1973; Jordan et al.,
1983; Mpodozis and Ramos, 1989). | mainly focus on the Coastal Cordillera which
consists of high-temperature metamorphic rocks and a Carboniferous granitic
batholith constituting a Permo-Triassic accretionary wedge and parts of a Permo-
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Carboniferous magmatic arc, respectively (Hervé, 1977; Glodny et al., 2005). Both
lithologic units became juxtaposed by the Paleozoic reactivated Lanalhue strike-slip
fault (Fig. 2.2) (Glodny et al., in press). Other prominent north-west striking fault
zones traversing the Coastal Cordillera are the Bio-Bio and the Mocha-Villarica fault
zones (Fig. 2.2) (Melnick and Echtler, 2006b).

The morphology of the coastal sectors and ranges is characterized from west to
east by flights of marine terraces, well-preserved erosion surfaces atop the Coastal
Cordillera, and extensive depositional surfaces and gravel fills in the Central
Depression. The staircase morphologies and severe drainage re-adjustments in this
region emphasize the high degree of tectonic activity of the southern Chile margin,
which is also expressed in a cluster of seismicity associated with faulting (Bohm et
al., 2002; Haberland et al., 2006) and pronounced coseismic deformation during
megathrust events, such as in 1960 (Kaizuka et al., 1973; Barrientos and Ward,
1990; Nelson and Manley, 1992; Cisternas et al., 2005). Hence, the south-central
Chile forearc constitutes an ideal setting to investigate the relationship between
tectonic, geomorphic, and climatic processes on different time scales.

2.1 Climatic conditions

The climate of Chile represents an outstanding range of temperature and rainfall
regimes from the hyperarid, subtropical Atacama Desert in the north around 22°S to
year-round humid and subantartic conditions south of 40°S and associated
orographic effects (Schwerdtfeger, 1976). Mean annual precipitation increases from
virtually zero in the core of the desert to more than 5000 mm a™ in the luff of the
Andes south of 40°S (Fig. 2.1) (New et al., 2002; TRMM, 2007). In the north,
precipitation is delivered by the low-level Andean Jet from the east, whereas in the
south, it is supplied by the Westerlies. However, due to the high topography of the
Central Andes with summit elevations reaching 7000 m, moisture from the east is
efficiently blocked. Additionally, the upwelling cold Humboldt Current generates
climatic inversions and thus prevents convection of moist air masses. In addition to
the latitudinal position, this constellation promotes the hyperaridity on the western
flank of the Central Andes. In contrast, precipitation in the south is directly related to
frontal passages of cyclones that occasionally penetrate into the semiarid regions as
far north as 27°S during mid-winter (Schwerdtfeger, 1976).

My study area is located in the transition between winter-rain subtropical and
year-round humid, temperate climate conditions around ~ 38°S. The region is
alternatingly influenced by the subtropical Pacific anticyclone in summer and outer-
tropic cyclones during winter (Weischet, 1970; Mardones and Reuther, 1999).
Characteristic for the southern subtropics, this region is subjected to episodic high-
magnitude rainfall events (Weischet, 1970). Mean annual rainfall averages between
1000 to 2500 mm a™, depending on the wind position to the Coastal Cordillera.

The regional climatic zonation is controlled by long-lived, hemisphere-scale
circulation patterns. Humid conditions in the southern Central Andes determined by
the Westerlies have probably existed since middle Miocene similar to the hyperarid
desert which persisted since at least 10 to 14 Ma (Haselton et al., 2002; Hartley,
2003; Blisniuk et al., 2005; Dunai et al., 2005; Nishiizumi et al., 2005; Rech et al.,
2006). Related to global cooling, Patagonian glaciation started 5 to 7 Ma ago (Mercer
and Sutter, 1982; Zachos et al., 2001; Rabassa et al., 2005). Whereas south of 40°S
the Patagonian ice reached the foothills of the Coastal Cordillera and successively
the Pacific coast, the Coastal Cordillera and the Central Depression north of 40°S
remained free of glaciers during Quaternary (Fig. 2.2.) (Rabassa and Clapperton,
1990; Clapperton, 1993; Clapperton, 1994). However, the Main Cordillera in south-
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central Chile currently is and was partly influenced by valley and cirque glaciers
(Rabassa and Clapperton, 1990).

The spatial distribution of precipitation and related intensity of erosion along the
Andean margin is reflected by the thickness of the terrigeneous sediment fill in the
trench off South America (Fig. 2.1). Longitudinal sediment transport in the trench,
however, is also inhibited by the Juan-Fernandez Ridge, thus promoting sediment
accumulation south of the ridge, while northern areas are sediment starved due to
the combined effects of the moisture barrier and latitude-controlled aridity (Bangs and
Cande, 1997). It has been proposed that the thickness of sediments in the trench
exerts a first-order control on the subduction mode by lubricating the plate interface
and thus decreasing shear stresses suggesting a mechanism, how climate might
influence tectonic systems (Lamb and Davis, 2003; Melnick and Echtler, 2006a).
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3. Morphotectonic segmentation of an active forearc,
Chile (37°-41°S)

Abstract

Many forearc-regions are characterized by seismo- and morphotectonic
segments that may record recurring activity of large earthquakes in the
past. It is very important, from a landscape development as well as from an
earthquake-hazard perspective, to understand the evolution of such forearc
segmentation. However, it is not well known on which timescales forearc
segments retain their tectono-geomorphic identity, how they are related to
earthquake rupture zones, and what may govern their long-term evolution.
The forearc of the active convergent margin of south-central Chile (37°-
41°S) is located within the rupture zone of the Chilean 1960 megathrust
earthquake. We combine geomorphological and sedimentological analysis,
as well as structural and geophysical data to reconstruct the
morphotectonic evolution of this forearc setting.

Our data documents that the southern Chile forearc is segmented into three
sectors (Nahuelbuta, Toltén and Bueno segments) that define a semi-
independent structural and geomorphic evolution. Whereas the Toltén
segment appears to be quasi-stable, the other two segments record
pronounced Quaternary uplift. The Nahuelbuta and Bueno segments are
characterized by broad, north-south oriented antiformal structures with
numerous anomalies in the highly dynamic fluvial network implying severe
drainage modifications and sediment rerouting. The morphotectonic
segmentation is compatible with structural, seismic, and gravimetric
characteristics.

Apparently, this morphotectonic segmentation is persistent over timescales
of 10* to 10° years. This contrasts with transient earthquake rupture zones
that exhibit short-term variability over 10? to 10° years and may rupture
beyond the morphotectonic boundaries. We propose that the differential
forearc evolution is focused by inherited upper-plate structures, but appears
to be ultimately controlled by characteristics of the highly inhomogeneous
subducting plate, as well as rheological properties of the forearc.

KEYWORDS: tectonic geomorphology, drainage basins, topography,
forearc evolution, morphometry

3.1 Introduction

Forearc regions constitute one of the tectonically most active areas of plate boundary
settings (e.g. in South America, Cascadia, Nankai or New Zealand), and are often
associated with large, destructive earthquakes, concomitant deformation, uplift, or
subsidence, resulting in pronounced contrasts in relief, changes in drainage networks,
and variations in surface processes and rates (Ruff and Kanamori, 1989; Atwater,
1992; McCaffrey, 1993; Klotz et al., 2001; Pazzaglia and Brandon, 2001; Clift et al.,
2003; Cisternas et al., 2005). Typically, forearc regions are segmented into semi-
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independent seismotectonic segments that may correspond to rupture segments of
large earthquakes (Mogi, 1969; Taylor et al., 1987). It is not known however, if such
rupture segments are being sustained on timescales involving several 10° to 10° years
or if they rather represent transient phenomena (Machette et al., 1991; Lomnitz, 2004;
Lee and Yang, 2006). Another unresolved question concerning the evolution of active
forearc regions is as to what extent landscape evolution and tectonic segmentation
may be controlled by the characteristics of the subducting plate or by inherited
structures of the upper plate. In this respect, it is interesting that earthquake ruptures in
forearc settings may be limited by segment boundaries that are determined by crustal
anisotropies (Lay et al., 1982). Therefore, it is important to understand the nature of
forearc deformation and the processes that drive forearc segmentation as well as to
define how persistent these segments are. Indeed, landscapes are sensitive recorders
of tectonic processes and spatiotemporal variability in tectonism on various timescales,
and may thus provide valuable information on the nature of seismotectonic
segmentation.

Forearc studies in different regions have revealed that the subduction of
topographic features, such as ridges, fracture zones or seamounts causes significant,
although very localized surface-uplift anomalies (McCann and Habermann, 1989;
Gardner et al., 1992; Machare and Ortlieb, 1992; Gutscher et al., 1999; Hampel et al.,
2004). In addition, modeling studies suggest that basal sediment underplating and
frontal accretion may cause spatially and temporally variable surface uplift signals in
the upper plate (Lohrmann, 2002). Notwithstanding, in most forearc environments the
controls and dynamics of deformation and segmentation remain elusive or have not
been fully understood yet.

Along the coast of south-central Chile the largest earthquake ever recorded
ruptured a zone between ~ 37° and 46°S in May 1960 (Plafker and Savage, 1970).
Although this extensive rupture zone suggests a more or less homogeneous plate
interface along this margin, the morphology and tectonics of the regional forearc
appear to be highly differentiated. This part of the Chile plate margin is thus an ideal
natural laboratory to evaluate forearc segmentation, topography, and landscape
evolution in relation with subduction processes.

Here, we use geomorphologic, sedimentologic, and compiled structural, as well
as geophysical data to propose a model for dynamic forearc segmentation and uplift
distribution in south-central Chile between 37° and 41°S and discuss their controlling
parameters. In particular, we use drainage network analysis combined with sediment
provenance, gravimetric modeling data (TaSarova, 2004; Hackney et al., 2006), and
seismicity patterns (Engdahl et al., 1998; Bohm et al., 2002; Bruhn, 2003; Bohm, 2004;
NEIC, 2006) to decipher the evolution of this actively deforming segment of the forearc
of Chile.

We demonstrate that the forearc in this environment is segmented into three
distinct sectors, each undergoing a semi-independent tectonic and morphologic
evolution. Compared to the long-term regional forearc segmentation, earthquake
rupture segments represent rather transient, second-order phenomena.

3.2 Regional tectonic setting

The active margin of south-central Chile (Fig. 3.1) is characterized by the fast oblique
(N77°E) subduction of the oceanic Nazca Plate beneath South America, megathrust
earthquakes (Cisternas et al., 2005), and a convergence rate of approximately 65 to 85
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mm a” (Demets et al., 1994; Somoza, 1998; Angermann et al., 1999). Although the
Neogene-Quaternary accretionary wedge at the Arauco Peninsula at about 38°S
records alternating phases of subduction erosion and accretion, the size of the
accretionary prism as well as the thickness of the trench fill that has accumulated since
the late Miocene suggest that this sector is in an accretional or at least non-erosional
mode (Bangs and Cande, 1997).
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Fig. 3.1: A: Topography, bathymetry, and geology of south-central Chile. Segmentation of the
Nazca Plate, ocean floor ages (in Ma) and main fault zones of the South American Plate
(Tebbens and Cande, 1997). Oceanic plate structures are outlined in yellow, continental plate
structures are outlined in black. The red rectangle delineates the extent of (B). B: Geology and
major structural features of the study area (modified after Sernageomin (2003) and Mordojovich
(1981)).

The offshore area of south-central Chile comprises several forearc basins (Arauco,
Valdivia and Pucatrihue basins) (Fig. 3.1) (Mordojovich, 1981). South of 38°S the
incoming plate is segmented by several fracture zones (Fig. 3.1). The northeast-striking
Mocha fracture zone (FZ) at 38°S currently subducts obliquely beneath the Arauco
peninsula. The almost trench-normal Valdivia FZ system at about 40°S and the oblique
Chiloe FZ at about 42°S also intercept the plate margin. As a result of their obliquity
with respect to the orientation of the trench these fracture zones migrate southward at
rates between 40 (Mocha FZ) to 8 mm a™' (Valdivia FZ) (Vietor et al., 2005). In addition,
the Valdivia FZ system separates younger, and therefore, more buoyant oceanic crust
generated at the Chile Rise to the south, from older ocean floor generated at the East
Pacific Rise to the north (Nelson and Manley, 1992; Tebbens and Cande, 1997).
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The onshore part of south-central Chile consists of three major morphotectonic
and structural provinces: the Coastal Cordillera in the west, the north-south oriented
Central Depression, and the Main Cordillera in the east (Fig. 3.1). The Coastal
Cordillera constitutes a Paleozoic-Triassic forearc complex, including rocks related to a
Permo-Triassic accretionary wedge and parts of a Permo-Carboniferous magmatic arc
(Hervé, 1977; Glodny et al., 2005) that are grouped into an Eastern and a Western
Series, respectively (Fig. 3.1). At about 37.5°S the Eastern Series of the Cordillera de
Nahuelbuta is dominated by high-temperature metamorphic rocks and a Carboniferous
granitic batholith. Farther south, at about 41.5°S, the Western Series consists mainly of
high-pressure schists, metabasites, and accreted metacherts (Aguirre Le-Bert et al.,
1972; Herve, 1977). Apatite fission track data indicates ongoing exhumation of the
paleo-accretionary wedge since Eocene time with exhumation rates of 0.04 + 0.01
mm a” (Glodny et al., 2005).

The marine platform units of the Arauco Peninsula are predominantly composed
of Cretaceous to Quaternary marine and continental sedimentary sequences bounded
by NW-striking, crustal-scale basement discontinuities. In these basins, episodes of
subsidence and sedimentation have alternated with uplift and erosion (Pineda, 1986),
possibly related to cycles of tectonic accretion and erosion (Bangs and Cande, 1997;
Melnick and Echtler, 2006a).

The Coastal Cordillera in the study area is characterized by numerous north-
northeast, west and northwest oriented reactivated Paleozoic faults with strike-slip
kinematics (Mordojovich, 1981; Echtler et al., 2003; Rosenau, 2004). The most
prominent structures are the Bio-Bio fault, the Lanalhue fault zone separating the
Eastern from the Western Series, and the Mocha-Villarica fault zone (Fig. 3.1).

The Arauco Peninsula and the Cordillera de Nahuelbuta are characterized by
flights of multiple terraces, reaching elevations of up to 900 m. The terraces are tilted
along a northwest-southeast oriented uplift axis, which passes through the Arauco
Peninsula and the highest summits of the Cordillera de Nahuelbuta (Kaizuka et al.,
1973). Terrace levels on Arauco at elevations of up to 500 m are covered by marine
Tertiary sediments suggesting an origin as marine abrasion platforms (Mardones and
Reuther, 1999) indicating uplift, superposed oscillating sea-levels, and erosion during
and since the late Pliocene (Plafker and Savage, 1970; Kaizuka et al., 1973; Nelson
and Manley, 1992; Kelm et al., 1994). In contrast, erosion surfaces higher than 500 m
lack any evidence of marine origin and were interpreted as fluvial erosion surfaces
(Kaizuka et al., 1973). Based on analogue modeling, Lohrmann (2002) proposed that
basal accretion and antiformal stacking at the plate interface at depth in this
environment may cause such differential uplift. Furthermore, inherited upper plate
structures independent of accretionary processes might locally influence the locus of
deformation (Echtler et al., 2003).

3.3 Methods

We use morphometric analyses, geomorphological and sedimentological field
observations, as well as compiled structure, gravimetry and seismicity data to define
the structure and long-term forearc tectonics of the south-central Coastal Cordillera.
Corrected SRTM-90 m interferometry elevation data, ASTER and LANDSAT satellite
images, and aerial photos at a scale of 1:70 000 serve as database.

Using common algorithms (O'Callaghan and Mark, 1984; Jenson and Domingue,
1988; Tarboton et al.,, 1991), the drainage network was digitally extracted and
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watersheds were delineated to perform detailed basin and topography analyses. This
derived channel network was validated with rivers delineated on georeferenced
topographic maps (1:50000). Based on these data, morphometric properties such as
area-elevation relations, swath profiles, steepness, and local relief were calculated to
identify topographic anomalies and incising high-relief areas. In active tectonic settings,
such areas commonly correlate with regions of ongoing rock uplift (Molin et al., 2004).
Swath profiles were created along 75 and 40 km wide bands across the Coastal
Cordillera. Steepness maps were interpolated from area-slope data of all channels with
a best-fit 8 of 0.2, which was derived from regressions. To create local relief maps, we
subtracted maximum and minimum elevations averaged over a 4.5-km-radius circle.
This procedure helps discriminate areas of different erosional, and possibly, tectonic
activity.

Longitudinal river profiles, profile-concavity indices, as well as DS (downstream
distance — slope) plots of drainage basins were generated to detect anomalies and
modifications in the stream network, including knickpoints, stream captures and low-
/high-slope river segments. DS plots display the slope of a stream segment as a
function of the segment’s downstream distance related to the stream profile in a log-log
space. This approach is helpful in identifying and discriminating knickpoints (Bishop
and Goldrick, 2000). The profile concavity index (PCI) is used to quantify the general
shape of a stream long profile. Following Demoulin (1998) we normalized the distances
and elevations of all profiles to 1 and calculated the PCI as the ratio of the area under
this normalized profile to the area of a virtual triangle linking the divide and mouth of
the river (PCI = 0.5).

We also tested our morphometric results in the field. Based on prior evaluation,
the channel showing the most severe drainage modifications was chosen for detailed
mapping of fluvial sediments and terraces to determine paleo-channels and drainage
network changes along the Tirua-Pellahuén valley (Fig. 3.2). We distinguished fluvial
terrace remnants by comparing their sediment composition applying provenance
analysis via pebble counting, and determined paleo-flow directions by measuring
pebble imbrications. Finally, we combined our geomorphic data with regional structural
data (Echtler et al., 2003; Rosenau, 2004), bathymetry (Bangs and Cande, 1997),
ocean-floor characteristics (Tebbens and Cande, 1997), gravimetry (Ta8arova, 2004;
Hackney et al., 2006), and earthquake data from global catalogues (Engdahl et al.,
1998; NEIC, 2006), as well as local seismicity networks (Bruhn, 2003; Bohm, 2004) to
better evaluate the influence of the incoming and upper plate characteristics on
segmentation.

3.4 Results

3.4.1 Drainage network analysis and sedimentological observations

The analysis of digital elevation models as well as geomorphic and structural field
observations reveal three major morphologic domains along the studied area of the
Coastal Cordillera: two higher-elevation areas approximately at the latitudes of 38°S
and 41°S, which we term the Nahuelbuta and Bueno segments, reaching elevations of
1500 m and 1000 m, respectively. These ridges run parallel to the coastline and have
an ellipsoidal shape (Fig. 3.3). These high-elevation domains are adjacent to a central,
low-elevation domain with an average elevation of 60 m, referred to as the Toltén
segment (Fig. 3.3). The Nahuelbuta segment is limited by the Rio Bio-Bio in the north
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and the Rio Imperial in the south. The Rio Imperial also borders the Toltén segment in
the north. In turn, the Rio Calle separates the Toltén and the Bueno segments
(Fig. 3.2). The southern limit of the Bueno segment is the Chiloé gulf, where the
Coastal Cordillera loses its topographic expression in the transition to the Patagonian
archipelago.

This first-order segmentation is also documented by the local relief and steepness
maps (Fig. 3.3). Both define an area of high incision and pronounced relief contrasts in
the north (Nahuelbuta segment), bordered by a low-relief area to the south (Toltén
segment), which in turn is limited by an area of increasing elevation and incision to the
south (Bueno segment). The swath profiles of the two high-relief segments, showing
the maximum, mean and minimum elevation from north to south, support these
assessments (Fig. 3.3). Furthermore, our field observations in the Nahuelbuta segment
revealed the existence of north and south-tilted erosion surfaces to the north and south
of the highest summits, respectively.
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Fig. 3.2: Segmentation and drainage evolution of the south-central Chilean Coastal Cordillera —
morphotectonic segments and analyzed stream profiles. (A): Shaded-relief DEM showing the
morphotectonic forearc segments marked by black ellipses. Black arrows assign wind gaps,
white-framed arrows depict zero-slope channel segments. Arrows point in flow direction. Blue
errors delineate discharge routing. (B): Drainage network in the three morphotectonic segments,
numbers mark analyzed stream profiles (1 Bio-Bio, 2 Carampangue, 3 Lebu, 4
Cayucupil/Paicavi, 5 Tavoleo, 6 Pellahuén, 7 Tirta, 8 Moncul, 9 Imperial, 10 Toltén, 11 Calle,
12 Chaihuin, 13 Bueno, 14 Pucatrihue/Contaco, 15 Llesquehue, 16 Cruces, 17 Llico). Note that
rivers in the Nahuelbuta and Bueno segments are mainly locally sourced in the Coastal
Cordillera to the west, whereas large rivers originating in the Main Cordillera in the east
concentrate in the Toltén segment.
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The segmentation is reflected in the drainage-basin characteristics as well
(Table 3.1). In general, the forearc drainage is manifested in a grid-iron pattern. Broad,
swampy areas and low-slope streams that integrate large drainage basin areas
characterize the Toltén segment. Conversely, the Nahuelbuta and Bueno segments
record severe reorganizations of the drainage network, including wind gaps,
anomalous river gradients, knickpoints, flow reversals, and stream captures (Fig. 3.2
and 3.4).

The Coastal Cordillera is primarily drained by locally sourced rivers and therefore
characterized by small drainage basins (Fig. 3.2). There are only few large rivers
capable of cutting through the Coastal Range. From north to south these are the Bio-
Bio, Imperial, Toltén, Calle and Bueno rivers, all characterized by large contributing
areas in the Main Cordillera to the east that receive high amounts of precipitation
(Fig. 3.2). Three of them, the Imperial, Toltén and Calle rivers, flow in the low-relief
Toltén segment where the Coastal Range has no significant topography. Thereby,
these rivers route discharge and sediment transport from the Main Cordillera and the
Central Depression to singular outlets in the Toltén segment and the northern terminus
of the Nahuelbuta segment (Fig. 3.2).

The Nahuelbuta segment is mainly drained by rivers associated with six small
local basins, beside the Rio Bio-Bio in the north and the Rio Imperial in the south
(Fig. 3.2). In this segment we identified nine wind gaps that are systematically
distributed in east-west oriented valleys (Fig. 3.2). The wind gap between the Tirda and
Pellahuén basins is the most striking paleo-drainage feature of the Nahuelbuta
segment. Longitudinal channel profiles, slope indices, and digital drainage network
analysis indicate a flow reversal about 10 km inland of the Rio Pellahuén that formerly
drained toward the Pacific. At present, this river traverses the entire Coastal Cordillera
with a slope of less than 0.004 % (Fig. 3.5) and drains eastward into the Central
Depression.
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Fig. 3.3: (A) Local relief map and (B) steepness map showing high-relief clusters in the
Nahuelbuta and Bueno segments. Local relief is averaged over a radius of 4.5 km. Steepness is
interpolated based on area-slope regressions for all channels with a 6 of 0.2. (C) and (D) Swath
profiles of the high-relief segments marked in (A) with ellipses, plotting regional minimum,
mean, and maximum elevations.
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Basin Strahler order Basin 2rea Basin relief | Basin length [Channel relieff Channel Channel eIana:alt';on Hy_psometric pCI
[km?] [m] [km] [m] length [km] | slope [m/m] ratio integral
BioBio 8 24026.00 3511 288.48 1615 416.99 0.0039 0.61 0.23 0.13
Carampangue 6 1264.22 1333 53.29 1165 78.45 0.0148 0.75 0.31 0.11
Lebu 5 822.15 1334 50.09 872 83.46 0.0104 0.65 0.26 0.07
Cayucupil 6 703.72 1529 34.92 853 46.63 0.0183 0.86 0.34 0.10
Tavoleo 6 1272.00 1334 46.54 1188 71.14 0.0167 0.86 0.32 0.10
Tirda 5 385.28 866 28.58 666 35.64 0.0187 0.78 0.45 0.08
Pellahuén 5 914.50 828 43.99 515 88.90 0.0058 0.78 0.48 0.06
Moncul 5 433.61 868 29.53 731 44.93 0.0163 0.80 0.30 0.07
Imperial 8 12333.00 3075 166.37 15672 252.59 0.0062 0.75 0.14 0.10
Toltén 6 9265.42 3729 157.69 1381 427.76 0.0032 0.69 0 i 0.09
Calle 6 11580.05 906 188.23 826 257.21 0.0032 0.65 0.21 0.17
Chaihuin 3 288.74 1044 28.00 777 48.83 0.0159 0.68 0.47 0.16
Bueno 6 9137.50 2403 142.71 175 193.47 0.0009 0.76 0.08 0.14
Pucatrihue 3 363.80 803 34.96 647 46.04 0.0141 0.62 0.35 0.08
Llesquehue 3 356.74 1009 32.97 799 48.31 0.0165 0.65 0.46 0.10
Cruces 3 188.28 974 23.32 820 30.97 0.0265 0.66 0.59 0.15
Llico 4 1414.61 907 38.08 750 77.05 0.0097 1.1 0.25 0.05

Table 3.1: Basic morphometric data of the analyzed drainage basins and their trunk streams.
The basins are ordered from north to south. Shaded cells mark the rivers that drain the low-
relief Toltén segment.
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Fig. 3.4: River longitudinal profiles and profile concavity indices (PCI): (A) Nahuelbuta segment,
(B) Bueno segment, documenting non-graded, partly convex channels with knickpoints and

zero-slope-segments. Profiles are 15x exaggerated.

In the wind gap of the Rio Pellahuén a silty alluvial plain covers the former, now
completely dry river bed. Along the channel two separate terrace systems were
distinguished: a lower, continuous terrace at 2 to 5 m above and parallel to the recent
river bed, and a second, less well preserved upper terrace at about 10 to 90 m above
the present channel (Fig. 3.6). Both terrace systems have distinct lithologic
compositions. The lower terrace level consists exclusively of matrix supported, well
rounded quartz and schist conglomerates. In contrast, the older upper terrace levels
comprise matrix supported, very well rounded andesitic and basaltic conglomerates.
The quartz and schist conglomerates are locally derived from basement rocks of the
metamorphic Western Series. In contrast, the volcanic conglomerates are derived from
the volcanic arc of the Main Cordillera. Alternatively, they could represent cannibalized
deposits that were originally sourced in the volcanic Main Cordillera, but were
temporarily stored in the Central Depression before they were remobilized. Pebble
imbrication measurements from both terrace systems confirm the major drainage
reorganization. The imbrication of the lower terrace deposits reflects the present
southeast- to south-ward flow of the Rio Pellahuén, whereas clasts from the upper
terrace reflect a paleo-flow direction toward the northwest to north-northwest, indicating
former drainage toward the Pacific (Fig. 3.6). The dichotomy in clast compositions and
imbrications thus documents a complete drainage reversal in this area. This is further
corroborated by bathymetric data revealing a large inactive submarine canyon and fan
in front of the outlet of the paleo-Pellahuén river (Fig. 3.7).
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Fig. 3.5: DS plots of the streams traversing the Coastal Cordillera. Arrows mark the passage
through the Coastal Cordillera. Note that all these rivers cross the range with a slope of virtually
zero.

It is not known, however, when this drainage reversal occurred. Suarez and Emparan
(1997) assign a Plio-Pleistocene age to volcanic conglomerates in the Central
Depression that are identical in composition to the volcanic conglomerates constituting
the upper terrace. In contrast, based on our field observations and regional geomorphic
relationships, we infer the lower schist-bearing terrace levels to be of Holocene age.
This inference is supported by the absence of colluvial deposits on this terrace,
indicating that there has not been enough time for hillslope processes to generate such
deposits. Since the reversal must have occurred between the formation of both
terraces, the reversal should be a late Pleistocene/early Holocene event.

The Bueno segment is drained by five small local basins and the Rio Bueno (Fig. 3.4).
Similar to the Nahuelbuta segment, the stream networks indicate drainage disturbance,
including river piracy and wind gaps. Two wind gaps are situated in the north near Rio
Chaihuin (Fig. 3.4). In addition, the valleys of the Bueno, Pucatrihue, Llesquehue and
Llico rivers traversing the Coastal Range are characterized by virtually zero-degree
slope segments (Fig. 3.5), similar to the Nahuelbuta segment. Interestingly, the Rio
Pucatrihue flows in an inadequately wide channel, which would have originally required
much higher stream power to erode compared to the present-day small, and relatively
low-relief contributing area (Fig. 3.4). This river must have lost a formerly large
contributing area, similar to the Rio Pellahuén in the Nahuelbuta segment. The Bueno,
Llesquehue and Llico rivers also have very low stream power due to their low slope
and/or small contributing areas. If this area is indeed continuously uplifting, it can be
expected that their passages will be ultimately defeated. In summary, the drainage
system of the Bueno segment shows the same characteristics of reorganization as the
Nahuelbuta segment and thus emphasizes the fundamental influence of tectonic
deformation on landscape evolution in this region.
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Fig. 3.6: Results of the pebble counts and flow directions measurements of alluvial terraces
along the paleo-channel of the Pellahuén. (A): Photograph showing the well-preserved lower
terrace ~ 5 m above river level, and a remnant of the upper terrace ~ 30 m above river level.
(B): DEM denoting sampling locations. (C): Paleo-flow directions and pebble counting results of
the upper terraces. WP-numbers are marked in B. Note the paleo-flow fowards north-northwest,
north, and the polymict terrace composition of the conglomerates. (D): Paleo-flow directions and
pebble counting results of the lower terraces. WP-numbers are marked in B. Note here the
opposite flow direction towards east-southeast, south, and the monomict terrace composition of
the conglomerates.

Conversely, in the Toltén segment the river network is very different. The entire
segment is drained by three large, well integrated basins that define the Imperial,
Toltén and Calle drainages (Fig. 3.4). These basins are dominated by swamps,
extensive alluvial plains and low-slope, near sea-level drainage. Evidence for incision is
absent. In contrast to the other segments, these drainage systems show no signs of
reorganization or modifications, and appear to be stable.

3.4.2 Geological and geophysical data

The subducting and overriding plates are both fragmented by inherited structural
features. For example, the Bio-Bio, Lanalhue, and Mocha-Villarica fault zones are
dominant, reactivated Paleozoic structures in the overriding plate (Fig. 3.1).
Interestingly, the Bio-Bio Fault in the north and the Mocha-Villarica fault zone in the
south broadly correspond to our morphologically defined borders of the Nahuelbuta
segment. However, the other segment boundaries do not coincide with upper plate
structures. Lithology and structure of the Toltén segment significantly differ from the
other two segments since the Central Depression and its characteristic Tertiary-
Quaternary sediment infill, common features along most of the Chilean margin, are
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absent, and the basement of the Coastal Cordillera reaches into the Main Cordillera
(Fig. 3.1).

75°W 74°W
K e

Paleo- e
Pellahuén

o
Imperial
Canyon j3
J ¥

& B
EQ depth [km]
<15
15-25
25-35
35-70

Fig. 3.7: Bathymetric map (modified after Bangs and Cande (1997)), and earthquake distribution
of events with M,, > 5, derived from Engdahl et al. (1998) and the Global NEIC-Catalog, 1973 to
present (2006). Note the concentration of shallow earthquakes (5-35 km) beneath the
Nahuelbuta segment, and the trenchward shift of earthquake loci at 38°30’S. Note also the
sparsity of large seismic events beneath the Toltén and Bueno segments. The stippled black
rectangle denotes the paleo-canyon that can be attributed to the former paleo-Pellahuén river
when it was still supplied by a large Andean catchment.

The incoming Nazca plate is segmented by three major transform fracture zones (FZ)
separating oceanic crust of different age: the Mocha FZ, currently subducting beneath
the Arauco Peninsula and the Cordillera de Nahuelbuta, the Valdivia FZ system, and
the Chiloe FZ (Fig. 3.1). Interestingly, the distribution of offshore forearc basins that are
bordered by these oceanic fracture zones correlates with our morphotectonic
segmentation as well. According to ocean floor age and origin, as well as subduction
geometry, the Valdivia FZ system is expected to have the strongest potential to
influence the subduction process and the related long-term morphotectonic forearc
evolution. First, the Mocha and Chiloe FZ subduct obliquely, resulting in fast southward
migration of about 40 m a™ along the margin (Vietor et al., 2005). Therefore, if ocean-
floor topography and upper plate deformation and uplift are coupled, their impact
should be time-transgressive. In contrast, the Valdivia FZ system remains
perpendicular to the trench, and its impact, if present, must have been relatively steady
over longer timescales. Second, the Valdivia FZ system separates not only oceanic
crust of very different age but also of completely different origin. In fact, the extensive
Valdivia FZ system broadly coincides with the Toltén segment, where the coast is
significantly bent inland, a phenomenon remarkably similar to the intercept between the
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Juan Fernandez Ridge and the upper plate farther north, and where topography is also
different compared to adjacent sectors.

The regional earthquake distribution along the segments along the margin
corroborates our assessment that the northern fracture zone systems constitute
important transitions in the subducting plate. The most striking pattern in the total
regional seismicity distribution is a complete westward shift in the locations of
earthquakes larger than M,, > 5 toward the trench at 38°S (Fig. 3.7). This coincides with
the locus of subduction of the Valdivia FZ system. Thus, the earthquake distribution
reflects the major changes in slab properties, such as thermal structure, buoyancy and
elastic strain accumulation due to decreasing ocean-floor age (Oleskevich et al., 1999).
Before shifting to the trench, shallow earthquakes (< 30 km) cluster in the upper plate
beneath the Nahuelbuta segment. Their spatial distribution mirrors the position of thrust
faults (Bohm et al., 2002), documenting ongoing thrusting and uplift in this segment.
Beneath the Toltén segment few earthquakes can be traced, whereas in the Bueno
segment large earthquakes appear to be absent. Furthermore, the coseismic forearc
deformation associated with large earthquakes also varies considerably along the
coast. In the Nahuelbuta segment coseismic uplift is documented (Kaizuka et al., 1973;
Nelson and Manley, 1992), whereas the Toltén segment records coseismic subsidence
(Barrientos and Ward, 1990; Cisternas et al., 2005).

Finally, the nature of gravity anomalies in the forearc region coincides with our
geomorphic segment boundaries. Gravimetry (TaSarova, 2004) shows that the margin
of southern Chile can be differentiated into three gravimetric provinces (Fig. 3.8).
Whereas the Nahuelbuta and Bueno segments are both characterized by positive
gravity anomalies, the Toltén segment coincides with a pronounced negative gravity
anomaly.

Fig. 3.8 (overleaf): (A) DEM with major upper-plate structures and coseismic deformation during
the 1960 earthquake (modified after Plafker and Savage (1970)). Large historic earthquake-
rupture zones with M,, > 7 are superposed on the DEM (compiled after Lomnitz (1970), Kelleher
(1972), Cifuentes (1989), Beck et al. (1998), Campos et al. (2002), Lomnitz (2004), and
Cisternas et al. (2005)). Arrows mark rupture continuation. Note that morphotectonic units and
rupture zones do not coincide. In fact, rupture zones always occupy areas of different
morphology. The star denotes the epicenter of the 1960 earthquake. The dashed line crossing
the 1960 rupture zone separates the main shock (south) from the foreshock (north). (B)
Morphotectonic segments (white-dashed ellipsoids), major upper-plate structures and
earthquake distribution (M,, > 5, derived from teleseismic earthquake relocation (Engdahl et al.,
1998)), superposed on Bouguer anomalies [10° m s (modified after Tasarova (2004)).
Note the correlation of morphotectonic segments with seismicity clusters, major upper-plate fault
zones (BBFZ, MVFZ), and gravity anomalies. (C) DEM with major upper-plate structures, and
coseismic slip during the 1960 earthquake (modified after Barrientos and Ward (1990)). Note
the correlation of slip maxima and morphotectonic segments.
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3.5 Discussion

Our investigations document a pronounced morphologic segmentation of the Chilean
forearc between 37° and 41°S into three distinct domains. These domains constitute
geomorphic entities with characteristic topography, drainage networks, and common
geomorphic processes that shape these regions. Moreover, geophysical data, including
remarkable gradients of earthquake distribution and gravity anomalies, correspond with
these morphotectonic segments.

Maps of local relief reveal highly dynamic fluvial systems with high-relief/high-
incision sectors that indicate ongoing uplift in the Nahuelbuta and Bueno segments.
Both border the low-relief central Toltén segment, which does not show signs of recent
river modifications and lacks significant topography and active incision. Additionally, in
this segment the Central Depression and a Cenozoic sediment cover are missing as
exclusively basement rocks are exposed.

Interestingly, a grid-iron fluvial pattern similar to the one found in the three
segments was also described in the Himalayan foreland undergoing active folding
(Gupta, 1997). There, originally transverse rivers were deflected by lateral and vertical
growth of anticlines that are associated with active blind faults. These rivers exit
through low-relief sectors between anticlines, but integrate large drainage-basin areas
upstream due to stream diversion, rerouting and piracy. The evolution of the Chilean
segments is remarkably similar. Flow reversals, abandoned marine canyons, stream
captures, and low-relief outlets document that rivers are gradually deviated by the
progressively uplifting Coastal Cordillera. This forces drainage to migrate laterally
toward the tips of the uplift or to a confluence with transverse rivers already located
there. The result is the characteristic drainage pattern with widely spaced point-source
drainage outlets at the mountain front that are pinned to the tips of the mountain range
in the low-elevation sectors (Fig. 3.9). The diversion of streams and the low stream
power of the traversing rivers should have seriously modified the sediment supply to
the Pacific ocean during the late Pleistocene and Holocene. Moreover, we expect this
process to have been amplified during the last deglaciation and related exposure of the
terminal lakes near the Andean mountain front, which acted as effective sediment
traps. Importantly, the tectonic defeat of the river documents that the amplitude and
rate of tectonic deformation in this region are high enough to outpace fluvial incision.
The defeat might have been facilitated by rearrangements of the Andean contribution
area that decreased the incision power of the river and thus amplified the effect of
tectonics.

The central sectors of the Nahuelbuta and Bueno segments exhibit the highest
variability and are divided by deeply incised, approximately east-west trending valleys.
The loci of valley incision approximately coincide with the best-fit curve maxima
encompassing the ellipsoid-shaped uplift zones (Fig. 3.3). This setting is reminiscent of
the actively deforming Oxaya Anticline in northern Chile, where rivers have been
cutting through the central part of an uplifting antiform (Zeilinger et al., 2005). There,
stream piracy and wind gaps indicate migration of drainages away from crestal regions.
Indeed, in the Nahuelbuta and Bueno segments the ellipsoidal shape, the tilted
geomorphic surfaces, the grid-iron drainage evolution, and high central sections incised
by rivers along the short axis of the uplift, emphasize that these segments are large,
actively deforming crustal-scale antiformal structures.

The ultimate cause for the observed forearc segmentation is not known. Either
inherited upper plate structures, characteristics of the oceanic plate or differential
accretionary processes at the plate interface might influence the spatiotemporal
distribution of deformation, and thereby, control the topographic evolution of the
forearc. Our datasets suggest that a complex combination of factors is responsible for
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the highly differential morphotectonic evolution of the Chilean margin between 37° and
41°S. The two major upper-plate structures, the Bio-Bio fault zone in the north and the
Mocha-Villarica fault zone in the south (Echtler et al.,, 2003), coincide with the
geomorphic boundaries of the Nahuelbuta segment (Fig. 3.8), but such structures are
not documented in the other segments, suggesting that the segmentation may not
simply be controlled by upper-plate structures alone.
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Fig. 3.9: Evolution model of the south-central Chilean forearc. Black double-arrows mark wind
gaps with flow reversals, simple blue arrows mark the regional discharge path. Uplifting
antiformal structures are marked by grey-shaded ellipses with red arrows depicting the uplift
axes. (A): Inferred equilibrium drainage pattern prior to the uplift of the Coastal Range. (B):
Present drainage pattern, concentration of basin outlets in the middle, low-relief segment.
Drainage reversal in the northern segment causes discharge rerouting towards the north and
south. (C): Hypothetical future drainage pattern with scarce outlets. All rivers are forced to
bypass the Coastal Ranges and pinned to the tips of the uplifting antiforms.

The Valdivia FZ system, subducting beneath the Toltén segment, delimits a major
change in ocean floor age and origin. The southward younging of the oceanic crust and
the related differences in buoyancy, fluid content and thermal gradient are expected to
influence the coupling at the plate interface and the thermal structure of the upper plate
(Oleskevich et al., 1999; Lagabrielle et al., 2000; Heintz et al., 2005). Increased heat-
flow in the upper plate induced by the warmer slab may increase the ability of the crust
to store elastic strain. The southward-younging slab could thus control the deformation
style of the forearc. In fact, the distribution of earthquake locations corroborates these
assessments. We observe a clustering of shallow thrust-related active seismicity in the
upper plate of the Nahuelbuta segment where older, colder ocean floor is subducted
(Fig. 3.7). This documents that in this forearc segment the convergence is
accommodated by discrete fault displacement via internal deformation of the forearc
(Melnick and Echtler, 2006a). However, the resulting long-term uplift may eventually be
related to progressive underplating of trench sediments as proposed by Lohrmann
(2002). Interestingly, the locus of the Quaternary deformation as recorded by tilted
marine terraces (Kaizuka et al., 1973) spatially coincides with the ongoing subduction
of the oceanic Mocha fracture zone beneath the Nahuelbuta segment as well.
Therefore, the subduction of the Mocha FZ might be another factor contributing to the
Quaternary uplift of the Nahuelbuta crustal antiform. South of the Nahuelbuta seismicity
cluster and the Valdivia FZ system, where younger and warmer oceanic crust is
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subducted, no pronounced fault activity has been recorded. Thus, the convergence
might be partly accommodated by a rather flexible response of the upper plate. Based
on our results we infer that progressive buckling of the crust occurs in the Bueno
segment, leading to a crustal-scale flexure with a wavelength of ca. 170 km.
Consequently, the segmentation of the oceanic plate appears to have a severe impact
on the style of onshore deformation, and thus ultimately on landscape evolution.

In contrast to the other segments, the Toltén segment correlates with a significant
absence of a negative gravimetric anomaly. Forward modelling of this anomaly
indicates that it is controlled by a sector of the oceanic slab, which appears to be
located deeper beneath this segment (Tasarova, 2004). Hackney et al. (2006) explain
the deeper slab position by a locally thickened forearc crust. Therefore, plate coupling
appears to be stronger than in the adjacent sectors with positive anomalies. It is
conceivable that the stronger coupling could prevent extensive basal accretion and
uplift in the Toltén segment, which would keep this sector in a quasi-stable position.
The average topography of the Toltén segment with only 60 m and the stable drainage
pattern support this scenario. Nevertheless, the segment might still undergo minor uplift
as indicated by the exhumation of Coastal Cordilleran basement in this sector. Our
drainage-evolution model though shows that the rapid uplift of the Nahuelbuta and
Bueno segments concentrates all discharge, and hence stream power, in the Toltén
segment. Fluvial erosion could thus outbalance the effects of minor uplift. Observed
coseismic subsidence in this segment (Barrientos and Ward, 1990; Cisternas et al.,
2005) could also be attributed to strong plate coupling. However, the exposure of
basement rocks and the absence of thick sedimentary sequences in the Central
Depression that would be expected if this area were subsiding, exclude significant
long-term subsidence of this segment. These observations suggest long-term
geomorphic stability and steady-state behavior.

Our results portend that the segmentation of the Chilean forearc is determined by
a combination of the physical properties of the incoming plate, and the focusing
through inherited upper plate structures. This segmentation appears to be a long-term
feature of the forearc-evolution that persists on timescales of 10° to 10° years. In this
context, it is interesting to investigate whether earthquake rupture zones also
correspond to these segments or if they are independent. Therefore, we compare
rupture segments of large historic earthquakes compiled by Lomnitz (1970, 2004),
Kelleher (1972) and Beck (1998) with our morphotectonic segmentation (Fig. 3.8).
Earthquakes in 1570, 1657, 1751 and 1835 ruptured the Nahuelbuta segment.
Earthquakes in 1939 and 1953 terminated at the northern part of the Nahuelbuta
segment. Conversely, large earthquakes in 1575, 1737, 1837 and 1960 produced
extensive ruptures that developed irrespective of segment boundaries. This suggests
that morphotectonic segments can influence earthquake rupture, yet, there might be a
seismic energy threshold above which segments fail irrespective of morphotectonic or
structural boundaries. Therefore, earthquake-rupture segments are rather transient
phenomena, whereas the identified morphotectonic domains are sustained on much
longer timescales. Notwithstanding, a closer inspection of the well-studied 1960-
earthquake reveals that although this megathrust earthquake ruptured throughout all
segment boundaries, the coseismic slip was non-uniformly distributed. For example,
the zones of greatest coseismic slip were centered beneath the Valdivia, Pucatrihue
and Chiloé offshore basins documenting an inhomogeneous rupture process
(Barrientos and Ward, 1990; Wells and Blakely, 2003). Intriguingly, these coseismic
slip sectors and the offshore basins also coincide with the onshore morphotectonic
segments. This suggests that there might be not only a relationship between
earthquake rupture and forearc basins as shown by Wells and Blakely (2003), and a
relationship between earthquake rupture and gravity anomalies as proposed by Song
and Simons (2003), but also a link between earthquake rupture, offshore basin
formation, gravity anomalies, and onshore morphotectonic segmentation. This
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hypothesis needs further exploration and testing in other active forearc regions, and
could be another step on the way to a better understanding of the relations between
subduction processes and landscape response.

3.6 Conclusions

In this paper, we investigated the forearc of the southern Chilean active convergent
margin in that area of the rupture zone of the Chilean megathrust earthquake of 1960.
We combined remote sensing, geomorphologic, sedimentologic and geophysical data
to develop a model of dynamic forearc evolution for south-central Chile, and discuss its
controlling parameters.

We document that the forearc is morphotectonically divided into three segments,
the Nahuelbuta, Toltén, and Bueno segments that exhibit a grid-iron drainage pattern.
The Nahuelbuta and Bueno regions are characterized by highly dynamic catchments,
rerouting of sediments, and a migration of watersheds indicating ongoing Quaternary
uplift. Conversely, the Toltén segment appears to be stable and in long-term steady-
state. This shows that these segments are affected by different modes of deformation.
Apparently, the three morphotectonic segments have been persistent over long
timescales, whereas earthquake rupture zones are transient and quite variable on short
timescales and my often rupture across morphotectonic boundaries.

Our data suggests that the highly diverse landscape evolution of the forearc in
south-central Chile is controlled by the physical properties of the subducting plate as
well as forearc rheology, and focused by inherited structures in the upper plate. Hence,
landscape evolution in forearc regions does not form a uniform principle, but rather
reveals a complex interplay between subduction processes, inherited structures, and
highly differentiated surface response.
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4. Reconstructing surface uplift using cosmogenic nuclides,
the Coastal Cordillera in south-central Chile

Abstract

Although segmented forearcs are very sensitive to subduction-system
changes and therefore effective recorders of subduction processes, the
relationship between subduction and surface processes remain uncertain
due to difficulties in quantifying forearc uplift and changes in the subduction
mode. Specifically, it is not yet understood how persistent morphotectonic
forearc segments are, despite the fact that they are common features along
many subduction margins.

The Coastal Cordillera of south-central Chile provides a range of evidence
of subduction-system behavior through constraints on uplift provided by
flights of marine terraces, displaced erosion surfaces, emerged strandlines,
and pronounced drainage-system perturbations. Dating of low-relief
surfaces originally graded to sea level from concentrations of in-situ
produced cosmogenic "°Be and %Al indicate that there was active uplift
from 4.8 to 2.6 Ma ago at a mean rate of 0.21 mm a’', a value which is
similar to long-term denudation rates based on thermochronology and
estimates of offshore uplift from the region. The initiation of uplift is related
to a switch from erosive to accretive subduction ~5 Ma ago which has
been attributed to an increase in sediment thickness in the adjacent trench
in response to the onset of glaciation in the region. This interpretation
implies that forearc uplift is controlled by enhanced basal accretion of
sediments. The relation between global cooling, change in subduction
mode, and forearc uplift indicates that uplift of the Coastal Cordillera along
the south-central Chile margin is a consequence of climate change.
Ultimately, the present-day forearc segmentation has been established in
Pliocene suggesting that morphotectonic segments can be persistent over
millions of years and are independent of short-term earthquake-rupture
segments.

KEYWORDS: cosmogenic nuclides, surface uplift, forearc, Chile,
subduction, segmentation, geomorphology

4.1 Introduction

Forearc regions are among the most tectonically active environments worldwide, often
being characterized by rapid and pronounced uplift and subsidence in response to
accretive or erosive subduction modes (e.g. Muhs et al., 1990; Pazzaglia and Brandon,
2001; Clift et al., 2003; Marquardt et al., 2004; Molin et al., 2004). The record of
surface-uplift and subsidence and the associated response of the onshore landscape
system in such regions may thus furnish important insights into the factors that govern
the geodynamic and structural evolution of these dynamic tectonic settings. Moreover,
about 50% of the total length of global coastlines are located in active tectonic regions,
in many instances in association with significant concentrations of population and
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economic activity, and forearcs are consequently a research priority for tectonic,
tectono-geomorphic, and seismic hazard studies (e.g. Mogi, 1969; Plafker and Savage,
1970; Kelleher, 1972; Sykes and Nishenko, 1984).

Patterns of forearc deformation can vary significantly along plate boundaries,
typically resulting in the formation of different morphotectonic segments (Wells et al.,
1988; Ryan and Scholl, 1993; Gutscher et al., 1999; Rehak et al., 2008). Deformation
and landscape development in these segments is controlled by a variety of factors
comprising bathymetric heights on the subducting plate (e.g. McCann and Habermann,
1989; Hsu, 1992; Mann et al., 1998; Gardner et al., 2001; Laursen et al., 2002; Taylor
et al., 2005), inherited, reactivated structures of the upper plate (Echtler et al., 2003;
Rosenau et al., 2006), and the mode of subduction (Lamb and Davis, 2003; Clift and
Vannucchi, 2004). The latter may alter over time in response to changes in subducting-
plate buoyancy, plate-convergence rate, and trench-fill thickness (von Huene and
Scholl, 1991; Lallemand et al., 1994; Bangs and Cande, 1997; Lamb and Davis, 2003;
Clift and Vannucchi, 2004; Melnick and Echtler, 2006a).

The mode of subduction is a crucial part of the subduction process since it
influences the entire deformation and magmatic system of the upper plate, which in
turn may determine the lifetime of morpho- and seismotectonic segments.
Nevertheless, in many cases it is still not clear when changes in subduction mode
occurred, how deformation in the forearc was affected by such changes, and whether
these new conditions determine the spacing and internal development of forearc
segments. One way to elucidate these questions is to quantify the uplift and
geomorphic history of the forearc in a geodynamic setting where a relatively recent
switch in subduction mode has occurred. However, this approach is often hampered by
the problem of unambiguously determining the onset of such changes and the resulting
uplift history due to the lack of suitable materials for dating. Nevertheless, cosmogenic-
nuclide dating of geomorphic surfaces, which has been increasingly applied over the
last 15 years (e.g. Bierman, 1994; Cerling and Craig, 1994; Gosse and Phillips, 2001;
Niedermann, 2002), has proved a useful tool in reconstructing landscape development
(e.g. Dunai et al., 2005; Nishiizumi et al., 2005; Fabel et al., 2006), and clearly has
potential in addressing outstanding questions of forearc behavior.

Here, we use measurements of cosmogenic '’Be and ?°Al on in-situ quartz clasts
in the Coastal Cordillera of south-central Chile to date a paleo-surface in order to infer
the recent uplift history of this forearc region. The paleo-surface is a well-preserved
low-relief upland at about 750 m that appears to be a remnant of a formerly continuous
regional erosion surface. This field area was selected because of its sustained tectonic
activity during the Cenozoic, a relatively well dated young change in subduction
regime, elevated paleo-surfaces formerly located at, or near, sea level, and
pronounced surface ruptures as well as vertical movements during large earthquakes.

This region constitutes an exceptional active margin, stationary since Paleozoic
(Glodny et al., 2005), and has experienced a change from subduction erosion to
subduction accretion in late Miocene to early Pliocene time (Bangs and Cande, 1997;
Melnick and Echtler, 2006a). This forearc is also characterized by different
seismotectonic and geomorphic segments, documenting a distinct spatio-temporal
tectonic development (Hackney et al., 2006; Rehak et al., 2008). For example, the
northern Nahuelbuta segment represents the highest sector of the Coastal Cordillera
and has been subjected to uplift during the Quaternary (Kaizuka et al., 1973; Nelson
and Manley, 1992; Mardones and Reuther, 1999; Bookhagen et al., 2006a; Melnick et
al., 2006; Melnick and Echtler, 2006a; Rehak et al., 2008). However, it is not known
when surface uplift in the Coastal Cordillera began and therefore how rapidly the range
has developed, even though this information is crucial in assessing whether the onset
of uplift is coupled with the shift in subduction mode and deciphering the temporal
evolution of the present morphotectonic segmentation. Furthermore, data on the
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geometry and onset of uplift and the long-term development of morphologically distinct
forearc sectors would assist in the differentiation of landscape behavior influenced by
tectonic movements on short time scales, such as through several seismic cycles, and
on longer time scales of the order of 10° to 10° years.

4.2 Regional setting

The Nahuelbuta segment study area in the Coastal Cordillera (Fig. 4.1) forms a part of
the southern Andean accretionary margin (Bangs and Cande, 1997; Melnick and
Echtler, 2006a). This plate boundary is characterized by the oblique (N77°E)
subduction of the oceanic Nazca plate beneath the South American continent at a rate
of approximately 65 to 85 mm a™' (Demets et al., 1994; Somoza, 1998; Angermann et
al., 1999). The forearc in this region comprises three morphotectonic segments, each
of which has experienced a distinct tectono-geomorphic evolution (Rehak et al., 2008).
Two high-relief/high-incision sectors, the Nahuelbuta and Bueno segments, with highly
dynamic fluvial systems reflecting continuing active uplift resulting in tectonically
induced stream captures, flow reversals, and deep incision, border the low-relief central
Toltén segment. The Toltén segment lacks both significant topographic contrasts as
well as active incision, suggesting long-term geomorphic stability (Fig. 4.1) (Rehak et
al., 2008). Here, we focus on the southern part of the actively uplifting Nahuelbuta
segment of the Coastal Cordillera between 38° and 38.5°S (Fig. 4.1) (Kaizuka et al.,
1973; Rehak et al., 2008).

The Coastal Cordillera around 38°S comprises a Paleozoic-Triassic forearc
complex, including rocks related to a Permo-Triassic accretionary wedge and parts of a
Permo-Carboniferous magmatic arc that are grouped into an Eastern and a Western
Series (Fig. 4.1) (e.g. Hervé, 1977; Glodny et al., 2005; Glodny et al., in press). The
Eastern Series of the Cordillera de Nahuelbuta is dominated by high-temperature
metamorphic rocks and a Carboniferous granitic batholith. In the study area the
basement rocks are dominated by high-pressure schists, metabasites, and accreted
metacherts of the Western Series (Aguirre Le-Bert et al., 1972; Hervé, 1977) and these
lithologies provide excellent sources of quartz for cosmogenic nuclide dating. The
mountain range is characterized by numerous reactivated north-northeast, west, and
northwest -striking Paleozoic faults with strike-slip kinematics (Mordojovich, 1981;
Echtler et al., 2003; Rosenau, 2004). The most prominent structures are the Bio-Bio,
the Lanalhue (Glodny et al., in press), and the Mocha-Villarica fault zones (Melnick and
Echtler, 2006b) (Fig. 4.1).

The Coastal Cordillera reaches elevations of 1600 m and is characterized by
flights of tilted marine terraces and remnants of marineffluvial erosion surfaces,
reaching elevations of up to 900 m. The staircase morphology of these surfaces
documents protracted deformation and uplift of this forearc segment. Continuing river
incision, tectonically induced stream piracy and the existence of seismogenic faults
support the notion that this mountain range is tectonically active (Haberland et al.,
2006; Rehak et al., 2008). Terrace levels at elevations of up to 500 m are covered by
marine Tertiary sediments indicating marine erosion and uplift superposed on
oscillating sea levels since the late Pliocene (Plafker and Savage, 1970; Kaizuka et al.,
1973; Nelson and Manley, 1992; Kelm et al., 1994; Mardones and Reuther, 1999;
Melnick and Echtler, 2006a). In contrast, low-relief surfaces reaching elevations
between 500 m and 900 m lack any evidence of a former marine sedimentary cover
and may be of fluvial origin or, alternatively, may constitute uplifted marine abrasion
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platforms whose thin veneer of marine sediments has been removed (Kaizuka et al.,
1973).
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Fig. 4.1: Regional setting of the south-central Chile forearc. (A): DEM with major fault zones.
The inset marks the morphotectonic forearc segments (I — Nahuelbuta segment, Il — Toltén
segment, Ill — Bueno segment after Rehak (2008)). Here, we focus on the northern Nahuelbuta
segment. The black box delineates the working area. (B): Geological map of the forearc. The
study area is lithologically homogeneous and comprises high-pressure schists from the
Paleozoic Western Series.

Offshore forearc basins in this region have been inverted since 4.4 Ma, after an earlier
phase of protracted extension and subsidence (Mordojovich, 1981; Melnick and
Echtler, 2006a; Finger et al., 2007). Long-term denudation rates derived from apatite
fission-track thermochronology for rock samples collected in the Coastal Cordillera
average 0.04 mm a” for the last 70 Ma. However, the dataset has a clear inflection
point at 5 Ma, which marks the onset of accelerated denudation at rates of 0.20 mm a’
(Glodny et al., 2007).

4.3 Methodology

In-situ produced cosmogenic nuclides provide the unique possibility to constrain
surface-exposure ages on intermediate timescales of 10° to 10° years (e.g. Nishiizumi
et al., 1991; Cerling and Craig, 1994; Repka et al., 1997; Fabel and Harbor, 1999;
Granger and Muzikar, 2001; Bierman et al., 2002; Bookhagen et al., 2006b). The
underlying principle is the accumulation of cosmogenic nuclides in the rock due to the
bombardment of the earth’s surface with secondary cosmic rays (Lal and Peters,
1967). When the production rate of the nuclide and its concentration within the rock are
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known, the time of surface exposure can be calculated if subsequent erosion has been
negligible or can be independently constrained (Gosse and Phillips, 2001; Niedermann,
2002). Additionally, cosmogenic nuclide concentrations can also be measured in soil
profiles (e.g. Brown et al., 1988; Monaghan et al., 1992; McKean et al., 1993; Heimsath
et al., 1997; Riebe et al., 2001).

Here, we use cosmogenic '°Be and °Al to unravel the initiation of uplift of a
mountain range by dating an uplifted low-relief upland. First, we conducted a detailed
morphometric analysis of the Coastal Cordillera identifying several low-relief surfaces
and sampling targets. Subsequently, the surfaces were inspected in the field. The
sampling sites constitute planar, slightly tilted geomorphic surface with a slope < 4°.
For our study, we selected the best-preserved, uppermost flat surface at an elevation
of 700 to 800 m ~ 38.5°S on top of the range consisting of exposed basement schist
and regolith (Fig. 4.2). Localized erosion and incision are absent except around the
outer surface edges where a pronounced break in slope delineates the limit of
dissection by headward-eroding valleys. The bedrock is mantled by regolith, which
slowly grades from weathered basement to a clay-rich soil horizon constituting an in-
situ weathering profile (Fig. 4.3). All samples were collected in a nature reserve where
the primary vegetation is preserved excluding human influences. We sampled profiles
along road cuts and excavated trenches. All quartz clasts in the profiles were highly
angular with no signs of transport. About 80 individual clasts per sample were
collected, with a long-axis diameter of 1 to 2 cm. The samples were crushed and
sieved to a grain size of 125 to 500 um and processed for cosmogenic '°Be and 2°Al
analysis using standard techniques (e.g. Kohl and Nishiizumi, 1992; Bierman et al.,
2002). In preparation for Accelerator Mass Spectrometry (AMS) the samples were
mixed with Nb and Ag, respectively, and measured at the AMS Laboratory at the
Scottish  Universities Environmental Research Centre (SUERC). Beryllium
measurements were normalized to the NIST SRM 4325 standard with an assumed
'°Be/°Be ratio of 3.06-10™"". Aluminium isotope ratios were normalized to the Z92-0222
standard with an assumed “°Al/*’Al value of 4.11-10™"". Measurement errors are below
3 %. We assumed an additional analytical error of 2 % for the °Be-carrier and *’Al-
carrier.
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Fig. 4.2: Low-relief upland on top of the Coastal Cordillera at an elevation of about 750 m. (A):
Digital elevation model with sampling sites. (B): Local slope map with sampling sites. Note the
low slope of the surface.
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Fig. 4.3: Low-relief upland in the Coastal Cordillera at an elevation of 750 m. The inset
represents a typical weathering profile on this surface, bedrock — saprolite — regolith — soil. The
basement schists constitute the base of the profile. They grade to reddish, clay-rich, acidic
ultisols (U.S. Soil Taxonomy, 2003).

We used nuclide-production rates of 5.1+ 0.3 for °Be (Stone, 1999), and
31.1 + 1.9 for Al (Nishiizumi et al., 1989; Bierman and Steig, 1996). These production
rates were scaled according to Dunai (2000) and Stone (2000), and we found that our
results are not sensitive to the scaling method employed (Fig. 4.5). We assumed a
10 % uncertainty on both '°Be and %Al scaled production rates. All samples were
corrected for topographic shielding and sample depth (Dunne et al., 1999). According
to the clay and sand content of the regolith and soil layers, we assume an average
density of 1.45g-cm™ in our calculations. Additionally, we account for potential
vegetation cover with a 5 % error on the production rate. Incorporation of these
uncertainties aggregates to a total error of 18.5 % on our calculated results.

Based on our measured cosmogenic '°Be and 2°Al concentrations we
quantitatively assessed the viability of different tectono-geomorphic scenarios. This
analysis was then used to identify the scenario that best fitted geomorphic and geologic
conditions, and this, in turn, was used to place constraints on the timing of the onset
and subsequent rate of uplift in the Coastal Cordillera.

4.4 Results

The results of our measurements and calculations are summarized in Table 4.1. We
measured paired radionuclides in order to be able to identify complex exposure
histories. The production rate of %Al and '°Be is in the ratio 6 : 1, but if samples
experience a period of dominant decay without significant production, this ratio will
decline and approach a new equilibrium since °Al decays faster than '°Be (Lal, 1991).
Our samples exhibit 2°Al/"°Be-ratios well below 6.1 and concentrations far from
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saturation. This indicates that they have experienced a complex exposure history with
a period of decay dominance, either as a result of prolonged burial following exposure,
or due to prolonged residence at a depth where the rate of decay exceeded the rate of
production (Fig. 4.4).

Latitude Longitude Sample - |Sample depth Shielding | Quartz mass | Be-9 carrier | Al-27 carrier oBe:9 aqd Al ICP Al-27 | o ICP AI-27
Sample ID S] W] elevation [cm below factor al mass [g] mass [g] 27 carrier mass [g] mass [%]
[m asl] surface] mass [%]
KR-06-150 -38.49 -73.27 718 75 1.0000 27.27 2.53E-04 1.65E-03 2.00 1.64E-03 2.00
KR-06-151 -38.49 -73.26 664 60 0.9998 27.58 2.54E-04 1.65E-03 2.00 1.78E-03 2.00
KR-06-153 -38.51 -73.20 729 60 1.0000 27.49 2.55E-04 1.55E-03 2.00 1.91E-03 2.00
KR-06-155 -38.50 -73.14 771 50 1.0000 26.36 2.63E-04 1.54E-03 2.00 1.74E-03 2.00
KR-06-158 -38.46 -73.17 799 30 1.0000 30.49 2.53E-04 1.65E-03 2.00 1.79E-03 2.00
KR-06-Blank - - --- --- --- - 2.57E-04 1.55E-03 2.00 1.84E-03 2.00
" o Be-10 " o Al-26
Be-10/9 AMs| O BE10S 14 06107 amis| O A-26/27 Be-10nuclide) gy A28 nudlidel o iye | A og/Be-10
Sample ID AMS result AMS result | concentration concentration s ,
result result concentration concentration ratio
[%] [%] [at/g] o [at/g] 9
[%] [%]
KR-06-150 7.63E-13 2.59 1.78E-12 248 4.57E+05 3.42 2.38E+06 3.20 5.21
KR-06-151 3.98E-12 2.49 8.01E-12 1.93 2.44E+06 3.22 1.15E+07 2.78 4.73
KR-06-153 2.04E-12 2.53 4.09E-12 1.96 1.25E+06 3.27 6.34E+06 2.81 5.08
KR-06-155 1.30E-12 2.59 3.03E-12 1.97 8.51E+05 3.34 4.46E+06 2.82 5.24
KR-06-158 1.23E-12 2.84 2.63E-12 2.03 6.70E+05 3.56 3.45E+06 2.86 5.14
KR-06-Blank | 2.48E-14 13.61 5.99E-15 33.33 - - -— -— —-
Be-10 Al-26
Production
Scaling factor| Production ) ) Dunai- Stone- ratg [;.i‘t/g/yr] } ! Dunai- Stone-
Sample ID (Dunai, 2000)| rate [at/glyr] o production |Scaling factor| corrected corrected (Nishiizumi, | o production | Scaling factor| corrected corrected
(Stone, 1999) rate [%] (Stone, 2000)( production production .1 989; rate [%] [Stone, 2000]( production production
b rate [at/g/yr] | rate [at/glyr] Bierman, rate [at/g/yr] | rate [at/glyr]
1996)
KR-06-150 1.54 5.1 5.88 1.67 7.86 8.49 31.1 6.11 1.67 47.93 51.87
KR-06-151 1.49 541 5.88 1.61 7.60 8.22 311 6.11 1.62 46.33 50.23
KR-06-153 1.59 5.1 5.88 1.71 8.10 8.73 3141 6.11 172 49.41 53.35
KR-06-155 1.65 5.1 5.88 1.78 8.43 9.07 31.1 6.11 1.78 51.41 56.39
KR-06-158 1.68 5.1 5.88 1.80 8.55 9.20 311 6.11 1.81 52.15 56.19
sample D | © S;Z;'”g ofield (%] | oBe[%] | oAl[%] | ototal[%]
KR-06-150 10,00 5,00 13.09 13.14 18.54
KR-06-151 10,00 5,00 13.04 13.04 18.44
KR-06-153 10,00 5,00 13.05 13.05 18.45
KR-06-155 10,00 5,00 13.07 13.05 18.47
KR-06-158 10,00 5,00 13.12 13.06 18.51

Table 4.1: Summary of AMS-measurements, nuclide concentrations, nuclide ratios, production
rates, scaling, and errors. The samples were spiked with a commercial °Be carrier (Spectrosol)
with a known "°Be/Be ratio of ~1-2:10"*. A laboratory blank prepared in tandem with the
samples provided low "“Be and Al yields. These blank values have been subtracted from the
appropriate samples to derive the concentrations shown.

The former (burial-re-exposure) scenario occurs in three stages. First, a low-relief
surface is carved into bedrock and experiences initial exposure to cosmic radiation and
acquires a concentration of cosmogenic nuclides. This bedrock surface is then buried
to a depth where shielding becomes significant and the initial concentrations of Al and
'Be decrease differentially causing a change in the %°Al/"°Be ratio. Finally, the surface
experiences renewed erosion and the samples reach a depth where cosmogenic-
nuclide production exceeds decay before eventually being re-exposed at the surface.

The latter (two-stage exposure) scenario involves progressive sample ascent
from depth relative to the surface in two discrete periods of erosion. First, during the
initial phase a sample moves upward relative to the eroding bedrock surface to a depth
sufficiently shallow to enable minor cosmogenic nuclide production. Prolonged
residence at this depthz then occurs such that decay exceeds production.
Subsequently further erosion leads to the movement of the sample to its presently
observed depth of < 75 cm where production exceeds decay.

The burial-re-exposure scenario implies that the samples were located at the
bedrock surface prior to sample burial and after the removal of the shielding sediments.
This means that erosion after burial would have had to stop exactly at the exhumed
surface. This scenario, however, is highly implausible and unrealistic in the light of the
tectonic, climatic, and geomorphic history of the region.
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Fig. 4.4: Two alternative evolutionary sequences of surface development in the Coastal
Cordillera. (A): Scenario A assumes the complete erosion of the shielding sediments without
any erosion of the bedrock. (B): Scenario B implies a progressive ascent of the samples due to
slow successive surface erosion initiated by tectonic uplift.

The two-stage exposure scenario requires progressive erosional exposure of the
samples towards the surface to a depth where they resided for a certain period. This is
viable if the surface were in a relatively stable position close to base level and was not
in a topographic setting conductive to enhanced erosion. However, the second phase
of erosion requires a change in erosional regime and a likely cause of this is a lowering
of base level. Theoretically, surface uplift might have occurred earlier and erosion may
have been restricted to a subsequent period of erosion. Nevertheless, we argue that
this is not a realistic assumption since: 1) it is not reasonable in this environment to
assume that surface uplift would not have been accompanied by erosion; and 2) the
extension and flatness of the surface prevent efficient material transport rendering the
possibility to instantly remove about 4 m of the surface impractical. We thus propose
that the second phase of erosion is indeed coupled to base level fall induced by
tectonic uplift.

Conclusively, the two-stage exposure scenario is our favored interpretation as it
requires fewer assumptions and does not imply geomorphologically implausible
conditions. The nuclide-accumulation history inferred for the two-stage exposure
scenario can be mathematically described by an equation from Heisinger (1998).

X X

NCN(X’Z) = PCN(Z) Tey 'e_a + PCN(h) Tey (- e_a)

Ncn(X,z) is the concentration of cosmogenic nuclide CN after the ascent from depth z
and an exposure time x. Pcn(z) is the production rate of the cosmogenic nuclide at sea
level at depth z. Pcn(h) is the production rate of cosmogenic nuclides at elevation h at
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the depth below the surface where the sample was collected. The increase in
production rate that would occur in response to any increase in surface elevation is not
included in the calculations. However, end-member tests show that depth z is very
robust and insensitive to changes of Pcn(h) within the possible altitudinal range of our

working area. T, is the mean life of cosmogenic nuclides, and we used

7, =102+0.04 Ma (Norris et al., 1983) and 7, =2.18 + 0.09 Ma (Hofmann et al.,

1987). With this equation we can calculate the depth at which the samples resided
temporarily after creation of an low-relief surface and prior to their final exposition and
the exposure time near the surface. Additionally, we can estimate the erosion rate at
which the samples ascended towards the surface, the time of ascent, and the uplift rate
of the surface.

SampleID | 150 151 153 155 158
Initial depth [m]

Dunai 4.88 292 3.81 4.32 4.35
Y Stone 4.96 294 3.86 4.39 4.43
Initial depth [m] A Scaling [%] 101.65 100.57 101.51 101.60 101.95

Exposure ages [Ma]

Dunai 0.09 0.48 0.22 0.13 0.08
2.0 1 Stone 0.08 043 0.20 0.12 0.07
A Scaling [%] 91.70 88.50 91.08 91.89 92.19
Ascent time [Ma]

Dunai 4.13 2.32 3.21 3.82 4.05

Stone 4.21 2.34 3.26 3.89 4.13
A Scaling [%] 101.95 100.72 101.80 101.80 102.09
Uplift rate [mm a-1]

Dunai 0.17 0.28 0.23 0.20 0.20

Stone 0.17 0.28 0.23 0.20 0.19
A Scaling [%] 98.09 99.28 98.23 98.23 97.95

6.0 Error [%] 18.54 18.44 18.45 18.47 18.51

Ascent time [Ma] Uplift rate [mm a-1]

0 04
° 150 151 153 155 158 Average 150 151 153 155 158 Average

Sample ID Sample ID

Fig. 4.5: Depth, ascent time, and uplift rates calculated based on the equations from Heisinger
(1998). The table documents the difference between two scaling methods (Dunai, 2000; Stone,
2000). Note that the discrepancies are negligible, hence, we apply the scaling of Dunai (2000).
Initial sample depth (first stage in scenario B) ranges from 2.92 to 4.88 m. The ascent time of
the samples (from the first to the last stage in scenario B) is in the range of 2.32 to 4.13 Ma. The
resulting uplift rates comprise values between 0.17 and 0.28 mm a'. ln average, depth, ascent
time, and uplift rate provide values of 4 m, 3.5 Ma, and 0.21 mm a”', respectively.

Our analysis gives values for z ranging from 2.92 to 4.88 m including analytical
errors (Fig. 4.5). Furthermore, we can identify the erosion rate of the surface by testing
the %°Al/"°Be-ratios in the Heisinger plots for different erosion rates. Due to the humid
climate in our working area it is not reasonable to assume zero erosion. In fact, erosion
rates slower than 0.001 mm a™" do not explain our data well. However, erosion rates
faster than 0.001 mma™ imply a saturation concentration that is lower than our
measured values. Therefore, we conclude that the best-fit average erosion rate
approximates 0.001 mm a™' (Fig. 4.6). Furthermore, we can calculate the time required
for the samples to have ascended from depth z to their present position. Dividing the
best-fit erosion rate of 0.001 mm a™ y the difference between depth z and the depth
position of each sample, we derive an ascent time of 2.3 to 4.1 Ma. Since the samples
started to ascend in response to a change in erosional regime which we attribute to
base-level lowering as discussed above, these ages mark the onset of range uplift. In
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turn, based on the present-day elevation this provides average uplift rates between
0.17and 0.28 mm a’, including analytical errors.
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Fig. 4.6: Nuclide-ratio plots following Heisinger (1998). In light of the humid climate, the case of

no erosion is an invalid assumption. In addition, isolines in the no-erosion case do not fit the

data. Note that nuclide concentrations in the samples cannot be explained with erosion rates

greater than 0.001 mm a” (1 m Ma™). An erosion rate of 0.001 mm a” fits the data reasonably
well.

4.5 Discussion

Our results obtained from measurements of concentrations of cosmogenic '’Be- and
%Al in in-situ quartz clasts allow two different interpretations — either burial and re-
exposure or two-stage progressive erosion and exposure of the surface. On the basis
of geomorphic considerations we favor the latter scenario, and suggest that our
sampled low-relief upland was initially cut across bedrock and graded to sea level and
that this subsequently experienced a second phase of erosion in response to base-
level fall associated with a major uplift event. We are aware of the uncertainties
inherent in our calculations, such as potential vegetation or snow cover, regolith
density, and time-averaged erosion rates, and account for them by in our estimated
errors and by interpreting ages and uplift rates as ranges rather than single values.
Nevertheless, we stress the importance of the local tectonic and geomorphic context in
the interpretation of our cosmogenic-nuclide data. Taking these considerations into
account, our results suggest that the Coastal Cordillera started to uplift about 2 to 5 Ma
ago. However, only one sample defines the lower end of this range, whereas the other
samples document uplift to have started between 2.6 and 4.8 Ma (Fig. 4.5). Inferred
uplift rates span a range between 0.14 to 0.34 mm a™. Discarding the “youngest”
sample the uplift rate for the surface averages 0.21 mm a™' (Fig. 4.5).

Our data show that the Coastal Cordillera of the study area is a
Pliocene/Quaternary  feature. = Consequently, the observed morphotectonic
segmentation, including adjacent sectors, must also have been established in the
Pliocene. Offshore forearc basins along the coast of our working area record extension
and subsidence during late Miocene. In contrast, these basins were inverted,
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shortened and uplifted during the Pliocene, and a compressional regime continues to
the present (Melnick and Echtler, 2006a). During inversion these basins experienced at
least 1500 m of uplift, documented by subaerial exposure of early Pliocene lower
bathyal siltstones (Melnick and Echtler, 2006a; Finger et al., 2007).

The history of the offshore forearc basins and the development of the onshore
Coastal Cordillera indicate that they must have been uplifted contemporaneously. Both
are the expression of regional changes in the geodynamic conditions of the southern
Andean margin. Furthermore, apatite fission-track dating of samples collected in a
vertical transect in the basement of the Coastal Cordillera, record an inflection point in
the age-elevation distribution at approximately 5 Ma (Glodny et al., 2007). This
inflection suggests an episode of accelerated denudation at a mean rate of
~0.20 mm a”' beginning 5 Ma ago compared with a previously lower rate of 0.04 mm a’
' (Glodny et al., 2007). Both the onset of accelerated denudation and the offshore
surface uplift indicated by geologic data are in accord with our data interpretation.
Interestingly, the denudation rates based on apatite fission-track thermochronology are
similar to our inferred rate of surface uplift implying that soon after the initiation of uplift
that created the Coastal Cordillera an approximate topographic steady-state was
attained, albeit some localities, such as our study area low-relief upland, experiencing
limited erosion.

These pronounced changes in forearc behavior during the early Pliocene require
a significant change in boundary conditions in the subduction system. Indeed, our
proposed timing for the onset of uplift accords with the interpretation that in late
Miocene to early Pliocene time the subduction mode in south-central Chile switched
from erosion to accretion (Bangs and Cande, 1997; Melnick and Echtler, 2006a). It has
been proposed that one factor controlling the mode of subduction in this environment is
the thickness of sediments in the trench (von Huene and Scholl, 1991; Lamb and
Davis, 2003; Clift and Vannucchi, 2004). In fact, many studies along the Chile margin
reveal that sediment flux varies significantly according to the prevailing climate
conditions and topographic barriers on the subducting plate (Lamb and Davis, 2003).
Maximum sediment flux in the trench depositional system, however, has been shown to
coincide with glacial periods (Scholl et al., 1970; Lamy et al., 1999; Hebbeln et al.,
2007). This suggests that with the onset of global cooling and the initiation of
subsequent glaciation in Patagonia about 6 Ma ago (Mercer and Sutter, 1982; Zachos
et al., 2001), the trench-fill thickness increased significantly (Bangs and Cande, 1997;
Melnick and Echtler, 2006a). Consequently, the enhanced subduction of sediments
appears to have stopped subduction erosion and forced subduction accretion (Lamb
and Davis, 2003). Similar to the uplift of the inverted submerged basins, the uplift of the
now subaerial sectors of the forearc might thus be explained by: 1) basal underplating
of sediments, which is supported by observations in the subduction channel (Bohm et
al., 2002; Lohrmann, 2002; Hackney et al., 2006); 2) internal deformation of the forearc
as the taper angle of the forearc wedge changed due to frontal accretion (Davis et al.,
1983; Melnick and Echtler, 2006a); or 3) a combination of both mechanisms. We also
suggest that the coincidence between the onset of glaciations in southern South
America and the change in subduction mode implies that the emergence of the Coastal
Cordillera in south-central Chile may ultimately be linked to the effects of global cooling
on the surface-process system.
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4.6 Conclusions

Forearc systems are among the most sensitive recorders of subduction dynamics,
although interrelationships between subduction and surface processes are difficult to
assess. Surface dating with cosmogenic nuclides provides indications of the timing of
forearc uplift and thus allows the detection and evaluation of controlling mechanisms.

We have dated an uplifted low-relief surface in the Coastal Cordillera of south-
central Chile with cosmogenic '*Be and %Al in order to elucidate the timing of tectonic
uplift in this forearc region. This has provided insights into recent morphotectonic
segmentation, changes in the forearc deformation, and the role of a significant switch in
the subduction mode.

More specifically, our results suggest that the uplift of the Coastal Cordillera
started 2.6 to 4.8 Ma ago and that therefore the range constitutes a tectonically active
Pliocene to Quaternary feature. Our data interpretation inferring surface uplift at this
time are compatible with other data from this region. The surface-uplift rates are of the
order of ~0.21 mm a™ and similar to rates of denudation of 0.20 mm a™* derived from
apatite fission-track thermochronology. This implies that the surface uplift event we
document prompted an increase in denudation rates that rapidly matched uplift rates
and established an approximate steady-state topography. Our data corroborates a
major change in subduction dynamics that occurred ~5 Ma ago related to a change
from subduction erosion to accretion. Subduction accretion probably started due to the
significant thickening of sediments in the trench controlled by the onset of glaciation in
Patagonia. This switch in subduction mode substantially modified the pattern of forearc
deformation and apparently initiated the uplift of the Coastal Cordillera. Additionally, on
the basis of our data we propose that the present-day forearc segmentation was
established in the Pliocene and did not exist before the formation of the Coastal
Cordillera. This in turn implies that in contrast to short-lived earthquake-rupture
segments morphotectonic segments are long-lived phenomena that appear to be
capable of persisting over millions of years.
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5. Late Pleistocene landscape evolution in south-central Chile
constrained by luminescence and stable cosmogenic
nuclide dating

Abstract

Subduction margins constitute highly dynamic settings shaped by tectonic
deformation and surface processes. In order to understand the
development of these landscapes and distinguish between tectonic and
climatic forcing it is fundamental to quantify geomorphic rates on different
time scales.

Here, we present new luminescence and cosmogenic-nuclide ages of
geomorphic markers in the Coastal Cordillera and the Central Depression
of south-central Chile. Although this region provides an ideal setting to
elucidate the response of surface processes to climatic and tectonic
forcing, it attained few attention due to intricacies in quantifying the age of
depositional surfaces. However, we use optically stimulated luminescence
and stable cosmogenic nuclides (*He, ?*’Ne) to constrain exposure and
burial of conglomeratic units constituting the spatially most extensive
surfaces in the Central Depression and characteristic valley fills in the
Coastal Cordillera. These valley fills record a tectonically induced flow
reversal in the formerly westward draining Pellahuén river. We propose that
the defeat of the river is controlled by local uplift above a blind reverse fault.
Based on the exposure and burial ages, we constrain the timing of flow
reversal, derive late Pleistocene incision and uplift rates, and discuss these
results in the light of tectonic as well as climatic influences. The extensive
depositional surfaces in the Central Depression formed 150 to 350 ka ago,
probably as glacial outwash fans. The valley fills in the Coastal Cordillera
bracketing the flow reversal show ages of 80 and 255 ka, respectively.
Incision rates approximate 0.45 mm a”', in contrast to short-term uplift rates
of 0.88 mm a’. In turn, the latter are significantly higher than independently
derived long-term surface-uplift rates.

Consequently, we conclude that tectonic uplift in this region varies
significantly in time and space and appears to be accelerating during the
late Pleistocene. Nevertheless, our data proposes that sediment
accumulation is primarily related to glacial cessation periods and hence
climatically driven.

KEYWORDS: cosmogenic nuclides, forearc, uplift, incision, geomorphology

5.1 Introduction

Landscape evolution in tectonically active regions is characterized by the interplay
between climate and tectonics determining erosion, sediment transport, and
accumulation. Sedimentary geomorphic markers can thus provide important
information on the deformation and climate history of active margins.
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The tectonically active margin of south-central Chile has been subjected to
significant changes in climatic and tectonic conditions during the late Miocene- early
Pliocene boundary, i.e. the onset of Patagonian glaciation about 6 Ma ago (Mercer and
Sutter, 1982; Zachos et al., 2001) and the subsequent shift from subduction erosion to
accretion around 5 Ma ago (Bangs and Cande, 1997; Melnick and Echtler, 2006a).
This shift in subduction mode initiated the inversion of offshore forearc basins (Melnick
and Echtler, 2006a) as well as the uplift and accelerated exhumation of the Coastal
Cordillera since about 4 Ma (Glodny et al., 2007; Rehak et al., submitted). However,
late Quaternary uplift rates appear to be still an order of magnitude higher than
Pliocene-averaged uplift rates (Kaizuka et al., 1973; Nelson and Manley, 1992;
Bookhagen et al., 2006a; Melnick et al., 2006; Rehak et al., submitted) suggesting that
tectonic uplift may vary through time. Active uplift during late Quaternary is also
reflected by elevated beach berms, flights of marine terraces, dammed lakes, as well
as tectonically disturbed drainage patterns (Kaizuka et al., 1973; Nelson and Manley,
1992; Mardones and Reuther, 1999; Bookhagen et al., 2006a; Melnick et al., 2006;
Rehak et al., 2008). This is corroborated by structural, seismic, and geodetic data
documenting pronounced active internal deformation of the south-central Chile forearc
(Bohm et al., 2002; Haberland et al., 2006; Melnick et al., 2006; Moreno et al.,
submitted). Thus, differential, localized fault-related uplift is also likely responsible for a
prominent drainage reversal, which is recorded in fluvial conglomerates in paleo-
valleys in the Coastal Cordillera that were formerly adjusted to the Pacific coast (Rehak
et al.,, 2008). Similar conglomerates also constitute extensive, gently sloping
depositional surfaces in the Central Depression between 38° and 39°S, a low-relief
corridor between the Coastal Cordillera in the west and the Main Cordillera in the east
(Fig. 5.1). Nevertheless, it is not known when the flow reversal occurred and whether it
is induced by a regional acceleration of uplift or controlled by fault displacement.
Additionally, it is not understood whether and which relations exist between
accumulation as well as incision of the conglomerate sequences, tectonic uplift, and
climatic forcing. The fluvial deposits are thus a key to understand the short-term
tectonic and geomorphic evolution of this forearc and provide insights into the
principles of sediment routing and storage in this tectonically active environment that
has also been affected by climatic changes in the past.

Here, we derive ages and rates of landscape evolution on a time scale of 10°
%/ears by dating the depositional surfaces in the Central Depression with cosmogenic
He and 2'Ne. In a second step, we test and complement these surface-exposure ages
by dating sandy intervals in the conglomerates in the Coastal Cordillera using optically
stimulated luminescence.

5.2 Regional setting

The forearc of south-central Chile between 37.5° and 38.5°S is part of the South
Andean accretionary margin (Bangs and Cande, 1997; Melnick and Echtler, 2006a)
and consists of three major morphostructural provinces: the Coastal Cordillera in the
west, the north-south oriented Central Depression, and the Main Cordillera in the east.
The basement of the Coastal Cordillera comprises high-pressure schists, metabasites,
accreted metacherts, and serpentinites related to a Permo-Triassic accretionary wedge
and a Carboniferous granitic batholith associated with a late Paleozoic arc domain
(Fig. 5.1) (e.g. Aguirre Le-Bert et al.,, 1972; Herveé, 1977; Glodny et al., 2005). The
range is characterized by numerous reactivated north-northeast, west, and northwest
striking Paleozoic faults with strike-slip kinematics (Fig. 5.1) (Mordojovich, 1981;
Echtler et al., 2003; Rosenau, 2004; Melnick and Echtler, 2006b; Glodny et al., in
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press). It has been shown that the Coastal Cordillera started to uplift during the
Pliocene, ~4 Ma ago, with an average uplift rate of 0.2 mma", coeval with the
inversion of offshore forearc basins (Melnick and Echtler, 2006a; Rehak et al.,
submitted).
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Fig. 5.1: Study area in the forearc of south-central Chile. The geological map delineates the
main lithologic units and structures (modified after Sernageomin, 2003).The yellow arrow marks
the location of the tectonically induced flow reversal.

The Central Depression is a low-relief sector of tectonic genesis that has been
argued to persist since Oligocene (Mufioz et al., 2000). The basement of the Central
Depression is inferred to consist of the same Paleozoic metamorphic rocks as the
Coastal Cordillera and is overlain by up to 3000 m of marine and terrestrial sediments
(Fig. 5.2) (lllies, 1967; Munoz et al., 2000; Jordan et al., 2001). The oldest forearc-
related sedimentary units south of the Arauco peninsula are the Eocene San Pedro
and Pupunahue Formations characterized by ~ 1000-m-thick sandstones with
interbedded conglomerates, shales, and coal (lllies, 1967). These continental series
are overlain by ~ 1000-m-thick Miocene marine sediments (Darwin, 1846; Katz, 1963;
lllies, 1967; Finger et al., 2007; Encinas et al., 2008). The Pliocene continental Mininco
Formation marks the shift from marine to continental deposition and consists of
pyroclastic units, bedded sandstones, and siltstones (Mufioz-Cristi, 1960). This unit is
spatially irregularly overlain by volcanoclastics and conglomerates of the Malleco
formation which constitute the depositional surfaces in the Central Depression
(Fig. 5.2) (Suarez and Emparan, 1997). This formation comprises oligomictic
weathered conglomerates comprising andesitic and basaltic pebbles that have been
termed “rodados multicolores” by Hauser (1970), who established their fluvial origin
and eastern (arc) provenance based on systematic imbrication indicating westward
flow (Hauser, 1983). Interestingly, in the Patagonian foreland similar units were first
described by Darwin (1846), who termed them “Patagonian gravels”, and later by
Mercer (1976), who proposed that these deposits were deposited between 1.0 and
3.5 Ma ago as glacial outwash related to early Pleistocene glaciations. Maximum-age
estimates for the “rodados multicolores” in the south-central Chile forearc were
provided by two K/Ar-ages on lava and obsidian layers, intercalated with the clastic
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formations. They were dated to 1.3 to 3.4 Ma (Suarez and Emparan, 1997) and
760 £ 210 ka (Vergara and Munizaga, 1974), respectively. These dated units are
located on the eastern border of the Central Depression and overlain by the
multicolored conglomerates, but the age of the gravel surfaces was not known. These
surfaces are geomorphically continuous, cover major parts of the Central Depression in
south-central Chile, and gently slope towards the west.
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Fig. 5.2: Schematic stratigraphy of the Central Depression around 38° to 39°S (Mufoz-Cristi,
1960; Suarez and Emparan, 1997). The investigated sediments can be assigned to the Malleco
Formation.

The andesitic-basaltic conglomerates that constitute these fans can be traced
through the Coastal Cordillera until the Pacific coast as remnants of fluvial valley-fills.
The latter document a prominent flow reversal of the Pellahuén river that formerly
crossed the entire range, drained into the Pacific ocean, and presently exhibits a wind
gap at ~37.7°S (Rehak et al., 2008). The Pellahuén valley comprises two different
terrace systems with distinct lithologies that represent pre- and post-reversal deposits.
The older, upper, pre-reversal terrace remnants consist of the volcanic conglomerates
that originated in the Main Cordillera or they may represent reworked clasts of the large
depositional surfaces in the Central Depression. In contrast, the lower post-reversal
terraces are composed of locally-derived, monomict schist conglomerates integrating
exclusively clasts from the metamorphic basement (Rehak et al., 2008).

The Main Cordillera in the study area comprises volcanic rocks of mainly
Oligocene to Holocene age (Parada et al., 2007), which constitute the source rock of
the “rodados multicolores”, the andesitic-basaltic conglomerates of the Malleco
Formation.

In summary, these “rodados multicolores” pose an interesting problem regarding
the evolution of the tectonically influenced drainage networks and the potential
superposition of climate-driven processes.
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5.3 Methodology

The depositional surfaces in the Central Depression were sampled for cosmogenic-
nuclide measurements, the pre- and post-reversal sediments within the Pellahuén
valley for luminescence dating in order to quantify exposure ages and constrain the
timing of tectonically-induced flow reversal, respectively.

5.3.1 Cosmogenic nuclide dating

Cosmogenic nuclides develop in rocks exposed at the surface of the Earth due to the
bombardment of target minerals with secondary cosmic-ray neutrons (Lal and Peters,
1967; Lal, 1991; Gosse and Phillips, 2001; Niedermann, 2002). Hence, the
measurement of the concentration of cosmogenic nuclides within a rock is a function of
exposure time.

Here, we measure concentrations of the stable cosmogenic nuclides *He and
“INe in olivines and pyroxenes from andesitic and basaltic conglomerates. Each
analyzed sample comprises a minimum of 10 clasts with a size of 10 to 15 cm. The
source rocks are mainly Oligocene to Quaternary volcanics from the Main Cordillera
(Parada et al., 2007). Samples were collected from the surface and from 1 m depth
(Table 5.1). We added several shielded samples from 5 to 6 m depth in order to correct
for non-cosmogenic and inherited nuclide components. Furthermore, we sampled the
oligomictic conglomerates constituting the upper fluvial terraces in the Coastal
Cordillera to test whether these conglomerates were temporarily stored in the Central
Depression or transported directly to their current position. In the latter case, their
cosmogenic-nuclide concentrations are expected to be extremely low and should
approximate the concentrations in the shielded samples.

We separated minerals with a grain size of 250 to 1000 ym applying common
magnetic and density separation techniques. Additionally, the samples were cleaned in
a sonicator with 5 % HNO3/HCI dilutes for 20 min. The chemical composition of each
sample was determined by ICP-AES analysis. This is a prerequisite to calculate
production rates which depend on the element concentrations in the minerals. Finally,
aliquots of each sample were packed into aluminium-foil capsules and heated in two
temperature steps, 900°C and 1750°C, in a resistance-heated ultra-high vacuum
furnace at GFZ Potsdam. Condensable gases such as H,O were frozen to a dry-ice
cooled trap. Subsequently, other chemically active gases were absorbed by two Ti
sponge and two ZrAl (SAES) getters in three successive steps. The cleaned noble
gases were physically adsorbed on activated charcoal or a stainless steel frit in
cryogenic absorbers achieving a temperature of 11 K (-262°C) by expansion cooling
in a closed circuit of compressed helium at 16 bar. At successively higher temperatures
the noble gases were released one after another, allowing each of them to be
introduced into the mass spectrometer and analyzed separately, as required in order to
prevent mutual influences reducing the accuracy of the measurement. Prior to
admission of the He- and Ne-fractions to the mass spectrometer and during the
measurements, the gas was exposed to activated charcoal and a stainless steel frit
cooled with liquid nitrogen to reduce the background of Ar and hydrocarbons. We
determined the abundances of all noble gases and the isotopic compositions of He, Ne
and Ar using the sector field mass spectrometer Micromass VG 5400, which
guarantees a resolution of m/A m = 600 on the multiplier detector. This is required to
resolve *He* (3.016 amu) from HD* (3.022 amu), allowing accurate determinations of
the *He/*He ratios. “He and “°Ar were measured with a Faraday cup, while all other
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noble-gas nuclides were detected by ion counting using an electron multiplier. Noble-
gas concentrations and isotopic compositions were calculated based on pipettes of a
calibration gas consisting of an artificial mixture of the five noble gases in nitrogen with
an enhanced *He/*He ratio of (21.66 + 0.24)-10°. Further details of the analytical
procedure and data reduction methods can be found in Niedermann et al. (1997).

In addition to stepwise heating, aliquots of two samples were crushed in a
bellows-tightened spindle press under ultra-high vacuum conditions in order to assess
the contribution and isotopic composition of He and Ne trapped in fluid inclusions and
between grain boundaries.

5.3.2 Luminescence dating

Luminescence dating uses a light-sensitive signal in quartz and feldspar grains that is
induced by naturally occurring radioactivity and is zeroed during sediment transport
when the grains are exposed to daylight (e.g. Aitken, 1998; Preusser et al., in press). In
the laboratory, the latent luminescence signal is stimulated by exposure to light sources
(blue and IR diodes, respectively). The intensity of the resulting light exposure is
quantified by comparing the natural luminescence-emission intensity with that of known
given laboratory doses administered to the sample. The amount of dose absorbed by
the natural sample is called paleodose and proportional to both burial time as well as
the amount of radioactivity influencing the sample per time (dose rate).

We measured the paleodose of both quartz and feldspar separates derived
from two different valley fills. The samples KR-06-08/09/10 were collected from a sand
layer 8 m below surface in the pre-reversal multicolored conglomerates constituting the
upper terrace levels (Table 5.1). The samples KR-06-11/12/13 are related to post-
reversal alluvial sands that cover the former valley floor of the Pellahuén river in the
wind gap and were collected in 1 to 2 m depth. These sand layers are intercalated with
thin bands of quartz pebbles.

Additionally, we collected bulk samples for gamma spectrometry to measure
elements that are relevant to calculate the dose rate (K, Th, U) (e.g. Preusser and
Kasper, 2001). Two grain-size fractions were separated from each sample: silt (4-
11 ym) and fine sand (100 to 150 pym). However, the samples KR-06-10 and KR-06-12
were too coarse to allow extraction of a sufficient amount of silt-size grains. First,
samples were treated with HCI and H,O, in order to remove carbonates and organic
material. In the sand fraction, quartz and K-feldspar were density-separated with Na-
polytungstate. No quartz could be isolated from the samples KR-06-8, -9, and -10 due
to the scarcity of that mineral in the sediment. Finally, quartz samples were etched in
40 % HF for 60 min to remove any remaining feldspars and the outer rim of the quartz
grains.

Paleodose was measured using the single-aliquot regenerative-dose (SAR)
protocol of Murray and Wintle (2000) using a Risg DA-20 TL/OSL reader. We used
blue and IR diodes to excite optically stimulated luminescence (OSL) in quartz (filter:
Hoya U340) and infrared stimulated luminescence (IRSL) in feldspar (410 nm
interference filter), respectively. A number of experiments, i.e. dose recovery, thermal
transfer, were carried out to identify the correct measurement conditions (Wintle and
Murray, 2006). Thereby, we finally used preheating for 10 s at 250°C (quartz) and
290°C (feldspar), respectively. Furthermore, we measured 5 and 12 aliquots per
sample in the silt and sand fraction, respectively.

Dose rates were calculated by ADELE software (Kulig, 2005) using the
concentration of dose-rate relevant elements (Table 5.1). The contribution of cosmic
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radiation to the total dose rate has been corrected for elevation and geographical
position. Mean sediment moisture has been assumed based on modern water content.
We included an uncertainty for possible past changes in hydrological conditions. The
K-content in K-feldspar was initially set at 12.5 + 0.5 % (Huntley and Baril, 1998),
however, our measurements suggest that the actual value is much lower in some of
our samples (see discussion below).

5.4 Results

5.4.1 Cosmogenic nuclide dating

The measured *He and *'Ne concentrations and exposure ages of all samples are
presented in Table 5.1. Measured *He/*He- and 2'Ne/*’Ne-ratios are on the order of
8:10° and 4.5:10°, respectively. Blanks for *He/*He and ?'Ne/*’Ne are atmospheric.
*He-blanks constitute in average 0.62 % of the concentrations in the samples and
never more than 6.4 % (Table 5.2).

A complication of dating surfaces using stable cosmogenic nuclides is the
discrimination of cosmogenic against other nuclide components such as trapped,
radiogenic, and nucleogenic He and Ne. Trapped, primordial components are located
in the lattice or fluid inclusions, e.g. from solution in magma and incorporation of air or
water during eruption. Radiogenic and nucleogenic components can be produced by
radioactive decay of U, Th, and 40K, or naturally occurring nuclear reactions after
crystallization. Hence, in order to correct for non-cosmogenic He- and Ne-components
as well as inherited cosmogenic nuclides, we additionally measured three shielded and
two crushed samples. Shielded samples have *He/*He- and ?'"Ne/*°Ne-ratios on the
order of 6:10° and 3:107°, respectively (Table 5.2). The low concentrations of *He in the
crushed, as well as the small *He/*He-ratio in the shielded samples suggest that
magmatic He plays a negligible role in our samples. We thus consider all *He
measured cosmogenic. Nevertheless, we tested the robustness of the 3He-
concentrations by excluding potential magmatic *He applying the following equations
(Gosse and Phillips, 2001):

3 3 3
H = "He, ..— He

cosmogenic magmatic (1 )

3
He
3 4
Hemagmatic = Hefumace( 4 (2)
He
crushed
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Table 5.1

both ages match very well.
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Mass-spectrometry results for each temperature step, blank values for the different

Table 5.2

temperature steps, and ICP-results to constrain nuclide-production rates.
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Concentrations of cosmogenic *He derived from these equations differ only slightly, on
average 4 % and at maximum 9 %, from the concentrations calculated without
considering magmatic *He. Additionally, we argue that in our case the magmatic *He
will be overestimated in these equations. Consequently, we use the total *He to
calculate surface-exposure ages. *He also originates from the °Li(n,a)*H(B)*He reaction
produced by thermalized neutrons from (a,n) reactions within the rocks (Aldrich and
Nier, 1948; Morrison and Pine, 1955; Lal, 1987). Nevertheless, olivines and pyroxenes
are Li-poor minerals with Li-concentrations usually below 2 ppm (Brenan et al., 1998;
Ryan and Kyle, 2004; Seitz et al., 2004). A test run with a Li-induced *He-production of
6.13-10%at g’ a'-ppm™ (Lal, 1987) returns nucleogenic *He-concentrations in the
source rocks, which amounts to at maximum 0.06 % of the total *He in the samples
including the shielded ones. Li-related production of *He is therefore negligible in our
samples. We account for inherited *He and other He-components by subtracting the
total *He in the shielded samples from the exposed samples.

2'Ne-concentrations are measured as excess to air. Also, Ne comprises different
components such as radiogenic, magmatic, and nucleogenic Ne. Nevertheless, as
cosmogenic Ne is characterized by a unique ?'Ne/?’Ne-ratio, it is possible to test,
whether the excess ?'Ne is cosmogenic by plotting the measured ratios in a three-
isotope systematic (Niedermann et al., 1993; Niedermann et al., 1994). If the excess
?INe is cosmogenic, the values plot on the spallation line (Schafer et al., 1999).
Deviations from this line indicate contributions from other components, such as
nucleogenic Ne or trapped mantle-Ne. Figure 5.3 shows that within error the ?'Ne in all
of our samples, except the KR-06-24, 1750°C, can be considered cosmogenic. In
addition, 'Ne-exposure ages are calculated analogous to the *He-ages by correcting
for the inherited and non-cosmogenic Ne-concentrations with the shielded samples.

0129 0.12 -

0.11 A

22Ne/20Ne

0.10

Air
0.09

T T T 0.09 T T T
0.004 0.008 0.012 0.004 0.008 0.012

21Ne/20Ne 21Ne/20Ne

Fig. 5.3: Three-isotope plot for Ne-ratios (Niedermann et al., 1993; Niedermann et al., 1994).
The characteristic isotope ratio of cosmogenic Ne determines the location of the spallation line
(Schéfer et al., 1999). Note that all except one sample plot within errors on this spallation line
documenting that they comprise cosmogenic “INe.

Production rates of *He and ?'Ne are still poorly constrained, since determinations vary
up to 30 % (Cerling and Craig, 1994; Licciardi et al., 1999; Dunai and Wijbrans, 2000;
Masarik, 2002; Kober et al., 2005). Other factors contributing to a potential age bias,
such as temporal variations in the production rate, shielding due to snow or vegetation,
and minor erosion, are insignificant compared to the uncertainties introduced by the
production rates. We apply production rates of 116 at g'1 a' for *He and element-
specific production rates for “'Ne (Table 5.1) (Masarik, 2002). Production rates were
scaled to latitude and altitude using the scaling factors of Dunai (2000). Individual
depth corrections were applied. Given errors are analytical errors and do not comprise
production-rate or scaling uncertainties.

*He- and ?'Ne-exposure ages mostly agree well within errors and are both in
the range of 150 to 350 ka (Fig. 5.4, Table 5.1). Among the four samples we collected
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directly from the surface, three samples display significantly younger ages. However,
the nuclide concentrations are similar to the other samples (Table 5.1). The age
difference can therefore be explained by lower production rates, implying an originally
deeper position of the samples below the surface. In the field, it was impossible to
entirely rule out previous agricultural land use. We thus suggest that land use practices
may have exposed these samples recently. If we assume an original position of the
samples at a depth of 60 cm, the potential reach of a plough, exposure ages of these
possibly relocated samples increase and remarkably fit the other ages derived from
samples collected at 1 m depth (Table 5.1). Nevertheless, these ages have to be
treated with caution. Sample KR-06-24 contains anomalously low nuclide
concentrations and is the only sample not located on the Ne-spallation line (Fig. 5.3).
The field site does not provide information about sampling bias, we thus discard this
sample from our interpretations.
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Fig. 5.4: Age distribution of the analyzed samples. A: Concentrations of cosmogenic *He and
“’Ne in Mat g'1. The grey bars indicate the shielded samples. Note the low nuclide
concentrations in these shielded samples. They are used to correct for inheritance and non-
cosmogenic nuclide components. B: Exposure ages derived from *He- and ?'Ne- as well as
burial ages derived from OSL-measurements. Grey bars are the same as in A. Not the very
good agreement between cosmogenic and OSL-ages. C and D: Cosmogenic-nuclide
concentration and exposure ages as a function of the distance from coast. Note that there is no
systematic trend suggesting that the surfaces in the Central Depression and the terrace
sequences in the Coastal Cordillera developed simultaneously.

5.4.2 Luminescence dating

For the post-reversal fluvial deposits derived from basement schist, we calculated three
quartz ages of 83 £ 9 ka (KR-06-11), 74 £+ 8 ka (KR-06-12) and 77 £ 11 ka (KR-06-13)
that are internally perfectly consistent within errors. Beside this internal consistency,
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these samples show good luminescence properties, i.e. the OSL signal is dominated
by the fast component, thermal transfer and recuperation are absent, the dose
recovery is acceptable (Fig.5.5), there are no indications for partial bleaching
(Fig. 5.6). Therefore, we consider these ages very reliable.

In contrast, the results of the K-feldspar and polymineral fine grains for the same
samples significantly underestimate the quartz ages by up to ~50 %. A possible
explanation for this discrepancy is the often observed anomalous fading of IRSL
(Wintle, 1973; Lamothe et al., 2003). In fact, we confirmed this hypothesis by storage
tests that reveal a significant loss of IRSL with time. These ages have thus to be
considered minimum estimates. Consequently, we use the reliable quartz ages in our
interpretation.
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Fig. 5.5: OSL depletion curve of aliquot 6 of sample KR-06-11Q documenting that the signal is
dominated by the fast component. The inset plots the dose-response curve for the same aliquot
with key data describing the performance of the SAR protocol (Wintle and Murray, 2006).
Recuperation reflects that measurement of a zero dose should give zero signal, however
charge transfer from deeper traps due to pre-heating may induce an OSL signal. Murray and
Wintle (2000) recommend that recuperation should be < 5 %. Note that recuperation in our case
is 0.6 %.

The recycling ratio reflects the reproducibility of the measurements. The dose 107 Gy has been
measured twice, at the beginning and at the end of the SAR cycle. Ideally, the ratio of both
measurements would be 1.00, values within 10 % error are considered acceptable (Murray and
Wintle, 2000). Note that the dose is reproducible within 0.97 %.

The dose recovery tests, whether a known artificial dose administered to a sample, whose OSL
signal has been erased before by light exposure, can be recovered. Ideally, dose recovery
would be 100 %. Note that dose recovery is 107 %.

The thermal transfer reflects a similar effect as recuperation, but affects the natural signal only.
Note that thermal transfer is negligible for the samples investigated here.
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Fig. 5.6: Dose-distribution plot for sample KR-06-11Q with key data documenting the shape of
the distribution and frequency-histogram plot. The Gaussian-like shape of the distribution
together with the relatively low standard deviation imply complete bleaching of OSL prior to
deposition.

SD = Standard deviation; RED = Relative Standard Deviation; SE = Standard Error.

For the pre-reversal deposits derived from arc volcanics, we identified two
clusters of ages being internally consistent. It was not possible to separate sufficient
amounts of quartz from these samples. However, the sand-fraction K-feldspar clusters
around 170 ka, whereas the polymineral fine-grains cluster around 255 ka (Table 5.1).
In contrast to the schist-derived grains, we do not observe anomalous fading of IRSL in
storage tests in the volcanic grains. Therefore, we favor an alternative explanation for
the age difference. The distinct differences in mineral composition of both valley fills
were confirmed by the dosimetric measurements, which revealed a much lower
concentration of radioactive elements in the pre-reversal deposits. The very low K-
content led us to investigate the samples microscopically. In fact, they contain a large
number of plagioclase and almost no K-feldspar. Both feldspars differ significantly in
their K-content, nevertheless the K-content is an important factor in IRSL dating,
specifically with respect to the dose rate. While K-contributions to the dose rate in K-
feldspar are fundamental, they are minor for plagioclase. Small percentages of
plagioclase are normally negligible in the blue emission spectrum (Krbetschek et al.,
1997). However, in our case, considering the near absence of K-feldspar in the
samples, the plagioclases are relevant. As a consequence, the assumption of
12.5 £ 0.5 % K overestimates the real K-content in our samples and hence also the
average dose rate for the sand-size samples, eventually leading to an underestimation
of their ages. In contrast, the contribution from internal K is dispensable in the silt-
fraction. Consequently, we argue that the ages derived from the polymineral silt-
fraction represent the real depositional age of the sediment.
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5.5 Discussion

Based on our new luminescence and cosmogenic-nuclide ages of fluvial and alluvial
sediments, we are able to reconstruct the late Pleistocene landscape evolution of the
forearc of south-central Chile at 38° to 39°S. We quantify the timing of flow reversal,
determine incision as well as uplift rates, and elucidate the role of climate in controlling
sediment accumulation. The Pellahuén river, formerly traversing the Coastal Cordillera
and draining into the Pacific, was affected by a major tectonically-induced flow reversal,
which is documented in distinct pre- and post-reversal sediments (Rehak et al., 2008).
The pre-reversal andesitic and basaltic, arc-derived conglomerates constituting the
upper terrace remnants are identical to the “rodados multicolores” that form extensive
constructional alluvial fans in the Central Depression. According to IRSL dating these
pre-reversal deposits have an age of ~250-260 ka. In contrast, the alluvial post-
reversal sediments covering the former valley floor in the wind gap of the Pellahuén
display an OSL age of about 80 ka. The spatial distribution of the samples is presented
in Figure 5.7.
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Fig. 5.7: Distribution of multicolored conglomerates (white shaded area), surface and terrace
ages in ka. Yellow stars mark OSL ages, white dots cosmogenic-nuclide ages, and black dots
delineate correction samples for cosmogenic nuclide dating. Violet numbers mark ages derived
by assuming a sample position at 60 cm depth. The red shaded square delineates the wind

gap.

First, we explain the processes and the timing of drainage reversal in the
Pellahuén valley. Second, we discuss the implications of the new ages for regional
incision and uplift rates. Third, we explore the nature of the extensive alluvial deposits
in the Central Depression, their connectivity to the fluvial units in the Coastal Cordillera,
and the relation between sediment accumulation, incision, and climate.
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Fig. 5.8: Evolution model of the Pellahuén valley. The upper grey bar marks the flow direction.
The figure progresses in time towards the right. The valley evolution comprises different phases

of accumulation and incision. As a result, we observe two distinct valley fills and terrace levels
along the river
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Fig. 5.9: Thalweg profile along the Pellahuén valley. A: Distribution of multicolored
conglomerates. Note that they reach maximum elevations of 180 m, but mainly 75 m above
present river level. The wind gap is the most elevated part of the profile. The flow reversal is
inferred to be controlled by displacement of a blind reverse fault, schematically depicted
beneath the wind gap. The paleo-valley floor is the lowest possible valley bottom enabling
westward flow of the river. B: Distribution of schist terraces. Note that they reach maximum
elevations of 37 m above present river level. The inset outlines the location of the profile with a
white line. Yellow stars mark the sample locations.

In the field, we identified two distinct terrace systems along the Pellahuén valley
in detail described by Rehak et al. (2008). Figure 5.8 depicts a terrace-evolution model
in order to visualize the development of this valley, leading us to propose the following
scenario: 4 Ma ago the Coastal Cordillera started to uplift (Rehak et al., submitted).
While uplifting, the antecedent Pellahuén river kept up incising. This incision was
followed by an aggradational cycle in the Central Depression and the Coastal
Cordillera, where up to 180 m of the andesitic and basaltic conglomerates were
accumulated within the valley. These pre-reversal valley-fills were incised again, thus
creating the upper terrace levels. However, probably the initiation of localized uplift
progressively decreased the slope of the river, consequently reducing its stream power.
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Finally, incision waned resulting in the tectonic defeat and ultimately the reversal of the
river. This stream reversal changed the contributing area completely. Now, the local
basement was eroded and another aggradational phase filled the valley with up to
40 m of locally derived schist conglomerates. During continuous uplift these schist units
were also incised, creating the lower terrace levels (Fig. 5.8).

Thus, uplift-related drainage reversal took place after the deposition of the upper
conglomerates, around 250 to 260 ka ago and prior to the accumulation of the alluvial
deposits in the wind gap around 80 ka ago as indicated by OSL ages. Consequently,
the incision of these conglomerates and the flow reversal in the Coastal Cordillera
occurred between 255 and 80 ka (175 ka). The conglomerates must had been
completely eroded prior to the reversal since they were evacuated from the wind gap
as well. The andesitic-basaltic conglomerates in the Pellahuén valley can be mapped
from 8 to 186 m above sea level (asl) (Fig. 5.9). However, they are mostly abundant
between 70 and 145 m asl along the river (Fig. 5.9). The contact between the upper
and lower terrace sediments is located 2 m above the present-day river level (arl). This
documents that during maximal 175 ka on average 75 m, locally up to 178 m, of former
conglomerate fill was evacuated, implying pre-reversal minimum incision rates of 0.43,
and locally 1.02 mma™ (Table 5.3). The same calculation can be conducted for the
post-reversal sediments. The schist conglomerates can be mapped up to 37 m arl
reflecting post-reversal incision of at least 37 m since 80 to 255 ka. Consequently,
post-reversal incision rates range between 0.15 and 0.46 mm a™.

Elevation Elapsed Incision/
difference time [Ka] Uplift rate
[m] [mm a-1]
Prereversal incision
- 75 175 0.43
178 175 1.02
Postreversal incision
min 37 255 0.15
max 37 80 0.46 Table 5.3: Incision and uplift rates in the Pellahuén
Postreversal uplift valley. Bold numbers mark incision and uplift rates when
min 70 255 0.27 the flow reversal occurred 80 ka ago (see text for
max 70 80 0.88 discussion).

Additionally, we decipher local uplift rates by reconstructing the paleo-valley floor
beneath the wind gap (Fig. 5.9). Prior to the reversal the river drained into the Pacific,
which could only have been possible when the valley bottom did not exceed an
elevation of 45 m asl. At present, the valley floor is located at an elevation of 115 m asl.
These 70 m of uplift occurred at maximum after 255 ka and at minimum after 80 ka,
resulting in local uplift rates of 0.27 and 0.88 mm a™', respectively (Table 5.3). The
incision- and uplift-rate ranges are conservative estimates. However, as indicated by
the low-energy deposits in the wind gap and due to the fact that the multicolored
conglomerates must have been evacuated prior to the reversal, we suggest that the
river was probably defeated close to 80 ka. Consequently, pre-reversal incision rates,
post-reversal incision rates, and post-reversal uplift rates are most likely represented
by the endmembers 0.43mma’, 046 mma’, and 0.88mma’, respectively
(Table 5.3). Interestingly, whereas incision rates are slower than our inferred post-
reversal uplift rate, both incision and short-term uplift rates are significantly higher than
long-term surface uplift and exhumation rates, which were shown to average around
0.2 mm a™ for the last 5 Ma (Glodny et al., 2007; Rehak et al., submitted). The spatial
restriction of uplift, the geometry of the uplifted valley, and the morphology of the
adjacent ridges suggest that local deformation is controlled by a blind thrust and
reverse faulting (Figure 5.9). Uplift might thus be mainly accommodated by
displacement along faults. A regional extrapolation inferring accelerated uplift from our
observed increased uplift rates may thus be suggested. Moreover, an acceleration of
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uplift during latest Pleistocene times is congruent with other datasets in the region
(Kaizuka et al., 1973; Nelson and Manley, 1992; Bookhagen et al., 2006a; Melnick et
al., 2006; Melnick and Echtler, 2006a). Such crustal-scale faults control the distribution
of low-wavelength surface features by folding the upper crust between and probably
also during interplate events. Consequently, we conclude that (1) subduction-zone
interplate earthquakes and upper-plate faults, which individually accommodate low
magnitudes of shortening, determine the degree and spatial extent of surface
deformation and uplift (Melnick et al., 2006); (2) deformation of the forearc is transient;
and (3) uplift rates vary significantly in time and space.

Production

Production

et a0 P Nuclide _De?osmon Post-burial | Pre-burial Storage at
cm depth surface cc_:mcen- in river bed cs)ncen- cv.:mcen- surface [a]
[at/g/a] [at/g/a] tration [at/g] [a] tration [at/g] | tration [at/g]
3He
BE58 662 | 10039 | 455E+06 | 2.56E+05 | 1.70E+06 | 2.85E+06 | 2.84E+04
21Ne
153 | 2323 | 8.18E+05 | 2.56E+05 | 3.92E+05 | 4.26E+05 | 1.83E+04

Table 5.4: Temporal sediment storage in the Central Depression. We calculated the postburial
production based on the present location and the depositional ages derived by OSL dating.
Storage times are minimum estimates since we assume storage at the surface where
production rate is highest.

In a next step, we will explore the influence of climate on sediment accumulation
in the Coastal Cordillera and the Central Depression as well as the relation between
both depositional settings. The depositional surfaces in the Central Depression have
ages between 146 and 341 ka. These ages are consistent with the age of the valley
fills in the Coastal Cordillera. Nevertheless, it is not possible to decide yet, whether the
deposition in the Coastal Cordillera and the Central Depression occurred coevally,
since the resolution of these dates might mask a lag time between two potential
accumulation events. Hence, we measured *He- and ?'Ne-concentrations also in the
fluvial conglomerates in the Coastal Cordillera in order to compare both sedimentary
units. If the conglomerates are directly derived from the Main Cordillera and have been
transported without transient storage directly to their current position within the valley in
the Coastal Cordillera, we would expect extremely low nuclide concentrations that
would approximate the concentrations in the shielded-samples. In fact, in the test
sample KR-06-29 we measure significantly lower concentrations than in all other
samples. However, the concentrations are still about twice as high as the shielded-
sample concentrations. This suggests that these conglomerates had been stored at or
near the surface prior to their final deposition. Consequently, we calculated the post-
burial production, i.e. the concentration accumulated after final deposition. Subtracting
this concentration from the total cosmogenic-nuclide inventory of the sample, we can
provide an estimate of how long the samples must have been temporarily stored prior
to their re-deposition. Assuming a surficial position, we derive storage times of 20
(*'Ne) to 30 (*He) ka (Table 5.4). Since the boulders might have been stored below the
surface, these storage times are minimum estimates. Based on these considerations,
we argue that the fluvial conglomerates in the Coastal Cordillera are indeed
remobilized sediments originating from the recycling of the alluvial deposits in the
Central Depression. Conclusively, our study area experienced alternating phases of
sediment accumulation and evacuation.

Finally, we strive to test the relation between climate and sediment
accumulation. Therefore, we superpose the depositional ages on a sea level curve
(Fig. 5.10). This shows that with one exception all accumulation events correspond to
sea-level minima, i.e. glacial periods. This is supported by the fact that identical
conglomerate units are located on the strongly uplifted island Mocha, ~ 30 km off the
coast (Echtler, 2008). Present water depth between the coast and the island reaches
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some tens of meters implying that these sediments were deposited during a sea-level
low stand, hence during a glacial period. However, sediment deposition can be related
either to a reduction of transport capacity, or an increase in sediment input. The base-
level fall during glacials is expected to increase channel slope and thereby transport
capacity, and should thus promote incision and material transport towards the trench.
Consequently, the extensive sediment accumulation in the forearc was probably
controlled by a significant increase in sediment flux. Such an increase in sediment flux
related to glacial periods is commonly observed when the glaciers retreat and expose
eroded material. We hence propose that (1) the accumulation events in the south-
central Chile forearc are related to cessation of glacials and (2) the surfaces in the
Central Depression constitute large glacial outwash fans similar to the southern
“Patagonian gravels” as proposed by Mercer (1976).
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Fig. 5.10: Correlation of sediment accumulation and sea level. Note that most of the sample plot
in glacial periods with low sea level. The transport and accumulation during glacials is
supported by the occurrence of identical conglomerate units on Mocha Island whose location
require a subaerial shelf and thus a low sea level during transport and accumulation.
Consequently, incision appears to preferably occur during interglacial stages.

5.6 Conclusions

We explored the late Pleistocene landscape evolution of the south-central Chile forearc
by dating fluvial valley fills and depositional surfaces in the Coastal Cordillera and the
Central Depression, respectively. The data presented here documents that the
surfaces in the Central Depression were deposited 150 to 350 ka ago probably related
to Pleistocene glacial cessations. The multicolored conglomerates within the valley of
the reversed Pellahuén river constitute remobilized sediments, originally derived from
the Main Cordillera, but temporarily stored in the large fans in the Central Depression.

The late Pleistocene geomorphic evolution of the Pellahuén valley comprises at
least two phases, which are recorded in the sediments accumulated along the river.
Prior to 80 ka the river drained into the Pacific constituting a major transport channel for
arc-derived material. However, progressive uplift with on average 0.88 mm a’,
probably related to displacement along a blind thrust, eventually defeated the river.
Incision rates both prior and after the reversal approximate 0.45 mm a™' and are thus
slower than short-term uplift, but faster than long-term uplift rates. In fact, a comparison
between long-term and short-term uplift rates indicates that uplift of this segment of the
Chile forearc is accelerating during the late Pleistocene. This is in agreement with other
studies from this region.

Conclusively, sediment accumulation in this forearc appears to be primarily
controlled by climate. Thus, while tectonics have always played an important role in the
evolution of this margin, climatic forcing has left a major imprint on the morphology of
the landscape.
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6. Climatic controls on drainage-basin morphology —
the western Andean flank between 15.5° and 41.5°S

Abstract

Mountain-range topography in tectonically active regions is determined by
the complex interplay between tectonics, climate, and erosion. However, it
is still controversially discussed how topography is influenced by climate.
The Andes provide a unique natural setting for investigating the relationship
between climate and topographic evolution. The meridionally oriented,
tectonically active mountain belt encompasses various climatic zones with
pronounced differences in rainfall and geomorphic processes under fairly
identical plate-boundary conditions. In the Central to Southern Western
Andes, climatic zones range from hyperarid in and around the Atacama
Desert at 22 to 23°S with mean annual rainfall of ~5 mm a” to year-round
humid conditions south of Valdivia at ~40°S, with > 2500 mm a'. This
zonation is controlled by long-lived hemisphere-scale atmospheric
circulation patterns.

Here, we present an analysis of 120 drainage basins along the watershed
of the western Andean flank between 15.5° and 41.5°S. For our study, we
used SRTMV3-90m topographic data as well as a 10-year remotely sensed
rainfall dataset with a spatial resolution of 30 x 30 km. The basins comprise
drainage areas of 1 to ~ 30 -10° km? split into different subsets according to
position and size. For each basin, we extracted a variety of geometry, relief,
and climate parameters in order to unravel the factors determining
drainage-basin morphology.

We distinguish two different, climatically-controlled mechanisms shaping
topography: moderate rainfall promoting diffusion processes which smooth
relief and glacial erosion that generates relief. Our data show that river
profile concavity, basin maximum elevation, and basin mean elevation
decrease with increasing rainfall and descending snowline. Interestingly,
our results document that local relief (calculated over a 4.5-km-radius)
reaches maximum values of ~ 750 m in a broad zone between 28° to 35°S.
During glacial stages this region was affected by the northward shift of the
Westerlies, providing moisture for valley-glacier formation. Relief
generation in this transition zone appears thus to be related to Pleistocene
glaciations. Apparently, the interaction between sparse, highly episodic
rainfall and protracted periods of aridity facilitates relief preservation in
regions where material can be quickly transported out of the orogen and
does not accumulate in intramontane basins. In contrast, the southern
regions between 35° to 40°S receiving higher rainfall show a lower local
relief of ~ 200 m. This might be controlled by more efficient fluvial erosion
and diffusive hillslope processes above a rainfall threshold of ~ 800 mm a’’
due to a higher drainage density. Ultimately, our data suggests that the
catchment-scale relief of the Andes reflects a pronounced transient
component recording past and present climatic conditions. This implies that
due care has to be exercised when interpreting landscapes as mirrors of
modern climates.

KEYWORDS: drainage basins, topography, morphometry, climate, erosion
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6.1 Introduction

Landscapes are sensitive recorders of climatic boundary conditions. They can thus
provide important insights in the complex interaction between climate, surface
processes, and topography. It has been proposed that climate plays a major role in
creating relief and shaping topography due to erosion (Molnar and England, 1990).
However, climate-change induced relief production has been challenged, arguing that
active mountain belts are already characterized by threshold relief (Whipple et al.,
1999; Montgomery and Brandon, 2002). Additionally, previous studies have shown that
the distribution of glaciers in a mountain range limits range height by concentrating
erosion near the peaks, on the other hand, glaciers enhance local relief by creating
steep topography at and above the equilibrium-line altitude (ELA) (Brozovic et al.,
1997; Whipple et al., 1999; Montgomery et al., 2001; Tomkin and Braun, 2002; Mitchell
and Montgomery, 2006). Furthermore, modeling studies suggest that increased
precipitation might cause a reduction of mountain-range topography and strongly
influence drainage-basin morphology as well as river profile concavity (Tucker and
Slingerland, 1997; Whipple and Tucker, 1999; Roe et al., 2002; Roe et al., 2003).
These inferred feedbacks are generally corroborated by field studies (Montgomery et
al.,, 2001; Gabet et al., 2004). However, these different issues and controversies
emphasize that fundamental key questions concerning the interactions between
topography and climate have not been fully answered yet. In this context, it is
extremely important to investigate the influence of climate on mountain-range
topography as the link between tectonics and climate with data collected from real
orogens. Such studies are still scarce and often suffer from low spatial and temporal
resolution.

Collecting and interpreting empirical data on morphology and its relation with
climate is hindered by three major problems. First, it is often difficult to distinguish
between climatic and tectonic influences on morphology. For example, a fluvial channel
could adjust both to an increase in precipitation and a decrease in uplift rate by
reducing channel slope. Second, landscapes might reflect past climate regimes
impeding the correlation of present morphology with prevailing climatic conditions.
However, if identified, these landscapes provide the chance to reconstruct paleo-
climatic forcing. A third problem is that an ideal setting to analyze links between climate
and topography has to provide large gradients in climatic parameters, but possibly
homogeneity in all other dependent variables as lithology, uplift rate etc., which is
virtually impossible to find in natural systems. However, an alternative starting point
could constitute a setting where climatic parameters display significant gradients and
systematic variation, whereas other variables vary unsystematically. ldeally, one would
thus have to choose a geodynamic and climatic setting where the overall
characteristics of the climatic conditions have been sustained over long time scales in a
well constrained tectonic system. The sustenance of climatic patterns is important in
order to maximize the probability to examine a climate-adapted landscape. These
requirements are reasonably well fulfilled along the west coast of South America.

Indeed, the Andes provide a unique setting for investigating the relationship
between climate and topography. More than 7000 km long, the Andes are a
meridionally oriented, tectonically active orogen spanning large gradients of various
climatic zones and rainfall regimes from hyperarid to humid, controlled by stable,
hemisphere-scale atmospheric circulation patterns that persisted at least during
Quaternary and possibly over the Neogene (Weischet, 1970; Schwerdtfeger, 1976;
Bice et al., 2000; Haselton et al., 2002). Lithology varies non-systematically along this
margin and does not correlate with climatic parameters. Data on surface-uplift rates in
the Main Cordillera is extremely sparse, thus, we have to use proxy indicators such as
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surface-uplift data from the forearc, the intensity of active deformation, and trench-
normal shortening.

Based on a medium-resolution TRMM (Tropical Rainfall Measurement Mission)
dataset, we conducted a detailed analysis of the western Andean flank between 15.5°S
and 41.5°S extracting 19 geometry, relief, and climate parameters for 120 drainage
basins. This enables us to characterize and better understand the climatic controls of
relief generation in mountain ranges, especially with regard to transience in landscapes
and the role of rainfall on relief evolution.

6.2 Regional setting

6.2.1 Geologic setting

The Andean margin is characterized by the subduction of the Nazca plate beneath the
South American continent at a rate of approximately 65 to 85 mm a’ (Demets et al.,
1994; Somoza, 1998; Angermann et al., 1999). The pre-Andean basement evolved
during a period of already east-directed subduction. The basement is subdivided into
crustal segments comprising exotic terranes, the Precordillera Terrane, as well as late
Paleozoic to early Mesozoic igneous and metamorphic rocks, batholiths, and accreted
marine sequences that constitute arc-forearc complexes (Herve, 1988; Mpodozis and
Ramos, 1989; Parada, 1990; Hervé et al., 2007; Pankhurst and Hervé, 2007). This
basement was strongly overprinted by subduction-related tectonic and magmatic
processes operating since the Jurassic period (Mpodozis and Ramos, 1989;
Allmendinger et al., 1997).

The recent phase of contraction and shortening that initiated the uplift of the
Andean mountain range and was accompanied by extensive arc activity starting in
Eocene in the Central Andes and propagating southwards where it reached the
Northern Patagonian Andes in early Miocene (Allmendinger et al., 1990; Jordan, 1993;
Kley and Monaldi, 1998; Oncken et al., 2006). Total shortening decreases southward
from ~ 300 km in the Central Andes to only ~ 15 km in the Northern Patagonian Andes
(Isacks, 1988; Allmendinger et al., 1990; Diraison et al., 1998; Kley et al., 1999;
Gregory-Wodzicki, 2000; Oncken et al., 2006; Vietor and Echtler, 2006) (Fig. 6.1). GPS
measurements corroborate this pattern and document higher shortening rates in the
Central Andes (Dewey and Lamb, 1992; Klotz et al., 2001; Brooks et al., 2003). Based
on shortening rates and tectonic activity, the Central to Southern Andes can be
differentiated into four tectonic provinces (Fig. 6.1). (1) The central part from 14° to
27°S comprises the Coastal Cordillera, the Central Depression, the Precordillera and
the Main Cordillera with the internally drained intra-orogenic plateaus of the Altiplano
and Puna encompassing mean elevations of 4000 m. This sector displays pronounced
crustal shortening in the Main Cordillera and the Subandean Ranges (Mpodozis and
Ramos, 1989). (2) The region between 27° and 33°S is characterized by flat-slab
subduction and a related absence of Quaternary volcanism and the Central Depression
(Jordan et al., 1983; Mpodozis and Ramos, 1989; Kay and Mpodozis, 2002; Ramos et
al., 2002). However, this region comprises the broken foreland of the Sierras
Pampeanas that experiences active deformation and destructive earthquakes (Jordan
and Allmendinger, 1986; Allmendinger et al., 1990). (3) Starting at 31°S, total
shortening is significantly reduced implicating thick-skinned eastern foreland
deformation (Vietor and Echtler, 2006). South of 33°S the western on-shore active
margin shows a pronounced morphotectonic segmentation integrating the forearc
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Coastal Cordillera, the Central Depression, and the Main Cordillera (Mufioz et al.,
2000). (4) South of ~38°S the Main Cordillera is called Patagonian Cordillera. Here,
deformation is dominated by strain partitioning and intra-arc strike-slip tectonics along
the Liquine-Ofqui fault zone (Cembrano et al., 2000; Thomson, 2002; Rosenau et al.,
2006).

Surface-uplift rates in the Main Cordillera are poorly constrained and only few
discrete data points are available (Fig. 6.1) (Farias et al., 2005; Charrier et al., 2007,
Schildgen et al., 2007). Nevertheless, they are in very good agreement with Neogene
uplift rates derived in the forearc along the coast that vary between 0.2 and 2 mm a™
and are relatively constant along the margin, except a patch of faster uplift in the region
around the Arauco peninsula at ~ 37°S, possibly controlled by local high-angle reverse
faults (Fig. 6.1) (Kaizuka et al., 1973; Radtke, 1989; Atwater et al., 1992; Nelson and
Manley, 1992; Ortlieb et al., 1996a; Ortlieb et al., 1996b; Marquardt et al., 2004; Le
Roux et al., 2005; Melnick et al., 2005; Pino and Navarro, 2005; Bookhagen et al.,
2006a; Le Roux et al., 2006).

6.2.2 Climatic setting

From 15° to 42°S the western flank of the Andes spans various climatic zones and
rainfall regimes from the hyperarid subtropical Atacama Desert with 12 months of
aridity in the north and semiarid environments with few months of winter rain in the
central part, to year-round humid regions in the south (Fig.6.1). Mean annual
precipitation increases from virtually zero in the core of the Atacama desert at 22°S to
about 3500 mm a™' on the windward side of the Andes at 41°S (e.g. Kummerow et al.,
2000; New et al., 2002; TRMM, 2007; Bookhagen and Strecker, 2008). In the north the
prevailing humid trade winds from the east and the low-level Andean Jet from the
northeast are blocked by the Andean topography, which together with the upwelling
cold water of the Humboldt Current promotes hyperaridity on the western flanks in the
north (Weischet, 1970; Schwerdtfeger, 1976). In contrast, the Westerlies directly
deliver moisture to the western flanks south of ~ 30°S. The equator-near position of the
Pacific anticyclone enables these frontal systems from the west to penetrate
northwards and carry moisture as far north as 30°S, occasionally during mid-winter
even up to 27°S into the arid regions (Schwerdtfeger, 1976). Between 27° and 30°S
this frontal rain occurs between May and August accounting for 90 % of the total
annual rainfall with each month’s precipitation normally originating from only one frontal
passage (Weischet, 1970; Schwerdtfeger, 1976). The largest precipitation gradient
occurs between 30° and 35°S, where precipitation rates increase by one order of
magnitude from 300 to 3000 mm a™.

Superposed on annual periodic rainfall variation, the region around 28°S is
subjected to episodic variations from arid to subhumid climate due to increased
moisture transport from the south controlled by a northward shift of the Southern
Westerlies during glacial periods (e.g. Scholl et al., 1970; Heusser, 1989; Clapperton,
1993; Veit, 1996; Lamy et al., 1998; Lamy et al., 2000; Jenny et al., 2002; Romero et
al., 2006; Hebbeln et al., 2007).
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Fig. 6.1: (A): Analyzed drainage basins with TRMM-rainfall data (TRMM, 2007). Numbers
indicate trench-fill thickness (Bangs and Cande, 1997). Note the rainfall increase south of
~ 32°S and the rainfall maximum between 35° to 40°S. (B): Local relief map calculated over a
radius of 4.5 km with tectonic segments (Mpodozis and Ramos, 1989). Segment 1 exhibits high
crustal shortening comprising the plateau regions. Segment 2 is a flat-slab segment with active
deformation in the Main Cordillera, but no Quaternary volcanism. Segment 3 is characterized by
low shortening and minimal foreland deformation, however, high uplift rates in the forearc.
Segment 4 also shows low shortening and the deformation inheres a dominant strike-slip
component. Note the high relief areas between 30° to 35°S and south of 40°S as well as the
coincidence of the maximum rainfall and the lower local relief between 35° to 40°S. (C): Total
shortening along the south-central Andean margin (Vietor and Echtler, 2006). See the decrease
in shortening at ~29°S. (D): Neogene uplift rates mostly derived from the forearc region
(Kaizuka et al., 1973; Radtke, 1989; Atwater et al., 1992; Nelson and Manley, 1992; Ortlieb et
al., 1996a; Ortlieb et al., 1996b; Marquardt et al., 2004; Le Roux et al., 2005; Melnick et al.,
2005; Pino and Navarro, 2005; Bookhagen et al., 2006a; Le Roux et al., 2006) and from the
Main Cordillera (Farias et al., 2005; Charrier et al., 2007, Schildgen et al., 2007).

Less extensive shifts of the Westerlies have occurred on shorter timescales, i.e. in
Holocene (Lamy et al., 1999). Contrasting, precipitation pattern of the plateau regions
north of 27°S appear to be relatively stable over glacial-interglacial cycles (Garreaud et
al., 2003). Taken together, these present-day and past conditions define a broad
climatic and geomorphic transition zone between 28° to 35°S characterized by annual
and glacial-interglacial rainfall variations.
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The climatic zonation of the study area is controlled by long-lived, hemisphere-
scale circulation patterns. The hyperarid conditions in the Atacama Desert were
established at least 10 to 15 Ma ago leading to extremely low geomorphic process
rates (Hartley, 2003; Dunai et al., 2005; Nishiizumi et al., 2005; Rech et al., 2006). The
general circulation in the southern Central Andes has persisted during Pleistocene, but
may have been established in the middle Miocene implying that the humid conditions in
the south have been stable and controlled by the Southern Westerlies over a very long
time span (Schwerdtfeger, 1976; Bice et al., 2000; Haselton et al., 2002; Blisniuk et al.,
2005). This is supported by the fact that the distribution of precipitation is mimicked by
the thickness of sediment fill in the trench off South America, documenting a significant
increase of sediment thickness south of the Juan-Fernandez Ridge and supporting the
long-term stability of the general precipitation pattern along the western Andean margin
(Bangs and Cande, 1997; Melnick and Echtler, 2006a) (Fig. 6.1). Due to the longevity
of this zonation, we infer that topography, relief, and drainage are adapted to climate.

South of 41°S drainage basins are not integrated and frequently change size due
to glacial erosion of ice caps (Mardones, 2006). Consequently, these basins were not
included in our analysis. Between about 18°S and 28°S no recent glaciers exist, the
elevation of the modern perennial snowline as well as the lowest Pleistocene glacier
extent lie well above 5000 m and exceed the maximum elevation of drainage basins
(Rabassa and Clapperton, 1990; Ammann et al., 2001). Hence, these catchments are
not influenced by Quaternary glaciations.

6.3 Methodology

Along the western Andean flank from 15.5°S near Arequipa (Peru) to 41.5°S to Chiloé
Island (Chile) we extracted a total of 120 drainage basins, comprising 64 main
catchments draining into the Pacific, and 56 equally-sized subcatchments along the
divide, running common Arcinfo and RiverTools routines. The initiation of a channel
was determined by a rainfall-related threshold value. Extracted channels were
compared with the blue lines of 1:250,000 topographic maps. According to their
location the main catchments were grouped in forearc, mountain front, and arc sectors
(Fig. 6.2). Forearc catchments drain only the Coastal Cordillera, whereas mountain-
front catchments also include the Central Depression and the Andean foothills,
nevertheless they do not reach the high Andes. Arc catchments extend from the Pacific
up to the principal Andean watershed. Subcatchments are parts of the arc catchments
and constituting the uppermost headwater basins along the Andean main drainage
divide. All subcatchments were extracted based on a similar contributing area of ~ 500
to 2000 km? in order to identify and exclude orographic and scale effects. For each
basin and its trunk stream we calculated 19 variables describing geometry, relief, and
climate. Our analysis is based on the medium-resolution rainfall dataset TRMM and
topographic SRTMV3-90-m data.

A selection of calculated parameters is described in Table 6.1. A complete list is
attached in Appendix A. All variables were correlated in order to identify relationships
between basin geometry, range relief, climate, river-profile concavity and hypsometric
integral. Total basin relief is calculated as the difference between the absolute
maximum and minimum elevation of a catchment (Fig. 6.2). In contrast, local relief
describes the range of relief in circles with a radius of 5 cells, 4.5 km, averaged for
each basin (Fig. 6.2). Modern annual snowline and lowest Pleistocene glacier extent
are compiled from Schwerdtfeger (1976) and Rabassa & Clapperton (1990).
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Fig. 6.2: (A): Analyzed basins along the Andean margin. Arc catchments reach from the Pacific
Ocean up to the main drainage divide, mountain-front catchments reach the Andean foothills.
Forearc catchments drain only the Coastal Ranges. Subcatchments are mostly part of the arc
catchments and constitute headwater basins along the watershed. (B): Sample catchment
demonstrating the calculation of total and local basin relief. (C): The PCI is an integral
describing the area beneath a river-longitudinal profile. (D): Generation of the hypsometric curve
and the related hypsometric integral defined as the area beneath the curve.

River profiles are often interpreted with respect to climatic conditions, fluvial
processes, rock-uplift rates, and evolutionary stage (e.g. Strahler, 1952; Summerfield,
1991; Ohmori, 1993; Whipple and Tucker, 1999; Snyder et al., 2000; Kirby and
Whipple, 2001). The concavity of a river-profile can be expressed as a profile concavity
index (PCI) (e.g. Demoulin, 1998). This reduces the river profile to a single number and
enables correlation with other variables. The PCI is calculated as the normalized area
under the normalized distance-elevation curve of the river (Fig. 6.2). A diagonal drawn
from the source to the mouth would result in a value of 0.5; thus, profiles with a



6. Climatic controls on drainage-basin morphology 64

PCI > 0.5 reflect convex shapes. The PCI is similar to stream-profile concavity used by
Zaprowski et al. (2005), who found that this index covaries with the stream-profile
concavity 6, i.e. the regression slope in log slope-log area plots. These authors hence
conclude that both values are effective measures of profile concavity.

Variable |

|C
S
=

Definition | Source

Vertical shape

normalized area under the normalized distance-elevation profile (diagonal from

profile concavity source to mouth would be 0.5) PCI > 0.5 reflect a strongly convex profile

after Demoulin, 1998

hypsometric integral normalized area under a normalized area-elevation curve after Strahler after Strahler, 1952

Relief

basin mean elevation m
total basin relief m basin maximum elevation - basin minimum elevation
basin local relief m local relief averaged over a circle with a diameter of 10 cells after Summerfield, 1991
Climate
mean annual rainfall mm a-1 TRMM 30km dataset
HiodstH Bersniilal Stiowlife i after Schwerdtfeger, 1976; Rabassa and
P Clapperton, 1990
5 i after Schwerdtfeger, 1976; Rabassa and
lowest Pleistocene glacier extent m

Clapperton, 1990

Table 6.1: Selection of investigated variables extracted for each catchment. See Appendix A for
more detail. In our study, we will mainly concentrate on basin mean elevation, basin total and
local relief, mean annual rainfall, and snowline as well as glacier extent.

The hypsometric integral (HI) describes the distribution of elevations in a drainage
basin. The HI is calculated as the normalized area under a normalized area-elevation
curve, following Strahler (1952) (Fig.6.2). It is interpreted as a reflection of the
geomorphic evolutionary stage and the degree of tectonic activity of a landscape
(Strahler, 1952; Strahler, 1957; Summerfield, 1991; Ohmori, 1993).

The variables were correlated separately for all basin groups. We excluded
strongly covarying variables, which might express similar characteristics. In our
interpretation, we will focus on a few key parameters that we identified to best
elucidate the interactions between relief, topography, rainfall, and snowline. The
significance level for all correlations was set to the 95 % confidence interval of a two
ta;led t-test. As a goodness-of-fit measure for the correlations and regressions we used
R*.

6.4 Results

Our comprehensive dataset reveals a strong influence of rainfall on topography along
the western flank of the Andean margin. See Appendix A for a detailed list of all
correlations and raw data. A negative correlation exists between rainfall versus basin
mean elevation, total relief, PCI, and HI (Fig. 6.3). A similar relationship exists between
snowline and Pleistocene glacier extent versus these relief parameters. Both, modern
snowline and Pleistocene glacier extent are closely linked to rainfall (Fig. 6.3)
supporting the notion that glaciation in large parts of the central Andes is moisture-
controlled. This is in good agreement with results from Haselton et al. (2002) who
concluded that the Pleistocene snowline in the Altiplano-Puna region is more sensitive
to moisture increases than temperature. However, the decrease of mean elevations is
also apparent in basins that do not reach the snowline and have not been affected by
glaciation, i.e. most mountain-front and all forearc catchments (Fig. 6.3). The
correlation between HI and PCI versus rainfall is probably partly determined by relief
parameters. HI, for example, is coupled to basin mean elevation, which itself is
correlated with rainfall (Fig. 6.3).
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Fig. 6.3: Correlations between relief and climate variables. Plots A and B show a negative
relationship between total basin relief as well as basin mean elevation versus rainfall. Plots A to
C and E to H are broadly north-south oriented from left to right. Note the inverse x-axes of the
relief variables versus snowline (G, H). Plot D shows that the local relief increases the higher
the basins reach above the Pleistocene glacier extent. Note the close relationship between
snowline and glaciers versus rainfall (E, F).

Satellite images of typical headwater basins reveal the distinct character of local
catchment relief in the different climatic zones (Fig. 6.4). The northern basins in the
hyperarid part display very low local relief. This landscape is virtually undissected and
characterized by extremely low erosion rates < 0.1 m Ma™ (Nishiizumi et al., 2005)
resulting in the preservation of mid-Miocene relict surfaces (Rech et al., 2006)
(Fig. 6.4 A). Only those regions traversed by rivers originating in the high volcanic arc
are characterized by deeply cut canyons (Zeilinger et al., 2005; Hoke et al., 2007,
Schildgen et al., 2007). In contrast, headwaters in the semiarid-subhumid transition
zone between 28° to 35°S are highly dissected. These subbasins have steep hillslopes,
sharp ridges, and record glacial overprint (Fig. 6.4 B). The catchments in the humid
south between 35° and 40°S display a smooth local relief with moderate hillslopes and
subrounded ridges (Fig. 6.4 C). However, south of 40°S the landscape has again
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steeper hillslopes and a higher degree of dissection (Fig. 6.4 D). These observations
are clearly reflected in our data (Fig. 6.5).

Between ~ 18° to 28°S modern snowline and the lowest extent of Pleistocene
glaciation lie well above the maximum elevations of the ranges. Both modern and
Pleistocene ELA start to descend southward when rainfall amounts rise. The modern
snowline approaches the mean elevations until it undercuts the latter at a latitude of
about 42°S (Fig. 6.3). The maximum elevation of the basins are reached by the
snowline and the lowest Pleistocene glacier extent already farther north at ~32°S
(mountain-front catchments), ~ 27°S (arc catchments), and ~ 28°S (subcatchments),
thus depending on latitude and elevation (Fig. 6.5). Basins south of these regions have
been at least partially glaciated during Pleistocene. Most interestingly, between 28° and
35°S local relief displays a prominent maximum, and mean annual rainfall amounts are
still low (Fig. 6.5). In fact, once the maximum elevation is undercut by the snowline,
basin sectors above this line display a progressive linear increase in local relief
(Fig. 6.3). In contrast, local relief and maximum elevations significantly decrease
southward where rainfall amounts exceed ~ 800 mm a™ (Fig. 6.5). Local relief reaches
a minimum between 35° and 40°S, where rainfall amounts are highest. South of 40°S
local relief appears to increase again.

Basin-geometry variables strongly covary with each other, however they show no
correlation to relief or climate parameters (Appendix A). We thus conclude that basin
geometry is generally independent of relief and climate.

Fig. 6.4 (overleaf): Landsat TM images in the left column and corresponding local relief map in
the right column showing one typical headwater basins of each climatic zone. The inset in the
lower right corner delineates the location of the close-ups. (A): Hyperarid subtropical desert belf.
Note the absence of incision and significant local relief in this transport-limited setting. (B): Arid-
semiarid transition zone. Note the glacial imprint, the highly dissected landscape, steep
hillslopes, and sharp ridges forming a high local relief. (C): Humid, temperate climate. Note the
moderate hillslopes, smooth ridges, sediment-filled valleys, and generally decreased dissection
and local relief. (D): Humid, cold region. Note the increased local relief expressed in steeper
valleys, dissected landscape, and pronounced ridges.
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Fig. 6.5: North-south distribution of relief and climate parameters. Note the local-relief maximum
around 28° to 35°S coinciding with increasing rainfall in the arid-semiarid transition zone and the
undercutting of the basin maximum elevations by the snowline and the lowest Pleistocene
glacier extent (red rectangle). When rainfall amounts increase and exceed ~ 800 mm a”' (blue
bar) local relief is reduced and maximum elevations drop significantly. Local relief reaches a
minimum around 35° to 40°S where rainfall rates are highest. This suggests that glacial and
fluvial together with hillslope erosion are counteracting resulting in a glacially-dominated high-
relief landscape where rainfall is low (~28°-35°S) and a diffusion-dominated low-relief
landscape where erosion is efficient due to high rainfall amounts (~ 35° - 40°S). South of 40°S
local relief appears to rise again in the subcatchments. The right map shows the local relief
sectors in roman numbers. Note the enhanced local relief in sector Il (Figure 6.4 B) and the
smoothed relief in sector Ill (Figure 6.4 C). The thin dotted lines indicate tectonic segments.
South of ~ 27°S catchments are partially influenced by glaciation. The region between 28° to
35°S is dominated by glacial erosion, the region between 35° and 40°S by fluvial erosion and
diffusive denudation.

6.5 Discussion

The analysis of 120 drainage basins between the Central and Southern Andes reveals
a prominent relation between climate and topography. Mean elevation and total basin
relief decrease with increasing rainfall as well as decreasing snowline and Pleistocene
glacier extent (Fig.6.3). Although snowline and glacier extent influence mean
elevations, the correlation between rainfall versus mean elevation and total basin relief
can also be observed in basins that have not been influenced by glacial erosion.
Hence, the decrease in topography appears to be partly related to increasing rainfall.

SoSGC
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The distribution of local relief along the margin is very differentiated. Figure 6.5
indicates a local-relief maximum around 28° to 35°S. This zone coincides with the
onset of partial basin glaciation due to decreasing modern and Pleistocene snowline
elevations, particularly on the western Andean flank, since the region south of 28°S is
dominated by westerly moisture (Clapperton, 1994; Haselton et al., 2002). Thus,
northwards-migrating Westerlies may have reached these latitudes and intensified
rainfall during glacials, delivering enough moisture for glaciation in these threshold
environments (e.g. Heusser, 1989; Lamy et al., 1999). South of 40°S, where glacial
processes dominate landscape evolution, local relief starts to increase again (Fig. 6.4
and 6.5). We therefore suggest that the high local relief between 28° and 35°S is the
result of repeated glacial erosion during Pleistocene. The present-day low rainfall
amounts promote the preservation of this dominantly glacial relief.

In contrast, farther south around 35°S local relief drops significantly despite the
fact that the elevation of the snowline continues to descend (Fig. 6.5). Interestingly, this
decrease starts in all catchments when rainfall amounts exceed ~800 mma’
(Fig. 6.5). Additionally, local relief reaches its minimum where rainfall amounts are
highest. Based on these observations we suggest that 800 mm a™' might be a critical
threshold-rainfall amount above which the fluvial system is coupled to the hillslopes
and efficiently erodes in these environments. We therefore conclude that the zone
between 35° to 40°S is dominated by fluvial erosion associated with diffusive hillslope
processes that help smooth mountain-range relief.

Mean A Mean
annual . A Total .
. elevation . Position
rainfall %] relief [%]
[mm/a]
118 8 Forearc
18 -20 Mountain Front
50 - 100 0 3 Arc
44 -37 Subbasins
45 -12 Average
-24 -38 Forearc
-13 28 Mountain Front
100 - 200 28 -9 Arc
0 7 Subbasins
-2 -3 Average
55 29 Forearc
-33 -17 Mountain Front
200 - 400 -50 4 Arc
-34 91 Subbasins
-16 27 Average
-76 -31 Forearc
-85 -40 Mountain Front
400 - 800 -34 -30 Arc
-26 -27 Subbasins
-55 -32 Average
<-41 <-48 Forearc
- - Mountain Front
800 - 1600 <-30 <-14 Arc
-29 -10 Subbasins
-33 -24 Average
>400 -44 -28 Average

Table 6.2: Relief reduction due to a doubling of rainfall. See the amount of rainfall and the
respective change in mean elevation and total relief for each basin group. Note that mean
elevation and total relief are only significantly reduced by doubling rainfall amounts above
rainfall rates of 400 mm a”’.

Our results are in agreement with other empirical and modeling studies
proposing that high precipitation rates lower topography (Montgomery et al., 2001; Roe
et al.,, 2003; Gabet et al., 2004). Roe et al. (2003) suggest that in environments
dominated by rainfall, a mountain range can be lowered by more than half due to
enhanced precipitation. In the tectonically active Himalaya Gabet et al. (2004)
document that a doubling of rainfall from 2000 to 4000 mm results in a 33 %-decrease
in total relief between valley and ridge crests. Despite significantly lower rainfall
amounts in our study area, our results document a decrease in mean elevation and
total relief on the order of 44 % and 28 %, respectively, for a doubling of rainfall
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amounts > 400 mm a™' (Table 6.2). Such a rainfall-induced decrease in topography
would imply an increase in erosion rates toward the south. Indeed, an increase of
erosion rates and terrigenic sediment accumulation in the trench is well documented
along the Andean margin (Scholl et al.,, 1970; Montgomery et al., 2001; Lamb and
Davis, 2003; Melnick and Echtler, 2006a; Hebbeln et al., 2007).
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Fig. 6.6: (A): Relative drainage density along the margin calculated as the cumulative channel
length per unit area. On the right see close-ups of two catchments representative for the arid (B)
and humid (C) part of the study area. Note the significantly higher drainage density in the south
where rainfall amounts are increased. The grey-shaded regions in basins (B) and (C) outline the
parts of the catchments that are integrated in the fluvial network and thus denudated. In
catchments with a higher drainage density in the south the entire basin with all hillslopes is
integrated whereas dry catchments in the north display distinct ridges and interfluves not
reached by the drainage network.

Previous studies suggested that a rainfall-induced enhanced erosivity is
controlled by an increase in drainage density, resulting in a lowering of hillslope,
tributary, and trunk channel relief, as well as threshold hillslope angles (Tucker and
Bras, 1998; Whipple et al., 1999; Reiners et al., 2003; Gabet et al., 2004). In fact,
enhanced rainfall is associated with a progressive southward increase of drainage
density (Fig. 6.6). High drainage density causes more effective denudation of higher
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catchment parts that are not integrated in the fluvial network when drainage density is
lower (Fig. 6.6). As a result, total and local relief decrease with increasing drainage
density and increasing rainfall when fluvial processes coupled to diffusion dominate. In
contrast, glacial erosion has been shown to be one of the main relief-generating
processes focusing erosion near the peaks and thereby maintaining steep topography
at and above the ELA (Hallet et al., 1996; Small and Anderson, 1998; Tomkin and
Braun, 2002; Mitchell and Montgomery, 2006). The erosional effect of glaciers has
been likened to the “buzz-saw effect”, effectively reducing the overall topography of
mountain-ranges (Brozovic et al., 1997).

Consequently, we distinguish two geomorphic zones in the Central to Southern
Andes. Between 28° to 35°S rainfall amounts are below a critical threshold rendering
fluvial erosion ineffective. Hence, glacial erosion, generating local relief, is the
dominant process. Between 35° and 40°S fluvial erosion, enhanced by higher rainfall
amounts, dominates landscape evolution and diminishes local relief (Fig. 6.5).

PCIl and HI as indicators for the general topography of basin and channels are
reduced with enhanced rainfall. Our data expands the rainfall range of other studies
significantly (e.g. Zaprowski et al., 2005) and supports the conclusions of those studies
that less intense precipitation is correlated with convex profiles (high PCI), whereas
concave profiles (low PCI) develop in regions with intense rainfall (Roe et al., 2002;
Zaprowski et al., 2005). Although we do not identify rainfall variations along single
longitudinal-river profiles in this study, the inverse relationship between rainfall and
channel concavity probably reflects the more efficient erosion at higher rainfall rates,
where rivers adjust faster to changes in boundary conditions and approach equilibrium
profiles. The HI is typically used to infer the geomorphic and tectonic age of a
landscape (Strahler, 1952; Ohmori, 1993). However, HI scales with mean elevation,
which appears to be partly correlated with rainfall. Consequently, due to differences in
rainfall and denudation rates, a basin in an arid environment is probably much older
than a basin in a humid climate with the same HI. In contrast, two basins, which started
to uplift at the same time, but are situated in different climatic zones should exhibit
significantly distinct HIl-values. Therefore, Hl-values should only be used relative to
each other as proxies for tectonic activity in similar climatic settings. It appears to be
more suitable to interpret the HI with respect to the efficiency of erosion processes in
drainage basins, which is supported by results of Montgomery et al. (2001).

Clearly, erosion and topography in mountain belts are also determined by tectonic
processes. In the Andes, the shortening rate decreases towards the south, absolute
shortening is reduced by more than 30 % from high shortening (> 300 km) to low
shortening (< 100 km) at around 30°S (e.g. Allmendinger et al., 1990; Vietor and
Echtler, 2006) (Fig. 6.1). However, we observe the local-relief maximum at 28° to 35°S,
already in a sector where shortening is low, hence the opposite of what might be
expected if shortening were a controlling factor for local relief. Furthermore, active
deformation in the Central Andes is mainly observed as far south as 36°S (Mpodozis
and Ramos, 1989; Vietor and Echtler, 2006). Consequently, the sectors defined by
local relief and dominant geomorphic process are not consistent with tectonic
segments. Last, the high-relief sector does not coincide with distinct rocks comprising a
lower erodibility (Sernageomin, 2003). A lithologic control can thus be excluded as well.
Conclusively, neither changes in shortening rate, lithology, nor the distribution of
deformation alone can account for the local relief maximum. Apparently, local relief
along the Andean margin is mainly determined by the long-term climatic zonation.
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6.6 Conclusion

We analyzed the relation between basin geometry, climate, and topographic
parameters in 120 drainage basins along the western Andean flank between 15.5° and
41.5°S based on SRTMV3-90m topographic data as well as the medium-resolution
TRMM-dataset. Our analysis shows that basin geometry is not affected by climate
along the Andean margin. Conversely, the relief parameters, PCI, and HI are strongly
dependent on rainfall highlighting the importance of climate in attempting to derive
information about tectonics from river profiles and hypsometry.

Furthermore, our results suggest that increased rainfall diminishes mean and
maximum elevations of mountain ranges. This is similar to the impact of glaciation on
total range topography, which focuses erosion on summits and ridges at, and above
the ELA. This underscores the complex relationships between tectonics creating
topography and rainfall as well as glaciers that decrease total range relief. With respect
to the generation of local relief we propose that coupled fluvial and hillslope erosion
and glacial erosion are opponents. Whereas glacial erosion appears to create local
relief, moderate rainfall above a critical threshold promote diffusive processes and thus
substantially smooth local relief. Accordingly, a climate shift to humid conditions or a
transition from dominantly glacial to dominantly fluvial erosion is expected to reduce
total and local relief. Hence, although the large-scale architecture of the Andean
mountain chain is maintained by tectonic processes and inherited structures, our data
suggest that the catchment-scale relief mainly reflects the dominant geomorphic
process determined by the regional climatic conditions. In turn, this indicates that the
geomorphic signature of landscapes inheres a significant transient component which
may reflect erosion processes during the recent geologic past. Conversely, these
geomorphic signatures can be used to identify past paleoclimatic extents if these
processes occurred over a sufficiently long time interval. However, due care has to be
exercised when interpreting landscapes as a mirror of modern climate.
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7. Conclusions

In this study | discuss and answer questions concerning the role of morphotectonic
segments with respect to forearc morphology, their persistence as morphotectonic
entities as well as their relation to earthquake-rupture zones, the evolution of tectonic
and geomorphic processes through time, and the climatic control on geomorphic
processes and landscapes along the margin of central to southern Chile. | provide new
results on the evolution of the highly dynamic forearc region of south-central Chile in
particular, and insights into the complex interplay between climate and tectonics in
composite landscapes in general.

(1) I investigated the forearc with regard to morphotectonic segments and
identified three segments that record a distinct geomorphic and tectonic evolution.
From north to south these segments are the Nahuelbuta, Toltén, and Bueno segments.
The Coastal Cordillera in both, the Nahuelbuta and the Bueno segments, undergoes
active tectonic uplift documented by flights of marine terraces, uplifted planation
surfaces, ongoing river incision, and severe drainage perturbations. In contrast, the
middle Toltén segment, characterized by flat topography and a lack of incision, appears
to be quasi-stable. My observations suggest that this morphotectonic segmentation is
persistent in the long-term and thus not related to the activity of short-lived earthquake-
rupture zones. This was confirmed by reconstructing the uplift history of the northern
Nahuelbuta segment on a timescale of 10° years applying cosmogenic-nuclide dating
with "°Be and %Al.

(2) The results suggest that the uplift of the Coastal Cordillera started in Pliocene
time about 5 Ma ago which coincided with the establishment of the morphotectonic
segmentation of this forearc. In line with other studies quantifying the sedimentation
patterns in the trench this implies that the onshore and offshore forearc uplifted
contemporaneously, related to a shift from subduction erosion to subduction accretion.
This took place about 5 Ma ago and may have coincided with the onset of global
cooling and higher glacigenic sediment production. In fact, the initiation of Patagonian
glaciation ~ 6 Ma ago is followed by fundamental modifications of the subduction and
surface process system along the south-central Chile margin. Various studies
document changes from extensional to compressional deformation, from subsidence to
uplift, from erosive to accretive subduction, from marine to continental deposition at the
late Miocene to early Pliocene boundary. Importantly, my data clearly indicates that the
forearc of south-central Chile obtained its present morphologic characteristics only
during the Pliocene to Quaternary.

(3) Interestingly, late Pleistocene uplift rates derived by dating fluvial terraces with
optically stimulated luminescence are higher than surface-uplift rates averaging over
the last 5 Ma. This suggests that forearc uplift has accelerated during the late
Quaternary, as corroborated by other data from the region. However, surface uplift is
spatially variable due to preferred displacement along crustal-scale reverse faults.
These faults — the locus of subduction-zone interplate earthquakes - control the degree
and spatial distribution of deformation. This is supported by a late Pleistocene flow
reversal in a growing crustal-scale anticline that appears to be related to uplift above a
blind reverse fault. Surface uplift is transient and variable in time and space in this
forearc setting, indicating a highly dynamic system, where subduction and related
surface processes are closely linked.

(4) The Central Depression in south-central Chile is characterized by extensive
depositional surfaces constituted by thick gravel sheets. According age determinations
using *He and ?Ne these surfaces were accumulated 150 to 300 ka ago. The recent
geomorphic expression of this region has thus been established in late Pleistocene
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time. The distribution of ages indicates that the deposition of these surfaces may have
been climatically controlled and may have been related to outwash processes toward
the end of late Pleistocene glacial stages. Hence, although the landscape of the south-
central Chile forearc is significantly influenced by tectonics, it additionally preserves the
imprint of pronounced climatic forcing.

(5) A climatic signal can also be seen in catchment-scale local relief along the
Central to Southern Andes. Dependent on the dominant geomorphic process, which is
determined by climate, relief varies significantly. Additionally, this reveals a pronounced
transient component in landscape evolution reflecting surface processes active during
past climatic conditions. Consequently, due care has to be exercised when interpreting
landscapes as reflections of modern climates.

In conclusion, my study has shown that it is useful to analyze geomorphic
markers reflecting different timescales and processes in order to elucidate the role of
surface processes, and hence climate, in shaping landscapes in tectonically active
regions. The data presented in this thesis shows a consistent picture of the tectonic
and geomorphic evolution of the study area. However, the spatial density of the dataset
could be further improved in future by investigating other geomorphic markers in order
to increase the statistic reliability of the results.

My results allow the identification and differentiation of climatically and
tectonically determined landscape components. Nevertheless, a future task would be to
increase the temporal resolution and spatial density of the data in order to identify and
correlate singular climatic events. In this context, cosmogenic nuclides would provide
an excellent tool to quantify and compare present and past surface-process rates in
different settings. My study shows that the accumulation of large sediment deposits in
the south-central Chile forearc is primarily controlled by climate. Hence, fluvial and
alluvial terraces may constitute excellent archives of past erosional regimes and could
thus be used to reconstruct the climatic history of many settings in which sediment
deposition is climatically driven.
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Appendix - Climatic controls on drainage-basin morphology 101
Forearc Mountain Front Arc Subbasins
HI PCI HI PCI HI PCI HI PCI
bsisii ared -0.301 0.042 -0.186 0.225 -0.267 -0.281 -0.469 -0.268
— 0.185 0.857 0.419 0.326 0.230 0.205 0.000 0.046
basin_length -0.189 0.157 -0.272 0.088 -0.060 -0.014 -0.167 -0.141
= 0.411 0.498 0.233 0.706 0.790 0.952 0.218 0.299
basin width -0.300 0.005 -0.216 0.171 -0.200 -0.379 -0.255 -0.087
= 0.187 0.983 0.348 0.459 0.372 0.082 0.058 0.524
basin form 0.155 0.168 0.282 0.031 0.228 0.454 0.151 0.100
= 0.502 0.467 0.215 0.895 0.307 0.034 0.267 0.463
basin_elongation_ratio -0.113 -0.121 -0.258 0.126 -0.273 -0.318 -0.236 -0.124
- — 0.624 0.601 0.260 0.585 0.219 0.149 0.079 0.362
basin mean elevation 0.731 0.828 0.928 0.573 0.980 0.817 0.496 0.740
- — 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000
total basin relief 0.245 0.475 0.590 0.399 0.717 0.492 0.175 -0.199
— - 0.285 0.030 0.005 0.073 0.000 0.020 0.197 0.142
basin_ relisf rati 0.719 0.583 0.683 0.214 0.503 0.364 0.165 -0.142
- - 0.000 0.006 0.001 0.352 0.017 0.096 0.224 0.297
basin loeal telich -0.062 -0.383 0.379 -0.355 0.323 0.003 -0.029 -0.508
ST 0.823 0.086 0.090 0.115 0.143 0.989 0.835 0.000
channel_drop 0.762 0.587 0.756 0.165 0.694 0.603 0.522 0.231
= 0.000 0.005 0.000 0.474 0.000 0.003 0.000 0.086
Fear: anfilial rairall -0.393 -0.595 -0.798 -0.366 -0.822 -0.677 -0.473 -0.572
= = 0.078 0.004 0.000 0.103 0.000 0.001 0.000 0.000
mean_annual_temperaturel 0.302 0.671 0.426 -0.103 -0.534 -0.382 -0.284 -0.411
- - 0.184 0.001 0.054 0.657 0.010 0.079 0.034 0.002
ground fros 0.118 0.015 0.462 0.363 0.883 0.740 0.266 0.517
- 0.612 0.949 0.035 0.105 0.000 0.000 0.048 0.000
modern_perennial_ 0.445 0.758 0.804 0.323 0.896 0.748 0.465 0.723
snowline 0.043 0.000 0.000 0.153 0.000 0.000 0.000 0.000
lowest_Pleistocene_ 0.481 0.765 0.785 0.324 0.881 0.736 0.446 0.697
glacier_extent 0.027 0.000 0.000 0.151 0.000 0.000 0.001 0.000
Srosion fides -0.122 -0.624 0.216 -0.421 -0.181 -0.251 -0.090 -0.453
= 0.598 0.003 0.348 0.057 0.421 0.261 0.509 0.000
erosion_intensity -0.562 -0.680 -0.571 -0.759 -0.567 -0.537 -0.494 -0.565
= 0.008 0.001 0.007 0.000 0.006 0.010 0.000 0.000
bold: R > 0.5, shaded: R > 0.5

Table A 7: Correlations between HI, PCI, and calculated variables.
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