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Abstract 

This thesis discusses theoretical and practical aspects of modelling of light 
propagation in non-aged and aged step-index polymer optical fibres (POFs). Special 
attention has been paid in describing optical characteristics of non-ideal fibres, 
scattering and attenuation, and in combining application-oriented and theoretical 
approaches. The precedence has been given to practical issues, but much effort has 
been also spent on the theoretical analysis of basic mechanisms governing light 
propagation in cylindrical waveguides. 

As a result a practically usable general POF model based on the raytracing approach 
has been developed and implemented. A systematic numerical optimisation of its 
parameters has been performed to obtain the best fit between simulated and measured 
optical characteristics of numerous non-aged and aged fibre samples. The model was 
verified by providing good agreement, especially for the non-aged fibres. The 
relations found between aging time and optimal values of model parameters 
contribute to a better understanding of the aging mechanisms of POFs. 
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List of important symbols 

α illumination angle 
αmax acceptance angle 
αout output angle 
β relative wavenumber of a mode 
d(r,φ,z) refractive index perturbation 
γ propagation angle 
g Green’s function of an ideal cylindrical waveguide 
jm radial component of a modal field 
k free-space wavenumber 
λ free-space wavelength 
m azimuthal order number of a mode 
n(r) unperturbed refractive index profile 
np(r,φ,z) perturbed refractive index profile 
n0 refractive index of fibre’s core 
n1 refractive index of fibre’s clad 
NA numerical aperture 
Ω perturbation region 
R fibre radius 
R0 radius of the perturbation region 
τ transverse mode parameter 
u scalar field propagating in a waveguide 
uinc incident field 
uscat scattered field 
V normalised frequency of a fibre 
w fibre modal parameter 
w0 core modal parameter 
w1 clad modal parameter 
z0 length of the perturbation region 
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1 Introduction (Zusammenfassung) 

Polymer optical fibres (POFs) are a new emerging medium for short-range optical 
data communication (up to a few hundred meters) in the visible region of the 
spectrum. POFs are also widely used for lighting and for sensor applications. 

As a safe, inexpensive and reliable data transmission medium POFs are foremost used 
by the automotive industry, for home and office networks, and for in-device data 
transmission and control [58, 59]. Although their relatively high attenuation (approx. 
150 dB/km) does not allow long-distance transmissions, they are in many other 
aspects (flexibility, low costs of production and wiring, ease of handling) in  
short-range applications superior to silica fibres. 

In course of use POFs are subjected to different types of environmental stresses, 
mainly high temperature, humidity and mechanical stress. Great amount of 
experimental research has already been done to standardise, experimentally test and 
assess the durability of commercially available fibres [10, 26, 32, 48-56]. However, 
little effort has been directed towards understanding and practical modelling of two 
main optical mechanisms not occurring in idealised fibres but affecting light 
propagation in a real fibre: attenuation and scattering. Both represent the non-ideality 
not only for new fibres, but are also strongly involved in their aging process and thus 
critical for fibre’s optical properties. Respective researches are important for 
developing more efficient fibre test methods and for assessing fibre performance 
under stress. 

There has been much theoretical research devoted to fibre optics and wave-analysis of 
cylindrical waveguides [2, 28, 29, 30]. Nevertheless, it has been rarely rigorous in its 
mathematical contents. The major flaw seems to be the lack of conditions 
guaranteeing uniqueness of the solution to the scalar wave equation on a cylindrical 
fibre, a problem solved for open-space and a spherical wave by Rellich [25, 9]. On the 
other hand, results obtained in such theoretical investigations have been rarely 
systematically verified against real fibre measurement data. 

There has also been much theoretical [1, 2, 62-67] but very little application-oriented 
analysis of scattering induced by small-size random irregularities of the refractive 
index, which is always present in real fibres, especially those subjected to 
environmental stress and aged. No basic analysis of angular characteristics of this 
scattering is known, an often met problem in analysis of scattering in open-space 
geometry but hardly tractable in the case of cylindrical waveguides with their not 
obvious relation between mode and its illumination, propagation or radiation angles. 
Analysis based on geometric optics and raytracing, although often referred to, cannot, 
contrary to expectations, explain some experimentally observed angular 
characteristics of scattering, thus the use of a constant [42-46, 60] or purely 
phenomenological relations [16, 41]. 
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Therefore the primary task of this Ph.D. work is to develop a practically usable and 
theoretically well-rooted model of light propagation in POFs, to investigate the 
influence of aging effects on it, and to verify it by optical experiments. To achieve a 
more general understanding of the POF aging process, parallel to this work a Ph.D. 
thesis of another BAM employee, A. Appajaiah, is prepared, it investigates chemical 
aspects of aging on the same and similar POF samples [17, 33-36]. 

Now the outline of the following thesis will be given in respect to its essential parts: 

In Part 2.1 of Chapter 2 the scalar wave equation is solved for the case of a cylindrical 
waveguide. The uniqueness of the solution (i.e. the counterpart of Rellich’s radiation 
condition [25, 9]) is stated without proof as a hypothesis. The representation theorem 
of Alexandrov and Ciraolo [2] is stated and used to define the relations between 
illumination angle, excited modes and output angle. Wave analysis of scattering 
processes in 2D slab waveguides of Magnanini and Santosa [8] is expanded in 
Part 2.1.4 to 3D cylindrical waveguides. Convergence of a critical series of this part, 
the one representing the scattered field, is stated as a hypothesis only. Appendix A4 
contains considerations concerning a possible proof. 

Part 2.2 of Chapter 2 describes the geometric optics approach to fibre modelling and 
introduces raytracing model with mechanisms mostly absent in the previous research: 

• scattering mechanism (Part 2.2.2) based on the results of the theoretical 
investigations of Part 2.1 and the numerical simulations of scattering intensity 
in dependence on illumination angle (reported in Appendix A2); 

• implemented Fresnel reflection law (Part 2.2.3) in the form of a random choice 
between reflection and transmission for each ray incident on the core-clad 
interface. This mechanism, although intuitively obvious, requires 
astonishingly much effort to prove its validity. 

Part 2.3 of Chapter 2 introduces two basic characteristics of an optical fibre: far-field 
profiles and near-field profiles.  

Chapter 3 describes the software developed to implement the raytracing model of 
Part 2.2. It includes simulation software as well as the software allowing comparison 
of simulated and measured far-field profiles and semi-automatic parameter 
optimisation.  

Fibres used for practical investigations, their technical specifications, aging conditions 
and preparation of the samples for further measurements are described in Chapter 4. 
Fibres from three manufacturers have been used. The high temperature aging process 
(100 °C/<<50 % RH (dry heat)) has been selected; the fibres used in further 
investigations were subjected to six different aging times (ranging from no aging, i.e. 
0 h, up to half a year, i.e. approx. 4500 h in oven). 

Chapter 5 discusses the setup used for far-field profile measurements. Part 5.3 
describes the developed procedure, necessary for quality assessment and calibration 
of CCD cameras [14]. 

Chapter 6 discusses the measurement process and the procedure for far-field profile 
extraction from obtained measurements. Part 6.4 presents sample measurement 
results: far-field profiles of non-aged and aged fibres. 
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The results of the parameter optimisation by comparison of simulated and measured 
far-fields are presented in Chapter 7. This systematic approach to model validation 
and parameter fitting can be considered superior to earlier research, because here: 

• Both bulk and interface attenuation coefficients are used to trace separately 
aging of the bulk material and physical degradation of the core-clad interface. 

• Fibres of different lengths are measured and compared. The amount of the 
scattering understandably depends on fibre length, thus using fibre samples of 
different length allows for significantly more control over the scattering 
parameters and ensures model validity for not only one fibre length. 

• Semi-automatic numerical optimisation procedure is applied. 

Appendix A2 contains the results of numerical wave analysis of two sample 
cylindrical waveguides. It directly uses the notation and results of Part 2.2. For both 
cases it was found that scattering intensity clearly decreases with increasing 
illumination angle, an explanation for the relations experimentally observed before. 
This is a pure wave-effect and probably cannot be satisfactorily explained on the basis 
of geometric optics and simple raytracing model only, which suggest the opposite 
scattering – angle relation. 

Appendix A3 shows several graphs comparing simulated and measured far-field 
profiles of fibres used in this research. 

Kunststofflichtwellenleiter (POFs) stellen ein verhältnismäßig neues Medium zur 
optische Datenkommunikation über kurzen Strecken dar (bis zu einigen hundert 
Metern). Sie arbeiten im sichtbaren Wellenlängenbereich des elektromagnetischen 
Spektrums und werden auch für Beleuchtung und für Sensor-Anwendungen 
verwendet. 

Während ihrer Einsatzdauer unterliegen POFs unterschiedlichen Arten von 
Umweltbeanspruchungen, hauptsächlich durch hohe Temperatur, hohe Feuchtigkeit 
und mechanischen Belastungen. Zahlreiche experimentelle Forschungen beschäftigten 
sich mit der standardisierten Prüfung der Zuverlässigkeit von im Handel erhältlichen 
Fasern. Jedoch gab es bisher wenig Erfolg bei der Bemühung, zwei grundlegende 
optische Erscheinungen, Absorption und Streuung, die die Lichtausbreitung in Fasern 
stark beeinflussen, zu verstehen und praktisch zu modellieren: Diese beiden Effekte 
beschreiben nicht nur die Qualität neuer Fasern, sondern sie werden auch stark durch 
die Alterungsprozess beeinflusst. 

Der Hauptzweck dieser Doktorarbeit war es, ein praktisch verwendbares und 
theoretisch gut fundiertes Modell der Lichtausbreitung in nicht gealterten und 
gealterten POFs zu entwickeln und es durch optische Experimente zu verifizieren. 
Dabei wurden anwendungsorientierte Aspekte mit theoretischer POF-Modellierung 
kombiniert. 

Die Arbeit enthält die erste bekannte Anwendung der Wellenanalyse zur 
Untersuchung der winkelabhängigen Eigenschaften der Streuung. Die Resultate der 
numerischen Beispiele stimmen mit den experimentell beobachteten Ergebnissen 
überein. Der Gebrauch der Wellenoptik war erforderlich, weil die vereinfachende 
Anwendung der geometrischen Optik zu einer den experimentellen Ergebnissen 
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widersprechenden Winkelabhängigkeit führt. Die Resultate der Wellenanalyse 
wurden ausserdem dazu verwendet, ein generelles POF-Modell zu entwickeln, das auf 
dem Strahlverfolgungsverfahren basiert. 

Für die praktischen Experimente wurden mehrere POF-Proben unterschiedlicher 
Hersteller künstlich gealtert, indem sie bis 4500 Stunden bei 100 °C gelagert wurden 
(ohne Feuchtekontrolle). Die Parameter der jeweiligen Simulationen wurden mittels 
einer systematischen Optimierung an die gemessen optischen Eigenschaften der 
gealterten Proben angeglichen. Die erreichte Übereinstimmung ist besser als in bisher 
vorliegenden Untersuchungen und bestätigt die Verwendbarkeit des Modells. Die 
Resultate deuten an, dass der Übertragungsverlust der gealterten Fasern in den ersten 
Tagen und Wochen der Alterung am stärksten durch eine wesentliche physikalische 
Verschlechterung der Kern-Mantel-Grenzfläche verursacht wird. Chemische Effekte 
des Alterungsprozesses scheinen im Faserkernmaterial zuerst nach einigen Monaten 
aufzutreten. Als Nebeneffekt dieser Arbeit wurde ein Kalibrierung- und 
Qualitätseinschätzungsverfahren für CCD-Kameras entwickelt. 



 11

2 Modelling of light propagation in POF 

In this chapter two most important approaches used for analysis and modelling of 
optical fibres will be discussed: the wave optics (Part 2.1) and the raytracing approach 
(Part 2.2). We will concentrate mainly on the property of an optical fibre that is most 
aging-related, i.e. scattering and, in the case of the raytracing approach, also 
attenuation (see also Part 4.1). The fibre simulations (Chapter 7, Appendix A3) 
performed within this research are made with self-implemented software (Chapter 3) 
using the raytracing model described here. At the end of this chapter we will discuss 
basic measurable characteristics of an optical fibre: near- and far-field profiles 
(Part 2.3). 

For the analysis of light propagation in optical fibres both the Cartesian and the 
cylindrical coordinate systems will be used (Fig. 2.1). 

 
Fig. 2.1 The nomenclature for describing the optical fibre. The fibre axis lies along 

the z axis of both Cartesian and cylindrical coordinate systems. The clad 
will be assumed to extend infinitely, as in Eq. (2.16), or to end at some 
finite distance, as in Eq. (2.74), where air of refractive index 1 begins. 

2.1 Wave-optics model 
Wave approach takes into account the wave nature of propagating light and requires 
solving the vector wave equation or its simplified version, the scalar wave equation. 
As the scalar wave equation is generally considered valid (so called weak guidance 
approximation) and broadly used for optical fibres modelling due to small variations 
of a refractive index in a typical fibre, in this analysis only the scalar description of 
propagating fields will be used. 

Within the wave-optics approach, light propagating in an optical waveguide is 
described in terms of a set of discrete solutions of wave equations (vector or scalar), 
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called guided modes, and a set of continuous solutions, called radiating modes. Those 
modes (in the scalar case considered here) are eigenvalue functions of the scalar wave 
equation and each finite energy solution of this equation is a unique superposition of 
guided and radiating modes, as the representation theorem of Alexandorv and Ciraolo 
[2] states (Part 2.1.3.1). 

In this Part 2.1 we will solve the scalar wave equation (Part 2.1.2), cite the 
representation theorem (Part 2.1.3.1), relate the inclination of an input beam to the 
excitation of particular modes (Part 2.1.3.2) and finally discuss scattering of 
propagating light between modes caused mainly by perturbations of the refractive 
index of the waveguide (Part 2.1.4). The obtained angle-dependence of the scattering 
intensity will then be used in the raytracing approach (Part 2.2). 

As it is common in the context of the wave analysis, mainly the term ‘waveguide’ 
instead of ‘fibre’ will be used in this part. 

2.1.1 Maxwell’s, vector and scalar wave equations 
Propagation of an electromagnetic field is exactly described by the set of Maxwell’s 
equations [1, 4]. For the case of non-magnetic materials, which normally constitute an 
optical waveguide, and assuming an implicit time dependence exp(-iωt), they are 
expressible using MKS units in the following form [1]: 

(2.1) 
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where E(x,y,z) and H(x,y,z) are the electric and magnetic field vectors, J is the current 
density, σ is the charge density, µ0 and ε0 are respectively the permeability and 
permittivity (dielectric constant) of free space and the free-space wavenumber k is 
related to the wavelength λ of light in free space and to the angular frequency ω by: 

(2.2) c
k ω

λ
π == 2

. 
n in Eq(2.1) is the refractive index of the medium, related to its permittivity ε and the 
permittivity of free space ε0 by [1, 4]: 
(2.3) 0

2εε n= . 

For the translationally invariant waveguides, i.e. for the waveguides with refractive 
index profiles n = n(x,y) not varying with the distance z along the waveguide, both 
electric and magnetic fields of the waveguide are according to [1] expressible as 
superpositions of fields with the following separable forms: 

(2.4) 
( ) ( ) ( )
( ) ( ) ( )kziyxzyx

kziyxzyx
 exp,,,

 exp,,,
β

β
hH
eE

=
=

, 
where β is the relative wavenumber and βk is the propagation constant. After 
decomposing the fields into their longitudinal and transverse components 
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(2.5) 
( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( )kziyxhyxzyx

kziyxeyxzyx

z

z

 exp,ˆ,,,
 exp,ˆ,,,

β
β

zhH
zeE

t

t

+=
+=

, 
where ẑ  is the unit vector parallel to the waveguide axis. Substituting those 
representations into source-free Maxwell’s equations (i.e. with J ≡ 0, σ ≡ 0) we can 
relate other field components to the transverse electric field et [1]: 
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Eliminating either electric or magnetic field from Eq. (2.1), the inhomogeneous vector 
wave equations [1] can be obtained: 

(2.7) 
( ) ⎟⎟

⎠
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2

2
1

0

0222 1ln
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kinkn JJEE∆E
ε
µ

, 
( ) JJHH∆H ×∇−∇×−×∇=+ 222 ln nkn . 

With no sources present, both fields satisfy the homogenous vector wave equation, 
obtained from Eq. (2.7) by setting J ≡ 0: 

(2.8) 
( )

( ) .ln

ln
222

222

nkn

nkn

∇××∇=+

∇⋅−∇=+

HH∆H

EE∆E
. 

Solving equations Eq. (2.8) even in the relatively simple case of the step-index 
waveguide profile is difficult [1, 6] and only few other profiles are known to have 
exact solutions [1]. Pronounce simplification is possible, if variations of the 
waveguide refractive index ∆n are considered enough small (like in the case of POF 
with ∆n ≈ 6 % at the core-clad interface) to neglect the right-hand-side of Eq. (2.8), 
i.e. assume 
(2.9) 0ln 2 =∇ n . 

Optical waveguides with ∆n≈0 and consequently with 10 nn ≈  are called weakly 
guiding [5], although, as Snyder and Love in [1, page 281] state, the terminology is 
somewhat misleading since both strong guidance and total containment of light within 
the core are possible. Both Cartesian coordinates of the transverse component et of 
the electric field propagating in such waveguide may be found by solving the scalar 
wave equation: 
(2.10) 022 =+∆ uknu , 
where u denote one of the Cartesian coordinates of et. The longitudinal components 
ez ≈ 0 and hz ≈ 0 (i.e. all fields are TEM waves) due to the weak guidance 
approximation, the transversal component ht of the magnetic field may be computed 
using the formulae Eq. (2.6). 

For a detailed discussion of the derivation of the weak guidance approximation and 
the relations between solutions of Eq. (2.8) and Eq. (2.10) see Snyder and Love  
[1, Chapter 32 and 33], and Gloge [5]. 
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2.1.2 Modes 
We will look for basic, simply expressible solutions of Eq. (2.10), called modes. As 
the representation theorem of Alexandrov and Ciraolo [2] states, each finite energy 
field propagating in a weakly guiding waveguide is a unique superposition of such 
modes. 

Rewriting the equation Eq. (2.10) in cylindrical coordinates (r, φ, z) we obtain: 

(2.11) 011 22
2

2

22

2
=+

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂+

∂
∂ unku

rrz
ur

rr
u

z . 

We will look for solutions in separated variables only: 
(2.12) ( ) ( ) ( ) ( )2,exp exp,, βϕβϕ rjimkzizru m⋅⋅= , 
where jm: R→R is the radial component of the propagating mode depending on β2,  
β is the relative wavenumber of the mode (βk is the mode propagation constant) and 
m∈Z due to the conservation condition. After substituting Eq. (2.12) into Eq. (2.11) 
and eliminating the variables φ and z we obtain: 

(2.13) ( ) 01
2

2
222 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+′+′′

r
mnkjj

r
j mmm β

. 
For notational clarity from now on τ will be used for β2: 
(2.14) 2: βτ = . 

The form of the general solution to Eq. (2.13) depends on the relation between n2 
and β2 = τ : 

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −⋅+⎟

⎠
⎞⎜

⎝
⎛ −⋅= τττττ 22, nkrYbnkrJarj mmmmm

 
, τ < n2 

( ) ( ) m
m

m
m rbra ⋅+⋅ − ττ  , τ = n2, |m|>0 ( ) =τ,rjm  { ( ) ram ln⋅τ  , τ = n2, m = 0 

(2.15) 

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −⋅+⎟

⎠
⎞⎜

⎝
⎛ −⋅= 22, nkrKbnkrIarj mmmmm τττττ  , τ > n2 

where Jm and Ym are m-th order real Bessel functions of the first and second kind, 
Im and Km are m-th order real modified Bessel functions of the first and second kind 
and am(τ), bm(τ) are arbitrary but real coefficients. 

In the case of the step-index waveguide two values of the refractive index must be 
considered: n0 for the core and n1 for the infinitely extended clad: 

n0 , r∈[0, R ] 
(2.16) n(r)= { n1 < n0  , r∈(R, ∞), 
where R is the radius of the waveguide. Thus, the equation Eq. (2.13) has to be solved 
separately for the core and separately for the clad. The general solution for the whole 
waveguide, across its core and clad, has then to be expressed as: 

( )τ,0 rjm  , r∈[0, R ] 
(2.17) ( ) =τ,rjm { ( )τ,1 rjm  , r∈(R, ∞), 
where 0 jm and 1 jm are the solutions of Eq. (2.13) in the core and in the clad, 
respectively. Both have to satisfy the following conditions: 
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( ) ( )ττ ,, 10 RjRj mm = , 

( ) ( )ττ ,, 10 RjRj mm ′=′ , (2.18) 

0 jm and 1 jm are bounded. 

First two of them are boundary conditions; the continuity of jm and its first derivative 
across the core-clad interface follows directly from Eq. (2.10) and Eq. (2.16). Third 
condition is an obvious physical requirement. Functions building the solutions 
Eq. (2.15) are bounded or unbounded on [0, R ] and (R,  ∞) according to Table 2.1: 

 bounded unbounded 
r∈[0, R ) J, I, r|m| Y, K, r -|m|, |m|>0 

r∈[R, ∞) J, K, Y, r -|m| I, r|m|, |m|>0 
Table 2.1 Properties of the solutions to equation Eq. (2.13) in waveguide’s core and clad. 

For notational clarity we introduce the following modal parameters: 

τ−= 2
00 : nkw , 

τ−= 2
11 : nkw , 

2
1

2
0: nnkw −= , 

(2.19) 

V := wR. 
Note that V is a mode-independent waveguide parameter (often called waveguide’s 
normalised frequency), for a typical POF V ≈ 4000. In the literature often not τ but 2

0w  
is treated as an independent, mode-specific variable. This approach lacks a bit of the 
conceptual clarity of the relative wavenumber β, but leads to simpler mode-angle 
relation and occasionally will be used also here. 

Taking into account the third requirement from Eq. (2.18), the data in Table 2.1, the 
relations between 2

0n , 2
1n , τ = β2 and combining separate solutions Eq. (2.15) for the 

core and the clad, potential solutions to Eq. (2.13) may be written as: 
( )rwJ m 0  , r∈[0, R ] for 2

1n<τ  ( ) =τ,rjm  { ( ) ( ) ( ) ( )rwYbrwJa mmmm 11 ⋅+⋅ ττ  , r∈(R, ∞), 
( )rwJ m 0  , r∈[0, R ] 

for 2
1n=τ  ( ) =τ,rjm  { ( ) m

m ra −⋅τ      ,|m|>0 , r∈(R, ∞), 

( )rwJ m 0  , r∈[0, R ] for ( )2
0

2
1 , nn∈τ  ( ) =τ,rjm  { ( ) ( )rwKb mm 1⋅τ  , r∈(R, ∞), 

mr  , r∈[0, R ] for 2
0n=τ  ( ) =τ,rjm  { ( ) ( )rwKb mm 1⋅τ  , r∈(R, ∞), 

( )rwI m 0  , r∈[0, R ] 

(2.20) 

for 2
0n>τ  ( ) =τ,rjm  { ( ) ( )rwKb mm 1⋅τ  , r∈(R, ∞), 

where am(τ), bm(τ) are arbitrary real coefficients.  
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All potential solutions Eq. (2.20) have to be checked against the first two 
requirements of Eq. (2.18), the boundary conditions. It turns out, that: 

• For 2
0n≥τ : There are no propagating modes, i.e. the boundary conditions 

Eq. (2.18) are satisfied by ( )τ,rjm  for none 2
0n≥τ  and none bm(τ). 

• For ( )2
0

2
1 , nn∈τ : For each m∈Z there is a discrete (maybe empty) set of 

solutions, the solutions exist if and only if { }m
m
k Pk ,,1,0 K=∈ ττ  and have the 

following form: 

( )rwJ m 0  , r∈[0, R ] 
(2.21) ( )=m

km rj τ, { ( )
( ) ( )rwK

RwK
RwJ

m
m

m
1

1

0  , r∈(R, ∞), 

where { }m
m
k Pk ,,1,0 K=τ  is the set of the solutions of the following equation: 

(2.22) 
( )

( )
( )

( )RwK
RwK

Rw
RwJ
RwJ

Rw
m

m

m

m

1

11
1

0

01
0

++ = . 

where w0 and w1 are defined in Eq. (2.19) and 222
1

22
0 VRwRw =+ . Note that all 

the functions ( )m
km rjr τ, ⋅  are in L2(0,∞) and the powers carried by the 

corresponding modes Eq. (2.12) may be computed as: 

(2.23) 

( ) =⋅∫
∞

0

2  ,2 drrjr m
km τπ  

( )
( ) ( ) ( ) ( ) ( ) ( )[ ]RwJRwJRwKRwKRwKRwJ

RwK
R

mmmmmm
m

01011
2

11110
2

1
2

2

+−+− −= π .

• For 2
1n=τ : For each |m|>0 the existence of the solution depends on the identity 

(2.24) 
( )

( ) mm
wRJ
wRJ

wR
m

m +=+1 . 

The solution exists if and only if the identity holds, and then it has the form: 
( )wrJ m  , r∈[0, R ] 

(2.25) ( )=2
1, nrjm { ( ) m

m
m rwRJR −⋅  , r∈(R, ∞). 

The function ( )2
1, nrjr m⋅  belongs to L2(0, ∞) if and only if |m|>1 and then the 

corresponding mode Eq. (2.12) carries finite power: 

(2.26) ( ) ( )wRJ
m

m
Rdrnrjr mm

22

0

2
1

2

1
,2

−
=⋅∫

∞

ππ . 

 Note that in this case ww =0 . 

• For 2
1n<τ : For each m∈Z and for each ( )2

1, n∞−∈τ  there exists a solution to 
Eq. (2.13) with a form listed in Eq. (2.20): 

( )rwJ m 0  , r∈[0, R ] 
(2.27) ( ) =τ,rjm { ( ) ( ) ( ) ( )rwYbrwJa mmmm 11 ⋅+⋅ ττ  , r∈(R, ∞). 
 Using the identity Eq. (A1.1) we can obtain the formulae for ( )τma  and ( )τmb : 
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( ) ( ) ( ) ( ) ( )[ ]RwYRwJwRwYRwJwRa mmmmm 110110102
1

++ −= πτ , 
(2.28) 

( ) ( ) ( ) ( ) ( )[ ]RwJRwJwRwJRwJwRb mmmmm 011001112
1

++ −= πτ . 

 Functions ( )2
1, nrjr m⋅  are not in L2(0, ∞). 

The existence of the solutions to Eq. (2.13) in dependence on τ can be schematically 
summarised as on the Fig. 2.2. 

 
Fig. 2.2 Diagram of solutions to the radial component of a scalar field propagating  

in a waveguide, equation Eq. (2.13). 

According to the terminology used on Fig. 2.2, modes with the radial component jm of 
the form either Eq. (2.21) or Eq. (2.25) with |m|>1, so propagating with [ )2

0
2
1 , nn∈τ , are 

called guided modes. They decay exponentially in the clad with the radius and carry 
finite power (for examples see Fig. A2.4, A2.5 and A2.7). Alexandrov and Ciraolo 
have proved in [2, Theorem 8.2] the following: 

THEOREM 2.1. [2] The total number of guided modes (in all m∈Z) is finite.     

Modes with the radial component jm of the form Eq. (2.27), propagating with 2
1n<τ  

are called radiating modes. Radiating modes extend oscillating with the radius into 
the clad much farer than guided modes (no exponential decay, for examples see 
Fig. A2.6). As ( ) ( )∞∉⋅ ,0, 22

1 Lnrjr m , finite power propagating in the waveguide may 
be distributed among radiating modes only continuously.  

Note that Eq. (2.12) implies that both guided and radiating modes with positive τ are 
oscillating with distance z along the waveguide, while radiating modes with τ <0 
exponentially decay or grow, depending on the direction of the propagation. Such 
exponentially decaying or growing modes are called evanescent modes. 

For given m∈Z let j0m(r,τ0) and j1m(r,τ1) be two different solutions of Eq. (2.13), not 
both radiating. It can be easily checked that the functions r½j0m(r,τ} and r½j1m(r,τ} are 
orthogonal: Under the substitution v0m(r,τ0) := r½j0m(r,τ0} and v1m(r,τ1) := r½j1m(r,τ1} 
equation Eq. (2.13) gives the two following equations: 

(2.29) 

( ) ( ) ( ) 025.0,,
2

2

0
22

0000 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−−+′′
r

mnkrvrv mm τττ
, 

( ) ( ) ( ) 025.0,,
2

2

1
22

1111 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−−+′′
r

mnkrvrv mm τττ
. 

Multiplying the first equation by v1m(r,τ1), the second by v0m(r,τ), subtracting the 
products and integrating the result over [0,∞) yields: 
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(2.30) 

( ) ( ) ( ) =⋅− ∫
∞

0
11001

22  ,, drrvrvnk mm τττ
 

( ) ( ) ( ) ( )[ ] =⋅′′−′′⋅= ∫
∞

0
11001100  ,,,, drrvrvrvrv mmmm ττττ  

( ) ( ) ( ) ( )[ ] =⋅′−′⋅= ∞

∞

=
=

∞→
→

rr
rrmmmm

r
r

rvrvrvrv
00

 ,,,,lim 110011000
ττττ  

( ) ( ) ( ) ( )[ ] 0,,,,lim 11001100 =⋅′−′⋅⋅=
∞→

ττττ rjrjrjrjr mmmmr
, 

for the expression in the parenthesis converges to zero quicker than r -1, if at least one 
of j0m(r,τ0) and j1m(r,τ1) is not radiating, see Eq. (A1.2). 

Example computations and graphs of modal fields for two waveguides with 
normalised frequency parameter V = 8 and V = 20 may be found in Appendix A2.1. 

2.1.3 Modal representation of an input field 
In the previous part we have solved the scalar wave equation in separated variables 
for the case of a step-index waveguide and obtained the set of basic configurations of 
the propagating field, called modes. It turns out that each finite-power field 
propagating in such a waveguide can be uniquely represented as a superposition of 
modal fields, as the representation theorem of Alexandrov and Ciraolo [2] states. We 
now will cite the theorem (Corollary 2.4) and use it to obtain the modal representation 
of the angle-dependent uniform lighting of the fibre input face, in order to 
approximate the laser lighting used for the measurements of far-field profiles in the 
experimental part of this work (Chapters 5 and 6). We will also state the assumptions 
that will allow calculating fibre output far-field out of modal fields. 

2.1.3.1 Representation theorem 
Alexandrov and Ciraolo, proving in [2] the two following theorems, have showed that 
the radial components jm, m∈Z, may be viewed as transform kernels, with the 
corresponding sets of τ as the transform variable.  

THEOREM 2.2. [2] Let g:R+→C be such a function that ( ) ( )∞∈⋅ ,02Lrgr . For each 
m∈Z the following integral converge: 

(2.31) ( ) ( ) ( )∫
∞

⋅⋅=
0

 ,: drrgrjrG mm ττ  

and there exists a non-decreasing function χm:R→R such that: 

(2.32) ( ) ( ) ( ) ( )∫
∞

∞−

⋅= τχττ
π mmm dGrjrg  ,1 . 

The Parseval identity holds: 

(2.33) ( ) ( ) ( )∫∫
∞

∞−

∞

=⋅ τχτπ mm dGdrrgr 2

0

2 22 . 

THEOREM 2.3. [2] Let g:R+→C be such a function such that ( ) ( )∞∈⋅ ,02Lrgr  and let 
χm:R→R be the non-decreasing function from Theorem 2.2. Then 

(2.34) ( )
( ) ( )ττ

τπτχ 22
2

2
1

mm
m ba

dkd
+

=  for ( )2
1, n∞−∈τ . 
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For [ )2
2

2
1 , nn∈τ  function χm is constant between the discontinuity points 

{ }m
m
k Pk  ..., ,1 ,0  =τ , where 2

1n  is the first discontinuity point if and only if the equation 

Eq. (2.24) holds and the rest m
kτ  are the roots of the equation Eq. (2.22). In each 

discontinuity point m
kτ  function χm has a jump m

kr , where 

(2.35) ( )
1

0

2  ,:

−∞

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅= ∫ drtjrr m

km
m

k τπ . 

For [ )∞∈ ,2
2nτ  function χm is constant. Using Eq. (2.34) the formula Eq. (2.32) for the 

back transform can be rewritten as: 

(2.36) ( ) ( ) ( ) ( ) ( )
( ) ( )∫∑

∞−= +
⋅

+⋅⋅=

2
1

22
2

0

,
2
1,1

n

mm

mm
P

k
mm

m
k d

ba
Grj

kGrjrrg
m

τ
ττ
ττ

ττ
π . 

Both theorems directly imply the following corollary: 

COROLLARY 2.4. Let ( )zru ,,ϕ  be a finite-power solution of the scalar wave equation 
Eq. (2.10), Eq. (2.11) with refractive index n defined in Eq. (2.16), i.e. let for each z 

(2.37) ( ) ∞<⋅∫ ∫
∞π

ϕϕπ
2

0 0

2  ,,2 ddrzrur . 

Let um(r, z) be the Fourier coefficients of ( )zru ,,ϕ : 

(2.38) ( ) ( )∫ −=
π

ϕ ϕϕ
π

2

0

 ,,
2
1:, dzruezru im

m . 

Then u at each distance z along the waveguide is the superposition of guided and 
radiating modes jm(r,τ), m∈Z with weights Gm(τ, z): 

(2.39) ( ) ( ) ( ) ( ) ( )∑ ∫
∈

∞

∞−

⋅⋅=
Zm

mmm dzGrjimzru τχττϕ
π

ϕ  ,,exp1,, , 

where dχm(τ) is defined in Eq. (2.34) and Eq. (2.35). The coefficients Gm(τ, z) contain 
all z-dependence and are defined by: 

(2.40) ( ) ( ) ( )∫
∞

⋅⋅=
0

 ,,:, drzrurjrzG mmm ττ  

and satisfy 
(2.41) ( ) ( ) ( )kziGzG mm  exp0,, βττ ⋅= . 
The Parseval identity holds, too: 

(2.42) ( ) ( ) ( )∑ ∫∫ ∫
∈

∞

∞−

∞

=⋅
Zm

mm dzGdrdzrur τχτϕϕ
π

2

0

2

0

2 ,2 ,, . 

PROOF:  
Eq. (2.37) and the standard Parseval identity for Fourier series imply that 

( ) ( )∞∈⋅ ,0, 2Lzrur m  with um(r,z) defined in Eq. (2.38). Thus, um(r,z) matches the 
assumptions of both Theorems 2.2 and 2.3. According to Theorem 2.2, the integral 
Eq. (2.40) defining Gm(τ, z) converges. Eq. (2.32) and the inverse Fourier transform 
imply Eq. (2.39). Eq. (2.41) holds due to Eq. (2.12). The Parseval identity Eq. (2.42) 
holds due to Eq. (2.33) and the standard Parseval identity for Fourier series.    
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2.1.3.2 Illumination, modal fields and fibre output 
For fibre lighting purposes in the experimental part of this work a red laser (Part 5.2) 
illuminating the whole fibre input face was used. Using the approach from [1], we 
will assume the following simplifications:  

• The fibre input face is uniformly illuminated. This assumption is justified, as 
the beam diameter (half width of a Gaussian energy distribution) of the laser 
used for measurements is 3 mm to 4 mm, while the fibre diameter is 1 mm 
only. 

• Fields at the input face are approximately those at the boundary between two 
semi-infinite media of refractive indices 1 (air) and n0 (the core). 

• Weak guidance assumption, i.e. ∆n ≈ 0. 

• Modal fields in considered case of a semi-infinite waveguide are the same as 
in the case of an infinite waveguide. 

Those simplifications will allow finding relatively simple formulae for angle-
dependent mode excitation.  

Let the input face of the fibre be lighted by a plane wave with the direction of 
propagation contained in the x-z surface, uniformly polarized in y-axis direction and 
with incident angle α with the fibre axis (Fig. 2.3). 

       air (nair=1)     fibre core (n0) 

fibre axis    z 
α 

x 

γ 

 
Fig. 2.3 Refraction of a beam at the input face of a weakly guiding fibre. 

According to the second assumption, the field u at the input face can be computed 
from standard formulae for plane-wave refraction at a dielectric interface [4]. 
Normalising, to keep the total power illuminating the waveguide core constant, and 
using the Snell’s law Eq. (2.79), we get the following expression for the field u at the 
input face z = 0 inside the fibre: 

(2.43) 
( ) ( ) ( )[ ] =⋅= γαϕ sinexp0,, 0 xiknpru core1  

( ) ( )[ ] ( ) [ ) ( )[ ]αϕααα sincosexpsinexp ,0 ⋅⋅=⋅= ∈ ikrpikxp Rrcore 11 , 
where p(α) is the Fresnel transmission coefficient Eq. (2.96). Now, using the series 
expansion Eq. (A1.3) and Eq. (A1.4) we obtain: 
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(2.44) ( ) [ ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⋅= ∑

∈
∈

Zm
m

m
Rr imkrJipru ϕααϕ expsin0,, ,01

. 
According to Eq. (2.38): 
(2.45) ( ) ( ) [ ) ( )[ ]αα sin0, ,0 krJipru mRr

m
m ∈⋅⋅= 1  

Use the formula Eq. (A1.5) and Eq. (2.21), Eq. (2.25), Eq. (2.27) to compute the 
definite integral Eq. (2.40) and obtain: 

(2.46) 

( ) ( ) ( ) ( ) ( ) =⋅⋅⋅= ∫
R

mm
m

m drkrJrwJrpiG
0

00  sin0,; αατα  

( ) ( ) ( ) ( ) ( )[ ]RwJkRJwkRJRwJk
kw

pRi
mmmm

m

01010222
0

sinsinsin
sin −− ⋅−⋅⋅

−
= ααα

α
α .

The Parseval identity Eq. (2.42) allows  to write the following formula for the power 
contained in a guided mode: 
(2.47) ( )( ) ( ) ( )2

0
0 0,;2:; m

km
m

k
m
km Grp τατα = , 

where m
kr  is defined in Eq. (2.35), Eq. (2.23) and Eq. (2.26). The total power in 

radiating modes is given by:  

(2.48) ( ) ( ) ( ) ( )
( ) ( )∑ ∫

∈ ∞− +
=

Zm

n

mm

m
r d

ba

G
kp

2
1

 
0,;

:
22

2
020 τ

ττ

τα
πα , 

where am(τ) and bm(τ) are defined in Eq. (2.28). The total incident power equals: 
(2.49) 2: Rpinc π= . 

Sample computations and graphs for angle-dependent mode excitations of two 
waveguides with parameter V = 8 and V = 20 can be found in Appendix A2. In Part 
A2.2 we define, basing on the simulations results, the optimal illumination angle for a 
guided mode, i.e. the illumination angle maximising the power Eq. (2.47) entering the 
mode, and call it further the external propagating angle of the mode (as relative to the 
outside environment, so α and not γ on Fig. 2.3). 

Using Eq. (2.46) and the assumptions stated at the beginning of this part, modal fields 
dependent on the illumination angle can be accurately found (as on Fig. A2.8). The 
opposite construction, i.e. the precise build-up of fibre angular output characteristics 
from its modal fields is not possible within the scalar wave equation approach as the 
scalar wave equation does not retain the vector properties of propagating fields. 
However for investigations of scattering and mode mixing the angular representation 
of modal fields is necessary. Thus, we will adopt a simplified procedure and assume 
that each mode at the fibre end produces the angular power output per solid radian 
(FFP, i.e. far-field profile, see Part 2.3.1) of the same shape as its normalised 
excitation characteristics Eq. (2.47): 

(2.50) 
( ) ( ) ( )

( ) ( )∫
= π

ααταπ

τα
τα

5.0

0

0

0

 sin;2

;
:,;

dp

p
moutput

m
km

m
koutmm

kout . 

Therefore, if ( )m
kmp τ  equals the power contained in LPmk mode at the fibre’s end, then 

fibre output is assumed to be the ( ){ }m
kmp τ -weighted superposition of curves 

Eq. (2.50), i.e. the angular density of output energy per unit time is assumed to equal: 
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(2.51) ( ) ( ) ( )∑∑
∈ =

=
Z 0

,; :
m

P

k

m
kout

m
kmout

m

moutputpoutput τατα , 

where only guided modes were taken into account, as they carry most of the 
propagating power, an assumption that will be justified on examples in Appendix 
A2.2 and henceforth used. Note that Eq. (2.51) can be easily put down in vector 
notation as 
(2.52) ( ) ( )[ ] ( )[ ]m

kout
m
kmout moutputpoutput τατα ,;

T
⋅= , 

where both vectors contain respective values computed for all modes in the same 
order. 

2.1.4 Scattering and mode mixing 
Even if the illuminating beam has a very small divergence (as it is the case with a 
laser beam) and the angular input characteristic of the waveguide contains only one 
narrow peak around the beam inclination angle, the angular characteristic of the 
output usually is much more diffused. This process is referred to as scattering, mode 
mixing or mode coupling; its most important reason are minute perturbations of the 
waveguide’s refractive index, which are inevitable in a real waveguide and give rise 
to the continuous power flow between propagating modes (Part 2.1.4.2). Another, 
often neglected reason, are the field transitions: illuminating to modal and modal to 
output (Part 2.1.4.1). According to Eq. (2.46) even the most parallel beam excites 
several guided modes, whose diffuse input/output characteristics superposed in 
Eq. (2.52) build-up a diffuse output. 

2.1.4.1 Scattering on input and end faces 
Under the assumption of no power transfer between modes, due to Eq. (2.46) and 
Eq. (2.52), the angular output power distribution can be expressed as: 
(2.53) ( ) ( ) ( )[ ] ( )[ ]m

kout
Tm

kmout moutputpoutput τατααα ,;;:, 0 ⋅= , 
where α and αout are the input and output angles1, respectively. Fig. A2.14 in 
Appendix A2 shows sample angular output distributions for few inclinations of the 
input beam and for two sample waveguides. Numerical analysis described there 
showed that this kind of scattering (in investigated waveguides) practically does not 
depend on the illumination angle (see Fig. A2.15). 

2.1.4.2 Refractive index perturbations 
In an ideal non-absorbing waveguide the refractive index profile as well as the power 
distribution between modes are steady along the waveguide’s length. Slight refractive 
index perturbations, inevitable in a real waveguide, give rise to the continuous power 
flow between modes, usually referred to as the mode mixing or coupling. We will 
follow the analysis of scattering of Magnanini and Santosa [8] and expand it to the 
three-dimensional case of an optical fibre using the approach of Alexandrov and 
Ciraolo [2]. 

                                                 
1 The angles between the waveguide’s axis and the direction of propagation. 
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The refractive index n in Eq. (2.10) of an ideal waveguide depends only on the  
radius r. The perturbed waveguide in our analysis will have a refractive index 
np(r,φ,z), defined by the perturbation function d(r,φ,z): 

(2.54) 
( ) ( ) ( )zrdrnzrn p ,,,, 22 ϕϕ += , 

supp ( ) [ ] [ ) [ ]00 ,02,0,0,, zRzrd ××=Ω= πϕ  
for some finite R0 and z0. Substituting Eq. (2.54) into Eq. (2.10) gives the Helmholtz 
equation, discussed in the case of a 3-D waveguide in [2]: 
(2.55) ( ) ( )uzrdkukrnu ,,222 ϕ−=+∆ ; 
the total field u can be decomposed to the sum of the incident and scattered fields: 
(2.56) ( ) ( ) ( )zruzruzru scatinc ,,,,,, ϕϕϕ += . 

Substituting Eq. (2.56) into Eq. (2.55) and using the homogenous scalar wave 
equation Eq. (2.10) satisfied by uinc we obtain a variant of the Helmholtz equation: 
(2.57) ( ) ( )uzrdkukrnu scatscat ,,222 ϕ−=+∆ , 
where the scattered field must obey some form of radiation conditions guaranteeing 
its uniqueness. As the exact form of those conditions is not known, we will state as a 
hypothesis the radiation conditions used by Alexandrov, Ciraolo [2] in solving a 
version of Eq. (2.57), adapted from the open-space scattering problem [9, 25], 
modified to reflect the waveguide geometry: 

HYPOTHESIS 1 [2]: If the following conditions are satisfied for all m∈Z 
( )31 RCuscat ∈ , 

( )zrd ,,ϕ  is continuous and with compact support, 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] 0,,,,lim =⎥⎦
⎤

⎢⎣
⎡

∂
∂−

∂
∂

∞→
ττ rjr

r
zrurzrur

r
rjr mmscatmscatmr

, for ( ) 0≠τχ md  

( ) ( ) ( ) ( ) 0,,lim =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅−

∂
∂

∞→
τβτ zGikzG

z mscatmscatz
, for 02 ≥= βτ  with ( ) 0≠τχ md , 

(2.58) 

( ) ( ) 0,lim =
∞→

τzG mscatz
, for 02 <= βτ , 

where (uscat)m is defined analogously to um (Eq. (2.38)): 

(2.59) ( ) ( ) ( )∫ ⋅= −
π

ϕ ϕϕ
π

2

0

 ,,
2
1, dzruezru scat

im
mscat , 

and (Gscat)m analogously to Gm (Eq. (2.40)): 

(2.60) ( ) ( ) ( ) ( ) ( )∫
∞

⋅⋅=
0

 ,,, drzrurjrzG mscatmmscat ττ , 

and uinc, d, jm, dχm are defined in Eq. (2.56), Eq. (2.54), Eq. (2.21), Eq. (2.25), 
Eq. (2.27) and Eq. (2.34) then there exists at most one complex function uscat on R3 
satisfying the equation Eq. (2.57).          

The meaning of the first two conditions of Eq. (2.58) is obvious; the third signifies a 
fast decay of the field as radius r → ∞, the last two mean that the energy going to 
|z| = ∞ may be divided into two parts: one oscillatory and one decaying. 

The (assumed to be unique under Hypothesis 1) solution to Eq. (2.57) can be written 
as: 
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(2.61) ( ) ( ) ( ) ( )∫Ω
−=

 

2 ,,;,,,,,,,, dVzrgudkzruscat ξηρϕξηρξηρϕ  

and rewritten in the form of an integral equation: 

(2.62) ( ) ( ) ( ) ( ) ( )∫Ω
−=

 

2 ,,;,,,,,,,,,, dVzrgudkzruzru inc ξηρϕξηρξηρϕϕ , 

where ( )ξηρϕ ,,;,, zrg  is the Green’s function of a homogenous waveguide, found 
in [2] (with the assumption that the conditions Eq. (2.58) hold) to be equal to: 

(2.63) ( ) ( ) ( ) ( ) ( )∑ ∫
∈

∞

∞−

−− ⋅⋅−=
Zm

mmm
kziim djrjee

k
izrg τχτρτ

βπ
ξηρϕ βξηϕ  ,,1

4
,,;,,

2  

Equation Eq. (2.62) is satisfied by the von Neumann series [13]: 

(2.64) ( ) ( )∑
∞

=

=
0

,,,,
l

l zruzru ϕϕ , 

where  

(2.65) 
( ) ( )zruzru inc ,,,,0 ϕϕ = , 

( ) ( )zrTuzru ll ,,,,1 ϕϕ =+  
and the operator T is defined as: 

(2.66) ( ) ( ) ( ) ( )∫Ω
−=

 

2 ,,;,,,,,,,, dVzrgudkzrTu ξηρϕξηρξηρϕ . 

The scattered field can be finally computed as: 

(2.67) ( ) ( )∑
∞

=

=
1

,,,,
l

lscat zruzru ϕϕ . 

Appendix A4 contains considerations concerning a possible proof of the convergence 
of the series Eq. (2.67) in the supremum norm. If brought to the end, they would 
prove the existence and continuity of Eq. (2.67) and hence confirm that found uscat is 
(under Hypothesis 1) the solution of Eq. (2.57) in the distribution space. Here the 
convergence will be formulated as a hypothesis only: 

HYPOTHESIS 2 The series Eq. (2.64) converges in the supremum norm.     

As Magnanini and Santosa did in [8], we will use in further computations the Born 
approximation, i.e. we will use only the first term of the von Neumann series 
Eq. (2.64) in the right hand side of Eq. (2.62) to get: 

(2.68) ( ) ( ) ( ) ( )∫Ω
⋅⋅−≈

 

2  ,,;,,,,,,,, dVzrgudkzru incscat ξηρϕξηρξηρϕ . 

Next, to investigate the waveguide’s mode mixing properties, we will use Eq. (2.39), 
Eq. (2.40), Theorem 2.3, Eq. (2.30) and the orthogonality of ( ){ }Z∈mimϕexp  to obtain 
the scattered field and excitations of guided modes after the perturbation, i.e. 
for 0zz ≥ : 

(2.69) 

( ) ( ) =τ,zG mscat  
( ) ( ) ( ) ( ) ( ) ( )∫Ω

⋅−−⋅⋅=
 

,expexp,,,,exp
4

dVjkiimudkziik
minc τρξβηξηρξηρβ

πβ

If assumed that the incident field consists of exactly one guided mode, i.e. that 

(2.70) ( ) ( ) ( ) ( )000 ,expexp,, τϕβϕ rjimkzizru minc ⋅= , 
where 2

00 βτ = , then Eq. (2.69) can be rewritten for 0zz ≥  in the following form: 
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(2.71) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫Ω

−− ⋅⋅⋅⋅=
 

0 ,,,,exp
4

,
0

00 dVjjeedkziikzG mm
kimmi

mscat τρτρξηρβ
πβ

τ ξββη  

( ) ( ) ( )τβ ,0
0 zGe mscat

zzki ⋅= − . 
This form, given the form of refractive index perturbations ( )zrd ,,ϕ , together with the 
Parseval identity Eq. (2.33) and under the Born approximation may be used to 
compute the power transfer coefficients between modes caused by the refractive index 
perturbations. If Eq. (2.70) is the incident field, then the relative scattered power in 
LPmk mode equals: 

(2.72) ( ) ( ) ( ) 2
0200 ,:,;,

0

0 m
kmscat

m
k

m
k

zG
rr

kmkmrsp τ
π

= . 

Eq. (2.53) describes the angular output power distribution of an ideal waveguide, 
depending on the illumination angle. In a similar way we can write down the formula 
in the case of a waveguide containing a perturbed fragment of length z0: 
(2.73) ( ) ( ) ( )[ ] ( )[ ] ( )[ ]m

kout
Tm

kmout moutputkmkmrsppoutputMix τατααα ,;,;,;:, 00
0 ⋅⋅= , 

where the middle term denotes the power coupling matrix obtained from Eq. (2.72), 
whose rows represents ordered all incidence modes (indices m0, k0 of Eq. (2.72)) and 
columns all ordered output modes (indices m, k). The mode order should be the same 
as in the cases of both vectors representing mode excitations by the illuminating beam 
and the superposed mode output characteristics. 

Results of numerical computations for two waveguides and random perturbations of 
the refractive index are presented in Appendix A2.3. Apparent relation between the 
scattered field and the illuminating angle found there will be assumed to hold for all 
waveguides and used in the raytracing model and the modelling software. 

2.1.5 POF and transition to modal continuum 
A huge number of guided modes (more than 106 for a standard 1 mm POF), 
increasingly unique guided mode–propagation angle correspondence (Appendix A2.2) 
and smooth scattering characteristics of Appendix A2.3 suggest the transition to 
modal continuum and to geometric optics, which is the topic of the following Part 2.2. 
Within this approach a propagating mode is represented by a bunch of rays (i.e. local 
plane waves), see [1, Chapter 36] for a discussion of local mode – ray 
correspondence. 

2.2 Raytracing model 
The raytracing model is based on geometric optics, and considered valid in the 
limiting case of the wave optics, i.e. for λ→0 compared to system dimensions (in 
typical POF applications λ ≈ 653 nm, fibre diameter is 1 mm). It makes use of the 
concept of a ray, refraction and total internal reflection [10]. The general ideas behind 
modelling and raytracing through an ideal step-index fibre within the framework of 
geometric optics are as follow:  

• The fibre is considered to consist of a core and an infinite clad with the 
refractive index n(r) defined by Eq. (2.16) or of a core and a finite clad 
immersed in air with the refractive index of 
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n0 , r∈[0, R1 ] (core), 
n1 < n0 , r∈(R1, R2] (clad), (2.74) n(r)= { 
1 < n1 , r∈(R2, ∞) (air). 

• The angular power distribution of the light source is used as a probability 
distribution to generate rays incident on the fibre input face. 

• Each generated incident ray is traced (Fig. 2.4) through the fibre according to 
the Snell’s law via successive total internal reflections on the core-clad and/or 
clad-air (jacket) interface until it leaves the fibre end or is transmitted through 
the interfaces and lost outside the fibre. According to the Fresnel law, each 
transmission of a ray through an interface is accompanied by its non-total 
reflection, which is usually neglected in the basic raytracing model (see 
Part 2.2.3). 

• After a sufficient number of rays is traced, required average characteristics 
(such as attenuation or near- and far-field profiles, see Part 2.3) are computed 
at the fibre endface. 

 
Fig. 2.4 An example of raytracing of six rays through a fragment of an ideal step-index fibre. 

The Snell’s law, refraction and total internal reflection are illustrated on Fig. 2.5. 

nb < na

na

incident rays

transmitted ray

totally reflected ray

incidence 
angle αa

αb

 
Fig. 2.5 Snell’s law: ray transmission and total internal reflection on  

the interface between two media of different refractive indices. 
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According to the Snell’s law (neglecting absorption and partial reflection), the ray 
incident on a flat interface between two media of different refractive indices is either 
totally transmitted or totally reflected, depending on the values of the refractive 
indices of both media and the incidence angle of the ray. The incidence and 
transmission angles of the transmitted ray are governed by the following identity: 
(2.75) bbaa nn αα sinsin = . 
Dividing both sides by na we get the condition for the angle αa of the incident ray: 

(2.76) b
a

b
a n

n αα sinsin = . 

And as 1sin ≤bα  we get the following relation 

(2.77) 
a

b
a n

n≤αsin . 

From Eq(2.77) follows that for ba nn > , so when the ray comes from the media with a 
higher refractive index (like in the case of a ray incident from within the fibre core), 
not all incident rays can be transmitted into the second medium. Thus, according to 
the Snell’s law, an incident ray is transmitted through the interface if and only if 

(2.78) [ )Ta αα ,0∈ , where 2
),1min(arcsin πα ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

a

b
T n

n
. 

If the incidence angle αa exceeds αT, the total internal reflection occurs and the ray is 
reflected back into the media it originates from. This simple, binary approach (ray is 
either transmitted or reflected back) forms the basis for the simple raytracing model. 
In such a model the fibre accepts incident meridional rays (i.e. the rays crossing its 
axis) only within its acceptance angle. 

αmax

α

nair = 1
γ

γπ −
2

n0 > n1

n1

αmax

α

nair = 1
γ

γπ −
2

n0 > n1

n1

 
Fig. 2.6 Light acceptance of a step-index optical fibre. 

Applying the Snell’s law to the meridional ray confined to the core (the blue ray on 
Fig. 2.6), inverting the inequality Eq. (2.77) (the ray has to be reflected back into the 
core) and knowing that 01 nn < , we can obtain: 

(2.79) 

γα sinsin 0n= , 

0

1

2
sin

n
n>⎟

⎠
⎞

⎜
⎝
⎛ −γπ . 

Taking into account 

(2.80) ⎟
⎠
⎞

⎜
⎝
⎛ −= γπγ

2
sincos  
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we finally get the guidance condition for incident meridional rays 

(2.81) 2
1

2
0maxsinsin nn −=≤ αα . 

The maximum incidence angle αmax is called the acceptance angle of the fibre, while 
its sine is called fibre’s numerical aperture NA: 

(2.82) ∆≈
−+

=−== 2sin 0
0

10

0

10
0

2
1

2
0max n

n
nn

n
nn

nnnNA α , 

where ∆ is the relative index difference. 

Rays traced exactly according to the Snell’s law happens only in the ideal fibre case. 
To enable modelling of fibre aging processes, two important imperfection-related 
phenomena have to be introduced: attenuation and scattering. Moreover, as the total 
internal reflection, according to the Snall’s law, ceases to occur above the critical 
angle, the fibre abruptly looses all of its guidance properties above its acceptance 
angle Eq(2.72). But in reality, the limit between total internal reflection and 
transmission of a ray is not abrupt and incident rays are rather splitted on the core-
clad interface than totally transmitted, as the Fresnel law states. Although the simple 
binary approach is often used, it is only a rough approximation of the reality. Due to 
the Fresnel reflection approx. 4 % of the power of an incident beam is lost (reflected 
back) already at the input face of a fibre, while the Snell’s law predicts no reflection 
there. Modelling of attenuation and scattering properties of an optical fibre within the 
geometric optics approach and modelling the Fresnel reflection are discussed in the 
Parts 2.2.1 – 2.2.3. 

Raytracing model, besides its intuitive interpretation, has three main advantages that 
make it particularly useful for simulating aging effects on light propagation: 

• Aging-related characteristics (attenuation and scattering) are direct model 
parameters. 

• Total fibre attenuation and relatively easy-to-measure far- and near-field 
profiles can be simply computed. 

• Fibre geometry distortions (e.g. imperfections of a core-clad interface) can be 
easily modelled. 

2.2.1 Attenuation 
The material causes of attenuation are briefly discussed in Part 4.1, devoted to fibre 
aging processes. Here it will be considered only within the framework of fibre 
modelling and the raytracing approach. 

In an ideal raytracing system each ray carries a unit power and is not attenuated along 
its way through fibre. But light transmitted in a real fibre is attenuated, i.e. the rays 
lose their power along the way. Within the raytracing approach this process can be 
modelled by decreasing the power of each ray due to the fibre bulk material 
absorption (according to the path length) or after each ray reflection/transmission on 
the core-clad or clad-air interface. A ray is traced until it leaves the fibre or its power 
falls below a given cut-off level. 
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bulk attenuation interface attenuation coefficients 
core attenuation core-clad reflection 
clad attenuation core-clad transmission 

 clad-air reflection 
 clad-air transmission 

Table 2.2 Attenuation parameters. 

Therefore, two obvious groups of attenuation parameters will be used, as listed in 
Table 2.2: the bulk attenuation of fibre core and clad and the interface attenuation 
coefficients related to ray reflection and transmission on the interface: 

• Bulk core attenuation parameter ab0 and bulk clad attenuation ab1. Power P of 
each ray is decreased due to the bulk material absorption and depends on the 
ray path lengths l0 and l1 covered respectively within the fibre core and clad: 

(2.83) ( )11000 exp lalaPP bb −−= , 
where P0 is the initial power of the ray. 

• Interface attenuation parameters model ray attenuation on the core-clad and 
clad-air interface (inter alia the Goos-Hänchen shift, i.e. the penetration of the 
reflecting ray into the other medium, see [2]). After each ray reflection or 
transmission on one of those interfaces the power of the ray is decreased: 

(2.84) Pafter reflection or transmission = αi ⋅Pbefore reflection or transmission, 
where ai is one of the four interface attenuation coefficients (Table 2.2). 

In a fibre of length L, without scattering, a ray incident on the input face under the 
angle α and propagated through fibre with the internal angle γ (Eq(2.70)) towards the 
fibre axis covers a path of γcosL  length and undergoes at least RL 2tan γ⋅  reflections 
(in the case of a meridional ray). Both values depend on the incidence angle and thus 
the total attenuation of a specific ray also depends on its incidence angle. Therefore, it 
may not be equal to the general ‘attenuation’ parameter of the fibre, which is given in 
fibre’s technical data and which characterises only fibre’s average attenuating 
properties. The real measured attenuation, especially of a short fibre, often depends 
very much on the illumination conditions (see Fig. 6.5). 

2.2.2 Scattering 
The material causes of scattering are briefly discussed in Part 4.1, devoted to fibre 
aging processes. Here it will be considered only within the framework of fibre 
modelling and the raytracing approach. The wave optics approach to scattering was 
discussed in Part 2.1.4, here we will use only the results of the numerical experiments 
concerning the angle dependence of the scattering intensity from Appendix A2.3. 

In an ideal step-index fibre ray path between successive reflections is straight, Snell’s 
(or Fresnel, see Part 2.2.3) law and total reflection exactly governs ray reflections and 
define its path. However, in a real fibre, there are several scattering effects distorting 
the ray path. As showed in Table 2.3, all scattering parameters in principle may be 
categorised into three groups: interface, bulk and endface scattering. 
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bulk scattering interface scattering endface scattering 
core bulk scattering 

scale 
core-clad interface 

axial scattering endface scattering 

core bulk scattering 
slope 

core-clad interface 
azimuthal scattering  

core bulk scattering 
slope location 

clad-air interface 
axial scattering  

core bulk scattering 
axial dispersion 

core-air interface 
azimuthal scattering  

core bulk scattering 
azimuthal dispersion   

clad bulk scattering 
scale   

clad bulk scattering 
slope   

clad bulk scattering 
slope location   

clad bulk scattering 
axial dispersion   

clad bulk scattering 
azimuthal dispersion   

Table 2.3 Scattering parameters2. 

Endface scattering models imperfections of the fibre endfaces and the scattering 
effects of the conversion between illuminating/output fields and the modal fields 
discussed in Appendix A2.3.1. The examples investigated there suggest a constant 
endface scattering coefficient, not dependent on the illumination angle. Thus a ray, 
when transmitted through fibre input or endface, is randomly redirected and the 
redirection angle is drawn each time from the centred Gaussian distribution with 
standard deviation equal to the endface scattering coefficient. 

Interface scattering models imperfections of the core-clad and clad-air interfaces. 
Their axial and azimuthal imperfections are modelled as minute deformations of the 
ideal cylindrical shape in both directions, along and across the fibre. The tilt of the 
tangent plane in the point where a ray hits the interface is described by two 
parameters: the standard deviations of axial and azimuthal tilt angles. The actual tilt at 
each reflection/transmission point is found by drawing two random numbers from the 
corresponding normal distributions. The mean number of undergone reflections is 
proportional to the tangent of the propagation angle γ and thus the total interface 
scattering increases with the incidence angle α and the propagation angle γ of a ray. 

Bulk scattering models two main different scattering processes: one due to minute 
intrinsic nonuniformities of the fibre refractive index3 and the second caused by 

                                                 
2 The term dispersion in Table 2.3 and henceforth refers to the angular broadening of peaks in the far-
field profile and not to the time-related pulse broadening affecting the bandwidth of a fibre. 
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extrinsic impurities and defects of the core and clad bulk material. The interface 
scattering occurs only on interfaces encountered by the ray on its way, while the bulk 
scattering distorts the direction of a ray in discrete points along its way in the bulk 
fibre material itself, due to abstract scattering obstacles representing impurities, 
defects or local irregularities of the refractive index. Two groups of parameters are 
required: one to decide when and the second to decide how a ray should be scattered: 

• Mean free path (fmp) length. Similarly to Arrue et al. [11], we will use the 
concept of a mean free path length: each ray travels free within the fibre core 
or clad between successive scattering points; the distance of its free path is 
determined using the free mean path parameter. Arrue et al. [11] propose the 
deterministic model where the free path of a ray is always of the same length 
(1 mm, i.e. the diameter of a typical POF), not depending on the ray 
propagation angle. We will expand this model in two important aspects: 

I. We will use a probabilistic model; the free mean path will be the mean 
of each time randomly drawn free path distance. As the probability of 
encountering a scattering obstacle by a ray is assumed to be constant per 
unit length of ray path, the actual distance is modelled by the exponential 
random distribution. Besides this simple rationale, the choice of the 
exponential distribution has two other important advantages: 

o The exponential distribution is the only continuous random 
distribution that does not have memory, i.e. for an exponential 
random variable X 

(2.85) [ ] [ ]xXzxXPzXP >+>=> . 
This feature makes the bulk scattering process not dependent on 
ray reflections/transmissions on the core-clad and clad-air 
interfaces, so that they can occur in-between successive ray bulk 
scatterings, without disturbing the exponential bulk scattering 
process itself. 

o Ray path lengths between successive redirection points form a 
stochastic Poisson process with intensity being the reciprocal of the 
mean free path. The overlay of a finite number of Poisson 
processes is also a Poisson process, so should it in future be 
necessary to differentiate between diverse causes of bulk 
scattering, the joint scattering process due to all of the causes will 
be also governed by the exponential random distribution with the 
intensity being the sum of the intensities of all component 
processes. This way the model stays open and easily expendable: 
several additional defect-related scattering processes may be 
separately added, removed and modelled, while the exponential 
(Poisson) characteristic of the joint bulk scattering process remains 
the same. 

II. In Appendix A2.3.2 the total scattered power Eq. (A2.12) is on 
numerical examples found to be decreasing with the illumination angle α 

                                                                                                                                            
3 Often referred to as Rayleigh or Mie scattering, which are not quite precise descriptions here, because 
the terms originally describe the scattering of a plane wave and not of modal waves. 
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(see Fig. A2.17), and so also with the propagating angle γ of the ray. 
Thus, to include this scattering property in the raytracing model, the free 
mean path has to be made angle-dependent, so that the average number 
of ray redirections per fibre unit length has a similar shape to the curves 
from Fig. A2.17. They have been fitted with the following formula 

(2.86) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

κ

θ
α

sin
sinexp , 

where the meaning of the parameters κ and θ could be intuitively 
explained as follows: the slope of the curve depends on κ, while θ 
defines the slope’s location. Formula Eq. (2.86) expresses scattering 
properties of a fibre in terms of the angle-dependent scattered power per 
fibre unit length, as it is the case with Eq. (A2.12) and Fig. A2.17. 
However, the average number of undergone scatterings depends on the 
total path length of a ray, so not only on the fibre length but also on the 
internal propagation angle γ of a ray. Thus, the formula Eq. (2.86) before 
implementing it in software as the normalised average number of ray 
redirections per ray path unit length has to be multplied by 

(2.87) αγ 22
0

1
0 sincos −= − nn  

and additionally divided by γπ sin2  to account for the spherical 
geometry of the system. Finally the following formula is obtained for its 
reciprocal, i.e. the angle-dependent free mean path of a ray: 
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where A (bulk scattering scale parameter of Table 2.3) had to be added 
because Eq. (2.86) describes only normalised total scattered power (as 
on Fig. A2.17). Fig. 2.7 shows graphs from Fig. A2.17 (the blue dashed 
lines) and curves of Eq. (2.86) for few values of the fitting parameters. 

 
Fig. 2.7 Total scattered power (or normalised number of ray redirections per fibre unit 

length) in dependence on the illumination angle. Four curves numerically computed 
in Appendix A2.3 (Fig. A2.17) and few sample fitting curves of Eq. (2.86). 
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• At each scattering point the ray has to be redirected according to four bulk 
scattering dispersion parameters (axial and azimuthal, for core and clad). On 
the analogy to the interface scattering, the ray is redirected by changing its 
axial and azimuthal direction angle. The actual redirection angle each time is 
drawn from the normal distributions with the mean zero and the standard 
deviation being the respective scattering dispersion parameter of the model. 

2.2.3 Fresnel reflection 
According strictly to the Snell’s law, the meridional ray from Fig. 2.6 will be guided 
if and only if it is incident within the cone defined by Eq. (2.81). However, more 
exact analysis shows that the boundary of the cone is diffused and leads to the Fresnel 
formulae. Treating rays as local plane waves, and because the fields’ components 
tangential to the interface are continuous across the interface [4], the following two 
conditions can be written: 

(2.89) 
⊥⊥⊥ =+ tri EEE , 

⊥⊥⊥ =+ tri HHH , 
where E and H denote respectively the amplitudes of the electric and magnetic fields 
at the interface, the subscripts i, r and t denote incident, reflected and transmitted 
fields and ⊥ denote the field component perpendicular to the plane of incidence, so 
tangential to the interface. From Eq. (2.1) follows 

(2.90) µ
ε

||EH =⊥ , 

and using Eq. (2.3) equations Eq. (2.89) can be rewritten as 

(2.91) 
⊥⊥⊥ =+ tri EEE , 
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ε , 

where the subscript || denotes the field component parallel to the plane of incidence. 
As the power incident on a unit area of the interface must equal the sum of the 
transmitted and reflected powers, and using the fact that power is proportional to 

2Eε  (and so to 2nE ), one can obtain: 
(2.92) btarai EEE αεαεαε coscoscos 2

2
2

1
2

1 +=  
and after simple transformation, using Eq. (2.3) 
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nEEE
α
α

cos
cos222 =− , 

what is valid for both perpendicular (⊥) and parallel ( || ) field components. From 
Eq. (2.91) and Eq. (2.93) we easily get the following formulae for amplitudes of the 
transferred and reflected fields: 
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as well as the following coefficients for the transferred power p⊥, p|| and the reflected 
power q⊥, q|| (related to the power incident on a unit area of the interface): 
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where 
a

b

n
nd = . 

As geometric optics and the raytracing approach do not take into account light 
polarisation effects, in the following the average of p⊥ and p|| will be used for the 
power transfer coefficient p: 

(2.96) 
( )||2

1 ppp += ⊥ , 

pq −= 1 . 

Fig. 2.8 shows graphs of the three average Fresnel power transmission coefficients p 
in dependence on the incidence angle αa for a ray incident from both sides on the 
core-clad interface and on the input face of a typical POF fibre (for the values of the 
refractive indices see Eq. (A2.1)). The red line (“air→core”) runs for lower incidence 
angles below the other two, which illustrates the fact that the first loss occurs already 
on the input face of the fibre, where approx. 4 % of the incident power is reflected 
back and does not even enter the fibre. Note that rays incident on the core-clad 
interface from within the core under the angle greater than the critical angle 
(approx. 70°) are totally reflected back into the core (the blue line “core→clad” and 
the blue ray on Fig. 2.6), exactly as it is stated by the Snell’s law. 

 
Fig. 2.8 Average Fresnel power transmission coefficients. 

Raytracing through a fibre within the binary model bases on a simple procedure: a ray 
incident on the core-clad interface is either transmitted into the fibre clad or reflected 
back into the core. If the contribution of the partly reflected rays to the optical 
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properties of POF has to be considered, the Fresnel mechanism for ray 
reflection/transmission must be implemented. Its exact implementation would 
however require splitting the ray at each interface, unless it was incident under the 
critical angle or greater. But if rays were actually splitted, the total number of rays to 
trace would increase exponentially and quickly become computationally 
unmanageable. To avoid it, each traced ray can be on each encountered interface not 
splitted but randomly either fully reflected or fully transmitted with probabilities 
equal to the relative powers Eq. (2.96) of the respective (reflected and transmitted) 
rays. For example: let, according to Eq. (2.95) and Eq. (2.96), the reflected ray retain 
15 % and the transmitted 85 % of the incident power; such case will be modelled with 
one ray, either reflected (with 15 % probability) or transmitted (with 85 % 
probability). Although this solution is intuitively simple and obvious, the proof of its 
soundness astonishingly turns out not to be as straightforward as it could be expected. 
Both raytracing processes (i.e. the exact one, with splitting, and the other, modelling 
probabilistically the splitting) will be redefined as stochastic processes with their 
values at each step corresponding to the power and configurations (position, direction, 
etc.) of the traced ray(s) before successive Fresnel reflections or at the fibre output. 
The proof of soundness of the probabilistic raytracing model will be reduced to the 
proof of power equivalence of both stochastic processes, in the meaning defined later. 

First we need to define the space of all possible configurations (position, direction, tilt 
of the splitting interface, arrival time) of the traced ray that are important, i.e. just 
before the Fresnel reflection (Θ0 in the definition below) or leaving the fibre (Θ\Θ0 
below). 

DEFINITION 2.5. Let 11RΘΘ0 ⊂⊂ , where  
( ){ 1110987654321 ,,,,,,,,,, θθθθθθθθθθθ=0Θ  

( ) { } ( ) ,,,,,1,0,,, 32
765

3
4321 RR ⊂∈⊂Θ×Θ∈ Sff θθθθθθθ

( ) }RR ∈⊂⊂Θ∈ 10
32

1098 ,,, θθθθ Sdf  
and ( ){ 1110987654321 ,,,,,,,,,,\ θθθθθθθθθθθ ′′′=0ΘΘ  

( ) { } ( ) ( ) }RRRR ∈⊂∈′′′⊂∈⊂Θ×Θ∈ 11
32

1098
32

765
3

4321 ,,,,,,,,1,0,,, θθθθθθθθθθθ SSff , 
be called the fibre space of a given step-index fibre if and only if: 

• Θf⊂R3 is the set of all points of all fibre interfaces (input face, endface,  
core-clad and clad-air interface) and θ4 ∈ {0,1} codes one of the both sides of 
the interface. 

• n  = ( ) 32
765 ,, R⊂∈ Sθθθ  is a unit vector normal to the interface at the point 

(θ1,θ2,θ3) representing its tilt. 

• ( ) 32
1098 ,, R⊂⊂Θ∈ Sdfθθθ  is a unit vector describing the direction of a ray at 

the point (θ1,θ2,θ3,θ4) of the interface with tilt (θ5,θ6,θ7). The set of possible 
directions Θdf depends on θ4 and n  = ( )765 ,, θθθ , and consists of only such 
directions, that the Fresnel reflection (and not the total internal reflection) 
occurs, i.e. that ( )( )( ) nd≤∠ 1098 ,,,sin θθθn , where dn is the ratio of the refractive 
index of the target medium to the refractive index of the medium the ray 
originates from, where the media are differentiated by θ4. 

• ( ) 32
1098 ,, R⊂⊂Θ∈′′′ Sdoθθθ  is also a unit vector describing the direction of the 

ray at the point (θ1,θ2,θ3,θ4) of the outer fibre interface and pointing outside 
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the fibre. The set of possible directions Θdo depends on (θ1,θ2,θ3,θ4): is not 
empty only for (θ1,θ2,θ3,θ4) lying on the outside side of the fibre input or end 
face or clad-air interface and consists of exactly all such directions that point 
outwards the fibre, i.e. the point (θ1,θ2,θ3,θ4) and the direction ( )1098 ,, θθθ ′′′  
constitute a possible output point and direction for the traced ray. 

• θ11∈R is the time at which a traced ray reaches the location described by the 
previous coordinates θ1 to θ10.         

The traced ray at each step of the raytracing procedure can be described as a point in 
the set Θ×[0,1], i.e. by its configuration (position, direction, etc.) and its power. 

DEFINITION 2.6. Let Θ be the fibre space of a given step-index fibre, defined in 
Definition 2.5. The set Θ×[0,1], where the interval [0,1] stands for the power of a ray, 
will be called the ray space of the fibre.          

The successive steps of the raytracing procedure can be described by finite (or  
one-element, with probabilistic modelling of Fresnel reflections) subsets of Θ×[0,1]. 
Initial illumination of the fibre can be then represented by a subset of Θ0×[0,1], while 
the output of the fibre by a subset of (Θ\Θ0)× [0,1]. Both raytracing processes are 
schematically depicted on Fig. 2.9. 

 
Fig. 2.9 Few steps of both raytracing procedures. The circles symbolise the points of 

the ray space. The circles with dot mark the ray input point; the circles with 
‘x’ mark the ray output, i.e. the elements of (Θ\Θ0)×[0,1]. 

         (a) The exact raytracing procedure. At each point of Fresnel reflection the 
power of the incident ray is splitted into the reflected (solid line) and the 
transmitted (dashed line) part. The input ray falls on the fibre input face, so 
the first reflected ray goes back into free space and is marked with ‘x’. 

         (b) The probabilistic modelling of Fresnel reflections. Instead of tracing both 
reflected and transmitted rays, only one of them is randomly chosen (with 
the probability proportional to the power split coefficients in the process (a)) 
and further traced with full power of the incident ray. 

Before the processes can be formally defined, few auxiliary definitions and symbols 
should be introduced: 
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DEFINITION 2.7. Let Θ be the fibre space and Θ×[0,1] be the ray space of a given 
step-index fibre.  

• Let p,q:Θ→[0,1] be two deterministic functions on Θ defined by: 
Fresnel power transmission coefficient , θ∈Θ0 

p(θ) =  { 1 , θ∈Θ\Θ0, (2.97) 

q(θ) =  1- p(θ). 

• Let XR, XT:Θ→Θ be two random mappings such that  

o for each θ∈Θ0 the random variables RXθ  and TXθ  are the Fresnel 
reflection or output points reached by the respectively reflected and 
transmitted rays in the successive steps of the raytracing procedure. 

o For θ∈(Θ\Θ0) let θθθ ≡≡ TR XX  with probability 1. 

• Let AR, AT:Θ→[0,1] be two random mappings such that  

o for each θ∈Θ0 the random variables RAθ  and TAθ  equal the relative 
power remaining in the reflected and transmitted rays at the points RXθ  
and TXθ , respectively, not taking into account the Fresnel power 
transmission coefficient p(θ) and the power reflection coefficient q(θ). 
AR and AT represent the bulk and interface attenuation of the traced ray 
in-between points θ and RXθ  or TXθ . 

o For θ∈(Θ\Θ0) let 0≡RAθ  and 1≡TAθ  with probability 1. 

• Let Z:Θ→{0,1} be a random mapping such that Zθ  is for each θ∈Θ a binary 
random variable with the probability of success p(θ), independent of RX ϑ , TX ϑ , 

RAϑ  and TAϑ  for each θ,ζ∈Θ. Note that  
(2.98) E[Zθ] = p(θ) 

 and that Zθ ≡ 1 with probability 1 for θ∈(Θ\Θ0).        

NOTATIONAL CONVENTION As we will need deterministic rays as well as randomised 
rays, the random variables in the following will be told from the deterministic values 
by an underline or a capital letter, i.e. all random variables will be denoted with a 
capital letter (as in Definition 2.7) or will be underlined. According to this notation a 
deterministic ray ( )εθ ,=r  is an element of Θ×[0,1], while a random ray ( )εθ ,=r  is a 
random variable on Θ×[0,1], which generally can but need not take a given value r 
with probability 1.            

In the following, it will be assumed that each random ray is independent of RX ϑ , TX ϑ , 
RAϑ , TAϑ  and θZ , so that fibre illumination does not depend on the raytracing 

mechanism. 

Both raytracing processes of Fig. 2.9 can be now formally defined using 
Definition 2.7: 
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DEFINITION 2.8. For each ( )εθ ,=r  (being a random variable in Θ×[0,1]) let random 
variables ( )rT , ( )rR  and ( )rS  be defined as follows: 

(2.99) 
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For each starting ray ( )εθ ,=r  the exact raytracing process Pn, n∈N is defined by: 

(2.101) 
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And the probabilistic raytracing process Qn, n∈N is defined as: 
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nn QSQ
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The random variables ( )rT  and ( )rR  are represented on Fig. 2.9 (a) by the dashed and 
the solid arrows, respectively. The only kind of an arrow on Fig. 2.9 (b) represents the 
variable ( )rS . Now, when the processes are formally defined, its time to define what it 
does mean that the probabilistic process soundly models the exact one. Intuitively, it 
is enough that their measurable characteristics are the same. And this means mainly 
(see Part 2.3) the equality of the mean output power per endface area or per spherical 
angle in the same periods of time, which generalised leads to the mean output power 
per any borel subset of Θ. 

DEFINITION 2.9. Two finite sets of random rays ( ){ })()()()()( ,,2,1,, ll
k

l
k

l
k

l
k Nkrr K== εθ , 

l∈{1,2}, are called power equivalent if and only if for each n∈N and each M∈B(Θ) 
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kMk EE θεθε 11 , 

where B(Θ) is the set of all borel subsets of Θ⊂R8.         

DEFINITION 2.10. The exact and probabilistic processes Pn and Qn (n∈N) are said to 
be power equivalent if and only if for each starting ray ( )εθ ,=r  and for each n∈N 
the sets Pn and {Qn} are power equivalent.         

As the fibre space Θ is defined (in Definition 2.5) in a simple and obvious way, all 
necessary measurable optical characteristics of a fibre, so its far and near field profiles 
(for the definitions see Part 2.3), may be defined via borel sets on Θ. What is left to be 
shown is that both processes Pn and Qn actually are power equivalent. 

THEOREM 2.11. The exact and probabilistic raytracing processes Pn and Qn (n∈N) 
defined in Definition 2.8 are power equivalent. 

PROOF: The power equivalence of the processes Pn, Qn (n∈N) will be shown 
inductively with respect to n. 
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(a) P0 and Q0 are power equivalent: It is directly implied by the fact, that both 
processes have the same starting ray. 

(b) P1 and Q1 are power equivalent. Let the starting random ray be ( )εθ ,=r  and 
let its probability density function4 (pdf) be f(θ,ε) = f(r). Then 

( ) ( ){ } ( )( ) ( )( ){ }RRTT AqXApXrRrTP θθθθ θεθε ⋅⋅== ,,,,1 , 
( )rSQ =1  

and the mean power of Q1 per any borel subset M∈B(Θ) is (see Eq. (2.103) 
with n=1): 
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 Because the random variables Zθ are independent of RXϑ , TXϑ , RAϑ  and TAϑ : 
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 which is the mean power of P1 per any borel subset M∈B(Θ). 

(c) Assumed that  
( ){ } { }NkrNkP kkkn ,,2,1,,2,1, KK ==== εθ , 
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 are power equivalent: 

(2.104) 
( )

( )[ ] ( )[ ]∑∀
=Θ∈

⋅=⋅
N

k
kMkM

BM
EE

1
00 θεθε 11 , 

 we will prove that so are also 
( ) ( ){ }NkrTrRP kkn ,,2,1,1 K==+ , 

 ( )01 rSQn =+ . 

                                                 
4 Instead of a continuous distribution and its pdf, any probabilistic distribution could be taken. The 
proof would stay the same; only the integrals would become notationally more complicated, as they 
would have to be taken with respect to the induced measure on Θ×[0,1]. 
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The following notational conventions will be used: 
• Let fk(θ,ε) be the pdf of ( )kkkr εθ ,=  for k = 0, 1, 2, …, N. 
• Let fθ(θ,ε)be the pdf of S((θ,1)) = (Xθ,Aθ) for each θ∈Θ. 
• Let KM(θ) be the mean power in M∈B(Θ) of S((θ,1)) = (Xθ,Aθ) for 

each θ∈Θ: 
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M

MM ddfXAEK
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• Let Tk(θ) be the mean power of ( )kkkr εθ ,=  in point θ∈Θ: 
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 for k = 0, 1, 2, …, N. 
• Using the above notation Eq. (2.104) can be rewritten as follows: 
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 M is here any borel subset of Θ, so the above implies: 
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 with probability 1. 

We will need also the following fact, directly implied by the definition of the 
power equivalence of sets (Definition 2.9): 

• The relation of the power equivalence of sets is transitive, i.e. if (i) 
sets A and B are power equivalent and (ii) sets B and C are power 
equivalent, then (iii) sets A and C are also power equivalent. 

Step (b) of the inductional proof directly implies that sets ( ) ( ){ }kk rTrR ,  and 
( ){ }krS  are power equivalent. Thus, instead of considering Pn+1 and Qn+1, it is 

enough to prove that ( ){ }NkrS k ,,2,1 K=  and ( ){ }0rS  are power equivalent. For 
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2.3 Basic measurable  
optical characteristics of a fibre 
Both approaches to light propagation presented in the previous parts of this chapter 
describe the mechanism and allow modelling of light transmission through an optical 
fibre. Both depend on a number of imperfection-related parameters (perturbations of 
the refractive index, roughness of the core-clad interface, mean free path length, scale 
of the bulk scattering, etc.). As there is no known way to estimate the exact numerical 
values of these parameters a priori, they must be found a posteriori, i.e. by 
comparison between simulation results and measurements (see Part 3.2.3). The basis 
for comparison must be such optical characteristic of a fibre that on one hand is 
relatively easy to measure and to simulate but on the other hand diverse enough. As 
only static and not time-related characteristics5 of an optical fibre are considered here, 
there are two potential fibre characteristics: far- and near-field profiles, discussed in 
the following parts. In the implemented raytracing software (Chapter 3) only the  
far-field profile is used. 

2.3.1 Far-field profile (FFP) 
Far-field profile (FFP) of an optical fibre is the angular distribution of its output 
power per solid angle. It is measured far away from the fibre endface, at a distance 
much larger than the fibre’s diameter, so that the angular differences of rays leaving 
the fibre at different points of the endface can be neglected. 

 
Fig. 2.10 Illustration of the concept of the far-field profile (FFP) measurement. 

FFP is expressed in units of average power radiated into a solid radian. Fig. 2.11 
shows two sample FFP measurements. Further examples can be found in Part 6.3. 

                                                 
5 As for example the bandwidth or the impulse-response characteristic of a fibre. 
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Fig. 2.11 Influence of POF sample length on the FFP at the illumination angle 15°. 

As it can be concluded from literature [10], FFP strongly depends on the 
• illumination angle, 
• POF type, 
• sample length (see Fig. 2.11). 

Within the raytraced software discrete FFPs will be computed from rays leaving the 
endface of the simulated fibre as a mean output power per solid radian. Let the 
discretisation step equal ∆α and let S(α,α+∆α) denote the total power of all rays 
leaving the fibre end face with inclination angle towards the axis within the interval 
[α,α+∆α). Then 

(2.105) 
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where the denominator equals the surface of a fragment of a sphere with radius 1 
lying between α and α+∆α angle. 

2.3.2 Near-field profile (NFP) 
Near-field profile (NFP) of an optical fibre is the local output power distribution of 
the light just after leaving the fibre endface (Fig. 2.12). 

 
Fig. 2.12 Few last steps of a raytracing procedure for several rays: 

The concept of the near-field profile (NFP) measurement. 
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NFP is expressed in units of average density of output power on the endface surface. 
Fig. 2.13 shows three sample simulated near-field profiles, the simulations were made 
with the software described in Chapter 3. The illumination angle was equal to 15° (the 
same as on Fig. 2.11), the input beam divergence was 0.35 mrad and the whole input 
face of a fibre (core and clad) was lighted. The imperfection-related parameters were 
assumed to be equal to those of the fitted non-aged Mitsubishi fibre (Table 7.1). The 
noise overlaid on the NFP curves should be attributed to the statistic dispersion of the 
results and gets smaller with the increasing number of traced rays. Note also that (if 
uniform ray distribution on fibre’s endface assumed) the closer to the endface centre, 
the fewer rays are used for NFP computations and hence the more noise. 

 
Fig. 2.13 Three sample simulated near-field profiles of one POF type and different  

lengths. For each curve approx.  1 000 000 rays were traced. 

It has turned out that NFP is almost independent of fibre length and illumination 
angle. Thus, NFP seems to be unsuitable for fibre comparison purposes and will not 
be used for optimising and fitting the imperfection-related fibre parameters. 
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3 Simulation software 

3.1 Commercially available software 
Commercially available, scientific raytracing software can be in general divided into 
two groups: sequential and non-sequential raytracing software. 

Sequential raytracing software is used for modelling and simulating the cases, in 
which the rays are traced through a predefined sequence of distinct optical objects, 
e.g. starting with a simulated light source generating several rays in approximately the 
same direction, refracted by a given lens no. 1, reflected then by a mirror and finally 
refracted by a lens no. 2. In this way traced rays may be collected on a projection 
screen and analysed in respect to their local distribution, optical path length, etc. 
A typical and widely used software form this group is the application package Optica, 
an extension tool to the well-known Mathematica from Wolfram Research [21]. 

Software packages belonging to the other group model the raytracing problems, in 
which the sequence of objects encountered by each traced ray is not or cannot be 
determined a priori, before the actual simulation of the ray path takes place. So, for 
example, some rays in the above-mentioned setup may miss the mirror but be 
nevertheless further traced towards other objects lying behind it, while a sequential 
raytracing software would just discard them as not matching the predefined sequence 
of encountered objects. This kind of general raytracing requires usually more 
sophisticated, versatile and costly software then simpler sequential systems. Similar 
raytracing procedures are also used by 3D lighting and scene-building graphical 
applications. The most known examples are the systems CODE V from Optical 
Research Associates [22] and ASAP from Breault Research Organization [23]. 

Implementing the raytracing procedure described in Part 2.2 would be potentially 
possible using both described kinds of commercial software, because the system 
consists of the light source and only one optical element, the modelled fibre. 
However, none of the available systems offers enough detailed control over the 
raytracing mechanism (angle-dependent intensity of the random scattering, reflection 
attenuation coefficients, etc.) to allow direct implementation of the developed model. 
Reprogramming would be possible in the case of Optica, but it would require deep 
intervention in the basic code of the package and the resulting software (as partly 
interpreted, not compiled) would be too slow to trace millions of rays in a reasonable 
amount of time. Thus, new specific software for fibre raytracing had to be developed. 
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3.2 Developed software 
Developed software consists of three parts: 

• Raytracing software library containing all the type definitions and the 
functions necessary for performing actual simulations. 

• Graphical user interface, which allows entering values of the simulation 
parameters, passes them to the library and presents obtained simulation results 
(FFP, NFP, attenuation, etc.). 

• Optimisation functions and their user interface, which allows entering the 
simulation parameters and measured FFPs, and communicates with the library 
for performing simulations to use the results in the optimisation process. 

All three parts of the software were developed in Delphi environment from Borland 
Software Corporation [24], as it offers both code compilation (so high speed of its 
execution) and easy creation and management of the graphical user interface. 

3.2.1 Raytracing software library 
The raytracing library performs the simulation exactly as described in Part 2.2, 
according to the values of three groups of parameters: setup, material and software. 

3.2.1.1 Setup parameters 
Several setup parameters are required to define the physical properties of the 
simulation setup, i.e. of the simulated fibre and the light source. Their values, as 
describing the physical setup itself and not the optical properties of the fibre, are 
assumed to be given a priori, independent of the aging time, and are not optimised to 
get the best fit between simulated and measured FFPs (Part 3.2.3.1). Most important 
of the setup parameters are listed in Table 3.1. 

 parameter type remarks 
fibre length real  
core diameter real  
fibre diameter real  

use clad tracing logical Should rays be traced also 
in the clad? 

model Fresnel reflection logical Should Fresnel reflection 
modelling be used? fib

re
 sp

ec
ifi

c 

ray cut-off power level real 
A ray is traced only until it leaves 
the fibre or its power falls below 
the cut-off level. 

illumination angle real  
light divergence real  

uniform illumination logical Should uniform illumination (and 
not a Gaussian beam) be used? 

beam horizontal diameter real  
beam vertical diameter real  
beam rotation real  

ill
um

in
at

io
n 

sp
ec

ifi
c 

beam centre location (real, real)  
Table 3.1 Most important setup parameters. 
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3.2.1.2 Material parameters 
The material parameters of the simulation describe the optical properties6 of the 
simulated fibre and thus their values are optimised to get the best fit between 
simulated and measured FFPs (Part 3.2.3.2). Besides the parameters listed in 
Table 2.2 (describing fibre attenuation) and Table 2.3 (describing fibre scattering) 
they include also the refractive indices of fibre’s core and clad, hence a total of 23. As 
an exact optimisation of all 23 independent parameters would be too time-consuming 
and thus practically impossible, the material parameters have been subjected to 
additional constraints, see Part 3.2.3.1. 

3.2.1.3 Software parameters 
The software parameters influence only the control of the simulation process and the 
display of its results, not the way the simulation is performed. The most important 
software parameters are:  

• Memory save, a logical parameter. If true, the data of rays leaving fibre’s 
endface (output point, power, direction) are stored only in an aggregate form. 
If false, all the output data of each ray (six 4-byte reals, i.e. 24 bytes for each 
ray) is stored. One million traced rays would produce then approx. 24 MB of 
output data for further processing. 

• Refresh step, an integer. As refreshing the cumulative FFP/NFP graphs on the 
screen takes usually much more time than tracing a single ray through a 
typical fibre, it is reasonable to refresh the graphs only after several rays have 
been traced. This parameter defines the number of rays to trace before the 
simulation is temporary interrupted for displaying its updated results. 

• Rescale FFP, a logical parameter. If true, the simulated FFP is rescaled to fit a 
given FFP and the fit quality is computed. 

3.2.1.4 Simulation results 
In each simulation step a total of refresh step (a software parameter, see Part 3.2.1.3) 
rays is traced. Then the library functions return the simulation results listed in 
Table 3.2. 

parameter type remarks 
FFP array of reals simulated discrete FFP 
NFP array of reals simulated discrete NFP 

transmitted rays array of array 
of reals 

array of output rays’ data 
(if save memory == false) 

no of traced rays integer no of rays traced in this step 
no of transmitted rays integer no of rays leaving fibre’s endface 
backscattered power real  
transmitted power real  

Table 3.2 Simulation results returned after each simulation step. 

                                                 
6 With the exception the endface scattering parameter of Table 2.3, which describes rather the quality 
of fibre endface polishing than the aging-affected material properties. 
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3.2.2 User interface for raytracing 
Fig. 3.1 shows the user interface allowing for a direct use of the raytracing library. 
The upper part of the window contains controls used for manual parameter input; the 
lower part shows basic simulation results (transmitted and backscattered power, 
number of traced rays, average simulation speed in rays per second, etc.) and either 
simulated FFP/NFP or their simple smoothness measure based on the variation of the 
curves. The simulated FFP can be rescaled to match a reference FFP and the fit 
quality can be computed. During the execution the shown results are regularly 
refreshed, the FFP/NFP graph can be saved for future reference. 

For the FFP simulation presented in Fig. 3.1 as sample parameter values a fibre length 
of 3.2 m and an illumination angle of 15° were used; over a million of rays have been 
traced. Fig. 3.2 shows the simulated NFP obtained during the same simulation. 

 
Fig. 3.1 Graphical user interface of the raytracing library for the FFP simulation. 

Besides other parameters, 3.2 m fibre length, 15° illumination angle and 
over a million of traced rays have been used. 
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Fig. 3.2 Simulated NFP corresponding to Fig. 3.1. 

3.2.3 Optimisation software 
The graphical interface described in the previous part, although it allows to compute 
the (best-square-)fit quality of the simulated and reference FFPs, cannot be used for 
optimisation of the material parameters with the measured FFPs (Chapter 6) due to 
two following reasons: 

• It allows for only manual and thus rough and non-systematic optimisation. 

• It allows simulating and comparing with the reference of only one FFP at a 
time. For better optimisation results, several FFPs of each investigated fibre 
type, differing only in the length of the measured sample and its illumination 
angle (see Chapter 6), have been measured. 

Thus, another software had to be developed for performing the semi-automatic 
optimisation of fibre’s material parameters (Part 3.2.1.2), capable of using several 
measured FFPs simultaneously. 

3.2.3.1 Setup parameters 
The setup parameters mentioned in Part 3.2.1.1 and listed in Table 3.1 have been 
divided into two groups: those common to all measured fibre samples and those 
specific to each FFP measurement. Assumed to be common to all measured samples 
and thus constant are the following: 

• Fibre core diameter: a value of 0.98 mm, as typical for POFs, has been used. 
• Fibre diameter: a value of 1 mm, as typical for POFs, has been used. 



 49

• Use clad tracing: true. Rays in all simulations were traced also in fibre’s clad. 
• Model Fresnel reflection: true. The Fresnel reflection was modelled according 

to the mechanism described in Part 2.2.3. 
• Ray cut-off power level: 10-4. Each ray was traced until it left the fibre or its 

power fell below 0.01 % of the initial level. 

The rest of the setup parameters describe the conditions of each measurement and 
thus have to be given separately for each FFP measurement, even if some of them 
happen to be the same for all samples: 

• Fibre length: approx. 0.8 m, 3.2 m or 10 m, see Parts 6.1 and 6.2. 
• Illumination angle: 6°, 15° or 24°, see Part 6.2. 
• Light divergence: 0.35 mrad, see Part 5.2. 
• Uniform illumination: true. As the diameter of the laser beam used was 3 mm 

to 4 mm (Part 5.2), it was assumed that the illumination intensity over 1 mm 
POF input face is sufficiently uniform. Thus, the setup parameters related to 
the illuminating beam do not apply. 

Fig. 3.3 shows the part of the user interface of the optimisation software used for the 
input of setup parameters and corresponding measured FFPs. 

 
Fig. 3.3 Optimising software. Input of setup parameters and corresponding measured FFPs. 

3.2.3.2 Constraints on optimised material parameters 
Altogether there are 23 material parameters that describe optical properties of a fibre 
(Part 3.2.1.2). To get the best fit between the measured and simulated FFPs the values 
of all of them should be optimised. However, optimising the fit-quality function (see 
Part 3.2.3.3) in 23 independent variables would be too time-consuming to make the 
procedure practical. Thus, several constraints had to be enforced on the possible 
values of the parameters, leading to the total of six independent optimisation variables 
listed in Table 3.3. 
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variable 
no. variable name relation to fibre’s material parameters 

var1 endface scattering = endface scattering 
var2 core bulk attenuation = core bulk attenuation 

var3 interface attenuation 

= core-clad reflection attenuation 
= core-clad transmission attenuation 
= clad-air reflection attenuation 
= clad-air transmission attenuation 

var4 scattering scale 
= core bulk scattering scale 
= clad bulk scattering scale 
(‘A’ parameter in Eq. (2.87)) 

var5 scattering slope 
= core bulk scattering slope 
= clad bulk scattering slope 
(‘κ’ parameter in Eq. (2.87)) 

var6 scattering slope location 
= core bulk scattering slope location 
= clad bulk scattering slope location 
(‘θ’ parameter in Eq. (2.87)) 

Table 3.3. Optimisation variables used and their relation to the material parameters. 

The six optimisation variables defined in this way describe 12 of 23 material 
parameters. The 11 parameters left were assumed to be constant and their values were 
not optimised for the following reasons:  

• clad bulk attenuation = 10 000 dB/km 

The most of the transmitted rays cover almost all the way to the endface of the 
fibre within its core, guided through a chain of successive total internal 
reflection on the core-clad interface. Thus, the main medium for light 
transmission is the core, not the clad, and the exact value of clad bulk 
attenuation does not seem to be decisive. The value of 10 000 dB/km is 
mentioned in Daum et al. [10]. 

• core-clad interface axial scattering = core-clad interface azimuthal scattering 
= clad-air interface axial scattering = core-air interface azimuthal scattering 
= 0. 

As stated in Part 2.2.2, the intensities of both interface and bulk scattering 
processes are dependent on the propagation angle of a ray. The formula 
Eq. (2.86) for the angle-dependent intensity of the bulk scattering allows for a 
relatively free choice of its shape. Therefore, it will be assumed that its shape 
accounts also for the influence of the interface scattering and thus the only 
parameters needed for modelling of the scattering remain the parameters A, κ 
and θ of Eq. (2.86) (var4, var5 and var6). 

• core bulk scattering axial dispersion = 
= core bulk scattering azimuthal dispersion = 
= clad bulk scattering axial dispersion =  
= clad bulk scattering azimuthal dispersion = 
= 0.2° 

In general, the (optimised) scale parameter of the bulk scattering (i.e. A in 
Eq. (2.87)) defines how many times a ray is scattered on its way through fibre, 
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while the four angular dispersion parameters here define by which angle it is 
each time scattered. Thus, as in practice each ray is scattered numerous times, 
both groups of parameters define the angular dispersion of the scattered 
power, which depends linearly on angular dispersion parameters and is 
proportional to the square root of the mean number of ray redirections (the 
reciprocal of the mean free path, depending on the scale parameter). Hence, 
scale and angular dispersion parameters are substitutive and it is sufficient to 
optimise the value of only one of them, which was also experimentally 
confirmed in a simpler raytracing model [15]. The value of 0.2° was 
experimentally found to correspond to a reasonable optimised value of the 
parameter A. 

• The refractive index of fibre’s core was assumed to be 1.492, a typical value 
for PMMA. 

• The refractive index of fibre’s clad was each time computed using Eq. (2.82) 
and the value of fibre’s numerical aperture NA (Table 4.2) given by the 
manufacturer. As a result, the following values were used: 1.402 for 
Mitsubishi’s fibres, 1.411 for Asahi’s fibres and 1.406 for Toray’s fibres. 

3.2.3.3 Optimisation procedure 
A semiautomatic optimisation procedure based on the Powell’s Direction Set 
Method [6] has been implemented and used to optimise the values of the six variables 
var1 to var6 (Part 3.2.3.2) to obtain the best fit between the computed and measured 
FFPs.  

In each step of the optimisation procedure FFPs have been simulated for the actual 
values of var1 to var6 using the same setup parameters (Part 3.2.3.1) as that of the 
measured fibre samples. The target function d(var1,…,var6) to be minimised was the 
sum of the normalised square differences between the measured and simulated  
two-dimensional FFPs7, rescaled to get the best fit between the two: 
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where Ώ is the fragment of a unit sphere with its origin in the middle of the fibre 
output face and extending up to 45° (i.e. the detectable angular range of the FFP 
optics) out of the fibre axis. For the meaning of the weighting coefficients in the 
second term see Eq. (2.105). The non-indexed sum in Eq. (3.1) denotes the sum over 

                                                 
7 Obtained from their one-dimensional representation, thus constant on the rings of ∆α=0.2° width. 
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all different measured and simulated samples for the current fibre and the scaling 
factor ϑ  has the value that minimises the target function, i.e.: 

(3.2) ( )6,,minarg: varvar1d K
+∈

=
Rϑ

ϑ . 

Rescaling of the simulated FFPs with the factor ϑ  was necessary because the 
measured FFPs are expressed in a.u./srad and those arbitrary units cannot be related to 
the unknown total power incident on the fibre’s input face, as it is the case with the 
simulated FFPs. Nonetheless the attenuation parameters can be optimised thanks to 
the use of different fibre lengths. 

Note that the target function Eq. (3.1) compares two-dimensional FFPs and thus puts 
more weight on the tails of the corresponding one-dimensional curves, which can be 
generally observed on measured and fitted graphs in Appendix A3: the higher is the 
output angle, the better the fit of both curves. 

Simulated FFPs are in fact obtained from a Monte Carlo procedure and thus each 
computed value of the target function d contains some amount of noise disturbing its 
minimisation process. The more rays traced, the less gets the noise and the more exact 
is the optimisation procedure but also the longer time it demands. Thus, the  
best-fitting values of the variables var1 to var6, describing the optical properties of an 
investigated fibre, are always loaded with some amount of uncertainty (Table 7.4), 
which represents the trade-off between the optimisation time and its accuracy. 



 53

4 
Aging process and POF samples 

In this chapter we give a short overview of the material loss mechanisms in POFs and 
of fibre aging (Part 4.1), discuss their influence on the raytracing model (Part 4.2), 
specify the fibres used (Part 4.3), describe the applied aging conditions and show 
sample online measurements of relative fibre transmission under long-term 
environmental stress (Part 4.4). 

4.1 Loss mechanisms in POF and fibre aging 
POF during its service time is often subjected to different types of environmental 
stresses, which result in changes of its chemical and physical properties. This is called 
aging. Most important in respect to the deterioration of optical properties are  
long-term influences of high temperature, high humidity, freezing, radiation, and 
mechanical or chemical stress. 

See Daum et al. [10, Chapter 8] for a general discussion of the reliability of POFs, for 
measurement methods to trace the influence of environmental stresses, for reports on 
several reliability investigations made under various stress conditions, for a 
description of standardisation efforts and for numerous references. 

Loss factors of optical transmission in a commercially available POF can be divided 
into those specific to the material itself (intrinsic) and those related to fibre 
imperfections or impurities (extrinsic). They are further categorised as shown in 
Table 4.1. 

Absorption • high harmonics of the C-H bondings 
• electron transitions Intrinsic loss 

factors 
Scattering • Rayleigh scattering 

Absorption 
• organic contaminants 
• water absorption 
• transition metals Extrinsic 

loss factors 
Scattering 

• microcracks 
• fluctuations of the core diameter 
• core-clad interface imperfections 

Table 4.1 Loss factors in POFs [10, 17]. 
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The influence of the aging process on the loss factors will not be discussed in detail in 
this research. It is treated parallel to this work, in another thesis at the Federal Institute 
for Materials Research and Testing (BAM) by A. Appajaiah. He investigates the 
material aspects of high temperature and high humidity aging [see 33-36]. Further 
literature is given in [17], too. 

4.2 Aging influence on raytracing model 
In a real fibre as well as in a modelled one that imitates it, passing light encounters 
two main imperfection-related processes: attenuation and scattering. Both processes 
can be described in two ways: 

I. Using the terms belonging to the geometric or wave optics, as in Chapter 2 
and Appendix A2, so that the overall influence of attenuation and scattering on 
fibre optical properties and light propagation could be computed or simulated, 
which is one of the goals of this work. 

II. But they can also be described using rather chemical than optical terms, as in 
Table 4.1 and in the above-mentioned thesis of A. Appajaiah [see 33-36]. This 
approach allows better understanding of the environmental influence on fibre 
material itself but it is harder to relate its terminology and findings to fibre’s 
optical properties. 

In this work we deal mainly with simulation of light propagation, so the terminology 
of the first approach will be used. Because it is reasonable to assume that the 
raytracing mechanism itself does not change under environmental influences, its 
parameters have to change. The raytracing parameters listed and explained in Part 2.2 
will be (as it is described in the beginning of Part 2.3) found for each investigated 
fibre separately, by comparison of the measured and simulated FFPs (Chapter 7). 
Thus, by tracing changes of the values of the model parameters between initially the 
same fibres but subjected to different environmental conditions or different aging 
times, the following aging-related alteration can be found: 

• Aging of the fibre bulk material, traced via its modelled 
o scattering (the left column of the Table 2.3) and 
o attenuation properties (the left column of the Table 2.2). 

• Degradation of the core-clad interface, traced via the modelled 
o interface scattering (the middle column of the Table 2.3) and 
o interface attenuation coefficients (the right column of the Table 2.2). 

For the results and discussion see Chapter 7. 

4.3 POF samples 
For the experimental part of the work commercially available PMMA-based POFs of 
1 mm diameter from three leading manufacturers were bought and used: 

• Mitsubishi Rayon Co., fibre ESKA CK-40, 
• Asahi Chemicals Inc., fibre LUMINOUS TB-1000, 
• Toray Industries Inc., fibre PGU-FB 1000. 
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All three fibres were bought bare (core and clad only, no jacket) to trace the pure 
influence of the environmental conditions during the aging tests, not disturbed by the 
presence of the protective layer of jacket. The nominal basic technical data of all three 
fibres are very similar and listed as given by the manufacturers in Table 4.2, together 
with the measured attenuation value at 650 nm for comparison. For its measurement a 
broad-spectrum light source was used and a Sentronic S2000 miniature spectrometer 
[37]. The light was launched into measured samples using a 0.8 mm diameter, high 
NA silica fibre directly illuminating the POF input face. 

 ESKA  
CK-40 

LUMINOUS 
TB-1000 

PGU-FB 
1000 

∅ 1 mm 1 mm 1 mm 
core material PMMA PMMA PMMA 
clad material fluoropolymer fluoropolymer fluoropolymer
numerical aperture NA 0.51 0.485±0.05 0.50 
acceptance angle αmax 30.7° 29.0° 30.0° 
nominal attenuation at 650 nm 0.20 dB/m 0.16 dB/m 0.15 dB/m 
measured attenuation at 650 nm 0.14 dB/m 0.14 dB/m 0.16 dB/m 

Table 4.2 Basic technical data of the fibres used in investigations. 

Mitsubishi’s fibre’s numerical aperture value of 0.51 corresponds to the typical 
combination of PMMA-core refractive index of 1.492 and clad refractive index 
of 1.402. Those typical values are used in all numerical investigations of 
Appendix A2, as stated in Eq. (A2.1). Fig. 4.1 shows the spectral attenuations of all 
three non-aged fibres measured using 10 m polished-end samples with a Sentronic 
S2000 miniature spectrometer [37]. 

 
Fig. 4.1 Measured spectral attenuations of 10 m non-aged fibres. 
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4.4 Aging conditions 
Five samples of all three fibre types were subjected to accelerated aging using 
specialised climatic chambers, ovens and the following conditions: 

• total fibre length 13 m, aged fibre length 10 m; 
• dry heat conditions (80 °C, 90 °C, 95 °C and 100 °C), i.e. high temperature 

without humidity control (<<50 % RH) or 
• high temperature combined with high humidity (92 °C / 95 % RH, 

92 °C / 50 % RH). 

All tests went on for 3000 h to 4500 h. During the whole aging processes online 
transmission measurements of the hot fibres were automatically performed with the 
help of the multiplexer measurement system [19]: 

• in 10 min steps, 
• using three LEDs with spectra centred at: 525 nm (green), 590 nm (yellow) 

and 650 nm (red) wavelengths. 

Fig. 4.2 to Fig. 4.6 show sample results of obtained measurements. Note that the 
transmission measurements were done online, during exposure8, and thus they differ 
from the values that are obtained from the fibres cooled down to the room conditions9, 
for the comparison of both see Fig. 4.20. 

 
Fig. 4.2 Relative online transmission of 10 m hot samples (i.e. during exposure) of 

investigated fibres at 650 nm wavelength and under 100 °C / <<50 % RH. 

                                                 
8 Fibres during exposure will be henceforth referred to as the ‘hot’ fibres. 
9 Henceforth referred to as the ‘cold’ fibres. 
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Fig. 4.3 Relative online transmission of the 10 m Asahi’s (left) and Mitsubishi’s (right) 

fibres at 650 nm wavelength in dry heat conditions, i.e. 80 °C, 90 °C, 95 °C  
and 100 °C without humidity control (<<50 % RH). 

  
Fig. 4.4 Relative online transmission of the 10 m Asahi’s (left) and Mitsubishi’s (right) 

fibres at three wavelengths under 100 °C / <<50 % RH. 

The transmission of the fibres subjected to the 80 °C / <<50 % RH stress has stayed 
practically constant or dropped only very slightly during the whole test (Fig. 4.3). The 
temperature of 92 °C combined with 95 % relative humidity (Fig. 4.5) has caused the 
transmission of all fibres to drop completely within the first hours of the test, while 
keeping the temperature at 92 °C but decreasing the relative humidity to 50 % has 
allowed the transmission (at least in the commonly used 650 nm region) to stay 
relatively high through the whole test time, see Fig. 4.5 and Fig. 4.6. 

  
Fig. 4.5 Relative online transmission of the 10 m Asahi’s (left) and Mitsubishi’s (right) 

fibres at 650 nm wavelength under 90 °C to 95 °C, without humidity control  
(dry heat, i.e. <<50 % RH) and with high relative humidity (50 % RH, 95 % RH). 
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Fig. 4.6 Relative online transmission of the 10 m Asahi’s (left) and Mitsubishi’s (right) 

fibres at three wavelengths under 92 °C and with 50 % relative humidity. 

4.4.1 Sample preparation 
Because the main purpose of this research was to develop and to validate the model 
for light propagation in POFs, capable of describing the aging-related changes, as 
typical examples, besides the non-aged fibres, only the samples obtained during the 
100 °C / <<50 % RH aging were used for further investigations (Chapters 6 and 7). 
Table 4.3 lists the respective aging times. At each time given in the table a set of three 
fibre samples, one for each manufacturer, has been taken out of the oven and kept for 
attenuation and FFP measurements, resulting in a total of 18 fibre samples. 

Aging time (100 °C / <<50 % RH) 
of the sample sets used for investigations 

sample set 0:  0 h (fresh, non-aged fibre) 
sample set 1:  2 h 
sample set 2:  258 h 
sample set 3:  677 h 
sample set 4:  1393 h 
sample set 5:  4467 h 

    Table 4.3  Aging times of POF samples used for further optical investigations. 

After cooling down to room temperature (about 25 °C) each of those 18 fibre samples 
had been cut into three pieces of the length of approx. 0.8 m, 3.2 m and 10 m. The 
endfaces of the pieces were polished using several abrasive papers with a grade down 
to 0.1 µm. As a result 54 fibre samples with fine-polished endfaces were prepared for 
FFP measurements (Chapter 6). The 10m-pieces were used for measuring the spectral 
attenuations with a Sentronic S2000 miniature spectrometer [27], too. The results of 
the latter are given in Fig. 4.7 to Fig. 4.9. 

Note that the attenuation of the cooled down fibres in the usable wavelength ranges 
seems to stay approximately constant or even decrease (Asahi’s fibre, Fig. 4.7 and 
Fig. 4.9) with the aging time (between set2 and set4). This astonishing behaviour is 
confirmed with the total transmission measurements obtained in Chapter 6 (Fig. 6.11 
to Fig. 6.16). 

Fig. 4.10 to Fig. 4.12 compare the relative transmission of the hot fibre samples 
(Fig. 4.2) with the relative transmission of the cooled down samples. 
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Fig. 4.7 Attenuation of the 10 m sample of Asahi’s fibre at different aging times  

(Table 4.3) in the 100 °C / <<50 % RH conditions. 

 
Fig. 4.8 Attenuation of the 10 m sample of Mitsubishi’s’s fibre at different aging times 

(Table 4.3) in the 100 °C / <<50 % RH conditions. 

 
Fig. 4.9 Attenuation of the 10 m sample of Toray’s fibre at different aging times  

(Table 4.3) in the 100 °C / <<50 % RH conditions. 
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Fig. 4.10 Relative transmission of the hot (online) and the cold (cooled down) 10 m sample 

of Asahi’s fibre at 650 nm wavelength and under 100 °C / <<50 % RH. 

 
Fig. 4.11 Relative transmission of the hot (online) and the cold (cooled down) 10 m sample  

of Mitsubishi’s fibres at 650 nm wavelength and under 100 °C / <<50 % RH. 

 
Fig. 4.12 Relative transmission of the hot (online) and the cold (cooled down) 10 m sample 

of Toray’s fibres at 650 nm wavelength and under 100 °C / <<50 % RH. 
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5 
Experimental instrumentation 
for far-field profile measurements 

In Part 2.3 the near- and far-field profiles of an optical fibre were discussed and the  
far-field profile (FFP) was chosen as the enough general and diverse fibre 
characteristic to be used for the comparison of simulated and real POFs, as in [11, 15, 
16]. The simulation software described in Chapter 3 uses the formula Eq. (2.105) for 
computing the FFP of a simulated fibre. The FFP of a real fibre must however be 
measured. In this chapter the measurement setup, the necessary instrumentation, its 
reliability and calibration is discussed. 

5.1 General measurement setup 
To get enough complete characteristics of a POF, either aged or non-aged, its far-field 
profile has to be measured in dependence on 

• incidence angle of an illuminating beam, 
• fibre length. 

Fig. 5.1 schematically depicts the setup used for FFP measurements [see 38-40]. 
A red laser is used for POF illumination; a specialised far-field optics translates the 
angular characteristic of fibre output power to spatial coordinates, needed for 
illumination of the flat CCD sensor of the CCD camera. The CCD camera output is 
then processed to obtain the FFP using the procedure described in Part 6.3. 

 

CCD
cameraFFP opticsmeasured fibre

wide-beam 
laser with
launching 

optics
 

Fig. 5.1 Principle of the measurement setup. 

The measurement setup outlined on Fig. 5.1 has resolved basic contradiction between 
time efficiency and accuracy of other possible techniques for far-field measurement, 
but has also created new problems: 

• It is time-effective. Due to the huge number of measurements (several 
combinations of illumination angle, fibre length, fibre type/manufacturer and 
aging time) the traditional scanning (goniophotometric) measurements turned 
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out to be too time-consuming. Therefore, it was decided to use a CCD camera 
with 1024×1024 cells (meaning a simultaneous measurement of >105 points of 
FFP), as it allows taking measurement with a limited number of short single 
snaps. 

• It is accurate in respect to the illumination. The CCD camera’s reliability had 
to be investigated. As there is no obvious literature on calibration and 
reliability of CCD cameras, a procedure for their quality assessment and 
calibration had to be developed (Part 5.3). A common measurement problem 
of standard CCD cameras, i.e. too small dynamic range, may be overcome by 
combining several measurements taken with different exposure times, as 
described in Part 5.3.4. 

• It is accurate in respect to the angular resolution. Using a bare CCD sensor 
with a direct illumination provides first at the distance to the fibre endface of 
approx. 12 mm the sufficient angular part of the FFP (±αmax ≈ 30°) but already 
too small angular resolution (approx. 4.7° for the fibre of 1 mm diameter). A 
specialised FFP optics with much higher angular accuracy (at least 0.5°) 
became available recently. However, optics’ reliability, i.e. its angular 
distortion and stability of resolution, had to be investigated, too (Part 5.4). 

5.2 Laser 
As a light source for POF illumination a laser diode DLS 15 from LINUS was used 
with the following optical properties: 

• Wavelength: 653 nm at 20 °C. 
• Beam divergence: 0.3 mrad to 0.4 mrad (0.017° to 0.023°). 
• Beam diameter: 3 mm to 4 mm. 

The beam diameter safely surpassing that of the measured POFs (1 mm) guarantees 
almost uniform illumination of fibre input face. The stability of the output power was 
tested together with the stability of the CCD camera’s response after exposure time 
change, for the results see Fig. 5.9. 

5.3 CCD camera calibration 
On one hand scientific CCD cameras are fast and robust instruments for optical 
measurements. On the other hand, most of reasonably priced scientific CCD cameras 
are constructed to give rather qualitative than quantitative results. Nevertheless, they 
can be used for scientific purposes and POF measurements, although with a 
calibrating procedure. In this part we describe the measurement setup used to obtain 
calibration measurements (Part 5.3.1), discuss common inaccuracies of CCD cameras 
(Part 5.3.2), propose a calibration procedure for measurements (Part 5.3.3) and 
address the often-occurring problem of too small dynamic range (Part 5.3.4). 
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5.3.1 Setup for calibration measurements 
The general idea of the setup is to get several snaps (raw responses of the camera’s 
CCD sensor) under direct uniform illumination of the sensor with the wavelength 
approximately the same as that of the used laser. Fig. 5.2 shows the setup. 
 

bare CCD sensor 

 red filter 

integrating 
sphere with 
white light 
source 

 direct illumination 
 

Fig. 5.2 Principle of the calibration setup. 

The distance between the integrating sphere and the bare CCD sensor was 
approx. 0.5 m. The uniformity of the sensor relative illumination intensity was better 
than 0.5 %, measured with a linear photodiode. An example is shown in Fig. 5.3. The 
sensor of dimensions 14.34 mm × 14.34 mm was positioned for measurements with 
its centre at the ‘0 mm point’ of the horizontal axis on Fig. 5.3. As the CCD camera a 
‘BFi OPTiLAS Eurocam CCD-1020’ with the following characteristics was used: 

• 1024 × 1024 pixel resolution, 
• Bit depth of 12 bpp (bit per pixel), i.e. 4096 distinct grey levels [GL], 
• Adjustable exposure time ≥ 1 ms. 

The same camera was used for all further FFP measurements (Chapter 6). 
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Fig. 5.3 Typical measurement of the illumination uniformity of the CCD sensor 

(measured radial from the centre and plotted as normalised intensity). 

For each of the considered exposure times (1 ms, 2 ms, 4 ms, 8 ms, 16 ms and 32 ms) 
the following four measurement series were made, each one of 16 measurements, to 
obtain the calibration data: 
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• A series X0 of 16 measurements taken with zero illumination, i.e. under 
completely dark conditions. The absolute illumination intensity m0 = 0. 

• Three series Xi, i∈{1,2,3} of 16 measurements, each taken under uniform 
lighting conditions generated by the distant integrating sphere of Fig. 5.2 and 
(by using different voltage) generating approx. 25 %, 50 % and 75 % of the 
maximal CCD sensor response (1012 GL = 4096 GL, grey levels). The 
absolute (actual) illumination intensity mi, i∈{1,2,3} was measured for each 
series separately with a linear photodiode. 

5.3.2 Unreliability factors and calibration data 
The reliability of a single uncalibrated CCD camera measurement may be strongly 
influenced by several factors; below the most important are mentioned. 

5.3.2.1 Dark profile 
The dark profile is the camera’s output under zero illumination, thus it is the constant 
bias of all measurements taken with the camera. For each exposure time it is 
computed as the average of all 16 measurements of the X0 series taken under 
completely dark conditions. As the dark profile is strongly temperature-dependent and 
the used camera is not cooled, all measurements should be taken after the temperature 
of the CCD sensor stabilises. Fig. 5.4 shows the dark profile of the used camera at the 
typical 32 ms exposure time. Besides the slope, a finer wave-like pattern may be 
noticed, it is probably related to the row arrangement of the CCD cells within the 
sensor. 

 
Fig. 5.4 The camera’s dark profile at 32 ms exposure time. For presentation clarity 

and to reduce the effect of unreliable cells and noise the figure shows averages 
over 8×8 squares. 
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5.3.2.2 Random noise 
Sensor random noise is the cause of inevitable differences between successive 
measurements taken under exactly the same conditions. Random noise of a single 
CCD cell may be modelled with a centred Gaussian random distribution. For each of 
six exposure times and for each CCD cell the sample standard deviation 
si, i∈{0,1,2,3} of each of four measurement series was computed.  

The average sample standard deviation of the dark profile (under null illumination) at 
the most-used 32 ms exposure time was found to be approx. 1.5 GL (grey levels). For 
the non-zero illumination, it turned out that si increases with the illumination 
intensity. Thus, the random noise of each cell was characterised by taking the 
maximum value of three relative sample standard deviations10. The average value at 
32 ms exposure time was found to be approx. 0.6 %, which corresponds to 
approx. 24 GL at the full illumination (4095 GL). 

5.3.2.3 Non-linear response function 
Response function of an ideal CCD cell should have a linear relationship between 
input and output. However, response function of a real CCD cell may not be ideally 
linear, as it was the case with the earlier investigated ‘DALSA CA-D4’ camera [14] 
with the average relative non-linearity of 7 %. Nevertheless, the camera used here 
showed the average non-linearity of approx. 0.3 % only11. 

For each exposure time the response function of each cell is modelled in the following 
way: The average response xi of each cell in the measurement series Xi and the 
corresponding measured absolute lighting intensities mi form a series of four points 
(mi,xi), i∈{0,1,2,3} lying on the actual response function of the cell. The points have 
to be fitted with a cell-specific function x = f(m) (linear, quadratic, exponential, etc.). 
The inverse function m = f -1(x) will be further used to translate cell’s response x to the 
real illumination intensity m and where appropriate to correct cell’s nonlinear 
characteristics, too. The average non-linearity of the sensor can be computed by 
averaging relative deviations of the best linear fit from the measured points. 

As the camera used here had almost linear characteristic, the response functions of its 
CCD cells were fitted with the linear function: 
(5.1) x = f(m) := x0 + am. 

5.3.2.4 Non-uniform sensitivity 
Differences between response functions of CCD cells make the sensitivity profile of 
a CCD sensor non-uniform. As the CCD camera used here had almost linear response, 
its sensitivity profile can be assumed to stay constant over all illumination levels and 
be directly defined by the inclinations a of individual cells’ response functions 
Eq. (5.1). Fig. 5.5 shows the relative sensitivity profiles of the used camera at 1 ms 
and 32 ms exposure time (the average value was rescaled to 100 %). 

                                                 
10 Sample standard deviation divided by the respective average illumination level. 
11 At 32 ms exposure time. 
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Fig. 5.5 Relative sensitivity profiles of the camera at 1 ms (left) and 32 ms (right) 
exposure time. For presentation clarity and to reduce the influence of 
unreliable cells and noise the figures show averages over 8×8 squares. 

5.3.2.5 Damaged CCD cells 
In a real CCD sensor some cells are usually damaged or dead as well as there may be 
dust and scratches present on the CCD sensor’s surface generating a remarkable local 
sensitivity change. Such cells will be called irregular. Measurements of such cells are 
unreliable and should be approximated basing on measurements of neighbouring 
cells. Fig. 5.6 presents sample defect of the sensor surface of the investigated CCD 
camera that has been identified via the sensitivity profile analysis.  

As an irregularity criterion the following can be used: The cell is marked irregular if 
and only if it satisfies at least one of the following conditions: 

• The random noise of the cell is too high (e.g. more than a given r-percentile of 
the noise values of all investigated cells). 

• The fit quality (average square fit error) of cell’s fitted response function f is 
too bad (e.g. the error exceeds a given r-percentile of the square fit errors of all 
investigated cells). 

• The fitted response function f of the cell differs too much from the average 
fitted response function (e.g. the mean square difference exceeds a given  
r-percentile of the mean square differences of all investigated cells). 

For further investigations the 3σ level (i.e. r ≈ 99.7 %) was used. The total number of 
irregular cells of the camera was found to be about 2.4 % (approx. 25 000 of the total 
cell number ∼1 050 000). Fig. 5.7 shows the distribution of the irregular cells on the 
sensor surface at 32 ms exposure time. Note the horizontal blue strip in the upper part 
of the figure, consisting entirely of unusable irregular cells. 
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Fig. 5.6 Fragment of the sensitivity profile of 
the camera at 32 ms exposure time. 
The magnification clearly shows 
a defect of the CCD sensor surface. 

Fig. 5.7 Irregular cells (blue dots) found 
at 32 ms exposure time 

5.3.2.6 Temperature dependence 
Many characteristics of a CCD camera are strongly temperature-dependent. As the 
CCD camera used here was not cooled, all measurements (calibration as well as FFP 
measurements) had to be taken after the CCD sensor temperature stabilises. Fig. 5.8 
shows the camera’s response in dependence on the heat-up time (the camera was 
switched on at the time 0, after overnight cooling down to the room temperature). As 
a result, the heat-up time of at least 2 hours before all measurements was always used.  

The temperature distribution on the sensor could be different for different exposure 
times, which (if true) would require some accommodation time after any change of 
the exposure time. Fig. 5.9 shows the response of the already heated-up camera after 
the exposure time change at the time 0 from 32 ms to 1 ms. As the variations found 
are rather minute, it was assumed that there is no need for such accommodation time. 
Small variations of the camera’s response prove also good output power stability of 
the laser used for the measurements. 
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Fig. 5.8 The camera’s typical response (an 

average over 10×10 cells square) 
in dependence on the heat-up time 
at the exposure time of 32 ms. 

Fig. 5.9 Response of the already heated-up 
camera after a change of the 
exposure time from 32 ms to 1 ms. 
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5.3.3 Calibration procedure for measurements 
The factors mentioned in the previous section strongly influence the reliability of 
measurements taken with a CCD camera. Nevertheless, using the calibration data 
collected and processed as described in Part 5.3.1 and Part 5.3.2, each raw 
measurement can be calibrated in the following way to exclude or minimise effects of 
the most of the mentioned unreliability factors: 

1) Let the camera heat-up at least 2 hours after switching it on. 

2) Take a series of N subsequent raw measurements and compute their average. 
The random noise should be reduced by the factor of N ½. 

3) Correct the sensor’s dark noise and non-uniform sensitivity by applying to the 
measurement of each CCD cell its inverse fitted response function m = f -1(x). 

4) For each irregular cell approximate its measurement value using the calibrated 
measurement values of its neighbouring regular cells. 

As the unreliability characteristics of the camera can be wavelength-dependent, the 
calibration measurements should be made with a light source of approximately the 
same spectrum as used for final measurements. 

5.3.4 Expanding the dynamic range 
Another practical problem concerning the most of the low-end scientific cameras is 
their restriction to the bit depth of 8 bpp or 12 bpp only and thus to the dynamic range 
of 1:256 or 1:4096 at the very best. This dynamic range, relatively small for many 
applications, can be further considerably reduced by the above-mentioned 
unreliability factors. It was found that this limitation might be overcome by 
combining several calibrated measurements taken with different exposure times, 
according to the following procedure: 

1) Make several calibrated measurements using different exposure times. 

2) Upscale those made at shorter exposure times to match the longest exposure 
time measurement. As the exposure time rate only roughly determine the 
scaling factor, find it beforehand by comparing the response functions fitted at 
different exposure times. 

3) Merge the scaled measurements into the final measurement. 

Note that for each of the calibrated measurements obtained in 1) a separate calibration 
procedure should be performed and a separate set of calibration data (Part 5.3.1) 
should be used. Note also that at long exposure times in highly excited areas 
overexposure (blooming effect) should be avoided. 

5.4 Quality verification of the far-field optics 
As the far-field optics in the setup outlined on Fig. 5.1 a specialised FFP optics  
A3267-12 from HAMAMATSU with the following optical specifications was used: 

• Detectable angular range: ±45°. 
• Angular resolution: 0.2°. 
• Wavelength range: 630 nm – 1650 nm. 
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Accuracy of measurements taken with the setup strongly depends on the optics’ 
reliability. Thus, three crucial FFP optics’ characteristics have been investigated: 

• Linearity of the θ-f (angle→space) transformation. 
• Distortion level of the θ-f transformation. 
• Real angular resolution and its stability across the angular input range. 

The results of the tests described below showed that the real angular resolution of 0.5° 
(with the used CCD camera) is worse than the nominal value of 0.2°. Nevertheless, 
the tests clearly confirm high quality of the optics and show that there is no need for 
any FFP optics calibration procedure. 

5.4.1 Test setup and measurements 
For test purposes the red laser diode described in Part 5.2 was used to directly 
illuminate (with adjustable illumination angle) the input lens of the FFP optics under 
various angles with the help of a goniometer. The full field of the FFP optics (approx. 
90° in diameter) was tested in approx. 5° steps with the resolution of ±5´ (≈ ±0.083°), 
all input beams were contained in one plane which included also the optics’ axis. The 
resulting spots were registered with the CCD camera and calibrated according to the 
procedure described in Part 5.3.3. Fig. 5.10 shows a typical example of a calibrated 
spot. 

 
Fig. 5.10 Sample calibrated spot measured by the CCD camera (clip from the complete 

CCD array). One CCD cell row/column corresponds to the angular distance of 
approx. 0.2°. 

5.4.2 Linearity of angle to space transformation 
As the angular differences between all successive input beams were equal to 5°, the 
distance between respective peaks (the maxima) of successive measured spots on the 
CCD sensor should be identical, up to one pixel. Because the plane in which the 
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illumination angle changes is parallel neither to the rows nor to the columns, both are 
influenced by the angular changes. Table 5.1 lists the coordinates of all spot peaks, 
i.e. of the CCD cells with maximum illumination, and the distance between the 
current and the previous spot.  

illumination 
angle 

x 
(rows) 

y 
(columns) d illumination 

angle 
x 

(rows) 
y 

(columns) d 

-45° 410 717 - 5° 536 507 24.7

-40° 423 696 24.7 10° 548 486 24.2

-35° 436 675 24.7 15° 561 465 24.7

-30° 448 654 24.2 20° 573 444 24.2

-25° 460 633 24.2 25° 585 423 24.2

-20° 473 612 24.7 30° 598 402 24.7

-15° 485 591 24.2 35° 610 381 24.2

-10° 498 570 24.7 40° 623 360 24.7

-5° 510 549 24.2 45° 635 339 24.2

0° 523 528 24.7     
Table 5.1 Coordinates of the spot peaks on the CCD sensor. 

The linearity of the FFP optics has turned out to be constant across the full detectable 
angular range of 90° (up to one pixel). One row or column of CCD cells corresponds 
to the illumination angular difference of approx. 0.2°. The results confirm that there is 
no need for any linearity corrections. 

5.4.3 Distortion of angle to space transformation 
As all input beams were contained in one plane, the peaks (i.e. the maxima) of all 
measured spots should be also placed in one line across the CCD sensor, up to  
one-pixel resolution. Using the coordinates of the spots maxima from Table 5.1 the 
linear best fit can be computed to be 81074.140668066.1 +−= xy . The average non-
linearity of the spots, i.e. the square average distance between the spots and the linear 
best fit was found to equal approx. 0.06°, i.e. much less then 0.2° corresponding to 
one cell distance. Thus, there is no need for any distortion corrections. 

5.4.4 Angular resolution 
Fig. 5.8 shows how much an illuminating beam of approx. 0.02° divergence (see 
Part 5.2) is broadened by the FFP optics. Although the maximum of its energy 
distribution can be located within the distance of one cell (as in Part 5.4.2), the nearest 
distance in which two similar distributions can be distinguished from each other 
depends on the dispersion of the distribution. It is common sense to use the width at 
half height as a measure, i.e. the diameter in degrees of each spot at 50 % of its height, 
see Fig. 5.11. Additionally the corresponding 25 % values are given to be on the save 
side. The resolution measured at half height (50 % level) was not worse than 0.5°, 
which will be assumed to be the real angular resolution of the setup. 
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Fig. 5.11 FFP optics resolution test: spot diameter at 25 % and 50 % spot height. 
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6 Far-field profile measurements 

6.1 Samples preparation 
As stated in Part 4.4.1, the non-aged and aged up to 4467 hours (approx. half a year) 
samples (at 100 °C / <<50 % RH) have been used for further investigations. Table 4.3 
lists the aging times of the six sets of the fibre samples used, each consisting of three 
fibres from three manufacturers and finally cut into three pieces of approx. 0.8 m, 
3.2 m and 10 m length. Then, after fine-polishing of the endfaces, 54 fibre samples 
were prepared for FFP measurements. 

6.2 Measurement procedure 
The measuring setup is outlined in Fig. 5.1 and used with three illumination angles 
(6°, 15° and 24°) to investigate the angle-dependent optical properties of the fibre. 
The fibre bend radius during all the measurements was kept not less than 20 cm to 
avoid the influence of bending [20, 68, 69]. 

Thus, each measured fibre sample is identified by three parameters: 
• manufacturer (M: Mitsubishi Rayon, A: Asahi Chemicals, T: Toray Industries), 
• aging by set no. (set0, …, set5: see Table 4.3) 
• sample length (1: ∼0.8 m, 2: ∼3.2 m, 3: ∼10 m), 

while each FFP measurement can be uniquely identified by the additional fourth 
parameter: 

• illumination angle (6°, 15° and 24°). 
Thus, for clarity from now on each fibre sample will be uniquely identified by the first 
three parameters (e.g. M-set3-2 will mean: Mitsubishi’s fibre, aged 667 h, 3.2 m 
sample length), while each measured FFP will be identified by all four parameters 
(e.g. M-set3-2-15 will mean the FFP of the M-set3-2 fibre sample measured at 15° 
illumination angle). 

For each calibrated FFP measurement six raw snaps with up to six applicable 
exposure times were used, meaning a maximum of 36 snaps for each of 3 illumination 
angles and 54 fibre samples. These raw snaps were calibrated, related to the 
corresponding exposure times and merged together according to the procedure 
described in Parts 5.3.3 and 5.3.4. In total more than 1000 raw snaps had to be 
processed. 

Taking into account the three illumination angles, 54 fibre pieces need a total number 
of 162 measured FFPs. However, for the shortest fibres (0.8 m) many measurements 
had to be discarded, as they were apparently strongly dependent on the momentary 
run of the fibre, as observed on the monitor of the online measurement system. Due to 
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an accidental damage to the sample, one measurement of the 3.2 m fibre piece  
(M-set1-2-24) had to be discarded, too. Table 6.1 lists the illumination angles used for 
the measurements of the 18 shortest fibre pieces. 

 ESKA CK-40 LUMINOUS 
TB-1000 PGU-FB 1000 

set0 24° - 24° 
set1 24° 15°, 24° - 
set2 24° 15°, 24° 24° 
set3 15°, 24° 24° 15°, 24° 
set4 24° - 15°, 24° 
set5 24° 15°, 24° 15° 

Table 6.1 Illumination angles used for the FFP measurements with the shortest (0.8 m) 
fibre pieces. All three illumination angles have been used with all 36 longer 
fibre pieces (except M-set1-2-24). 

6.3 FFP extraction 
The calibrated measurements, obtained as described in the previous part, have the 
form of two-dimensional functions (or 1024×1024 matrices) characterising the  
two-dimensional angular power distribution of the light leaving the fibre endface. The 
distance from the matrix centre depends linearly (Part 5.4.2) on the axial angle α of an 
outgoing ray, while its azimuthal angle φ equals the azimuth of the corresponding 
point on the matrix12. A clip of the M-set3-2-24 two-dimensional FFP has been 
linearly downscaled to the 256-level grey scale (the brightest point has grey level 255) 
and inverted shown on Fig. 6.1. 

The discrete one-dimensional FFP(α,α+∆α) will be computed out of the  
two-dimensional measurement matrix M using the formula Eq. (2.105) with the 
discretisation step ∆α ≈ 0.2°. The total power S(α,α+∆α) radiated into the axial angle 
interval [α,α+∆α) can be computed by taking: 

(6.1) ( ) ( )∫ ∫
∆+

−− ++⋅=∆+
π αα

α
αα ϕθϕθϕθϕααα

2

0

1
0

1
0   sin,cos  , dddydxMS , 

where (x0, y0) are the coordinates of the FFP ring centre, dα ≈ 0.2° is the angular 
difference corresponding to one-pixel distance on the matrix (see Part 5.4.2). The 
value of the measurement matrix M(x,y) for real x and y is computed by linear 
interpolation of the neighbouring integer points: 

(6.2) 
( ) ⎡ ⎤( ) ⎡ ⎤( ) ⎣ ⎦ ⎣ ⎦( ) ⎣ ⎦( ) ⎣ ⎦ ⎡ ⎤( )( )yxMyyyxMyyxxyxM ,,, −+−−=  

⎣ ⎦( ) ⎡ ⎤( ) ⎡ ⎤ ⎣ ⎦( ) ⎣ ⎦( ) ⎡ ⎤ ⎡ ⎤( )( )yxMyyyxMyyxx ,, −+−−+ . 

The resulting discrete one-dimensional FFP has to be rescaled by dividing it by the 
cosine of the respective illumination angle (6°, 15° or 24°) to account for the decrease 
in the power entering the fibre. 

                                                 
12 For angle notational conventions see Fig. 2.1 and Fig. 2.3. 
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Note that the total transmitted power can be computed using Eq. (6.1) as ( )oo 45,0S , 
due to the fact that the FFP optics’ detectable angular range of ±45° (Part 5.4) exceeds 
the acceptance angle αmax of all measured fibres (approx. 30°, Table 4.2). 

 
Fig. 6.1 Sample calibrated two-dimensional FFP measurement M-set3-2-24 (i.e. ESKA CK-40 

fibre, aged 677 hours at 100 °C / <<50 % RH, 3.2 m length, illumination angle 24°). 

6.4 Sample results 

6.4.1 Non-aged 10 m fibre 
Fig. 6.2 to Fig. 6.4 show the influence of the illumination angle on the FFPs of 10 m  
non-aged samples of fibre from all three manufacturers. 

  
Fig. 6.2 Influence of the illumination 

angle (6°, 15°, 24°) on the FFP 
of 10 m non-aged Asahi’s fibre. 

Fig. 6.3 Influence of the illumination 
angle (6°, 15°, 24°) on the FFP of 
10 m non-aged Mitsubishi’s fibre. 
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Fig. 6.5 shows the transmission loss due to the change of the illumination angle. 
Besides the generally higher attenuation of the Mitsubishi’s fibre, a decreasing 
relation between the total transmission and the illumination angle can be observed. It 
is in perfect agreement with the raytracing model, as the rays travelling through fibre 
with higher propagating angle: 1) cover longer path and 2) undergo more reflections 
on the core-clad interface than the rays parallel to the fibre’s axis. The pronounced 
transmission drop of the Toray’s fibre at the 24° illumination angle, in relation to 
other fibres, suggests higher ray reflection losses on the core-clad interface, see 
Table 7.1 to Table 7.3. 

  
Fig. 6.4 Influence of the illumination angle 

(6°, 15°, 24°) on the FFP of 10 m 
non-aged Toray’s fibre. 

Fig. 6.5 Influence of the illumination angle (6°, 
15°, 24°) on the total output power of 
10 m non-aged fibres. 

Fig. 6.6 to Fig. 6.8 compare the FFPs of 10 m samples of the fibre from different 
manufacturers. The shapes of the curves clearly suggest that the most scattering 
occurs in the Toray’s fibre (red curve is on all figures wider than the other two). The 
relative scattering intensity in both other fibre types turns out to be dependent on the 
illumination angle: 

 
Fig. 6.6 The FFPs of 10 m non-aged 

fibres from three manufacturers 
illuminated under 6° angle. 

• for lower order modes (6° 
illumination angle, Fig. 6.6) 
higher in the Mitsubishi’s 
fibre (blue curve), 

• for 15° illumination angle 
(Fig. 6.7) approximately the 
same in both fibres (blue and 
black curves overlap) 

• for higher order modes (24° 
illumination angle, Fig. 6.8) 
higher in the Asahi’s fibre 
(black curve). 

 

 
The above observations are confirmed by the fitted values of angle-dependent 
scattering intensity, see Part 7.5, Fig. 7.10. 
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Fig. 6.7 The FFPs of 10 m non-aged 

fibres from three manufacturers 
illuminated under 15° angle. 

Fig. 6.8 The FFPs of 10 m non-aged 
fibres from three manufacturers 
illuminated under 24° angle. 

6.4.2 Influence of sample length 
Fig. 6.9 and 6.10 illustrate the influence of the POF sample length on its FFP for the 
illumination angles 15° and 24°: 

• The attenuation is in general proportional to fibre length, thus the FFPs of the 
longer samples (green and blue curves) runs mainly below the FFPs of the 
shorter samples (red curve). 

• The scattering is also proportional to fibre length, thus the FFPs of the longer 
samples are more diffused. 

  
Fig. 6.9 Influence of POF sample length 

(3.2 m and 10 m) on the FFP of 
non-aged Toray’s fibre at 15° 
illumination angle. 

Fig. 6.10 Influence of POF sample length 
(0.8 m, 3.2 m and 10 m) on the 
FFP of non-aged Toray’s fibre at 
24° illumination angle. 

6.4.3 Influence of aging time 

6.4.3.1 Attenuation 
Fig. 6.11 to Fig. 6.13 show the total transmitted power (i.e. ( )oo 45,0S  of Eq. (6.1)) 
through a 3.2 m sample in dependence on the aging time. The logarithmic scale for 
the (horizontal) time axis has been used to clearly show the transmission change 
between set0 (0 h), set1 (2 h) and set2 (258 h). Note that the logarithmic scale could 
be used only after adding 1 h to all aging times listed in Table 4.3 (to move the 
beginning of the aging from time 0 h to 1 h). 



 77

The total transmitted power of Fig. 6.11 to Fig. 6.13, measured in arbitrary but 
absolute units, can be easily recalculated to obtain the relative transmission loss of the 
sample in dependence on the aging time (i.e. relative to the transmission of the non-
aged sample at the respective illumination angle). Fig. 6.14 to Fig. 6.16 compare it 
with the relative transmission loss calculated from the attenuation measured with a 
spectrometer (black lines, calculated from the attenuation data Fig. 4.7 to Fig. 4.8). 
The curves corresponding to the spectrometer measurements combine mainly the 
behaviour of the curves corresponding to the 15° and 24° illumination angle. This is 
caused by the high NA of the large-diameter silica fibre directly illuminating the fibre 
input face in the spectrometer setup, thus strongly exciting higher-order modes. 

  
Fig. 6.11 Aging time influence on the total 

output power of 3.2 m cold Asahi’s 
fibre at three illumination angles (6°, 
15° and 24°). 

Fig. 6.12 Aging time influence on the total 
output power of 3.2 m cold 
Mitsubishi’s fibre at three 
illumination angles (6°, 15° and 24°). 

  
Fig. 6.13 Aging time influence on the total output 

power of 3.2 m cold Toray’s fibre at 
three illumination angles (6°, 15°, 24°).

Fig. 6.14 Relative transmission of 3.2 m cold 
Asahi’s fibre computed from the FFPs 
and measured with a spectrometer. 

  
Fig. 6.15 Relative transmission of 3.2 m cold 

Mitsubishi’s fibre computed from the 
FFPs and measured with a spectrometer.

Fig. 6.16 Relative transmission of 3.2 m cold 
Toray’s fibre computed from the FFPs 
and measured with a spectrometer. 
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6.4.3.2 Far-field profile 
Fig. 6.17 to Fig. 6.22 show the FFPs of the 3.2 m samples in dependence on the aging 
time. A general increase in attenuation (each successive curve runs generally below 
the preceding one) and in scattering intensity (successive curves are more diffused) 
with aging time can be observed. The inverse run of the first two curves of the 
Toray’s fibre (Fig. 6.21 and Fig. 6.22) can be attributed to the measured slight 
increase in the transmission of lower-order modes after the first 2 hours of aging, see 
Fig. 6.13 and Fig. 6.16. It suggests a slight decrease in scattering intensity, too. 

  
Fig. 6.17 Influence of POF aging time on the 

FFP of 3.2 m Asahi’s fibre at 15° 
illumination angle. 

Fig. 6.18 Influence of POF aging time on the 
FFP of 3.2 m Asahi’s fibre at 24° 
illumination angle 

  
Fig. 6.19 Influence of POF aging time on the 

FFP of 3.2 m Mitsubishi’s fibre at 
6° illumination angle. 

Fig. 6.20 Influence of POF aging time on the 
FFP of 3.2 m Mitsubishi’s fibre at 
15° illumination angle 

  
Fig. 6.21 Influence of POF aging time on the 

FFP of 3.2 m Toray’s fibre at 6° 
illumination angle. 

Fig. 6.22 Influence of POF aging time on the 
FFP of 3.2 m Toray’s fibre at 15° 
illumination angle. 
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7 Aging influence on model parameters 

The first part of this chapter (Part 7.1) discuss the optimised values of the raytracing 
parameters, sample lengths of their uncertainty intervals, and shows graphs of the 
dependence of the optimised target function13 on two sample parameters. Part 7.2 
compares the overall attenuation of the simulated fibres with the measured attenuation 
of the real fibres. Part 7.3, Part 7.4 and Part 7.5 discuss the influence of the aging 
process on the optimised model parameters except for the endface scattering (the 
quality of the core-clad interface, attenuation of the bulk core material, angle-
dependent scattering). It was found that the measured profound transmission drop 
during the first hours and days of aging is caused mainly by physical deterioration of 
the core-clad interface while the slower drop at the end of the aging process (first after 
few thousands of hours) can be attributed to the beginning then chemical deterioration 
of the fibre material. 

7.1 Raytracing parameters 
The optimum values of six raytracing parameters were found separately for all of the 
18 investigated POF types (3 fibre manufacturers, 6 aging times each), using the 
optimisation procedure described in Part 3.2.3. As stated in Part 6.2, a total of as 
many as 128 simulated and measured FFPs had to be matched. An average of 1500 
rays were used to compute each FFP; finding the best fit along a given direction 
required approx. 12 computations of the target function Eq. (3.1). To find the global 
minimum the optimisation along all the directions had to be repeated at least 4 times. 
As a result approx. 10 million rays had to be traced. 

Table 7.1 to Table 7.3 list for all three manufacturers the optimum values of the 
respective fibres’ raytracing parameters found during the optimisation process. The 
numeration of the parameters was introduced and explained in Part 3.2.3.2, Table 3.3. 
Fibre ‘sets’ represent aging times (set0 = non-aged; set5 = strongly aged), for the 
explanation see Table 4.3 in Part 4.4.1 and Part 6.2. 

Appendix A3 compares sample graphs of measured FFPs and FFPs simulated using 
the optimum parameter values from Table 7.1 to Table 7.3. 

Note that, as stated in Part 3.2.3.3, due to the random nature of the raytracing process 
and FFP simulation, the optimum values given in Table 7.1 to Table 7.3 cannot be 
understood as exact values, but rather as the middles of respective uncertainty 
intervals. Table 7.4 lists sample uncertainties of the exact values on the example of 
the non-aged and strongly aged Mitsubishi’s fibre (M-set0 and M-set5). 

                                                 
13 Target function Eq. (3.1) represents the fit quality between measured and simulated FFPs. 
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 M-set0 M-set1 M-set2 M-set3 M-set4 M-set5 
var1 [deg] 3.4 3.0 3.2 3.2 3.5 3.8 
var2 [dB/km] 113 113 120 120 125 145 
var3 [mdB] 0.10 0.25 1.20 1.15 1.20 1.55 
var4 [mm] 34.0 13.5 8.0 9.75 10.0 5.80 
var5 [a.u.] 2 0.75 1 1 1 8 
var6 [deg] 14 14 15 15 25 45 

Table 7.1 Optimum values of the raytracing parameters of the non-aged and aged 
Mitsubishi’s fibre (ESKA CK-40). See Table 4.2 for the aging times and 
Table 3.3 for the parameter description. 

 A-set0 A-set1 A-set2 A-set3 A-set4 A-set5 
var1 [deg] 4.5 3.9 3.9 2.9 2.5 5.5 
var2 [dB/km] 115 125 120 120 120 160 
var3 [mdB] 0.20 0.30 1.20 1.15 1.45 2.40 
var4 [mm] 107 11.5 6.8 2 2.75 1.175 
var5 [a.u.] 8.0 1.1 1.1 0 0.45 0 
var6 [deg] 45 30 90 - 20 - 

Table 7.2 Optimum values of the raytracing parameters of the non-aged and aged 
Asahi’s fibre (LUMINOUS TB-1000). See Table 4.2 for the aging times 
and Table 3.3 for the parameter description. 

 T-set0 T-set1 T-set2 T-set3 T-set4 T-set5 
var1 [deg] 3.75 4.0 4.0 4.4 4.15 5.4 
var2 [dB/km] 117 125 120 135 130 155 
var3 [mdB] 0.4 0.6 1.20 1.30 1.30 1.75 
var4 [mm] 17.7 22.0 10.7 7.75 8.50 3.30 
var5 [a.u.] 2.0 1.2 0.8 0.7 0.66 0.3 
var6 [deg] 25 21 40 60 40 90 

Table 7.3 Optimum values of the raytracing parameters of the non-aged and aged 
Toray’s fibre (PGU FB-1000). See Table 4.2 for the aging times and 
Table 3.3 for the parameter description. 

 M-set0 M-set5 
var1 ± 0.3 deg ± 1.5 deg 
var2 ± 25 dB/km ± 50 dB/km 
var3 ± 0.04 mdB ± 0.06 mdB 
var4 ± 12.5 % ± 25 % 
var5 ± 0.6 [-4.0, +∞) 
var6 ± 3.5 deg [-10, +45) deg 

Table 7.4 Uncertainties of the optimum values of the raytracing parameters of the 
non-aged and strongly aged Mitsubishi’s fibre (M-set0 and M-set5).  

The uncertainties of optimum values of the raytracing parameters were found to be 
generally much lower for the non-aged than for the aged fibres and to increase with 
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the aging time. This increasing parameters’ uncertainties together with the worsening 
fit quality (illustrated in Appendix A3, which compares the measured and simulated 
FFPs) suggest that the developed model allows faithful modelling of non-aged or 
short-term aged fibres, but in course of a long-term high temperature aging additional 
attenuation and/or scattering mechanisms occur that are not enough well implemented 
in the model or not enough well covered by the scattering angle-dependence of the 
form Eq. (2.86). 

Note that the particularly high uncertainty of the optimised value of var2 (bulk core 
attenuation) can be attributed to the small length difference (approx. 10 m) between 
the shortest and the longest investigated samples. The attenuation uncertainty of 
± 25 dB/km corresponds to ± 0.25 dB (± 6 % transmission) uncertainty on the 
measured 10 m distance. Measuring and simulating much longer fibres would 
increase the quality of this parameter’s fit, but would also require much longer 
simulation and optimisation time. On the other hand high uncertainties of var5 and 
var6 for long-aged fibre are related rather to their specific optimum values (making 
the scattering intensity almost constant for all illumination angles within the 
acceptance angle, i.e. up to 30°, see Part 7.5) than to the optimisation inaccuracies. 

As examples in Fig. 7.1 the target function dependence on two sample parameters is 
shown (var3 and var4, i.e. interface attenuation and bulk scattering scale). The fibre 
M-set2 and the optimum parameter values from Table 7.1 were used. Each of the 
seven FFPs (M-set2-1-24 to M-set2-3-06) used for computing the target function (see 
Eq. (3.1)) was simulated with 4000 rays. The minima correspond to the optimum 
values of both parameters. 

  
Fig. 7.1 Target function dependence on interface attenuation (var3, left) and bulk scattering scale 

(var4, right). The fibre M-set2 and the optimum parameter values from Table 7.1 were 
used. Each FFP used for computing the target function was simulated with 4000 rays. 

7.2 Overall attenuation 
Table 7.1 to Table 7.3 show, between others, the dependence of the attenuation 
parameters var2 and var3 on the aging time. However, the actual overall attenuation 
of the simulated fibre depends not only on the two attenuation parameters but also on 
the scattering parameters and on the illumination conditions; it can be obtained only 
by performing a simulation. Fig. 7.2 to Fig. 7.4 compare two measured relative 
transmissions of aged to a different degree 10 m fibre samples (i.e. the online 
transmission measured on the hot fibre and the transmission of the same-time aged 
cold fibre, see Fig. 4.10 to Fig. 4.11) with the relative transmission of 10 m simulated 
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fibre. The curves illustrate the aging process at 100 °C / <<50 % RH (as Fig. 7.2 to 
Fig. 7.4 and data in Table 7.1 to Table 7.3 do). The illumination angle of 0° has been 
used; the high numerical apertures of the LED used in the online measurement system 
(Part 4.4) and of the illuminating silica fibre in the spectrometer setup (Part 4.3) were 
simulated by a high divergence of the illuminating beam (15° ≈ 0.26 rad). 

Comparison between the simulation (green) and the measurement is to be made for 
the cold fibre (blue), because only the FFPs of the cold samples were measured 
(Chapter 6) and used for the parameter fitting. Note the good match in the case of the 
Toray’s fibres (Fig. 7.4). The simulated Asahi’s fibres (Fig. 7.3) have provided the 
worst match, nevertheless the overall transmission of the simulated and measured 
fibre A-set3 (both fourth points in Fig. 7.3) match exactly. 

As mentioned above, several parameters influence the overall attenuation. In the next 
parts of this chapter changes of separate parameters with the aging time are discussed. 

 
Fig. 7.2 Relative transmission of the hot (online), the cold (cooled down) and the 

simulated 10 m samples of Mitsubishi’s fibre in dependence on the aging 
time (650 nm wavelength, 100 °C / <<50 % RH). 

 
Fig. 7.3 Relative transmission of the hot (online), the cold (cooled down) and the 

simulated 10 m samples of Asahi’s fibre in dependence on the aging time 
(650 nm wavelength, 100 °C / <<50 % RH). 
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Fig. 7.4 Relative transmission of the hot (online), the cold (cooled down) and the 

simulated 10 m samples of Toray’s fibre in dependence on the aging time 
(650 nm wavelength, 100 °C / <<50 % RH). 

7.3 Core-clad interface attenuation 
Fig. 7.5 shows the interface attenuation coefficient (var3) in dependence on the aging 
time for the fibres from all three manufacturers. Note that the aging time axis is 
shown in a logarithmic scale. 

 
Fig. 7.5 Fitted interface attenuation coefficient (var3) in dependence on the aging time. 

The clear sharp increase in the fitted interface attenuation during the first hours and 
days of aging can be attributed to a rapid physical deterioration of the core-clad 
interface, presumably caused by the temperature shock. 
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7.4 Bulk core attenuation 
Fig. 7.6 shows the core bulk attenuation (var2) in dependence on the aging time for 
the fibres from all three manufacturers. As on Fig. 7.5, the aging time axis is shown in 
a logarithmic scale. 

 
Fig. 7.6 Fitted bulk core material attenuation  (var2) in dependence on the aging time. 

The fitted bulk core material attenuation remains almost constant during most of the 
aging process (in contrast to var3 of the previous part). A noticeable increase happens 
at the end of the exposure, first after 4000 h, compared to the immediate increase of 
the interface attenuation in Fig. 7.5. It suggests that the chemical deterioration of the 
fibre material (represented by var2) progresses much slower than the deterioration of 
the fibre’s physical structure (var3). The bulk core attenuations of all three fibres 
show similar dependence on the aging time, as expected from the fact that the core 
material in all three cases is the same (PMMA, Table 4.2). 

7.5 Scattering 
Fig. 7.7 to Fig. 7.9 show the fitted angle-dependent simulated scattering intensity in 
dependence on the aging time (computed with Eq. (2.86) and divided by var4 to get 
rid of the normalisation present there). On all three figures it is given in the same 
arbitrary units per millimetre. As almost all rays propagate within fibre’s acceptance 
angle and thus almost only those rays were used in optimisation of the parameters, the 
scattering intensity is plotted only for the illumination angles between 0° and 30°. 
Note the difference in the scaling of the vertical axes between the figures. The label 
order in the legend box corresponds to the curve order at 0° illumination angle. 

As expected from the theoretical investigations of the Chapter 2 and Appendix A2, 
the scattering intensity decreases with the increasing illumination angle and tends to 
increase with the increasing aging time. Higher attenuation of the aged Asahi’s fibres 
compared to the fibres from the other two manufacturers (Fig. 4.2) seems to be caused 
primarily by the much quicker increase of the scattering intensity with the aging time. 
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Fig. 7.7 Fitted angle-dependent scattering intensity of Mitsubishi’s fibre for all six aging times. 

 
Fig. 7.8 Fitted angle-dependent scattering intensity of Asahi’s fibre for all six aging times. 

 
Fig. 7.9 Fitted angle-dependent scattering intensity of Toray’s fibre for all six aging times. 
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Fig. 7.10 compares the fitted scattering intensities of all three investigated non-aged 
fibres (M/A/T-set0 from Fig. 7.7 to Fig. 7.9). It confirms the assumptions stated 
already in Part 6.4.1 and based on the measured FFPs’ shapes (Fig. 6.6 to Fig. 6.8): 
the non-aged Toray’s fibre (red) shows the highest scattering; for small illumination 
angles the scattering of the non-aged Mitsubishi’s fibre (blue) is higher than that of 
the non-aged Asahi’s fibre (black), for greater illumination angles the relation is 
opposite. 

 
Fig. 7.10 Fitted angle-dependent scattering intensity of non-aged fibres from all three manufacturers. 
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8 Conclusions 

The present Ph.D. work has combined an application-oriented as well as a theoretical 
approach to POF modelling. The precedence has been given to the practical issues and 
model verification, while at the same time much effort has been also spent on the 
mathematical analysis of the basic mechanisms governing light propagation in 
cylindrical waveguides, a prerequisite for reliable POF models and simulation. 

In course of this work a practically usable general POF model has been developed; it 
implements the theoretically investigated mechanisms of scattering and Fresnel 
reflection. The first known systematic numerical optimisation of model parameters 
has been performed to get the best fit between simulated and measured optical 
characteristics of fibre samples. In extension to previous researches samples of 
different length and several illumination angles have been used. The results have been 
compared for fibres from three different manufacturers and subjected to six different 
aging times. The model was verified by providing a good agreement between 
simulated and measured FFPs, especially for non-aged fibres. 

The important aspects of the work can be more detailed summarised as follows: 

• Theoretical investigations of this work contain the first known attempt to use 
the wave-optics approach in the analysis of angular properties of scattering in 
cylindrical waveguides. Computed numerical examples have confirmed the 
experimentally observed decreasing scattering intensity with increasing 
illumination angle, an important practical result, as the geometric optics 
analysis suggests the opposite relation. 

• To investigate the aging influence on fibre optical properties was one of the 
main tasks of this work. The optimised values of the attenuation coefficients 
for aged fibres suggest that most of the profound transmission loss in the first 
days, weeks and even months of investigated high temperature aging 
(100 °C / <<50 % RH) is caused by a significant physical deterioration of the 
core-clad interface. Chemical aging-related effects in bulk fibre material 
affecting its attenuation occur first after several months of aging. This 
observation seems to be also confirmed by the results of chemical experiments 
of a parallel running Ph.D. work of A. Appajaiah. 

• The investigations showed also a general strong increase in the scattering 
intensity during the course of the aging. At present, the implemented 
scattering mechanism cannot differentiate between the scattering effects 
related to core-clad interface and bulk material. Thus, it cannot be told, if the 
observed scattering increase originates from physical deterioration of the core-
clad interface or chemical changes of fibre bulk material. 
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• The agreement between measurement and simulation for the non-aged fibres is 
substantially better than reported in previous researches [16]. On the other 
hand, the general decrease of the fit quality with fibre aging time suggests that 
in course of the high temperature aging additional attenuation and/or scattering 
mechanisms occur, which are not implemented in the proposed model or not 
enough well covered by the used form of the scattering-angle dependence. 
Thus, the model itself can be in future research refined and improved. 

• The fit quality between the simulated and measured far-fields (especially at 
low illumination angles and for the above-mentioned long, strongly aged 
fibres), can be further improved even with the current model by refining the 
optimisation process to obtain better numerical values of the parameters, 
mainly at the expense of the simulation time. Using longer fibre samples and 
more illumination angles, tracing more rays or dropping some of the 
constraints forced on the parameters could be useful for this purpose. 

• In course of the work fibres subjected to only one aging condition were 
investigated (100°C and room humidity). The influence of other aging 
conditions on the optical parameters of the model (i.e. of other temperatures 
possibly combined with high humidity) could also be investigated and 
compared. The results of detailed analysis could lead to development of more 
efficient methods for prediction of optical transmission through POFs under 
long-term environmental stress. 

• As a side effect of this work, a calibration and quality assessment procedure 
for CCD cameras has been developed. It was necessary to guarantee the 
reliability of far-field profile measurements, because camera manufacturers, in 
general, deliver neither such procedures nor reliability data. 

Therefore, progress has been made concerning the modelling and simulation of light 
propagation in non-aged and aged POFs. Nevertheless, additional further 
improvements by future research are possible. 

The theoretical part of the work leaves its mathematical problems open, too. 
Primarily, there is no rigorous analysis of radiation conditions that would guarantee 
the uniqueness of the discussed solution to the scalar wave equation on a cylindrical 
waveguide. The presumed conditions, formulated analogically to those holding for the 
open-space problem [25] and necessary to solve the corresponding Helmholtz 
equation [2], were stated here as a hypothesis only. Furthermore, the (decreasing) 
relation between the illumination angle and the scattering intensity was found on 
numerical examples only for two waveguide radii and two specific forms of the 
refractive index perturbation. A more universal estimation, based on general 
formulae, would be welcome, as well as a general estimation of the angle-dependence 
of the relative guided power, presumably stepwise for large-diameter fibres (as 
numerical computations have shown). Last but not least, the proof of the convergence 
of the von Neumann series representing the scattered field should be brought to  
the end. 
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Appendices 

A1 Basic identities 
Wronskians of Bessel functions [1, 3, 12]: 
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Asymptotic expansions of Bessel functions for large argument (z → ∞) [1, 3]: 
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Series of Bessel functions [1, 3]: 
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where the second equality follows from [1, 3, 12]: 
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Integral of Bessel functions [1, 3]: 

(A1.5) ( ) ( ) ( ) ( ) ( ) ( )[ ]azJbzaJbzJazbJ
ba

zdzbzJazzJ mmmmmm 1122 −− −
−

=∫   

Upper bounds of Bessel functions [3, 12]: 
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Recurrence relations for Bessel functions [1, 3, 12] 
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Infinite summations of Bessel functions [3, 12] 
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Power series expansion of Ym(z) at z=0 [3, 12]: 
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where ψ(z) is the digamma function ψ(z)=Γ´(z)/Γ(z).  

Eq(A1.9) implicates the following limiting forms of Ym(z) for small argument z→0: 
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Power series expansion of Jm(z) at z=0 and its limiting forms for small argument z→0 
[1, 3]: 
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Derivatives of Bessel functions with respect to the argument [1, 3, 12]: 
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Summations of Bessel function [3, 12]: 
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Debye asymptotic formulae for large order ( 31mmz −<< , m>>0) [1, 3]: 
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Eq(A1.13) implicates that for enough large order m and constant argument z: 

(A1.15) 
Jm(z) monotonically decreases to zero as m→∞, 
Ym(z) monotonically decreases to -∞ as m→∞. 
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A2 Modal analysis examples 
In this appendix modal characteristics of sample waveguides (mainly of two 
waveguides with normalised frequency parameters V = 8 and V = 20) are numerically 
computed and investigated. The results illustrate the theoretical discussion of 
Chapter 2, Part 2.1. 

Some numerically computed properties of waveguides investigated in this part were 
used, due to the lack of exact formulas, as the basis for two general assumptions 
needed for modelling the scattering within the raytracing approach in Part 2.2: 

• Numerically computed results concerning the mode mixing (aroused due to 
four tested random forms of the refractive index perturbations, Part A2.3) 
form the basis for the general formula approximating the angle-dependent 
scattering intensity (Part 2.2.3, Eq. (2.87)). 

• Based on the results concerning excitation of guided modes for both 
investigated waveguides (Part A2.2, Fig. A2.10) it is assumed that for the 
illumination angles lying within the acceptance angle the overwhelming part 
of the input power enters guided modes. Therefore, taking also into account 
the quick attenuation of radiating modes in a real fibre, mode mixing analysis 
can be limited to the power flow between the guided modes only (Part A2.3). 

All fibres investigated in this part differ only in their normalised frequency (and so in 
their diameters), all other parameters are assumed to be equal those of a typical POF, 
the wavelength equals 653 nm, so that of the laser used in the experiments (Part 5.2). 

n0 = 1.492, 
n1 = 1.402, 
λ = 653 nm (red laser used in experiments), 

(A2.1) 

k = 2π/λ ≈ 9.622 × 106. 
According to Eq. (2.19), normalised frequency V of 8 and 20 corresponds to the fibre 
diameters of 3.26 µm and 8.14 µm, respectively. 

A2.1 Modes 
All guided modes of waveguides with V = 8 and V = 20 were computed by 
numerically solving equation Eq. (2.22). Equation Eq. (2.24) in both cases has no  
guided-mode solutions (i.e. for |m|>1). The waveguide with V = 8 supports 17 guided 
modes (for m∈{-5, -4, …, 4, 5}), while the other waveguide (V = 20) supports a total 
of 105 guided modes (m∈{-16, -15, …, 15, 16}). All the guided modes of both 
waveguides together with the corresponding relative wavenumber β are listed in 
Table A2.1 and Table A2.2. Note that Eq. (2.22) has the same solutions for +m and  
–m modes, i.e. the corresponding modes in both cases have the same relative 
wavenumber β, the same radial component jm(r,τ) and differ only in the oscillating 
term exp(±imφ) (see Eq. (2.12)). Table A2.1 and Table A2.2 present (numerically 
obtained) all solutions to Eq. (2.22) for different values of the integer parameter m. 
They correspond to the zeros of Eq. (A2.2) and each of them represents one guided 
mode of form Eq. (2.21). 
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m 0 ±1 ±2 ±3 ±4 ±5 
1.414 1.440 1.418 1.448 1.430 1.410 
1.459 1.476 1.464    relative mode 

wavenumber β 1.486      
Table A2.1 Numerical characteristics of guided modes for the V = 8 waveguide. 

m relative mode wavenumber β 
0 1.404 1.427 1.448 1.464 1.477 1.486 1.491 
±1 1.416 1.438 1.457 1.471 1.482 1.489  
±2 1.405 1.428 1.448 1.465 1.478 1.487  
±3 1.417 1.440 1.458 1.473 1.484   
±4 1.406 1.430 1.451 1.468 1.481   
±5 1.420 1.443 1.462 1.477    
±6 1.410 1.434 1.455 1.472    
±7 1.425 1.448 1.468     
±8 1.416 1.441 1.462     
±9 1.406 1.433 1.456     
±10 1.424 1.450      
±11 1.415 1.443      
±12 1.405 1.436      
±13 1.428       
±14 1.420       
±15 1.411       
±16 1.402       

Table A2.2 Numerical characteristics of guided modes for the V = 20 waveguide. 

Fig. A2.1 shows for the V = 20 waveguide sample graphs of the function 

(A2.2) ( ) ( )
( )

( )
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RwK
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RwJ
RwJ

Rwf
m

m

m

m

1

11
1

0

01
0: ++ −=β , 

for m=0 and m=16, whose (numerically found) zeros correspond to the respective 
guided modes, see Eq. (2.22). Values of w0R and w1R are bound to β by Eq. (2.19) 
and to each other by the identity ( ) ( )2

1
2

0
2400 RwRwV +== . 

 
Fig. A2.1 Function f(β) of Eq. (A2.2) with V=20 for m=0 (red) and m=16 (blue).  

The zeros (to be found numerically) correspond to the respective guided modes.  
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Guided modes are usually described with LPmp symbol, where m corresponds to the 
columns in Table A2.1 (rows in Table A2.2) and p∈Z is assigned (starting with 0) 
right to left in Table A2.1 (upwards columns of Table A2.2), i.e. corresponding to the 
increasing values of parameter w0R or decreasing values of β. Fig. A2.2 shows 
descriptions of all the guided modes of the V = 8 waveguide in the (w0R, |m|) 
coordinate system. 

 
Fig. A2.2 Descriptions of all guided modes of the V = 8 waveguide  

in the (w0R, |m|) coordinate system. 

Fig. A2.3 compares guided modes of both waveguides in the same coordinate system. 

 
Fig. A2.3 Guided modes of the V = 8 (red) and the V = 20 (blue) waveguide  

in the (w0R, |m|) coordinate system. 

The real parts of four sample guided modes Eq. (2.21) over the V = 8 waveguide’s 
cross-section are shown in Fig. A2.4, while Fig. A2.5 shows real parts of two sample 
guided modes Eq. (2.21) of the V = 20 waveguide. Their squared value is proportional 
to the local energy distribution of the respective mode. 
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Fig. A2.4 Real parts of four guided modes on the cross-section of the V = 8 waveguide. 

The waveguides’ radii were scaled to unity (horizontal axes). 

                           LP1,6                                                              LP16,1 
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Fig. A2.5 Real parts of two guided modes on the cross-section of the V = 20 waveguide. 

The waveguides’ radii were scaled to unity (horizontal axes). 

As showed in Chapter 2, Part 2.1.2, for each τ < 2
1n  and each m∈Z exists a 

corresponding radiating mode. Fig. A2.6 shows real parts of two sample radiating 
modes Eq. (2.27) of both waveguides.  
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       V = 8,  m = 7,  β = 1 
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       V = 20,  m = 1,  β = 1.4 ≈ n1 
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Fig. A2.6 Top view on the real parts of four sample radiating modes on the cross-sections of two 

waveguides. The waveguides’ radii were scaled to unity. The white (black) colour 
corresponds to the maximum (minimum) value.  

The basic guided mode (LP01) was also found for two other waveguides with the 
normalised frequency parameter V equal to 100 and 500. Fig. A2.7 compares in the 
logarithmic scale its radial components ( )0

10 ,τrj  for all four waveguides.  

 
Fig. A2.7 Radial component of LP01 mode for four different waveguides’ radii (logarithmic scale). 
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Fig. A2.7 shows that the field of LP01 mode extending into the clad decays 
exponentially with waveguide’s radius and that the decay rate increases with 
waveguide’s radius (or its normalised frequency). 

A2.2 Illumination and mode-angle relation 
Using formula Eq. (2.46) we can compute the excitation of each guided mode of a 
waveguide with a uniformly illuminated input face. Summing Eq. (2.47) over all 
guided modes gives the total guided power. In this part we will use p(α)≡1 in 
Eq. (2.46), thus we will neglect the effects of slightly increasing with angle Fresnel 
reflection coefficient and assume that all power incident on the waveguide’s input 
face actually enters it and excites its modes. 

Fig. A2.8 shows relative excitations (the ratio of the power entering the mode to the 
total incident power) of all guided modes of the V = 8 waveguide in dependence on 
the illumination angle. Power in both LP±mk modes were added, whenever |m|>0 

 
Fig. A2.8 Relative excitation (the ratio of the power entering the mode to the total incident power) of 

all guided LP±mk modes of the V = 8 waveguide in dependence on the illumination angle α. 

Fig. A2.9 shows for both V = 8 and V = 20 waveguides the dependence on the 
illumination angle of the excitation of LP01 mode and of two other modes with the 
excitation maxima around 0°, 15° and 30°, respectively. The maxima of all graphs 
were normalised to 100 % to ease comparison of their shapes. 

 
Fig. A2.9 Dependence on the illumination angle of the normalised excitation of three sample modes 

with the optimum inclination about 0°, 15° and 30° for both V = 8 and V = 20 waveguides. 
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Fig. A2.10 shows the angle-dependence of the relative total guided power for both 
waveguides (ratio of the power contained in all guided modes to the total incident 
power). 

 
Fig. A2.10 Relative total guided power in dependence on illumination angle for both  

V = 8 and V = 20 waveguides. 

Fig. A2.10 clearly suggests that with increasing waveguide’s radius R (or its 
normalised frequency V) almost all power incident within the acceptance angle enters 
guided modes and so the limiting graph is step-like, see [1, Chapter 20]. For each 
investigated mode there is the optimum input illumination angle, which maximises the 
power entering the mode (the maximum of the plots on Fig. A2.8 and Fig. A2.9). 
Based on the Fig. A2.9, it may be assumed that for each guided mode of any 
waveguide (i.e. waveguide of any parameter V) there exists a similar peak of the 
excitation graph and that its dispersion tends to decrease with the increasing 
waveguide parameter V (and the waveguide’s radius R), as on Fig. 2.10, so that for a 
highly multimode waveguide each guided mode may be practically uniquely related 
to its optimum illumination angle, called its external propagation angle (as related to 
the outside environment, so α and not γ on Fig. 2.3). Fig. A2.11 shows the relation 
between the modal parameter w0R of the mode and its optimum illumination angle, 
see [1, Chapter 20] for discussion and references. 

 
Fig. A2.11  Optimum input illumination angle in dependence on the modal parameter w0R  

 for the V = 8 (left) and V = 20 (right) waveguide. 
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According to the formulae Eq. (2.33), Eq. (2.34) and Eq. (2.46) propagating power is 
distributed continuously with respect to τ among radiating modes. The distribution 
function p(τ) is given by: 

(A2.3) ( ) ( )
( ) ( )∑

∈ +
=

Zm mm

m

ba

G
kp

ττ

τ
πτ

22

2
2 0,

. 

To get the total power contained in all radiating modes the formula Eq. (A2.3) for p(τ) 
has to be integrated with respect to τ within the limits (-∞, 2

1n ), as Eq. (2.48) states. 
Fig. A2.12 shows the relative power distribution ( ) 2Rp πτ , see Eq. (2.49), of the V = 8 
waveguide for four different illumination angles, while Fig. A2.13 compares ( ) 2Rp πτ  
of both V = 8 and V = 20 waveguides for 15° illumination angle. Summing over m∈Z 
in both cases was made only over m∈{-20, …, 20} or m∈{-80, …, 80} for the V = 8 
or V = 20 waveguide, respectively. Both figures are shown in the logarithmic scale. 
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Fig. A2.12 Relative power distribution among radiating modes of the V = 8 waveguide  
for four illumination angles. 

 
Fig. A2.13 Relative power distribution among radiating modes of both V = 8 and V = 20 

waveguides at 15° illumination angle. 

Fig. A2.13 clearly shows that the excitation of radiating modes in the V = 20 
waveguide is considerably lower that in the V = 8 waveguide and in the former more 
power is transported via guided modes, as Fig. A2.10 shows. From both figures it may 
be seen and assumed that the more multimode is the waveguide, the less power enters 
its radiating modes (for illumination angles within the acceptance angle). 
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A2.3 Scattering and mode mixing 

A2.3.1 On input and end faces 
Formula Eq. (2.53) allows calculating distribution of the output power per solid angle, 
depending on the illumination angle and under assumption of no power transfer 
between modes. Fig. A2.14 shows sample graphs of angular distribution of the total 
output power for both investigated waveguides and several different illumination 
angles α. 

Fig. A2.14  Angular distributions of the total output power for both waveguides;  
 plots for different illumination angles α. No power transfer between modes assumed. 

Both figures confirm that the conversions between the illuminating/output fields and 
the modal fields on endfaces diffuse the angular input characteristics. To compute the 
scale of the diffusion, i.e. the angle-dependent dispersion of the output power, the 
graphs of Fig. A2.14 were numerically square-best-fitted with respect to the 
dispersion parameter s with the (reflected at 0) Gaussian dispersion characteristics: 
(A2.4) ( ) ( ) ( )sss outoutout ,;,;:,; 00 ααψααψααψ −+= , 
where α is the illumination angle, αout the output angle and 
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Amplitudes A for each illumination angle α were kept constant and equal to the 
integral of the respective curve. The fitted values of dispersions s are shown in 
Fig. A2.15. 

 
Fig. A2.15  The dispersions s of the curves Eq. (A2.4), which best fit the angular  

distribution of the total output power (Fig. A2.14). 
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The parameter s characterising the angle-dependent dispersion of the scattered power 
turned out to be almost constant across all illumination angles and for both 
investigated waveguides. Therefore, it will be henceforth assumed (and used in the 
raytracing software) that the scattering on fibre’s endfaces is constant and does not 
depend on the illumination angle. 

A2.3.2 Refractive index perturbations 
Given the refractive index perturbation function d (defined in Eq. (2.54)), the 
formulae Eq. (2.71) to Eq. (2.73) can be used to investigate the angular dependence of 
the total power and the dispersion of the scattered field. In the numerical 
computations for the perturbation function a finite sum of simple single perturbations 
will be used: 
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where the point (ρl, ηl, ξl) is the centre of a single perturbation, Al is its amplitude and 
Sl defines its e-1 radius. The best candidate for the distance function δ would be the 
Euclidean metric 
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but this form would make integral Eq. (2.71) symbolically not integrable and 
considerably increase its computation time. So the following function was used 
instead, a modified version of Eq. (A2.7): 
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where for ( ) ( ]ππηη ,10 −∈−  the ( )10cos ηη −  was approximated with the saw function  
πηη 1021 −− , which equals the effect of keeping the Euclidean metric Eq. (A2.7) but 

modifying slightly the perturbation function Eq. (A2.6). 

Substituting Eq. (A2.6) and Eq. (A2.8) into Eq. (2.71) and changing the order of 
integration over Ω yield: 
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The first and third integrals can be computed analytically: 

(A2.10) 
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where Φ(a,b) is the error function: 
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The remaining one-dimensional integral over [0, R0) has to be computed numerically. 

Using Eq. (A2.10) it is easy to compute numerically the scattered field Eq. (2.73) for 
a given illumination angle α. As it turned out to be highly dependent on the location 
and size of the waveguide’s perturbations, the results had to be averaged for several 
randomly drawn perturbations. For the numerical computations the following 
perturbation properties were assumed: 

• Only the waveguide’s core is perturbed, so R0 = R in Eq. (A2.10). 

• The perturbation centre (ρl, ηl, ξl) is uniformly distributed within the core. 

• The perturbation amplitude Al ~ N(0, A) (was modelled with a Gaussian 
random variable with mean 0 and standard deviation A). As Eq. (A2.10) 
depends linearly on the perturbation amplitude, its exact value does not matter, 
and all numerical computations were made with the constant value A = 0.01. 

• The perturbation size (i.e. e-1 radius) Sl ~ Sχ1 (was modelled with a random 
variable of chi-square distribution with one degree of freedom and mean S ). 

The perturbed fragment of the waveguide was assumed to have the length z0 = 10 R. 
The computations were made for the following combinations of parameters: 

• The V = 8 waveguide: 
o L=1, S=0.05R, 
o L=1, S=0.25R, 

• The V = 20 waveguide: 
o L=1, S=0.05R, 
o L=1, S=0.25R. 

In each case 800 (for the V = 8 waveguide) or 400 (for the V = 20 waveguide) 
computations were made and averaged to obtain the average scattering matrix 

( )[ ]kmkmrsp ,;, 00  (see Eq. (2.72) and Eq. (2.73)). Fig. A2.16 shows in the logarithmical 
scale the angular distributions of the scattered power per solid angle for both 
waveguides, the scattering matrices obtained for the parameters L=1, S=0.25R and the 
same input angles as on Fig. A2.14. 
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Fig. A2.16  Angular distribution of the output power of the scattered field in both waveguides, 
 (number of perturbations L=1, mean size of the perturbation S=0.25R). 

Using the obtained scattering matrices and Eq. (2.46), Eq. (2.47) the total scattered 
power in dependence on the illumination angle α for both waveguides and all 
investigated perturbation types can be easily computed: 
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and after normalisation to 1 at the illumination angle 0° plotted as Fig. A2.17: 

 
Fig. A2.17 Normalised total scattered power in dependence on the illumination angle. 

Fig. A2.17 shows an evident negative correlation between the illumination angle and 
the total scattered power and is used in Part 2.2.2 to construct the formulae for the 
angle-dependent scattering model within the raytracing approach. 

A3 Sample measured and simulated FFP graphs 
In this appendix the sample graphs of the measured and simulated (optimised) FFPs 
of set0 (non-aged fibres) and set5 (the most aged fibres: 4467 h at 
100 °C / <<50 % RH) are shown for comparison. Note the difference of the fit quality 
between the non-aged (set0) and highly aged (set5) samples. According to the target 
function Eq. (3.1), the optimisation procedure described in Part 3.2.3.3 matches  
two-dimensional FFPs and thus it weights the one-dimensional FFPs with the sine of 
the illumination angle α. Therefore, in the following graphs, the higher α, the better 
the fit quality. The FFP notation is explained in Part 6.2. 
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A3.1 ESKA CK-40 fibre 

  
Fig. A3.1 Measured and simulated M-set0-1-24. Fig. A3.2 Measured and simulated M-set0-2-06. 

  
Fig. A3.3 Measured and simulated M-set0-2-15. Fig. A3.4 Measured and simulated M-set0-2-24. 

  
Fig. A3.5 Measured and simulated M-set0-3-06. Fig. A3.6 Measured and simulated M-set0-3-15. 

  
Fig. A3.7 Measured and simulated M-set0-3-24. Fig. A3.8 Measured and simulated M-set5-1-24. 



 104

  
Fig. A3.9 Measured and simulated M-set5-2-06. Fig. A3.10 Measured and simulated M-set5-2-15. 

  
Fig. A3.11 Measured and simulated M-set5-2-24. Fig. A3.12 Measured and simulated M-set5-3-06. 

  
Fig. A3.13 Measured and simulated M-set5-3-15. Fig. A3.14 Measured and simulated M-set5-1-24. 

A3.2 PGU FB-1000 fibre 

  
Fig. A3.15 Measured and simulated T-set0-1-24. Fig. A3.16 Measured and simulated T-set0-2-06. 



 105

  
Fig. A3.17 Measured and simulated T-set0-2-15. Fig. A3.18 Measured and simulated T-set0-2-24. 

  
Fig. A3.19 Measured and simulated T-set0-3-06. Fig. A3.20 Measured and simulated T-set0-3-15. 

  
Fig. A3.21 Measured and simulated T-set0-3-24. Fig. A3.22 Measured and simulated T-set5-1-15. 

  
Fig. A3.23 Measured and simulated T-set5-2-06. Fig. A3.24 Measured and simulated T-set5-2-15. 
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Fig. A3.25 Measured and simulated T-set5-2-24. Fig. A3.26 Measured and simulated T-set5-3-06. 

  
Fig. A3.27 Measured and simulated T-set5-3-15. Fig. A3.28 Measured and simulated T-set5-3-24. 

A3.3 LUMINOUS TB-1000 fibre 

  
Fig. A3.29 Measured and simulated A-set0-2-06. Fig. A3.30 Measured and simulated A-set0-2-15. 

  
Fig. A3.31 Measured and simulated A-set0-2-24. Fig. A3.32 Measured and simulated A-set0-3-06. 
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Fig. A3.33 Measured and simulated A-set0-3-15. Fig. A3.34 Measured and simulated A-set0-3-24. 

  
Fig. A3.35 Measured and simulated A-set5-1-15. Fig. A3.36 Measured and simulated A-set5-1-24. 

  
Fig. A3.37 Measured and simulated A-set5-2-06. Fig. A3.38 Measured and simulated A-set5-2-15. 

  
Fig. A3.39 Measured and simulated A-set5-2-24. Fig. A3.40 Measured and simulated A-set5-3-06. 
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Fig. A3.41 Measured and simulated A-set5-3-15. Fig. A3.42 Measured and simulated A-set5-3-24. 

A4 Convergence of the von Neumann series 
This appendix contains some considerations concerning the convergence of the von 
Neumann series Eq. (2.64) in the supremum norm. If brought to the end, the existence 
and continuity the series would be proved and the scattered field uscat Eq. (2.64) 
would be under Hypothesis 1 the solution of the Helmholtz equation Eq. (2.57). 

Due to Eq. (2.66) 

(A4.1) ( ) ( ) ( )ξηρξηρϕϕ ,, ,,;,,,, maxmax
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≤ , 

where 

(A4.2) 
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=

 

To prove the convergence of Eq. (2.64) in the supremum norm it would be enough to 
prove that ||T|| is bounded (by a constant independent of r, φ, z), because then the 
perturbation size Dmax could be always chosen small enough to make Eq. (A4.1) less 
than 1 and hence Eq. (2.64) converge. 

Using Eq. (2.63) 
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where due to the representation of dχm(τ) of Theorem 2.3 and Eq. (A1.6) the most 
inner integral can be majorised as follows: 
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Applying Eq. (A4.4) to Eq. (A4.3) and splitting the range of the integration with 
respect to τ: 

(A4.5) 
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where 
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First summand in Eq. (A4.5) is finite, because there are only finitely many guided 
modes (Theorem 2.1). Therefore, T would be bounded and Eq. (2.64) would 
converge, if the other summands in Eq. (A4.5) were finite and bounded by constants 
independent of r and z. Thus if the function C(r,τ) was not increasing too strong as 

2
1n→τ , and was decreasing enough quick as −∞→τ , so that both integrals  
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could not only converge, but also be bounded by a constant independent of r and z 
(note that the same would hold then for the other two integrals of Eq. (A4.5), too). 
The following parts of this appendix contain considerations potentially helpful in 
proving it. First, two auxiliary facts have to be formulated:  

(A4.8) 
If z ≠ 0 and Jm(z) = 0,  

then ( ) ( ) ( ) 011 ≠−==′ +− zJzJzJ mmm  
and Jm-2(z) ≠ 0, Jm-1(z) ≠ 0, Jm+1(z) ≠ 0 and Jm+2(z) ≠ 0. 

(A4.9) 
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as 2
1n→τ  (which implies 00 >→ ww  and 01 →w ), where w0 and w1 are 

defined in Eq. (2.19) and depend on τ and w. 
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Eq. (A4.8) follows directly from Eq. (A1.6), Eq. (A1.7), Eq. (A1.8), the recurrence 
relation Eq. (A1.7) and Eq. (A1.12). If noted that due to Eq. (2.19) 

,
0

2
1

0

22
0

0 ww
w

ww
wwww

+
=

+
−

=−  

then the expansion of Jm in power series around the point wR yields Eq. (A4.9): 
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A4.1 Coefficient am(τ) 
Coefficient am(τ) is defined in Eq. (2.28) as: 

(A4.10) ( ) ( ) ( ) ( ) ( )[ ]RwYRwJwRwYRwJwRa mmmmm 110110102
1

++ −= πτ . 

Functions w, w0 and w1 are defined in Eq(2.19). 

LEMMA A4.1. 
(1) ( ) ( )ττ mm aa =− . 
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(b) (|m|=1) If J0(wR)=0, then ( ) ( ) 0ln 111 →= wwOa τ , else ( ) ±∞→τ1a . 
(c) (|m|=2) If J1(wR)=0, then ( ) ( ) 02 02 ≠→ wRJa τ , else ( ) ±∞→τ2a . 
(d) For all other |m|∈Z\{0,1,2} ( ) ±∞→τma . 

PROOF: 

Proof of (1) 
Follows by direct substitution of Eq. (A1.4), Eq. (A1.7) in the definition Eq. (A4.10) 
of am(τ). Thus while proving (2) and (3) it is enough to consider m∈N only. 

Proof of (2) 
Eq. (A1.2) implies that 
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Using asymptotic expansions Eq. (A1.2): 
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where m,n∈N and, for notational clarity, ππϑ
4
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2
1 −−= kk . Finally, using Eq. (A1.1): 
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Proof of (3): 
The Bessel functions Ym(w1R) and Ym+1(w1R) in the definition Eq. (A4.10) of am(τ) 
will be expanded to their power series Eq. (A1.9). Note that 2

1n→τ  implies 
00 >→ ww  and 01 →w . Thus the positive powers of z (i.e. of w1R here) in Eq. (A1.9) 

can be substituted with O(z) as 2
1n→τ . Therefore, the following forms will be used 

here: 
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Two cases have to be considered: 
• For m=0: 
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There are two possible subcases: 

o J1(wR)≠0. Then ( ) ( ) ±∞→+≅ 2110 2ln CRwCa τ  as 2
1n→τ  for certain 

constants C1 ≠ 0 and C2. 
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o J1(wR)=0. Then, according to Lemma A4.1, 
( ) ( )2

101 wORwJ =  as 2
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Thus, using Eq. (A1.11), 
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• For m>0, using the limiting forms of Eq. (A1.11): 
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as 2
1n→τ . Estimating further and using the recurrence relation Eq. (A1.7) one 

can obtain 

(A4.11) 
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 Consider even m and odd m separately: 
o (odd m) Let m:=2n+1, n∈N (n≥0). Substituting the positive powers of 

w1R with O(w1) in the series Eq. (A4.11): 
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as 2
1n→τ . Assume that there exists a finite limit of a2n+1(τ) as 2

1n→τ . 
Then all coefficients in the square brackets of the power series, as 
corresponding to the negative powers of w1, have to be ( )122

1
++− nkwO  as 

2
1n→τ , which implies they have to equal zero for 2

1n=τ  (w0 = w), i.e.: 
( ) 02 =wRRwJ n  (for k = 0) and  
( ) ( ) 02 122 =− + wRkJwRRwJ nn  (for k = 1, …, n and n ≥ 1). 

The first condition can hold only if J2n(wR) = 0. For all n ≥ 1 the 
second condition would have to hold, too. But then it would imply 
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J2n+1(wR) = J2n(wR) = 0, a contradiction to Eq. (A4.8). Thus, if n ≥ 1, 
then ( ) ±∞→+ τ12na  as 2

1n→τ . Therefore, a finite limit of a2n+1(τ) as 
2
1n→τ  is potentially possible only for n = 0, i.e. m = 1 and 
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1n→τ . Assume again that there exists a finite limit of a2n(τ) as 
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1n→τ . Then, as in the previous case of odd m, all coefficients in the 

square brackets of the power series, as corresponding to the negative 
powers of w1, have to be ( )nkwO 22

1
+−  as 2

1n→τ , which implies that they 
all have to be equal to zero for 2

1n=τ  (w0 = w), i.e.: 
( ) 012 =− wRRwJ n  (for k = 0) and  
( ) ( ) 02 212 =−− wRkJwRRwJ nn  (for k = 1, …, n-1 and n > 1). 

The first condition can hold only if J2n-1(wR) = 0. For all n > 1 the 
second condition would have to hold, too. But then it would imply  
J2n-1(wR) = J2n(wR) = 0, a contradiction to Eq. (A4.8). Thus, if n > 1, 
then ( ) ±∞→τna2  as 2

1n→τ . Therefore, a finite limit of a2n(τ) as 2
1n→τ  

is potentially possible only for n = 1, m = 2 and  
J2n-1(wR) = J1(wR) = 0. In this case, due to Eq. (A4.9), 

( ) ( ) ( ) ( ) ( )2
1

4
12

0

2
1

01012 wOwOwRJ
ww

RwRwJRwJ n =+
+

−==−  as 2
1n→τ . 

Substituting it into the formula for a2n(τ) = a2(τ): 

( ) ( ) ( ) ( ) ( )[ ] ( )+−== 2
1

12
1020322 2

ln wO
Rw

wORwJRwJaa n ττ

 ( ) ( ) ( )[ ] ( ) ( )++−+ 2
1020210301 wORwJRwJRwRwJRwwO  

( ) ( ) +⎥
⎦

⎤
⎢
⎣

⎡
+

+
−⎟

⎠
⎞

⎜
⎝
⎛+

−
4
12

0

2
1

0

2
1

2
1

2
wOwRJ

ww
RwRwRw  

( ) ( ) ( )2
102

2
1 wORwJwO +−+  
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as 2
1n→τ . Due to Eq. (A4.8) J2(wR) = -J0(wR) ≠ 0 and J3(wR) ≠ 0. 

Hence, if J1(wR) = 0, then  

( ) ( ) ( ) ( ) ( ) ( )wRJwRJwOwRJwRJ
ww

wa 02122
0

0
2 222 =−→+−

+
−=τ  

as 2
1n→τ . In all other cases ( ) ±∞→τna2  as 2

1n→τ  and (3c) has been 
proved. 

Combining the results for even and odd m proves (3d).      

A4.2 Coefficient bm(τ) 
Coefficient bm(τ) is defined in Eq. (2.28) as: 

(A4.12) ( ) ( ) ( ) ( ) ( )[ ]RwJRwJwRwJRwJwRb mmmmm 011001112
1

++ −= πτ . 

Functions w, w0 and w1 are defined in Eq(2.19). 

LEMMA A4.2. 
(1) ( ) ( )ττ mm bb =− . 
(2) For each m∈Z ( ) 0→τmb  as −∞→τ . 
(3) As 2

1n→τ  
(a) (m=0) If J1(wR)=0, then ( ) ( ) 02

10 →= wOb τ  else ( ) ( ) 210 wRwRJb πτ −→ . 
(b) (|m|>0) If Jm+1(wR)=0, then ( ) ( ) 02

1 →= +m
m wOb τ , 

else ( ) ( ) 01 →= m
m wOb τ . 

(4) For each ( ]2
1,n∞−∈τ  ( ) 0→τmb  as ∞→m . 

PROOF: 

Proof of (1) 
Follows by direct substitution of Eq. (A1.4), Eq. (A1.7) in the definition Eq. (A4.12) 
of bm(τ). Thus while proving (2), (3) and (4) it is enough to consider m∈N only. 

Proof of (2) 

( ) ( ) ( ) ( ) ( )[ ] =−= ++ RwJRwJwRwJRwJwRb mmmmm 011001112
1 πτ  

( ) ( ) ( ) ( )[ ]+−= ++ RwJRwJRwJRwJwR mmmm 01101112
1 π  

( ) ( ) ( )RwJRwJwwR mm 011012
1

+−+ π  

The second term clearly converges to zero as −∞→τ  (see Eq. (A1.2) and the proof 
of Lemma A4.1(2)). Thus considering the limiting value the second term can be 
dropped. Further estimating and using asymptotic expansions Eq. (A1.2): 

( ) ( ) ( ) ( ) ( )[ ] ≅−≅ ++ RwJRwJRwJRwJwRb mmmmm 01101112
1 πτ  
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⎣
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⎠
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⎞

⎜
⎝
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⎠
⎞

⎜
⎝
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42
cos 01
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⎢
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1 →−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= Rww

w
w  

as −∞→τ . 

Proof of (3a): 
Using Eq. (A1.11) 

( ) ( ) ( ) ( ) ( )[ ][ ]2
101000110 1

2
1 wORwJwRwJwOwRb +−= πτ  

If J1(wR) = 0, then according to Eq. (A4.9) 
( ) ( )2

101 wORwJ =  as 2
1n→τ , 

thus in this case 
( ) ( ) ( ) ( )[ ][ ] ( ) 01

2
1 2

1
2
1

2
1

2
10 →=+−= wOwOwOwORb πτ  as 2

1n→τ .
 

If J1(wR)≠0, then simply 
( ) ( ) ( ) ( ) ( )[ ][ ]=+−= 2

101000
2
10 1

2
1 wORwJwRwJwORb πτ

 
( ) ( ) ( )wRwJRwORwJwR 1

2
1010 2

1
2
1 ππ −→+−=  as 2

1n→τ . 

Proof of (3b): 
Using Eq. (A1.11). 

( ) ( ) ( ) ( ) ( )[ ]=−= +
+ m

m
m

mm wORwJwwORwJwRb 1010
1

1012
1 πτ  

( ) ( ) ( )[ ] ( )m
mm wORwJwwORwJR 1010

2
102

1
+−= π  as 2

1n→τ . 

Hence if Jm+1(wR) ≠ 0, then 
( ) ( ) 01 →= m

m wOb τ  as 2
1n→τ . 

If Jm+1(wR) = 0, then according to Eq. (A4.9)  
( ) ( )2

101 wORwJm =+  as 2
1n→τ ,  

and in this case 
( ) ( ) 02

1 →= +m
m wOb τ  as 2

1n→τ .
 

Proof of (4): 
Follows directly from Eq. (A1.15).          

A4.3 Term am2(τ) + bm2(τ) 
Respective parts of Lemma A4.1 and Lemma A4.2 can be combined to obtain: 
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LEMMA A4.3. 
(1) ( ) ( ) ( ) ( )ττττ 2222

mmmm baba +=+ −− . 
(2) For each m∈Z ( ) ( ) 122 →+ ττ mm ba  as −∞→τ . 
(3) As 2

1n→τ  
(a) (|m|=0) If J1(wR)=0, then ( ) ( ) ( ) 02

0
2
0

2
0 ≠→+ wRJba ττ ,  

else ( ) ( ) ∞→+ ττ 2
0

2
0 ba . 

(b) (|m|=1) If J0(wR)=0, then ( ) ( ) ( ) 0ln 1
22

1
2

1
2
1 →=+ wwOba ττ , 

else ( ) ( ) ∞→+ ττ 2
1

2
1 ba . 

(c) (|m|=2) If J1(wR)=0, then ( ) ( ) ( ) 04 2
0

2
2

2
2 ≠→+ wRJba ττ , 

else ( ) ( ) ∞→+ ττ 2
2

2
2 ba . 

(d) In all other cases ( ) ( ) ∞→+ ττ 22
mm ba .        

LEMMA A4.4. Let 

( ) ( ) ( )[ ]ττε
τ

22

,
  inf:

2
1

mm
n

m ba +=
∞−∈

 

Then 
(1) εm≥0 
(2) εm=0 iff |m|=1 and J0(wR)=0. 

PROOF: 
Part (1) is obvious from the definition of εm. The proof of (2) will be given in three 
steps: 

Step 1: ( ) ( ) 022 >+ ττ mm ba  for each m∈Z and ( )2
1, n∞−∈τ . 

Proof of Step 1: Assume the opposite, i.e. that there exist such m0∈Z and ( )2
10 , n∞−∈τ  

that ( ) ( ) 00
2

0
2

00
=+ ττ mm ba . Then ( ) ( ) 000 00

== ττ mm ba  and thus also each their linear 
combination: 

( ) ( ) ( ) ( ) =+= 0101 0000
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1 π

 ( )RwJ m 00
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due to Eq. (A1.1). In a similar way 
( ) ( ) ( ) ( ) =+= ++ 011011 0000

0 ττ mmmm bRwYaRwJ  
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m 01
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Therefore ( ) ( ) 0010 00
== + RwJRwJ mm , a contradiction to Eq. (A4.8). Thus, ( ) ( )ττ 22

mm ba +  
is positive for each m∈Z and ( )2

1, n∞−∈τ . 

Step 2: Implication “⇐” in (2) holds. 
Proof of Step 2: Follows from Lemma A4.3(3b). 

Step 3: Implication “⇒” in (2) holds. 
Proof of Step 3: Assume the opposite, i.e. that there exist m0∈Z and a sequence 
{ } ( )2

1, nkk ∞−⊂∈ Nτ  such that  
( ) ( ) 022

00
→+ kmkm ba ττ  as k→∞  
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and (|m0|≠1 or J0(wR)≠0). Due to the Bolzano-Weierstrass lemma [27], there exists 
such a subsequence { } { }kk n

n
ττ ⊆∈ N  that as n→∞ either: 

• −∞→
nkτ  

• or ττ ′→
nk  for a given finite ( )2

1, n∞−∈′τ  
• or 2

1n
nk →τ . 

First possibility contradicts Lemma A4.3(2), the second contradicts Step 1 of this 
lemma and the third (together with the condition (|m0|≠1 or J0(wR)≠0)) contradicts 
Lemma A4.3(3).            
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