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Chapter 1

Introduction

This thesis is devoted to the study of outbreak phenomena in natural chaotic systems. The
classical models refer to the concept of excitable system and allow only top-down control
of the outbreaks. Therefore we developed a new modeling approach based on bottom-up
models.

The novelty of our approach is shown into two case studies: the dynamics of phyto-
plankton blooms under variable nutrients supply and the spread of epidemics in networks
of cities. These two systems are characterized by a short-term and a long-term dynam-
ics. It can occur a single outbreak but one can also observe recurrence of outbreaks,
respectively. Short-term behavior is introduced through models having very similar math-
ematical formulation and long-term behavior through periodic forcing of the environments.
Both systems can be described by the same class of bottom-up models even if they are
very different.

In the second Chapter we give an overview of the concepts of single and recurrent
outbreaks. Some of the most striking examples from Ecology are shown. We also present
the two classes of top-down and bottom-up models. A mathematical formulation of the
model is given and their respective dynamics is explained in phase space.

Natural aquatic systems like lakes offer very good examples for the annual recurrence
of outbreaks in Ecology. In Chapter 3 we therefore examine the effect of seasonal forcing
on simple models of algal growth. The idea whether chaos is responsible for the irregular
heights of outbreaks is central in the domain of ecological modeling. This question is
investigated in the context of phytoplankton blooms. We study the possibility of chaotic
dynamics in the externally driven Droop model. This model describes a phytoplankton
population in a chemostat under a periodic supply of nutrients. Previously it has been
proven under very general assumptions that such systems are not able to exhibit chaotic
dynamics. Here we show that the simple introduction of algal mortality may lead to chaotic
oscillations of algal density in the forced chemostat. Conditions for the existence of chaos
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6 CHAPTER 1. INTRODUCTION

are obtained in terms of stability analysis of the unperturbed system. In the unforced
model the introduction of mortality leads to complex eigenvalues of the stable steady
state. Chaotic dynamics results upon interaction of the resulting damped oscillations
with the external driving force. These findings are not restricted to the Droop model
but hold also for other chemostat models with mortality. Our results suggest periodically
driven chemostats as a simple model system for the experimental verification of chaos in
ecology.

We introduce in the fourth Chapter the notion of spatially extended system. The
dynamics of epidemics in networks of cities is a problem which offers many ecological and
theoretical aspects. We use here the concept of symbolic dynamics to analyze in a more
convenient way the dynamics of the system. We also succeed to reconstruct the attractor of
the system from the data of infectious childhood diseases. It could be shown that a single
epidemiological model can be reduced to a one-dimensional map. The coupling between
the cities is introduced through their sizes and gives then rise to a weighted network which
structure is generated from the distribution of the city sizes. We examined the dynamics
in this network and find that different regimes are possible. One of these regimes is the
bi-annually cycle of outbreaks which is also observed in data.

In Chapter 5 we analyze of complex dynamics in networks of weighted maps. Since the
weights can be distributed over several orders of magnitude, we introduced the coupling
between the maps through a saturation function. This coupling function possess a param-
eter which can be interpreted as an effective temperature for the network. Changing this
parameter permits us to vary continously the topology from global coupling to hierarchical
networks. It is possible in some cases to compute the main statistical properties of the net-
works. We find that the system shows the same dynamical regimes than those observed in
the network of cities. We perform bifurcation analysis of the global dynamics and succeed
to construct an effective theory explaining very well the behavior of the system.

Finally we summarize our results and give an outlook on possible research in the last
part of this thesis.



Chapter 2

Outbreak Phenomena in Natural
Systems

And the locusts went up over all the land of Egypt and rested in all the coasts
of Egypt: very grievous were they. For they covered the face of the whole earth,
so that the land was darkened; and they did eat every herb of the land, and all
the fruit of the trees which the hail had left: and there remained not any green
thing in the trees, or in the herbs of the field, through all the land of Egypt.
(Exodus X)

2.1 Classification and examples

One of the most striking features of ecological systems is their ability to undergo sudden
outbreaks in the population numbers of one or a small number of species. Such population
outbreaks often appear without any warning or obvious cause and naturally often go
together with tremendous implications for the environment and the rest of the ecosystem.
Intuitively a single outbreak can be characterized by the following properties (see also
Figure 2.1):

• There is a drastic change in the population numbers, which sometimes can be up to
several order of magnitude.

• The change in abundance is very fast compared to the typical time-scale for the
evolution of the system.

• After some characteristic time the population numbers are reduced back again into
the rest state and the system relaxes.
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Figure 2.1: Schematic representation of a single outbreak. Shown are the existence of an excited
(‘high’) and a relaxed (’low’) state such as slow and fast time-scales.

• An additional property of outbreak can be their recurrence (see Figure 2.2). This
comes from the fact that natural systems are often exposed to periodical variations
of the environment.

Even though this definition mathematically may be not very precise it helps to classify
phenomena which are observed in Nature or in numerical models. For example, it allows
to classify the possible states of the system into a ’low’ (or ’rest’) state and a ’high’ (or
’excited’) state.

Typically, outbreaks in natural systems are no single events. Instead very often after
some time the single outbreak is followed by repetitions of successive outbreaks. In this
case one speaks about recurrent outbreaks (see Figure 2.2). Furthermore, in many natural
outbreak time series are characterized by the fact that the timing of outbreaks is very
regular, whereas the amplitude or height of outbreaks can be irregular. This property was
termed UPCA (Uniform Phase and Chaotic Amplitudes) [4, 32].

Such outbreak phenomena as characterized by the previous definition are ubiquitous
in living systems. In the following we present some typical examples:

• One classical example is the outbreak of insect pests like the spruce budworm [24],
the lepidoptera Thrips imaginis [9] or the budmoth in the Alps [3, 28]. Such insect
outbreaks and their hazardous effects are very common and are known for long
times. Already the Bible mentions the outbreak of locusts as one the ten plagues
(see quotation at the beginning of this chapter). The periodic behavior of these
outbreaks is shown on Figure 2.3. It is obvious that these insect pests can have great
impact on agriculture with large consequences for economy. Thus, it is a challenge
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Figure 2.2: Representation of recurrent outbreaks.

for scientists to understand their dynamics to find solutions for management and
control [6].

• As shown in [4], cycles of outbreaks can also be found among larger animals. A
common example with such rapid multiplication in population numbers are large
amplitude predator-prey cycles in mammals, like the Canadian lynx Lynx canadensis
and the snowshoe hare Lepus americanus (see Figure 2.4b).

• Outbreaks also play a central role in the dynamics of phytoplankton in lakes or sea
water [10, 55, 48, 49] under the form of algae blooms. Since the phytoplankton
belongs to the primary producers, it is necessary to understand its dynamics for the
comprehension of the whole aquatic system. Algae are also important for men as
an indicator for water quality. Algae blooms of large magnitude may be related to
eutrophication [11]. Figure 2.4c shows periodical algae blooms in the Lake Kinneret
in Israel. Algae also play a crucial role in the global CO2 cycle [65, 66, 67, 63,
69]. Large-scale experiments related to this question are performed through iron
fertilization in the Arctic Ocean [68].

• Another important topic with drastic outbreak dynamics is the dynamics of micro-
parasitism. In this context the rapid outbreaks in the numbers of infected individuals
are known as epidemics. More than one billion of the Earth’s habitant are affected of
parasitic diseases. The number of newly emerging pathogens (HIV, BSE, SARS...)
and re-emerging infectious diseases (tuberculous, cholera...) has alarmingly increased
over the last decades. A well documented case for recurrent epidemic outbreaks are
childhood diseases like measles, chicken pox or rubella (see Figure 2.4a).

• Understanding the dynamics of forests is essential for the conservation of a large
number of species [111, 125, 112]. Dynamics with all the characteristics of outbreaks
are exhibited in the fruit production of trees (masting). Data about the tree masting
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(a) (b)

Figure 2.3: Examples of periodic insect outbreaks. a) The larvae of the budmoth (Zeiraphera
diniana) causes severe periodic defoliation in larch forests [28] (note the logarithmic scale). b)
Thrips imaginis shows annual outbreaks [9].

of North American oaks can be found in [23]. They observed spatial synchrony in
the mast seeding of these trees (see Figure 2.5a).

• The phenomenology of outbreaks is reminiscent to phenomena in other disciplines.
For example in neuroscience, recordings from single neurons show characteristic spike
trains with recurrent localized sharp changes in voltage [19, 27, 15] (see Figure 2.5b).
The phenomenology of such neural spike trains, usually going together with the idea
of excitable system, has very similar properties as that exhibited by outbreaks in
ecological systems.

Outbreaks in ecology cannot be seen as isolated events. They propagate through the
ecosystem (often in the form of traveling waves) and influence the dynamics of other parts
of the systems. Typical properties of natural systems related to outbreaks are seasonality
[29, 46, 53], predator-prey cycles [4, 35, 40], extinction risk [94], stochasticity [20, 13, 95]
or chaos [12, 8].

The striking similarity of outbreak characteristics, which is exhibited in totally dif-
ferent and unrelated (ecological) systems naturally leads to the question whether there
are universal mechanisms underlying outbreak dynamics in different systems in ecology
[2, 34]. In this sense a comparative study of complex outbreak phenomena in Nature gives
information about possible underlying mechanisms and properties of the system.

One particular problem for the construction of outbreak models is the ability to gener-
ate the often very irregular outbreak amplitudes by simultaneous regular outbreak timings.
As will be shown below, one explanation for the regular recurrence of outbreaks stems from
the interaction of the natural systems with periodical variations of their environment. Pe-
riodicity in the environment is a very common feature of natural systems [9, 29, 90, 72].
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Figure 2.4: Examples of outbreak cycles in real systems. Time series of a) the mean number of
children infected by measles in England/Whales in the pre-vaccination time, b) the abundance of
Canadian lynx and c) the concentration of the algae Peridinium in the Lake Kinneret (Israel).

Periodic forcing in simple ecological model typically leads to large parameter ranges with
chaotic dynamics, and thus is closely related to the concept of chaos [37, 31, 17, 18, 22, 7].
On the other hand chaotic models easily are able to reproduce the observed large fluc-
tuations in outbreak heights. Therefore systems exhibiting chaotic behavior are good
candidates for realistic outbreak models. Also the idea of complexity is related to the bio-
diversity of ecosystems [16, 57]. Complexity and chaos enhance the stability of ecosystems
[30, 76].

2.2 Modeling outbreaks

We consider in this section two distinct models for outbreak phenomena. The mechanisms
which governs the outbreak dynamics in both case are completely different. The first
model represents a classical excitable system where the dynamics is controlled by a top-
down mechanism. The population abundance in a higher trophic level determines the
whole dynamics in the system. The excitable system shows typical cycles of slow/fast
dynamics.

In the second model we consider a system of the Monod- or the Michaelis-Menten-type.
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(a) (b)

Figure 2.5: Time series a) of the mast production of Q. agrifolia and Q. douglasii from the Hastings
Reservation in California [23] and b) of the internal potential of a single neuron [19].

This model shows typical outbreak dynamics in the form of damped oscillations, which
are represented in the phase space by a spiral. This approach permits to build models
which allow bottom-up control, where the lower trophic level controls the dynamics of the
higher one.

2.2.1 Classical approach: outbreak as an excitable system

One classical model to model recurrent outbreaks in ecological system was developed in
the context of tree defoliation by the spruce budworm in Eastern Canada [24]. The first
variable of the model describes the density of budworms in the forest

dB

dt
= rB

(
1− B

K

)
− βB2

α2 +B2
(2.1)

where r is the intrinsic growth rate at low densities and K is the carrying capacity for
the budworm. The carrying capacity is first assumed to be a constant but will be in the
following a function of the resources which are available for the budworm, that mean the
amount of leafs on the trees. The second term in Eq. (2.1) is a predation rate. The
predators (in this case birds) are assumed to have a Holling type-III functional response,
with a maximum predation rate of β and a half-saturation budworm density of α. This
functional form implies that predators only eat budworms if their density is high enough
(B > α). At low density of the budworms, predators don’t invest energy in searching. We
perform the stability analysis of Eq. (2.1) and find that, depending on the parameters, the
budworm population can show two distinct regimes. Either the system shows one fixed
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Figure 2.6: Stability analysis of the system (2.1).

point (regime I) or three fixed points (regime II). In the first regime we can distinguish
two situations where the numerical value of the fixed point is either small or large (see
in Figure 2.6 the points B ′1 and B′2, respectively). The second regime corresponds to
a situation where bi-stability occurs. In this case the system (2.1) possess two stable
fixed points (B1 and B2 in Figure 2.6) and one unstable. We observe in regime II that
the system can jump (discontinuous transition) between the two stable fixed points when
varying smoothly one parameter. This phenomenon is called cusp-catastrophe and is an
essential feature of this outbreak: small variations in the environment can have important
consequences on the dynamics in the system. This corresponds exactly to an outbreak as
we defined it previously.

We now consider the complete model which also includes the variables for the forest

dS

dt
= rSS

(
1− S

KS

KE

E

)

dE

dt
= rEE

(
1− E

KE

)
− P B

S
(2.2)

where S represents the average size of the trees and E the energy reserve, which is a
generalized measure for the forest’s health. The constants rS , rE, KS , KE and P are
parameters of the forest and the carrying capacity in the equation (2.1) is now a function
of the energy which is available for the budworm

K −→ K ′ =
KE2

T 2
E +E2

(2.3)
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Figure 2.7: Dynamical behavior of the budworm/forest model.

where TE represents the foliage unit per branch.

The complete tree/budworm system exhibits a very interesting periodic behavior which
is shown in Figure 2.7. The dynamics can be described as composed of fast and slow
periods. The energy E of the trees accumulates slowly in time up to a certain threshold.
When this threshold is reached, enough food (energy) has been accumulated such that an
outbreak of the budworms is triggered. These two processes correspond to a growing of
the budworm population and take place in the phase plane above the N -shaped null-cline
shown in Figure 2.7. When all the energy has been consumed, the system will be under
the N -shaped null-cline after the outbreak. That means that the budworm population
will first slowly decrease (relaxation) and after that jump to the original level before the
occurrence of the outbreak. These cycle of slow and fast dynamics is typical for excitable
systems. An equation that exhibits dynamics similar to the dynamics of the budworm
equation, but with simpler algebra is given by

dx

dt
= a+ rx− x3 (2.4)

This cubic form is a generic model of such excitable systems and can also be found in
other domains like neuro-sciences (Fitz-Hugh-Nagumo model for a single neuron).

This classical model (2.1) was very successful to model outbreaks of spruce budworm
but is only able to describe top-down controlled outbreaks.
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2.2.2 New approach: a bottom-up outbreak model

We introduce here an alternative approach to the classical modeling Ansatz of systems
which show outbreak behavior. We are interesting here in the possibilities of bottom-up
control of outbreaks. Therefore we consider the following simple paradigmatic Monod
model [51]

dN

dt
= N0 − lN − µ

NP

k +N
dP

dt
= µ

NP

k +N
−mP (2.5)

which describes the dynamics of phytoplankton P consuming nutrients N . The parameter
N0 represents the inflow of nutrients, l the loss-rate of nutrients, µ the growing rate of
algae, k the half-saturation constant and m the death rate of phytoplankton. This is a
very general model for various aquatic systems like lakes or cultures in chemostats.

Depending on the parameter set, the system (2.5) can be in three different regimes:

• Regime I: All the phytoplankton dies out P = 0 and the concentration of nutrients
reaches its highest maximum value N = N0/l.

• Regime II: The phytoplankton concentration makes a peak and reaches after that
the steady state. This phenomenon corresponds to an algal bloom.

• Regime III: Also here we observe the phenomenon of overshooting of the concen-
tration of algae. The difference to the previous regime is that the concentration P
undergoes damped oscillations before reaching equilibrium.
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Figure 2.8: Numerical simulation of the system (2.5) with parameters N0 = 1, l = 0.05, m = 0.75,
k = 1 and µ = 1. a) Outbreak represented by damped oscillations. b) Trajectory of the system in
phase space.
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Actually, the form of the conceptual model which generates the spiral dynamics does
not need to have the form of the model (2.5). The system only needs a fixed point with
the Jacobian exhibiting complex conjugates eigenvalues with negative real part.

Figure 2.8 shows a typical numerical result for the dynamics of the system in the
third regime. This dynamical behavior has all the properties of an outbreak: it occurs
an overshooting which relaxes after a certain time to a lower concentration of algae. The
model (2.1) for excitable systems permits only top-down control of the outbreak. In
contrast our new approach offers the possibility of having a bottom-up control of the
system. We will also show in the next section that the model 2.5 is appropriated to model
the recurrence of outbreaks. This is done through the introduction of periodical forcing
of the environment.



Chapter 3

Phytoplankton Blooms

3.1 Introduction

Ever since Robert May’s discovery of irregular behavior in the simple logistic equation
[50] ecologists have been fascinated by the possibility that similar chaotic dynamics may
be exhibited by natural systems, and thus could be responsible for the common observed
fluctuations in population numbers [18, 4, 8]. Beside the logistic equation many or most
ecological models allow for chaotic solutions due to a number of generic mechanisms such
as nonlinear internal regulations, time delayed feedback or periodic external forcing [17, 7,
4, 5]. Despite this ubiquity of chaotic regimes in the standard ecological models there are
not many examples where the theoretical concepts could successfully be translated into
real case studies and hard data (see for example [8]). These difficulties arise to some extend
from the common shortage of ecological time series. But other problems are inherent to
the systems themselves, which can never be isolated from their environment and therefore
necessarily are subject to major disturbances and noise.

Recently, the method of continuous chemostats, as an experimental system for the
growth of microorganisms such as phytoplankton, has been proven to be a powerful ex-
perimental setup that allows to successfully combine theoretical concepts with ecological
reality [40, 59]. Most studies of chemostat dynamics have focused on ideal constant nutri-
ent environments. In the last years, however, there has been renewed interest in nutrient
limited growth of phytoplankton in environments with variable nutrient levels. For ex-
ample, it has been found that time-variable conditions may promote the coexistence of
competing phytoplankton species [45, 57, 71, 76]. Non-equilibrium conditions are ubiq-
uitous in ecology. Almost without any exception biological communities are affected by
perturbations that frequently show more or less periodic patterns. Consequently, the ef-
fects of periodic forcing on ecological models [22, 29, 84, 35] and on phytoplankton models
[71, 72, 58] have been intensively studied. All these studies confirm that periodic forcing

17



18 CHAPTER 3. PHYTOPLANKTON BLOOMS

typically can drive the biological system into a chaotic regime if the strength of forcing is
sufficiently large. Astonishingly however, externally driven chemostats of a single species
seem to be an exception from this general rule. In such systems common wisdom forbids
the appearance of chaotic solutions due to external forcing [53, 56].

The classical model for describing the nutrient limited growth of phytoplankton in a
chemostat dates back to Monod [51]. This simple model is able to capture basic char-
acteristics of the algal dynamics but has been criticized because it relates the growth or
phytoplankton directly to the nutrient uptake. These model assumptions are refined in the
Droop model which essentially decouples algal growth from nutrient uptake [38, 39] and
can now be regarded as the paradigmatic model to describe the growth of phytoplankton
in a chemostat [47].

It is long known that chaotic dynamics are not possible in the periodically driven
Monod-model. More complex behavior was expected to arise in the Droop model because
the passage of nutrients from the outside to the inside of the cell introduces inevitable
time delays. It was argued that such delays may play an important role in non-equilibrium
situations [53, 47]. The consequences of periodic influence on the Droop model have been
first studied by Pascual [53] where it was found that chaotic dynamics did not occur. Later
on these studies were extended to various generalizations of the Droop model, however
always with the same negative result. In all the investigated model variations the existence
of chaos could rigorously be excluded [56]. These results led to the belief that externally
forced chemostats of a single species are unable to exhibit chaotic dynamics, in this way
ruling out such systems as a candidate for the experimental verification of chaos.

In this chapter we explore this case in more detail and show that simple chemostats
can give rise to more complexity than was previously thought. As we show, the simple
introduction of an additional algal loss or mortality allows for the existence of chaotic
solutions. Algal mortality usually plays only a minor role in the laboratory system because
the residence time of the cells in the chemostat is much smaller than their average life
span. Therfore algal mortality is usually neglected in chemostat models. Nevertheless,
it is possible to realize an effective algae mortality also in the experimental situation, for
example in the form of an auxiliary flow-loop in which phytoplankton is filtered out of
the water column (G. Fußmann, personal communication). As we show in the following
this innocent modification of the system has fundamental dynamical consequences and for
example allows for the appearance of chaos.

3.2 The chemostat model

The Droop model [38, 39] has been well studied in the last decade (see [47] for a detailed
analysis). The model describes a well stirred reactor which contains phytoplankton cells
with concentration P (t) in a growth medium of limiting nutrients with concentration N(t).
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Each phytoplankton cell is assumed to possess an internal pool of stored nutrients (the
so-called cell quota) Q(t). The chemostat is supplied with nutrients at input concentration
Ni(t) from an external nutritive medium. Note, that we allow the external nutrient supply
to be a function of time. The outflow contains both medium and phytoplankton cells.
Inflow and outflow are characterized by the the dilution rate D. Under these assumptions
the Droop model takes the following form

Ṅ = D(Ni(t)−N)− ρ(N)P

Ṗ = µ(Q)P − (M +D)P (3.1)

Q̇ = ρ(N)− µ(Q)Q,

with

µ(Q) = µm

(
1− KQ

Q

)
and ρ(N) = ρm

N

Kρ +N
. (3.2)

It is assumed that the phytoplankton growth rate µ(Q) depends solely on the cell
quota. µm is the maximal growth rate and KQ is the minimal amount of nutrients per
phytoplankton cell, i.e. Q(t) > KQ. ρ(N) represents the nutrient assimilation rate of the
phytoplankton cells and is modeled as a Monod function with maximum uptake rate ρm
and half saturation constant Kρ. Furthermore we modify the model by the introduction
of an additional phytoplankton mortality M .

For further analysis we rewrite the model (3.1) in non-dimensional variables

ṅ = δ(ni(τ)− n)− np

1 + n

ṗ = (1− 1

q
)p− (m+ δ)p (3.3)

q̇ =
αn

1 + n
+ 1− q

Here the variable transformations

n =
N

Kρ
, p =

(
ρm

µmKρ

)
P, q =

Q

Kq
, τ = µmt (3.4)

have been performed and the new parameters are

m =
M

µm
, δ =

D

µm
, ni =

Ni

Kρ
, α =

ρm
µmKq

. (3.5)

In dimensionless units the model contains only four independent control parameters: the
effective phytoplankton mortality m, the dilution rate δ and the input nutrient concen-
tration ni, all of which can be controlled in the experiment, and the parameter α, which
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is related to the physiology of the phytoplankton species. Note, that the dimensionless
variables are restricted to the range n, p ≥ 0, q ≥ 1. Besides the Droop model (3.3) we
also study the more simplistic Monod model (3.19), which arises in the limit α � 1, i.e.
when the algal growth rate is small in comparison to the uptake rate (see Appendix A).

3.3 Stability analysis of the unforced model

Following [47] we first analyze the stability of system (3.3) without any external forcing
when the supply of input nutrients is constant ni(t) = ni. The system then contains two
fixed points. The first fixed point describes a steady state without phytoplankton and is
given by

(n∗, p∗, q∗)1 =

(
ni, 0, 1 +

αni
1 + ni

)
. (3.6)

In contrast, the second fixed point

(n∗, p∗, q∗)2 =

(
d

α(1− d)− d, δ(ni − n
∗
2)
α(1 − d)

d
,

1

1− d

)
(3.7)

represents a non-vanishing algal concentration. Here, d = m + δ stands for the total
phytoplankton loss rate, which acts as a main bifurcation parameter. Both fixed points
collide at the critical value

dc =
αni

1 + (1 + α)ni
. (3.8)

In the case of large loss rate, m + δ > dc, the trivial equilibrium (3.6) is stable and the
algae are washed out of the chemostat. In this regime (3.6) has the stability type of a
stable star, i.e. all three eigenvalues of the Jacobian are negative (-,-,-). On the other
hand, if the total loss rate is smaller than the threshold, m+ δ < dc, the equilibrium (3.6)
is unstable whereas (3.7) becomes positive and stable. Thus, at d = dc both fixed points
exchange their stability in a transcritical bifurcation. Stable coexistence of nutrients and
phytoplankton is only possible for d < dc. Depending on the parameter set, (3.7) may then
either have the stability type of a stable star (-,-,-) or of a stable spiral (-,+i,-i). Figures
3.1a and 3.1b give a visualization of these different regimes in the parameter planes (m,δ)
and (m,α). Very similar stability properties arise in the Monod model (3.19). In particular,
depending on the parameter set there are also two different steady state solutions of either
algal washout or stable phytoplankton-nutrient coexistence. In the Monod model formula
(3.8) must be replaced by d′c = ni/(1 + ni).

Notice from the stability diagram Figure 3.1 that spiral solutions are only allowed with
explicit algal mortality, i.e. if m > 0. Therefore, one noticeable effect of phytoplankton
mortality is the ability to modify the topology of the nontrivial fixed point from a stable
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star to a stable spiral, in this way allowing the phytoplankton to undergo damped oscil-
lations before reaching equilibrium. As will be shown below this difference has important
consequences under external forcing.

Figures 3.2 and 3.3 depicts a typical simulation result with m > 0 in the region with
a stable spiral. Clearly phytoplankton does not reach equilibrium monotonically but goes
through an intermediate maximum value. This overshooting of phytoplankton is a direct
consequence of the spiral geometry in the (n, p)-phase plane (see Figure 3.2b). As shown
in Figure 3.2c the cell quota q closely follows the nutrient concentration (see also Appendix
1), and in three dimensional phase space the trajectory forms a flat spiral. This geometry
is also reflected in the eigenvalue spectrum of the stable equilibrium (3.7). The eigenvalue
corresponding to the eigenvector v⊥1 normal to the plane of the spiral is a negative number,

λ1 < 0. In contrast, the other two eigenvectors v
‖
2 and v

‖
3 are located in the plane of the

spiral and the corresponding eigenvalues form a pair of complex conjugate numbers with
negative real part, λ2,3 = −ρ ± iω. Our numerical investigations show that the absolute
value of λ1 is about one order of magnitude larger than that of the other two eigenvalues,
λ1 � −ρ (see Figure 3.2 legend). Therefore, any perturbation of the system out of the
plane of the spiral is very quickly re-attracted.
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Figure 3.1: a) Stability diagram of the unforced Droop model (3.3) showing the regimes in param-
eter space with a stable spiral (A), a stable node (B) and algal washout (C). a) Results in (m,δ)
parameter plane for α = 5, ni = 40 and b) results in (m,α) plane for δ = 0.11, ni = 40. Further
indicated is the estimate of plankton-overshooting κ in the spiral regime calculated by Eq.(3.11).
Plotted are the lines where the overshooting measure takes the constant values κ = κ1 (dotted
line) and κ = κ2 (dashed line). Parameters: a) κ1 = 10−2 and κ2 = 10−4, b) κ1 = 10−3 and
κ2 = 10−6.
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Figure 3.2: Typical behavior of the unforced model (3.3) in the spiral regime. Plotted are a) the
time series of phytoplankton p(τ) and nutrients n(τ), b) and c) the resulting trajectories in the
(n, p)- and (n,q)-planes, respectively. In c) also the functional dependence q(n) (3.18) is drawn
(dotted line). Further indicated in b) is a schematic representation of p∗, pmax and p0. Parameter
values m = 0.64, δ = 0.01, ni = 40, α = 5, and initial values n0 = n∗ = 0.59, p0 = p∗/2 = 0.53,
q0 = 3.2. The eigenvalues of the stable spiral are λ1 = −1.12, λ2,3 = −0.153± 0.25 i.
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Figure 3.3: Typical behavior of the unforced model (3.3) in the spiral regime in the phase space
(n, p, q). Parameter values m = 0.73, δ = 0.02, ni = 40, α = 5, and initial values n0 = 2.2,
p0 = 0.41, q0 = 4.3.

3.4 Characterizing phytoplankton blooms

Note that the overshooting of phytoplankton in the Droop model with mortality as de-
picted in Figure 3.2 has all the characteristics of a single population outbreak (see Figure
2.1). Also the modeling as a spiral in phase space is a direct generalization of the concep-
tional outbreak model (2.5) in 2.2.2.
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We now introduce a quantity which allows to measure the strength of phytoplankton
overshooting. Obviously the imaginary part ω of the eigenvalues alone is not sufficient
because it contains only information about the rotation speed of the spiral but not about
the damping. In fact, we observe that the ratio ρ/ω of real and imaginary parts gives a good
characterization. This becomes clear by inspection of Figure 3.2b. Starting from initial
conditions (n∗, p0) which in phase space are located with a vertical distance p∗−p0 exactly
below the fixed point, we estimate the height of the following intermediate phytoplankton
maximum, pmax. The ratio κ = (pmax − p∗)/(p∗ − p0) is then a measure for the damping
of the oscillation amplitude over half a cycle. In the neighborhood of the fixed point we
can use the linearization of the model around the fixed point to calculate κ. Assuming a
two-dimensional spiral simple algebra leads to the formula

κ =
pmax − p∗
p∗ − p0

= e
πρ
ω , (3.9)

where ρ = Re(λi) < 0 is the damping rate and ω = |Im(λi)| the typical rotation frequency
around the fixed point. Note, that κ in (3.9) is independent of the the initial point p0.
Formula (3.9) holds for the two-variable Monod model and the corresponding computations
for the Droop model are showed in the following.

One has to solve the eigenvalue and eigenvector problem for the Jacobian matrix

J(n, p, q) =



−δ − p

(1+n)2 − n
1+n 0

0 (1− 1
q )− (m+ δ) p

q2

α
(1+n)2 0 −1


 (3.10)

in the Droop model (3.3) and assuming a flat spiral in phase space, i.e. n0 ' n(π/ω) ' n∗
and q0 ' q(π/ω) ' q∗, leads to the formula

pmax − p∗
p∗ − p0

=
1

ε

[(
λ2 − λ3

λ1

)
eπRe(λ1)/ω

−
(
λ3 − λ1

λ2

)
eπRe(λ2)/ω −

(
λ1 − λ2

λ3

)
eπRe(λ3)/ω

]
, (3.11)

where ω is the absolute value of the two non-zero Im(λi) and

ε = (λ2 − λ3)/λ1 + (λ3 − λ1)/λ2 + (λ1 − λ2)/λ3. (3.12)

The corresponding results for the full Droop model are described by equation (3.11).
In Figure 3.1 and 3.4 numerically obtained values for the plankton overshooting κ in

the unforced Droop model (3.3) are plotted in dependence on various control parameters.
In general, maximal overshooting takes place for large algal mortality and comparatively
small dilution rates.
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Figure 3.4: Overshooting as a function of mortality m and dilution rate δ, showing the measure of
plankton overshooting κ calculated by equation (3.11). a) κ as a function of m for δ = 0.005 (solid
line) and δ = 0.01 (dashed line), δ = 0.025 (dotted line). b) κ as a function of δ for m = 0.81
(solid line), m = 0.72 (dashed line) and m = 0.60 (dotted line).

We want to stress that the overshooting measure κ is not restricted to chemostat
models but holds as well for other systems with spiral dynamics, and therefore is applicable
under quite general circumstances. In many practical situations the quantities of main
interest are not only the equilibria of the system, but also the maximal abundance that
can be attained by the system on its transition towards equilibrium. In such cases our
simple formula (3.9) provides a comfortable method for the estimation of the amount of
overshooting. This measure can also be of use in other systems with outbreak dynamics,
in only requires that the fixed point of the system must be a stable spiral.

3.5 Chaotic dynamics

3.5.1 Introduction of external forcing

As far we could show that the unforced Droop model with the addition of algal mortality
is able to reproduce a single phytoplankton bloom or outbreak. Now we show that with
seasonal forcing the model shows recurrent outbreaks.

We now introduce external forcing into the model (3.3) by taking the input nutrient
concentration ni(τ) to be a periodic function of time. For simplicity, we choose a square
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wave forcing where the external medium contains nutrients of concentration nmaxi during
half of the forcing period T and is nutrient free in the rest of the time

ni(τ) =

{
nmaxi for kT ≤ τ < (k + 1

2)T (k = 0, 1, 2, ..)
0 otherwise.

(3.13)

In our numerical simulations the periodic driving in general leads to forced oscillations
of the algal abundance. However, in the presence of algal mortality also large parameter
regimes with chaotic solutions are observed. A typical phytoplankton time series in the
chaotic regime is shown in Figure 3.5a. Algal abundance undergoes recurrent outbreaks
of irregular amplitude and timing. Figure 3.5b depicts the chaotic attractor. For better
visualization the square root transformed variables are plotted. Successive maxima of the
phytoplankton levels, pnmax, follow a nearly one-dimensional return map (see Figure 3.5c).
In the parameter range of Figure 3.5 the return map is piecewise continuous and build up
from three branches, which correspond to the solutions with one, two, or three periods
of forcing between two successive phytoplankton maxima. Notice, that the existence
of a simple unique return map allows for a simple prediction of the height of future
phytoplankton maxima.

Figure 3.5b reveals the mechanism of the chaotic dynamics. A typical ‘cycle’ starts
with initially small numbers of phytoplankton and nutrients, i.e. in the lower left part
of the (n, p)-phase plane. As soon as ni(τ) is in the ‘high’ state, nutrients are linearly
accumulated through external inflow. Since the input nutrient concentration is relatively
large, nmaxi � 1 (see discussion below), the nutrient assimilation rate is soon saturated
and the quota settles to the asymptotic value q(t) ≈ α + 1. At this stage the cells are
sufficiently filled with nutrients and the reserves are used for cell divisions. Consequently,
phytoplankton numbers slowly start to build up exponentially, p = exp γt, with a growth
constant γ = α

1+α − (m + δ). This phase of exponential growth is clearly visible in the
time series of Figure 3.5a and can also be verified by plotting phytoplankton numbers on a
logarithmic scale. Multiplication of algal numbers continues until a certain threshold level
is reached. This may take several cycles of nutrient forcing, since the amount of nutrients
which are accumulated in one period is limited. As a result the state of the system moves
upward in phase space in a characteristic zig-zag trajectory (see Figure 3.5b). With
increasing phytoplankton numbers the nutrient consumption rises as well. In this critical
stage, as soon as external nutrient supply, ni(τ), switches to zero the nutrient reserves are
used up very fast. Having consumed all its resources, the algal population declines rapidly
and the trajectory in phase space spirals down into the left lower corner. The decline
continues until the next nutrient pulse arrives. At this instant, nutrient levels start to
rise again and the next cycle begins. The time which is needed by the phytoplankton
population to reach threshold depends sensibly on the initial phytoplankton levels and
therefore also on the last maximal levels pmax. This memory effect is responsible for the
chaotic dynamics and gives rise to the simple return map of pmax (see Figure 3.5c).
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Figure 3.5: Typical simulation result of the forced system in the chaotic regime. a) Time series
of phytoplankton p(τ), b) chaotic attractor in the (n,p) phase plane (square root transformed
variables), and c) return map of successive phytoplankton maxima pmax. Parameter values are
T = 40, δ = 0.11, m = 0.64, α = 5 and nmaxi = 40.

3.5.2 Bifurcation analysis

A first approach of this analysis is to study the influence of the forcing period on the
chaotic regime. Figure 3.6 shows the bifurcation diagram obtained by varying the forc-
ing period T . For small forcing periods the phytoplankton shows limit cycle oscillations.
When T rises above a critical value a transition to the chaotic regime is initiated. In
general, by increasing the forcing period the amplitude of oscillations is reduced and the
average number of forcing cycles between two successive phytoplankton maxima increases.
Finally, for very large forcing periods the chaotic regime is destroyed again. In figure 3.6
also the largest Lyapunov exponent, Λ, is plotted. The positive values of Λ for a large
parameter range confirm that the irregular behavior of the algal numbers is indeed chaos.
The parameter range with chaotic behavior is intersected by periodic windows. Note the
exact correspondence of the regimes with positive Lyapunov exponent and irregular be-
havior in the bifurcation diagram. Concerning the computation of Lyapunov exponents
with the Wolf-algorithm [138], we also explored the occurrence of hyperchaos in the hy-
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Figure 3.6: Bifurcation diagram. Plotted are a) the maxima of phytoplankton, pmax and b) the
largest Lyapunov exponent computed with the Wolf algorithm (Wolf et al. 1985), in dependence
on the forcing period T . Parameters otherwise as in figure 3.5.

perchaotic Rößler system in order to investigate the technical aspects of the algorithm.
Our publication [135] about the dynamics in a new class of modified Rößler oscillators was
the result of this work.

In order to investigate the size of the chaotic regions, in figure 3.7 we represent the
largest Lyapunov exponent as a function of the two main forcing parameters, namely
period of forcing T and forcing strength nmaxi . In general, chaotic behavior is found for a
large range of forcing periods when nmaxi is sufficiently large.

In comparison, in figure 3.8 the largest Lyapunov exponent is plotted in the (m, δ)-
parameter plane. Again we find a broad regime with chaotic solutions. Very similar chaotic
behavior can be found in the forced Monod model (3.19) (see figure 3.8b for a comparison
of the parameter regimes with chaotic behavior in the forced Droop and Monod models).
Interestingly the chaotic domain corresponds very well to the parameter values which lead
to a large overshooting of the unforced model, i.e. a large value of κ (compare to figure
3.1). This observation confirms that it is the possibility of spiral solutions of the unforced
model which allows for chaotic dynamics under external driving. Due to the mortality,
the system undergoes damped oscillations which interact with the external driving and
generate complex dynamics.
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One important questions concerns the realism of the parameter values with chaotic
behavior for real experiments. As mentioned already the most crucial requirement for
chaotic dynamics is the introduction of an additional algal mortality m > 0. Besides
we have only been able to observe chaotic dynamics when the concentration of input
nutrients is rather large, nmaxi � 1. This condition ensures that nutrient assimilation is
saturated during the phase of exponential algal growth as explained above. Our numerical
simulations show that nmaxi can be varied in a range of about 20% before chaos is lost.
Even then, with a slight change of another parameter the chaotic behavior is retained, for
example by reducing or enhancing the duration of a nutrient pulse for large or small values
of nmaxi , respectively. Note, that the specific ‘square-wave’ forcing, which has been used,
can easily be realized in the experiment. We have also investigated different forcing types,
which in general lead to very similar results. However it seems to be crucial that the lower
level of input nutrients is set very closely near zero. The chaotic regime is also robust
towards modifications of the other parameters α and δ. In general, relatively small values
of dilution rate δ are required for chaos. Further, we have observed chaotic dynamics in
the full physiological range of α = 0.1 · · · 50. In the limiting case when α is very small, the
Droop model goes over into the Monod model with rescaled parameters (see Appendix 1
and figure 3.8).

To summarize, the parameter range with chaotic domains is very broad and no pa-
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for the Droop model (3.3). Parameters otherwise as in fig. (3.5).
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Figure 3.8: Largest Lyapunov exponent indicated as grey level in the (m,δ) parameter plane, for
a) the Droop model (3.3) with T = 40, and b) the Monod model (3.19) with T = 25. Parameters
otherwise as in fig. (3.5). Further indicated are lines with constant value of overshooting κ of the
unforced model: a) solid line (κ = 10−6), dashed line (κ = 10−3) and b) solid line (κ = 0.18),
dashed line (κ = 0.25)

rameter fine tuning is necessary to observe chaos. In our numerical simulations we have
used parameter values which can easily be realized in chemostat experiments. For exam-
ple, typical values of control parameters in dimensional units (Droop 1968; Grover 1991a,
1991b) such as Nmax

i = 400µmol l−1, D = 0.3 d−1, µm = 2 d−1, ρm = 0.03µmol d−1/cell,
Kρ = 30µmol l−1, KQ = 0.003µmol/cell, M = 1.2 d−1 correspond to non-dimensional
parameters of δ = 0.15, m = 0.6, nmaxi = 40, α = 5.

Another possible experimental obstacle are phytoplankton extinction events. Espe-
cially if many external forcing cycles are needed during a typical chaotic cycle, in our
numerical simulations phytoplankton numbers undergo changes of several orders of mag-
nitude. In a chemostat with limited size this leads to the danger that phytoplankton goes
extinct. However, in typical parameter ranges algal changes are in the range of 4 or 5
orders of magnitude which is easily sustained in a chemostat which may contain algal
densities of up to 107 l−1 - 108 l−1.

In order to test the robustness of the chaotical behavior, we submit our model to
different transformations. We first present two variations of the Droop model (3.1) which
have more realistic uptake and growth functions. The results for the chaotic dynamics in
the Droop model also hold for these modified models. The first model considers only the
modified growth function

µ(Q) = µm

(
Q−Qmin

Kµ + (Q−Qmin)

)
. (3.14)

The second model takes into account the physiological adaptation of the algae to the
variations of nutrients concentration. The uptake and growth functions become in this
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case

ρ(N,Q) =

[
ρhimax − (ρhimax − ρlomax)

(
Q−Qmin

Qmax −Qmin

)](
N

Kρ +N

)
(3.15)

µ(Q) =

(
ρlomax

Qmax −Qmin

)(
1− Qmin

Q

)
(3.16)

where Qmin and Qmax are the minimal and maximal cell quota, respectively, and ρlomax
and ρhimax the minimal and maximal uptake rate.

Choosing other types of forcing (modification of the duration and height of nutrients
pulses, sine forcing...) also do not perturb the system very much. It stays in its chaotical
regime. The only point one has to be careful with is the value of the low level of nutrients,
which has to be nearly zero. After having introduced all these modifications, we are now
left with the study of the influence of noise. Noise has been put in the system by replacing
the growth rate and/or the uptake rate by a Gaussian distribution. This is very sensible
when one thinks that all algae are not strictly identical and that each organism is growing
at its own speed. It is found that noise tends to enlarge the parameter domain of chaos.
As a conclusion, one can affirm that the model is quite robust toward changes which make
it more realistic.

3.6 Conclusion

In this chapter we studied the dynamics of the periodically forced Droop model with an
additional algal mortality. Recent chemostats studies have mostly focused on experiments
with more than one species, either as competition studies or in predator-prey, i.e. nutrient-
phytoplankton-zooplankton, cultures [76, 40, 59]. However, due to the complexity of such
systems these experiments are often difficult to perform and the measured time series
not easy to interpret. In contrast, single species chemostats are usually thought to give
rise to only very poor dynamics. For example, it has been proven that for m = 0 the
Droop model cannot exhibit chaotic dynamics [53, 56]. Here, we have shown that even
simple nutrient-phytoplankton cultures are able to exhibit complex behavior. With the
introduction of mortality the eigenvalues of the Jacobian matrix of the unforced system can
become complex numbers, which allows the system to undergo damped oscillations before
reaching equilibrium. Chaotic dynamics results upon the interaction of these damped
oscillations with the time periodic environment.

As mentioned in the introduction, in the context of a continuous chemostat algal
mortality may be somewhat artificial, and in the laboratory experiment must be realized by
addition of an auxiliary circuit which filtrates part of the algae. In real aquatic ecosystems,
however, the loss of algae from the epilimnion is of great relevance and arises mainly due
to grazing by zooplankton and sinking into the deeper water layers. For example, it is well
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known that sinking algae act as a carbon pump and have a major impact on the global CO2-
cycle and climate regulation. Also external nutrient forcing becomes a realistic feature
due to seasonal nutrient inflow and up-welling. In this sense the chaotic outbreaks of
phytoplankton numbers in the forced chemostat model may have some significance for real
aquatic ecosystems where they would represent recurrent algal blooms. Similar results have
been found in other simple models of bottom-up controlled phytoplankton systems [36,
71, 44]. Furthermore, taking all theses effects into account externally forced chemostats
with additional mortality represent a simple yet realistic and controllable idealization of an
aquatic system. In this respect our results are important for the design of new experiments.

Our results give insight into the dynamics of nutrient imitated growth in a time-varying
environment and contribute to the significance of chaos in ecology. We suggest a simple
model system which in principle allows to experimentally test for chaos and thus, should
be of relevance for the understanding and role of deterministic chaos in ecological systems.

Appendix A: Transition to the Monod model

In some limiting biological case adiabatic elimination techniques can be applied to reduce
the Droop model (3.3) to the more simplistic Monod model. We start with the analytical
solution for q(τ):

q(τ) = 1 +
αn(τ)

1 + n(τ)
+

[
q(τ0)− 1− αn(τ0)

1 + n(τ0)

]
e−(τ−τ0)

−αe−τ
∫ τ

τ0

eτ
ṅ(τ)

(1 + n(τ))2
dτ. (3.17)

If the parameter α is very small, α� 1, it can be shown that the last two terms vanish
after a time τ � 1. The assumption α = ρm(µmKρ)

−1 � 1 corresponds to the limiting
case where the maximal uptake rate µm is much larger than the maximal growth rate ρm.
This means that after a time scale t� µ−1

m , which corresponds to the typical time needed
for cell division the quota are related to the nutrients with the functional dependence

q(τ) ≈ 1 +
αn(τ)

1 + n(τ)
. (3.18)

Inserting equation (3.18) into the second one of (3.3) and making the approximation
α� 1 leads to Monod’s equations

ṡ =
ds

dτ ′
= δ′(ni − s)−

sx

1 + s

ẋ =
dx

dτ ′
=

sx

1 + s
− (m′ + δ′)x (3.19)
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with the following rescaled variables

s = n, x =
p

α
, δ′ =

δ

α
, m′ =

m

α
, τ ′ = ατ. (3.20)



Chapter 4

Epidemics Outbreaks

4.1 Background

Different approaches in the study of the dynamics of infectious diseases have been per-
formed in the last ten years. Depending on the type of disease which is studied or
the type of information one wants to obtain, stochastic [81, 88, 92, 97] or deterministic
[90, 94, 100, 84, 98] models can be used. The relation between stochastic and determin-
istic models was made in [95]. The spatial aspect [87, 93] is introduced into the models
by the concept of networks. Social networks can be used to understand the dynamics of
diseases like AIDS for example [82, 91]. Larger space-scales can be taken into account
by considering networks of populations [96, 99, 101, 102] (consider for example that the
populations belong to distinct cities). Also theoretical questions can be studied with the
help of the dynamics of epidemics. The idea of extinction risk [103, 94] or interaction
between diseases [84, 86] are examples of these questions.

Our approach is inspired by a classical set of epidemiological data. These are time
series of measles in 60 cities of the United Kingdom (see Figure 4.1). They were recorded
from 1944 to 1967 with a sampling rate of 2 weeks. This data has been studied in [85].
They find that the epidemics outbreaks between cities where strongly synchronized and
their amplitudes completely uncorrelated. They also observed a 2-year periodic cycle in
the dynamics of the outbreaks. We choose to look at the problem on a large space-scale.
We therefore consider networks of cities having different sizes. The well-known annually
forced SIR-model is used to describe the dynamics of epidemics in a single city. In order
to study a network of SIR-models, we introduce the coupling between two cities through
their respective population size. The topology of the network is then generated from the
distribution of these sizes. The interplay between the local dynamics of the individual
systems and the global dynamics of the network is analyzed using symbolic dynamics
[132, 136]. This method permits to consider only essential properties of the dynamics of

33
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Figure 4.1: Time series of the number of children infected by measles in England/Wales. The
data were recorder in the pre-vaccination tine with a sampling rate of 2 weeks. a) Birmingham, b)
London, c) Newcastle, d) Cambridge and e) Southampton.

the systems. This simplification is a convenient way to look for synchronization of the maps
in the network. The symbolic dynamics is directly derived without any parameterization
from the topology of the attractor of the SIR-model. We will also show that the SIR-
model will reduce to a simple 1-dimensional asymmetric tent map. The next chapter will
be devoted to the study of complex dynamics in networks of chaotic maps with distributed
sizes.

Considering the coupling of the SIR-models, we derive a very generic type of coupling
function based on the sizes of the individual systems. The sizes of the systems are generated
from some distribution function and may change several orders of magnitude. Depending
on the distribution function, different types of topologies will be generated. We study the
interplay between the topology of the network and the global dynamics. We show that
our coupling tends to stabilize a global 2-year cycle, as observed in data. Our findings
include a whole class of natural systems, from tree masting [111, 112] to the coupling of
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lasers.

4.2 The SIR-model

This epidemiological model takes into account three classes of individuals: susceptible
people S who are healthy persons, infected people I who are infectious and recovered
people R. The seasonal forcing is introduced into the model by assuming that the contact
rate between the individuals (children in the original problem) depends on the rhythm of
school- and holiday-time.

The forced SIR-model reads

Ṡ = µN − µS +
β(t)

N
S(I + wI0)

İ = λ
β(t)

N
S(I + wI0) + (µ+ γ)I (4.1)

Ṙ = µR+ γI

where
β(t) = β0(1 + δ sin 2πt) (4.2)

is the periodically forced contact rate, β0 the unforced contact rate, δ the variability of
the contact rate, N the size of the population, µ the birth rate of the population, γ is
the recovery rate (inverse of the recovery time tR), I0 the mean-field of infected people
belonging to other populations and w0 the coupling strength to this mean-field. λ is a
proportionality constant which is derived from the complete SEIR-model [80, 83, 94].
This model takes into account the supplementary class E of exposed people who caught
the disease but are not infectious. The SEIR-model takes into account the incubation
time of the disease. If the incubation time is very short compared to the time-scale of
the epidemics, the SEIR-model reduces to the SIR-model [100, 83]. Note the structural
similarity of the SIR-model with the generic outbreak model (2.5) in the part 2.2.2.

In the case where we start our study directly with the SIR-model, this constant can
be set to λ = 1 and the total population size S+ I +R = N is then a constant of motion.
The parameter of the disease are very well known for measles: µ = 0.02 and γ = 45. The
other parameters are set to N = 1, w0 = 0.0002, I0 = 0.00045, β0 = 1200 and δ = 0.2.
Because the variable R will not play a role in the study we perform, we will simply drop
it in the following.

Figure 4.2 shows a typical time series of the model (4.1) in the chaotic regime. The
system shows periodic outbreaks of epidemics. There is a great variability in the amplitude
of the outbreaks and they occur annually or bi-annually at the same time in the year.
Due to the forcing of the model, the phase of the dynamics is perfectly defined. The
model posses an interesting dynamics and its attractor is represented in the phase space
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Figure 4.2: Typical behavior of the forced model SIR-model (4.1). Time series of a) the infected
I and b) the susceptibles S. The red stars correspond to major outbreaks of epidemics and the
green stars to minor ones. The parameters are µ = 0.02, γ = 45, λ = 0.625, N = 1, w0 = 0.0002,
I0 = 0.00045, β0 = 1200 and δ = 0.2.

(S, I) in Figure 4.3. We call this attractor ‘tooth attractor’ because of its shape. The
dynamics is composed of a succession of 1- and 2-year cycles. A cycle starts when the
number of infected people is very low, that means when a previous epidemics just finished.
The susceptibles then linearly accumulate up to a certain threshold where the number of
infected people suddenly grow exponentially. This is the mechanism of yearly occurring
outbreaks (1-year cycle). But it can also happen that the amount of susceptibles is not
high enough to trigger the epidemics. The susceptibles still continue to accumulate and
the epidemics will then only happen in the following year. This corresponds to a 2-year
cycle which is composed of a very small outbreak (skip) followed by a large one. The
difference in the amplitude of these outbreaks can be several order of magnitudes (see
Figure 4.3). Let us notice that cycles having a period of 3 or more years cannot occur due
to the small immigration term w0I0 in the model (4.1). This term controls the minimal
level of susceptibles in the system.

In the following section we explore different approaches to investigate the complex
dynamics which is exhibited in the forced model (4.1). We first introduce the notion of
symbolic dynamics and present some of the possibilities this method offers for the analysis
of the dynamical properties of the system. We then show that the SIR-model can be a
reduced to a one-dimensional map reproducing very-well the dynamics of the individual
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Figure 4.3: ‘Tooth attractor’ of the model (4.1) in the phase space (S, log10I). The red stars
correspond to major outbreaks of epidemics and the green stars to minor ones. The parameters
are as in Figure 4.2.

outbreaks (minor and major). Finally we explain how the network of SIR-models is
generated from the different sizes of the cities.

4.3 Symbolic dynamics

Our final aim is to understand and to model the interaction of N cities, where each city
i has a size ni and is represented by an SIR-model. Having this goal at mind, it seems
rather complex to consider the exact dynamics of the time series of the cities. One may
then think to reduce the dynamics to its essential elements. We will only consider as an
information in one year if it occurs or not an outbreak. We call ‘1’ a major outbreak
and ‘0’ a minor one. This then permits to code the dynamics as a sequence of symbols
occurring yearly S1S2S3 . . . Sn, where Sn can be 0 or 1. This represents the symbolic
dynamics, where an example can be ‘101101010...’. Let us also notice that the symbolic
dynamics can be directly generated out of the topology of the tooth attractor (see Figure
4.3). A maxima of the infected corresponds to only two situations in the susceptibles.
Either the susceptibles still grow and one gets a minor outbreak ‘0’ or they decrease and
it occurs an major outbreak ‘1’. The symbolic sequence is useful to study the prediction
possibilities of a single system or the more global properties like synchronization in the
network.
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4.3.1 Transition probabilities

The symbolic dynamics is a powerful tool to get information out of the complex dynamics
of a system [134, 136]. First we perform the computation from the symbolic sequences
of the probability of occurrence p(Wl) of each possible word Wl of length l, where Wl =
Sn−l+1 . . . Sn−1Sn. Out of the p(Wl)’s it is then possible to compute the conditional
probabilities to a certain state Sn knowing the k earlier states Sn−k . . . Sn−2Sn−1. The
formula giving the transition probabilities is the following

p(A|B) =
p(A,B)

p(B)
=⇒ p(Sn|Sn−k . . . Sn−2Sn−1) =

p(Sn−k . . . Sn−2Sn−1Sn)

p(Sn−k . . . Sn−2Sn−1)
(4.3)

where A is the expected state and B the known state (history of outbreaks). Figure 4.4
shows the time series from Figure 4.2 transformed into a symbolic sequence. For the
realistic parameters given in the previous section, the probabilities computed from the
symbolic sequence are

p(0) 0.39 p(00) 0 p(000) 0
p(1) 0.61 p(01) 0.39 p(001) 0

p(10) 0.39 p(010) 0.24
p(11) 0.22 p(011) 0.15

p(100) 0
p(101) 0.38
p(110) 0.15
p(111) 0.08

The transition probabilities can then be computed using the formula (4.3)

p(0|0) 0 p(0|00) 0
p(0|1) 0.37 p(0|01) 0.62
p(1|0) 1 p(0|10) 0
p(1|1) 0.63 p(0|11) 0.64

p(1|00) 0
p(1|01) 0.38
p(1|10) 1
p(1|11) 0.36

Because of problems of typographical representation the gave here only transitions
probabilities up the second order, that means where two symbols in the past are known.
These results will be plot in a more convenient way in the next section. The conditional
probabilities give very important information about the outbreak dynamics of the system
(4.1). They permit to predict the probability of occurrence of an outbreak knowing the
history of the system. It is for example possible to quantify the tendency of a system to
show limit-cycle behavior.
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Figure 4.4: Time series of the number of infected people and symbolic sequence S0S1 . . . Sn, where
Sn = 0, 1. The parameters are as in Figure 4.2.

4.3.2 Block entropies

The block entropies are computed in order to evaluate the predictability of a system. The
block entropy Hl is mean amount of information about the symbolic dynamics which is
contained in a word of length l. The classical formula from information theory [132] gives
for the block entropy

Hl = −
〈

log p(W
(l)
i )
〉

= −
2l−1∑

i=0

p(W
(l)
i ) log p(W

(l)
i ) (4.4)

where the index i goes over all possible words of length l. The conditional entropy hn is
defined as the average information which is needed to predict the next symbol, given the
preceding n symbols

hn = Hn −Hn−1 (4.5)

Figure 4.5 shows a graphical representation of the conditional entropy for n = 0 . . . 9.
We notice that the quantity hn decreases monotonly with n and saturates to a value which
is different from zero. This value represents the predictability limit of the sequence and
occurs in our case for ca. n = 5. This means that one will not get more information about
the future of the symbol knowing more then 5 symbols. This is a typical feature of chaotic
dynamics, where the future state of the system cannot be perfectly known. For system
showing regular dynamics (negative Lyapunov exponents), the conditional entropies hn
reaches zero for a finite n.

The symbolic dynamics is very useful to analyze coupled systems. It is for exam-
ple possible to detect directionality or intensity of coupling using the concept of mutual
transition probability. We explain this by considering two coupled systems. The mutual
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Figure 4.5: Plot of the conditional entropy (4.5). The symbolic sequence is extracted from the
SIR-model with parameters are as in Figure 4.2.

transition probability gives the probability of being in some state in the system 1 knowing
the actual or the past state of system 2. Here are examples of probabilities of this type:

p(S1
n+1 = 0, S2

n+1 = 1|S1
n = 1, S2

n = 0)

p(S1
n+1 = 0|S1

n = 1, S2
n = 0)

p(S1
n+1 = 0, S2

n+1 = 1|S1
n = 1)

We will use again the symbolic dynamics in the sections about the coupled SIR-models.

4.4 Reconstruction of attractors from data

We show in this section that it is possible to reconstruct the ‘tooth attractor’ (4.3) from the
data of measles (see Figure 4.1 and http://www.zoo.cam.ac.uk/zoostaff/grenfell/).
The time series of the infected people is known and the susceptibles can be then deduce
from it. In fact, the symbolic dynamics can be generated out of the reconstructed data.
This gives information about the synchronization of epidemics outbreaks between the
cities in England/Wales. Let us notice here that the method of embedding [137] which
is classically used to reconstruct chaotic attractors does not work here because of the
alternation of 1- and 2-year dynamics. Therefore the phase of the system can not be
univokely defined from the time series and the embedding algorithm is not applicable.

In order to reconstruct the susceptibles from the time series of the infected, let us



4.4. RECONSTRUCTION OF ATTRACTORS FROM DATA 41

assume that the dynamics obeys the SI-model

Ṡ = µ− β(t)SI

İ = β(t)SI − γI (4.6)

where we omitted the term µS which is very small compared to µ. The variable R
describing the recovered people does not enter into the reconstruction. We then discretize
this model following [129, 130]

Sn+1 = Sn + µ− βnSnIn
In+1 = In − γIn + βnSnIn (4.7)

and assume that the temporal resolution of the data is good enough. This is in fact
the case because our data have been recorded every two weeks, which is a small interval
compared to the typical yearly time-scale of the dynamics. This means that there is no
change of the number of infected due to growth and death rate of the population on the
time-scale of two weeks

In = γIn. (4.8)

The evolution equation for susceptibles becomes then

Sn+1 = Sn + µn − In+1 (4.9)

and recurrently the reconstructed number reads

Sn+1 = −
n∑

j=1

(Ij− < I >) (4.10)

where it was assumed that the dynamics is stationary

µn ≈< In > . (4.11)

The susceptibles are thus reconstructed by integrating (summing) the number of in-
fected people and removing a trend. This trend comes from the fact that the data is noisy
and that the integration gives in this case a random walk. It is possible to remove the
trend because the time-scale of the trend is larger than the time-scale of the outbreaks
(see Figure 4.6b). An example of the results of this procedure is shown for the city of
Birmingham in Figure 4.6. The extracted attractor is plot in Figure 4.7 and is very similar
to the tooth attractor. The data was smoothed using the technique of moving average.

After reconstruction of the susceptibles it is possible to generate the symbolic dynamics
for the real infected data. Figure 4.8 shows a graphical representation of the sequences
of symbols. We can see that there is an obvious bi-annually dynamics of the epidemics
outbreaks. Most of the cities are synchronized when outbreaks occurs. The computation
of the transition probabilities (averaged over the 60 cities) gives
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Figure 4.6: a) Time series of data of infected people in Birmingham. The red stars are outbreaks
and the green ones are skips. b) Reconstruction of the susceptibles. The blue dashed line is the
direct result, the solid red line is the untrended result and the green line is the trend.

p(0|0) 0.02 p(0|00) 0
p(0|1) 0.49 p(0|01) 0.69
p(1|0) 0.98 p(0|10) 0.02
p(1|1) 0.51 p(0|11) 0.67

p(1|00) 0
p(1|01) 0.31
p(1|10) 0.98
p(1|11) 0.33

We see from the first order probabilities that the prediction of the next is not good
when an outbreak occurs in the previous year. There is a fifty percent chance of having
or not an outbreak. The second order shows that the probability of having a 2-year
cycle of outbreaks is very high. Note, the remarkable well agreement of these transition
probabilities to that calculated from the forced SIR-model. We will use again the symbolic
dynamics in the section devoted to the analysis of networks of SIR-models.
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Figure 4.7: Reconstruction of the attractor of the system for the data from the city of Birmingham.
The red stars are outbreaks and the green ones are skips.

4.5 Reducing the SIR-model to an asymmetric tent map

We show in this section that the SIR-model (4.1) can be reduced to a one-dimensional
map by taking a particular Poincaré section. The map can be generated in different ways.
The classical approach is to plot the return map of relevant quantities in the system, for
example the maxima or the minima of the variables. We find out that only the return map
of the minima of the susceptibles gives a piece-wise continuous map. This map fullfils the
conditions for a dynamical system. We plot the return map in fig. (4.9.a) and fig. (4.9.b)
shows the time interval between two successive minima. One can see from this figures that
the map does not only iterate one step (year) in the future, but can also project two steps
in the future. This is a problem which can be solve by considering that it exists a map
which always iterates one step.

Our map has the form

{
xn+1 = G1(xn) , if xn ≥ xt
xn+2 = G2(xn) , if xn < xt

(4.12)

and we are looking for a map of the type

xn+1 = f(Xn) =

{
F1(xn) , if xn ≥ xt
F2(xn) , if xn < xt

(4.13)
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Figure 4.8: Representation of the symbolic dynamics generated from the data of measles in Great
Britain. Plot of the a) sum of symbols over all cities and b) symbol sequences for each city. Black
means outbreak and white means skip. The cities are sorted by sizes on the y-axis.

where xt is a threshold which is identical for both maps. Obviously F1(xn) = G1(xn), so
that the right piece of the map is known. The part F2(xn) can be deduced from the fact
that the composition of F1 and F2 has to iterate two steps in the future

G2 = F1 ◦ F2. (4.14)

This leads to

F2 = F−1
1 ◦G2 ⇐⇒ F2(xn) = F−1

1 (G2(xn)) (4.15)

which can directly be computed out of the time series of the minima of the susceptibles
(see Figure 4.10a).

The map which is obtained is an asymmetric tent map

f(x) =

{
1− rx for x ≥ 0
1 + qx for x < 0

(4.16)

where x represents the density of susceptibles. The domain x ≥ 0 corresponds to the
outbreak ‘1’ of an epidemics and x < 0 to a skip ‘0’. It is found that the optimal fit leads
to the parameters q = 0.8 and r = 2. The Poincaré section which represents a plane of
constant phase is shown in Figure 4.10b.
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Figure 4.9: a) Return map of the minima of the susceptibles and b) time interval between two
minima. The time series were generated with the SIR-model with parameters as in Figure 4.2.
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Figure 4.10: Picture left: Construction of F2(xn) and fit of the asymmetric tent map. Picture
right: the Poincaré section. The parameters are as in Figure 4.2.

4.6 Introducing the coupling between cities

In this section we introduce the notion of spatiality into the framework of the SIR-model.
This problem has been studied in [83, 87, 93] from the meta-population point-of-view,
but without any internal structure. That means that the meta-populations are globally
coupled and that the coupling strength does not depend for instance on distances or
network topology. Therefore we consider a network of cities having different sizes and
where the dynamics of each city is represented by a single SIR-model. Introducing the
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Figure 4.11: Schematic representation of the coupling between two cities. A fraction w12 and w21

of the population travels from the city 1 to the city 2 and vice versa. S1,2 and I1,2 represent the
number of susceptible and infected persons, respectively.

city size into the model is a very realistic feature when one thinks about Zipf’s law [25].
This law says that the sizes of the cities obey a power-law distribution. We first derive
the coupling function for a system of two cities and after that extend the problem to
N coupled SIR-models. The dynamics will be analyzed using the concept of symbolic
dynamics which was developed previously.

4.6.1 Simple case of 2 cities

In order to introduce the coupling between two cities, we assume that a small fraction
of the population of each city travels to the other city. Furthermore we assume that the
time that individuals are in the other city is small compared to the yearly time-scale of
the epidemics dynamics. The fraction of the population wij (i, j = 1, 2) which is moving
from city i to city j can be a constant or can also depend on some parameters. These
parameters may be the distances dij between the cities, the travel probabilities p(j → i)
or the attractivity of a city. Figure 4.11 shows a schematic representation of two cities.

We can make two hypothesis to construct the model: a) either the epidemics is only
propagated through the traveling of infected people or b) it is also propagated through
the motion of infected and susceptible people. But whatever assumption is made, the core
of the coupled model will be the SIR-model.

a) Only infected people are traveling

We first consider the case of the city 1 and all the computations will be then identical for
the city 2. We replace in the SIR-model the variable describing the infected people I1 by
an effective number of infected individuals

I1 −→ I1 +w21I2 (4.17)
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which also contains the infected persons I2 who are located in the city 1. This leads to
the new model

Ṡ1 = µN1 − µS1 −
β(t)S1

N1
(I1 +w21I2)

İ1 =
β(t)S1

N1
(I1 + w21I2)− (µ+ γ)I1 (4.18)

which can be re-written in dimensionless units (that means densities)

ṡ1 = µ− µs1 − β(t)s1

[
i1 + w21

(
N2

N1

)
i2

]

i̇1 = β(t)s1

[
i1 + w21

(
N2

N1

)
i2

]
− (µ+ γ)i1 (4.19)

using the transformation

s1 =
S1

N1
, i1 =

I1

N1
(4.20)

where N1 and N2 are the sizes of the cities.

We obtain the equations for the city 2 in an identical way

ṡ2 = µ− µs2 − β(t)s2

[
i2 + w12

(
N1

N2

)
i1

]

i̇2 = β(t)s2

[
i2 + w12

(
N1

N2

)
i1

]
− (µ+ γ)i1 (4.21)

We see that the coupling strength between the two cities depends on the traveling
fractions wij and the ratio r = n2/n1 of the city sizes. The direction of the coupling is
given by the ratio r. That means that a large city will influence much more a small one
than the other way around.

In order to analyze the dynamics occurring in this system, we will use the concept of
symbolic dynamics developed previously. We introduce the similarity index

Γ =
〈
|S2
n − S1

n|
〉
n

=
1

T

T∑

n=1

|S2
n − S1

n| (4.22)

to measure the synchronicity (anti- and in-phase) of the dynamics. The synchronization
regime corresponds to Γ = 0, anti-synchronization to Γ = 1 and no synchronization to
Γ = 0.5. It can be shown that this measure is proportional to the correlation of the
symbolic sequences [134]. We use the similarity instead of the correlation because it will
be much more convenient to study the case of N coupled systems.
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Figure 4.12: Left colum: population of infected people in city 1 vs. city 2. Right colum: time
series of the infected in city 1 and city 2. The ratio is r = 0.631 and the coupling strength is
a)w = 0.0005, b)w = 0.0048 and c)w = 0.015. The parameters of the SIR-model are as in Figure
4.2.

For the simulations we assume that the individuals do not have preferential travel
destination and that both populations are equally attracted by the other city. Therefore
we set w12 = w21 = w, where w is the coupling strength. We show in Figure 4.12 the
three typical states which can occur in this system. Each state corresponds to a typical
range of the coupling strength. The dynamics in both cities are uncorrelated for small w,
intermediate w leads to an anti-synchronized state and the cities are synchronized for large
w. It is interesting to notice that all these states take place in a chaotic regime. Figure 4.13
shows the continuous transition between these states in function of the coupling strength
w. Also the largest Lyapunov exponent is plotted.

b) Infected and susceptible people are traveling

In the previous paragraph the epidemics was only propagated through the movement of
infected. We assume furthermore here that the susceptible can be infected when traveling
in another city.

The model for the city 1 then reads

Ṡ1 = µN1 − µS1 −
β(t)

N1
S1I1 −

w21β(t)

N1
S1I2 −

w12β(t)

N2
S1I2
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Figure 4.13: Bifurcation diagram of the similarity index and plot of the largest Lyapunov exponent
in function of the coupling strength w. The ratio is a) r = 1, b) r = .631 and c) r = .321. The
parameters of the SIR-model are as in Figure 4.2.

İ1 =
β(t)

N1
S1I1 +

w21β(t)

N1
S1I2 +

w12β(t)

N2
S1I2 − (µ+ γ)I1 (4.23)

and in dimensionless variables becomes

ṡ1 = µ− µs1 − β(t)s1

[
i1 +

(
w21

(
N2

N1

)
+ w12

)
i2

]

i̇1 = β(t)s1

[
i1 +

(
w21

(
N2

N1

)
+ w12

)
i2

]
− (µ+ γ)i1 (4.24)

A similar computation for the city 2 leads to

ṡ2 = µ− µs2 − β(t)s2

[
i2 +

(
w12

(
N1

N2

)
+ w21

)
i2

]

i̇2 = β(t)s2

[
i2 +

(
w12

(
N1

N2

)
+ w21

)
i2

]
− (µ+ γ)i2 (4.25)

These results are perfectly coherent with the equations which have been derived inde-
pendently in [93]. The authors used a mechanistic model and considered eight distinct
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Figure 4.14: Left colum: population of infected people in city 1 vs. city 2. Right colum: time
series of the infected in city 1 and city 2. The ratio is r = 0.631 and the coupling strength is
a)w = 0.0005, b)w = 0.0015 and c)w = 0.007. The parameters of the SIR-model are as in Figure
4.2.

populations of susceptible and infected, representing the people who are sojourning in
another city. Their model approaches our own one when the sojourning time tends to
zero.

We make in Figure 4.14 and 4.15 the same analysis as for the model where only the
infected propagate the epidemics. We observe that the more realistic model shows exactly
the same behavior. Transitions from a non synchronized state (Γ = 0.5), through an
anti-synchronized state (Γ = 1) to finally end up in a fully synchronized state (Γ = 0)
occur when the coupling strength w is increased. Even the coupling ranges of the different
regimes are very similar to the simpler model.

Let us consider the case of intermediate coupling strength in order to understand the
effect of the size ratio r = n2/n1. When the cities have comparable sizes, the systems
behave like spins and tends to be in an anti-synchronized regime. When one city is much
larger or smaller than the other one (r & 3 or r . 1/3, respectively), there is no real
anti-synchronized state and the system goes directly into a synchronized regime.

Since the conclusions are extremely similar for both models, we decide to use in the
following only the model (4.19) where only the infected people spread the epidemics. This
choice is also motivated by the fact that putting some noise on the systems smoothes
the bifurcation diagrams (4.13) and (4.15) and eliminates all the small differences. This
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Figure 4.15: Bifurcation diagram of the similarity index and plot of the largest Lyapunov exponent
in function of the coupling strength w. The ratio is a) r = 1, b) r = .631 and c) r = .321. The
parameters of the SIR-model are as in Figure 4.2.

approach has also been adopted in [83].

4.6.2 Size distribution and network of cities

We consider in this section a set of N cities represented each by an SIR-models and
coupled through their size. Extending the model (4.19) to N systems leads to

ṡk = µ− µsk − β(t)sk


ik +

∑

l 6=k
wlk

(
Nl

Nk

)
il




i̇k = β(t)sk


ik +

∑

l 6=k
wlk

(
Nl

Nk

)
il


− (µ+ γ)ik (4.26)

where k, l = 1 . . . N .

If we assume that the individuals travel to each city with equal probability and do not
show any preferences for a city, the traveling fraction wkl for all cities will be identical,
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that means wkl = w. The system (4.26) can then be written as

ṡk = µ− µsk − β(t)sk


ik +w

∑

l 6=k
εlkil




i̇k = β(t)sk


ik + w

∑

l 6=k
εlkil


− (µ+ γ)ik

where the coupling matrix εlk has the form

εlk =
Nl

Nk
(4.27)

with the interesting property

εkl =
1

εlk
. (4.28)

The distribution ρ̃(εlk) of the elements of the coupling matrix can be computed from
the distribution ρ(Ni) of the city sizes using the Frobenius-Peron equation. We plot in
Figure 4.17 the distribution ρ̃(εlk) when ρ(Ni) is a power-law and a uniform distribution.

The computations for a power-law distribution

ρ(Ni) =

(
α− 1

N0

)(
Ni

N0

)−α
with Ni ≥ N0 (4.29)

S1

I1 I2

S3

S2

I3

ε32

ε21

ε12

ε23ε31

ε13

Figure 4.16: Schematic representation of a network of 3 coupled cities. Notice the highly asym-
metric coupling strength εij , where εji = 1/εij .
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Figure 4.17: Ratio distribution ρ̃(r = Nl/Nk) for a) the the power-law (α = 4) and b) the uniform
distribution.

lead to

ρ̃(εlk) =

{
1
2(α− 1)r−α if r ≥ 1
1
2 (α− 1)rα−2 if r < 1

(4.30)

and for a uniform distribution

ρ(Ni) =

{
1 , if Ni ∈ [0, 1]
0 , otherwise

(4.31)

the result is

ρ̃(εlk) =

{
1
2 , r < 1
1

2r2 , r ≥ 1
(4.32)

Concerning real cities, the sizes are distributed following Zipf’s law [25]. This law
yields a power-law distribution, where there exist a lot of small cities and only a few large
cities.

4.7 Dynamics in the network

We show in this section numerical simulations of the system (4.27) and describe the differ-
ent dynamical regimes which can be observed. In a first time we consider an ensemble of 60
cities which have the size distribution of the real cities in the data from England/Whales.
We examine the behavior of the system (4.27) by considering the mean-field

Gn =< Sin >i=
1

N

∑

i

Sin (4.33)

of the symbolic sequences for each city as a measure for the global dynamics.

Let us consider the dynamics in the network in the case of weak, intermediate and
strong coupling strength w:
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Figure 4.18: real city sizes. incoherent state.
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Figure 4.19: real city sizes. pseudo-limit cycle state.

• In order to show the effect of weak coupling (w ≈ 0.0001) on the global dynamics
we show in Figure 4.18a and 4.18b the time series of the mean-field Gn and its
histogram, respectively. No coherent structure is observed and the dynamics can be
represented by a Gaussian distribution.

• Figure 4.19 shows the consequences of intermediate coupling (w ≈ 0.001) on the
dynamics of the mean-field Gn. We observe the apparition of a global quasi-limit
cycle and the histogram of the mean-field can be represented by a bi-modal Gaussian
distribution.
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Figure 4.20: real city sizes. pseudo-limit cycle state.

• As expected for strong coupling (w ≈ 0.01), the system (4.27) leaves the chaotic
regime and goes into a limit cycle. The resulting bi-annual limit cycle is shown
in Figure 4.20a and the density distribution of the mean-field becomes a double
δ-function (see Figure 4.20b).

We observed that the dynamics in the network can only be in these three different
regimes which correspond to three different domains of the coupling strength. We also
performed the simulations for other form of distributions ρ(n) of the city sizes. The results
are quasi-identical for the power-law distribution. This is obvious because the sizes of the
real cities are also power-law distributed. There are small variations in the observations
for the uniform distribution. It seems that the range of the coupling strength where
the system is an the quasi-limit cycle regime is slightly smaller than in the case of the
power-law distribution.

4.8 Conclusion

In this chapter we considered an ensemble of N coupled SIR-model, each representing
the dynamics of an infectious disease in a city. The coupling between the systems was
introduced through the sizes of the cities and is proportional to εij = nj/ni. The elements
of the coupling matrix εij are generated by the size distribution ρ(n). The coupling
matrix fulfill the property εji = 1/εij , which means that the coupling direction is strongly
depended on the size ratio. If the sizes ni and nj are comparable, each system influences
the other one in a similar way. In contrary, if the size ni is more than two or three time
larger than the size nj, the system i will influence the system j (i → j) but not the
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opposite (j 9 i).

In order to analyze in a more convenient way the dynamics of the system, we introduced
we concept of symbolic dynamics. The SIR-model shows a typical dynamics of recurrent
outbreaks where each year it occurs or not each an outbreak of a disease. The occurrence
of an outbreak is coded with the symbol ‘1’ and the non-occurrence (skip) with ‘0’. The
dynamics of a system is then represented by a sequence of symbols which permits us to
examine properties of the system like synchronization.

We made an exhaustive study of the simple case of two coupled SIR-models. We
find that only three regimes can take place: either the systems are synchronized, anti-
synchronized or not synchronized (independent dynamics). These different regimes cor-
respond to strong, intermediate, weak coupling, respectively. In the case where the ratio
n2/n1 is larger than 3, the anti-synchronized regime does not appear anymore. We studied
the system of two coupled Rößler oscillators and find out that exactly the same regimes
and transitions are observed (see Appendix A).

In the case of N coupled systems, we also observe three possible regimes. Small
coupling leads to a global dynamics which has not particularities and is represented by a
Gaussian distribution. The dynamics in the case of intermediate coupling is described by
a bi-modal Gaussian distribution. This corresponds to a global dynamics which shows a
quasi-limit cycle behavior. For strong coupling the system is not anymore chaotic and falls
into a bi-annual limit cycle. We performed simulations where the sizes ni where uniform
and power-law distributed and find that the transitions between these different regimes
occur in both cases.

The global quasi-limit cycle we observed in the case of intermediate coupling cor-
responds very well to the bi-annual recurrence of outbreaks in the measles data from
England/Wales. During these outbreaks, nearly all cities are synchronized. We could
reconstruct the susceptibles from data and the result leads to us to attractors which were
very similar to the ‘tooth attractor’ of the SIR-model.

Appendix A: Extension to coupled Rössler oscillators

We study here the interaction of two coupled Rössler oscillators coupled in the z-variable





ẋ1 = −y1 − z1

ẏ1 = x1 + ay1

ż1 = b+ z1(x1 − c) + w(z2 − z1)
(4.34)





ẋ2 = −y2 − z2

ẏ2 = x2 + ay2

ż2 = b+ z2(x2 − c)− w(z2 − z1)
(4.35)
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Figure 4.21: Interaction of two coupled Rössler oscillators. Left colum: Variable z1 vs. variable
z2. Right colum: time series of z1 and z2. The coupling strength is a) w = 0.001, b) w = 0.008
and c) w = 0.05 and the parameters are a = b = 0.2 and c = 5.

where w is the coupling strength. The numerical values of the parameters are a = 0.2,
b = 0.2 and c = 5.

We observe in Figure 4.21 that three dynamical regimes are possible: either the systems
synchronize, anti-synchronize or do not synchronize at all. These regimes are observed
for strong, intermediate and small coupling strength w, respectively. This system shows
exactly the same dynamical behavior than two coupled SIR-models (see Figure 4.12).
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Chapter 5

Complex Dynamics in Networks
with distributed Sizes

5.1 Motivation

Since natural interacting systems often show large differences in their sizes, we generalize
in this chapter the problem of infectious diseases in networks of cities to the study of
networks of weighted chaotic maps. These weights can be distributed over several order of
magnitudes. In the framework of epidemiological SIR-model, the coupling is introduced
through the ratio of city sizes.

A network is an abstract set of k nodes connected by l links. The nodes represents
in our case dynamical systems but they could also be individuals, computers or Internet
pages in the WWW. A link between two nodes can be either directed, weighted or both.
This means that the a node can influence another node without being itself influenced or
that the intensity of the influence can vary. The network is mathematically represented
by the so-called adjacency matrix A(n,m), where each element is the intensity of the
connection from node n to node m. Networks are described using graph theory and
statistical properties like degree distribution, connectivity, clustering coefficient or mean
path-length can be computed [105].

The topic of coupled logistic maps has been well studied for special types of networks.
For example the case of global coupling has been considered by [114, 116, 119, 123, 121]
and the case of scale-free networks by [104]. Their findings help to understand the different
regimes or states which can occur in these networks [119, 114] and the statistical properties
of the global dynamics [123].

The novelty of our approach lies in the new type of coupling which is directly de-
rived from the coupling εij = nj/ni used in the system of differential equations (4.26).
The topology of the network is entirely generated by a single parameter and by the size

59
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distribution of the system. This additional parameter can be interpreted as an effec-
tive temperature Teff and a large variety of network configurations can be created. The
topologies which are generated differ from the classical ones [105] (power-law, Poisson,
small-world, random...).

We classify in a first part the different topologies which can be generated by the size
distribution and the effective temperature. The second part is then devoted to the study of
the global dynamics corresponding to these different networks. In the last part we finally
design an effective theory which permits to understand the dynamics in this complex
system.

5.2 Coupling N maps in a weighted network

We consider in this section a set of N coupled maps in a weighted network. The dynamics
is described by

xin+1 = (1− ε

N

N∑

j=1

gij)f(xin) +
ε

N

N∑

j=1

gijf(xjn) (5.1)

where f(x) represents the map, ε the coupling strength and gij the coupling matrix which
is a function of the sizes ni and nj of two systems i and j. The sizes are distributed as
ρ(n).

The coupling function was εij = nj/ni in the case of coupled SIR-models. This form
cannot be directly transposed to coupled maps because the coupling intensity has to stay
in the interval [0, 1] to insure the stability of the system. Therefore one has to find a
transformation of the type

εij ∈ [0,+∞]
T ?7−→ gij ∈ [0, 1] (5.2)

The property (4.28)
εji = 1/εij (5.3)

obliges the transformation T to fulfill the condition

gji = 1− gij . (5.4)

A possible solution for the coupling is the saturating function

gij =
1

2

(
1 + tanh

(
µ ln

(
nj
κni

)))
=

1

1 + (nj/κni)−2µ
(5.5)

which is plotted in fig. (5.1) where gij = g(r), with r = nj/ni.
The parameter µ can be interpreted as an effective temperature with Teff ∼ 1/µ. The

limiting case µ → 0 corresponds to the situation where all coupling strengths are equal



5.3. ANALYSIS OF THE NETWORK TOPOLOGY 61

and the structure of the network is destroyed by the high temperature (global coupling).
The other limiting case µ → ∞ represents a network which is frozen (Teff → 0) in a
hierarchical way. The links are uni-directional and only systems having a size nj larger
than κni contribute to the dynamics of system i. The parameter κ represents some
threshold defining the critical ratio rc above which a system j influences a system i in the
case µ→∞. Thus, the parameter µ allows to smoothly deform the network from a global
coupling to a directed network.

The form (5.5) of the coupling offers the possibility to generate various configurations
of networks. The structure of the network depends solely on the size distribution ρ(n) and
the parameters µ and κ. In the following the network topology is analyzed in function of
these parameters.

5.3 Analysis of the network topology

This section is devoted to the relation between the coupling matrix (5.5) and the network
topology. A systematical analysis of the network characteristics in function of the param-
eters µ and κ and the size distribution ρ(n) is performed. Since a large number of different
topologies can arise from the coupling function (5.5), we split for clarity of the study by
considering the two cases where µ → ∞ µ takes intermediate values (∼ κ). This is the
first step in order to later understand the relation between the topology of the network
and its dynamics.
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Figure 5.1: Plot of the coupling function (5.5) for µ = 0.5 (dotted line), µ = 1 (dash-dot line),
µ = 2 (dashed line) and µ→∞ (solid line). κ = 1 in all cases and the variable r = nj/ni is plotted
on a logarithmic scale.
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5.3.1 The case µ→∞: hierarchical topology

When µ→∞, the effective temperature Teff → 0 and the coupling tends to the Heaviside
function

gij → θ

(
nj
ni
− κ
)

(5.6)

This corresponds to a situation where the network is frozen in a hierarchical topology (see
for example [127]). A system j only contributes to a system i if the ratio nj/ni is larger
than κ, that means if nj ≥ κni. The links are then directed and not weighted.

Given the distribution ρ(n) and the parameter κ, it is possible to compute some typical
statistical properties of the network: degree distribution, distribution of the ratio r =
nj/ni, connectivity and clustering coefficient.

We consider for the distribution function ρ(ni) the following very common cases: a)
power-law, b) uniform and c) exponential distributions.

a) The power-law distribution

ρ(ni) =

(
α− 1

n0

)(
ni
n0

)−α
with ni ≥ n0 (5.7)

Depending of the parameter κ, three types of topologies are generated (see fig. (5.5)):

κ < 1: The network is over-linked, which means that there can be two links (bi-
directionality) between two nodes. There are m = (1− κα−1)N nodes which are globally
connected. Each node has a minimal number of links kmin = 0 and the maximal number
is kmax = N − 1.

κ = 1: A node with index i in the ranking of sizes has ingoing links only from nodes j
which are larger. That means with j > i and there is exactly one link between two nodes.
The minimal and maximal connectivity is kmin = 0 and kmax = N − 1, respectively.

κ > 1: Each node has a maximal number of links kmax = (N − 1)κ−α+1. and the
minimal connectivity is kmin = 0. The network is weakly linked.

In order to compute the degree distribution of the network, we first need to compute
the number of links (connectivity) going into a node i

ki(ni) = (N − 1)P (nj ≥ κni)

= (N − 1)

∫ +∞

κni

ρ(nj)dnj

= (N − 1)

(
κni
n0

)−α+1

(5.8)
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We obtain for the degree distribution

ρ̄(k) =

∫
δ[k − ki(ni)]ρ(ni)dni

=

{
κα−1

N−1 + (1− κα−1)δ(k − kmax) if κ < 1 , 0 ≤ k ≤ N − 1
κα−1

N−1 if κ ≥ 1 , 0 ≤ k ≤ (N − 1)κ−α+1
(5.9)

and the mean connectivity becomes

< k >=

∫
kρ̄(k)dk =

{
(N − 1)(1 − κα−1

2 ) , κ < 1
N−1

2 κ−α+1 , κ ≥ 1
(5.10)

The clustering coefficient for node i is defined as

Ci =
Ei

ki(ki − 1)
(5.11)

where ki is the number of links going into this node, ki(ki − 1) the maximum number of
links between the ki nodes and Ei the real number of links between the ki nodes (in the
case of an undirected network, the clustering coefficient Ci must be multiplied by 2). The
clustering coefficient can be computed out of the distribution ρ̃(r) of the ratio r =

np
nq

.
Therefore we first use the joint probability density for systems having their size larger
than a with size np,q ≥ κni

ρ(np, nq) =

(
α− 1

κni

)2( np
κni

)−α( nq
κni

)−α
(5.12)

The ratio distribution is computed from the formula

ρni(r) =

∫ ∞

κni

npρ(np, rnp)dnp

=

{
1
2 (α− 1)r−α if r ≥ 1
1
2(α− 1)rα−2 if r < 1

(5.13)
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Figure 5.2: Representation of the coupling matrix (5.6) in the case where µ → ∞ and ρ(ni) is a
power-law distribution (α = 4). The parameters are a) κ = 0.5, b) κ = 1 and c) κ = 2 (N = 200
in all cases).
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and the number of uni-directional links between all the pairs of nodes p and q having their
size larger than κni is

Ei = ki(ki − 1)P (r ≥ κ)

= ki(ki − 1)

∫ ∞

κ
ρni(r)dr

= ki(ki − 1)

{
1
2κ
−α+1 , κ ≥ 1

1− 1
2κ

α−1 , κ < 1
(5.14)

This leads to the clustering coefficient for node i

Ci =

{
1
2κ
−α+1 , κ ≥ 1

1− 1
2κ

α−1 , κ < 1
(5.15)

which can be averaged over all possible sizes ni

C = < Ci >

=

∫ ∞

ni

Ciρ(ni)dni

=

{
1
2κ
−α+1 , κ ≥ 1

1− 1
2κ

α−1 , κ < 1
(5.16)

We observe on fig. (5.3.a) that the clustering coefficient (5.16) is large for small values
of κ and drops rapidly to zero after the κ = 1. There are less links when κ grows and the
nodes are more independent from each another.
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Figure 5.3: Clustering coefficient for the a) uniform, b) power-law (α = 4) and c) exponential
(β = 1) distribution with N = 100 and µ→∞. Plotted are the numerical (solid blue line) vs. the
analytical results (dashed red line). The dotted green line corresponds to the size of the cluster of
synchronized maps which is determined numerically in the section 6.5 following formula 5.34.
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Figure 5.4: Representation of the coupling matrix (5.6) in the case where µ → ∞ and ρ(ni) is a
uniform distribution. The parameters are a) κ = 0.5, b) κ = 1 and c) κ = 2 (N = 200 in all cases).

b) The uniform distribution

ρ(ni) =

{
1 , if ni ∈ [0, 1]
0 , otherwise

(
or

{ 1
n2−n1

, if ni ∈ [n1, n2]

0 , otherwise

)
(5.17)

Depending of the parameter κ, three types of topologies are generated (see fig. (5.5)):
κ < 1: Each node has a minimal number ingoing of links kmin = kmax(1 − κ), where

the maximal number is kmax = N−1. The network is over-linked, which means that there
can be two links (bi-directionality) between two nodes.

κ = 1: A node with index i in the ranking of sizes has ingoing links only from nodes j
which are larger, that means with j > i, and there is exactly one link between two nodes.
The minimal and maximal connectivity is kmin = 0 and kmax = N − 1, respectively.

κ > 1: Not all nodes are connected in this topology. There are m = (1 − 1
κ)N nodes

which are completely unconnected. The minimal and maximal connectivity is kmin = 0
and kmax = N − 1, respectively.

We perform identical computations than for the power-law distribution. This leads to
the following results for the connectivity

ki(ni) = (N − 1)(1 − κni), (5.18)

the degree distribution

ρ̃(k) =

{
1

(N−1)κ if κ < 1 , (N − 1)(1 − κ) ≤ k ≤ N − 1
1

(N−1)κ +
(
κ−1
κ

)
δ(k) if κ ≥ 1 , 0 ≤ k ≤ N − 1,

(5.19)

the mean connectivity

< k >=

{
(N − 1)(1 − κ

2 ) , κ < 1
N−1
2κ , κ ≥ 1

(5.20)

the ratio distribution function

ρni(r) =





n2
2−(κni/r)

2

2(n2−κni)2 , κni
n2
≤ r < 1

(n2/r)2−(κni)2

2(n2−κni)2 , 1 ≤ r ≤ n2
κni

, (5.21)
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and the clustering coefficient

C =

{
3κ−2

2κ + κ−1
κ2 log |1− κ| , κ < 1

2κ−1
2 + κ(κ− 1) log

∣∣1−κ
κ

∣∣ , κ ≥ 1
(5.22)

for n1 = 0 and n2 = 1.
We see from fig. (5.3.b) that the clustering coefficient for the uniform distribution has

qualitatively the same features than for the power-law distribution. The larger κ is, the
smaller the number of connected nodes is.

c) The exponential distribution

ρ(ni) = βe−βni with ni ≥ 0 (5.23)

Respectively, the minimal and maximal connectivity is kmin = 0 and kmax = N − 1 for all
κ’s. But depending on the parameter κ, three types of topologies are generated (see fig.
(5.5)):

κ < 1: Some pairs of nodes have bidirectional links and the network is over-linked.
κ = 1: A node with index i in the ranking of sizes has ingoing links only from nodes j

which are larger, that means with j > i, and there is exactly one link between two nodes.
κ > 1: Some pairs of nodes are not connected in this configuration and the network is

under-linked.
We perform identical computations than for the power-law distribution. This leads to

the following results for the connectivity

ki(ni) = (N − 1)e−βni , (5.24)

the degree distribution

ρ̃(k) =

(
1

κk

)(
k

N − 1

)1/κ

(5.25)
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Figure 5.5: Representation of the coupling matrix (5.6) in the case where µ→∞ and ρ(ni) is an
exponential distribution (β = 1). The parameters are a) κ = 0.5, b) κ = 1 and c) κ = 2 (N = 200
in all cases).
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Figure 5.6: Plot of the mean connectivity in function of κ when µ → ∞. In the case of a) the
power-law (α = 4), b) the uniform and c) the exponential (β = 1) distribution (N = 200).

and the mean connectivity

< k >=
N − 1

1 + κ
(5.26)

The ratio distribution ρni(r), and so the clustering coefficient, cannot be computed ana-
lytically because integrals of the type

∫
e−βni

1 + ni
dni (5.27)

are appearing. But the clustering coefficient can be computed numerically (see fig. (5.3.c)).

It clearly appears from this analysis that the role played by the exact form of size
distribution ρ(n) is minimal in the case µ→∞. We see that the clustering coefficient C
(cf. fig (5.3)) and the mean connectivity < k > (cf. fig (5.6)) have very similar shape. In
contrast, the parameter κ controls directly all the essentials statistical properties of the
network. This information will be very useful when developing in the next sections an
effective theory for the global system.

5.3.2 Intermediate values of µ: weighted links

In this section we characterize the properties of the network when links are weighted, that
means in the case were µ does not → 0 or ∞. This topic has been partly studied by
[106, 119] when the weights are evolving in time.

Intuitively, during the transition µ :∞→ 0, the pairs of systems having their ratio near
κ are influenced first. We mainly characterize the network by considering the distribution
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χ(g) of the coupling strength

gij = g(r) =
1

1 + (r/κ)−2µ
(5.28)

if r = nj/ni is a stochastic variable with distribution ρ̃(r). χ(g) gives the number of
systems having in- or out-going links with coupling strength g.

To compute χ(g) we use the Frobenius-Perron equation

χ(g) =

∫ ∞

0
δ[g − g(r)]ρ̃(r)dr (5.29)

Using the distributions (5.16) and (5.22) for the power-law and uniform distributions,
respectively, we find that

χpower(g) =





(
α−1
4µg2

)
κα−1

(
1
g − 1

)−1−α−1
2µ

, g < 1
2(

α−1
4µg2

)
κ−α+1

(
1
g − 1

)−1+α−1
2µ

, g ≥ 1
2

(5.30)

χunif (g) =





(
κ

4µg2

)(
1
g − 1

)−1− 1
2µ

, g < 1
2(

1
4µg2κ

)(
1
g − 1

)−1+ 1
2µ

, g ≥ 1
2

(5.31)

In the case of the exponential distribution, χ(g) cannot be computed because there is no
analytical form for ρ̃(r).

Fig. (5.7) and (5.8) shows a 3-dimensional plot of χunif (g) and χpower(g). We see
that both distributions are centered in peak around g = 0.5 for small µ (Teff →∞, high

Figure 5.7: Graphical representation of the density χunif (g) in function of µ and g. a) Numerical
(N = 200) and b) analytical (see formula (5.31)) computation for ρ(n) a uniform distribution and
κ = 1.
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Figure 5.8: Graphical representation of the density χpower(g) in function of µ and g. a) Numerical
(N = 200) and b) analytical (see formula (5.30)) computation for ρ(n) a power-law distribution
(α = 4) and κ = 1.

temperature). That means that most of links have the strength gij = 0.5. For large µ
(Teff → 0, low temperature), the distributions are maximum when g = 0 and g = 1 and
the coupling strength can take only two values: 0 or 1.

Intermediate values of µ correspond to a situation where the couplings strength is
peaked at the three positions g = 0, g = 0.5 and g = 1. This is shown in fig. (5.9).
That means that almost only links having these three coupling strengths are present in
the network. NH nodes of the network are coupled in a hierarchical way and NG nodes
are globally coupled. The fraction NH/NG grows with µ. To conclude this section we
notice that the exact form of the size distribution ρ(n) does not play a major role in the
topology of the network.

Intermediate values of µ correspond to a situation where the couplings strength is
peaked at the three positions g = 0, g = 0.5 and g = 1. This is shown in fig. (5.9).
That means that almost only links having these three coupling strengths are present in
the network. NH nodes of the network are coupled in a hierarchical way and NG nodes
are globally coupled. The fraction NH/NG grows with µ. To conclude this section we
notice that the exact form of the size distribution ρ(n) does not play a major role in the
topology of the network.

5.4 Networks of asymmetrical tent maps

In a first time we stay close to the epidemiological concepts of the previous chapter and
consider a system of coupled asymmetric tent maps. After that we expand the study to
networks of logistic maps.

We couple N asymmetric tent maps using the coupling function (5.5). The map f(x)
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then reads

f(x) =

{
qx for x < 0 (q = 0.8)
−rx for x ≥ 0 (r = 2)

(5.32)

which is the form of the map 4.16 derived from the SIR-model. We present in Figure 5.10
and 5.11 some typical numerical results for the simulation of system (5.1). The transition
of the global dynamics when the parameters µ varies from 0 to 100 can be clearly observed.
All the maps are independent when µ is small and no structure is recognizable. When µ
is large, a dynamics where most of the maps are in a quasi-period-2 regime occurs.

The symbolic dynamics Sin is simply generated by considering the sign of xin, Sin =
Θ(xin) . If xin is positive, Sin = 1 and if xin is negative, Sin = 0. In order to understand the
effect of this reduction we compare the histograms of the mean-fields < xin >i and < Sin >i
in Figure 5.11. It appears that both dynamics are quasi identical and that the symbolic
dynamics can be used without risk of information loss. It seems that the configuration of
the network in the case µ →∞ tends to stabilize the period-2 limit cycle regime, even if
the individual maps remains chaotic.

Figure 5.12 gives information about the transition from incoherent dynamics to global
limit cycle. The maps with a small weight have a higher transition probability for a period-
2 limit cycle (p(0|1) grows and p(1|1) diminishes) than the systems with a larger weights.
We also observe that the synchrony between maps grows with the hierarchical level of the
network. This synchronization prenomen has been described by authors working on mast
seeding [23, 111, 112], on spatial predator/prey systems [32] or on abstract systems of
coupled maps [104, 108, 110].
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Figure 5.9: Graphical representation of the densities a) χunif (g) and b) χpower(g) for κ = 1.
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Figure 5.10: Numerical results for an ensemble of 100 coupled tent maps (5.32). In the upper part
is plotted the mean-field of the symbols and in the lower part is plotted the symbolic sequence for
each system (black corresponds to a ‘1’ and white to a ‘0’). The parameters are κ = 1, ε = 0.2 and
a) µ = 0 (global coupling), b) µ = 0.5, c) µ = 10 (hierarchical network). The ni’s are uniformly
distributed.

5.5 Generalization to the logistic maps

We consider here the general model (5.1) of coupled maps where f(x) = rx(1− x) is the
logistic map in the chaotic regime (r = 4) and the coupling matrix gij has the form (5.5)
derived at the begin of the chapter. Each individual map is characterized by a size ni.

The system (5.1) has been studied in the case of the following classical topologies:
global coupling [119, 123, 121], scale-free networks [104, 105] or small-world networks
[110, 108]. We introduce with the coupling matrix gij a new network topology.

We first consider the simple case µ → 0, which corresponds to a situation where the
effective temperature Teff →∞. In this case the high temperature destructs the structure
of the network and the coupling strength is identical for all pairs of systems

gij →
1

2
(5.33)

The topology corresponds to an all-to-all coupling with only free parameter the coupling
strength ε. This situation has been extensively been studied in [114, 115, 116, 121, 122,
123]. It was found that the dynamics dynamics appearing in this system was very rich:
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Figure 5.11: Distributions of the mean-field of the real variables< xin >i and the symbolic variables
< Sin >i. The parameters are κ = 1, ε = 0.2 and a) µ = 0, b) µ = 0.5, c) µ = 10. The ni’s are
uniformly distributed.

coherent, turbulent, intermittent, ordered or glassy phases can occur [114, 120]. The
authors realized phase diagrams in function of the bifurcation parameter r and the coupling
strength ε. The clustering structure or distribution was studied in [114, 121, 123] and
bifurcations diagrams representing the transition between different clustering states were
found.

The next sections are devoted to the systematical analysis of the dynamics in the
system when µ 6= 0. We examine the relation between the network topology and the
global dynamics. The results then lead us to an effective theory which permits us to
understand this relation.

5.6 Dynamics in the network and bifurcation analysis

In the section we investigate the relation between the network topology and the global
dynamics. Characterizing the dynamics of a complex system with a large number of
freedom degrees is a huge topic. Depending on the specific properties one is interested in,
different approaches are possible.

[121, 122, 123] already investigated the clustering properties of the system (5.1) in the
case of global coupled maps (GCM). They therefore developed the idea of the evaporation
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Figure 5.12: Transition probabilities p(0|1) and p(1|1) for each individual map. The parameters
are κ = 1, ε = 0.2 and a) µ = 0, b) µ = 0.5, c) µ = 10. The ni’s are uniformly distributed.

exponent of clusters. This quantity is related to the Lyapunov exponent of a specific
clustering state and gives its stability. Following [123, 114] it is also possible to analyze
the clustering properties in the case of GCM (for example the probability of apparition of a
cluster of a certain size). Some other global properties like the mean-field were considered
in [108] to realize bifurcation diagrams of their systems. Our study is partially inspired
from their methods.

Our motivation originally comes from the problem of understanding the dynamics
in networks of coupled SIR-models or asymmetric tent map. For that reason we have
particular interest in the synchronization and limit cycle properties of the system (5.1) of
coupled chaotic logistic maps. Therefore we classify the behavior of the maps into two
types: maps which are synchronized and fully correlated and maps which are not. This
leads automatically to the concept that a map should either belong to the cluster CS of
synchronized systems, either to the cluster CNS of non-synchronized systems. The size of
the cluster CS is numerically defined by the condition

∆i =

√√√√
∞∑

n=1

(xi+1
n − xin)2 > 1, (5.34)

where i = 1 . . . N − 1.
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Figure 5.13: Plotted are the time series of the mean-field of a) all the system Gn, b) cluster CS
and c) cluster CNS. The parameters are µ = 10, κ = 1, ε = 0.8, N = 100 and ρ(n) is a power-law
distribution with α = 4.

We consider the mean-field of all maps

Gn =< xin >i=
1

N

N∑

i=1

xin (5.35)

as a measure of the global dynamics. The mean-field of the clusters CS and CNS can also
be used to characterize more precisely the dynamics of the system. The time series of
this three different mean-fields are plotted in Figure 5.13. The histograms and the return
maps of the mean-field of this three clusters are plotted in Figure 5.14.

One observes that the mean-field Gn shows a dynamics which is very near to period-
2 limit cycle and the dynamics of the cluster CS is very similar to it. In opposite, the
dynamics of CNS has no noticeable structure and the maps belonging to this cluster seems
to be independent of the mean-field Gn. The variable representing CNS can be assimilated
to a Gaussian distribution. This helps us to already understand the system at this stage
of the study. Since the global dynamics is a superposition of the dynamics of the two
clusters, one may think of reducing the whole system to a single map with additional
noise. This idea will be exploited in the last section.

In order to show that the splitting the system into two classes of maps is sensible, we
computed the index ∆i defined by (5.34) and the correlation of the individual maps with
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Figure 5.14: Plotted are the histograms (left) and the return map (right) of the mean-field of a) all
the system Gn, b) cluster CS and c) cluster CNS. The curve in red is the parabola f(x) = 4x(1−x).
The parameters are µ = 10, κ = 1, ε = 0.8, N = 100 and ρ(n) is a power-law distribution with
α = 4.

the mean-field. The result is plotted in Figure 5.15. Also the pair-wise correlation between
two maps i and j has been represented in matrix-form in Figure 5.16. It is obvious from
these figures that the system is a superposition of the two dynamics belonging to CS and
CNS .

As a general result which does not dependent on the parameter set, we observe that
it is possible to classify the global dynamics into three categories:

• Quasi-limit cycle: noisy logistic map where the bifurcation parameter r satisfy

3 < r < 1 +
√

6 (5.36)

in the period-2 regime

• Incoherent overlapping of chaotic maps: mean-field with Gaussian distribution

ρ(Gn) ∼ exp

(
−1

2

(Gn− < Gn >)2

σ2

)
, (5.37)

with Gn ≈ 0.5
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Figure 5.15: a) Correlation of the individual maps xin with the mean-field Gn and b) Plot of the
measure ∆i. The parameters are µ = 10, κ = 1, ε = 0.8, N = 100 and ρ(n) is a power-law
distribution with α = 4.

• Coherent overlapping of chaotic maps: mean-field having the same distribution

ρ(Gn) ∼ π√
Gn(1−Gn)

(5.38)

than the logistic map for r = 4.

We use this classification to investigate more precisely the effect of the parameters
µ, κ and ρ on the dynamics. In the next section we compute for these parameters the
bifurcation diagrams of the mean-field.

We start our study by assuming that each parameter can play the role of a bifurcation
parameter for the mean-field. Bifurcation diagram in every direction of the parameter
space (µ, κ, ε and size index i) will be computed. We will encounter for each parameter
the classical route to chaos. Because of the strongly noisy character of the system, only
transitions from fixed point to limit cycle regime and from limit cycle to chaotic regimes
are resolved.
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Figure 5.16: Representation of the pair-wise correlation between two maps i and j. The parameters
are µ = 10, κ = 1, ε = 0.8, N = 100 and ρ(n) is a power-law distribution with α = 4.

5.6.1 Influence of the effective temperature Teff ∼ 1/µ

Figures 5.17 and 5.18 show the bifurcation of the mean-field when varying the parameter
µ from 0 to 2.
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Figure 5.17: Bifurcation diagrams of the mean-field with effective parameter µ. The parameters
are ε = 1, N = 100, a) κ = 0.5, b) κ = 1, c) κ = 2 and ρ(n) is a uniform distribution. The solid
line corresponds to the size of the cluster of synchronized maps defined by ∆i > 1.
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Figure 5.18: Bifurcation diagrams of the mean-field with effective parameter µ. The parameters
are ε = 1, N = 100, a) κ = 0.5, b) κ = 1, c) κ = 2 and ρ(n) is a power-law distribution (α = 4).
The solid line corresponds to the size of the cluster of synchronized maps defined by ∆i > 1.

5.6.2 Influence of the coupling strength ε

Figures 5.19 and 5.20 show the bifurcation of the mean-field when varying the coupling
strength ε from 0 to 1.
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Figure 5.19: Bifurcation diagrams of the mean-field with effective parameter ε. The parameters
are µ→∞, N = 100, a) κ = 0.5, b) κ = 1, c) κ = 2 and ρ(n) is a uniform distribution. The solid
line corresponds to the size of the cluster of synchronized maps defined by ∆i > 1.
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Figure 5.20: Bifurcation diagrams of the mean-field with effective parameter ε. The parameters
are µ→∞, N = 100, a) κ = 0.5, b) κ = 1, c) κ = 2 and ρ(n) is a power-law distribution (α = 4).
The solid line corresponds to the size of the cluster of synchronized maps defined by ∆i > 1.

5.6.3 Influence of the threshold κ

Fig. (5.21) shows the bifurcation of the mean-field when varying the threshold κ from 0
to 4.
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Figure 5.21: Bifurcation diagrams of the mean-field with effective parameter κ. The parameters
are ε = 1, µ → ∞, N = 100 and ρ(n) is a a) uniform, b) power-law (α = 4) and c) exponential
(β = 1) distribution. The solid line corresponds to the size of the cluster of synchronized maps
defined by ∆i > 1.

5.6.4 The role of the sizes in the system

We consider here the rank i of a map as an effective bifurcation parameter. The quantity
which is examined is the time-averaged variable < xin >n for each map i.
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Figure 5.22: Bifurcation diagrams of the time-averaged quantity < xin >n. The parameters are
κ = 1, ε = 1, µ→∞, N = 100, ρ(n) is a uniform distribution and a) κ = 0.5, b) κ = 1, c) κ = 2.
The solid line corresponds to the size of the quantity ∆i and the dashed line to the limit ∆i = 1.
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Figure 5.23: Bifurcation diagrams of the time-averaged quantity < xin >n. The parameters are
κ = 1, ε = 1, µ→∞, N = 100, ρ(n) is a power-law distribution (α = 4) and a) κ = 0.5, b) κ = 1,
c) κ = 2. The solid line corresponds to the size of the quantity ∆i and the dashed line to the limit
∆i = 1.

5.7 An effective theory

This section is devoted to the developpement of an effective theory describing the dynamics
in the network of logistic maps.

We showed in the previous section that all the parameters of the system are equivalent
and may play the role of a bifurcation parameter. This means that we can arbitrarily
choose one effective parameter for the theory and fixe the other ones. We therefore consider
the analytical convenient case µ → ∞ where the topology of the network is hierarchical.
In this case the parameter κ controls entirely the dynamics. Surprisingly, the index i also
seems to be a bifurcation parameter. This gives evidence for some internal threshold in
the size N of the system.

We observed in the bifurcation analysis that the correlation between the global state
and the size of the cluster defined by the condition (5.34) is very high. To the fixed point
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regime corresponds a small cluster size (C ∼ 0), to the limit cycle regime corresponds an
intermediate cluster size (C ∼ 0.5) and to the chaotic regime corresponds a large cluster
size (C ∼ 1).

Also we found that the cluster size (dynamical quantity) and the clustering coefficient
(statical quantity) are very strongly correlated (see fig. (5.3)) and the size distribution
does not change the qualitative behavior of these quantities.

This leads us to strongly assume that the system behaves like a single noisy logistic
map with an effective bifurcation parameter being a function of the clustering coefficient.
This theory is developped in the following sections.

5.7.1 Analytical formulation of the evolution of the system

We developpe here an analytical formulation for the effective theory describing the dy-
namics observed in the network. Since there is a high correlation between the clustering
coefficient and the cluster size, we consider that the size m of a cluster can be approximatly
related to the clustering coefficient through C(κ) = m

N .
The dynamics of this cluster is then described by the equation

x̄n+1 =

[
1− (N −m)ε

N

]
f(x̄n) +

(N −m)ε

N
ζn

= [1− (1− C(κ))ε] f(x̄n) + (1− C(κ))εζn (5.39)

where x̄n+1 is the mean-field of the cluster and ζn a term representing gaussian noise with
standard deviation σ and mean ν. Another way to write eq. (5.39) is

x̄n+1 = [1− (1− C(κ))ε] f(x̄n) + (1− C(κ))ε(ν + σηn)), (5.40)

where ηn = N (0, 1).
Since the clustering coefficient and the cluster size are very similar in the case where

ρ(n) is a power-law distribution (see fig.(5.3.a)), we choose to consider the explicit form

C(κ) =

{
1
2κ
−α+1 , κ ≥ 1

1− 1
2κ

α−1 , κ < 1
(5.41)

In the three limiting cases where κ = 0, κ = 1 and κ → ∞, the clustering coefficient
becomes C = 1, C = 1

2 and C = 0, respectively. This leads to the evolution equations

x̄n+1 = f(x̄n) (5.42)

x̄n+1 = (1− ε

2
)f(x̄n) +

ε

2
(ν + σηn) (5.43)

x̄n+1 = (1− ε)f(x̄n) + ε(ν + σηn) (5.44)

in these three different cases.
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Figure 5.24: a) Bifurcation diagram and b) Lyapunov exponent of the system (5.45) with effective
parameter r′ and without noise (σ = 0). The parameters are r = 4 and ν = 0.5

If f(x) = rx(1− x), the equation (5.40) can be re-written as

x̄n+1 = r′(κ)x̄n(1− x̄n) +

(
1− r′(κ)

r

)
ν +

(
1− r′(κ)

r

)
σηn = F (x̄n) (5.45)

where
r′(κ) = [1− (1− C(κ))ε] r (5.46)

We study the dynamical behavior of the system (5.45) without noise (σ = 0). Fig.
(5.24) gives a graphical representation of the bifurcation diagram and the Lyapunov ex-
ponent of this system in function of the effective parameter r ′. We see that this system
shows the usual route to chaos with successive period-doubling of limit cycles.

5.7.2 Testing the theory

We compare in this section the dynamics of our effective theory with the global dynamics
of the whole network. Therefore we plotted in fig. (5.25.a) the bifurcation diagram of the
system (5.45) with noise (σ 6= 0) and in fig. (5.25.b) the bifurcation diagram of the mean-
field in the network. Both systems show very similar transitions between the different
dynamical regimes. In the effective theory, the period-2 limit cycle regime occurs for a
parameter κ ' 1.

In order to confirm the exactness of our effective theory (5.45), we also compared on
the same plot in fig. (5.26) the bifurcation diagram of the network and the bifurcation
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Figure 5.25: Bifurcation diagrams with parameter κ for the a) effective model and b) network. The
solid line represent the clustering coefficient. The parameters are r = 4, ε = 1, ν = 0.5, σ = 0.07
and ρ(n) is a power-law distribution (α = 4).

diagram of the theory without noise. Both diagrams are in very good qualitative and
quantitative agreement.

From our studies we conclude that the mean-field of the maps in the network is very
well reproduced by the simple system (5.45). So we can affirm that our effective theory
explains the structures and the phenomenon which are observed in the network of logistic
maps.

5.8 Results

We investigated in this chapter the dynamics in networks of weighted maps. We intro-
duced a new form of coupling function (5.5) which is deduced from the distribution of
weights. The topology of the network is controled by adjusting a single parameter which
is interpretatd as an effective temperature Teff .

We performed the analysis of the new generated topologies and computed the principal
properties of the network using the statistical approach. The coupling function can create
a large variety of networks from global coupling to a perfectly hierachical structure, where
all intermediates topologies are possible. It was found that the distribution of weights does
not have any essential consequences on the topology. In fact, the effective temperature
1/µ and the threshold κ are entirely controlling the network. It could then be shown that
either µ or κ is sufficient to control the whole generated topology. Since the statistical
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properties of the network can be computed analyticaly in the case µ→∞, we choose κ as
the only effective parameter which permits to adjust the topology. We can then compute
the degree distribution, the connectivity and the clustering coefficient in function of κ.
The network is not anymore weighted in this case and the links are directed. The network
is globally coupled when κ is small (< 1) and not coupled at all when κ is large (> 1).
The clustering coefficients then correspond to C ≈ 1 and C ≈ 0, respectively.

Concerning the dynamics in the networks we examined the mean-field of the system as
a measure for its behavior. It was found that only three dynamical regimes can take place.
The first regime is an uncoherent superposition of the dynamics of the individual maps and
leads to a mean-field which is Gaussian distributed. Inthe second regime the mean-field
is distributed as a bi-modal Gaussian distribution and corresponds to a global quasi-limit
cycle. The third regime corresponds to a coherent superposition of the individual dynamics
and the mean-field is distributed as for the logistic map in the chaotic regime (r = 4). In
terms of a single dynamical system, these regimes can be called fixed point, period-2 limit
cycle and chaos. The coupling strength ε, the threshold κ or the effective temperature 1/µ
have exactly the same effect on the global dynamics. Using bifurcation diagrams of the
mean-field we observed that these parameters control in an identical way the transitions
between the different regimes.

We also examined the synchronization phenomenon between the maps [110, 108]. We
therefore split the system into two clusters: maps which are sychronized and maps which
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Figure 5.26: Bifurcation diagrams with parameter κ for the the effetive model (black dots) and
the network (gray scale). The parameters are r = 4, ε = 1, ν = 0.5, σ = 0.08 and the distribution
ρ(n) is a) uniform and b) power-law (α = 4).
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are not synchronized. It was found that the size of the cluster of synchronized map is
quasi-identical to the clustering coefficient of the network. This coefficient is a property
of the network and is independent of the particular form of map f(x). Furthermore we
found that each regime is associated with a typical cluster size or clustering coefficient.
The gaussian distribution of the mean-field corresponds to a small cluster size (≈ 0), the
bi-modal distribution to an intermediate size (≈ 0.5) and the U-shaped distribution for
the chaotic regime to a large size (≈ 1).

We demonstrate our findings by writing an effective theory for the whole system in
the limit case µ→∞. As we mentioned previously, since the parameters µ and κ play an
equivalent role for the network topology and in the bifurcation diagrams, we can fixe one
parameter (here µ → ∞) and consider only the other one (κ) as relevant for the system.
Our theory is based on the fact that we can describe the cluster of synchronized maps by
a single logistic map with an effective bifurcation parameter depending on the size of the
cluster and the coupling strength. The cluster of non-synchronized maps can be repalaced
by Gaussian noise. The result is that we can replace the system of coupled maps by a
single effective logistic map with an additional noisy term. For this reason it is possible
to observe global limit cycles even if the original individual maps were chaotic.

Our investigations can take into account a large variety of natural systems from the
spreading of infectious diseases to the tree masting (see Appendix A).

Appendix A: Tree masting

We present in this Appendix a model for tree masting which is strikingly similar to the
asymmetrical tent map derived from the SIR-model. This model was introduced in [111,
112, 23] to study synchronization between trees in forests. The model which describes the
evolution of a single tree reads

Sin+1 =

{
Sn + Ps if Sn + Ps ≤ LT
Sn + Ps − a(Rc + 1)(Sn + Ps + LT ) if Sn + Ps > LT

(5.47)

where Sn is the amount of energy at the beginning of year n, Ps the net production gained
per year by a tree from photosynthesis, a is a proportionality constant and Rc the ratio of
fruiting costs to flowering cost. LT represents the critical level under which the tree does
not reproduce and save energy for the following year and above which the energy is used
for flowering.

We can write this model in a dimensionless form

Y i
n+1 =

{
1 + Y i

n , if Y i
n < 0

1− kP inY i
n , if Y i

n ≥ 0
(5.48)

where Yn = (Sn + Ps − LT )/Ps and k = a(Rc + 1) − 1. This map has exactly the same
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shape than our asymmetrical tent map (4.16) but the coupling between the maps is realized
through the variable k, which becomes a function of Y i

n.
Notice that this map was derived independently from our model. Since tree masting

seems to show the same mechanism than epidemics outbreaks, it may be possible to rewrite
the model (5.48) as a system of differential equations.



Chapter 6

Outlook

We studied in this thesis recurrent outbreaks in natural chaotic systems. We considered
the cases of phytoplankton blooms and epidemics outbreaks. In both cases we succeed to
reproduce with our models the periodical behavior in time and the irregular amplitudes
of the outbreaks. A class of models which permits bottom-up control of the dynamics in a
system was used. This type of models show fixed points with the stability type of a stable
spiral.

It was shown that some simple phytoplankton model may exhibit chaotic behavior
under external periodic forcing of nutrients. We also developed in this context a method
to characterize single algae bloom. This method can of course be extended to other systems
showing outbreak dynamics.

The spread of epidemics in networks of cities and the synchronization of outbreaks
was a topic closely related to the previous one. The individual cities were described by
a model similar to the phytoplankton model. The coupling matrix has been introduced
for this epidemiological model, but appears to be valid for a large variety of systems. The
coupling strength in the differential equations is proportional to the ratio of the city sizes.

It was possible to reduce the SIR-model to a 1-dimensional asymmetrical tent map.
This led us to a new coupling function which permits to couple weighted maps in a network.
The topology of the network can be adjusted through the change of a parameter repre-
senting an effective temperature. We studied exhaustively the dynamics in the network in
the case of the logistic map.

A bi-annual cycle has been observed in the data. We succeed to reproduce this 2-year
cycle in the context of coupled SIR-models and coupled maps. It is striking that all these
models show the same behavior only because of the topology of the network.

The new type of coupling we introduced might be very useful when needing to couple
maps representing dynamical systems having some weights or sizes. But one could also
think about other coupling which could be for example proportional to the product ninj
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of the sizes. This may represent cooperation between the systems.
It is also interesting to notice that very different systems can be described by similar

models or mechanisms. Consider the following examples belonging to this class of systems:
spreading of epidemics, masting in forests or lasers.

The striking similarity of outbreak characteristics, which is exhibited in totally dif-
ferent and unrelated (ecological) systems naturally leads to the question whether there
are universal mechanisms underlying outbreak dynamics in different systems in ecology
[2, 34]. In this sense a comparative study of complex outbreak phenomena in Nature gives
information about possible underlying mechanisms and properties of the system.
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ler systems’ Chaos, Solitons and Fractals 21, 803-808.

[136] R. Steuer, W. Ebeling, D.F. Russell, S. Bahar, A. Neiman, F. Moss (2001) ‘Entropy and
local uncertainty of data from sensory neurons’ Phys. Rev. E 64, 061911.

[137] F. Takens (1981) Detecting strange attractors in turbulence, in Rand D. & Young L.S. (Eds.)
Dynamical Systems and Turbulence, Warwick, Springer Lecture Notes in Mathematics 898,
366-381.

[138] Wolf, A., Swift, J.B., Swinney, H.L. & Vastano, J.A. (1985) ‘Determining Lyapunov expo-
nents from a time series’ Physica D 16, 285-317.


	Title page
	Contents
	1. Introduction
	2. Outbreak Phenomena in Natural Systems
	2.1 Classification and examples
	2.2 Modeling outbreaks
	2.2.1 Classical approach: outbreak as an excitable system
	2.2.2 New approach: a bottom-up outbreak model


	3. Phytoplankton Blooms
	3.1 Introduction
	3.2 The chemostat model
	3.3 Stability analysis of the unforced model
	3.4 Characterizing phytoplankton blooms
	3.5 Chaotic dynamics
	3.5.1 Introduction of external forcing
	3.5.2 Bifurcation analysis

	3.6 Conclusion
	Appendix A: Transition to the Monod model


	4. Epidemics Outbreaks
	4.1 Background
	4.2 The SIR-model
	4.3 Symbolic dynamics
	4.3.1 Transition probabilities
	4.3.2 Block entropies

	4.4 Reconstruction of attractors from data
	4.5 Reducing the SIR-model to an asymmetric tent map
	4.6 Introducing the coupling between cities
	4.6.1 Simple case of 2 cities
	4.6.2 Size distribution and network of cities

	4.7 Dynamics in the network
	4.8 Conclusion
	Appendix A: Extension to coupled RŁossler oscillators


	5. Complex Dynamics in Networks with distributed sizes
	5.1 Motivation
	5.2 Coupling N maps in a weighted network
	5.3 Analysis of the network topology
	5.3.1 The case � ! 1: hierarchical topology
	5.3.2 Intermediate values of �: weighted links

	5.4 Networks of asymmetrical tent maps
	5.5 Generalization to the logistic maps
	5.6 Dynamics in the network and bifurcation analysis
	5.7 An e�ective theory
	5.7.1 Analytical formulation of the evolution of the system
	5.7.2 Testing the theory

	5.8 Results
	Appendix A: Tree masting


	6. Outlook
	Bibliography

