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Abstract

This thesis describes two main projects; the first one is the optimization of a hierar-
chical search strategy to search for unknown pulsars. This project is divided into two
parts; the first part (and the main part) is the semi-coherent hierarchical optimization
strategy. The second part is a coherent hierarchical optimization strategy which can
be used in a project like Einstein@Home [1]. In both strategies we have found that
the 3-stages search is the optimum strategy to search for unknown pulsars.
For the second project we have developed a computer software for a coherent Multi-
IFO (Interferometer Observatory) search. To validate our software, we have worked
on simulated data as well as hardware injected signals of pulsars in the fourth LIGO
science run (S4). While with the current sensitivity of our detectors we do not expect
to detect any true GW signals in our data, we can still set upper limits on the strength
of the gravitational waves signals. These upper limits, in fact, tell us how weak a signal
strength we would detect. We have also used our software to set upper limits on the
signal strength of known isolated pulsars using LIGO fifth science run (S5) data.
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Zusammenfassung

Zwei Projekte wurden im Rahmen dieser Dissertation ausgeführt. Das erste Projekt bestand aus einer
Studie über allgemeine hierarchische Suchstrategien für Gravitationswellen (GW) von unbekannten,
isolierten GW Pulsaren. Insbesondere haben wir dabei hierarchische Algorithmen betrachtet, in de-
nen in jeder Schritt (außer dem letzten) aus einer kohärenten Demodulation über kurze Datensegmente
besteht, gefolgt von dem nötigen “stacking and sliding” der F -Statistik Werte von den verschiedenen
Segmenten. Diese mehrfachen Schritte dienen dazu, die Anzahl der Kandidaten rasch zu reduzieren. Der
letzte Schritt besteht aus der Berechnung einer kohärenten Detektionsstatistik über alle verbleibenden
Kandidaten.

Wir haben diese Strategie optimiert durch Minimierung der erforderliche Rechenleistung P unter den
Nebenbedingungen der gegebenen verfügbaren Datenmenge und des gewünschten Konfidenzlevels. Natürlich
hängt P auch von der Größe des Parameterraumes ab, insbesondere von dem zu durchsuchenden Intervall
in Frequenz und des (“spin-down”) Pulsaralters. Bei diese Optimierung, und durch Variieren der Anzahl
der hierarchischen Schritte n, fanden wir dass die Vorteile dieser mehrfach-Schritt Strategie bei n = 3
“sättigen” (d.h. n = 4 und 5 bringen kaum noch Verbesserungen), sowohl für semi-kohärente also auch
für kohärente Suchmethoden.

Die angegebenen Werte für die optimierten Suchparameter, (N (i),∆T (i), µ(i)) für semi-kohärente Suchen
und (T (i), µ(i)) für kohärente Suchen, sind das Ergebnis einer Reihe von Vereinfachungen: i) unsere
Berechnungen verwenden mehrfach theoretische Abschätzungen der Anzahl der erforderlichen Rechenop-
erationen anstelle von Messungen der Operationen an existierenden Codes; ii) Fragen von Speicherplatz
oder der benötigten Rechenleistung für Monte-Carlo Simulationen wurden nicht berücksichtigt, und iii)
das Rauschen in den Detektordaten wurde durchwegs als stationärer Gaußscher Zufallsprozess angenom-
men. Weiters sind die Formeln für die Anzahl der benötigten Filter (“templates”) genau genommen nur
gültig für Beobachtungszeiträume die signifikant kürzer sind als ein Jahr.

Daher sollten unsere Abschätzungen nur als ein erster grober Richtwert betrachtet werden, um eine
solche Suche in der Praxis durchzuführen; wenn bessere Approximationen verfügbar sind, sollten diese
Werte neu berechnet werden. Trotz dieser Einschränkungen sind wir zuversichtlich, dass diese Ergebnisse
nützliche Größenordnungen über die Eigenschaften von solchen optimierten Suchen über den ganzen
Himmel liefern.

Diese Studie eröffnet eine Reihe von möglichen weiteren Untersuchungen:

• Um verbesserte Abschätzungen für die Optimierung zu erhalten, wäre ein logischer nächster Schritt
die aktuell implementierten Suchprogramme zu verwenden, und diese auf reale Detektordaten
anzuwenden. In diesem Zusammenhang sollte man 1) Zeitmessungen der Suchprogramme durchführen,
um die tatsächlich benötigte Rechenleistung zu bestimmen, und 2) Monte-Carlo Studien anstellen,
um die tatsächliche α(i) für verschiedene Schwellenwerte zu bestimmen (da ja die hier angegebenen
Formeln auf der Annahme von Gaußschem stationären Rauschen basieren). Letzteres könnte mit
beachtlichem Arbeitsaufwand verbunden sein, insbesondere wenn die Ergebnisse stark frequenz-
abhängig sind, sodass gewisse Frequenzbänder günstigeres Verhalten zeigen als andere.

• Es wäre nicht kompliziert, unsere Studie auf Suchen auszudehnen, die weniger Rechenaufwand
benötigen als solche über den ganzen Himmel, welche aber immer noch durch den nötigen Rechenaufwand
beschränkt sind; z.B. könnte man Suchen nach unbekannten Neutronensternen in Supernova-Resten
(wie etwa SN 1987A) betrachten, wobei die Himmelsposition mit großer Genauigkeit bekannt ist,
aber die Frequenz und die Verlangsamungsparameter durch die Suche selbst bestimmt werden
müssen. In ähnlicher Weise könnte man Suchen über einen kleinen Teil des Himmels betrachten,
z.B. über das galaktische Zentrum, oder einen anderen bestimmten Teil der Galaxie.

• Die Formeln für die Anzahl der Rechenoperationen, Konfidenzintervalle usw. können auch für den
Fall berechnet werden, in dem man die Hough-Transformation [62] statt des “stack-slide” Verfahrens
im semi-kohärenten Schritt verwendet; die Optimierung von hierarchischen mehrfach-Schritt Suchen
mit der Hough Methode würde denselben Schritten folgen wie hier dargelegt.

• Wir vermuten dass die Einsichten, die in diesem Projekt gewonnen wurden, auch in Suchen nach GW
Pulsaren in Röntgen-binären von geringer Masse (LMXBs) zum Tragen kommen werden, welche
ebenfalls durch die benötigte Rechenleistung limitiert sind [72]. Die Details hierzu müssen jedoch
noch ausgearbeitet werden.



• Das hier behandelte Problem der Suche nach GW Pulsaren ist ähnlich einem noch schwierigerem
Suchproblem in LISA Daten: die Suche nach den Signalen von der Umkreisung kompakter Objekte
von etwa Sonnenmasse um ein schwarzes Loch der Masse ∼ 106M⊙ im Zentrum von Galaxien.
Was die nötige Rechenleistung betrifft, stellt dieses Problem eine noch größere Herausforderung dar
[89], und wir vermuten, dass die Erfahrungen, die in diesem Projekt gesammelt wurden, auch sehr
nützlich für die Formulierung und Optimierung des Such-Algorithmus für solche LISA Signale sein
wird.

• Wir haben in diesem Projekt implizit angenommen, dass die Suche von einem einzelnen Computer
oder Computercluster ausgeführt wird. Zumindest in den nächsten paar Jahren werden jedoch die
rechenintensivsten GW Suchen auf Einstein@Home ausgeführt werden [1]. Dieser Zugang bringt
zusätzliche Einschränkungen mit sich, die wir hier nicht betrachtet haben, wie z.B. die Rate, mit der
Daten und Zwischenergebnisse zwischen Servern und den Computern der Teilnehmer ausgetauscht
werden können, und der verfügbare Speicherplatz, den man auf den teilnehmenden Computern
verwenden kann. Wir beabsichtigen, die hierarchischen Suchstrategien auch in diesem Zusammen-
hang zu studieren, um zu erforschen ob die obigen Ergebnisse für Einstein@Home anders ausfallen
würden.

Im zweiten Projekt, das Teil dieser Dissertation war, haben wir einen existierenden Suchcode (Com-
puteFStatistic.c, von nun an “CFS v1”) aus der LAL Softwarebibliothek zur Berechnung der F -Statistik
(die Detektionsstatistik, die in dieser Dissertation behandelt wird), erweitert und verallgemeinert; der
daraus entstandene Code ComputeFStatistic v2.c (“CFS v2”) wurde ebenfalls in LAL integriert. Die
Hauptverbesserungen sind, dass CFS v2 auch multi-Detektor Suchen ausführen kann; weiters verwendet
dieser Code SFT-spezifische Gewichtungen entsprechend dem Rausch-Level, was eine bessere Behand-
lung von nicht-stationärem Rauschen erlaubt. Eine zusätzliche Erweiterung von CFS v2 erlaubt den
Rückschluss auf die Signalparameter, und es werden die abgeschätzten Parameter des “lautesten” Kandi-
daten ausgegeben. Durch die Verwendung von eines modifizierten LALDemod ist CFS v2 auch schneller
als CFS v1.

Im ersten Teil dieses Projekts haben wir CFS v2 validiert, nämlich durch den Vergleich der Ergebnisse mit
der früheren (und ausgiebig getesteten) Version CFS v1. In diesem Validierungsprozess fanden wir, dass
CFS v2 und CFS v1 konsistente Ergebnisse lieferte in allen Fällen, wie z.B. bei reinem Rauschen, einem
Signal im Rauschen, als auch einem reinen Signal ohne Rauschen. Es stellte sich heraus, dass im Fall
von Daten, in denen das Rauschen dominiert, wie etwa bei reinem Rauschen oder Daten mit schwachem
Signal, die Verwendung unserer Gewichtungen einen Unterschied zwischen CFS v2 und CFS v1 im Bere-
ich von -25% to 25% bewirkt. Bei Deaktivierung dieser Option zeigen beide Codes jedoch sehr gute
Übereinstimmung.

Wir haben unseren Code weiters an Daten aus dem vierten LIGO “Science Run” (S4) getestet, welche
Hardware-“Injektionen” von Signalen enthielten. Wir haben die Parameter der eingeschleusten Signale
mit denen verglichen, die unsere Software gemessen hat, und fanden sehr gute Übereinstimmung.

Im nächsten Teil dieses Projekts präsentierten wir unsere Ergebnisse von CFS v2 mit Daten von S5,
um eine Obergrenze für 33 bekannte isolierte Pulsare zu bestimmen. Diese Pulsare sind aus der Ra-
dioastronomie bekannt; ihre Parameter wurden online von ATNF (Australia Telescope National Facility)
bezogen. Wir haben unsere Ergebnisse mit denen aus einem “Time Domain Search” (TDS) verglichen,
welcher einen grundlegend unterschiedlichen Zugang verwendete. Die Ergebnisse zeigen eine Abweichung
zwischen -30% bis 30%, welche wiederum hauptsächlich darauf zurückzuführen sind, wie die verschiedenen
Suchtechniken auf nicht-stationäres und nicht-Gaußsches Rauschen “reagieren”. Schließlich haben wir ein
Jahr Daten der C03 Kalibrierung aus S5 verwendet, um Obergrenzen für die Gravitationswellenampli-
tude der obigen 33 Pulsare zu bestimmen. Diese Analyse zeigt, dass bei der Verwendung von einem Jahr
Daten die beste erreichbare Empfindlichkeit in einem einzelnen Detektor 6.0× 10−26 ist, nämlich für den
H1 Detektor. Eine Suche mittels aller drei LIGO Detektoren zeigt, dass die beste kombinierte Empfind-
lichkeit 4.27 × 10−26 ist. Basierend auf diesen Obergrenzen der GW Stärke haben wir Obergrenzen für
die Elliptizität aller 33 erwähnten Pulsare bestimmt, und zwar mittels jedes des LIGO Detektoren für
sich, als auch für deren Kombination.

Trotz ausgiebiger Studien (im Frequenzraum) mittels unsere neuen verbesserten Software gibt es immer
noch viele Bereiche, die weiterer Untersuchung bedürfen. Zum Beispiel, die Möglichkeit nach Signalen
von Binärsystemen zu suchen sollte in unsere derzeitige Software integriert werden, eine Suche über das
gesamte Datenset muss ausgeführt werden, ein verbesserte Einbindung der Daten von elektromagnetischen
Beobachtungen (zum Beispiel für den Crab Pulsar), und schließlich sollten gezielte Suchen in interessanten



Bereichen am Himmel durchgeführt werden, zum Beispiel über unser galaktisches Zentrum, von dem man
annimmt dass es viele massive schwarze Löcher enthält.
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Preface

Gravitational Waves (GWs), ripples in space-time which travel at the speed of light, are a fundamental
consequence of Einstein’s General Theory of Relativity. Due to the great distance to any likely detectable
sources of GWs, the signal amplitude reaching us will be very small. Because of limitations in technology,
there have been no direct detections of GWs so far. However, with the future generation of detectors,
like Advanced LIGO, we should be able to detect a variety of sources.

Different types of GW signals are emitted by different types of sources. For example, we can expect
bursts from supernovas, chirping signals from the binary coalescence of compact objects and a stochastic
background of GWs from the Big Bang. Another class of signal which is generally referred to as continuous
waves are emitted by Neutron Stars. This is, in fact, the type of signal that we concentrate on in this
thesis.

Because of their nature, continuous GWs reaching Earth are expected to be extremely weak, even com-
pared to the other types of waves like bursts. Therefore even with the quite significant sensitivity of
our current detectors, it will be quite difficult to detect them. One possible way to increase the overall
signal compared to the background noise (signal-to-noise ratio) is to coherently integrate the data for
several days up to few years. For this we need to know the exact shape of the gravitational wave. This
is the basic concept of matched filtering, which is the optimal detection method in a statistical sense.
Throughout this thesis, this technique will be one of our main tool to extract the signal from the noise.

Our templates take into account for the Doppler shift, due to the motion of the Earth compared to the
source, which modulates the signal in our data. Therefore the templates are sky-position dependent.

For a coherent all-sky search for unknown sources, the large number of points in parameter space makes
the search very computationally expensive after a few hours of coherent integration. However, for a
directed search, for which the source position is already known, we can reduce the cost of computing
dramatically. And for a targeted search, where all of the source’s parameters are previously known by
the other means, like radio observations, the search can be performed very fast and just with a single
computer by coherently analyzing months of data. It is therefore clear that the major constraint on
wide range parameter searching is the computational cost. Beside this fact, we must also take care of
the sensitivity of the search which increases with the observation time. Our aim is to develop search
techniques that reduce the computational cost while reducing the sensitivity as little as possible.

One technique that can be used to reduce the number of points in parameter space is the so-called semi-
coherent search. This method, in which the data is divided into several segments, is less sensitive than
a fully coherent search using the same length of data. However, as semi-coherent searches require fewer
templates in parameter space, we can use more data in the search in order to compensate for the loss of
sensitivity.

To go further in increasing the amount of data and therefore the sensitivity, we can use a hierarchical
semi-coherent method. This technique is also based on semi-coherent searching, but performed in several
stages. In the first stage we use a small amount of data, a low threshold, and a coarse mesh in parameter
space, and we keep just those points that pass the threshold. For the second stage the number of points
in parameters space are reduced dramatically, and therefore we can use much more data as well as a finer
search in parameter space. This is continued in the further stages until we have our final candidates. The
final stage uses quite a long interval of data, and a fine grid, making this technique quite sensitive with
low computational cost.

This thesis describes two main projects. The first one is the optimization of a hierarchical search strategy
to search for unknown pulsars. This project is divided into two parts; the first part (and the main
part) is the semi-coherent hierarchical optimization strategy. The second part is a coherent hierarchical
optimization strategy which can be used in a project like Einstein@Home [1].

Einstein@Home is a project that uses the idle computers of worldwide users to search for the gravitational
waves emitted by neutron stars. In this project, the data taken from the LIGO and GEO detectors is
divided into small chunks and then distributed to the users around the world, who have registered
themselves for that. The inspiration for this is the earlier project SETI@Home [2] which searches for
Extraterrestrial Intelligence using radio observation data.

The second project develops the computer software for a coherent Multi-IFO (Interferometer Observatory)
search. To validate our software, we have worked on simulated data as well as hardware injected signals
of pulsars in the fourth LIGO science run (S4).



While with the current sensitivity of our detectors we do not expect to detect any true GW signals in
our data, we can still set upper limits on the strength of the gravitational waves signals. These upper
limits, in fact, tell us how weak a signal strength we would detect. We have also used our software to
set upper limits on the signal strength of known isolated pulsars using LIGO fifth science run (S5) data.
We have compared our results with those obtained by the gravitational-wave pulsar group in University
of Glasgow, using a different analysis method.

The first chapter of this thesis is introduction which summarizes the basic knowledge required to work
in gravitational-wave astronomy. This chapter covers many things in brief. In the second chapter, we
characterize the signal we are searching for, adding a few words about basic statistics and the derivation
of the likelihood function (the main tool used in our searches). In chapter 3 we present our work on
the hierarchical semi-coherent and coherent search strategy. In chapter 4 we present the theory of a
multi-IFO search using the F -Statistic as well as its computational implementation. At the end of this
chapter we also describe our scheme for estimating the source parameters. In chapter 5, we first validate
our software using different types of simulated data and give upper limit results on the signal strength
of some known isolated pulsars.
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Chapter 1

Introduction

In this chapter, we briefly introduce some essential phenomena and topics that are required to understand
the basic physics of gravitational-wave astronomy and the means of its detection. This chapter is basically
useful for those who want to have in one place a summary of the most important topics about the nature,
generation, sources and the detection of gravitational-waves.

1.1 Nature of Gravitational Waves

Einstein’s development of the general theory of relativity [3, 4] brought about a new understanding
of gravity, that the force of gravity is actually an effect created by the curvature of space-time around
massive bodies. Early acceptance of General Relativity was based on two important tests. One of them
was the anomalous precession in the perihelion of Mercury, which Newton’s theory of gravitation could
not explain, however its amount could be precisely predicted by the general theory of relativity. Another
was the amount of light bending when the light passes near a massive object. In 1916, Einstein found that
the general theory of relativity predicts the amount of bending to be twice the value given by Newton’s
theory of gravitation. In 1919, Eddington discovered that the amount of the light bending around the
sun (during the total solar eclipse in that year) confirms the prediction of the general theory of relativity
[5].

These evidences convinced people that the theory itself is basically correct. And just as Maxwell’s
Electromagnetic theory predicts the propagation of electromagnetic waves with the speed of light, so the
theory of general relativity also predicts gravitational waves to propagate at the speed of light. This fact
can be extracted from the Einstein’s field equation (with the notation as used in Landau and Lifshitz
[6]),

Gαβ ≡ Rαβ − 1

2
gαβR =

8πG

c4
Tαβ, (1.1)

where Rαβ is the Ricci tensor, gαβ is the space-time metric, R is the scalar curvature, G is the universal
gravitational constant, c is the speed of light, and Tαβ is the energy momentum tensor. Of course there
can be another term Λ, the cosmological constant, in this equation. However for our purpose we set it to
zero here.

In vacuum, the energy momentum tensor vanishes, Tαβ ≡ 0, and in Transverse Traceless (TT) gauge the
field equation reduces to a simple wave equation form [7]

(
− 1

c2
∂2

∂t2
+ ∇2

)
h̄αβ = 0, (1.2)

which leads to a plane-wave solution of the form [8]

h̄αβ = ℜ[Aαβ exp(ikµx
µ)], (1.3)

where ℜ denotes the real part of the complex components; the wave vector kµ and wave amplitude Aαβ

(which can be complex) are constants satisfying

kµk
µ = 0 (k a null vector), (1.4)

Aαµk
µ = 0 (A orthogonal to k). (1.5)

1
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This solution describes a wave with frequency

ω ≡ k0 = (k2
x + k2

y + k2
z)1/2, (1.6)

which propagates with the speed of light, c, in the direction of (1/k0)(kx, ky, kz) [8].

Before we go through the effect of the gravitational wave on matter and on the details of its polarizations,
let us briefly mention here how a gravitational wave is generated. Just as the generation of electromagnetic
waves which is due to a time changing Dipole Moment, so the generation of gravitational waves is due
to the changes of the source’s Quadrupole Moment in time. The radiation of electromagnetic waves is
usually due to the time dependency of its dipole moment

di =

∫
ρxid

3x, (1.7)

where ρ is the charge density and xi is a Cartesian coordinate and integration is over the volume. If this
integral is time-dependent, then the amplitude of the waves is proportional to its first time-derivative,
d
dt(di). However, since in general relativity the mass-energy is conserved, the time-derivative of the dipole
moment is just the integral of the momentum density

ḋi =

∫
ρvid

3x. (1.8)

But this is the total momentum in the system and so is constant. Thus there can be no dipole radiation
in general relativity. Therefore we need to look one order higher than the dipole approximation terms,
namely the quadrupole terms

Qlm =

∫
ρxlxmd

3x. (1.9)

Following Schutz [9], the amplitude of the gravitational waves is proportional to the second time derivative
of Qlm,

hlm =
2G

rc4
d2Qlm

dt2
, (1.10)

where r is the distance to the source.

To summarize: the Gravitational Waves are produced by masses which move in such a way that their
quadrupole moment varies with respect to time.

To investigate the effects of gravitational waves on matter, let us consider a test point mass which is
caught in this wave. The question is; what would be the response of this mass to the change of curvature
around it? In reality, if the mass is alone in space, it will not feel any changes. The mass will be freely
falling, which means that it will experience no forces. If we consider a pair of point test masses which
are arranged in a line perpendicular to the direction of the gravitational wave, then the relative distance
between the masses will alternatively stretch and squeeze as the wave passes through them. In this case,
the effect of wave will be such that the center of mass of the system is not displaced.

If a third point test mass is added to the system and arrayed perpendicular both to the line between
the first two masses and to the direction of travel of the gravitational wave, the distance between the
first two masses will be observed to shrink as the distance between the third mass and the first two
masses stretches, and vice versa. As with the two-mass system, the wave will affect the masses such that
the center of mass of the entire system remains constant. This effect is put to use in the construction
of gravitational wave detectors, which we will discuss at length later. Fig. (1.1) shows the effect of a
gravitational wave when it passes through a ring of test masses. The ratio of averaged changes in the
distance between two relative masses (δL1 − δL2), due to the passing of a gravitational wave, over the
original distance (L) between them will give us the amplitude of the wave

h ≡ δL1 − δL2

L
. (1.11)

In contrary to the above expression, if the masses are arranged in a line parallel to the direction of the
gravitational wave, they will experience no change in their relative distance. This is due to the fact that
there is no change in the metric in the component along the axis of the wave, as is being discussed in
more detail below.
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+ Polarization

X Polarization

Figure 1.1: The effect of gravitational wave passing perpendicular through a ring of free falling masses.
The x axis indicates the time and the y axis is the amplitude of the wave, h = (δL1 − δL2)/L, where L
is the radius of the ring and δ indicates the change in it.

Einstein’s Theory of Special Relativity applies to a space-time where there is no gravity, i.e., flat space-
time. According to this theory, the invariant interval (relative distance between two points in space-time),
is expressed as

ds2 = −c2dt2 + dx2 + dy2 + dz2, (1.12)

where dt is the time interval between the two events, and dx, dy, and dz are the spatial separation of
these two events in Cartesian coordinates. We can write the above formula in the form of tensor

ds2 = ηµνdx
µdxν , (1.13)

where µ and ν are indices independently equal to t, x, y, or z, and η is the Minkowski metric tensor:

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (1.14)

We have previously stated that the gravitational wave is a wave of space-time perturbation; that is, a
ripple of space-time curvature propagating through space at the speed of light. We have also assigned an
amplitude for such a wave, hµν , as described in Eq. (1.10), which is in fact the fractional change in the
metric caused by a gravitational wave (see below). The metric can then be rewritten as an addition to
the Minkowski metric of flat space-time to account for a passing gravitational wave

ds2 = gµνdx
µdxν , (1.15)

where gµν = (ηµν + hµν) and |hµν | ≪ 1. Since in the absence of a gravitational field the space-time is
flat, a weak gravitational field is an approximation in which the space-time is assumed to be ‘nearly’ flat.

Now, let us consider a gravitational wave which is traveling along the z axis. As previously stated,
parallel to the wave traveling direction we have no changes. Therefore the metric change has x and y
coordinate changes only. This means that gµν will only have changes in the tensor with indices of x and
y, or where µ and ν are equal to 1 or 2. The tensor gµν is symmetric, so hµν is also symmetric. The
metric perturbation hµν then takes the form (assuming we work in Transverse Traceless (TT) gauge)

hµν =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


 , (1.16)

where h+ and h× are constants and denote the two different polarizations of the wave. The h+ terms
describe the metric change in the x and y axis directions (since they are in the slots corresponding to
dxdx and dydy, or dx2 and dy2). And since we work in the Traceless gauge, the trace of the matrix must
be zero (i.e. hxx + hyy = 0, which leads us to the hxx = −hyy). The h× terms describes a wave whose
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polarization is rotated at a 45◦ angle to the h+. In the case of sinusoidal gravitational wave, these wave
polarizations can be expressed as

h+ = hxx = ℜ[A+e
−iω(t−z/c)], (1.17)

h× = hxy = ℜ[A×e
−iω(t−z/c)], (1.18)

where A+ and A× are the strain amplitude of each polarization.

1.2 Sources of Gravitational Waves

In previous section we summarized how the time-dependent behavior of the quadrupole moment of an
object causes the emission of gravitational waves. For most cases, the Luminosity of the radiated waves
is proportional to the square of the time derivation of the quadrupole moment [9]. The total Luminosity
takes the form

Lgw =
G

5c5


∑

l,m

...

Qlm

...

Qlm − 1

3

...

Q
2


 , (1.19)

where Q is the trace of the matrix Qlm (Eq. 1.9). The dependency of the distance to the source, r,
goes away from this equation because the total Luminosity is an integration over a sphere of radius r.

Apart from the effect of
...

Qlm, the factor G/5c5 = 5.49 × 10−54sJ−1 sets the characteristic gravitational
radiation power output to be extremely small. Therefore, the generation of detectable gravitational waves
in a laboratory is practically impossible.

To categorize the possible sources of gravitational waves, we therefore need to estimate the maximum
wave amplitude reaching us from, for example, the strongest detectable source. To do this we make a
very simple estimation such a way that if we consider the motion inside the source is highly non-spherical,
then Eq. (1.10) tells us that the strength of the radiated gravitational wave signal is proportional to Q̈/r.
On the other hand, from Eq. (1.9) we would have an amplitude of Mv2

N.S. for Q̈, where v2
N.S. is the

non-spherical part of the squared velocity inside the source [9]. Therefore,

h ∼ 2G

c4
Mv2

N.S.

r
. (1.20)

The virial theorem for self-gravitating tells us that v2
N.S. cannot be larger than the maximum value of the

Newtonian gravitational potential inside the system, φint. Thus, by having all of the above information
in hand, the minimum detectable strength of the source amplitude would follow as [9]

h <
2G

c2
Mφint

rc2
, (1.21)

where M is the mass of the system and r is the distance to the source. According to the above formula,
if our source is a neutron star, then we have φint ∼ 0.2c2 [9]. If this star is in the Virgo cluster (with
r ∼ 18Mpc), then the upper limit on the amplitude of the radiation would be 1.5 × 10−21. This means
that our detector should be able to observe a wave amplitude at or below this value.

Fig. (1.2) shows the possible sources of gravitational waves and their detectabilities by different type
of detectors. We expect to detect the waves from the formation of black holes and neutron stars, and
the coalescence of binary neutron stars and the final collapse of such binaries to form a black hole.
At low frequencies we expect to find continuous stochastic backgrounds created from large numbers of
discrete sources, such as binary stars in our own Galaxy. In our Galaxy we expect to find many quasi-
monochromatic sources of gravitational waves such as individual binary star systems, including binary
neutron stars as they evolve towards coalescence, and various rotating neutron star systems such as
millisecond and x-ray pulsars. We may also be able to observe gravitational waves from the Big Bang,
amplified during the inflationary epoch [10]. As the Fig. (1.2) shows, we have still some frequency ranges
in which our detectors are not sensitive. For a complete overview of the sources and their detectabilities,
we refer to the review article by Cutler and Thorne [11].

We can divide all above mentioned sources into four different classes, according to the methods of data
processing and signal extraction [10]. These four classes can be listed as; (i) Narrow-Band Sources, (ii)
Coalescing Binaries, (iii) Burst Sources, and (iv) Stochastic Backgrounds, which we describe them in
more detail below.
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Figure 1.2: The possible sources of gravitational waves and the sensitivities of different type of detectors
for different range of frequencies. Image from L. Ju et al. [10].

1.2.1 Narrow-Band Sources

The sources in this class include the rapidly rotating neutron stars that have non-axisymmetric rotation,
as well as binary star systems that are very far from coalescence.

Because the gravitational waves take energy out of the system, the periods generally evolve, so the
waveforms will be quasi-periodic. In general they are also periodically Doppler shifted by binary motion
and/or the Earth’s motion. To increase the signal-to-noise ratio (SNR), and because of the long lifetime
of such sources, in principle we can always do a long-term integration of the data to extract the signals
from the noise; the scales like

√
T , where T is the total observation time. Integrating the data for a

long time of course requires accurate knowledge of the frequency modulations to maintain a coherent
integration. With this knowledge, we can use the match filtering technique to extract weak signals from
noise. Basically in match filtering technique we multiply the signal by a template and then integrate it.

Rotating Neutron Star

The newborn neutron stars, which are formed in a gravitational collapse, may initially rotating very fast.
If their period is less than 1 ms, then they may be subjected to a class of gravitational radiation driven
instabilities (CFS instability) [12]. Their effect will be to radiate angular momentum away till they spin
down to a marginally stable condition.

For an isolated neutron star, two main mechanisms may cause the radiation of gravitational waves:
precession of their axis or a bumpy surface due to a mountain. If we assume that the irregularity in its
shape is due to a bump of mass m on its surface, then vN.S. = 2πfR and according to Eq. (1.20) the
estimated gravitational amplitude due to this bump would be [9]

hbump ≈ 8π2G

c4
mR2f2

r
, (1.22)

where R is the radius of star, f is the rotational frequency and r is the distance to the observer. If we
assume that the rotation axis is z, then

mR2 = Ixx − Iyy = ǫIzz, (1.23)
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where ǫ ≡ (Ixx − Iyy)/Izz is the ellipticity. We can therefore re-write Eq. (1.22) as

h ≈ 1.05 × 10−24
[ ǫ

10−6

] [ Izz

1038kg m2

] [
f

500Hz

]2 [
1kpc

r

]
, (1.24)

where I = 1038 kg m2 represent the value of moment of inertia for a typical neutron star with 1.4 solar
masses and radius of 10km. This shows that even for the case of rapidly rotating star (f = 500Hz) and
typical ellipticity (ǫ = 10−6), the amplitude of the gravitational wave signal is quite weak. However, as
was stated before, since we can integrate their data for a reasonably long period of the time, the SNR
can be amplified by the factor of

√
T , where T is the observation time.

Accreting Neutron Star

A neuron star accreting mass from its binary companion can be spun up until it reaches the CSF instabil-
ity. The time scale to reach in this instability would be shorter than the accretion timescale (which is in
order of few hundred million years for a accretion rate of 0.1 Eddington limit). The unstable mode grows
in amplitude until the accreted angular momentum is balanced with the angular momentum radiated
away by the gravitational wave. This will generate radiation at single and steady frequency. The accret-
ing matter also emits X-rays where the energy radiated in gravitational wave should be proportional to
the x-ray flux. The gravitational wave amplitude is roughly [12]

h ≈ 2 × 10−28

(
300Hz

f

)(
Fx

10−13J m−2s−1

)
, (1.25)

where f is the frequency of radiating mode and Fx is the x-ray flux. In the case where the instability
exists, the temperature, mass, viscosity and the equation of state of the neutron star will determine the
value of f [12].

Binary System

A system of two objects rotating around each other is an especially promising source of gravitational
waves. If we have two objects of the same mass M rotating around each other in a circular orbit of radius
R, then the second derivative of the quadrupole moment is GM2/4R [9]. Therefore according to Eq.
(1.10), the amplitude of the gravitational waves is

hbinary ∼ 1

2

G2

c4
M2

rR
. (1.26)

The gravitational wave luminosity therefore takes the form [9]

Lbinary ∼ 1

80

G4

c5

(
M

R

)5

. (1.27)

This tells us that the more massive and closer objects will radiate more energy. As the two masses orbit
around each other and radiate energy, their orbit shrinks and they come closer and closer until they
merge. Thus the frequency of the wave increases with time. This is called a chirp. The timescale for this
is [9]

tchirp =
d2Q/dt2

Lbinary
∼ 20c5

G3

R4

M3
. (1.28)

This timescale including with the hbinary for neutron star binaries observed by the ground-base detectors
give an effective amplitude of [9]

hchirp ∼ hbinary

√
fGWtchirp ∼

(
G

c2

)3/4 (M3R
)1/4

r
. (1.29)

According to Cutler and Flanagan [14], the frequency evolution of inspiraling binaries follows

df

dt
=

96

5
π8/3M5/3f11/3, (1.30)
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Figure 1.3: Three stages of a coalescence black holes binary. Image from K.S.Thorne [13].

where M ≡ µ3/5M2/5 is the chirp mass parameter with µ as of reduced mass (for this case, µ = M·M
M+M =

0.5M). So, starting from the same frequency the more massive objects live shorter.

If one can observe the shrinking time by detecting the gravitational wave, then mass of objects can be
found. If we also measure the amplitude of the signal, therefore the only unknown parameter would be
the distance to the source. Therefore by observing the gravitational wave we can directly measure the
distance to the source which is not easy to do by observing their electromagnetic radiation.

1.2.2 Coalescing Binaries

The coalescence of compact binaries, consisting either black holes or neutron stars, are the most promising
sources of gravitational waves for the ground based detectors. As mentioned above, a binary system loses
energy due to the gravitational wave radiation. This loss causes the orbit to shrink until the two bodies
merge. If the orbiting objects are black holes, then we can divide the coalescence of this binary system
into three parts as inspiral, merger and ring-down (Fig. 1.3).

In the inspiral epoch, the signal frequency would sweeps upward to the maximum of fmax = 1 kHz for
binary neutron stars and fmax = 10/(M1/M⊙) kHz for black holes with the larger mass of M1 [15]. The
characteristic amplitude of the radiated waves from the inspiraling binaries is [15]

hc = 0.237

(
µ1/2M1/3

rf
1/6
c

)
= 4.1 × 10−22

(
µ

M⊙

)1/2(
M

M⊙

)1/3(
100Hz

fc

)1/6(
100Mpc

r

)
, (1.31)

where µ = M1M2/(M1 +M2) is the reduced mass, r the distance to the source and fc the characteristic
frequency of the wave. By studying the waveform of the received signal using a network of the detectors,
we will be able to (i) find the direction of the source by measuring the phase difference in the signal at
different detectors with different location; (ii) the direction of the binary’s orbital angular momentum by
measuring the complex amplitudes of the different polarizations; (iii) the combination [µ3(M1 +M2)

2]1/5

of the reduced and total mass of the objects; (iv) the ratio (µ/M) from post-Newtonian corrections to
Eq. (1.31) and (v) the distance to the source, r [15].

1.2.3 Burst Sources

This class includes sources such as the final coalescence of compact binary star systems, or the formation
of neutron stars and black holes in supernova events. The binary coalescence events can consist of binary
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neutron stars, binary black holes, or neutron star-black hole binaries.

The burst signal consists of a very short single event (of order of few milliseconds for stellar-mass objects),
containing just one or very few cycles. The burst event is relatively broadband. Due to the very short
lifetime of this event, to be detectable the signal must be strong enough to dominate over the detector
noise in some rectangle in the time-frequency plane.

Supernovae Core-Collapse

The supernova core-collapse produces a neutron star or black hole. The explosions last for a short time
(≈ 100ms). The explosion can be observed optically from the optical light emitted from the stellar surface
starting hours after the collapse. However the envelope is optically thick and the optical observation
cannot give any information about the core. Therefore gravitational waves would be the only possible
means of having direct observation of the core collapse. Although the neutrinos will be emitted from the
core bounce, but its flux decays with the square of the distance to us and therefore its detectability is
quite low.

The signal radiated from the core collapse depends on its speed and its degree of non-sphericity; therefore
the generated signal is complex and hard to model. Nevertheless, the waveform’s characteristic amplitude
can be approximated using the (unknown) total radiated energy, ∆EGW, as [15]

hc
∼=
(

3

2π2

∆EGW/fc

r2

)1/2

= 1.35 × 10−20

(
∆EGW

M⊙c2

)1/2(
1kHz

fc

)1/2(
20Mpc

r

)
, (1.32)

where M⊙ is the mass of the Sun and 20Mpc is the distance to the center of the VIRGO cluster (assuming
the Hubble constant to be 70 km s−1 Mpc−1), r the distance to the object and fc the characteristic
frequency. Defining ε ≡ ∆E/Mc2, this becomes [15]

hc
∼=
(

15

2π
ε

)1/2
M

r
= 5.0 × 10−21

( ε

0.01

)1/2
(

103Hz

fc

)1/2(
10Mpc

r

)
. (1.33)

1.2.4 Stochastic Background

Stochastic backgrounds can be produced by a variety of mechanism. They are produced form the in-
tegrated effects of many weak individual periodic sources in our Galaxy. Or they can be generated
from a large population of burst sources at very large distances. They can also be the remnant of the
cosmological processes in the early universe, i.e. Big Bang.

Stochastic backgrounds are difficult to detect in a single detector because they are practically indistin-
guishable from instrument noise. If the source was not isotropically distributed (such as a population
of binary stars towards the center of our Galaxy), it might be detectable from the variation of observed
instrument noise as the detector orientation varied on the rotating Earth. However, a much better way
of detecting stochastic backgrounds is by cross-correlating two nearby detectors. In this case the corre-
lated stochastic signal will integrate up in relation to the uncorrelated instrument noise (assuming both
detectors to be truly independent). In this case the signal to noise ratio increases as N1/4, where N is
the effective number of cycles [10].

Much of our observational knowledge about the early universe comes from the Cosmic Microwave Back-
ground Radiation (CMBR), which was produced when the universe had a temperature of about 3000 K,
corresponding to 3 × 105 years after the Big Bang, and from studying nucleosynthesis, a process that
took place in the first few minutes of the Universe’s existence. By comparison, the gravitational radi-
ation background was generated earlier than 10−24 second after the Big Bang [9]. Therefore detecting
the stochastic background of gravitational waves produced in the early universe would give us unique
information about the universe very close to the Big Bang.

One of the scenarios that explains the homogeneity of the universe is inflation. If the inflationary picture
is true, then it creates a gravitational wave background by parametric amplification.

We can characterize the stochastic background of gravitational wave by the energy density rather than
its mean amplitude. For this, we compare (normalize) this energy density of the gravitational wave to
the critical energy density required (today) to close the universe [16]. The critical density is determined
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by today’s expansion rate of the universe. In analogy to other contributions to the universe’s energy
density, the spectral function Ω(f) for gravitational waves can be defined [16] by

Ωgw(f) =
1

ρcritical

dρgw

d ln f
. (1.34)

This is roughly the fraction of the energy density in random gravitational waves between the frequency
f and 2.7f . The inflation scenario predicts a flat value of Ω(f), while any other alternative would have
different spectrum of the gravitational wave [9].

For our purpose, it is convenient to convert the gravitational wave spectral density to a characteristic
amplitude [16], as

hc(f) ∼= 3 × 10−20
√

Ω(f)
100Hz

f
. (1.35)

As an example, if Ω(f) = 10−8, over a frequency bandwidth of 50Hz < f < 150Hz, the characteristic
strain in an ideal detector is hc ≈ 10−24 [16].

After discussing all four main classes of gravitational waves sources, we see that the neutron stars can
produce gravitational waves in all four classes. First, a large population of binary neutron stars in our
Galaxy, with the range of orbital periods from days to minutes, can produce a stochastic background of
individually unresolvable sources in the frequency band of ∼ 10−2 − 10−5 Hz. In addition to the binary
orbit, the individual rotation of the stars themselves (if they are non-axisymmetric) will also give rise
to quasi-periodic gravitational waves. As the binary evolves and radiates away gravitational potential
energy, it will gradually spiral inwards. Eventually the stars will coalesce, resulting in a short intense
burst of gravitational waves.

1.3 Detectors

Although the existence of gravitational waves was observed indirectly by measurements on the Hulse-
Taylor binary pulsar, the direct detection of that was always limited by the technology. The pioneering
work of Joseph Weber began this field in the late 60’s, and since then the actual search for the gravitational
waves has been carried out using different types of detectors.

There have been two classes of detectors, ground based (under operation) and space based (under
plan). The ground based detectors can also be divided into two different categories, Bar and Laser
Interferometric detectors, which have different mechanisms of detection. The space based detectors
are actually based on Laser Interferometry, but on a larger scale. We give a brief introduction to each
below.

1.3.1 Bar Detectors

Bar antennas absorb energy from a passing gravitational wave in the frequency band in which they are
mechanically resonant. The idea behind these devices is that as a gravitational wave passes through an
object, it exerts a tidal force (squeezing and stretching), causing the object to deform. If the object is
vibrating at a characteristic frequency and the wave has also the same frequency, then the deformation
will appear as a resonance in the vibration. When a gravitational wave hits the bar, a transducer coupled
to the bar’s longitudinal mode amplifies the oscillation amplitude, producing an electrical signal that is
converted into digital information.

The first aluminum bar detector was proposed in 1960 [18] and designed in late 1960s by Joseph Weber
of the University of Maryland. He used a massive cylindrical bar, 1.5m long and weighing about a ton,
at room temperature and in a vacuum chamber. He selected the frequency of 1660Hz for his experiment
and compared the residual vibrations in the bar with the vibrations in similar bars separated by 1000
kilometers [19]. When the separated bars vibrated in coincidence, this was taken to be evidence for the
existence of gravitational waves. Weber began to make credible claims of this sort in the late 1960s
and early 1970s [19]. However, Weber’s claims faltered after other physicists who had built their own
more sensitive bar detectors could not find the signals that Weber claimed to have recorded. Work
on bar detectors continued to progress, with sensitivity improvements and noise reductions of orders of
magnitude being achieved. However, none of these next-generation bar detectors succeeded in definitively
recording a gravitational wave signal either.
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Weber’s detector in fact was very similar to the modern cylindrical resonant bar detectors (called the
second generation of bar detectors). The main difference is in the operating temperature (now detectors
are kept at very low temperature – in the temperature of liquid Helium – to reduce the thermal noise)
and in the conversion of the mechanical vibration signal into an electrical signal [20]. The sensitivity
of an antenna (bar) can be improved in a number of ways. First, the force a gravitational wave exerts
on the antenna can be increased by increasing the mass of the antenna. Second, the antenna can be
made in such a way to be equally sensitive to all directions and polarizations. To fulfill this, a spherical
resonant antenna was proposed and is under construction [21]. Third, the noise temperature (level of
excitation from non-gravitational sources) of the antenna can be lowered. So, as result of such a proposal,
to improve the sensitivity of the detectors, which is limited by quantum mechanical states of the bar, the
next generation is moving toward greater masses.

Since the 1990’s bar detectors have been sensitive enough to detect burst signals originating from su-
pernovae in our galaxy and they have begun to look for continuous wave signals. They are currently
organized as a network to look for gravitational wave bursts. Resonant detectors have also been used
to search for coincidences between impulsive strain events observed in massive detectors and supernovae
[22].

The current resonant bars are sensitive at frequencies of about 700 to 900 Hz, with band widths of about
50 Hz. Their best strain sensitivity is at the level of ∼ 10−21 − 10−22 Hz−1/2 [23], which is sufficient to
detect gravitational wave bursts that may occur within our Galaxy. No resonant bar detector has yet
detected a source, and the upper limit they provide on the spinning neutron stars is about 2 × 10−23 in
the frequency band of 921.00 to 921.76 Hz [24].

Currently there are 5 such instruments in operation around the world. There have been at least two
detectors in continuous coincident operation since 1993. The experiments are ALLEGRO, AURIGA,
EXPLORER, NAUTILUS, and NIOBI. Some of the groups associated with these instruments are
planning new experiments to make detectors of much greater sensitivity.

ALLEGRO (A Louisiana Low temperature Experiment and GRavitational wave Observatory) is an
experiment operated by the Louisiana State University in Baton Rouge, Louisiana, USA [25]. This
experiment employs an Aluminum bar cooled to 6K. It operates at a frequency of 900Hz, and has a strain
sensitivity of 1× 10−21 Hz−1/2 [23]. ALLEGRO has had two data runs, with the first covering June 1991
through January 1995, and the second covering 1996 to the present time. A search for coincidences with
the EXPLORER detector of the University of Rome was made for the last 6 months of 1991 and for the
two months around the time of supernova 1993J. But no coincident events were found.

The AURIGA detector is run by the Instituto Nazionale di Fisica Nucleare (INFN) in Legnaro, Italy
[26]. It is an Aluminum cylindrical bar of 2300kg mass, 3m long and 60cm diameter cooled to 0.1K. It
operates at a frequency of 920Hz, with a sensitivity of 2 × 10−22 Hz−1/2 [23]. AURIGA has had runs
from June 1997 until November 1999 and a second from 2003 until now.

The EXPLORER detector is based at CERN and is operated by the University of Rome. It weighs
2300kg and 3m long and it has a diameter of 60cm Aluminum cylindrical bar cooled to 4.2K and operates
at the temperature of 2K. It operates at the resonance frequencies of 906 and 923Hz, and has a strain
sensitivity of 6 × 10−22 Hz−1/2 at 923Hz [23].

The NAUTILUS detector is run by the Instituto Nazionale di Fisica Nucleare (INFN) at the Laboratori
Nazionali di Frascati Italy. It weights 2300kg, 3m long and has a diameter of 60cm. It is cooled at the
temperature of 0.1K by means of a dilution refrigeration system. Its resonance frequencies are around
908 and 924Hz. NAUTILUS has a sensitivity of 3 × 10−22 Hz−1/2 [23] .

The NIOBE detector is operated by the University of Western Australia at Perth, Australia. It is a
niobium bar operating at a temperature of 5K. It is sensitive at a frequency of 700 Hz and has a sensitivity
of 8 × 10−22 Hz−1/2 [23].

Sources of Noises in Bar Detectors

There are many non-gravitational wave sources that can excite the resonances of the detector.

Seismic Noise: The largest of these sources can be external vibrations, such as ground noise. A
sophisticated vibration isolation system is then necessary to keep these forces from exciting the antenna.
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Thermal Noise: The effect of thermal noise itself in a bar detector is quite significant. As an example,
for a typical bar detector like NAUTILUS or AURIGA cooled in 0.1K with mass of 2300kg and the
resonant frequency as 910Hz, the rms amplitude of vibration would be [9]

〈δl2〉1/2
th =

(
kT

4π2Mf2

)1/2

∼ 4.3 × 10−18, (1.36)

which is much larger than a typical gravitational wave amplitude. However for a material with quite high
quality factor Q (e.g.∼ 106) in its fundamental mode, the changes in its thermal amplitude would be like
a random walk with the steps that takes a time duration of Q/f ≈ 1000s. This is the time for the mode
energy to change by thermal energy [9]. But for a gravitational wave event like a burst, which last about
1ms, the changes due to this random walk would be (1000s/1ms)1/2 = Q1/2 times smaller. Therefore the

rms fluctuation in amplitude due to thermal effect would be 〈δl2〉1/2
th: 1ms/Q

1/2 ∼ 4.3× 10−21 in this case.

This tells us that if the integration time of the observations is kept sufficiently short, the effect of the
thermal noise can be minimized. On the other hand, having a larger observational time increases the
signal-to-noise ratio (SNR). So, one of the best way to have a larger SNR in the same time of reducing
the thermal noise is to use a high-Q material.

Sensor (or Series) Noise: As we have mentioned earlier, the vibration in the bar detector is converted
to an electrical signal by a transducer which is attached to the bar. This electrical signal is amplified and
then recorded. But sensing the vibration is not perfect and produces some noise. This is an additive and
wide-band noise which effectively reduces the sensitive band of the detector to a narrow range around
the excitation frequency.

By reducing the amplifier noise as well as increasing the coupling of the transducer to the antenna, the
series noise can be decreased. Increased coupling will boost the amount of signal energy transferred to the
motion sensor without increasing the series noise, so there will be a net gain in signal-to-noise. However
the motion sensors can also generate a force noise that can excite the resonant mass. This type of noise
is referred to as back-action noise. Just as the transducer can see what the large mass is doing, the large
mass can also see what the transducer is doing. Increasing the coupling causes more back-action noise to
be transferred to the antenna.

1.3.2 Laser Interferometric Detectors

As was discussed in section 1.1, a gravitational wave alternatively stretches and squeezes the relative
distance between two bodies. This motivates using a detector based on a Michelson-Morley interferometer.
So, according to the laser interferometric technique, the relative change in the length between two bodies
(in each arm), δLi, i = 1, 2, will cause a phase shift in the laser beam reaching the photo-detector. By
measuring this phase shift, which appears in the movement of the interference fringes in the detector’s
photodiode, we can calculate δL1 and δL2. For expected signal strength from the nearest detectable
sources, the phase shifting would be of the order of ∆φ ≈ 10−10 radian, or equivalently with δL =
δL1 + δL2 ≈ 10−20 − 10−18m. The phase shifting can be formulated as

∆φ =
4πδL

λlaser
=

4πLh

λlaser
, (1.37)

where λlaser is the wavelength of the laser used for the experiment. Therefore the longer the light path,
the larger is the phase shift for the same h. So, making the light path as long as possible would be one
way to increase the sensitivity of the measurement. But, practically we are limited in doing that. If
L > λGW /4, gravitational wave changes its sign while the laser light is still in the arms, which cancels
the effect on ∆φ. Therefore we are limited to the arm lengths to be L ≤ λGW /4. Suppose the frequency
of GW is about f = 100Hz, therefore its wavelength would be λGW = c/f = 3000 km. So, according
to the above constraint we have L ≤ λGW /4 ≈ 750 km. This is the maximum arm length that can be
selected for the interferometer to detect a signal with that particular frequency. However, even though,
reaching to that length is not in fact practical. Because it requires construction of a large vacuum tube
with this size plus a powerful laser light that survive and does not diverge before reaching to the test
mirror on the other end of the interferometer. What is practically possible is to let the laser beam travel
many times inside the interferometer to take an approximate traveling distance near the above mentioned
limit. This is done by using the Fabry-Perot cavity inside each of the detector’s arms (see Fig. 1.4). If
we want to reach to the maximum possible laser traveling distance, 750 km for this case, and to search
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Figure 1.4: A simple view of an Interferometric detector. L is the length of the detector. The output
power of the laser is usually in order of 10W (pointed by a blue circle with the number of 1). Then it
is being cleaned and pure by removing noise in Mode cleaner. Therefore it reduces some power before it
reaches the Power Recycling Mirror. As an estimate, the power of laser before it enters the main system
would be in order of 5W (indicated by point 2). The two Fabry-Perot mirrors plus the power recycling
mirror make the power recycling cavity. When the laser beam is being recycled in the recycling cavity,
the gain would be by a factor of few tens. As an example, in point 3, the power of laser would be about
250W. At the end, in the Fabry-Perot cavity (point 4) the power of the laser increases significantly. As
a rough example, it would be in order of 15KW. The signal recycling mirror, which is currently used in
GEO600, allow us to tune the response of the interferometer. For more details we may refer the reader
to the explanation in the text body.

for a GW with a frequency of 100Hz by using a 4 km arm length of interferometer, the laser beam must
travel N ≈ 200 times inside the cavity. In this case the phase shift would be [27]

∆φ = N

(
4πδL

λlaser

)
. (1.38)

The use of Fabry-Perot cavity is one of the techniques used to increase the sensitivity of phase shift
measurement. If the interference at the detection port is locked to the dark fringe, then all the power
is reflected towards the laser. By means of an additional mirror placed between the laser and the beam
splitter (see Fig. 1.4), the reflected light is re-injected into the interferometer. This technique is called
power recycling, and the mirror used for this purpose is the recycling mirror. This mirror, together with
two Fabry-Perot mirrors, make the power recycling cavity [28]. If the cavity length is properly tuned,
the light resonates in it and the power entering the beam splitter is increased by a factor R (called the
recycling factor). As a consequence, the interferometer sensitivity is improved by a factor

√
R [42].

There are still other noise sources in which must be taken into account. One of the most important,
especially at low frequencies, is seismic vibrations. To mitigate this, a complex system of pendulum is
used to suspend the mirrors [29].

Fig. (1.4) gives a schematic view of an Interferometric gravitational wave detector. To have a rough idea
about the details of the elements shown there, let us review the facilities used in the LIGO detectors1

1LIGO detectors H1 and H2 correspond to the Hanford, Washington, 4km and 2km detectors respectively. L1 Indicates
the 4km detector in Livingston, Louisiana.
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[30]. The laser used in these detectors are in a single frequency at 1064nm with output power of 10W
and beam radius of 3.6cm. The input power after the mode cleaner and before it enters into the power
recycling cavity is 6W, 6W and 2.5W for H1, L1 and H2 respectively. The recycling gain for H1, L1 and
H2 is 50, 40 and 60, respectively, which therefore gives an input laser power to the Fabry-Perot cavity
of order of 300, 240 and 150 watts respectively. The stored power in the Fabry-Perot cavity is 20KW,
16KW and 10KW for H1, L1 and H2. The size of mirror for all detectors are 25cm in diameter and
10cm in thickness, with mass of 10.7kg. Increasing the mass of the mirror reduces the effect of thermal
vibrations of the suspension, as well as fluctuations in radiation pressure. For example, the mass of the
mirrors in VIRGO detector is 21.2kg. The displacement in the mirrors reveals itself as a phase shift at
the photodiode at the dark port. Then the electrical signal from the photodiode is filtered and digitized
continuously at a rate of 16384 Hz.

Sources of Noise in Interferometric Detectors

In general, for ground-based detectors, the most important limitations to sensitivity are from seismic
noise, thermal noise associated with the test masses and their suspensions, shot noise in the photocurrent
from the photodiode, and radiation pressure recoil effects on the interferometer mirrors.

Ground Vibration (Seismic) Noise: Seismic noise is quite serious for a laser interferometer detector,
since the laser beam travels many times inside the detector and each time is affected by these noises.
Seismic noise at a reasonably quiet site on the earth follows a spectrum in all three dimensions close to
10−7f−1/2 m Hz−1/2 [40]. So, if we look for a vibration in each test mass to be less than, say 3 × 10−20

(∼ 10−19 in total for 3 mirrors) at, for example, 30 Hz then we should have a reduction in the seismic
vibration greater than 109 in the horizontal direction.

A simple way of reducing the horizontal fluctuation in the mirrors is to use a pendulum. A pendulum is a
good filter for vibration above its natural frequency, because the transfer function to the pendulum mass
of the horizontal motion of the suspension point falls off as 1/f2 above the pendulum resonance [40].
Using a more complex pendulum system allows one to reduce the seismic noise at quite low frequencies.
For example, GEO600, in principle by having a three-stage pendulum system, can have a good sensitivity
below 50Hz. Or for the case of VIRGO, the 7 stages system allows the observation ideally to be in desire
sensitivity to below 10Hz.

Thermal Noise: There are several important sources of the thermal noise, namely from the internal
modes of the mirrors and the pendulum mode of suspended mirrors (the so-called violin mode of the
suspension wires). These noises come form the thermal energy of the atoms and molecules in the test
masses and suspensions. The thermal noise inside the mirrors show themselves as the Brownian motions.
This noise occurs since there is a kT/2 energy per degree of freedom in any mechanical system, with the
importance of this noise being dependent on the level of internal friction in the system [41]. Therefore
in selecting the mirrors as test masses, several requirements must be satisfied. For example, in the
case of thermal noise, the mirror should have a low coefficient of thermal expansion and high thermal
conductivity.

For long-baseline interferometers like the initial LIGO detectors, the thermal noise is significantly larger
at the low frequency end of detector’s operating range, say above 40Hz, and continues up to a couple of
hundreds Hz.

Photoelectron Shot Noise: The laser light photons are quantized. This leads to a random fluctuation
in the detected light intensity, which mimics a gravitational wave signal. The more photons, the less the
relative fluctuation. The limits that this fluctuation (noise) makes on the phase spectral sensitivity can
be given as

∆φshot ∼ 1/
√
N, (1.39)

where N is the photon flux entering the beam splitter [42]. As a consequence of this relation, the detector
sensitivity improves when the light power injected into the interferometer is increased.

Radiation Pressure Noise: The radiation pressure comes from the forces that laser light’s photons
exert on the mirror due to their impacts. Therefore for a freely hanging mirror, the radiation pressure
pushes on the mirrors and results changes in the length of the cavity. This together with the pendulum
restoring force, balance each other to produce an equilibrium position for the mirror. This uncertainty
in the position of the mirror results the radiation pressure noise. Based on the origin of this noise, it is
clear that a more powerful laser results more radiation pressure noise. But this is in contrast with the
nature of shot noise, where a more powerful laser brings a less shot noise. The radiation pressure and the
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shot noise together follow the Heisenberg uncertainty principle [43]. Therefore in practice they should be
optimized by selecting a suitable power for laser and the mass of the mirror – the larger mass the lower
in the radiation pressure noise. This is an issue that in the future detectors will be taken into account,
when a more powerful laser will be used.

Currently operating interferometric detectors

There are several interferometric detectors across the world which have started to collect data. We list
them below with a short description.

The LIGO detectors are located in the USA. It comprises three detectors, with a 4km interferometer,
H1, and a 2km interferometer, H2, using independent components, sharing the same vacuum tube at
Hanford, Washington. A single 4km interferometer, L1, occupies a similar vacuum system at Livingston,
Louisiana.

The GEO600 detector, located near Hannover, Germany, is operated by a team of scientists from
Germany and the United Kingdom. Its arms are 600 meters large. Because of its shorter arms, GEO600
is not expected to achieve a sensitivity comparable to LIGO, but more advanced suspension and vibration-
isolation technologies should close some of that gap.

GEO600 also uses a signal-recycling mirror at the gravitational wave detection port. This mirror causes
gravitational wave signals on the light to resonate in the interferometer within a certain band of frequen-
cies. Changing the reflectivity and position of this mirror allows the response of the interferometer to be
tuned. One can in principle choose to operate in a relatively broad band mode or as a narrowly tuned
detector (Fig. 1.4).

The LIGO detectors, in cooperation with GEO600 (LIGO Scientific Collaboration (LSC)), have already
done 5 science runs since 2002 until 1st October 2007.

From 23rd of August till 9th of September 2002 a first common data run (S1) between all three LIGO
detectors and GEO600 was undertaken consisting of 17 days of mostly uninterrupted operation. Since
the detectors had not yet achieved their designed sensitivity, the aim was to gain experience with data
acquisition and data analysis [31].

The second LIGO science run (S2) took place over the period of 14 February 2003 to 14 April 2003.

The third LSC science run, S3, was performed between the 1st of November 2003 and 9th of January
2004. For GEO600, the commissioning work produced a stably-locked Dual Recycled (Power and Signal
recycling) Michelson (DRMI) only about two weeks before the start of S3, and thus left little time for
testing and sensitivity optimization. Therefore it was decided that GEO600 would run for about one
week, near the beginning of S3, then go off-line to allow time to improve the sensitivity and stability
of the detector, and finally rejoin the run. Thus, the GEO600 S3 science run was divided into two
separate periods of time, having somewhat different interferometer configurations and sensitivities. The
first period ran from 5th of November through 11th, and the second, from 30th of December to 13th of
January (a few days after the end of the LIGO S3). These are referred to as S3-I and S3-II respectively.

The S4 science run, which lasted from 22 February to 23 March 2005, featured good overall “science mode”
duty cycles of 80.5%, 81.4%, and 74.5% for H1, H2, and L1, respectively, corresponding to observation
times of 570, 576, and 528 hours. Thanks to improvements made after the S3 run, the detector noise
during S4 was within a factor of two of the design goal over most of the frequency band, as shown in Fig.
(1.5). The GEO600 interferometer also collected data throughout the S4 run, but was over a factor of
100 less sensitive than the LIGO interferometers at 200 Hz and a factor of few worse at and above the
1kHz frequency range.

On 4 November 2005, LIGO started the S5 science run with the aim of taking data for more than a year.
On 2 May 2006 GEO600 joined the S5. The S5 run was stopped at the 00:00 of the 1st October 2007.
As can be seen from Fig. (1.5), the S5 run reached the LIGO designed sensitivity in most of the LIGO
band. The plan for the future of LIGO detectors are explained in the next section under the Enhanced
and Advanced LIGO.

The VIRGO detector is a 3-km instrument situated in Cascina (near Pisa), Italy, operated by a collabo-
ration of scientists from Italy and France. VIRGO employs a similar configuration to the LIGO detectors,
but has a more advanced vibration-isolation system. VIRGO’s best sensitivity is comparable with initial
LIGO at the frequency range of above 1kHz, but is in a factor of 10 far in the frequency range of 50-300Hz
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Figure 1.5: The LIGO sensitivities with the comparison among different LIGO science runs (S1-S5). The
LIGO design sensitivity is also plotted with a dashed line. This plot shows that the LSC basically reached
to the designed sensitivity in S5. In some frequencies the S5 has even better sensitivity than the design
one. Data to plot these curves have been taken from [32].

[33]. VIRGO designed strain sensitivity is about 2× 10−21Hz−1/2 at 10 Hz and about 4 × 10−23 Hz−1/2

at the range of frequencies between 100 and 600Hz. The best sensitivity that VIRGO could reach is
about 2 × 10−22 Hz−1/2 at the frequencies of 300-500Hz, but is still far from its design sensitivity at
10Hz [33]. After steady progress in the commissioning activity, the VIRGO detector is near to its design
sensitivity. VIRGO had 7 Week-end Science Run (WSR) since September 2006 until January 2007 [33].
The first science run of the VIRGO started on 18th May 2007 and the plan was to run it for four months
[34] which has coincidence partly with the S5 run of LIGO. VIRGO will be upgraded in 2008, mostly by
increasing the laser light power from 20 to 50 Watts with an expected sensitivity improvement of about
factor 3 [34]. The advanced VIRGO is planned for the year 2011 with an improvement in the sensitivity
of factor 10. This requires for it to have laser power of about 200 Watts [34].

The TAMA300 near Tokyo, Japan has 300-meter arm lengths. The basic optical configuration is similar
to that employed in the LIGO and VIRGO detectors. Because of its smaller size, TAMA300 cannot
achieve the sensitivity of the larger interferometers, but it was the first of these large-scale detectors to
come into operation. It was started in 1995. The purpose of the instrument is to develop technology for
a future kilometer-scale instrument. There have been 9 data runs with the instrument. The latest run,
called Data Taking 9, started on 28 November 2003, and ended 10 January 2004, and overlapped the last
half of LIGO’s S3 run. The best sensitivity that TAMA300 could reach was 5 × 10−19 Hz−1/2 which is
several order of magnitude far from LIGO detectors.

1.3.3 Future Detectors

Enhanced LIGO (LIGO II)

Again, the initial LIGO, known as LIGO I, reached its designed sensitivity during the S5 run. Therefore
the plan for the improvement in the sensitivity is to stop the observation for about 2.5 years after S5
(starting from October 2007) and make some hardware improvements that will bring a factor of 2-3
improvement in the sensitivity and 5-10 in the event rate compare to the LIGO I. In this Enhanced
LIGO, known as LIGO II, the major changes will be increasing the input laser power from 10W to 180W
which gives an input power into power recycling cavity of about 125W instead of 6W used in LIGO I,
and increasing the power recycling factor from 50 to 80. The mirrors will also be changed to have 28cm
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diameter and 30kg mass instead of 25cm and 10kg as used for LIGO I. The plan is also to use a signal
recycling mirror at the detection port (as being used in GEO600). A better suspension system, similar
to what is being used in GEO600, will also be used to lower the low-frequency cutoff from 40Hz to 10Hz
[35, 36].

Advanced LIGO

The experience with enhanced LIGO should help with the development of Advanced LIGO. The hardware
should be ready for installation at the end of 2010 and launched in 2014 [36]. The improvement in the
sensitivity in Advanced LIGO will be about a factor of 10 compared to LIGO I.

The planned test mass optics for Advanced LIGO are about 34cm in diameter to reduce thermal noise
contributions and more massive (40kg) to keep the radiation pressure noise to a level comparable to the
suspension thermal noise. The laser power in the Fabry-Perot cavities will be on the order of 1MW.

Space Based Detectors

Like ground-based interferometric GW detectors, a space-based detector (such as LISA) uses the laser
interferometric technique. The Laser Interferometer Space Antenna (LISA) is a joint project between
European Space Agency (ESA) and NASA. It consists of three spacecraft which each of these spacecraft
will carry two telescopes with associated lasers and optical systems. Pointing in directions separated by
60 degrees, the telescopes in each spacecraft will exchange laser beams with the other two spacecrafts,
located at the other two corners of a 5 million kilometers equal-sided triangle [37]. Each of the three
LISA spacecraft has a shape of cylinder with 1.8 meters diameter and 0.48 meters high. With this design
the spacecraft size and shape are optimized to contain the instrument’s optical assemblies.

According to the current concept, the three identical LISA spacecrafts will go into space together on a
single rocket, and will then independently take up their long-term orbits around the Sun. The orbits
will be similar to that of the Earth, but will trail behind our planet at distances of around 50 million
kilometers.

It will take one year for the three spacecraft to reach their final position and to start the actual mission.
The LISA triangle will be angled at 60 degrees to the plane of Earth’s orbit and revolving with the Earth
around the Sun. These particular heliocentric orbits for the three spacecrafts were chosen so that the
triangular formation is maintained throughout the year, with the triangle appearing to rotate about the
center of the formation once per year. The relative movement of the three spacecraft will help to detect
the direction of each source and to reveal the nature of the gravitational waves.

Each of these three spacecrafts will play the rule of both the laser source and the detection plate.
Therefore, in the end, LISA will consist of three independent laser interferometric detectors.

The laser light in the LISA, instead of being reflected using mirrors, is transposed back to the central
spacecraft. Also LISA does not use any beam splitter to split laser beam to be sent toward the other test
masses at the other corners of triangle. One spacecraft, which acts as a laser light source in this case,
transmits the laser beam to the other two spacecrafts by keeping part of the light as reference inside itself.
Since the other two spacecrafts are far from the main one, the laser beam reaches them is very week.
Therefore, the two corner spacecrafts rather than sending back the same beam to the main spacecraft,
they transmit a new laser light with the same phase of the incoming beam. At the main spacecraft, the
signals from the two other spacecrafts are compared to measure the variation in distance between them
and the main spacecraft [38].

Apart from the complexity of aiming the laser beams from one small spacecraft to another across 5
million kilometers of space, LISA has to deal with other forces besides gravitational waves which will
alter the separation of the spacecrafts - the Solar wind, magnetic fields, thermal effect and the pressure
of sunlight, for example. This is due to another difference between LISA and a ground-based laser
interferometric detector that the test masses are not suspended by wires, instead they are freely floating
inside the spacecraft. This mechanism in fact tries to protect the main part from the movement due
to some external forces other than GWs, such as solar winds etc. In the case of un-wanted external
forces, the outer shell of spacecraft changes its position whereas the inner part (the main apparatus for
interferometry) remains steady. At the next, by using some electrical mechanism, the outer shell will be
forced back to its original position. Therefore, the main part will be always protected from the movement
due to other forces than gravitational wave’s effect.

The distance between the spacecraft determines the frequency range in which LISA can make observations;
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it has been carefully chosen to allow observation of most of the interesting sources of gravitational
radiation, namely massive black holes and compact binary stars. LISA can cover the frequency range of
10−5 − 10−1Hz. The optimal LISA sensitivity, for a one year of observation with a signal to noise ratio
of 5, will be about 10−23. LISA’s best sensitivity is at a frequency of 10−2Hz [39].
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Chapter 2

Basic Concepts

In this chapter, we review the standard basic concepts of data analysis that have been used in the course
of research for this thesis. It cannot be our aim to provide an exhaustive account of this complex subject;
instead, we give a highly selective presentation of those aspects that are most important for the research
in question.

In section 2.1, we will give a brief account of the signal phase model for a gravitational wave reaching any
ground-based interferometric detector, considering in 2.2 the variation in the detector’s response due to
the Earth’s orbital and rotational motion. In 2.3, we introduce the basic concepts of statistics that are
crucial for GW data analysis, establishing our notation for what is to follow. Finally, in 2.4, we explain in
more detail the key concept for the research to be described in the later chapters, namely the maximum
likelihood function or F -statistics. The chapter is rounded out by very brief accounts of the Short Fourier
Transform.

2.1 Signal phase model

In this thesis, the only kind of signal under consideration is the continuous signal from isolated neutron
stars. For further simplification, let us assume that the source is at rest relative to the detector, so that
proper motion effects do not arise. This poses no restriction on our analysis – even when there is proper
motion, the resulting Doppler shift can be absorbed into an overall Doppler shift, and thus is effectively
unobservable.

For data analysis making use of time series data, precise knowledge of the evolution of the signal phase
is very important. However, in what follows, we shall work in the frequency domain; therefore, we will
focus on the signal’s power (the square of its amplitude). The only way in which the evolution of the
phase contributes is to the frequency evolution.

In general, the intrinsic gravitational wave frequency f(t) of a continuous signal from a neutron star, as
received in the Solar System Barycenter reference frame (SSB), will change but slowly with time (with
the exception of possible glitches or other instabilities). Hence, we can expand the time-dependence of
the phase as a Taylor series in the SSB, as follow [44]

Φ(tssb) = Φ0 + 2π

[
f0∆tssb +

1

2
ḟ0(∆tssb)

2 +
1

6
f̈0(∆tssb)

3 + · · ·
]

= Φ0 + 2π
s∑

k=0

f (k)(t
(0)
ssb )

(k + 1)!
(∆tssb)

k+1

= Φ0 + φ(t), (2.1)

with Φ0 the initial phase; generally, we only need to take this expansion up to some specific order s.
Taking the time derivative of this expression, the frequency evolution has the form

f(tssb) =

s∑

k=0

f (k)(t
(0)
ssb )

k!
(∆tssb)

k, (2.2)
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Figure 2.1: Diagram of the SSB and the detector’s position and the vectors used to indicate them. The
SSB is usually being taken by ignoring any massive objects near the Sun.

where tssb is the time measured in the SSB frame, ∆tssb ≡ tssb − t
(0)
ssb , while t

(0)
ssb is the time at which the

observation starts; f (k)(t
(0)
ssb ) is the kth time derivative of the frequency at the initial time,

f (k) =
∂kf

∂tkssb
|
t
(0)
ssb

. (2.3)

The s terms f (k) are known as spin-down parameters ; the name reflects the fact that in the typical
case (no accretion), these terms will reflect how the neutron star loses its energy as it radiates away
gravitational waves; in consequence, it spins down.

As we change from the SSB frame to an Earth-centered frame, we need to take into account the Doppler
shift resulting from the Earth’s orbital motion and rotation. Conversely, any signal received by our
ground-based detector will need to be demodulated. To this end, let n be the unit vector pointing from
the SSB toward the pulsar, r(t) the position of the detector in the SSB frame (i.e. r(t) = rorb(t)+rrot(t),
where rorb(t) is the vector from SSB to the Earth’s center and rrot(t) the vector from that center toward
the detector). Furthermore, let v(t) be detector’s velocity, more concretely: its change in position over
time t, where time is measured in the detector frame (see Fig. 2.1).

A precise description would need to take into account a number of relativistic effects, as well, notably
the Shapiro delay (a time delay that is due to propagation past the Sun) and the Einstein delay (a
direct consequence of the gravitational redshift). For a full description of the phase evolution including
relativistic effects, the reader is referred to Appendix A of Jaranowski, Królak, and Schutz (JKS) [44].
These effects are effectively included in our actual analysis of GW data, but for the exposition here they
are a needless complication, and we will henceforth ignore them. With this simplification, a wave reaching
the SSB at time tssb will reach the detector at time

t = tssb −
r(t) · n
c

. (2.4)

Calculating ∆tssb by using Eq. (2.4) in Eq. (2.1), and ignoring higher order terms, we obtain to a good
approximation the instantaneous frequency of the signal as seen by the detector. It turns out to be given
by the familiar Doppler shift expression

f(t) ∼= f(tssb)

(
1 +

v(t) · n
c

)
, (2.5)

where f(tssb) is the instantaneous frequency of the signal in the SSB frame as defined in Eq. (2.2).

Eq. (2.5) describes the approximate frequency modulation of the received signal. The received signal is
also amplitude modulated – the antenna pattern changes over time as the detector is carried along by
the Earth’s rotation. This effect will be discussed in the following section.
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2.2 Signal at the detector

The signal received at the detector is both phase modulated (cf. the previous section) and amplitude
modulated. Both effects are due to the Earth’s motion and rotation relative to the SSB. Amplitude
modulation is due to the fact that, as the Earth rotates, the detector’s orientation relative to the incoming
waveform changes; in consequence, so does the detector’s response. In order to write down the form of
the signal as received by the detector, we will need to take this effect into account.

To this end, let x(t) be the output of a given detector. In the absence of a GW signal, x(t) is just noise
n(t). We will assume n(t) to be a stationary, Gaussian stochastic process with zero mean (this is a good
approximation for the short stretches of real GW data). In the presence of a signal h(t),

x(t) = n(t) + h(t). (2.6)

The signal h(t) is a linear combination of the amplitudes for the two independent GW polarizations,
h+(t) and h×(t) [44]:

h(t) = F+(n, ψ, t)h+(t) + F×(n, ψ, t)h×(t), (2.7)

where ψ is the signal’s polarization angle (see Fig. 2.2), and F+,× are the antenna pattern functions (also
known as the detector beam pattern function). Because of the diurnal motion of the Earth, the beam
patterns F+ and F× are periodic functions of time with a period equal to one sidereal day; they can be
expressed as [44]

F+(t) = a(t) cos 2ψ + b(t) sin 2ψ, (2.8)

F×(t) = b(t) cos 2ψ − a(t) sin 2ψ, (2.9)

where a(t) and b(t) are functions of right ascension α and declination δ; they are independent of ψ and
can be expressed as [44]

a(t) =
1

16
sin 2γ(3 − cos 2λ)(3 − cos 2δ) cos[2(α− φr − Ωrt)]

−1

4
cos 2γ sinλ(3 − cos 2δ) sin[2(α− φr − Ωrt)]

+
1

4
sin 2γ sin 2λ sin 2δ cos[α− φr − Ωrt]

−1

2
cos 2γ cosλ sin 2δ sin[α− φr − Ωrt]

+
3

4
sin 2γ cos2 λ cos2 δ, (2.10)

b(t) = cos 2γ sinλ sin δ cos[2(α− φr − Ωrt)]

+
1

4
sin 2γ(3 − cos 2λ) sin δ sin[2(α− φr − Ωrt)]

+ cos 2γ cosλ cos δ cos[α− φr − Ωrt]

+
1

2
sin 2γ sin 2λ cos δ sin[α− φr − Ωrt]. (2.11)

In these expressions, λ is the latitude of the detector site, Ωr is the angular velocity of the Earth’s
rotation; the sum φr + Ωrt denotes the local sidereal time of the detector’s site, i.e. the angle between
the local meridian and the vernal point. The variable γ specifies the orientation of the detector’s arms with
respect to local geographical directions: γ is measured counter-clockwise from East; its value indicates
the direction that exactly bisects the two interferometer arms (which are taken to be at an angle of π/2).

The two gravitational wave polarization components of the signal can be written as

h+(t) = A+ cosΦ(t), (2.12)

h×(t) = A× sin Φ(t), (2.13)

where Φ(t) is the phase of the signal at SSB (cf. Eq. 2.1) and

A+ =
1

2
h0(1 + cos2 ι), (2.14)

A× = h0 cos ι, (2.15)
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Figure 2.2: The orientation of neutron star emitting the gravitational waves and its position with respect
to the Earth. The plane in which the angle of ψ is located is perpendicular to the direction of wave
propagation.

where h0 (the intrinsic wave amplitude at the source) can be written in terms of the triaxial ellipticity
ε = (Ixx − Iyy)/Izz and the distance d from the source as

h0 =
4π2G

c4
εIzzf

2

d
. (2.16)

Putting everything together, the signal h(t) depends on 8 parameters which can be divided into two sets:
on the one hand, we have the intrinsic amplitude h0, the wave polarization angle ψ, the inclination angle
ι (see Fig. 2.2), and the initial phase Φ0. We will call these the

amplitude parameters → h0, ψ, ι,Φ0.

On the other hand, there are quantities like the source’s location in the sky, given by α and δ, the wave
frequency f and the spin-down parameters f (k), which we will call the

Doppler parameters → α, δ, f, f (k) .

The gravitational wave signal h(t) depends nonlinearly on the amplitude parameters, but, crucially, one
can make a simple change of variables – introducing new variables (A1, A2, A3, A4) – such that dependency
of h(t) is linear in the Aa [52]:

h(t) =

4∑

a=1

Aaha(t), (2.17)

where the detector-dependent wave components ha(t) = ha(α, δ, f, f (k); t) are given as

h1(t) = a(t) cosφ(t), (2.18)

h2(t) = b(t) cosφ(t), (2.19)

h3(t) = a(t) sinφ(t), (2.20)

h4(t) = b(t) sinφ(t). (2.21)

For φ(t), we use the expression given in Eq. (2.1), and the constant (in time) amplitudes Aa =
Aa(h0, ψ, i,Φ0) are [52]

A1 = A+ cosΦ0 cos 2ψ −A× sin Φ0 sin 2ψ, (2.22)

A2 = A+ cosΦ0 sin 2ψ +A× sin Φ0 cos 2ψ, (2.23)

A3 = −A+ sin Φ0 cos 2ψ −A× cosΦ0 sin 2ψ, (2.24)

A4 = −A+ sin Φ0 sin 2ψ +A× cosΦ0 cos 2ψ. (2.25)
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2.3 Basic statistics

Given the sensitivity of current ground-based detectors, any continuous-wave signal we can realistically
expect will be at a level or below the background noise. Hence, any data analysis of detector data will
need to rely on statistical techniques to separate the signal from the noise. In this section, we introduce
some of the fundamental statistical concepts that are needed to understand GW data analysis methods,
at a level that can serve to refresh readers’ memories of fundamental statistics, and at the same time
establish the notation and conventions used in subsequent chapters.

Assume that we are given a random process, that is, a set of random variables. These variables could be
defined as the time series of a single random variable, so we would be studying the random behavior of a
single object over a given interval of time. Alternatively, we could be looking at an ensemble of random
variables – a set of different variables with common properties (such as a common probability density
function), evaluated at a single moment in time.

We can define certain statistical quantities to characterize our random process. The first of those is the
average or mean value; for the time series, it is defined as

x = lim
T→∞

1

T

∫ T/2

−T/2

x(t) dt, (2.26)

while for an ensemble, it is

〈x(t)〉 = lim
N→∞

1

N

N∑

i=1

xi(t) =

∫ ∞

−∞
x(t)P (x, t) dx; (2.27)

here, P (x, t) is the Probability Density Function (PDF) of the random process in question.

In many interesting cases, the time series approach and the ensemble approach are actually equivalent.
If, for example, the time average and the ensemble average are the same for some specific statistical
phenomenon,

x = 〈x(t)〉, (2.28)

the phenomenon is called ergodic (in mean). Such is assumed to be the case for the time series considered
in this thesis; in consequence, we shall from now on focus exclusively on the statistics of ensembles.

Let us next introduce a number of further statistical properties for ensembles. The mean-square is defined
as follows:

〈x2(t)〉 = lim
N→∞

1

N

N∑

i=1

x2
i (t) =

∫ ∞

−∞
x2(t)P (x, t) dx. (2.29)

The variance is a measure of how closely the random values are clustered around the mean:

σ2 = 〈x2(t)〉 − 〈x(t)〉2. (2.30)

The auto-correlation function (also called the covariance) is the correlation between the value of x at
time t1 and t2:

Cx(t1, t2) = 〈(x(t1) − x̄(t1))(x(t2) − x̄(t2))〉

= lim
T→∞

1

N

N∑

i=1

(xi(t1) − x̄i(t1))(xi(t2) − x̄i(t2))

=

∫ ∞

−∞
(x1 − x̄1)(x2 − x̄2)P (x1, x2; t1, t2) dx1dx2, (2.31)

where x̄ denotes the average of x.

For an ensemble with infinitely many members, the mean will tend toward the probability distribution’s
expectation value. For ensembles of large, yet finite size, the two are approximately the same; in many
references, the same notation E[.] is used for both. We will follow this convention and express the averages
of a given quantity y(t) as E[y(t)]; for the special case of the mean of our random variable x(t), we will
in addition use the notation

µx = E[x]. (2.32)
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With this new notation, the variance and the covariance function can be written as

σ2 = E[(x(t) − µx(t))2], (2.33)

Cx(t1, t2) = E[(x(t1) − µx(t1))(x(t2) − µx(t2))]. (2.34)

Having defined basic statistical quantities, we next need to look at special classes of random processes.
A stationary random process is an ensemble of random processes for which the time dependence of
P (x1, x2; t1, t2) is a function of the difference τ = t2−t1 only. More generally, for a Wide-Sense Stationary
(WSS) process, the mean µx(t) does not change over time, and the covariance function (E[x(t1)x(t2)])
depends only on the time difference τ = t2− t1. For simplicity, let us assume that our random process has
a mean value of zero, then hereafter we replace µ = 0 in all of our equations. According to Eq. (2.34),
the covariance function of a WSS random signal is

Cx(t1, t2) = Cx(τ) = E[x(t)x(t + τ)]. (2.35)

Eq. (2.35) tells us that Cx(τ) is a symmetric function of τ , in other words Cx(τ) = Cx(−τ), which can
be seen from

Cx(τ) = E[x(t)x(t + τ)]

= E[x(s− τ)x(s)], t+ τ = s

= E[x(s)x(s − τ)],

= E[x(t)x(t − τ)], replacing s by t

= Cx(−τ); (2.36)

all the steps in this sequence are permissible because the averages are independent of s as well as of t.

A key property of the covariance function of a WSS signal is that, if we take τ = 0, the result will be the
variance

Cx(0) = E[x2(t)] = σ2. (2.37)

Given two random processes x(t) and y(t) we can define their cross correlation as

Cxy(τ) ≡ E[x(t)y(t+ τ)] (2.38)

(in perfect analogy with the correlation function Cx(τ)). Note that, just like the correlation function, the
cross correlation satisfies

Cxy(−τ) = Cyx(τ). (2.39)

The cross correlation of a random process with itself is equal to its autocorrelation Cyy(τ) = Cy(τ). In
fact, given x(t) and y(t), we can define a whole matrix [45]

∥∥∥∥
Cxx(τ) Cxy(τ)
Cyx(τ) Cyy(τ)

∥∥∥∥ =

∥∥∥∥
Cx(τ) Cxy(τ)
Cxy(τ) Cy(τ)

∥∥∥∥ , (2.40)

which is the correlation matrix for the 2-dimensional random process {x(t), y(t)}.

Fourier Transformations

The Fourier Transformation (FT) of a time series random process, x(t), is defined as

x̃(f) =

∫ ∞

−∞
x(t)e−i2πft dt. (2.41)

Whenever the Fourier transform exists, its inverse is given by

x(t) =

∫ ∞

−∞
x̃(f)ei2πft df. (2.42)

For a discrete time series with N entries, the Discrete Fourier Transform (DFT) is defined as

x̃k =

N−1∑

j=0

xje
−i2πjk/N ; (2.43)
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its inverse has the form

xj =
1

N

N−1∑

k=0

x̃ke
i2πjk/N . (2.44)

Note that conventions differ where Fourier transforms are concerned. In some references, the exponential
in the definition of the transform has a plus sign; in the discrete version, the factor 1/N sometimes occurs
in the definition of the transformation (instead of the definition of its inverse); in yet other cases, both
definitions have a factor 1/

√
N .

Unfortunately, the usual definition of the Fourier transform is of limited value when it comes to random
processes. In general, a random process is assumed to go on forever (T → ∞); in consequence, its Fourier
transform x̃ (using the above definition) does not converge!

However, with an additional assumption (a trick, if you like), we can make the Fourier transform well-
defined. Let us define a new random process as

xT (t) ≡





x(t) − T/2 < t < T/2

0 otherwise.
(2.45)

With this assumption, the Fourier transform will converge, and in fact it will be finite in any range of
intervals. The fact that we can safely make this assumption is a consequence of Parseval’s theorem, which
states that ∫ ∞

−∞
x(t)y∗(t) dt =

∫ ∞

−∞
x̃(f)ỹ∗(f) df, (2.46)

where the asterisk (∗) denotes complex conjugation. Setting y(t) = x(t) in this equation, it can be derived
that the integral (or sum) of the square of a function is equal to the integral (or sum) of the square of its
Fourier transform: ∫ ∞

−∞
[x(t)]2dt =

∫ ∞

−∞
|x̃(f)|2df. (2.47)

This has a straightforward physical interpretation: The total energy, as computed in the time domain, is
equal to the total energy as computed in the frequency domain.

The Fourier transform of our modified function xT (t) (as defined in Eq. (2.45)) is, by Eq. (2.47),

∫ T/2

−T/2

[x(t)]2 dt =

∫ ∞

−∞
[xT (t)]2 dt

=

∫ ∞

−∞
|x̃T (f)|2 df

= 2

∫ ∞

0

|x̃T (f)|2 df, (2.48)

where for last step we have used the fact that xT (t) is real (so x̃∗T (f) = x̃T (−f)) and, consequently, the
integral of |x̃T (f)|2 in the negative range is equal to that in the positive range. Consequently, the limit

lim
T→∞

1

T

∫ T/2

−T/2

[x(t)]2dt = lim
T→∞

1

T

∫ ∞

−∞
|x̃(t)|2df (2.49)

is convergent.

Power Spectral Density

The Wiener-Khintchine Theorem (also known as the Wiener-Khinchin theorem and sometimes as the
Khinchin-Kolmogorov theorem) states that the Power Spectral Density (PSD) of a Wide-Sense-Stationary
(WSS) random process is the Fourier transform of the corresponding covariance function

Sx(f) =

∫ ∞

−∞
Cx(τ)e−2πifτdτ, (2.50)

and that its inverse is

Cx(τ) =

∫ ∞

−∞
Sx(f)e2πifτ df, (2.51)
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where Cx(τ) is the covariance function defined in Eq. (2.35), and Sx(f) is the double-sided power spectral
density of the function x(t). The Spectral density is an even function of frequency, so in particular
Sx(f) = Sx(−f). The PSD is not a random variable; it follows directly from the expectation value of the
covariance function, which depends only on the probability distribution.

When df is small, the total average power of the signal in the frequency range (f − df/2, f + df/2) is
Sx(f) df with the Sx(f) having the dimension of inverse frequency (1/Hz). If the PSD is constant within
a given frequency band, the corresponding process is called a white random process (in that frequency
band); if the PSD instead varies within that frequency band, the process is called a colored random
process.

An important corollary of the Wiener-Khintchine theorem is the relation between PSD and the Fourier
transform of a finite segment (imposing the assumption given in Eq. 2.45) of a WSS signal with zero
mean, namely

PSD(f) = lim
T→∞

1

T
E[|x̃(f)|2]. (2.52)

For an outline of the proof, the reader is referred to [46]. For a WSS discrete-time random signal (again
with the assumption of Eq. 2.45) with zero mean, the relation between PSD and the Fourier transform
can be expressed as [47]

PSD(f) = lim
N→∞

1

N
E[|x̃(f)|2]. (2.53)

Eq. (2.53) is of paramount importance for data analysis. For example, it enables us to take a short
segment of data, compute the Fourier transform, and (supposing that the data contains noise only) use
the result to estimate the PSD, noise floor.

The main properties of the power spectral density of a WSS signal are

• Reality, and symmetry in f (as the covariance function is real and symmetric in τ)

• For all frequencies, the PSD is non-negative.

• Its integral over all frequencies is proportional to the signal’s variance,
∫ ∞

−∞
Sx(f)df = Cx(0) = σ2 (2.54)

(which can be seen by substituting τ = 0 in Eq. (2.51)).

Gaussian processes

A discretely sampled time series data {xi : i = 1, · · · , N} which characterized by

xi = x(ti) (2.55)

ti − tj = (i− j)∆t (2.56)

∆t =
T

N − 1
, (2.57)

and zero mean is Gaussian if its probability distribution function (pdf) follows the form [51]

P (x) =

exp


− 1

2

N∑

j,k=1

C−1
jk xjxk




(2π)N/2(det C)1/2
, (2.58)

where

C =




C11 · · · C1N

...
. . .

...
CN1 · · · CNN


 , (2.59)

with Cij ≡ C(ti, tj) = C[(i− j)∆t] being the covariance matrix and C−1
jk its inverse:

δjk ≡
∑

l

CjlC
−1
lk . (2.60)
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Note that the normalization constant in the denominator of the Eq. (2.58) is independent of xi. To
evaluate Eq. (2.58) in the continuum limit, first note that [51]

δ(tj − tk) = lim
∆t→0
T→∞

1

∆t
δjk. (2.61)

Consequently [51],

e−2πiftk =
∑

j

e−2πftjδjk

= lim
∆t→0
T→∞

1

∆t2

∑

j

∆t e−2πiftj

∑

l

∆t Cn(tj − tl) C
−1(tl, tk)

= lim
∆t→0
T→∞

1

∆t2

∫ ∞

−∞
dtj e−2πiftj

∫ ∞

−∞
dtl Cn(tj − tl) C

−1(tl, tk)

= lim
∆t→0

1

∆t2

∫ ∞

−∞
dtl e−2πiftl C−1(tl, tk)

∫ ∞

−∞
dτ e−2πifτ Cn(τ) (2.62)

= lim
∆t→0

1

∆t2
C̃−1(f, tk)

1

2
Sn(f). (2.63)

This gives

lim
∆t→0

1

∆t2
C̃−1(f, tk) =

2 e−2πiftk

Sn(f)
. (2.64)

For the transition from Eq. (2.62) to Eq. (2.63), we use the Wiener-Khintchine theorem [cf. Eq. (2.50)],
which relates the PSD, Sn(f), and the correlation function Cn(τ); also, we use the Fourier transform of
the inverse of the correlation function, defined as

C̃−1(f, tk) ≡
∫ ∞

−∞
dt C−1(t, tk)e−2πift. (2.65)

Taking C̃−1 of Eq. (2.65), and using Eq. (2.64) and Parseval’s theorem, Eq. (2.46), we can evaluate the
continuum limit of the argument of the exponential in Eq. (2.58) [51]:

lim
∆t→0
T→∞

N∑

j,k=1

C−1
jk xjxk = lim

∆t→0
T→∞

1

∆t2

N∑

j,k=1

∆t2 C−1(tj , tk) x(tj)x(tk)

= lim
∆t→0

1

∆t2

∫ ∞

−∞

∫ ∞

−∞
dtjdtk C

−1(tj , tk) x(tj)x(tk)

= lim
∆t→0

1

∆t2

∫ ∞

−∞

∫ ∞

−∞
dfdtk C̃−1(f, tk) x̃∗(f)x(tk)

= 2

∫ ∞

−∞
df

x̃∗(f)

Sn(|f |)

∫ ∞

−∞
dtke−2πiftkx(tk)

= 2

∫ ∞

−∞
df
x̃(f)x̃∗(f)

Sn(|f |) . (2.66)

Since the detector’s output x(t) is real, we must have x̃∗(f) = x̃(−f). Hence, we can define the following
symmetric inner product of (x|y)

(x|y) = 2

∫ ∞

−∞

x̃(f)ỹ∗(f)

Sn(f)
df

= 2

∫ fs
2

− fs
2

x̃(f)ỹ∗(f)

Sn(f)
df

= 4ℜ
∫ fs

2

0

x̃(f)ỹ∗(f)

Sn(f)
df, (2.67)

where fs is the bandwidth of the signal that is searched over.
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Eqs. (2.67), (2.66) and (2.58) imply that

P (x|y) ∝ exp

(
−1

2
(x− y|x− y)

)
. (2.68)

The main reason that it is convenient to work in the frequency domain is that for stationary noise all of
its Fourier component are independent; i.e.

〈x̃(f1)x̃(f2)〉 ∝ δ(f1 − f2), (2.69)

and therefore for stationary and Gaussian noise

P (x̃(f1)) ∝ e−|x̃(f1)|2/2Sn(f1), (2.70)

i.e., each Fourier component has a Gaussian probability distribution function.

2.4 Maximum likelihood function (F-statistic)

The basic problem in GW detection is to identify a gravitational waveform in a noisy background.
Because all data streams contain random noise, the data are just a series of random values and therefore
the detection of a signal is always a decision based on probabilities. The aim of detection theory is
therefore to assess this probability.

The basic idea behind the current methods of signal detection is that the presence of a signal will change
the statistical characterization of the data x(t), in particular its probability distribution function (pdf)
P (x). Recall that the pdf is defined so that the probability of a random variable xi lies in an interval
between x(t) and x(t) + dx is P (x)dx. Let us denote by P (x|0) the probability of a random process x(t)
(representing our data) in the absence of any signal, and by P (x|h) the probability of that same process
when a signal h(t) is present. Given a particular measurement x(t) obtained with our detector, is its
probability distribution given by P (x|0) or P (x|h)? In order to make that decision, we need to make a
rule called a statistical test.

There are several approaches to finding an appropriate test, notably the Bayesian, Minimax and Neyman-
Pearson approach (for an overview, we refer the reader to Jaranowski and Królak, [48] and the references
listed therein). In the end, however, these three approaches lead to the same test, namely the likelihood
ratio test [48, 49].

Among the three main approaches, the Neyman-Pearson approach is often used in the detection of
gravitational waves [50]. This approach is based on maximizing the detection probability (equivalently
minimizing the false dismissal rate) for fixed false alarm rate, where the detection probability is the
probability that the random value of a process which contains the signal will pass our test, while the
false alarm probability is the probability that data containing no signal will pass the test nonetheless.
Mathematically, we can express these probabilities as [50]

PD(R) =

∫

R

P (x|h)dx Detection Probability, (2.71)

PF (R) =

∫

R

P (x|0)dx False Alarm Probability, (2.72)

where R is the detection region (to be determined).

The Likelihood ratio Λ is the ratio of the pdf when the signal is present to the pdf when it is absent:

Λ =
P (x(t)|h(t))
P (x(t)|0)

. (2.73)

Remembering that x(t) = h(t) + n(t), and with the assumption that the noise is a zero-mean, stationary
and Gaussian random process, by using Eq. (2.68), we can write the likelihood ratio as

Λ =
P (x|h)
P (x|0)

=
exp(− 1

2 (x − h|x− h))

exp(− 1
2 (x|x))

= exp[(x|h) − 1

2
(h|h)]. (2.74)
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This leads to the log of likelihood function as

log Λ = (x|h) − 1

2
(h|h). (2.75)

In the time domain, we can rewrite Eq. (2.67) as

(x|y) =
2

Sn(f0)

∫ tp

t0

x(t)y(t) dt, (2.76)

where we have assumed that, over the bandwidth of the signal, Sn(f) is nearly constant and can be
replaced by Sn(f0).

We can also rewrite the simple expression of Eq. (2.75) for the likelihood function in terms of the new
variables Aa we had introduced in Eq. (2.17). The result is

log Λ = (x|Aaha) − 1

2
(Aaha|Abhb). (2.77)

Since the Aas depend neither on the detector properties nor on the frequency or the time, we can take
them out of the inner product and write the log of likelihood ratio as

log Λ = Aa(x|ha) − 1

2
AaAb(ha|hb). (2.78)

Defining the new variables
Ha ≡ (x|ha), (2.79)

and
Mab ≡ (ha|hb), (2.80)

we have

log Λ = AaHa − 1

2
AaAbMab. (2.81)

The maximum detection probability follows from the maximization of the likelihood function: by maxi-
mizing the likelihood function with respect to the Aa (which, again, are independent of the detector), we
have

∂ log Λ

∂Aa
= 0. (2.82)

This leads us to
Ha −Ab

MLE
Mab = 0, (2.83)

and therefore
Ab

MLE = (M−1)abHa. (2.84)

The label MLE denotes the Maximum Likelihood Estimator ; it corresponds to the values for the Aas
we calculate from our data by maximizing the likelihood ratio (so that, in practice, we are calculating
Aa = E[Aa

MLE ]). By definition, the F -Statistic is the maximum of the logarithm of likelihood function.
Substituting Eq. (2.84) into Eq. (2.81), we have

F ≡ log Λ |MLE=
1

2
Ha (M−1)ab Hb. (2.85)

This is the F -Statistic; we will return to it (and introduce a generalization) in chapter 4, where we will
also introduce a more practical version of this formula.

Again by writing the data as x(t) = n(t) + h(t), where n(t) is the noise and h(t) is the signal and using
Eq. (2.5) of Cutler-Schutz (CS) [52] indicating that 〈(x|n)(y|n)〉 = (x|y) with this fact that 〈(h|n)〉 = 0,
we would have the following

〈2F〉 = 4 + (h|h), (2.86)

which follows a χ2 distribution with 4 degrees of freedom and non-centrality parameter ρ2 ≡ (h|h).
The degrees of freedom come from the 4 unknown parameters of pulsar namely the amplitude (h0),
inclination angle (ι), polarization angle (ψ) and the initial phase (Φ0). As was described in [52],
even for a multi-IFO the number of freedom will remain unchanged, since we always have the same 4
unknown parameters in entire the search.
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In cases where the amplitude modulation can be ignored (e.g., for short data segments, ≪ 1 day long,
where the a(t) and b(t) can be approximated as constant), we see (in chapter 4) that F is proportional
to the demodulated Fourier transform which matches just the phase evolution as

F ∝ |X̃(f,~λ)|2, (2.87)

where ~λ := (n, f (k)) and

X̃(f, λ) =

∫ tp

t0

x(t)e−iφ(t;λ) dt . (2.88)

2.5 Short time-baseline Fourier Transform (SFT)

Since the output of a real detector is not stationary, we must break our data into short time-baseline
chunks in order to avoid any non-stationarity in our data, and only then take the Fourier transform.
The short segment of Fourier transformed data is called Short time-baseline Fourier Transform, or SFT
for short. Longer chunks allow better initial frequency resolution; however one does not want Sn(f) to
vary significantly over the chunk. Also, the length of each SFT should be such that the instantaneous
frequency of a putative signal does not shift during that time by more than half a frequency bin, in other
words: for each chunk, we should not have significant Doppler modulation effect in a single frequency
bin. Following Schutz and Papa [53], this requirement fixes the maximum length for each short chunk at
a given frequency as

Tchunk = 5.5 × 103

√
300Hz

f0
, (2.89)

where f0 is the frequency of the search. For a search covering a whole range of frequencies, the above
constraint must be calculated for the highest frequency within that range. The maximum stored frequency
in each SFT of our data is 2048 Hz, which gives a maximum length of 2105 seconds for each short chunk.
For their data analysis, the LSC (LIGO Scientific Collaboration) therefore uses 1800 seconds SFTs.



Chapter 3

Optimized Stack-Slide Hierarchical
Search Strategy

The work in this chapter was done in collaboration with Curt Cutler and Badri Krishnan[56].

In analyzing data from Earth-based and space-based gravitational wave (GW) detectors, we will be
computationally limited in performing certain types of searches, especially searches for long-lived signals
described by several unknown parameters. For such signals, the number of templates required to discretely
cover the parameter space (at useful resolution) typically increases rapidly as a function of the observation
time. For a blind search (the search which none of the parameters such as frequency, frequency derivatives
and sky location are previously known) the number of points in the parameter space for a full coherent
search of duration T follow as

Np ∝ T 5. (3.1)

For ground-based detectors, such as LIGO, a well-known example is the search for nearly periodic GWs
from unknown, isolated, rapidly rotating neutron stars (NSs). We will refer to NSs that are continuously
emitting GWs as “GW pulsars”. By “unknown”, we mean that the GW pulsar’s position on the sky,
frequency, and frequency derivatives are all unknown, and so must be searched over. (The NS could be
unknown either because it is electromagnetically inactive, or because its electromagnetic emission does
not reach us - e.g., because we do not intersect its radio pulsar beam.)

Brady et al.[57] showed that straightforward matched filtering searches for unknown GW pulsars would
be severely computationally limited; for example, searches for young, fast NSs (NSs with GW frequencies
as high as 1 kHz and spin-down ages as short as 40 yr) would be limited to observation times of order
one day. To address this problem, Brady and Creighton [58] (henceforth referred to as BC) were the
first to consider hierarchical, multistage, semi-coherent searches for GW pulsars. Briefly, a semi-coherent
search is one where a sequence of short data stretches are all coherently searched, using some technique
akin to matched filtering, and then the resulting powers from the different stretches are summed. The
method is only “semi-coherent” because powers are added instead of complex amplitudes; i.e., information
regarding the overall phase of the signal in different stretches is discarded. This allows one to use a much
coarser grid on parameter space than would be required in a fully coherent search of the same data. BC
developed a “Stack-Slide” method for summing the powers along different tracks in the time-frequency
plane. The basic idea of their two-stage search is to identify a list of “candidates” (basically, promising-
looking regions in parameter space) in the first stage, using some fraction of the available data, and then
to “follow up” those candidates using more data in the second stage. In their scheme, both the first and
second stages are semi-coherent.

In our work in this chapter we revisit the problem of constructing efficient, hierarchical searches for GW
pulsars. We build on the BC treatment, but we also significantly generalize and otherwise improve upon
their work. The most important improvements will be highlighted below.

1) BC consider a hierarchical search consisting of exactly two semi-coherent stages. In the present
work, we consider a search consisting of an arbitrary number of semi-coherent stages, plus a fully
coherent, “follow-up” stage (utilizing all the available data) to assess the significance of any surviving
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candidates. The effect of the final, follow-up stage, is to ensure that the overall false alarm (FA)
rate (fixed at exactly 1% by BC) is greatly reduced and, for all practical purposes, ceases to be a
constraint.

2) In BC’s second semi-coherent stage, all the data used in the first-stage is reanalyzed, along with
some “fresh” (as yet un-analyzed) data. A priori, it is not clear whether this strategy is more
efficient than one in which each semi-coherent stage analyzes only fresh data. (e.g., the first stage
analyzes 20 days of data and generates candidates, the second semi-coherent stage searches for those
candidates in the next 50 days of data and generates a list of candidates that have still “survived”,
these survivors are searched for again in the next 150 days of data, etc.) In this work, we investigate
both kinds of schemes: schemes where previously analyzed data is always recycled into subsequent
stages, and schemes where each semi-coherent stage analyzes only fresh data.

3) For simplicity, BC ignored the fact that the GWs have two possible polarizations (in effect pretending
that the detectors measure a scalar wave). This is a reasonable approximation when estimating the
number of grid points needed to cover the parameter space, but not, say, when trying to estimate
the FA and false dismissal (FD) rates as a function of the threshold at some intermediate stage in
the search. (Roughly speaking, scalar waves with the same matched-filter SNR would be easier to
detect than actual GWs, since with GWs the full SNR is “split” between the two polarizations, in
a way that is unknown a priori.) In this work we aim to make realistic estimates of a GW pulsar’s
delectability for a given matched-filter SNR (and given region of parameter space to be searched
over), so we take polarization into account wherever it makes a significant difference. In practice,
this just means that we use the F -statistic, Eq. (2.85), as our detection statistic.

4) When estimating computational costs, BC assume that the demodulations will be done using stro-
boscopic re-sampling, a method modeled closely on the FFT algorithm. A different demodulation
method, which we shall refer to as the SFT method, is currently being used by the GW pulsar search
codes in the LIGO Scientific Collaboration (LSC) software library [59, 60]. The SFT method takes
SFTs (see section 2.5) as its input and can be more efficient than stroboscopic re-sampling in cases
where only a narrow frequency range of the demodulated time series is of interest. In this work
we explore the possibility of using different demodulation methods at different stages of the search,
and attempt to find the most efficient combination.

All the above points will be elaborated on in later sections of this chapter.

This chapter is organized as follows:
Section 3.1 reviews the Stack-Slide algorithm for the re-sampling method. Our general multistage strategy
for searching through large parameter spaces for GW pulsars, using a combination of semi-coherent
methods and coherent methods, is explained in section 3.2. Our general search scheme contains a fair
number of free parameters (the number and duration of the coherently analyzed stretches in each semi-
coherent stage, as well as the coarseness of the discrete grid used to cover the parameter space of sought-for
signals), which we can adjust to make the search as efficient as possible. Our general scheme for performing
this optimization is described in section 3.2.2. Section 3.3 develops all the formulae we need to evaluate
the computational cost of any of our strategies, for any desired sensitivity. More specifically, section 3.3.1
reviews the template counting formulae developed in BC; section 3.3.2 develops the equations relating
the thresholds that candidates must pass at different stages (to advance to the following stage) to the FD
rates at those stages, and hence to the overall sensitivity of the search; and section 3.3.3 derives estimates
for the dominant computational cost of each part of the search. Section 3.4 describes our results: the
optimal strategy (within our general scheme) and its sensitivity. In section 3.5 we revisit the hierarchical
search strategy for the case that we search over the data in each stage coherently.

3.1 The Stack-Slide algorithm (based on re-sampling method)

The Stack-Slide algorithm is best described with reference to the Doppler shift formula of Eq. (2.5).
Imagine we have a data stream x(t) covering an observation time Tused, and we wish to search for a GW
pulsar with some parameters λ. (The modulated frequency is described by the s+3 parameters consisting

of f0 and ~λ := (n, {f (k)}k=1...s), recalling from chapter 2, s is the number of spin-down parameters, f (k)

the kth frequency time derivatives and n is the unit vector pointing from the SSB toward the pulsar;
we shall often denote the pair (f0, ~λ) by the boldface symbol λ.) We break up the data into N smaller
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Figure 3.1: In the Stack-Slide algorithm, we first break up data into the smaller segments.

Figure 3.2: An illustration of the discrete frequency bins of the Short Fourier Transform (SFTs) of the
data are shown vertically, with the discrete start times of the SFTs shown horizontally. The green pixels
(dark pixels in black & white view) represent a signal in the data. Its frequency changes with time due
to Doppler shifts and intrinsic evolution of the source. By sliding the frequency bins, the power from a
source can be lined up and summed after appropriate weighting or transformation.

segments of length ∆T = Tused/N , (Fig. 3.1), and calculate the Fourier spectrum of each segment. For
now we assume each segment is sufficiently short that the signal frequency remains confined to a single
discrete frequency bin. If there is a signal present, it will most likely be too weak to show up in a single
segment with any significant signal-to-noise ratio (SNR). However, we can increase the SNR by adding
the power from the different segments. We must not use the same frequency bin from each segment, but
rather must follow the frequency evolution given by Eq. (2.5). Thus, we ‘stack’ the power after ‘sliding’

each segment in frequency space (Fig. 3.2). Note that the sliding depends on ~λ. Thus, in practice, we

choose a grid in the space of ~λs and the sliding is done differently at each grid point. As described above,
the sensitivity of the Stack-Slide algorithm is restricted due to the length of ∆T . Therefore we should
not take ∆T to be too large, since then we would lose SNR due to the signal power being spread over
several frequency bins. However, we can gather all the signal power back into a single bin by taking
account of the Doppler modulation and spin-down while calculating the spectrum of a segment; i.e., we
de-modulate each data segment before summing.

With these concepts at hand, we can now describe the Stack-Slide search for the F -statistic. The strategy
is very similar to the power summing method described above. Again we break up the data of length
Tused into N segments, each of length ∆T = Tused/N . We choose a point ~λd in parameter space, and

demodulate the signal accordingly. We calculate F(f,~λd) as a function of the frequency for each segment
and add the F -statistic values after sliding the different segments in frequency space appropriately.

As explained in BC, the resolution of sky- and spin-down-space that suffices for the demodulation is
not fine enough for the Stack-Slide step. Thus at each stage we have two grids on parameter space: a
coarse one for performing the short-segment demodulations and a fine one for sliding and stacking the
short-segment results. We refer the reader to [61] and the appendix of [62] for a detailed derivation of

the formula relating the required amount of sliding to the parameters ~λd.
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3.2 A multi-stage hierarchical search

3.2.1 The general algorithm

The Stack-Slide search algorithm described in the previous section has two components: 1) calculation
of the F -statistic for data stretches of length ∆T , 2) summation of the resulting F values along the
appropriate tracks in the time-frequency plane. (If there are N coherently analyzed segments, then the
sums have N terms.) If we had unlimited computational resources, we would simply do a fully coherent
search on all the data; i.e., set N = 1 and take ∆T to be the entire observation time. However, the
number of templates required for a fully coherent search increases as a fifth power of ∆T (Eq. 3.1),
making this impractical for all-sky searches.

To illustrate this point, consider an all-sky search for young, fast pulsars, i.e., GW pulsars that have a
spin-down age as short as τmin = 40 yr and that emit GWs with frequency up to fmax = 1000 Hz. Let
us assume that we have 30 days of data available to use. Imagine two different ways of looking for this
pulsar: a full 30−day coherent integration versus a semi-coherent method where the available data is
broken up into 30 equal segments. The formula for the number of templates required for these searches
is given below in Eq. (3.27). It turns out that the full coherent search requires ∼ 4.2 × 1015 templates
if we are to not lose more than 30% of the signal power. On the other hand, the semi-coherent search
requires only ∼ 1.5 × 1011 templates for the same allowed fractional loss in signal power. The ratio of
the the number of templates required for the two types of searches increases rapidly with the observation
time; for instance, for an observation time of 40 days, the corresponding numbers are ∼ 5.5 × 1016 and
∼ 8.3 × 1011 for the full coherent and semi-coherent searches respectively.

As illustrated by the above example, semi-coherent searches for unknown GW pulsars are a compromise
forced upon us by limited computing power. Such searches will remain computationally limited for the
foreseeable future, so it behooves us to organize them as efficiently as possible. In this work we consider
a class of multi-stage, hierarchical search algorithms. Since our main “problem” is the large volume of
parameter space we need to search over, the basic idea behind these algorithms is to identify and discard
unpromising regions of parameter space as fast as possible–without discarding real signals. The type of
scheme we consider is illustrated schematically in Fig. (3.3).

The first stage is a semi-coherent search through some fraction of the available data. A threshold is set,
and candidates exceeding this threshold are passed to the next stage. The second stage is similar to
the first, but includes additional data and generally entails a finer resolution of parameter space. (The
latter means that any candidate that survives the first semi-coherent stage gives rise to a little crowd of
nearby candidates that are examined in the second semi-coherent stage.) Any candidate that exceeds the
second-stage threshold is passed on to the third stage, and so on. In an (n+1)-stage search, any candidate
surviving all n semi-coherent selections is subjected to a final, coherent search (which we consider the
(n + 1)th stage); if it could pass the final, coherent, threshold then the candidate would be studied in
details “by hand”. We impose as a constraint that the false alarm (FA) rate for the entire search must
be < 1%. For reasons explained below, in realistic examples this inequality is all too easy to satisfy; the
actual FA rate for our optimized searches is typically smaller than 1% by many orders of magnitude.

In the end, our search will be able to detect a GW pulsar signal whose rms strength (at the detector)
hRMS exceeds some threshold value hth (with a false dismissal rate of 10%− 15%). We can think of 1/hth

as the search’s sensitivity. We will optimize our search to get the maximum sensitivity for any given
computing power or, equivalently, to find the minimum computer power necessary to attain any given
sensitivity.

3.2.2 The general optimization scheme

In this section we further discuss our search algorithm and its optimization. First we establish some
notation. Let n be the total number of semi-coherent stages. Let N (i) be the number of stacks used in
the ith stage and ∆T (i) be the length of each stack; the superscript i will always refer to the ith semi-
coherent stage. The resolution of the template grid used to cover parameter space is given in terms of
the maximum fractional mismatch in signal power µ(i)

max [63]. Our detection statistic is ρ(i), the sum of
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Figure 3.3: A hierarchical scheme for the analysis of large parameter space volumes for continuous wave
searches. Each step analyzes only those regions in parameter space that have not been discarded by any
of the previous steps.

the F values from the different stacks (obtained after sliding appropriately):

ρ(i) =

N(i)∑

k=1

F (i)
k . (3.2)

Denote the distribution of ρ(i) in the absence of any signal by p(ρ(i)). In the presence of a GW signal of
amplitude hRMS, let the distribution of ρ(i) at the grid-point nearest the actual signal be p(ρ(i)|hRMS, µ

(i)
max

).

Let ρ
(i)
th be the ith-stage threshold, which a candidate must exceed to advance to the next stage. The

ith-stage FA rate (per candidate) α(i) and FD rate (per candidate) β(i) are given by

α(i)(ρ
(i)
th ) =

∫ ∞

ρ
(i)
th

p(ρ)dρ , (3.3)

β(i)(ρ
(i)
th ;hRMS, µ

(i)
max

) =

∫ ρ
(i)
th

0

p(ρ|hRMS, µ
(i)
max

)dρ . (3.4)

Practically identical formulae apply to the final, coherent stage as well.

Again, we require of any search algorithm that, at the very end of the search, it results in a false detection
less than 1% of the time. Given this constraint, we parameterize the search’s sensitivity by the signal
amplitude hth such that an embedded signal with hRMS > hth would be detected ∼> 85% − 90% of the
time. We enforce the latter condition as follows. We set the first-stage threshold hth such that a signal
of amplitude hRMS = hth will pass to the second stage 90% of the time. At all subsequent stages we set
the threshold such that the same signal with strength hRMS = hth has a 99% chance of passing to the

next higher stage. That is, we adjust the ith-stage threshold ρ
(i)
th so that β(1) = 0.10, while β(i) = 0.01

for i > 1, and β(coh) = 0.01 as well. The motivation behind making β(1) lower than β(i) for i > 1 is
the following: we believe that a computationally efficient algorithm will have the property that a true
signal that is strong enough to pass the first-stage threshold should generally pass over all the others.
Any source that is not sufficiently strong to make it through to the end of the detection pipeline should
be discarded as soon as possible, so as not to waste computing power. This reflects the basic idea behind
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Figure 3.4: The schematic view of how the data are being handled for different stages in the data recycling
mode.

our hierarchical searches: to eliminate unpromising regions of parameter space as quickly as possible, so
that computational resources can be focused on the more promising regions. Basically, the first-stage
threshold determines the sensitivity of the whole search, and subsequent steps whittle down the number
of candidates (i.e., the number of small patches in parameter space that perhaps contain a true signal)
until any remaining patches can be fully, coherently analyzed.

To fully specify our search algorithm, we have to choose the parameters

Γ ≡ (n, {N (i)}, {∆T (i)}, {µ(i)
max

}, µcoh
max

), (3.5)

where n is the number of semi-coherent stages and i = 1, ..., n. In doing so, we are subject to certain
requirements or constraints:

• The total amount of data available is no more than some Tmax (say, 1 year).

• We wish to detect (with ∼ 90% FD rate and < 1% overall FA rate) any unknown signal of amplitude
hRMS greater than hth (say, 10−26).

Our task is to choose the parameters Γ that minimize the total required computational power P , subject
to the above constraints. We arrive at a cost function P (hth), the computational cost of reaching any
given sensitivity level. (Really, P is function of the product h2

thTmax/Sn(f), but we are regarding Tmax and
Sn(f) as fixed.) We can immediately invert this function to determine hth(P ), the sensitivity achievable
for any given computing power.

Let us first deal with the constraint on the total amount of data. We are going to consider simultaneously
two different modes of all-sky searches. In data recycling mode (Fig. 3.4), at each stage we start back at
the beginning of the data, but take progressively larger values of N (i)∆T (i). Thus the first stage looks at
data in the interval [T0, T0 +N (1)∆T (1)], the second stage looks at [T0, T0 +N (2)∆T (2)] and so on. The
total observation time is thus

Tused = N (n)∆T (n) . (3.6)

In fresh-data mode (Fig. 3.5), rather than always starting over from the beginning, we analyze fresh data
at each stage. The first stage looks at data in the range [T0, T0 +N (1)∆T (1)], the second stage looks at
[T0 +N (1)∆T (1), T0 +N (1)∆T (1) +N (2)∆T (2)], etc. The total observation time is thus

Tused =

n∑

i=1

N (i)∆T (i) . (3.7)

In either data-recycling or fresh-data mode, one constraint is that Tused ≤ Tmax where Tmax is the total
amount of data available. Also, in either mode, at each stage we look only at portions of parameter space
that exceeded the threshold set at the previous stage.

Next we consider our constraints on the overall FA and FD rates for the pipeline. The final, coherent
follow-up stage is expected to be much more sensitive than any of the preceding steps; therefore the
overall FA rate is essentially set by the final stage threshold alone. (The earlier stages serve only to
whittle down the number of candidates that are analyzed in the final coherent stage.) If the threshold

in the final follow-up stage is ρ
(coh)
th , then the overall FA rate is no larger than α(coh)(ρ

(coh)
th ) times the

number of effectively independent candidates in parameter space. We approximate the latter, crudely,
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Figure 3.5: Handling data in different stages in the fresh-data mode.

by ∼ Np(Tmax, 0.2, 1); in practice α(coh)(ρ
(coh)
th ) turns out to be so minuscule that the crudeness of this

approximation is irrelevant.

The overall false dismissal requirement is also easily handled. Let β̃ be the total false dismissal rate of

the multistage search. Each stage has its own threshold ρ
(i)
th and corresponding false dismissal rate β(i).

If each stage, including the follow-up stage, were to analyze completely independent data, we would have

β̃ = 1 −
n+1∏

i=1

(1 − β(i)) ≈ β(1) + · · · + β(n+1) . (3.8)

(where we use “β(n+1)” interchangeably with β(coh)). In our fresh-data search mode, the data at different
stages are independent, except for the final, follow-up stage. And in our recycled-data scheme, the data
examined at higher stages includes all the data examined in earlier stages. Then when β(1) = 0.1 and

β(2) = β(3) = ... = β(n) = β(coh) = 0.01 , (3.9)

it is clear that β̃ is roughly in the range (10 + n − 1)% to (10 + n)%, for fresh-data mode and 10% to
(10+n)% for recycled-data mode. Since n ≈ 3 turns out to be optimal (see below), we crudely summarize
this by saying that our strategies have an overall FD rate of 10%− 15% at the threshold value of hRMS.

Finally, we turn to the search’s computational cost, which we wish to minimize. Let us denote the total
number of floating point operations for the ith semi-coherent stage by C(i) and for the final coherent
stage by C(coh). Expressions for C(i) and C(coh) are given in the next section. For now, it is sufficient to
say the total computational cost is

Ctotal =
( n∑

i=1

C(i)
)

+ C(coh) , (3.10)

and that if we wish to analyze the data in roughly real time, the required computational power (operations
per unit time) is

P =
Ctotal

Tused

. (3.11)

Depending on which mode we are working in, Tused is given by Eq. (3.6) or Eq. (3.7).

Again, our strategy for optimizing the search is to minimize P , subject to the constraints listed above.

3.3 Metric, template counting, confidence levels, and computa-
tional cost

3.3.1 Parameter space’s metric and template counting formulae

The metric used in our optimization strategy is based on the work presented in BC [58] which was
originally done by Owen [63]. A more recent work on the metric based on F -statistic can be found in
[64].

The match between parameters of signal and template can be defined as the maximum correlation between
these two [63]

M(λ,∆λ) ≡ max(h(t; λ)|h(t; λ + ∆λ)), (3.12)
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where, λ = (f0, ~λ), with ~λ = (n, f (k)). Eq. (3.12), so-called the ambiguity function [63], is in fact the
fraction of the optimal signal-to-noise ratio using the template with parameters (λ + ∆λ) over signal
with parameters (λ)

M(λ,∆λ) ≡ ρ2(λ + ∆λ)

ρ2(λ)
. (3.13)

This, clearly, has a maximum of unity at ∆λ = 0 so can be expanded in a Taylor power series around
∆λ = 0. By ignoring the terms of O(∆λ3) and higher, we have

M(λ,∆λ) ≈ 1 +
1

2

(
∂2M

∂∆λα ∂∆λβ

)

∆λ=0

∆λα∆λβ . (3.14)

If we define the proper distance metric in the parameter space as [63]

gαβ(λ) ≡ −1

2

(
∂2M

∂∆λα ∂∆λβ

)

∆λ=0

, (3.15)

then the mismatch between two nearby templates gets the form of

m(λ,∆λ) = 1 −M(λ,∆λ) = gαβ(λ)∆λα∆λβ . (3.16)

Note that in the above equations we use the summation rule over the repeating indices. In a simpler
word, we have

m(λ,∆λ) =
∑

α,β

gαβ(λ)∆λα∆λβ . (3.17)

Working on the Stack-Slide algorithm makes it more convenient to express gαβ(λ) as a sum of metric
computed for the individual stacks

gαβ(λ) =
1

N

N∑

j=1

g
(j)
αβ(λ), (3.18)

where the individual stack metric, g
(j)
αβ(λ), are given by [58]

g
(j)
αβ(λ) = 〈∂∆λα∆φ ∂∆λβ ∆φ〉j − 〈∂∆λα∆φ〉j〈∂∆λβ∆φ〉j . (3.19)

The notation 〈· · · 〉 is defined as [58]

〈· · ·〉j =
1

∆T

∫ j∆T

(j−1)∆T

(· · ·)dtssb |∆λ=0 . (3.20)

The phase error, ∆φ, in Eq. (3.19) is given by

∆φ[t; (λ,∆λ)] = φ[t; (λ + ∆λ)] − φ[t; λ], (3.21)

where φ[t; λ] is defined by Eq. (2.1).

Up to here we treated the frequency as one of the search parameter, λ0, that needs to be matched.
However, working in the stroboscopic re-sampling method which takes the Fourier transform of required
stretch of data, we first look for the local maxima in the frequency parameter f of the power spectrum.
Then we measure the fractional loss in the power due to mismatch in the parameters of ~λ. Technically the
maximization of the power should be done over the specific value of f . But since the search frequency is
not known in advanced, we maximize the power over the maximum search frequency fmax. This ensures
us that we never underestimate the mismatch [57, 58].

Based on the above expression, we therefore minimize the mismatch after maximizing the power over f .
The result would be the projected mismatch onto the (s+ 2)-parameter subspaces [57] as

µ(~λ,∆~λ) ≡ min m(λ,∆λ) =
∑

i,j

γij(~λ)∆λi∆λj , (3.22)

where

γij =

(
gij −

g10g01

g00

)

λ0=fmax

. (3.23)
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By using the above metric we will be able to measure the number of points that must be sampled in
our search. To do so, first we need to calculate the total hyper volume VP of the space P including all
parameter values ~λ to be searched over

VP =

∫

P
dwλ

√
det||γij || , (3.24)

where w = s+ 2 is the dimension of parameter space P , with s to be the number of spin-down parame-
ters. Note that, since we maximized the power over the frequency before minimizing the mismatch, the
parameter P is coordinized by ~λ = {α, δ, f (k)}, where α and δ are the positions of the source and f (k)

are the frequency derivatives.

By defining a maximum mismatch between the parameters, µmax, to be the largest fractional loss in the
power of the specific source with the parameters P , we can define the proper volume of a single patch as
[58]

Vpatch =

(
2

√
µmax

w

)w

. (3.25)

To arrive at the above equation, we assumed that each correction point of the mesh is located at the
center of a cube with the side of 2

√
µmax/w [58].

Having the total volume of the parameter space and the volume of a single patch, we can therefore
calculate the number of points required for this space to be filled with these patches

NP (∆T, µmax, N) ≡ VP
Vpatch

=

∫
P d

wλ
√

det||γij ||(
2
√
µmax/w

)w , (3.26)

where ∆T is the coherent time baseline, and N the number of stacks.

Note that we defined the µmax to be the maximum loss in the power after power spectra have been added,
therefore the number of points mentioned above (Npf = NP (∆T, µmax, N)) is the the number of fine
meshes for the sliding and stacking purpose. There is also a coarse grid, for the demodulation, that tells
us the mismatch in each individual power spectra should not exceed µmax. This requires, indeed, the
number of points in this coarse mesh to be Npc = NP (∆T, µmax, N = 1). For simplicity we shall require
that the µmax be the same for both fine and coarse grid.

To continue, we use the general form of Np – for an all-sky search – as given in Eq. (2.22) of BC [58]:

Np = max
s∈{0,1,2,3}

[
MsNsGs

s∏

k=0

(
1 +

0.3rΩk+1τk
min

c k!
√Ms

)]
. (3.27)

Here, r = 1 AU is the Earth’s orbital radius, Ω = 2π/(1yr),

Ns =
ss/2

(s+ 2)s/2

fs
max

∆T s(s+3)/2

(µmax/s)s/2τ
s(s+1)/2
min

, (3.28)

Ms =
(fmax

1Hz

)2 (s+ 2)

4µmax

(
1

A2
+

1

B2
+

1

C2

)−1/2

, (3.29)

where

A = 0.014 , B = 0.046

(
∆T

1 day

)2

, C = 0.18

(
∆T

1 day

)5

, (3.30)

and the functions Gs (as given in Appendix A of BC) are

G0(N) = 1 (3.31)

G1(N) =
π

6
√

5
(5N2 − 4)1/2 (3.32)

G2(N) =
π2

180
√

105
(175N6 − 840N4 + 1100N2 − 432)1/2 (3.33)

G3(N) =
π3

75600
√

105
(3675N12 − 58800N10 + 363160N8 − 1053360N6

+ 1484336N4 − 987840N2 + 248832)1/2. (3.34)
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In our numerical work we used the full expressions for the Gs given above, but for completeness we note
that BC also give the following approximate fits to the Gs, which are valid when N ≫ 4:

G0(N) = 1 , (3.35)

G1(N) ≈ 0.524N , (3.36)

G2(N) ≈ 0.0708N3 , (3.37)

G3(N) ≈ 0.00243N6 . (3.38)

Roughly speaking, the factor Ms in Eq. (3.27) counts distinct patches on the sky as set by the Earth’s
one-day spin period, Ns counts distinct patches in the space of spin-down parameters, the Gs give the

dependence of Np on the number of stacks, N , and the factors of the form
(
1 +

0.3rΩk+1τk
min

c k!
√
Ms

)
effectively

account for the increase of search volume required when the frequency derivative dkf/dtk is dominated by
the Doppler shift from the Earth’s motion around the Sun rather than by the pulsar’s intrinsic spin-down.

The Np results in BC were derived under the assumption that the observation time is significantly less
than one year. As we shall see below, in the cases where the total available data covers an observation
time of a year or more, it turns out that for the optimal search, the initial semi-coherent stages typically
analyze a few days’ to a few months’ worth of data. Also, most of the search’s computational cost
is spent on these early stages. (This is especially true for the young-pulsar search, which is the most
computationally challenging.) Therefore, it seems reasonable for our purposes to simply use the Np

formulae from BC for all observation times. Since the cost-errors we make by using the BC formulae will
be confined to the later stages, and since the overall sensitivity of the search is effectively set at the first
stage, we believe these errors will not significantly affect the total computational cost, for fixed threshold
(though they may affect the relative allocation of resources between the different stage). Of course, the
validity of this assumption can only really be checked by re-doing the calculation using more accurate
expressions for the Np’s, appropriate for year-long observation times, but unfortunately such expressions
are not currently available.

Even for short observation times, the Np calculation in BC used the approximation (2.87), which neglects
the amplitude modulation of the signal; however this approximation is not expected to cause significant
errors in estimating template numbers.

3.3.2 False dismissal rates and the thresholds

In this subsection, we discuss the statistical properties of the Stack-Slide search and solve the false
dismissal constraint to obtain expressions for the thresholds.

Recall from chapter 2 that the distribution of the F -statistic (or to be more precise, 2F), for each
coherent search, is given by a non-central χ2 distribution [44]. The non-centrality parameter, ρ2 = (h|h),
is the optimal signal-to-noise ratio (hereafter we assign the symbol η to it to specify that we talk about
mismatched optimal SNR) is given in terms of the signal h(t) by:

η = 4
(
1 − µmax

3

) ∫ ∞

0

|h̃(f)|2
Sn(f)

df

=
(
1 − µmax

3

) 2h2
RMS∆T

Sn(f)
, (3.39)

where h̃(f) is the Fourier transform of h(t). We have included a fitting factor of (1− µmax/3) to account
for the average loss in power due to the mismatch between the signal and template. hRMS is the root-
mean-square value of the signal h(t). We can relate hRMS to the amplitude hRMS defined in Eqs. (2.12) and
(2.13), as follows. If one averages hRMS over all sky-positions as well as over the polarization parameters
ι and ψ, one obtains < h2

RMS
>= (2/25)h2

0 (see Eq. (93) of [44]).

More explicitly, the distribution is

p(F|η) = 2χ2(2F|η, 4)

=

(
2F
η

)1/2

I1(
√

2Fη)e−F−η/2, (3.40)

where χ2(·|η, ν) is the χ2 distribution with ν degrees of freedom and non-centrality parameter η, and
I1 is the modified Bessel function of first order. The statistic ρ of interest for the Stack-Slide search is
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the sum of the F -statistic over N stacks. Assuming the F -statistic for the N stacks to be statistically
independent, 2ρ must follow a χ2 distribution with 4N degrees of freedom and non-centrality parameter
Nη

p(ρ|η,N) = 2χ2(2ρ|Nη, 4N) . (3.41)

The mean and variance of ρ are given respectively by

ρ̄ = 2N +
Nη

2
, σ2

ρ = 2N +Nη . (3.42)

Using the distribution p(ρ(i)), the false alarm rate for the ith semi-coherent stage (defined in Eq. (3.3))
can be evaluated analytically:

α(i)(ρ
(i)
th ) = e−ρth

2N(i)−1∑

k=0

(ρ
(i)
th )k

k!
. (3.43)

As discussed earlier, the overall false alarm probability α̃ for the search is set by the final coherent follow-

up stage. For this stage, N = 1 so that if the threshold on ρ is ρ
(coh)
th , then it is easy to see from the

previous equation that:

α̃ = (1 + ρ
(coh)
th )e−ρ

(coh)
th . (3.44)

In the presence of a signal, the non-central χ2 distribution for ρ is a little cumbersome to work with,
and it is useful to replace it by a Gaussian with the appropriate mean and variance. So we say that the
distribution of ρ must be approximately Gaussian with mean and variance as in Eq. (3.42):

p(ρ|η,N) =
1√
2πσ2

ρ

e−(ρ−ρ̄)2/2σ2
ρ . (3.45)

This approximation is not valid when N is of order unity. Then for any given hth, we should set the
threshold of the ith stage, ρ(i), by the false dismissal requirement:

∫ ρ(i)

0

p(ρ|η(i)
th , N)dρ = β(i) , (3.46)

where

η
(i)
th :=

(
1 − µmax

3

) 2h2
th∆T

(i)

Sn(f)
. (3.47)

Here the factor of (1 − µ(i)
max
/3) accounts for the average loss in power due to the mismatch between the

signal parameters and nearest grid-point parameters. Eq. (3.46) can be solved to find ρ
(i)
th as a function

of hth, ∆T (i), and µ(i). Or equivalently, it gives hth = hth(ρ
(i),∆T (i), µ(i)). This equation can easily be

solved by using the properties of the complementary error function. By changing variables in the integral,
we can rewrite the false dismissal rate as

β(i) =
1

2
erfc

(
ρ̄(i) − ρ(i)

√
2σ

(i)
ρ

)
. (3.48)

If hth is the smallest value of hRMS for which the false dismissal rate is no bigger than β(i), then according
to Eq. (3.48) we have

ρ(i)(hth) = ρ̄(i) −
√

2σ(i)
ρ erfc−1(2β(i))

≈ 2N (i)

[
1 +

η
(i)
th

4

]
− 2erfc−1(2β(i))

√
N (i)

√

1 +
η
(i)
th

2
.

In practice, we fix one value of hth (our sensitivity goal) for an entire search, and we then set the
threshold ρ(i) at each stage by solving Eq. (3.49), with the false dismissal rates set by β(1) = 0.1 and
β(i) = βcoh = 0.01 for i ≥ 2. Our rationale for this choice is as follows: at each stage, one can estimate
the signal strength of any successful candidate. If after the first stage, one can already predict that a
candidate is not strong enough to pass over the threshold at the second or a higher stage, then one might
as well discard it immediately and so not waste computer power on a likely failure. Put the other way,
an efficient algorithm should ensure that a true signal that is strong enough to pass over the first stage
is also strong enough to pass over all subsequent stages. Then the false dismissal rate for the whole
search will be only a little larger than the FD rate of the first stage alone, or a little more than 10%.
(An overestimate of the total FD rate is the sum of the rates for each of the stages, or 13% for a 3-stage
search.)
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3.3.3 Computational Cost

Let us begin with the first semi-coherent stage. Here, the number of points in the coarse and fine grids
are respectively

N (1)
pc = Np(∆T

(1), µ(1)
max, 1) , (3.49)

N
(1)
pf = Np(∆T

(1), µ(1)
max, N

(1)) . (3.50)

If we are searching in a frequency range from small frequencies up to fmax, the data must be sampled in
the time domain (at least) at the Nyquist frequency 2fmax. The minimum number of data points that we
must start out with in the time domain is then 2fmax∆T . To calculate the F -statistic for each stack, we
need to first calculate the quantities Fa and Fb which appear in Eq. (4.12). We describe two methods
below which may be called the stroboscopic re-sampling method and the SFT method. Given Fa and Fb,
the cost of combining them to get F is negligible.

The stroboscopic re-sampling method: The method suggested in [44] (and also in [58]) is based on the
observation that the integrals in Eqs. (4.33) and (4.34) look almost like a Fourier transform; the difference
being the form of Φ(t) in the exponential. However, by suitably re-sampling the time series, effectively re-
defining the time variable so that the spectrum of a real signal would look like a spike in a single frequency
bin, the integral can be written as a Fourier transform and we can then use the FFT algorithm. Since the
cost of calculating an FFT for a time series containing m data points is 3m log2m, the operations cost of
calculating the F -statistic for each stack should be approximately 12fmax∆T log2(2fmax∆T ). Repeating
this for N (1) stacks and for each point in the coarse grid, we see that the total cost of calculating Fa and
Fb, and therefore the F -statistic, is approximately

12N (1)N (1)
pc fmax∆T

(1) log2(2fmax∆T
(1)) . (3.51)

We now need to appropriately slide each segment in frequency space and stack them up, i.e. add the
F -statistic values from each stack to get our final statistic ρ. This has to be done for each point in the
fine grid. The cost of sliding is negligible and we need only consider the cost of adding the F -statistic
values. Since adding N (1) real numbers requires N (1) − 1 floating point operations, we see that the cost
of stacking and sliding for all frequency bins and for all points in the fine grid is approximately

fmax∆T
(1)N

(1)
pf (N (1) − 1) . (3.52)

Thus, the computational cost for the first semi-coherent stage is

C(1)
res = fmax∆T

(1)N (1)
pc

[
12N (1) log(2fmax∆T

(1))

log 2
+
N

(1)
pf

N
(1)
pc

(N (1) − 1)

]
. (3.53)

The subscript “res” indicates that this result is for the stroboscopic re-sampling method.

The SFT method: An alternative method is to use as input not the time series, but rather a bank of short
time baseline Fourier Transforms (SFTs). This is in fact the method currently being used in the search
codes of the LIGO Scientific Collaboration [59]. Here one first breaks up the data into short segments
of length Tsft, and calculates the Fourier transform of each segment. (These segments, which are to be
combined coherently, are not to be confused with the segments used in the Stack-Slide algorithm which
are combined incoherently). The exact method of calculating the F -statistic from an SFT database is
explained in Sec 4.2, and the operations count is derived in Appendix A. The result is (see Eq. (A.4)):

≈ 640N (1)N (1)
pc fmax

(∆T (1))2

Tsft

Flops . (3.54)

Note that the SFT method of calculating the F -statistic is O((∆T (1))2) while for the stroboscopic re-
sampling method it is O(∆T (1) log ∆T (1)).

The total cost of stacking and sliding in the first hierarchical stage using the SFT method is thus:

C
(1)
sft = fmax∆T

(1)N (1)
pc

[
640N (1)∆T (1)

Tsft

+
N

(1)
pf

N
(1)
pc

(N (1) − 1)

]
. (3.55)
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When all frequencies are to be searched over, stroboscopic re-sampling produces the F -statistic about
an order of magnitude more cheaply than the SFT method, for typical values of ∆T (1). However when
previous stages have narrowed the search to a small fraction of the whole frequency band (for any given
~λ), the SFT method can be the more efficient one. We should also mention here that it is possible to
start with SFTs and combine them in such a way as to get a O(∆T (1) log ∆T (1)) operations count; this
is in fact the method used in [66]. However, in this thesis, by the “SFT method” we always mean the
method described here in Appendix A, with the operation count given above in Eq. (3.55).

It also seems likely that the re-sampling method could be modified so as to be the most efficient one,
even when only wanted to demodulate a small frequency band

∆f = max

{
1,

∆T (i)

∆T (i−1)

}
(3.56)

around every selected candidate. Presumably the first step would be to heterodyne the data to shift
the relevant frequency range to a neighborhood of zero-frequency. Then one would filter out frequencies
higher than ∆f , followed by the usual demodulation. Eq. (3.60) would then be modified, so that the
new cost of demodulating would be 12N (i)∆T (i)∆f log2(2∆T (i)∆f). However since the details of this
modified demodulation method have not yet been worked out, we will not consider it further in this
thesis.

This completes our analysis of the first stage computational costs for both methods. The analysis for
the subsequent stages proceeds similarly; the only difference is that subsequent stages analyze only those
regions of parameter space that have not been discarded by any of the previous stages. Assuming that
almost all the candidates are due to noise, the false alarm rate is a good estimate of the number of
candidates produced by any stage. Let us denote by F (i) the number of candidates which survive the
ith stage. Since the false alarm rate for the first stage is α(1), the number of candidates produced by the
first stage is given by

F (1) = max
{
1, fmax∆T

(1)N
(1)
pf α

(1)
}
. (3.57)

Note that we will always have at least one candidate which makes it through to the next stage. To
calculate the cost of a search, we of course must make some assumptions about the data to be processed.
Basically, we are assuming that the data consists of Gaussian noise plus one detectable source. (Though
we call F (i) the “i(th)-stage false alarm rate”, it is really the “false alarm rate or the true-source survival
rate, whichever dominates”. In practice, until the last semi-coherent stage, the FA rate always dominates.)

To estimate the computational cost for the ith stage, for i > 1, recall that each of the F (i−1) candidates
produced by the (i − 1)th stage is in fact a region in parameter space. If we assume that the ith stage
further refines this region, then we see that the number of ith-stage coarse grid points in this region must

be, on average,N
(i)
pc /N

(i−1)
pf (again, assuming this ratio to be bigger than 1). Thus, using the stroboscopic

re-sampling method, the number of floating point operations to calculate the F -statistic in the ith stage
is

F (i−1)max

{
1,

N
(i)
pc

N
(i−1)
pf

}
12fmax∆T

(i)N (i) log2(2fmax∆T
(i)) . (3.58)

Each candidate produced by the (i−1)th stage occupies a frequency band 1/∆T (i−1), and thus corresponds
to ∆T (i)/∆T (i−1) ith-stage frequency bins. Thus the operations count for the stacking and sliding is

F (i−1)max

{
1,

∆T (i)

∆T (i−1)

}
max

{
1,

N
(i)
pc

N
(i−1)
pf

}
N

(i)
pf

N
(i)
pc

(N (i) − 1) (3.59)

floating point operations. Combining these results, we get the computational cost for the ith stage (i ≥ 2):

C(i)
res

= F (i−1)max

{
1,

N
(i)
pc

N
(i−1)
pf

}

×
[
12N (i)fmax∆T

(i) log(2fmax∆T
(i))

log 2
+ max

{
1,

∆T (i)

∆T (i−1)

}
N

(i)
pf

N
(i)
pc

(N (i) − 1)

]
. (3.60)



44 CHAPTER 3. OPTIMIZED STACK-SLIDE HIERARCHICAL SEARCH STRATEGY

If instead one uses the SFT method for calculating the F -statistic, it is easy to see that the operations
count is

C
(i)
sft = F (i−1)max

{
1,

N
(i)
pc

N
(i−1)
pf

}
max

{
1,

∆T (i)

∆T (i−1)

}[
640N (i)∆T (i)

Tsft

+
N

(i)
pf

N
(i)
pc

(N (i) − 1)

]
. (3.61)

After the n semi-coherent steps, we have the final coherent follow-up stage where the entire stretch of data
of duration Tused is used. For this stage, we analyze F (n) candidates and simply compute the F -statistic
without breaking up the data into any smaller stacks. The cost, C(coh), for this using the re-sampling
method is

C(coh)
res

= F (n)max

{
1,
N

(coh)
p

N
(n)
pf

}
12fmaxTused

log(2fmaxTused)

log 2
, (3.62)

where N coh
pf ≡ Np(Tused, µcoh, 1), and µcoh is the µmax of the final, coherent stage. Using the SFT method,

we would have

C
(coh)
sft = F (n)max

{
1,
N

(coh)
p

N
(n)
pf

}
max

{
1,

Tused

∆T (n)

}
640Tused

Tsft

. (3.63)

So far, all results in this section are valid whether we are working in fresh-data mode or data-recycling
mode. The following formulae, for the number of candidates which survive a given stage, do however
depend on which mode we are working in. If we operate in fresh-data mode (analyzing fresh data at
every stage–except the last stage, which is a coherent follow-up of all the searched data), we clearly have
(for i ≥ 2)

F (i) = α(i)max
{
F (i−1), 1

}
max

(
1,

N
(i)
pf

N
(i−1)
pf

)
max

(
1,

∆T (i)

∆T (i−1)

)
. (3.64)

Again, our count assumes that at least one candidate gets “promoted” to the succeeding stage. We note
that Eq. (3.64) assumes that the parameter space resolution improves at every stage of fresh-data mode
(which seems always to be true for our optimized searches). We also note that Eq. (3.64) is basically
identical to Eq. (5.2) of BC, but there it is claimed to be the FA rate for data-recycling mode. That is
not correct, in general, as we discuss further below.

If we are in data-recycling mode (at each step, re-analyzing old data, while also adding on new data),
then the probabilities of a candidate’s randomly surviving the (i−1)th and ith stages are not independent,
and so Eq. (3.64) is no longer valid. (To see this, consider the limit where only a very tiny bit of data
is added on, and the resolution is kept fixed. Then any candidate that survives the (i − 1)th stage has
almost a 100% chance of surviving the ith stage, even if α(i) is extremely small.) Indeed, the right-hand
side (rhs) of Eq. (3.64) is clearly a lower bound on the ith-stage false alarm rate, in data-recycling mode.

We can also place the following upper bound on F (i) for data-recycling mode:

F (i) = fmax∆T
(i)N

(i)
pf α

(i) . (3.65)

The rhs of Eq. (3.65) is the number of false alarms that would result if one performed a semi-coherent
search of the entire parameter space with the given (N (i),∆T (i), µ(i), ρ(i)), while the left-hand side (lhs)
is the false alarms that result from searching only neighborhoods of the points the survived the (i− 1)th

stage. Thus for data-recycling mode, we can say that F (i) is somewhere in the range

F (i−1)

(
N

(i)
pf

N
(i−1)
pf

∆T (i)

∆T (i−1)

)
α(i) ≤ F (i) ≤ fmax∆T

(i)N
(i)
pf α

(i) .

Fortunately, when we calculate the total computational cost of some optimized search in data-recycling
mode, needed to achieve some given sensitivity 1/hth, if we try plugging in either the upper or lower bound
for F (i), we find the two final results differ from each other by ∼< 18% for a young pulsar (τmin = 40 year)

and ∼< 5% for an old one (τmin = 106 year), which for our purposes is practically insignificant. Moreover,

the optimized search parameters obtained when we plug in the upper-limit estimate for F (i) are quite
similar to those we find by plugging in the lower limit instead. Therefore it is safe for us to choose either
the upper or lower limit as an estimate of F (i). For concreteness, in the rest of this chapter we always
estimate F (i) by its upper limit, which slightly overestimates the computational cost of the search.
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With these results in hand, we are now ready to calculate the total computational cost of the entire
search pipeline. We have a number of choices to make. At each stage, we can use either the stroboscopic
re-sampling method or the SFT method in each stage, and we can work in either the data-recycling mode
or fresh-data mode from the second stage onwards. For convenience, we somewhat arbitrarily limit the
choices by considering only strategies that use either data-recycling mode in every stage or fresh-data
mode in every stage. As we shall see below, the efficiencies of these two sorts of searches turn out to
be extremely close anyway. Therefore we strongly suspect that more general searches (using fresh-data
mode in some stages and data-recycling mode in others) would not give significant improvements.

3.4 Results

The computer codes generated to do the work in this section are available in appendix B.

3.4.1 The optimization method

We next describe our numerical optimization method. The function we want to minimize, the computa-
tional power of Eq. (3.11), is a complicated function on a large-dimensional space. Our chosen method is
a simulated annealing algorithm [67, 68] based on the downhill simplex method of Nelder and Mead [69].
The downhill simplex method consists of evaluating the function on the vertices of a simplex and moving
the simplex downhill and shrinking it until the desired accuracy is reached. The motion of the simplex
consists of a prescribed set of “moves” which could be either an expansion of the simplex, a reflection
around a face, or a contraction. This method is turned into a simulated annealing method by adding
a random fluctuation to the values of the function to be minimized, at the points of the simplex. The
temperature of the random fluctuations is reduced appropriately, or in other words “annealed”, until the
minimum is found.

There are no universal choices for the rate of annealing or the starting point of the simplex; these
depend on the particular problem at hand. For the results presented below, we have used a variety of
different starting points and annealing schedules to convince ourselves that the optimization algorithm
has converged and that we have indeed found the best minimum. Let us first discuss the starting
temperature, whose meaning is as follows. If f is the the function to be minimized, then the temperature
Θ parameterizes the amplitude of random fluctuations f → f+δf added to f at the points of the simplex:

δf = −Θ log r, (3.66)

where 0 < r < 1 is a uniformly distributed random number. A simplex move is always accepted if it
takes the simplex downhill, but an uphill step may also be accepted due to these random fluctuations.
In our case, we found that a starting temperature of Θ ∼ 106-109 gives good convergence; this value is
to be compared to the typical value ∼ 1013 of the computational cost near its minimum for most of the
results presented below. We allow a maximum of 500 iterations of the simplex. If the simplex does not
converge within 500 iterations, we reduce the temperature by 2% − 5% and restart the iterations from
the best minimum found up to that point. These steps are repeated until the simplex converges. The
starting point of the simplex cannot be chosen arbitrarily, and for this purpose, it is useful to have a
rough idea of the location of the minimum. This requires some experimenting with a sufficiently broad
range of starting points; this is especially important when the number of variables is large, as is the case
for, say, a search with n > 3. Having found a suitable starting point for one set of pulsar parameters
(fmax and τmin), it can be reused for nearby pulsar parameter values. Occasionally, to obtain convergence
to a minimum, we have taken as our starting point the minimum we found for nearby pulsar-parameter
values.

We next describe how we impose the constraint that the total amount of analyzed data is less than
Tmax. One could imagine trying to do this using the method of Lagrange multipliers. However this
seemed difficult to implement numerically (for our highly non-linear function P ), and we found a simpler
approach that suffices. The function our algorithm minimizes is not the total computational power P
(defined in Eq. (3.11)) itself, but rather

f = P ×
[
1 + S

(
Tused

Tmax

)]
, (3.67)
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where S(x) is a smooth function such that S(x) = 0 for 0 < x < 1 but S(x) is rapidly increasing
exponential function for x > 1. That is, we impose a very steep penalty for leaving the constraint
surface. This works well, and indeed we found it useful to impose some additional (intuitively obvious)
constraints in this way, such as requiring the N (i) and ∆T (i) to all be positive; we again multiply P by
factor that is unity when the constraint is satisfied but is very large when the constraint is violated. This
“trick” is used to find the location of the minimum, but of course the results we report are the values of
the function P there, not f .

There is one additional technical detail, namely, that our optimization method is meant for the case of
continuous, real variables, while our variables N (i) are strictly integers. We handle this by rounding off
N (i) to the nearest integer while calculating the cost function f , every time it is called. The downhill
simplex algorithm still treats N (i) as a continuous variable, i.e. we allow arbitrarily small changes to
N (i) when the simplex is moving downhill, but such changes have no effect on f . We have also tried an
alternative approach where N (i) is kept as a continuous variable throughout, and rounded off only at the
very end. We have found that the two approaches yield consistent results.

Finally, we cross-checked our results using two different implementations of the simulated annealing
algorithm–those of [70] and [71]–and found that they gave basically equivalent results in our case.

3.4.2 The number of semi-coherent stages

The first question we want to answer is: what is the optimum number n of semi-coherent stages to use in
the search? Relatedly, we want to know the most efficient method to use for the F -statistic calculation
(stroboscopic re-sampling or SFT method) and best mode to work in (fresh-data mode or data-recycling
mode). To answer this, we consider an all-sky search for fast/young GW pulsars, by which we mean a
search that goes up to frequency fmax = 1000 Hz and that can detect pulsars with spin-down ages τmin as
short as 40 yr. We assume the amount of data available is Tmax = 1 yr, and ask what is the computational
power required to detect pulsar signals whose hRMS is or above hth, given by:

h2
th

Sn(f)
= 2.5 × 10−5sec−1. (3.68)

This signal strength corresponds to
√
η ≈ 39.72 for a full 1-yr observation time with a perfectly matched

template. (Here and below we are implicitly assuming that Sn(f) hardly varies over the frequency range
of the signal.) We choose the ith-stage FD rates, β(i), as given in (and just above) Eq. (3.9), which, along
with the detection threshold given by Eq. (3.68), determines the ith-stage thresholds ρ(i). For simplicity,
we set µ(coh) = 0.2. While this is a restriction that we simply put in by hand (to slightly reduce the space
of search parameters to be optimized), we believe this choice has very little effect on the overall optimized
strategy because, as we shall see shortly, the follow-up stage usually accounts for only a tiny fraction of
the total computational cost.1 Thus we are left with 3n parameters to be optimized: (∆T (i), µ(i)

max
, N (i))

for i = 1, . . . , n, subject to the constraint that the total amount of data analyzed, Tused [given by Eq. (3.6)
or (3.7)] is less than 1 yr.

Plots of the minimum computational cost for different n and for both the data-recycling and fresh-data
modes are shown in Fig. (3.6). For each mode, we consider the following three strategies: (i) Use the SFT
method in each stage, (ii) Use the re-sampling method in each stage, and (iii) Use the re-sampling method
in the first and final follow-up stages, and use the SFT method in all intermediate stages. Therefore there
are 6 curves in Fig. (3.6).

The most important lessons from Fig. (3.6) are the following: Strategy (iii) turns out to be better than
(i) or (ii). Furthermore, for strategy (iii), there is a significant advantage in a three-stage search as
compared to a two-stage or single-stage search, but there is hardly any improvement in computational
cost in going to four or more semi-coherent stages. Furthermore, these results are the same whether
we use the fresh-data mode or data-recycling mode, and these two modes give very similar total costs.
While Fig. (3.6) presents results just for young/fast pulsar searches, we find the same basic pattern for
old pulsars, with τmin ∼ 106 yr: strategy (iii) is the most efficient for calculating the F -statistic, data-
recycling mode and fresh-data mode are almost equally efficient, and having three semi-coherent stages is
near-optimal (significantly better than two stages, and practically as good as four). The main difference
from the young/fast pulsar case is that the gain in going from 2 to 3 stages is now only a factor of ∼ 2
in computational power, i.e., smaller but still significant.

1An exception is a search for old pulsars presented in tables 3.7 and 3.8, where the cost for the follow-up stage turns out
to be non-negligible. This example in particular will have to be revisited when better formulas for Np are available.
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Figure 3.6: Computational power versus number of semi-coherent stages for different methods of calcu-
lating the F -statistic. RES indicates the stroboscopic re-sampling method (strategy (ii)) and SFT is the
SFT method (strategy (i)). SFT+RES corresponds the mixture of these two methods (strategy (iii)).
For each strategy, solid lines indicate the result for the fresh-data mode, while the dashed lines are for
the data-recycling mode.

In the light of these results, in the rest of this section, we consider only three-stage searches, with the first
stage and final follow-up stages employing the re-sampling method and with the second and third stages
employing the SFT method. We continue to report results for both data-recycling mode and fresh-data
mode.

3.4.3 The optimal three-stage search parameters

For the example search described above, (i.e. fmax = 1000 Hz, τmin = 40 yr, Tmax = 1 yr, and h2
th/Sn =

2.5× 10−5sec−1) we list the optimal search parameters for the three-stage search in data-recycling mode
in Table (3.1). The first two stages analyze about 26 days (divided in 10 segments) and 42 days (divided
in 12 segments) of data, respectively, while the third stage analyzes the entire year-long data stretch
(divided in 8 segments). The total computational cost is 40.2 TFlops. The cost breakdown among the

individual stages, and further cost breakdown into the demodulation piece C
(i)
coh and the Stack-Slide C

(i)
ss

piece in each stage, are given in Table (3.2). There we give the total count of floating point operations
required, not the number of operations per second.

Stage ∆T (i) (days) µ(i) N (i) T
(i)
used (days)

√
η

1 2.58 0.7805 10 25.79 9.08

2 3.51 0.1139 12 42.13 13.23

3 45.66 0.8196 8 365.25 33.86

Table 3.1: The optimal search parameters in data recycling mode. fmax = 1000Hz, τmin = 40yr, Tmax =
1yr, h2

th/Sn = 2.5 × 10−5sec−1, and η is defined according to Eq. (3.39).

Our results for fresh-data mode are qualitatively similar, and are given in Table (3.3). In this case, the
optimal search analyzes about 24 days of data in the first stage (broken up into 9 segments) and 24 more
days in the second stage (broken into 6 segments). The third stage analyzes the rest of the year’s worth
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Stage C(i) (Flop) C
(i)
coh (Flop) C

(i)
ss (Flop)

1 9.37 × 1020 6.21 × 1019 8.75 × 1020

2 3.16 × 1020 2.46 × 1020 6.98 × 1019

3 1.65 × 1019 2.73 × 1018 1.37 × 1019

Follow-up 6.30 × 1015

Table 3.2: The computational cost to analyze one year of data in data-recycling mode. The search

parameters are the same as given in Table 3.1. C
(i)
coh is the cost for the coherent demodulation step and

C
(i)
ss for the Stack-Slide step, while C(i) is the sum of these two. Follow-up indicates the computational

cost require for the final follow-up stage.

Stage ∆T (i) (days) µ(i) N (i) T
(i)
used (days)

√
η

1 2.71 0.7829 9 24.35 8.82

2 4.08 0.0654 6 24.49 10.17

3 45.20 0.8229 7 316.42 31.50

Table 3.3: Same as Table (3.1), but for fresh-data mode.

of data, divided into 7 segments. The total computational requirement is 34.6 TFlops and its breakdown
is given in Table (3.4).

We note the following features of these results. First, in both modes, basically all the data has been
analyzed by the end of the third semi-coherent stage. This is not a requirement that we put in by hand,
but rather it arises from the optimization: the optimal scheme “gets through” the entire year’s worth of
data before the final follow-up stage. Secondly, in data-recycling mode, 73.8% of the computing time is
spent in the first stage, 24.9% in the second, 1.3% in the third and a negligible fraction in the follow-up.
The results are similar for the fresh-data mode: approximately 74.2% of the computational resources are
spent in the first stage, 24.2% in the second stage, 1.6% in the third stage and a negligible amount in the
follow up stage. Finally, fresh-data mode entails a slightly lower computational cost than data-recycling
mode. However this last fact could be an artifact either of having slightly different overall FD rates in
the two cases, or of our using an overestimate of F (i) in the latter case. The bottom line is that, after
optimization, the two modes are almost equally efficient.

If instead we consider a search for older pulsars, with τmin = 106 yr instead of 40 yr, then the optimal
solution for both modes are summarized in Tables (3.5)–(3.8). A larger value of τmin means a smaller
number of templates, and therefore a more sensitive search for fixed computational cost.

Stage C(i) (Flop) C
(i)
coh (Flop) C

(i)
ss (Flop)

1 8.11 × 1020 6.42 × 1019 7.46 × 1020

2 2.64 × 1020 2.62 × 1020 2.67 × 1018

3 1.74 × 1019 5.54 × 1018 1.19 × 1019

Follow-up 1.62 × 1016

Table 3.4: Same as Table (3.2), but for fresh-data mode.
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Stage ∆T (i) (days) µ(i) N (i) T
(i)
used (days)

√
η

1 14.84 0.3514 8 118.72 9.06

2 30.06 0.0917 6 180.34 11.70

3 52.18 0.0986 7 365.25 16.63

Table 3.5: Search parameters for data-recycling mode with fmax = 1000Hz, τmin = 106yr, Tmax = 1yr,
h2

th/Sn = 4.53 × 10−6sec−1, and computational power 40.2TFlops; η is defined according to Eq. (3.39).

Stage C(i) (Flop) C
(i)
coh (Flop) C

(i)
ss (Flop)

1 7.41 × 1020 2.85 × 1018 7.39 × 1020

2 4.93 × 1020 3.77 × 1020 1.16 × 1020

3 3.82 × 1019 1.34 × 1019 2.48 × 1019

Follow-up 6.18 × 1013

Table 3.6: The computational cost to analyze one year of data in data-recycling mode. The search

parameters are the same as given in Table (3.5). C
(i)
coh is the cost for the coherent demodulation step and

C
(i)
ss for the Stack-Slide step, while C(i) is the sum of these two. Follow-up indicates the computational

cost require for the final follow-up stage.

For data-recycling mode, we have lowered the threshold hth by a factor of 2.35, to the point where the
required computational power is again 40.2 TFlops, as in the example of Tables (3.1) and (3.2). The
results are shown in Tables (3.5) and (3.6). Compared to the young-pulsar search, the computational
power is now spread more evenly over the first two stages: the first stage consumes about 58.27% of the
power, the second stage 38.73%, third stage 3.0% and negligible for the follow-up stage.

For the case of fresh-data mode, we have lowered the threshold hth by a factor 2.36, to the point where
the required computational power is again 34.6 TFlops, as in the example of Tables (3.3) and (3.4). Once
again, compared to the young-pulsar search, the computational costs are spread more evenly over the
first two stages: the first stage consumes about 31.3% of the power, the second stage 30.4%, third stage
14.0%. In this case, the cost for the follow-up stage is 24.0%, which is not negligible. This indicates that,
for this case, the earlier stages have not succeeded in reducing the number of candidates to a low level.
The overall sensitivity, though, is still almost identical to the data-recycling case.

Let us now discuss the false alarm rate. We require that the overall FA rate be less than 1%, and we
claimed in section 3.2.2 that this is automatically satisfied in typical, realistic cases. We can now verify
this claim. For the τmin = 40 yr search summarized in tables (3.1)–(3.4), using Eq. (3.39), with µmax =

µ(coh)
max

= 0.2, the threshold corresponds to ρ
(coh)
th ≈ ρ̄ = 2 + η/2 ≈ 738. By Eq. (3.44), this corresponds to

Stage ∆T (i) (days) µ(i) N (i) T
(i)
used (days)

√
η

1 11.77 0.2074 9 105.96 9.04

2 10.97 0.0199 6 65.82 7.13

3 27.64 0.0206 7 193.47 12.22

Table 3.7: Search parameters for fresh-data mode with fmax = 1000Hz, τmin = 106yr, Tmax = 1yr,
h2

th/Sn = 4.47 × 10−6sec−1, and computational power 34.6TFlops; η is defined according to Eq. 3.39.
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Stage C(i) (Flop) C
(i)
coh (Flop) C

(i)
ss (Flop)

1 3.46 × 1020 3.07 × 1018 3.43 × 1020

2 3.35 × 1020 3.33 × 1020 1.91 × 1018

3 1.54 × 1020 9.23 × 1019 6.19 × 1019

Follow-up 2.67 × 1020

Table 3.8: Same as Table (3.6), except for fresh-data mode. The search parameters are those of Table
(3.7).

α̃ ≈ 10−318 (for either mode). Using Eq. (3.27), the number of independent templates required for a full
coherent search of the entire parameter space, using 1 yr of data, is fmaxTmaxNp(1yr, 0.2, 1) ≈ 1034. The
overall false alarm rate is thus FA = fmaxTmaxNpα̃ ≈ 10−284 ≪ 1% 2.

Similarly, for the case τmin = 106 yr, h2
th/Sn = 4.53× 10−6 (data recycling mode, Tables (3.5) and (3.6)),

we get η ≈ 286 so that α̃ ≈ 10−61. In this case we have Np ≈ 1017 so that FA = fmaxTmaxNpα̃ ≈ 10−34.
If we look at fresh data mode (Tables (3.7) and (3.8)) with τmin = 106 yr, h2

th/Sn = 4.47 × 10−6, we get
FA ≈ 10−33. These values are greater than for the case of young pulsars, but still vastly smaller than
1%.

The basic point is simply this: For an all-sky search, sensitivity is limited by computing power, so the
detection threshold hth in practice is substantially higher than what it would be for infinite computing
power. This means that for a signal to be detectable, it must have quite a high SNR (in the matched filter
sense)–which means that the FA rate is exponentially small. Being computationally limited means that
when we do detect something, we can be very confident that it is not simply random noise masquerading
as a signal 3.

How accurate are our numerical results? The total computational cost is a complicated function on a
9-dimensional space and thus is not easy to visualize. We can, however, take appropriate sections of this
function to examine its behavior near the minimum. Thus, we can ask whether variations in, say, ∆T (1)

or ∆T (2) away from their optimal values, increase the computational cost (as they should, if should if we
have truly found a minimum). To answer this, in Fig. (3.7) we plot the total computational power as
a function of ∆T (1) and ∆T (2), respectively, for the young-pulsar searches summarized in Tables (3.1) –
(3.4). All the other parameters fixed at their optimal values. The minima of these curves agree precisely
with our simulated annealing results. Similarly, Figs. (3.8) and (3.9) carry the same message, as well as
showing the strong dependence of the computational cost on N (i) and µ(i)

max
. (It is not so clear from the

plot of P vs. µ(3)
max

that this curve has a minimum in the range shown, but it does in fact have a very
shallow one.)

For the plot of computational cost versus N (3), we are not allowed to keep ∆T (3) fixed, since that could
violate the constraint ∆T (3)N (3) ≤ Tmax. (Recall that ∆T (3)N (3) = Tmax = 1 yr for the optimal 3-
stage solution, which is therefore just at the boundary of the constraint region.) Therefore, we choose
to plot the computational cost as a function of N (3) while simultaneously varying ∆T (3) according to
∆T (3) = Tmax/N

(3).

A noteworthy feature of these plots is that the computational power P depends more sensitively on
the early-stage parameters than the late-stage ones; e.g., more sensitively on N (1) and N (2) than on
N (3). This result should not be surprising since, as mentioned earlier, for the young-pulsar search the
computational cost of the higher stages is relatively small.

2Strictly speaking, Eq. (3.27) for the number of templates is valid only for observation times which are significantly less
than a year. However, unless the discrepancy is many orders of magnitude, the numbers obtained show that it is obviously
sufficient for the purposes of this argument.

3Of course, no sensible person would ever claim that he or she had detected a GW pulsar with FA probability of less
than 10−284. In such a case, the “statistical error” is so ridiculously small that the true FA rate is dominated by the other,
hard-to-quantify factors, such as the probability of having some bug in the instrumentation or in the data analysis code.
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Figure 3.7: Computational power P as a function of ∆T (1) and ∆T (2), with all other parameters fixed
to their optimal values.
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Figure 3.10: The minimum computational power P required for analyzing 1 year worth of data as a
function of the pulsar’s spin-down age τmin. We consider a three-stage search in the both data-recycling
and fresh-data mode, for two different signal strengths. The data-recycling mode results are shown with
dashed lines, while the fresh-data results are in dotted lines. In parts of the curves, the results for the
two modes are so close together that it is hard to distinguish them.

3.4.4 The spin-down age and the SNR

How does the (minimum) computational cost depend on the shortest spin-down timescale that we search
over, τmin? Consider again the case where we have one year of data and we perform an all-sky search up
to a frequency of fmax = 1000 Hz. Fig. (3.10) shows the result for the both data-recycling and fresh-data
mode, for two different values of the 1-year SNR. Note that these results do pass simple sanity checks:
the computational cost decreases as the SNR increases (since it is easier to look for stronger signals), and
the computational cost decreases as τmin increases (since it is easier to search through a smaller parameter
space).

One can also ask: for a given available computational power, how does the threshold SNR scale with
τmin? This is shown in Fig. (3.11). The plot is based on the assumption that we have one year’s worth
of data and that we have 10 TFlops of computing power at our disposal. By “SNR”, here we mean the
matched-filter SNR, for a perfectly matched filter. Fig. (3.11) tells us that a search for unknown GW
pulsars with spin-down ages > 106 yr can detect ∼ 85 − 90% of pulsars whose SNR is > 17 (again, with
FA rate << 1%). In an all-sky search for very young pulsars, with τmin = 40 yr, the SNR required for
detection (with the same FD and FA rates) increases to ∼ 43. In comparison, for a source where the sky
position and frequency are known in advance (from radio observations), an SNR of only 4.56 is required
for detection, with a 10% FD rate and 1% FA rate [54].

Fig. (3.11) strongly suggests that one would like to simultaneously perform at least two different all-sky
searches: one for old GW pulsars and another for young ones, with comparable (within a factor ten)
computer power devoted to each, but with quite different thresholds. (If one set the same threshold
for both old and young pulsars, then almost all computing resources would end up being spent on the
young ones.) Clearly, to determine the “best” apportionment of resources between the two types of
searches would require some additional inputs/assumptions, but at least Fig. (3.11) seems a good first
step towards making an intelligent allocation.
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Figure 3.11: The 1-year SNR (with zero mismatch) as a function of τmin, for fixed computational power
P = 1013 Flops. The dashed line indicates the result for data-recycling mode and the dotted line for
fresh-data. Since these two result are very close to each other, it may be difficult to distinguish them.

3.5 Optimization of coherent hierarchical search strategy

Under certain circumstances, it can be advantageous to perform a coherent instead of a semi-coherent
search. Notably, the sensitivity for a coherent search will generically be better (albeit at much greater
computational cost); with this reasoning, the first stage of the Einstein@Home project used a single
stage full coherent search. In this section, we will see how the strategy for a semi-coherent hierarchical
search developed in the previous sections might carry over to the coherent case. While this might not
lead to the overall optimum strategy, it is an interesting case to study; in fact, the pulsar group of the
LIGO-GEO collaboration is developing software based on hierarchical coherent search methods for use
with LIGO/GEO data analysis.

As mentioned at the beginning of this chapter, performing a full coherent search is computationally very
expensive. Given currently available computer resources, we can only do search over a several hours to a
few days. This statement is made more precise by Fig. (3.12): estimating the available computing power
at one TFlops, then even with a hierarchical coherent search strategy with three optimum stages (more
about which below), the maximum length of a data set we can analyze coherently is about 7 days; at the
same time, this sets an upper limit for a single stage full coherent search requiring even more computing
power. Also, note that the increase is non-linear: comparing coherent analysis of 5 days’ worth of data
and that of 10 day’s worth (amounting to double the data), the required computational cost would
increase with a factor of more than 200. With this dependency, it is no wonder that, whenever it can be
implemented, a semi-coherent optimization strategy will be preferable. Let us have a closer look at how
a coherent hierarchical search scheme can be implemented. In this search, instead of breaking data into
smaller segments, analyzing these segments separately, and later combining the results (as would be done
in a semi-coherent search), a coherent search will always apply to the data as a whole. More concretely,
for the first stage, we take some amount of data and analyze it coherently (i.e. as a whole); for the
second stage we include more data, but we do not just look at the additional, “fresh” data (cf. the fresh
data mode of the semi-coherent hierarchical search); rather we take all the available data (our original
data plus the fresh data) and analyze the combined data coherently, resulting in a list of candidates that
pass our specified threshold. (Note that with this, we are actually following the data recycling method
mentioned in the context of the semi-coherent hierarchical search scheme.)

We continue this procedure as often as necessary. As is shown in Fig. (3.13), using more than three
stages will not result in a significant increase of performance. For this figure, 10 days’ worth of data
have been analyzed in the data recycling mode over a different number of stages: by doing two stages
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Figure 3.12: Required computational cost for a three stages coherent search versus the total observational
time.

Stage T (i) (days) µ(i) √
η

1 0.74 0.3984 5.66

2 2.18 0.7816 9.71

3 5.00 0.6450 14.70

Table 3.9: The optimal search parameters for coherent hierarchical search in data recycling mode. fmax =
1000Hz, τmin = 40yr, Tmax = 5days, h2

th/Sn = 5.0 × 10−4sec−1, and η is defined according to Eq. (3.39).

instead of one, computational costs is reduced by a factor of 50; for three stages instead of two, the
decrease is by a factor of two; using more than three stages we will not result in a significant decrease
of computing cost. We conclude that the optimum number of stages in our searches is three; the same
as for the semi-coherent searches, but with a hugely greater overall computational cost for comparable
amounts of data.

Having found the optimum number of stages, the next set of quantities to consider is the optimum amount
of data to be used at each stage for lowest overall computational cost. Consider a young, fast pulsar with
a minimum spin-down age of 40 years and a frequency of up to 1000 Hz, and set the minimum detectable
signal to be h2

th/Sn = 5.0 × 10−4sec−1, and assume that we are looking at a total of 5 days’ worth of
data. As in the case of the semi-coherent hierarchical search strategy, let us use a 10% false dismissal
rate for the first stage and 1% for the subsequent stages. The optimization method described in section
3.4.1 shows the optimum search strategy to be as follows: use about 0.74 days for the first stage, with
a maximum mismatch to be µ1 = 0.40; for the second stage, use 2.18 days of data with µ2 = 0.78. For
the final stage, use all 5 days of data with µ3 = 0.65. The computational cost for this particular strategy
amounts to 0.98 TFlops. With this search strategy, the 5 days signal-to-noise ratio will be about 14.70;
if the target of the search is a significantly stronger signal, computational costs could be reduced even
further. The result is shown in more detail in Table (3.9). Note the following interesting differences
between a three stage semi-coherent search and a coherent search with the same number of stages: in
section 3.4.3, we saw that the distribution of computational cost for a search with three stages was 73.8%
in the first stage, 24.9% in the second stage and finally 1.3% in the last stage (Table (3.10)). In contrast,
in the case of a coherent search, the computational cost for the first two stages is about the same, and
much larger than the cost for stage three; in our particular case, we should spend 44.7% on the first
stage, 42% on the second, and a mere 13.3% for the last stage in our optimization scheme. It is quite



3.5. OPTIMIZATION OF COHERENT HIERARCHICAL SEARCH STRATEGY 55

1  2 3 4 5

10
15

10
16

Number of Stages

C
o
m

p
u
ta

ti
o
n
a
l 
C

o
s
t 
(F

lo
p
s
)

Computational Cost vs Number of Stages
Coherent Search of 10 days data (Data Recycling mode)

Figure 3.13: Required computational cost for a 10 days of data to be analyzed coherently in a multi
stages search.

Stage Semi-Coherent Coherent
(% of total) (% of total)

1 73.8 44.7

2 24.9 42.0

3 1.3 13.3

Table 3.10: The distribution of required Computational Cost (CP) in different stages for different opti-
mization strategies.

significant that we pay roughly half the total cost for analyzing the comparatively small amount of data
used in the first stage!

After this brief summary – with its focus on the comparison between semi-coherent and coherent hierar-
chical searches – let us have a closer look at the mathematical formalism of the coherent search strategy,
using the concepts and formulae introduced in the preceding sections. Instead of dividing the data at
each stage into different numbers of segments, we fix N = 1 in all cases. We start by calculating the
strength threshold for the signal we want to detect: substituting N = 1 in Eq. (3.42), we obtain the
following expression for the mean and variance of our statistic:

ρ̄ = 2 +
η

2
, σ2

ρ = 2 + η , (3.69)

where η is the non-centrality parameter defined in Eq. (3.39). Substituting these into Eq. (3.49), and
fixing both the false dismissal rate and the minimum value of the signal strength through our choice of
ηth (Eq. (3.47)), we obtain the threshold

ρ(i)(hth) = ρ̄(i) −
√

2σ(i)
ρ erfc−1(2β(i))

≈ 2

[
1 +

η
(i)
th

4

]
− 2erfc−1(2β(i))

√

1 +
η
(i)
th

2
. (3.70)

Note that all results mentioned in this section are based on the SFT method (as is the Frequency Domain
Search [FDS] of the LSC pulsar group). Still following the same recipe as for the semi-coherent hierarchical
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search, our next step is to compute the false alarm probability and computational cost of the first stage.
According Eq. (3.43), the false alarm rate for a coherent search undertaken in stages is

α(i)(ρ(i)) = (1 + ρ(i))eρ(i)

. (3.71)

The number of candidates which pass the first stage is then given as

F (1) = max
{

1, fmaxT
(1)N (1)

pc α
(1)
}

(3.72)

(cf Eq. (3.57)).

As we have shown in the context of semi-coherent strategies, the results for the data recycling mode
and the fresh data mode are the same; in order to avoid needless repetition, we will focus on the data
recycling mode only in the following exposition, in particular since all our results are based on that
particular mode.

In this mode, the formulae for the higher stages are the same as for the first; the number of candidates
passing on to the next stage is always of the form

F (i) = fmaxT
(i)N

(i)
pt α

(i), (3.73)

which is actually the upper bound on F (i). The quantity N
(i)
pt mentioned above is the number of grid-

points in the parameter space (as the same as Npc for the semi-coherent search strategy). It can be
expressed as

N
(i)
pt = Np(T

(i), µ(i)
max), (3.74)

(cf. Sec. 3.3.1 for the exact formulation).

The computational cost of a coherent search using the SFT method according to Eq. (3.54) is

C(1) = 640N (1)N
(1)
pt fmax

(T (1))2

Tsft

Flops , (3.75)

for the first stage; for the subsequent stages

C
(i)
sft = 640F (i−1)max

{
1,

N
(i)
pt

N
(i−1)
pt

}
max

{
1,

T (i)

T (i−1)

}
×
[
T (i)

Tsft

]
. (3.76)

These are the formulae on which the results mentioned above are based.



Chapter 4

Multi-IFO Coherent Search

The F -statistic shown in chapter 2, which was originally derived by Jaranowski, Królak and Schutz
(JKS)[44], is the optimal statistic for the detection of nearly periodic gravitational waves from unknown
GW pulsars. In fact, the F -statistic derived by JKS applies just to the case of a single detector with
stationary noise (i.e., where spectral density is constant in time). Although JKS mentioned the possibility
of using data from a network of detectors to calculate the F -statistic, they did not give explicit details on
how to implement this. The first detailed calculation for the general case of a network of detectors, with
time-varying noise curves and, for a collection of known sources, was published by Cutler and Schutz
(CS)[52]. In this chapter, we apply the formalism developed by CS to the case of a single source and N
detectors with uncorrelated noises. (As CS have pointed out, it should be straightforward to generalize
this to the case of correlated noise between different detectors.)

The main aim of this chapter is to review the multi-IFO F -statistic as well as its discretization and
implementation in our software. In section 4.1 we present the multi-IFO F -statistic for the case of
several uncorrelated detectors. In section 4.1 we treat time as a continuous parameter. In section 4.2 we
translate these results to the case of discrete timesteps (since real data is sampled discretely). Using the
notation of CS, we follow the calculation laid out in the technical note of Itoh, Mendell and Siemens [73],
to generalize the formulation of so-called LALDemod explained by Siemens [74]. In section 4.3 we review
the semi-analytic calculation of F -statistic. Section 4.4 is devoted to the question of estimating signal
parameters. This is of fundamental importance for any real search for gravitational wave sources, since
one main aim is to obtain the best-fit parameters from a given signal for a given type of known source.
Finally, section 4.5 is on using noise weights when calculating the F -statistic. This has two advantages;
one corresponds to the fact that our data is in single precision with typical strains x̃ ∼ 10−23, therefore
the noise spectral density, which is proportional to the |x̃2|, has a value of order 10−46. Since the range of
a single precision floating points is from ∼ 10−44 to ∼ 10+38, we cannot use single precision to represent
noise floor. Using noise weights, it is possible to make all the numbers that will actually be used in our
numerical computations of order unity. At the same time, we also use our noise-weight procedure to
correctly account for the non-stationarity of the noise, since we want to give more weight to a chunk with
the smaller value of the noise floor and lower weight to the larger one. The details of this come in section
4.5.

4.1 Generalized maximum likelihood function for multi-IFO

Going back to the definition of the maximum likelihood function in Eq. (2.73), and considering the fact
that we are looking for a single signal buried in all the different data sets from the different detectors,
the generalized likelihood function can be written as

Λ =
P (x1, x2, · · · |h)
P (x1, x2, · · · |0)

, (4.1)

where x1 stands for x1(t), x2 for x2(t), etc.

Assuming that there are no correlations between different detector noises, we can readily write the
probability of the multi-detector data set as the product of the probabilities for each detector’s separate
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data set;
P (y1, y2, · · · ) = P (y1) · P (y2) · · · . (4.2)

With this factorization, the generalized likelihood function of Eq. (4.1) takes on the form

Λ =
P (x1|h)P (x2|h) · · ·
P (x1|0)P (x2|0) · · ·

=
P (x1|h)
P (x1|0)

· P (x2|h)
P (x2|0)

· · · . (4.3)

But that means that the combined likelihood function for data from multiple detectors is simply the
product of the likelihood functions for each detector’s data set,

Λ = Λ1 × Λ2 × · · · . (4.4)

In consequence, the log of the general likelihood function (Eq. 4.1) is

log Λ =
∑

x

[
(xx|hx) − 1

2
(hx|hx)

]
, (4.5)

where the index ‘x’ runs over all the different detectors.

The important lesson is that absence of correlation implies linearity: As long as noises are uncorrelated,
the logarithm of the likelihood ratio for the combined set can be computed by adding the logarithms of
the likelihood ratio for each detector individually

Redefining the signal h(t) (Eq. 2.17) for each individual detector ‘x’ as

hx(t) =

4∑

a=1

Aahxa , (4.6)

and making this substitution in the likelihood function (Eq. 4.5), we have

log Λ =
∑

x
(xx|Aahxa ) − 1

2

∑

x
(Aahxa |Abhxb ). (4.7)

Since the Aas are independent of the detectors, we can take them out of the summation

log Λ = Aa
∑

x
(xx|hxa ) − 1

2
AaAb

∑

x
(hxa |hxb ), (4.8)

with all the Aa in front.

It is helpful to generalize Eqs. (2.79) and (2.80) and introduce the quantities

Ha =
∑

x
(xx|hxa ), (4.9)

and
Mab =

∑

x
(hxa |hxb ). (4.10)

With their help, we can rewrite Eq. (4.8) as

log Λ = AaHa − 1

2
AaAbMab . (4.11)

By maximizing the log of likelihood function (Eq. 4.11) Aas, we obtain the general form of the F -statistic,
namely

F =
1

2
Ha M−1ab

Hb . (4.12)

Note that our vector H and matrix M in the above equation are the sum over the separate H and M ,
defined for each detector using Eqs. (2.79) and (2.80).
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As Eq. (4.12) shows, the F -statistic for multiple detectors has the same form as that for a single detector
(cf. Eq. 2.85), except that each component represents a sum over all the detectors. In consequence, the
recipe for calculating the combined F -statistic is straightforward: compute the quantities H and M for
each detector; add them to construct H and M; combine these new quantities to obtain the F -statistic.

Actually, following many other references, we will use 2F instead of the F of Eq. (4.12); in other words,
we work in terms of

2F = Ha M−1ab

Hb . (4.13)

In the situation under study here, both the observation time and 1 day [the time scale for variations
of a(t) and b(t)] are vastly larger than the period of the sought-for GWs (typically 10−2 − 10−3s). In
consequence, we can replace cos2 φ(t), sin2 φ(t), cosφ(t) sin φ(t) by their time average over one period,
namely

cos2 φ(t) → 1

2
, sin2 φ(t) → 1

2
, (4.14)

and
cosφ(t) sin φ(t) → 0. (4.15)

As a result,
(h1|h3) ≈ 0, (h1|h4) ≈ 0, (h2|h3) ≈ 0, (h2|h4) ≈ 0. (4.16)

We next define the amplitude coefficients A, B and C as

1

2
Ax ≡ (hx1 |hx1 ) = (hx3 |hx3 ), (4.17)

1

2
Bx ≡ (hx2 |hx2 ) = (hx4 |hx4 ), (4.18)

1

2
Cx ≡ (hx1 |hx2 ) = (hx3 |hx4 ). (4.19)

which, using Eqs. (2.76) and (2.18- 2.21), can be re-written as

Ax =
2

Sx
h (f0)

∫ tp

t0

(ax(t))2 dt, (4.20)

Bx =
2

Sx
h (f0)

∫ tp

t0

(bx(t))2 dt, (4.21)

Cx =
2

Sx
h (f0)

∫ tp

t0

ax(t)bx(t) dt. (4.22)

We use these quantities to define

A ≡
∑

x
Ax, B ≡

∑

x
Bx, C ≡

∑

x
Cx. (4.23)

Note that in the definitions of Ax, Bx and Cx, we have used the notation of CS[52], which differs from
that of JKS[44] by a factor of T/Sh(f), where T is the observation time.

Substituting the above quantities into the definition of Eq. (4.10), we obtain the generalized version of
the matrix M, namely

M =
1

2

(
C O
O C

)
, (4.24)

with

C =

(
A C
C B

)
, and O =

(
0 0
0 0

)
. (4.25)

The inverse of matrix M is readily written down to be

M−1 =
2

D

(
C−1 O
O C−1

)
, (4.26)

with

C−1 =

(
B −C
−C A

)
, (4.27)
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where D ≡ AB − C2.

Returning to the general form of equation of F -statistic (Eq. 4.13), we have

2F = Ha (M−1)ab Hb

=
2

D
{B[(H1)

2 + (H3)
2] +A[(H2)

2 + (H4)
2] − 2C[H1H2 + H3H4]}. (4.28)

If we define Fa and Fb as

2Fa ≡
√

(H1)2 + (H3)2 =
∑

x
(xx|hx1 − ihx3 ) = 2

∑

x
Fx

a , (4.29)

2Fb ≡
√

(H2)2 + (H4)2 =
∑

x
(xx|hx2 − ihx4 ) = 2

∑

x
Fx

b , (4.30)

where in addition
(hx1 − ihx3 ) = ax(t)e−iφx(t), (4.31)

(hx2 − ihx4 ) = bx(t)e−iφx(t), (4.32)

so that the result is

2Fx
a =

2

Sx
h (f0)

∫ tp

t0

xx(t) ax(t) e−iφx(t) dt, (4.33)

2Fx
b =

2

Sx
h (f0)

∫ tp

t0

xx(t) bx(t) e−iφx(t) dt. (4.34)

The F -statistic can then be written as

2F =
8

D
{B|F 2

a | +A|F 2
b | − 2Cℜ(FaF

∗
b )}. (4.35)

Note that, again, the multi-detector components of F -statistic (Eq. 4.35), namely Fa, Fb and A,B,C
are all simply sums over detector-specific quantities Fx

a , F
x
b and Ax, Bx, Cx, which can be calculated

individually and then combined.

4.2 Discretization of the F-statistic’s components (LALDemod)

In practice, data analysis is performed numerically with discrete data. This calls for a discretized ex-
pression for the F -statistic derived in the previous section. The first technical note to derive such an
expression for the case of a single detector, was done by Siemens [74]. We will briefly repeat his analy-
sis here, generalizing the F -statistic for multiple detectors; also, in [74], Siemens assumed that over the
bandwidth of the signal Sh(f) is constant and equal to Sh(f0) (just as JKS did), where f0 is the frequency
of the signal at t = 0. However while we will assume that Sh(f) is constant in each SFT, it can differ
from one SFT to the other.

We can write the discrete times of which the data is sampled as

tα,j = (α− 1)Tsft + j∆t, (4.36)

with j = 1, ..., N , and α = 1, ..,M and Tsft = N∆t, where N is the number of time-steps per SFT, M is
the number of SFTs and Tsft is the duration of each SFT.

As a first step towards discretization, let us calculate the Amplitude Modulation coefficients. Since the
formalism is the same for all three coefficients A,B and C, we will give a detailed description for A, and
only the results for B and C. In Eqs. (4.17 and 4.20), A was defined as

A = 2
∑

x
(hx1 |hx1 )

= 2 ×
∑

x

2

Sx
h (f0)

∫ tp

t0

hx1 (t)hx1 (t)dt. (4.37)
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Note that, by our assumption that the spectral density Sh(f) of the noise is constant in each SFT, we
can move it into the summation over different SFTs, and by using Eq. (2.18), we obtain

A = 4
∑

x

NMx∑

l=1

hx1l h
x
1l

Sx
hl

(f)
∆t

= 4
∑

x

Mx∑

α=1

axα axα
Sx

hα
(f)

N∑

j=1

cosφx
αj cosφx

αj∆t. (4.38)

Using the approximation given in Eq. (4.14), we have

N∑

j=1

cosφx
j cosφx

j ∆t ≈ N

2
∆t

=
Tsft

2
; (4.39)

inserting this expression into Eq. (4.38), the result is

A ≈ 2 Tsft

∑

x

Mx∑

α=1

(axα)2

Sx
hα

(f)

= 2 Tsft

∑

x

Mx∑

α=1


 axα√

Sx
hα

(f)




2

. (4.40)

Note that Tsft is going to be fixed for data of different detectors. However, since we may have different
amount of data for different detectors, the number of SFTs, M , can vary. Therefore, in the summation,
we will give M an index x, indicating that it depends on the detector in question.

As was mentioned before, the B and C coefficients can be derived following the same procedure as for
A. The results are

B = 2 Tsft

∑

x

Mx∑

α=1


 bxα√

Sx
hα

(f)




2

, (4.41)

C = 2 Tsft

∑

x

Mx∑

α=1


 axα√

Sx
hα

(f)

bxα√
Sx

hα
(f)


 . (4.42)

In order to simplify these expressions, we introduce the variables

âxα ≡


 axα√

Sx
hα

(f)


 , (4.43)

b̂xα ≡


 bxα√

Sx
hα

(f)


 , (4.44)

as well as

Âx ≡
Mx∑

α=1

(âxα)2, (4.45)

B̂x ≡
Mx∑

α=1

(b̂xα)2, (4.46)

Ĉx ≡
Mx∑

α=1

âxα b̂xα . (4.47)
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Using these variables, the Amplitude Modulation coefficients can be written as

A = 2 Tsft

∑

x
Âx, (4.48)

B = 2 Tsft

∑

x
B̂x, (4.49)

C = 2 Tsft

∑

x
Ĉx. (4.50)

The above expressions will give us the following form for the coefficient D:

D = AB − C2

= 4 T 2
SFT

∑

x
(ÂxB̂x − (Ĉx)2)

= 4 T 2
SFT

∑

x
D̂x. (4.51)

Next, we will calculate the quantities Fa and Fb, which depend on the detector orientations and positions.
From Eq. (4.33), we derive the discretized version of Fx

a ,

Fx
a =

Mx∑

α=1

axα
Sx

hα
(f)

∆t




N∑

j=1

xxα,j(t)e
−iφα,j


 , (4.52)

where we have made the assumption that the duration of a SFT (in our case 30 minutes) is such that the
amplitude modulation functions a(t) and b(t) (the quantities used in Eqs. (2.18) and (2.19) which have
been defined in [44]) do not change significantly. We define the quantity inside parenthesis of Eq. (4.52)
to be the SFT, which is the Fourier transform of our data for this short time-baseline (N∆t)

x̃xα(f) =

N∑

j=1

xxα,j(t) e−i2πftα,j . (4.53)

Recalling the definition of Discrete Fourier Transform (DFT) and its inverse from Eqs. (2.43) and (2.44)

x̃k =

N−1∑

j=0

xje
−i2πjk/N , (4.54)

with its inverse

xj =
1

N

N−1∑

k=0

x̃ke
i2πjk/N , (4.55)

we define the Discrete Fourier Transform (DFT) for this case as

x̃xα,k(f) =

N∑

j=1

xxα,j(t) e−i2πkj/N . (4.56)

We translate between Eqs. (4.56) and (4.53) by equating the arguments of the exponential as

fktα,j = kj/N, (4.57)

with tj = j∆t and Tsft = N∆t, giving us that fk = k/N∆t and therefore ∆f = 1/Tsft, which is the
frequency resolution of the data.

The inverse DFT of our data is then given by

xxα,j(t) =
1

N

N∑

k=1

x̃xα,k(f) ei2πkj/N . (4.58)
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Substituting the xxα,j(t) into Eq. (4.52), we are led to

Fx
a =

∆t

N

Mx∑

α=1

axα
Sx

hα
(f)

N∑

k=1

x̃xα,k(f)

N∑

j=1

(
e(−iφα,j+i2πkj/N)

)
. (4.59)

The arguments in the exponential relate to the evolution of the phase of our short segments of data
(SFT). This segment is short enough that the phase evolution of the signal can be considered as linear
within it. Therefore we can make a Taylor expansion of φα,j around the middle of each segments (SFTs)
as

φα,j = φα,1/2 + φ̇α,1/2(tα,j − tα,1/2), (4.60)

with tα,j as defined in Eq. (4.36), so that

φα,j = φα,1/2 + φ̇α,1/2(j −N/2)∆t = φα,1/2 + φ̇α,1/2(j/N − 1/2)Tsft. (4.61)

Inserting this expression for the Taylor expansion into Eq. (4.59), we have

Fx
a =

∆t

N

Mx∑

α=1

axα
Sx

hα
(f)

N∑

k=1

x̃xα,k(f)
N∑

j=1

e−i(φα,1/2+φ̇α,1/2(j/N−1/2)Tsft−2πkj/N)

=
∆t

N

Mx∑

α=1

axα
Sx

hα
(f)

e−i(φα,1/2−φ̇α,1/2Tsft/2)
N∑

k=1

x̃xα,k(f)

N∑

j=1

e−i(φ̇α,1/2Tsft−2πk)j/N .

(4.62)

We can simplify this further with the help of the following quantities:

ζ ≡ φα,1/2 − φ̇α,1/2Tsft/2, (4.63)

ε ≡ φ̇α,1/2Tsft − 2πk. (4.64)

Then Eq. (4.62) can be brought into the form

Fx
a =

∆t

N

Mx∑

α=1

axα
Sx

hα
(f)

e−iζ
N∑

k=1

x̃xα,k(f)
N∑

j=1

e−iεj/N . (4.65)

Note that
N∑

j=1

e−iεj/N =
1 − e−iε

1 − e−iε/N
. (4.66)

and that, furthermore, in the limit of very large N , the exponent in the denominator will be small, so
that

1 − e−iε

1 − e−iε/N
≈ 1 − e−iε

1 − (1 − iε/N)
=

iN

ε
(e−iε − 1)

= N(
sin ε

ε
− i

1 − cos ε

ε
). (4.67)

Therefore,

Fx
a ≈ ∆t

Mx∑

α=1

axα
Sx

hα
(f)

e−iζ
N∑

k=1

x̃xα,k(f)Pα,k, (4.68)

where

Pα,k = (
sin ε

ε
− i

1 − cos ε

ε
) (4.69)

is known as the Dirichlet kernel; it has a sharp peak around ε = 0 which, according to Eq. (4.64) would
correspond to a sharp peak close to the value of the frequency index k∗ = φ̇α,1/2Tsft/2π. This suggests a
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further expansion, this time around k∗; keeping only the lowest-order terms in ∆k, the result for Fa as
well as Fb is

Fx
a ≈ ∆t

Mx∑

α=1

axα
Sx

hα
(f)

Qα

k∗+∆k∑

k=k∗−∆k

x̃xα,k(f)Pα,k, (4.70)

Fx
b ≈ ∆t

Mx∑

α=1

bxα
Sx

hα
(f)

Qα

k∗+∆k∑

k=k∗−∆k

x̃xα,k(f)Pα,k, (4.71)

where

Qα = e−iζ . (4.72)

There is still one further step to take before we reach the final form of Fa,b. In the end, we are going to
compute the F -statistic numerically. As it stands, the quantities to be evaluated (and later, combined)
in that calculation are of widely disparate orders of magnitude. The solution is to re-define the quantities
needed for calculating the F -statistic so that all of them are of order unity. The expectation value of
input data, x(t), has a value of order ∼ h0 ∼ 10−23; we will normalize it by the noise floor, resulting
in a quantity of order unity. Using the Wiener-Khintchine theorem (Eq. 2.52), we can estimate power
spectral density of the noise as

Shα(f) ∼ 1

Tsft

E[|x̃α|2] =⇒
√
Shα(f)Tsft ∼ E[|x̃|], (4.73)

where E denotes the expectation value. Therefore

E
[
X̃α(f)

]
= E

[
x̃α(f)√
Shα(f)Tsft

]
∼ O(1). (4.74)

In consequence, we normalize the SFT as X̃x
α,k(f) = x̃xα,k(f)/

√
Sx

hα
(f)Tsft. A correspondingly normalized

version of Fa is

Fx
a ≈ ∆t

√
Tsft

Mx∑

α=1

axα√
Sx

hα
(f)

Qα

k∗+∆k∑

k=k∗−∆k

x̃xα,k(f)
√
Sx

hα
(f)Tsft

Pα,k. (4.75)

Using Eq. (4.43) and taking X̃
′x
α,k(f) = ∆tX̃x

α,k(f), we arrive at the final form of Fa,

Fx
a ≈

√
Tsft

Mx∑

α=1

âxα Qα

k∗+∆k∑

k=k∗−∆k

X̃
′x
α,k(f)Pα,k. (4.76)

Equivalently, Fb can be written as

Fx
b ≈

√
Tsft

Mx∑

α=1

b̂xα Qα

k∗+∆k∑

k=k∗−∆k

X̃
′x
α,k(f)Pα,k. (4.77)

Our data analysis software (which will be described in more detail in the following chapter) computes

the components Pα,k, X̃
′x
α,k(f), Qα, âxα and b̂xα and uses them to calculate Fa,b and finally F -statistic.

4.3 Semi-Analytical calculation of the F-statistic

Sometimes it is useful to estimate (predict) the value of F -statistic without analyzing the data. The
importance of this shows itself when we want to validate our analysis’ process. If the computed F -
statistic were not close to the predicted one we would not trust our analysis. A detailed discussion of
this is saved for the next chapter, where we validate our software.

In our work on predicting (semi-analytic calculation) the F -statistic, we improved on the previous com-
putational procedure. Previously, a value of noise floor was inserted by hand in the calculation of
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semi-analytic F , however, our improvement was to let the software compute the noise floor from our
data.

Our method of calculating the predicted F -statistic is to replace the quantity Ha in Eq. (4.11) by the
equivalent expression defined in Eq. (2.83), namely

Ha = Ab
MLEMab. (4.78)

The result is

log Λ = Aa
MLEMabA

b
MLE − 1

2
Aa

MLEMabA
b
MLE

=
1

2
Aa

MLEMabA
b
MLE , (4.79)

so that

2F = Aa
MLEMabA

b
MLE ; (4.80)

the quantity on the right hand side is the square of the signal-to-noise ratio, ρ2. According to Eq. (2.86)
we can write the above equation as

E[2F ] = 4 +Aa
MLEMabA

b
MLE . (4.81)

As we can see directly from this expression, just taking the detector independent elements of the search
(h0, ψ, ι, φ0), and the amplitude modulation coefficients (a(t) and b(t)), we can predict the possible
values of the F -statistic without doing a full analysis. However, as stated before, still we need the data
to estimate the (level of) noise floor.

4.4 Parameter estimation for the signal

In this section, we will discuss techniques for estimating the signal amplitude parameters (h0, µ(=
cos ι),Φ0 and ψ) given the four amplitudes, Aa (Eqs. 2.22-2.25), based on the formalism used in [73]. To
start with, let us define new quantities

A2
s ≡

4∑

a=1

(Aa)2 = A2
+ +A2

×, (4.82)

Da ≡ A1A4 −A2A3 = A+A×. (4.83)

Solving for A+ and A×, we have

2A2
+ = A2

s ±
√
A4

s − 4D2
a , 2A2

× = A2
s ±

√
A4

s − 4D2
a; (4.84)

two solutions for A2
+ and two for A2

×. According to Eqs. (2.14) and (2.15), we have |A+| ≥ |A×|, and
therefore we will assign the ‘+’ solution to A+ and the ‘−’ to A×. On the other hand, we know from Eq.
(2.14) that the sign of A+ is always positive, so that

A+ =

(
A2

s +
√
A4

s − 4D2
a

2

)1/2

. (4.85)

For A×, we obtain the expression

A× = ±
(
A2

s −
√
A4

s − 4D2
a

2

)1/2

. (4.86)

Note that

A2
s − 2Da = (A1 −A4)2 + (A2 +A3)2 ≥ 0, (4.87)

and

A2
s + 2Da = (A1 +A4)2 + (A2 −A3)2 ≥ 0. (4.88)
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Therefore,
A4

s − 4D2
a = (A2

s − 2Da)(A2
s + 2Da) ≥ 0, (4.89)

which tells us that A+ and A× are always real, and we have

√
A4

s − 4D2
a = A2

+ − A2
× ≥ 0. (4.90)

Unfortunately, Eq. (4.86) on its own will not tell us the sign of A×; for this, we will need to refer to Eq.
(4.83): since A+ is always positive, the equation tells us that A× has the same sign as Da.

Given these expressions for A+ and A×, we can use Eqs. (2.12) and (2.13) to determine the values of h0

and cos ι, namely

h0 = A+ +
√
A2

+ −A2
×, (4.91)

cos ι =
A×
h0

. (4.92)

However, according to Itoh [75], these expression, as they stand, are prone to numerical errors: when
A+

∼= A× (or µ ∼= ±1), the error dh0 could be unexpectedly large even for very small errors dA+,× , as

dh0 = dA+ +
A+dA+ −A×dA×√

A2
+ −A2

×

. (4.93)

While this shows that dh0 is finite, we need to make some estimate of its magnitude. Suppose for
simplicity’s sake that dA+ = 0. Defining γ = A×/A+, assume that the true value of this is γ = γ∗, while
the value we obtain in our measurements is γs = γ∗ + ǫ. Then [75]

h0(γ∗ + ǫ)

A+
− h0(γ∗)

A+
=
√

1 − γ2
∗ −

√
1 − γ2

s ; (4.94)

for γ∗ = 1, we obtain
h0(γ∗ + ǫ) − h0(γ∗)

h0(γ∗)
∼=

√
2ǫ. (4.95)

Therefore, an error of, say 1% in γ (ǫ = 0.01), leads to an error of 10% in h0 (
√
ǫ ∼ 0.1).

As Itoh [75] pointed out, to avoid this numerically “error-unsafe” quantity, we will define alternative,
“error-safe” quantities as

A2
s =

4∑

a=1

(Aa)2 =
1

4
h2

0(1 + 6µ2 + µ4), (4.96)

A+ =
1

2
(1 + µ2)h0. (4.97)

Furthermore, let us introduce a new variable

β =
A+

A×
=

1 + µ2

2µ
. (4.98)

Using Eqs. (2.22)-(2.25), it can be shown that

A1 cos 2ψ +A2 sin 2ψ = A+ cosφ0, (4.99)

A4 cos 2ψ −A3 sin 2ψ = A× cosφ0, (4.100)

A1 cosφ0 −A3 sinφ0 = A+ cos 2ψ, (4.101)

A4 cosφ0 +A2 sinφ0 = A× cos 2ψ. (4.102)

Thus, dividing Eq. (4.99) by (4.100), and Eq. (4.101) by (4.102), and using the newly defined β (Eq.
4.98), it follows that ψ and φ0 are given by

ψ =
1

2
arctan

(
βA4 −A1

βA3 +A2

)
, (4.103)

φ0 = arctan

(
A1 − βA4

A3 + βA2

)
. (4.104)
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It needs to be mentioned that the values of Aa are invariant under simultaneous transformations {ψ →
ψ+π/2, φ0 → φ0 +π}, and, in consequence, under {ψ → ψ+π, φ0 → φ0 +2π}. However, there is a sign
ambiguity of the Aa as we replace φ0 → φ0 + π, which we must seek to resolve by finding which solution
for the ψ and φ0 is acceptable from a physics point of view. The simplest way is to reconstruct the Aa

using the computed parameters ψ, φ0, A+ and A×; if the sign of A1 differs from that of Eq. (2.22), we
simply replace φ0 → φ0 + π.

Note that still there are some special cases for which we cannot find unique values for the amplitude
parameters. For example, the coordinate singularity h0 = 0 or µ = ±1 corresponds to Aa = 0 or
A1 = ±A4, A2 = ±A3, respectively; in either case, we cannot determine the parameters (ψ, φ0, h0 and
µ) because we do not have enough independent variables – if Aa = 0, then we can take h0 = 0 and any
ψ, φ0, µ we prefer. If A1 = ±A4, A2 = ±A3, then we can determine h0, µ = ±1 and ψ ± φ0 uniquely,
but we cannot determine φ and φ0 independently.

4.5 Using noise weights

As can be seen from the final expressions for the A, B and C (Eqs. 4.45 - 4.47) as well as for Fa and
Fb (Eqs. 4.76 and 4.77), we need to normalize the a(t) and b(t), dividing by the noise spectral density
Sh(f). To implement this, we introduce the Noise Weight which enables us to keep all the numbers
we use in the numerical computation of order unity. Also it takes care of the non-stationarity in our
data, as described below. For simplicity’s sake, let us here ignore the summation

∑
x over the different

detectors and concentrate on the case of a single detector; we can readily reconstitute the full expression
afterwards. Let the noise weight be defined as

wα =
S−1

hα (f)

Ŝ
(4.105)

with

Ŝ ≡ 〈S−1
hα (f)〉 =

1

M

M−1∑

α

S−1
hα (f). (4.106)

According to this definition, Ŝ is the mean value of the inverse of noise floor for our entire data, so its
contribution is fixed in the calculation of the weight. Then, Eq. (4.105) tells that the larger value of
Shα(f) gives smaller value of its weight and vice versa.

Therefore, wherever we have S−1
hα , we can substitute

S−1
hα (f) = wαŜ; (4.107)

notably, we can write

A = 2 TsftŜ
M−1∑

α=0

(
√
wαaα)

2
= 2 TsftŜ Ā (4.108)

B = 2 TsftŜ

M−1∑

α=0

(
√
wαbα)

2
= 2 TsftŜ B̄ (4.109)

C = 2 TsftŜ

M−1∑

α=0

(
√
wαaα

√
wαbα) = 2 TsftŜ C̄. (4.110)

D = AB − C2

= 4 T 2
SFT Ŝ

2( ĀB̄ − C̄2)

= 4 T 2
SFT Ŝ

2D̄ (4.111)

Fa =
√
Tsft

√
Ŝ

M−1∑

α=0

√
wαaα Qα

∑

k

X̃αk Pαk =
√
Tsft

√
Ŝ F̄a (4.112)

Fb =
√
Tsft

√
Ŝ

M−1∑

α=0

√
wαbα Qα

∑

k

X̃αk Pαk =
√
Tsft

√
Ŝ F̄b (4.113)
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Inserting these expression into the Eq. (4.35) for the F -statistic, we have

2F =
8{B|F 2

a | +A|F 2
b | − 2Cℜ(FaF

∗
b )}

D
(4.114)

=
8{2 TsftŜ B̄|F 2

a | + 2 TsftŜ Ā|F 2
b | − 4 TsftŜ C̄ℜ(FaF

∗
b )}

4 T 2
SFT Ŝ

2D̄
(4.115)

=
4{B̄|F 2

a | + Ā|F 2
b | − 2C̄ℜ(FaF

∗
b )}

TsftŜ D̄
(4.116)

=
4{B̄ TsftŜ|F̄a

2| + Ā TsftŜ|F̄b
2| − 2 TsftŜ C̄ℜ(F̄aF̄b

∗})
TsftŜ D̄

(4.117)

=
4{B̄|F̄a

2| + Ā|F̄b
2| − 2C̄ℜ(F̄aF̄b

∗
)}

D̄
(4.118)

Thus, our final formula for the F -statistic including the noise weight turns out to be

F =
2{B̄|F̄a

2| + Ā|F̄b
2| − 2C̄ℜ(F̄aF̄b

∗
)}

D̄
(4.119)

As is readily seen, this is no major change – where previously, we had to use aα(t) in our calculation, we
now use

√
wαaα(t).

These expressions for A, B, C, Fa, Fb and F are the ones currently in use in the ComputeFStatistic v2
code; the actual implementation of noise-weight calculation in that code is due to Badri Krishnan and
Reinhard Prix.



Chapter 5

Observational Results

The LAL (LIGO Algorithm Library) is a free distribution software package developed by the LIGO Sci-
entific Collaboration (LSC) in order to do gravitational wave data analysis [59, 60]. As part of this thesis
work, we have extended and generalized an existing code from the LAL (ComputeFStatistic.c henceforth
“CFS v1”) for computing the F -statistic (the detection statistic, as discussed in the preceding chapters);
the result, a code named ComputeFStatistic v2 (“CFS v2”) has since been integrated into the LAL. The
main improvements are that the CFS v2 can perform a coherent multi-IFO (Interferometric Observa-
tory) search; also, it uses SFT-specific noise-weights that allow a better handling of non-stationary noise.
Another extension in CFS v2 is that it can estimate the signal parameters and outputs the estimated
parameters of the loudest event – an important feature when it comes to analyzing the hardware-injected
data, and to providing estimates for direct comparison with the parameters chosen for that data. Due to
use of modified LALDemod, CFS v2 is also slightly faster than CFS v1.

In the first part of this chapter, we describe the validation procedures of our CFS v2, namely the results
of a comparison between its output and that of the previous (and extensively tested) version CFS v1.
Also, we give an account of test runs using hardware-injected data from the fourth LIGO Science run
(S4), where we have compared the parameters of the injected signals as estimated by using our software
to the true parameter values used for generating these signals. In the second part of this chapter, we
present our results from using CFS v2 to analyze the S5 data and set the upper limit on the gravitational
wave amplitude from 33 known isolated pulsars. We compare our results with those obtained in the
Time Domain Search (TDS), which uses a completely different approach. These pulsars are known from
radio-astronomical data; their parameters have been taken from the ATNF (Australia Telescope National
Facility) catalogue [78].

All results presented and discussed in this chapter were generated using CFS v2; the only occasion on
which CFS v1 has been used was for comparing the performance of the two codes. The CVS version of
the CFS v2 is given in Appendix C.

5.1 Software validation

5.1.1 Consistency software checks

As mentioned above, CFS v2 is a new code we have developed for our data analysis purpose; before it
can be used in any applications, it is essential that its validity be checked as rigorously as possible.

A natural first step is to compare the results obtained with the new code with those of CFS v1, which has
undergone extensive testing and meticulous reviews by the LSC pulsar-group committee (among other
things, this software is now being used as the central search code in the Einstein@Home project). Since
both CFS v1 and CFS v2 compute the F -statistic, we can use them both to compute the F -statistic for
the same data sets and compare the results. For this purpose, we have generated simulated data (in SFT
format) of the duration of one day with pure noise (that is, without any signal) using lalapps Makefakedata
(a LAL based software to generate both time series data and data in SFT format) [59]. For this simulated
data, we have computed 100,000 values of F -statistic.

In Fig. (5.1) the absolute and relative differences between CFS v2 and CFS v1 are shown. The small
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Figure 5.1: Histogram of relative (left) and absolute (right) differences between CFS v2 and CFS v1.
The results are based on the randomly distributed search parameters which in each run were the same
for both of the codes. The results shown are for 100,000 trials, and based on the H1 detector sensitivity.
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Figure 5.2: Histogram of relative (left) and absolute (right) differences between CFS v2 and CFS v1 when
the option of noise weighting in CFS v2 is disabled. The results are based on the randomly distributed
search parameters which in each run were the same for both of the codes. The results shown are for
100,000 trials, and based on the H1 detector sensitivity.

population of points at very large relative mismatch have values of F -statistic which are significantly
lower than 4. For the worst case shown in Fig. (5.1), the high relative mismatch is ∼ −3.7 from values of
CFS v1=0.122 and CFS v2=0.026. Even if we ignore the few points with a very high relative mismatch,
we see that the bulk of the distribution lies between -50% to 50% with a standard deviation of 8% (0.21
in the absolute difference). Such differences cannot be ascribed to different rounding errors in the two
codes; they are due to the different way that the two codes treat the noise. As we have already explained
in the previous chapter, in CFS v2 we have added a noise weight procedure for noise floor estimation. If
we disable the noise weighting, the two codes yield consistent results, as it is shown in Fig. (5.2) (a more
details of this investigation can be found in [79]): the bulk of the distribution now lies around 10−6 with
a standard deviation of order 10−4.

Fig. (5.3) shows a comparison between the two codes for the signal plus noise cases starting from very low
SNR (=1) to a high value (=100). The relative mismatch between these two codes reduces significantly
with growing SNR because the values of the F -statistic are dominated by the signal rather than the noise,
and the signal is indeed treated in the two codes in the same manner. At very low SNR we observe the
distribution of Fig. (5.1) whereas, for example for SNR=100, we see that the mismatch is distributed in
the range of just -2% to 2%. The same kind of investigation for the signal-only case shows consistency
among the two codes.
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Figure 5.3: Histogram of relative differences between CFS v2 and CFS v1 for the case of signal plus noise
with different SNR. The results are based on the randomly distributed search parameters which in each
run were the same for both of the codes. The results shown are for 100,000 trials, and based on the H1
detector sensitivity.

5.1.2 Consistency with expectation for pure noise

As was discussed earlier, in chapter 2, for Gaussian noise the distribution of the F -statistic (2F) follows
a χ2 distribution with 4 degrees of freedom, with the expectation value for the perfectly matched case
given as (Eq. 2.86)

〈2F〉 = 4 + ρ2. (5.1)

Here, the non-centrality parameter, ρ2 = (h|h), is the square of optimal signal-to-noise ratio (SNR); for
the case of a pure noise data, where we have no signal, so that ρ2 = 0, we should have

〈2F〉 = 4. (5.2)

By the above criterion, if we plot the histogram of the output F -statistic for a significantly large number
of trials (in our case, 100,000 trials on Gaussian noise), it should follow a χ2 distribution with 4 degrees
of freedom. The plots given in Fig. (5.4), appear to show that this is indeed the case but let us look at
this in more detail. We repeat 129600 trials for different detectors and their combinations. Each time we
compute the average value of 2F and its standard deviation. The results are shown in Table (5.1). Both
the mean values and the standard deviation appear to suffer from a positive bias: the expected values
are 4.0 and 2.8284 for the mean and standard deviation respectively.

To get a better statistic, we have repeated the 129600 trials for each detector and detector combination
50 times. Table (5.2) shows the average value of the mean and of the standard deviation: over the 50
experiments a very significant deviation from the expectations is evident. This is due to a positive bias
in the finite sample estimator of the noise power spectral density used in our software [76] due to the fact
that, quite generally,

E

[
1

x

]
6= 1

E[x]
. (5.3)

This bias in noise estimation due to the Eq. (5.3) depends on the size of the running median window
being used to estimate the noise PSD (a similar effect has been reported on Stack-Slide techniques using
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Figure 5.4: Probability distribution function (pdf) of F -statistic for both CFS v2 (left) and CFS v1
(right). The pdf of a χ2 distribution with 4 degrees of freedom (smooth curves) are also shown for
comparison. The output is based on the sensitivity of the H1 detector with 100,000 trials.

CFS v1 [77].) The discrepancies measured here are consistent with this predicted bias, which, for the
running median window size used here (N = 50) is expected to be ≈ 0.2%. We have verified that an
increase in the size of the running median window will result in a decrease in the amount of observed
bias. This, however, also reduces the search efficiency, as with the larger window size the noise power
spectral density varies over the window, whereas we want to keep the window size as small as possible to
have a constant Sn(f) across the window.

5.1.3 Consistency with expectation for signal plus noise

In section 4.3, we reviewed the theoretical formalism for estimating the expected value of F -statistic in
a data set containing a known signal. We have developed a code, PredictFStat (PFS) [59], that performs
such estimations.

For the test, we have performed a Monte Carlo search on 100,000 independent random signals, each of
which consists of 20 hours of simulated data plus noise. The signal parameters (f0, f

(k), α, δ, A+, A×, ψ,Φ0)
are randomly distributed. For each signal, we calculated the expected F -statistic first by using PFS, then
we calculated it by using CFS v2 (hereinafter referred to simply as CFS), and then compared the results.
Since the standard deviation of 2F distribution is proportional to the 〈2F〉, with a higher value of 2F
we will have a larger mismatch between the expectation value, PFS, and the actual value, CFS, of 2F as
shown in Fig. (5.5). For simplicity we will restrict ourself to the value of 2F ≤ 1500 in our analysis.

Fig. (5.6) shows the mismatch between CFS and PFS for more than 29000 runs and in each run we used
the same data to calculate the CFS and PFS. The mean value of the mismatch is positive, with a value
of about 6%. This is consistent with the expectations [54]: we expect to loose SNR due to the way that
the F -statistic calculations have been implemented, optimizing for speed.

5.1.4 Parameter estimation

One of the main purpose of any gravitational waves data analysis is to extract the wave’s parameters.
These are the parameters of the wave that, in fact, give us the information about the mechanism and
nature of the source. Therefore, as a next validation process, we perform the test on the estimation of
simulated data. To do so, we have generated 5 artificial pulsars with SNR of 1, 5, 10, 20 and 50. We have
generated one day of data and selected the signal strength to satisfy the above values of SNR in each
data set. The other parameters, such as cos ι, ψ,Φ0 and the frequency and location of the source have
been chosen randomly. We have computed the maximum likelihood estimators for the signal parameters
(the red lines showing the extracted parameters in Fig. (5.7)) and have also derived the posterior PDFs
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IFO Mean(CFS v2) Std(CFS v2)
H1 4.0643 2.8695
H2 4.0671 2.8816
L1 4.0754 2.8883
G1 4.1065 2.9070
H1H2 4.0748 2.8681
H1L1 4.0624 2.8709
H1G1 4.0804 2.8954
H2L1 4.0716 2.8787
H2G1 4.0839 2.9000
L1G1 4.0705 2.8757
H1H2L1 4.0535 2.8613
H1H2G1 4.0647 2.8658
H1L1G1 4.0819 2.9005
H2L1G1 4.0758 2.8826
H1H2L1G1 4.0477 2.8684

Table 5.1: Mean and standard deviation of 129600 outputs of F -statistic for pure noise data using CFS v2.

IFO 〈Mean〉 Std(Mean)
H1 4.060018 0.020039
H2 4.061292 0.021610
L1 4.055642 0.015677
G1 4.058904 0.021304
H1H2 4.061833 0.019438
H1L1 4.064068 0.019175
H1G1 4.062683 0.014066
H2L1 4.060648 0.015691
H2G1 4.062865 0.014752
L1G1 4.055830 0.014303
H1H2L1 4.059847 0.018078
H1H2G1 4.058302 0.012509
H1L1G1 4.058325 0.015382
H2L1G1 4.061718 0.016247
H1H2L1G1 4.059154 0.016055

Table 5.2: Mean and standard deviation for the average of 50 computations of the same kind as reported
in Table (5.1) (each computation with 129600 outputs of 2F for pure noise data using CFS v2, as above).
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Figure 5.5: Relation of mismatch between PFS and CFS and the value of F -statistic. A linear fit in this
plot would show that the mismatch is proportional to the value of 2F for 2F > 1500. Number of runs =
5,000.
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Figure 5.6: Relative mismatch between PFS and CSF ((PFS-CFS)/PFS) for more than 29000 different
runs. In each run the search parameters were chosen randomly. The results presented here are from the
value of 2F ≤ 1500.

PULSAR ḟ f h0 SNR ι ψ Φ0 DEC RA
0 -4.15E-12 265.58 4.933e-25 9.0 0.65 0.77 2.66 -0.9812 1.2488
1 -3.00E-10 849.07 4.240e-24 26.6 1.09 0.36 1.28 -0.5140 0.6526
2 -1.37E-13 575.16 8.037e-24 71.4 2.76 -0.22 4.03 0.0601 3.7569
3 -1.46E-17 108.86 3.255e-23 748.8 1.65 0.44 5.53 -0.5836 3.1132
4 -2.54E-08 1402.11 4.562e-22 1708.3 1.29 -0.65 4.83 -0.2176 4.8867
5 -4.03E-18 52.81 9.701e-24 47.4 1.09 -0.36 2.23 -1.4632 5.2818
6 -6.73E-09 148.44 2.769e-24 70.7 1.73 0.47 0.97 -1.1418 6.2614
7 -1.12E-09 1220.93 1.319e-23 50.1 0.71 0.51 5.25 -0.3569 3.8995
8 -8.65E-09 193.95 3.175e-23 569.9 1.50 0.17 5.89 -0.5833 6.1329
9 -1.45E-17 763.85 8.130e-24 56.0 2.24 -0.01 1.01 1.3210 3.4712

Table 5.3: The parameters of the S4 hardware injected isolated pulsars. The reference time for all of
these parameter has been set to 793130413 GPS.

of the signal strength in a Bayesian framework (this approach is being explained in more details in the
section corresponding to the Bayesian upper limit). The PDFs look consistent and the extracted values
in all cases show that the estimations were quite correct. If we set 95% upper limits on h0 using these
PDFs, we find that in all cases the upper limits are larger than the injected signal strength, as expected.
Independently of the shape of the PDF one can always set an upper limit. However, in an actual search
one would do this only if the PDFs of h0 did not show a significant peak (as in the case of our injections
at SNR 1 and 5). In these circumstances the upper limit value may also be taken as an indicator of the
sensitivity of the search.

As to analyze these PDFs better, we look at the correlations between the signal parameters, for example
between h0 and cos ι as shown in Fig. (5.7). All of these PDFs seem to be plausible. This is also shown
that as the signal gets stronger the correlation between h0 and µ gets narrower, as expected.

We also performed tests on hardware-injected data. This is a somewhat more complete (end-to-end)
assessment of the entire pipeline. For this purpose pulsar signals have been injected in hardware in the
LIGO detectors during the fourth LIGO science run (S4), which took place between noon CST on 22
February and midnight CST on 23 March 2005 [80], corresponding to a duration of 29.5 days. During
this time the duty cycle was about 72%, translating into 20.9 days’ worth data with 1004 SFTs of each
1800 seconds. The hardware-injected data contained the simulated signals from two binary pulsars and
ten isolated pulsars. Since the present version of our software is not set up to deal with binaries, we
focused on the isolated pulsars. Table (5.3) gives an overview of the parameters for these pulsars [81].
The frequency ranges have been selected to be in the range of LIGO detectors sensitivity. The typical
strain sensitivity in this run was within a factor of two of the design goals [80].

PULSAR3 is one of the strongest injected pulsars with an SNR ≈ 750. We searched for this signal in
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Figure 5.7: Parameter estimation of simulated signals with different SNR. The top plots are the probabil-
ity distributions (PDFs) for the signal amplitudes, h0, in the case of signal plus noise by marginalizing the
other three parameters (cos ι, ψ and Φ0) with the injected and extracted values indicated by green and
red vertical lines respectively. The bottom plots are the correlated PDFs of h0 and cos ι by marginalizing
over the other two parameters, ψ and Φ0.

a very narrow patch in the longitude (α) and latitude (δ), with a size of 0.001 radian. The location
resolution was set to 10−5 radian which is quite high resolution, and in fact, showed correlation over sky
pixels, as expected. The result can be seen in Fig. (5.8) (top figure): the right location is indeed included
and it shows the highest value of detection statistic, but the overall result is a narrow region in the sky.
We repeated the search in a larger region of 0.5 radian in both longitude and latitude and reducing the
resolution to 0.001 radian. The result can be seen in Fig. (5.8) (bottom figure). Clearly, the pulsar was
now detected in its exact location, the highest F -statistic pixel is very well identified. For clearance, we
have also added a zoomed area around the actual location of the pulsar, as shown in top left of bottom
figure of Fig. (5.8).

Figs. (5.9) show the posterior PDFs for h0 and µ and Figs. (5.10) for ψ and Φ0. The distributions
show agreement between the computed PDFs and the injected parameter values for all but the strongest
pulsars: PULSAR3 with SNR ∼ 750, PULSAR4 with SNR ∼ 1700 and PULSAR8 with SNR ∼ 570. The
results from PULSAR9 shows a deviation probably due to a statistical fluctuation. The reason for the
discrepancies for the strongest signals is due to the fact that the parameter estimation does not function
correctly in the case of extremely high SNR events because the noise estimate that is used to normalize
the data is contaminated by the signal. In practice it is extremely unlikely that we will encounter signals
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Figure 5.8: Detection of PULSAR3 in a 0.001 radian (top) and 0.5 radian (bottom) patch in the sky
location.

with such high SNR, so this is, in practice, not a problem. A way to avoid this would be to not perform
the estimate of the noise by using the data itself, but rather to input a constant upfront estimate of the
noise floor. This is not a desirable way forward because the non-stationary and non-gaussian behavior of
the instrument would not be tracked and this would impact the sensitivity of our searches towards our
most important class of signals – the weak ones.

Using the posterior probabilities for h0, we can set upper limits on the signal amplitudes. The results
for the 95% upper limits on h0 of S4 data with hardware injections are shown in Table (5.4). Apart
from extremely high SNR conditions, our upper limits are correct and consistent with being higher
than the injected signals. As discussed above, our search method is designed to search for signals in a
noise-dominated regime. In the signal-dominated regime, our technique still detects the signal but the
parameter estimation is not reliable.

5.2 S5 data - Upper limit for known isolated pulsars

As was briefly mentioned before, due to the current sensitivity of our detectors it is unlikely that we
can lay claim to any detection, but we can still set an upper limit (UL) on the signal strength for any
particular targeted source – also an indication of our detectors’ sensitivity. In this section, we present the
results of our evaluation of upper limits on the signal amplitude of the gravitational wave emission from
33 isolated radio pulsars, based on data from the fifth science runs (S5) of the LIGO gravitational wave
detectors, namely on the data from LIGO Hanford Observatory (labeled as H1 (4km) and H2 (2km))
and LIGO Livingston Observatory (labeled as L1).

The analysis resulting in upper limit is, in fact, a targeted search that depends on having available initially
all information about our sources: frequency, frequency derivatives, position of the source and a reference
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Figure 5.9: Posterior probability of signal amplitudes, h0, and the inclination angle, µ = cosι, of the 10
hardware injected pulsars in S4 data. The vertical lines indicate the estimated values of the parameter.

time in which all of this information have been observed. For our purpose, we have taken all necessary
information for our 33 selected pulsars from astronomical data obtained via radio observations by the
Australian Telescope National Facility (ATNF)[78]. We have performed this search with two different
approaches, Frequentist and Bayesian, comparing our results with the Bayesian ULs for the same data
resulting from the Time Domain Search (TDS) group at the University of Glasgow.

Our first result presented in this section is the Frequentist ULs using 8 months of S5 data of L1 IFO
taken between 15 November 2005 (roughly the beginning of the S5 run) and 15 July 2006. Comparison
with the Bayesian UL of TDS shows a large mismatch between the two results; in order to exclude as
its cause differences resulting from the different approaches taken, we performed an UL search with a
Bayesian technique, using the H1 data.

At the time of analysis, the data from the measurement period indicated above had significant gaps,
especially where the L1 detector was concerned. For H1, H2 and L1, respectively, we had 145 days, 161
days and 114 days of data, corresponding to duty factors of 60%, 67% and 47% . Among the above-
mentioned IFOs, for the Bayesian analysis we mostly focus on the data of the H1 detector: with twice the
arm-length, it is more sensitive than the H2, and the proportion of available data is significantly greater
than for L1.

Repeating our evaluation of the UL for h0 using a Bayesian scheme, we found that there were still
significant differences between our results and those of TDS. We conjectured that this might be due to
the different timescales of the data, and decided that, in addition to using the same technique as TDS
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Figure 5.10: Posterior probability of wave polarization angle, ψ, and the initial phase, Φ0, of the 10
hardware injected pulsars in S4 data. The vertical lines indicate the estimated values of the parameter.

(Bayesian), we should also use correspondingly shorter data sets (11 days). Still, the relative discrepancy
amounted to about ±30%, so we decided to work on simulated noise data. The result was that the relative
differences dropped to about ±6.5%, a strong indication that the previously observed large discrepancies
were due to the different way that non-gaussian and non-stationary artifacts are handled by the different
searches.

5.2.1 Pulsar selection

In selecting the pulsars for our upper-limits estimate, the key criterion was their frequency. Since our
detectors’ sensitivity is poor in the range of GW frequencies below 50Hz, the natural starting point was to
restrict ourselves to pulsars with a rotational frequency above 25Hz (since the frequency of the emitted
GWs is twice the source’s rotational frequency). This left about 170 pulsars in the ATNF catalogue;
among these, only 68 are isolated pulsars. We focus on those, since our software cannot yet handle
the search for binary pulsars. Next, we considered the reference time at which the position and the
period of pulsars have been measured, figuring that more recent observations would correspond to better
accuracy in the estimates of both the current position and the frequency drift. The calculations in our
software are based on GPS time, so in particular, observations made before GPS=1 (6 January 1980)
were not acceptable. This reduced our roster of acceptable candidate to 45 pulsars, which we used for
our calculation of Frequentist ULs. However, as we wanted to compare our results with those of the TDS
group, we applied the Bayesian technique only to those 33 pulsars that were both in our list and in theirs
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Pulsar f0 h0(Injected) H1 H2 L1
PULSAR0 265.5771052 4.933e-25 1.28373e-24 1.15501e-24 1.27244e-24
PULSAR1 849.0832962 4.240e-24 4.46999e-24 4.63768e-24 5.15681e-24
PULSAR2 575.163573 8.036e-24 8.09504e-24 9.20007e-24 1.05282e-23
PULSAR3 108.8571594 3.255e-23 4.27917e-23 7.60553e-23 8.75419e-23
PULSAR4 1403.163331 4.562e-22 2.55350e-22 2.14594e-22 3.87887e-22
PULSAR5 52.80832436 9.700e-24 8.57537e-23 3.38050e-23 7.39505e-23
PULSAR6 148.7190257 2.769e-24 3.45567e-24 5.72055e-24 5.32309e-24
PULSAR7 1220.979581 1.319e-23 1.22817e-23 8.79135e-24 1.99240e-23
PULSAR8 194.3083185 3.175e-23 2.28816e-23 2.37439e-23 3.17600e-23
PULSAR9 763.8473165 8.130e-24 5.73382e-24 6.22571e-24 7.22950e-24

Table 5.4: Upper limit on the strength of signal on S4 hardware injected data of different detectors.

[82, 83]. In their work, they have explained a very precise details of the pulsars selection procedure that
we do not need to repeat them here again. The details of the parameters of the 45 selected pulsars are
shown in the table quoted as Fig. (5.11).

5.2.2 Frequentist Upper Limits

The frequentist probability of an event represents the expected frequency of occurrence of that event.
The result for our upper limits depends crucially on the experimental data under examination. We have
set frequentist upper limits on the amplitude of gravitational waves from various sources. The confidence
value associated with these upper limits indicates the expected occurrence of detection statistics values
more significant than the one that we have measured in the presence of signals whose amplitude is equal
to the upper limit value.

To set the frequentist upper limit for the amplitude of gravitational waves, we use the F -statistic as an
optimal detection statistic. To start with, we need to assign a confidence level C – roughly speaking, our
criterion will then be that, for our “repeated measurements”, in C-percent of the time the value of 2F is
above a specified threshold.

Let us explain how this works in detail for the example of setting a 95% upper limit on h0. For this, we
need to find at which h0 it is true that 95% of the values of the F -statistic are above the initial value 2F
derived from the data. To do so, we proceed step by step as follows:

1. Compute the F -statistic of a perfectly matched signal using the exact values for the signal parameters
(such as frequency, longitude, latitude and frequency derivatives). Let us call the resulting value of
the F -statistic F∗.

2. Estimate the signal amplitude, h0, using our parameter estimation routine.

3. Take this h0 as the initial value of the search.

4. Since we assume that there is no signal in the data – that it is pure noise –, we can randomly assign
arbitrary values to the other signal parameters (such as φ0, ψ and cos ι).

5. To determine the probability distribution of F -statistic, we take a random frequency value with a
band of 0.1Hz around the actual pulsar frequency (as was proposed in the S1 paper [54]) and inject
the artificial signal. With this choice, we are sure to be on the safe side; we use a large amount of
data (in order of several months up to a year), so that the 0.1Hz band will not lead to any spurious
correlations between the search parameters.

6. After injection, compute the F -statistic once again. Let us designate the resulting value of 2F as F ′;
store this value for later use.

7. Repeat the injections, computing of F -statistic for 150 times. Save all resulting values of F ′. (The
number of iterations used here is a heuristic value.)
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Figure 5.11: The list of 45 known isolated pulsar selected from the ATNF catalogue.
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8. As we are looking for a 95% upper limit, proceed as follows: if the confidence level (the percentage
of instances in which F ′ is greater than F∗) was less than 90% or above 98% (say x), multiply the
h0 by the ratio of 95

x and take this value as the initial h0 for the next step.

9. Repeat steps “6” and “7” until the confidence level is in one of the following ranges: a) 90% − 95%,
or b) 95%− 98%.

10. For case a), multiply h0 by 1.05; for case b), multiply by 0.90. (The factors 1.05 and 0.90 are, again,
heuristic.)

11. Repeat the calculations of step “7” and following, but this time with 1000 injections in each run
(instead of 150) to improve the statistics.

12. Repeat step “11” for 6 times; in each run follow the instructions in step “10”. (The number of
repetitions is heuristic; it is chosen in a way that the range of computed confidence levels will
always include values higher and lower then 95%; therefore we can make an ”interpolation” fit
instead of having to extrapolate.)

A flow chart version of this procedure can be found in Fig. (5.12).

In this way, we have obtained the 95% upper limits for 45 known isolated pulsars which are shown in Fig.
(5.13). As can be seen from this plot, there are many pulsars where our result deviates from the upper
limit (UL) obtained by the TDS group using a Bayesian approach for the same data. There are also a
few pulsars for which the UL is very low, compared to the S5 sensitivity curve.

To investigate these anomalies, we have plotted the ratio of TDS over FDS upper limit versus the value
of F -statistic as shown in Fig. (5.14). As this figure shows, at roughly 2F = 4 the ratio is close to unity;
however, for values of less than 4 for the F -statistic, the ratio increases rapidly, reaching significant
magnitudes close to 2F ≈ 1. In order to understand why this is so, note that, for very low values of
F∗ (say about 1, which is true for the majority of anomalous points mentioned above), the False Alarm
probability becomes quite high (Eq. 3.44),

α = (1 + F)e−F = (1 + 1) exp(−1) = 0.74. (5.4)

This high false alarm probability means that noise alone has a high chance of producing an F -statistic
value greater than the F∗ produced by our data set and our template. In other words, our realization
of the noise is one that is particularly unlikely to look like it contains our signal, and this statistical
fluctuation yields a low upper limit value, due to the nature of the procedure that we use to determine
the upper limit. The Bayesian approach is less sensitive to such fluctuations. Note that the resulting
frequentist upper limit is not an artifact of our technique, but it is still a perfectly correct and consistent
upper limit in the Frequentist framework.

A similar upper limit comparison can be found in GEO600’s UL as stated in the S1 paper [54]; a
subsequent investigation by Yousuke Itoh [55] demonstrates that it will not always be the case that the
frequentist upper limit gives a higher value in comparison with Bayesian, although the origin of this effect
is not clearly discussed.

5.2.3 Bayesian Upper Limit

The Bayesian probability is a measure of degree of belief in the occurrence of a statistical process. In
contrast with the Frequentist probability, in the Bayesian approach, we do not need for an event of that
particular type to have actually happened; all we need is to find a measure for the degree to which a
person believes that a given proposition is true.

The key ingredient of the Bayesian approach is Bayes’ theorem. As a simple example, consider a sample
space S which contains of two subsets A and B (Fig. 5.15) [84]. Assuming that P (B) 6= 0, we can define
the conditional probability P (A|B) as

P (A|B) =
P (A ∩B)

P (B)
. (5.5)

The same will be true for P (B|A) (assuming P (A) 6= 0), as

P (B|A) =
P (B ∩A)

P (A)
. (5.6)
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Figure 5.12: A Flow-Chart of how we implemented the frequentist upper limit.

Since A ∩B = B ∩A, we can combine these two equations and obtain

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A), (5.7)

or

P (A|B) =
P (B|A)P (A)

P (B)
. (5.8)

This last equation represents Bayes’ theorem. The term at the left hand side is called the posterior
probability, while P (A) is the prior probability which reflects our initial knowledge about the quantity A.
The term P (B|A) is called the likelihood function; the log of this is, in fact, the F -statistic to be computed
from our data. Our goal is to set an upper limit on the strength of the gravitational wave amplitude, h0,
using a given amount of available data from observations. Therefore, our data plays the role of B in Eq.
(5.8); in line with the conventions in the other parts of this thesis, we will henceforth denote it by s. The
term A is the quantity about which we intend to draw conclusions using our data; in our case, this is the
upper limit h0, so we will substitute h0 for A in what follows. With these substitutions, Eq. (5.8) now
reads

P (h0|s) =
P (s|h0) × P (h0)

P (s)
, (5.9)
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where P (h0|s) is the conditional probability of h0 (posterior probability) given the data s, P (s|h0) is the
likelihood function (to be defined below), and P (h0) represents our prior knowledge about the distribution
of h0.

Since the term P (s) is independent of our signal, we can consider it as the constant normalization factor;
it will cancel out automatically when we compute the confidence level. Therefore, we can rewrite our
Bayes’ theorem for the general case of all signal parameters as

P (h0, ψ, ι,Φ0|s) ∝ P (s|h0, ψ, ι,Φ0) × P (h0, ψ, ι,Φ0), (5.10)

where, again, P (h0, ψ, ι,Φ0|s) is our posterior probability (to be calculated), P (s|h0, ψ, ι,Φ0) is the
likelihood function and P (h0, ψ, ι,Φ0) is the prior probability of h0, ψ, ι,Φ0.

There are two common choices for estimating prior probability, known as a flat prior and as Jeffrey’s
prior. In the flat prior, the prior probability is chosen to be constant (P (h0) ≡ constant), while in
Jeffrey’s prior, it is taken to vary inversely proportional to the value of h0 (P (h0) ≡ 1/h0). More details
can be found in Réjean Dupuis’ PhD thesis [85].

In the following we will focus on a flat prior; we are aiming for a valid comparison of our results with
those of TDS, which are based on a flat prior as well.

To obtain the posterior probability, we need to calculate the likelihood function. By Eq. (2.85), it can
be expressed as

P (s|h0, ψ, ι,Φ0) ∝ e−
1
2Mab(A−A0)a(A−A0)b

= G(h0, ψ, ι,Φ0), (5.11)

where A = (A1, A2, A3, A4)(h0, ψ, ι,Φ0) are the four amplitude parameters defined in Eqs. (2.22-2.25).
The A0 = (A10 , A20 , A30 , A40) are also the best fit for the As resulting from our calculation of the
F -statistic.

For proper normalization, we first compute the integral

I ≡
∫ ∞

0

P (h0)dh0

∫ 1

−1

dµ

∫ π/4

−π/4

dψ

∫ 2π

0

dΦ0 G(h0, ψ, ι,Φ0), (5.12)

where µ ≡ cos ι, and where we have taken ‘p(h0) ≡ constant’. To find the Upper Limit (UL), we use
hmax

0 as the upper bound in the integration over h0,

IUL ≡
∫ hmax

0

0

P (h0)dh0

∫ 1

−1

dµ

∫ π/4

−π/4

dψ

∫ 2π

0

dΦ0 G(h0, ψ, ι,Φ0). (5.13)

We select hmax
0 in such a way that the ratio IUL/I gives us the desired confidence level. In our example,

we are looking for the 95% Upper Limit, therefore

IUL

I
= 0.95. (5.14)

Practical implementation

To implement the above formalism, let us first construct the function G(h0, ψ, ι,Φ0). To do so, we will
make use of several equations from the preceding chapters: substituting Eqs. (2.12 and 2.13) into Eqs.
(2.22-2.25) and expanding the matrix of Eq. (4.24) (for the case of a single detector) as

M11 =
A

2
, M12 =

C

2
, M13 = 0, M14 = 0, (5.15)

M21 =
C

2
, M22 =

B

2
, M23 = 0, M24 = 0, (5.16)

M31 = 0, M32 = 0, M33 =
A

2
, M34 =

C

2
, (5.17)

M41 = 0, M42 = 0, M43 =
C

2
, M44 =

B

2
, (5.18)
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we can construct the four elements

G1 =
A

2
(A1 −A10)2 +

C

2
(A1 −A10)(A2 −A20), (5.19)

G2 =
B

2
(A2 −A20)2 +

C

2
(A2 −A20)(A1 −A10), (5.20)

G3 =
A

2
(A3 −A30)2 +

C

2
(A3 −A30)(A4 −A40), (5.21)

G4 =
B

2
(A4 −A40)2 +

C

2
(A4 −A40)(A3 −A30), (5.22)

to construct the final form of G(h0, ψ, ι,Φ0) in Eqs. (5.12 and 5.13) as

G = exp[−1

2
(G1 +G2 +G3 +G4)]. (5.23)

This is the core equation for our upper-limit analysis, to be constructed using the output of our CFS v2
code. With CFS v2, we calculate the four amplitudes Ai as well as the matrix elements Mab (namely the
amplitude modulation coefficients A,B and C). Practically, we can calculate the UL value in Eq. (5.14)
in two ways. One is to follow the exact procedure spelled out above, first calculating the normalization in
Eq. (5.12) and then trying to find a value of hmax

0 for which the ratio of Eq. (5.14) will be satisfied. This
can be done using the Numerical Integration routines in mathematical software like Mathematica and
Maple (the initial results quoted in this thesis were calculated using Mathematica, and the most important
results were checked using Maple). Another way would be to calculate the posterior probability of h0 by
marginalizing over the other three parameters. This can be expressed in mathematical form as

p(h0|s) ∝
∫ ∫ ∫

G(h0, ψ, ι,Φ0) dψ dµ dΦ0. (5.24)

Once the posterior probability for h0 is known, one can then integrate it over a sufficient range of h0 to
find out the area covered; the result can be used for proper normalization (namely unit total area). Next,
we can find out at which h0 the fraction of area would satisfy our required confidence level.

Our initial analysis used the first algorithm; however, we have also recently developed a code which
implements the second procedure. As would be expected, the results are consistent, providing a further
internal consistency check for our software implementation. The comparison is summarized in Fig. (5.16).

Results

We have performed our upper-limit search several times, using data sets of different sizes taken from the
S5 run, and comparing our results with those of the TDS. In this section we will describe in some detail
our efforts to reconcile the results obtained by the different techniques in order to illustrate the type of
effects that one has to deal with in these searches. The comparisons revealed a significant mismatch.
In order to account for these, a number of different problems had to be resolved both on our (FDS)
side and on the TDS side. The first problem from our side was that the available SFTs in our data set
were not calibrated in a uniform manner. To explain it more, let us look at Fig. (5.17). It shows how
the data can be divided according to quality into four different epochs. The first epoch starts at the
beginning of the S5 run (07 November 2005) and lasts until 31 January 2006. The available data for this
interval was analyzed using the version one calibration (so-called C01) of time-series data. Given the poor
quality of data, the pulsar group of LSC recently recommended that it should not be used for analysis
purposes. Figure (5.17) clearly shows the non-stationarity of the Fourier-transformed data during this
interval. After 31 January 2006, the data was processed using version two of the calibration (C02). From
22 June 2006 until 03 October 2006 (3rd epoch) and from 03 October 2006 afterward (4th epoch), one
might think that there had been great improvements in the quality of the (processed) data; however, this
apparent improvement is due to the software applying an improper calibration: the PSD of these two
epochs should in fact be multiplied by a factor of 1.18 and 1.22 for the 3rd and 4th epochs respectively.

The TDS group, in turn, found a programming error in their software which resulted in an incorrect
value for all the upper limits given.

At this point in time – the TDS group having improved their software, and us having found out about the
calibration issues with S5 data –, both groups decided to perform an analysis strictly in parallel, working
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on data taken during the same short period of time, using the same calibration of data and, therefore,
obtaining results of equal quality. We selected 11 days’ worth of data starting from 01:33:32 GMT in
22nd of March 2006 and ending on 07:38:48 GMT 2nd of April 2006 (827026426 GPS to 827998742),
corresponding to a time interval of 972316 seconds. With this choice, we are firmly within the epoch in
which the available data uses the proper calibration; within that period, the interval was chosen so as to
ensure a maximal number of available SFTs for the H1 detector in our data base: in this period, we had
463 SFTs for H1, which covers about 9.6 days (833400 secs with 86% duty factor); in addition, we had
292 SFTs for L1, corresponding to about 6 days (525600 secs with 54% duty factor). The available data
for the TDS group were: 915945 secs for H1 with the 94% of duty factor and for L1 666643 secs with the
duty factor of 69%. These values are summarized in Table (5.5).

Run Intervals Available Data % Duty Available Data % Duty Ratio
(secs) TDS (secs) Factor FDS (secs) Factor TDS/FDS

H1 972316 915945 %94 833400 %86 1.10
L1 972316 525600 %69 666643 %54 1.27

Table 5.5: The amount of data used for the short period of time (11 days interval) for both H1 and L1
detectors. The period starts from 01:33:32 GMT in 22nd of March 2006 till 07:38:48 GMT 2nd of April
2006 (827026426 GPS to 827998742).

Using data from the above-mentioned time period, we have set the upper limit for 32 known isolated
pulsars, as discussed above (from the list of 33 pulsars given there, one, namely J0537-6910 at a frequency
of 124.05 Hz, was removed: at that frequency, the data showed a peak that, by LSC Pulsar group
consensus, very probably represented some instrument-specific resonance). The histogram of relative
differences between the UL of TDS and FDS for H1 is shown in Fig. (5.18); on the right, it also includes
a plot showing each individual mismatch.
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Figure 5.18: Histogram of mismatch between FDS and TDS upper limit for 11 days of S5 data for H1
detector. To show the mismatch more precisely, the plot of each individual mismatch (right) is also
shown.

As we can see from Table (5.5), in this analysis, the TDS available data for H1 is about 10% more than
what we had in our data base. This increases the SNR by a factor of 5% (=

√
1.1) for the time domain

data, which should, in fact, reduce the value of upper limit by the same amount (5%) for the TDS. If
we want to compensate for the effect of this additional data in the TDS data base, we need to shift the
relative UL mismatch by about 5% toward the negative side in Fig. (5.18); the reason for this is that the
relative mismatch is (ULFDS − ULTDS)/ULTDS , hence in order to compensate the TDS upper limit,
we need to increase their UL by 5%, which makes the entire histogram move towards more negative
values. In its final form, the overall mismatch varies between -30% and +30% and does not show a
systematic bias. The fact that our mismatch is not systematic is unfortunate, as it means that there
is little information to point us to a specific cause of the mismatch. As things stood, we were forced
to proceed on a trial-and-error basis – making assumptions for what could have caused the discrepancy,
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Figure 5.19: Noise floor of the 11days of S5 data for H1 detector.

changing our analysis procedure accordingly, repeating the modified analysis, and checking whether or
not the mismatch was reduced.

First, we noted the existence of a few (three) SFTs that had very high PSD compare to the background
noise (Fig. 5.19). We removed these SFTs from our list and repeated the search; unsurprisingly, this
resulted in no significant changes, as our code, by using the noise weight, will mostly protect the final
result from change brought about by the inclusion of a few bad SFTs like these (see Fig. (5.20) and the
additional information for this figure given in the subsequent paragraphs).
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Figure 5.20: Mismatch between TDS and FDS UL for short-term S5 data of H1 detector in three case.
i) with All available SFTs, ii) cleaning three bad SFTs and iii) taking the running median window size to
be 30

Another issue that we explored was noise estimation by the TDS group, as explained in more details in
[85] and [82]. Simply put, they estimate the noise floor for one minute of data but; they then assume that
their data is stationary over 30 minutes, with the average equal to the previously estimated noise floor.
This is roughly the same as what we assume for a 30 minute duration of our SFT. However, the frequency
bin they use for taking this one minute average is 1/60 Hz. According to our frequency resolution (size
of frequency bin in a single SFT; 1/1800 Hz), this correspond to the 30 frequency bins average around
the Doppler-shift corrected pulsar frequency. Given this, we explored the consequences of adapting our
own noise floor estimation accordingly. More concretely, our estimate is based on a running median;
we reduced the window size for that medium from 50 to 30 bins and, with these new value, repeated
our search once again. The result, together with the cleaned data and the normal data, is displayed in
Fig. (5.20). As is evident from these plots, the results did not change significantly (although there is
improvement by less than 10% for a few of the pulsars). The interesting part of this comparison is that
the value of mismatch with the cleaned SFTs and the running median window size=30 are very very close
to each other.
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As is also evident from the figure, these particular tests were not sufficient to elucidate the origin of the
discrepancies. Next, we tried to find out whether both groups went the right way about estimating the
posterior probability of the pulsar amplitude parameters. In order to do so, we looked at the probability
distribution curve of h0 of a single pulsar and compared them in FDS and TDS approach. The plots
showed in Fig. (5.21) correspond to pulsar J0024-7204N, which has maximum mismatch in upper limit
on the L1 IFO. Also shown is the estimate for the 95% upper limit on h0 for both approaches, TDS and
FDS (ULTDS , ULFDS); both results are internally consistent with what we can see from their posterior
distributions, hence we are left to investigate whether the discrepancies might result from differences
in the quality of the data. To this end, we compare the results obtained for one and the same set of
simulated data, as explained in the next section.
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Figure 5.21: The Posterior probability of signal amplitude of pulsar J0024-7204N for the 11 days of S5
data from L1 detector for FDS, left, and TDS, right.

Comparison between TDS and FDS Bayesian upper limit using simulated data

Let us specify what our simulated data set is supposed to look like. We would like to simulate the search
for four known pulsars, whose frequency, frequency drift and sky position are assumed to be known
from astronomical observations. In order to make our simulation realistic, we also assume that there
is a significant noise level so that the pulsar signals cannot actually be detected by our analysis. The
simplest way to achieve that is to set all four signal amplitudes to zero. The resulting parameters for
the 4 pulsars we generated using lalapps Makefakedata are listed in Table (5.6). Next, both the TDS

Pulsar PULSAR0 PULSAR1 PULSAR2 PULSAR3
Parameters
IFO H1 H1 H1 L1
h0 0.0 0.0 0.0 0.0
f0 (Hz) 304.934124 504.934124 713.934124 182.934124

ḟ (Hz/s) 6.571779e-09 1.571779e-11 2.571779e-12 3.571779e-13
α (rad) 2.359236 1.359236 1.059236 0.359236
δ (rad) 0.730642 0.30642 1.030642 1.230642√
Sh 1.0 1.0 2.0 3.0

Table 5.6: Parameters of 4 pulsars that we search for in a simulated noise data set in order to compare
the FDS and TDS upper limit. The duration of the data set is 10 days.

and FDS Bayesian approaches were used to set an upper limit using this simulated data. Note that the
data set used here is exactly the same for the TDS and FDS. The upper limits for the simulated pulsars
are listed in Table (5.7). Comparing FDS and TDS, we see that the mismatch between the different
search schemes has been reduced to an average ±6.5%. The reduction is a strong indication that the
discrepancies among the results of the two searches is due to the way in which the two search techniques
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“react” to non-Gaussianity and non-stationarities of the real data. This is consistent with the conclusion
that we have previously drawn.

PULSAR0 PULSAR1 PULSAR2 PULSAR3
UL(FDS) 1.143 × 10−2 1.423× 10−2 1.375 × 10−2 3.105 × 10−2

UL(TDS) 1.069 × 10−2 1.347× 10−2 1.489 × 10−2 3.291 × 10−2

Mismatch +7.5% +5.7% -7.6% -5.6%

Table 5.7: 95% upper limit for 4 simulated pulsars in FDS and TDS and the relative mismatch between
them. The mismatch is defined as [mismatch = (FDS-TDS)/TDS]

The comparison for the posterior probabilities of h0 of PULSAR0, PULSAR1 and PULSAR2 are shown
in Fig. (5.22). Comparing the probabilities of h0 of each simulated pulsar in TDS and FDS, we see that
all of them have quite similar distributions. Likewise, as a more comparison, we plotted the posterior
probabilities of all four amplitude parameters of PULSAR3 as shown in Fig. (5.23). It shows that, apart
from φ0, the rest of three show a very similar distributions.

0 0.01 0.02 0.03
0

50

100

150
PDF(h0), FDS, PULSAR0

0 0.01 0.02 0.03
0

50

100

150
PDF(h0), TDS, PULSAR0

0 0.01 0.02 0.03
0

20

40

60

80

100

120
PDF(h0), FDS, PULSAR1

0 0.01 0.02 0.03
0

50

100

150
PDF(h0), TDS, PULSAR1

0 0.02 0.04
0

50

100

150
PDF(h0), FDS, PULSAR2

0 0.02 0.04
0

20

40

60

80

100

120
PDF(h0), TDS, PULSAR2

Figure 5.22: The Posterior probabilities of h0 of simulated pulsars; PULSAR0, PULSAR1 and PULSAR2
as was discussed in the text body.

Distribution of 95% Bayesian upper limits on h0 using simulated data in frequency domain

As a next step, we examine more closely the distribution for UL results (95% limit for h0) computed
using our method and compare it to that predicted in [86]. We start with the idealized case of a large
number (5500) of simulated data set with no signal in them, and we compute the 95% upper limit on h0

of each data set. The search sky locations are chosen randomly in such a way that their distribution over
the solid angle is uniform; detector position is picked randomly from a list consisting of the locations of
H1, L1, VIRGO and GEO600. The resulting mean upper limit, 〈h95%

0 〉, is:

〈h95%
0 〉 = (10.67 ± 0.04)

√
Sh(f)

T
. (5.25)

In order to compare our result with that of [86], we repeated this experiment with only the H1, L1 and
GEO600 detectors, as in their analysis. The result was 〈h95%

0 〉 = (10.59 ± 0.04)
√
Sh(f)/T . The value in

[86] is 〈h95%
0 〉 = (10.8±0.2)

√
Sh(f)/T . The shape of the two distributions is also very similar. The results

discussed above show that the TDS and FDS upper limit searches yield consistent results on theoretical
noise. This confirms the result of the previous section, that the discrepancies between the TDS and FDS
results should be ascribed to the way that the two search techniques react to the deviations of the noise
from the idealized Gaussian and stationary case.



5.2. S5 DATA - UPPER LIMIT FOR KNOWN ISOLATED PULSARS 91

Figure 5.23: The Posterior probabilities for four amplitude parameters of simulated pulsar, PULSAR3,
as was discussed in the text body. Left figure correspond to FDS and the right for the TDS.
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Figure 5.24: Distribution of 95% upper limit on h0 for 5500 and 4000 individual runs on simulated data.

95% Bayesian upper limit on h0 using one year of V3 calibration of S5 data

The last results we present here have been obtained from work on one year’s worth of newly generated
version of SFTs for the S5 data (the so-called V3 version or C03) which we have used to place upper
limits for h0 on the 33 known isolated pulsars among those listed in table of Fig. (5.11).

This version of SFTs, in fact, is the most proper version compared to what was generated and published
before, (named as V1 and V2 calibration). The V3 calibration supersedes the V2 one, in that all the
data calibrated under V2 are re-calibrated as V3, plus V3 applies for a much longer time frame in S5.
Owing to changes on interferometers, a calibration can become ”stale”, and no longer accurately describe
the response of the system to a gravitational wave. In the case of V2, there were several instances (two
epochs) in which the staleness was mostly in amplitude, mostly flat, and about 18% and 22% respectively.
However, there is more to it than just amplitude: filters are different in the later epochs, making for gain
changes around, for instance, violin frequencies, and effects in phase at those frequencies as well [87, 88].

The S5 upper limits on h0 from the individual LIGO detectors as well as a joint (H1+H2+L1) upper
limits are presented below. The H1 data upper limits are smaller than 10−25 for 9 pulsars among the 33,
for the L1 data there are only 2 and for the H2 data there are none. The coherent multi-IFO search yields
13 upper limit values below 10−25. The best sensitivity achieved among all three detectors corresponds to
the pulsar J1910-5959B with the frequency of 239.30 Hz with the upper limit of 6.0×10−26. For the joint
IFOs, the best upper limit is 4.27 × 10−26 for the pulsar J1910-5959D with the frequency of 221.35Hz,
close to the best sensitivity of the LIGO detectors around 150Hz. All the upper limits values are plotted
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Pulsar Name Frequency H1 H2 L1 Joint

J1952+3252 50.59 6.418e-25 2.774e-24 7.181e-25 4.665e-25
J1913+1011 55.70 5.105e-25 1.925e-24 6.422e-25 4.434e-25
J0534+2200 59.56 4.271e-25 1.502e-24 6.422e-25 5.109e-25
J0537-6910 124.05 6.484e-26 1.560e-25 1.293e-25 6.484e-26
J1910-5959D 221.35 6.950e-26 1.577e-25 6.507e-26 4.273e-26
J1748-2446C 237.08 7.535e-26 1.442e-25 8.115e-26 5.618e-26
J1910-5959B 239.30 6.002e-26 1.048e-25 1.134e-25 6.326e-26
J1730-2304 246.22 6.715e-26 1.359e-25 1.068e-25 5.310e-26
J1629-6902 333.30 7.753e-26 1.668e-25 1.925e-25 5.574e-26
J0024-7204C 347.42 2.312e-24 1.036e-24 1.735e-24 1.109e-24
J1518+0205A 360.13 2.032e-25 2.560e-25 1.094e-25 1.040e-25
J0711-6830 364.23 8.774e-26 1.726e-25 2.143e-25 8.642e-26
J1823-3021A 367.65 1.494e-25 2.747e-25 1.184e-25 7.558e-26
J1911+0101B 371.45 1.403e-25 2.823e-25 1.801e-25 1.007e-25
J0024-7204D 373.30 1.149e-25 2.190e-25 1.350e-25 1.074e-25
J1910-5959C 378.98 9.594e-26 2.558e-25 1.523e-25 7.030e-26
J1024-0719 387.43 1.409e-25 3.253e-25 1.967e-25 1.087e-25
J2124-3358 405.59 1.322e-25 1.455e-25 1.541e-25 8.407e-26
J0030+0451 411.06 1.753e-25 2.487e-25 1.111e-25 1.073e-25
J2322+2057 415.94 1.512e-25 2.029e-25 1.655e-25 1.137e-25
J1910-5959E 437.47 1.213e-25 2.169e-25 2.116e-25 9.364e-26
J0024-7204L 460.18 8.825e-26 1.687e-25 1.822e-25 8.177e-26
J1744-1134 490.85 1.520e-25 2.466e-25 2.191e-25 1.085e-25
J0024-7204G 495.00 1.698e-25 1.948e-25 2.250e-25 1.092e-25
J1905+0400 528.49 1.724e-25 3.150e-25 2.641e-25 1.525e-25
J0024-7204M 543.98 1.422e-25 2.160e-25 1.405e-25 8.517e-26
J1801-1417 551.71 2.133e-25 3.156e-25 2.110e-25 1.346e-25
J1721-2457 571.98 1.458e-25 2.868e-25 2.006e-25 1.290e-25
J1824-2452 654.81 1.235e-25 3.211e-25 3.177e-25 1.212e-25
J0024-7204N 654.89 1.349e-25 4.932e-25 2.123e-25 1.382e-25
J0024-7204F 762.32 2.233e-25 2.603e-25 2.373e-25 1.159e-25
J1843-1113 1083.62 2.163e-25 5.569e-25 3.975e-25 2.085e-25
J1939+2134 1283.86 5.713e-25 6.712e-25 5.459e-25 3.614e-25

Table 5.8: Upper limits on amplitude of known isolated pulsars using one year of V3 calibration of S5
data. Pulsar J0534+2200 is the Crab pulsar.

against the expected curve based on the noise estimates in the detectors during the observation times in
Figs. (5.25) and (5.26). Likewise, the PDFs of all 33 pulsars for all three detectors and their combination
are shown in Figs. (5.27 - 5.30). These PDFs show that there is no indication of a detection of a signal
from any of the searches that have been carried out: the measured PDFs are quite broad and no significant
peak is evident. As we have seen in the analysis of S4 hardware injections as well in the simulated signal
with quite large SNR, in the presence of a signal the peaks of PDFs were very sharp. This result is
not unexpected: for all the pulsars but one, the upper limits that we have derived do not constrain the
gravitational wave emission more than what can be inferred from the measured period spin-down rates,
assuming that all the lost energy is indeed radiated away by gravitational waves – which in itself is also
an extremely over-optimistic assumption.

From the upper limit on the amplitude of the gravitational wave, we can set an upper limit on the
equatorial ellipticity, ε, of the pulsars. If we assume that the mechanism of emitting the gravitational
waves are due to the triaxiality with the GW frequency of twice the rotation frequency, Eq. (2.16) gives
us the following value for the ellipticity [83]

ε = 0.237

(
h0

10−24

)(
r

1kpc

)(
1Hz

ν

)2(
1038kg m2

Izz

)
, (5.26)

where ν is the rotational frequency of pulsar and we have assume a fiducial moment of inertia value of
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Freq H1 H2 L1 Joint ε95%

50.59 5.94217e-4 2.56835e-3 6.64877e-4 4.31915e-4
55.70 7.12557e-4 2.63561e-3 8.79239e-4 6.07082e-4
59.56 2.28326e-4 8.03048e-4 6.30580e-4 2.73091e-4

124.05 1.97331e-4 4.74663e-4 3.93347e-4 1.97320e-4
221.35 5.37902e-6 1.22074e-5 6.27445e-6 3.30669e-6
237.08 1.10566e-5 2.11624e-5 1.19078e-5 8.24351e-6
239.30 3.97486e-6 6.93911e-6 7.50781e-6 4.18935e-6
246.22 5.35539e-7 1.08402e-6 8.51880e-7 4.23501e-7
333.30 8.99745e-7 1.93542e-6 2.23401e-6 6.46888e-7
347.42 8.71454e-5 3.90598e-5 6.54133e-5 4.18232e-5
360.13 1.15849e-5 1.45956e-5 6.23479e-6 5.92873e-6
364.23 6.52077e-7 1.28297e-6 1.59274e-6 6.42252e-7
367.65 8.27753e-6 1.52181e-5 6.55756e-6 4.18753e-6
371.45 7.13204e-6 1.43541e-5 9.15900e-6 5.11987e-6
373.30 3.75029e-6 7.14929e-6 4.40857e-6 3.50780e-6
378.98 2.53296e-6 6.75347e-6 4.02126e-6 1.85611e-6
387.43 4.71608e-7 1.08902e-6 6.58431e-7 3.63908e-7
405.59 1.90520e-7 2.09587e-7 2.21961e-7 1.21118e-7
411.06 2.95074e-7 4.18576e-7 1.87064e-7 1.80572e-7
415.94 6.46127e-7 8.67036e-7 7.07230e-7 4.85915e-7
437.47 2.40412e-6 4.29788e-6 4.19328e-6 1.85548e-6
460.18 1.89631e-6 3.62409e-6 3.91586e-6 1.75709e-6
490.85 2.87080e-7 4.65734e-7 4.13758e-7 2.04873e-7
495.00 3.15409e-6 3.61806e-6 4.17900e-6 2.02856e-6
528.48 7.84280e-7 1.43260e-6 1.20126e-6 6.93383e-7
543.97 2.18736e-6 3.32227e-6 2.16008e-6 1.30967e-6
551.71 1.19599e-6 1.76897e-6 1.18288e-6 7.54725e-7
571.98 6.59182e-7 1.29638e-6 9.06617e-7 5.83280e-7
654.81 1.33833e-6 3.47839e-6 3.44137e-6 1.31324e-6
654.89 1.43072e-6 5.23248e-6 2.25240e-6 1.46667e-6
762.32 1.74866e-6 2.03847e-6 1.85831e-6 9.07609e-7

1083.62 4.07681e-7 8.85690e-7 6.32261e-7 3.31608e-7
1283.86 1.18295e-6 1.38976e-6 1.13028e-6 7.48374e-7

Table 5.9: Ellipticity upper limits of known isolated pulsars using one year of V3 calibration of S5 data.
Pulsar with frequency of 59.56 Hz is the Crab pulsar.

Izz = 1038kg m2. The upper limits of the ellipticity of all 33 analyzed pulsars for the three LIGO detectors
and their combination are shown in Table (5.9). For these specific objects the same considerations made
regarding the significance of the amplitude upper limits also apply to the ellipticity upper limits. However
it is interesting to note that with ellipticity values now lower than 10−6, LIGO is indeed starting to probe
potentially interesting regions of the parameter space.
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Figure 5.25: The upper limit on h0 using one year of C03 calibration of S5 data for H1 (top) and H2
(bottom) detector together with LIGO sensitivity curve.
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Figure 5.27: PDFs of known isolated pulsars of H1.
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Figure 5.28: PDFs of known isolated pulsars of H2.
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Figure 5.29: PDFs of known isolated pulsars of L1.
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Figure 5.30: PDFs of known isolated pulsars of Joint IFO.
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Summary

Two projects have been carried out for this thesis. At the first, we have studied general hierarchical
search strategies for gravitational waves from unknown, isolated GW pulsars. In particular, we have
considered multistage hierarchical algorithms where, in the semi-coherent search algorithm, each stage
(except the last) consists of a coherent demodulation of short stacks of data followed by appropriate
sliding and stacking of the F -statistics results from the different stacks. The successive stages serve to
quickly reduce the number of candidates; they are followed by a final coherent follow-up stage to fully
analyze the remaining candidates.

We have optimized this strategy by minimizing the computational cost P subject to the constraints which
specify the total amount of data available and the desired confidence levels. Of course, P still depends
on the size of the parameter space, in particular on the range of frequencies and spin-down ages that are
searched over. Carrying out the optimization, and varying over the number of stages, n, we found that
the advantages of the multistage approach saturate at n = 3 (i.e., n = 4 and 5 are scarcely better) in
both semi-coherent and coherent searches.

The reported values for the optimized search parameters, (N (i),∆T (i), µ(i)) in the semi-coherent search
and (T (i), µ(i)) in the coherent search, are the result of a number of simplifications: i) our calculations
have more than once used theoretical estimates of the operations counts instead of those obtained by
profiling existing codes; ii) we have not considered issues of memory storage or the cost of performing
Monte-Carlo simulations, and iii) the detector noise has throughout been assumed to be Gaussian and
stationary. Furthermore, the template counting formulae used in this work are, strictly speaking, valid
only for observation times significantly less than a year. Hence, our present estimates should not be
considered as more than a rough guide for carrying out a search in practice; once better approximations
become available, the values in question should be calculated anew. In spite of these limitations, we
believe that our results do provide useful ballpark figures for the properties of an optimized all-sky
search.

The present research opens up a number of avenues for future work:

• In order to obtain improved estimates for optimization, a re-analysis using actual search codes,
applied to actual data would be a logical next step. In this context, one should then 1) profile the
codes to determine the actual computational cost of the different operations, and 2) do Monte Carlo
studies to determine the actual α(i) for different thresholds. (Recall that the formulae given here are
based on the assumption stationary, Gaussian noise.) The latter could require considerable work,
especially if the results are strongly frequency-dependent, with some bands being much “better
behaved” than others.

• It would be straightforward to extend our work to searches that are less computationally challenging
than all-sky ones, but that are still computationally limited; e.g., one could consider searches for
unknown NSs in supernova remnants (such as SN 1987A), in which case the sky-position is known
with great precision, but the frequency and spin-down parameters must be determined by the search.
Similarly, one could consider a search over a small fraction of the sky, e.g., a portion containing
only the Galactic center, or a specific portion of the disk.

• The formulae for operations counts, confidence levels etc. can also be derived for case when the
Hough transform [62] instead of the stack-slide method is used in the semi-coherent stages; the
optimization of multistage, hierarchical Hough-type searches would then proceed in the same way
as developed here.

• We expect that the lessons learned in this project will carry over to searches for GW pulsars in
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low-mass X-ray binaries, which are also limited by computational power [72]; the details, however,
are yet to be worked out.

• The GW pulsar search problem treated here is similar to another more challenging search problem
involving LISA data: the search for inspiral signals of stellar-mass compact objects captured by
∼ 106M⊙ BHs in galactic nuclei. Where computational power is concerned, this problem is an even
greater challenge [89], and we expect that the lessons learned in this project will also be very useful
in formulating and optimizing a search algorithm for LISA capture sources.

• In this project, we have tacitly assumed that the search is performed by a single computer or
computing cluster. However, at least in the next few years, the most computationally intensive GW
searches will be directed by Einstein@Home [1]. With this setup, there are additional constraints
that we have not yet considered, involving factors such as the rate at which data and intermediate
results can be sent back and forth between the Einstein@Home servers and participants’ computers,
and the amount of storage space available for use on participants’ computers. We intend to study
hierarchical searches in this context, as well, to see which – if any – of the lessons learned here need
to be modified for application to Einstein@Home.

For the second project fulfilled as part of this thesis, we have extended and generalized an existing code
from the LAL (ComputeFStatistic.c henceforth “CFS v1”) for computing the F -statistic (the detection
statistic, as discussed in this thesis); the result, a code named ComputeFStatistic v2.c (“CFS v2”) has
since been integrated into the LAL. The main improvements are that the CFS v2 can handle a multi-IFO
(Interferometric Observatory) search; also, it uses SFT-specific noise-weights that allow a better handling
of non-stationary noise. Another extension in CFS v2 is that it can estimate the signal parameters and
outputs the estimated parameters of the loudest event. Due to use of modified LALDemod, CFS v2 is
also faster than CFS v1.

In the first part of this project, we have validated our CFS v2, namely the results of a comparison between
its output and that of the previous (and extensively tested) version CFS v1. In this validation process,
we have seen that CFS v2 and CFS v1 are quite consistent in all the cases such as pure noise, signal plus
noise as well as signal only data. It turned out that in a noise dominated data, as a pure noise or a data
with a weak signal, using our noise weight option gives a discrepancy of the range of -25% to 25% between
CFS v2 and CFS v1. However, by disabling this option the two codes show a very good consistency.

We have also tested our code by using the hardware-injected data from the fourth LIGO Science run
(S4). As the result, we have compared the parameters of the injected signals with those of estimated by
our software. They show a very good agreement.

In the next part of this project, we presented our results using CFS v2 to analyze the S5 data to set an
upper limit on the 33 known isolated pulsars. These pulsars are known from radio-astronomical data;
their parameters have been taken from the ATNF (Australia Telescope National Facility). We compared
our results with those obtained in the Time Domain Search (TDS), which uses a completely different
approach. Our results show a discrepancies between -30% to 30%, which are, again, largely due to how
the search techniques “react” to non-stationary and to non-Gaussian noise. Finally, we have used one year
of the C03 calibration of S5 data to set the upper limit on the strength of gravitational wave amplitude of
the above mentioned 33 pulsars. This analysis shows that by using a one year data, the best sensitivity
that can be achieved using a single detector is 6.0 × 10−26 corresponding to H1 detector. A multi-IFO
search using three LIGO detectors shows that the best joint sensitivity is 4.27 × 10−26. Based on these
upper limits on the strength of GW, we have also set the upper limits on the ellipticity of all 33 mentioned
pulsars for each LIGO detectors and their combination.

Although very extensive work have been done in frequency domain by using our newly improved software,
still there are many avenues to explore in the future. For example, the possibility of searching for signals
from the binary systems should be integrated in our current software, a full analysis over the entire data set
needs to be performed, a more sophisticated use of the information that the electromagnetic observations
provide (for example for the Crab pulsar), finally directed searches towards interesting regions in the sky,
for example looking at our Galaxy center which is assumed to be the center of many massive black holes,
should be carried out



Appendix A

Computational cost of the SFT
method

Here we estimate the computational cost (in floating point operations) of calculating the F -statistic via
the SFT method. This result is used in Sec 3.3.3.

The SFT method was already described in Sec 4.2 in details. Eqs. (4.76) and (4.77) are our final
approximations for Fa and Fb. The final F -statistic is calculated from Fa and Fb using Eq. (4.35). Thus,
with the SFT method, for each point λ in parameter space we need to calculate Qα(λ), Pα,k(λ), and
the amplitude modulation functions, aα(t) and bα(t), and then to perform the sums in Eqs. (4.76) and

(4.77). It is then easy to see that to calculate the F -statistic for n frequency bins, for a fixed value of ~λ,
the number of floating point operations required is roughly some constant times nMD. To estimate the
constant, let C1 be the cost of calculating Pα,k for each α and k value. Since multiplying two complex
numbers requires 6 operations, and adding two complex numbers requires 2 operations, we see that
calculating the sum over k′ in Eq. (4.76) requires

(C1 + 6)(2D + 1) + 4D (A.1)

operations. Similarly, if C2 is the cost of calculating âαQα (Eq. 4.76) for every α, then the cost of
calculating Fa is

M [(C1 + 6)(2D + 1) + 4D] +MC2 + 6M + 2(M − 1) . (A.2)

Thus, to find Fa and Fb for every frequency bin requires ≈ 2× (2C1 + 16)DM operations. Since the cost
of combining Fa and Fb to get F is negligible compared to this, and assuming C1 to be of order unity,
we see that the operation count for calculating the F -statistic for n frequency bins is approximately

∼ 40nMD . (A.3)

For the first stage in the hierarchical search, the F -statistic is evaluated for N (1)N
(1)
pc fmax∆T bins. So,

taking D = 16 and using M = ∆T (1)/Tsft, the cost is

≈ 640N (1)N (1)
pc fmax

(∆T (1))2

Tsft

. (A.4)

At higher stages, we evaluate the F -statistic

F (i−1)max

{
1,

N
(i)
pc

N
(i−1)
pf

}
max

{
1,

∆T (i)

∆T (i−1)

}
N (i) (A.5)

times, so the operations count is

F (i−1)max

{
1,

N
(i)
pc

N
(i−1)
pf

}
max

{
1,

∆T (i)

∆T (i−1)

}
×
[
640N (i)∆T (i)

Tsft

]
. (A.6)
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Appendix B

Computer codes used in
optimization strategies

B.1 Main file

/********************************************************************
* Optimization program for Hierarchical Stack-Slide pulsar searches
********************************************************************/

/* Author: Iraj Gholami and Badri Krishnan */

#include "Header.h"

double *qtry=NULL; double tt; long idum;

int main(int argc, char *argv[]) {
int L;

double tauyear[] = {25.0, 40.0, 100.0, 1000.0, 10000.0, 100000.0,
1000000.0, 10000000.0, 100000000.0, 1000000000.0};

for(L=1; L<=5; L++)

{

/* Calculating the time elapsed for running this Code.*/
clock_t start, end;
double cpu_time_used;

start = clock();

/******************************/

int nDim, i, j, k;
int count;
double *values=NULL;

double **p= NULL;
double *factor=NULL;

double *pb=NULL; /* Values of the simplices which indicate the best
minimum*/

params par;
/* starting point */

double TStart[] = {1.00, 1.00, 1.00, 1.00, 1.00, 1.00,
1.00, 1.0, 1.0, 1.0};

double MuStart[]= {0.6, 0.1, 0.7, 0.4, 0.4, 0.4, 0.4,
0.4, 0.4, 0.4};

double NStart[] = {50.0, 50.0, 50.0, 50.0,50.0, 50.0,

150.0,150.0,150.0,150.0};

double tempvalues[100000];

double yb; /* A large number involved to be the initial best

minimum used in Simulated Annealing Algorithm.
The best minimum in the rest of the code is

replaced to this parameter*/
double temptr; /* The Temprature used in the Simulated Annealing

Method*/
int iter; /* Number of Iteretion in fixed temprature */
FILE *fp=NULL; /* output file */

/* default values for InParams */

par.InPar.tauMin = tauyear[1] * YEARSEC;/* Smallest spindown age of
pulsar searched over*/

par.InPar.fMax = 1000.0; /* largest frequency searched over */
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par.InPar.ModeFlag = 0;

par.InPar.SkyFlag = 1;
par.InPar.h2Sn = 5.0e-05;

par.InPar.Tsft = 1800;
par.InPar.MaxTime =0.5*YEARSEC;
par.InPar.nStages = L; /* largest number of stages included in search */

nDim = 3*par.InPar.nStages;/*number of parameters to be optimized over*/
par.InPar.beta = NULL;

par.InPar.beta = vector(1, par.InPar.nStages);
par.InPar.beta[1] = 0.10;

for (i=2; i <= par.InPar.nStages; i++)
par.InPar.beta[i] = 0.01;

fp = fopen("hstack.out", "a");

/* allocate memory */

pb = vector(1,nDim);
p = matrix(1,nDim+1,1,nDim);
values = vector(1,nDim+1);

factor = vector(1,nDim);

par.OutPar.FalseAlarm = NULL;
par.OutPar.CDF = NULL;
par.OutPar.Npf = NULL;

par.OutPar.Npc = NULL;
par.OutPar.Threshold = NULL;

par.OutPar.Compt = NULL;
par.OutPar.inCohCompt = NULL;

par.OutPar.CohCompt = NULL;

par.OutPar.Npf = vector(1,par.InPar.nStages);
par.OutPar.Npc = vector(1,par.InPar.nStages);

par.OutPar.Compt = vector(1,par.InPar.nStages + 1);
par.OutPar.inCohCompt = vector(1,par.InPar.nStages);
par.OutPar.CohCompt = vector(1,par.InPar.nStages);

par.OutPar.FalseAlarm = vector(1,par.InPar.nStages);
par.OutPar.CDF = vector(1,par.InPar.nStages);

par.OutPar.Threshold = vector(1,par.InPar.nStages);

qtry=vector(1,nDim);

/* choose starting point */

for (i=1; i<= par.InPar.nStages; i++)
{

p[1][3*(i-1)+1] = TStart[i-1] * 86400.0;;
p[1][3*(i-1)+2] = MuStart[i-1];
p[1][3*(i-1)+3] = NStart[i-1];

}

/* choosing other points of simplices: x_i[j] = p[1][j] + factor[j] */
/* first choose factor[i] which sets sizes of the simplex in the

different directions */
for (i=1; i<=par.InPar.nStages; i++)

{

factor[3*(i-1)+1] = 0.05 * 86400.0;
factor[3*(i-1)+2] = 0.005;

factor[3*(i-1)+3] = 1.0 /*0.1*/;
}

/* now add factor to p[1] to get other points of simplex */
for (i=1; i<=nDim; i++)

{
for (j=1; j<=nDim; j++)

{
k = i-j;
if ((!k)) p[i+1][j] = p[1][j] + factor[j];

else p[i+1][j] = p[1][j];
}

}

/* calculate values of function at simplices */

for (i=1; i <= nDim+1; i++)
values[i] = funk(p[i], &par);

/***************** Minimization ********************** */

temptr = 5.0e6;
yb = 1.0e21;
count=0;

do
{

iter=500; /* Initial value 1000*/
count+=1;
if(count%25==0) /* Initial value = 25)*/

temptr = 0.98*temptr; /* Initial value (temptr * 0.97)*/

tempvalues[count] = yb;
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if(count%30==0)

{
if(tempvalues[count]==tempvalues[count-25])

temptr = 1.015*temptr; /* Initial value (temptr * 1.015)*/
}

minimize(p, values, nDim, pb, &yb, TINY, funk, &iter, temptr, &par);

printf(" %d iter = %d temptr = %1.2e result = %1.14e
bestresult = %1.14e\n", count, iter, temptr, values[1], yb);

}
while(iter<0 && temptr > 1.0e-7);

/* print to output file */
PrintInParams(fp, &par);

PrintOutParams(fp, &par);

fprintf(fp, "Stage DeltaT (days) muMax N
Tobs (days)\t SNR \n");

PrintValues(fp, pb, &par);
fprintf(fp,"\n");
fprintf(fp,"Minimum computational power required: %6.3e Flops\n", yb);

end = clock();

cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;

printf("\n\n Time Used = %.2f Sec ( %.2f Min )\n\n",

cpu_time_used, cpu_time_used/60);
fprintf(fp, "\nTime Used = %.2f Sec ( %.2f Min )\n",

cpu_time_used, cpu_time_used/60);

fclose(fp);

/* free memory */
free_vector(par.InPar.beta, 1, par.InPar.nStages);

free_vector(par.OutPar.Npf, 1,par.InPar.nStages);
free_vector(par.OutPar.Npc, 1,par.InPar.nStages);
free_vector(par.OutPar.Compt, 1,par.InPar.nStages+1);

free_vector(par.OutPar.inCohCompt, 1,par.InPar.nStages+1);
free_vector(par.OutPar.CohCompt, 1,par.InPar.nStages+1);

free_vector(par.OutPar.FalseAlarm, 1,par.InPar.nStages);
free_vector(par.OutPar.Threshold, 1,par.InPar.nStages);

free_vector(par.OutPar.CDF, 1,par.InPar.nStages);
free_vector(qtry,1,nDim);
free_vector(pb, 1,nDim);

free_matrix(p, 1,nDim+1,1,nDim);
free_vector(values, 1,nDim+1);

free_vector(factor, 1,nDim);
}

return 0;

}

/*-----------------------------------------------------------------*/

void PrintValues(FILE *fp, double x[], params *par) {
int i;

for(i=0; i<par->InPar.nStages; i++)
{

fprintf(fp, "\n");
fprintf(fp, "%d %12.3lf %5.4lf %7.3lf %11.3lf\t %5.2lf\n",

i+1, x[3*i+1]/86400.0, x[3*i+2],x[3*i+3], (x[3*i+1]/86400.0)*

x[3*i+3], sqrt(par->InPar.h2Sn*(x[3*i+1])* x[3*i+3]));
}

return;

}

void PrintInParams(FILE *fp, params *par) {

int nStages, i;

nStages = par->InPar.nStages;
fprintf(fp, "\n############ INPUT ############\n\n");
if ( (par->InPar.ModeFlag == 1) )

fprintf(fp, "BC mode\n");
else

fprintf(fp, "Fresh mode\n");

if ( (par->InPar.SkyFlag == 1) )
fprintf(fp, "All sky search\n");

else

fprintf(fp, "Directed search\n");

fprintf(fp, "Minimum spindown age: %4.2lf years\n",
par->InPar.tauMin / YEARSEC);

fprintf(fp, "Maximum frequency searched over: %6.2lf Hz\n",

par->InPar.fMax);

fprintf(fp, "False dismissal rates: ");
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for (i = 1; i <= nStages; i++)

fprintf(fp, "%4.3lf ", par->InPar.beta[i]);
fprintf(fp, "\n");

fprintf(fp, "Smallest signal that can cross thresholds: %5.2e\n",
par->InPar.h2Sn);

fprintf(fp, "%4.2lf-Year Signal to Noise Ratio (SNR): %5.2lf\n",
par->InPar.MaxTime/YEARSEC, sqrt(par->InPar.h2Sn*

par->InPar.MaxTime));
fprintf(fp, "Total data available: %4.2lf years\n",

par->InPar.MaxTime/YEARSEC);
fprintf(fp, "Length of sfts if sft method used: %6.2lf seconds\n",

par->InPar.Tsft);

fprintf(fp, "\n");
return;

}

void PrintOutParams(FILE *fp, params *par) {
int nStages, i;
nStages = par->InPar.nStages;

fprintf(fp, "############ OUTPUT ###########\n\n");

fprintf(fp, "False alarm rates: ");
for(i = 1; i<=nStages; i++)

fprintf(fp, "%8.3e ",(par->OutPar.FalseAlarm[i]) );
fprintf(fp,"\n");

fprintf(fp, "False alarm prob.: ");

for(i = 1; i<=nStages; i++)
fprintf(fp, "%8.3e ", (par->OutPar.CDF[i]) );

fprintf(fp,"\n");

fprintf(fp, "Npf: ");

for(i = 1; i<=nStages; i++)
fprintf(fp, "%6.3e ", par->OutPar.Npf[i]);

fprintf(fp,"\n");

fprintf(fp, "Npc: ");

for(i = 1; i<=nStages; i++)
fprintf(fp, "%6.3e ", par->OutPar.Npc[i]);

fprintf(fp,"\n");

fprintf(fp, "NpfCoh: %6.3e\n", par->OutPar.NpfCoh);

fprintf(fp, "Thresholds: ");

for(i = 1; i<=nStages; i++)
fprintf(fp, "%6.3e ", par->OutPar.Threshold[i]);

fprintf(fp,"\n");

fprintf(fp, "\nComputational Cost: \n");

fprintf(fp, "Incoherent Part: \t ");
for(i = 1; i<=nStages; i++)

fprintf(fp, "%6.3e ", par->OutPar.inCohCompt[i]);
fprintf(fp,"\n");
fprintf(fp, "Coherent Part: \t\t ");

for(i = 1; i<=nStages; i++)
fprintf(fp, "%6.3e ", par->OutPar.CohCompt[i]);

fprintf(fp,"\n");
fprintf(fp, "Total: \t\t\t ");
for(i = 1; i<=nStages+1; i++)

fprintf(fp, "%6.3e ", par->OutPar.Compt[i]);
fprintf(fp,"\n");

fprintf(fp, "\nTotal amount of data: %6.2lf years\n",

par->OutPar.Tcoh/YEARSEC);

fprintf(fp, "\n");

return;
}

B.2 Header file (Header.h)

/*****************************************************************
* Header file for hstack.c and its modules
*****************************************************************/

/* Authors: Iraj Gholami and Badri Krishnan */

/* double inclusion protection */
#ifndef HSTACKH
#define HSTACKH
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#include<unistd.h> #include<math.h> #include<stdlib.h>

#include<stdio.h> #include <time.h> #include<gsl/gsl_cdf.h>

/* used in amebsa */
#define GET_PSUM \

for (j=1; j<=nDim; j++){\
for (sum=0.0, i=1; i <= mpts; i++) sum += p[i][j];\

psum[j] = sum;}

/* used in amebsa */
#define SWAP(a,b) {swap = (a); (a)=(b); (b) = wap;}

#define TINY 1.0e-12

#define PIE 3.1415926535897932 /* yearly ang. vel. of earth in rad/s*/

#define OMEGA 1.99238499e-07

/* speed of light in m/s */

#define LIGHT 3.00e08

/* one astronomical unit in metres */
#define AU 149597870691.0

/* number of seconds in a year */
#define YEARSEC 31557600.0

/* Elements needed for the ran1 function*/

#define IA 16807

#define IM 2147483647

#define IQ 127773
#define IR 2836

/* Elements needed for the ran2 function*/

#define IM1 2147483563
#define IM2 2147483399

#define AM (1.0/IM1)

#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692

#define IQ1 53668
#define IQ2 2774

#define IR1 12211
#define IR2 3791
#define NTAB 32

#define NDIV (1+IMM1/NTAB)

#define EPS 1.0e-9
#define RNMX (1.0-EPS)

/* global variables */

extern double *qtry; extern long idum; extern double tt;

/* this stricture contains parameters that must be specified in the
beginning as requirements/condition */

typedef struct tagInParams {

double tauMin; /* minimum spindown age of pulsar in seconds */
double fMax; /* largest frequency searched over in Hz */

int nStages; /* number of incoherent stages in hierarchical search */
int ModeFlag; /* 1 for BC mode and Fresh otherwise */

int SkyFlag; /* 1 for all-sky and directed otherwise */
double h2Sn; /* signal strength to search for */
double Tsft; /* length of sfts if we use sft method in sec */

double MaxTime; /* total amount of data available in sec*/
double *beta; /* desired false dismissal rates */

} InParams;

/* these are the quantities that can be calculated if we know the InParams

and the values of N[i], DeltaT[i] and muMax[i] */
typedef struct tagOutParams{

double *FalseAlarm; /* false alarm rates at each step (this is 1-CDF) */
double *CDF; /* CDF part of false alarm */

double *Npf; /* points in fine grid in each stage */
double *Npc; /* points in coarse grid in each stage */
double NpfCoh; /* points in grid used for final coherent stage */

double *Threshold;/* threshold set at each incoherent stage */
double *Compt; /* number of floating point operations at each stage */

double *inCohCompt;/* number of floating point operations at each stage
for Incoherent part*/

double *CohCompt; /* number of floating point operations at each stage for

Coherent part*/
double Tcoh; /* observation time considered in each stage */

} OutParams;
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/* the grand structure containing all the information except N[i], DeltaT[i]
and muMax[i] which are to be optimized over */

typedef struct tagParams {
InParams InPar;
OutParams OutPar;

} params;

/***********************/ /* function prototypes */

double funk(double x[], params *par);

double testfun(double x[], params *par);

void CalcOutParams( params *par, double x[]);

void PrintValues( FILE *fp, double x[], params *par);

void PrintOutParams(FILE *fp, params *par);

void PrintInParams(FILE *fp, params *par);

double TotalTime(double x[], params *par);

double FDismissal(double, double, double, double, double, double);

void FalseAlarm (double x[], params *par);

void Flops1(double, double, double, params *par);

double Flops2(int, double x[], params *par);

double FlopsCoh(double x[], params *par);

double Threshold(double , double , double, double, double);

double NP(double , double , double, double, double);

double Ns(int s, double deltaT, double muMax, double fMax, double tauMin);

double NPallsky(double deltaT,double muMax,double N,double fMax,double tauMin);

double MskyS(double deltaT, double muMax, double N, int s, double fMax);

double stirling(double );

double Gs(int s, double N);

double ran1(long *idum);

double ran2(long *idum);

int factorial(int N);

void minimize(double **p, double values[], int nDim, double pb[],
double *yb, double fTol, double (*funk)(double [], params*),

int *iter, double temptr, params *par);

double amotsa(double **p, double values[], double psum[], int nDim,
double pb[], double *yb, double (*funk)(double [], params *par),
int ihi, double *yhi, double fac, params *);

double *vector(long nl, long nh);

double **matrix(long nrl, long nrh, long ncl, long nch);

void free_vector(double *v, long nl, long nh);

void free_matrix(double **m, long nrl, long nrh, long ncl, long nch);

void nrerror(char error_text[]); /* end of function prototypes */

/* end double inclusion protection */ #endif

B.3 Sensitivity, False Alarm, False Dismissal

/******************************************************************************
* Functions for sensitivity, false alarm, false dismissal and computing power
******************************************************************************/

#include "hstack.h"

/* Function to be minimized: sensitivity for directed search */ /*

x[1] : deltaT1
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x[2] : MuMax1

x[3] : N1 */

double funk(double x[], params *par)
{

int i, nStages;

double constraint, output;
double C, TotTime;

nStages = par->InPar.nStages;

/* The below constraints say that the Total Observational Time should be
less than a year, Threshold should get higher in the next stage, False

Alarm rate should get lower in the next stage. Finaly for the BC-Mode, the
observational time in each stage should be longer than its previous one.*/

CalcOutParams(par, x);

TotTime = par->OutPar.Tcoh;

C = 0.0;

for (i=1; i<=nStages+1; i++)
C += par->OutPar.Compt[i]/TotTime;

if (par->InPar.ModeFlag == 1)
{

constraint = 1.0
+ exp(10.0 * (TotTime - par->InPar.MaxTime))/* T_Obs<=one year.*/

+ exp(100.0 * (0.01*86400.0 - x[1]))/*Constraint on DeltaT > 0.01 */
+ exp(100.0 * (x[2] - 0.90)) /*Constraint on Mu < 0.90 */

+ exp(100.0 * (0.001 - x[2])) /*Constraint on Mu > 0.001 */
+ exp(100.0 * (5.0 - x[3])) /*Constraint on N > 1.0 */
+ exp(100.0 * (par->OutPar.CDF[nStages] - 0.0099));/*CDF[nStages]<0.01*/

for(i=2; i<=nStages; i++)

constraint += exp(10.0 * (x[3*(i-2)+1]*x[3*(i-2)+3]/(x[3*(i-1)+1]*
x[3*(i-1)+3]) - 1.0 ))

+ exp(100.0 * (0.01*86400.0 - x[3*(i-1)+1]))/*Constraint on DeltaT>0.01*/

+ exp(100.0 * (x[3*(i-1)+2] - 0.90)) /*Constraint on Mu < 0.90 */
+ exp(100.0 * (0.001 - x[3*(i-1)+2])) /*Constraint on Mu > 0.001 */

+ exp(100.0 * (5.0 - x[3*(i-1)+3])); /*Constraint on N > 1.0 */
}

else
{

constraint = 1.0

+ exp(10.0 * (TotTime - par->InPar.MaxTime))/* T_Obs<=one year.*/
+ exp(100.0 * (0.01*86400.0 - x[1]))/*Constraint on DeltaT > 0.01 */

+ exp(100.0 * (x[2] - 0.90)) /*Constraint on Mu < 0.90 */
+ exp(100.0 * (0.001 - x[2])) /*Constraint on Mu > 0.001 */
+ exp(100.0 * (5.0 - x[3])) /*Constraint on N > 1.0 */

+ exp(100.0 * (par->OutPar.CDF[nStages] - 0.0099));/*CDF[nStages]<0.01*/

for(i=2; i<=nStages; i++)
constraint += exp(100.0 * (0.01*86400.0 - x[3*(i-1)+1]))

/*Constraint on DeltaT > 0.01 */
+ exp(100.0 * (x[3*(i-1)+2] - 0.90)) /*Constraint on Mu < 0.90 */
+ exp(100.0 * (0.001 - x[3*(i-1)+2])) /*Constraint on Mu > 0.001 */

+ exp(100.0 * (5.0 - x[3*(i-1)+3])); /*Constraint on N > 1.0 */
}

output = C*constraint;
return output;

}

void CalcOutParams(params *par, double x[]) {
double *deltaT=NULL;

double *muMax=NULL;
double *N=NULL;
int i, nStages;

double fMax, tauMin;

nStages = par->InPar.nStages;
fMax = par->InPar.fMax;
tauMin = par->InPar.tauMin;

deltaT = vector(1,nStages);

muMax = vector(1,nStages);
N = vector(1,nStages);

for (i = 1; i <= nStages; i++)
{

deltaT[i] = x[3*(i-1)+1];
muMax[i] = x[3*(i-1)+2];

N[i] = x[3*(i-1)+3];
par->OutPar.Threshold[i] = Threshold(deltaT[i], muMax[i], N[i],

par->InPar.h2Sn, par->InPar.beta[i]);

}

for (i=1; i<=nStages; i++)
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{

if(par->InPar.SkyFlag==1)
{

par->OutPar.Npf[i] = NPallsky(deltaT[i], muMax[i], N[i], fMax, tauMin);
par->OutPar.Npc[i] = NPallsky(deltaT[i], muMax[i], 1.0, fMax, tauMin);
}

else
{

par->OutPar.Npf[i] = NP(deltaT[i], muMax[i], N[i], fMax, tauMin);
par->OutPar.Npc[i] = NP(deltaT[i], muMax[i], 1.0, fMax, tauMin);

}
}

par->OutPar.Tcoh = TotalTime(x, par);
par->OutPar.NpfCoh = (par->InPar.SkyFlag == 1) ? NPallsky(par->OutPar.Tcoh,

0.2, 1.0, fMax, tauMin) :
NP(par->OutPar.Tcoh, 0.2, 1.0, fMax, tauMin);

FalseAlarm(x, par);

Flops1(deltaT[1], muMax[1], N[1], par);

for (i=2; i<=nStages; i++)
par->OutPar.Compt[i] = Flops2(i, x, par);

par->OutPar.Compt[nStages+1] = FlopsCoh(x, par);

free_vector(deltaT,1,nStages);

free_vector(N,1,nStages);
free_vector(muMax,1,nStages);

return;

}

/*----------------------------------------------------------------------*/
/*Function to compute the total time: TotalTime = sum(N_i *Delta T_i) */

/*Note: this is only relevant in "fresh mode" and not in "BC mode" */

double TotalTime(double x[], params *par)
{

double temp = 0.0;
int i;

if ( (par->InPar.ModeFlag == 1) )
{

for (i=1; i<=par->InPar.nStages; i++)
{

if (x[3*(i-1)+1] * x[3*(i-1)+3] > temp)

temp = x[3*(i-1)+1] * x[3*(i-1)+3];
}

}
else

{
for (i=1; i <= par->InPar.nStages; i++)

temp += x[3*(i-1)+1] * x[3*(i-1)+3];

}
return temp;

}

/*-------------------------------------------------------------------------*/

/* Function for log of eq.(5.2) of Brady-Creighton for false alarm rate */
/*Function for log of False Alarm for nth-Stage in Fresh and BC Mode. */

void FalseAlarm (double x[], params *par)

{
double B, C, fMax;
int i, nStages;

double *deltaT=NULL;
double *muMax=NULL;

double *N=NULL;

fMax = par->InPar.fMax;

nStages = par->InPar.nStages;

deltaT = vector(1,nStages);
muMax = vector(1,nStages);

N = vector(1,nStages);

for (i=1; i<=nStages; i++)

{
deltaT[i] = x[3*(i-1)+1];

muMax[i] = x[3*(i-1)+2];
N[i] = x[3*(i-1)+3];

}

/* this is actually 1-CDF */
{

par->OutPar.CDF[1] = gsl_cdf_gaussian_Q(par->OutPar.Threshold[1]
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- 2*N[1], sqrt(2*N[1]));

par->OutPar.FalseAlarm[1] = fMax *deltaT[1] * par->OutPar.Npf[1]
* par->OutPar.CDF[1];

}
if ( (par->OutPar.FalseAlarm[1] < 1.0))

par->OutPar.FalseAlarm[1] = 1.0;

/* if we are in BC mode */

if (par->InPar.ModeFlag == 1)
{

for (i=2; i<=nStages; i++)
{

/* log of the CDF */

par->OutPar.CDF[i] = gsl_cdf_gaussian_Q(par->OutPar.Threshold[i]
- 2*N[i], sqrt(2*N[i]));

par->OutPar.FalseAlarm[i] = fMax * deltaT[i] * par->OutPar.Npf[i]
* par->OutPar.CDF[i];

if ( (par->OutPar.FalseAlarm[i] < 1.0) )
par->OutPar.FalseAlarm[i] = 1.0;

}

}
else

{
for (i=2; i<=nStages; i++)
{

B = (par->OutPar.Npf[i]/par->OutPar.Npf[i-1] < 1.0) ? 1.0 :
par->OutPar.Npf[i]/par->OutPar.Npf[i-1];

C = (deltaT[i]/deltaT[i-1] < 1.0) ? 1.0 : deltaT[i]/deltaT[i-1];

/* par->OutPar.CDF[i] = B * C * gsl_cdf_gaussian_Q(par->OutPar.Threshold[i]
- 2*N[i], sqrt(2*N[i]));*/

par->OutPar.CDF[i] = gsl_cdf_gaussian_Q(par->OutPar.Threshold[i]
- 2*N[i],sqrt(2*N[i]));

par->OutPar.FalseAlarm[i] = B * C * par->OutPar.FalseAlarm[i-1]
* par->OutPar.CDF[i];

if ( (par->OutPar.FalseAlarm[i] < 1.0) )

par->OutPar.FalseAlarm[i] = 1.0;
}

}

/* free memory */
free_vector(deltaT,1,nStages);
free_vector(muMax,1,nStages);

free_vector(N,1,nStages);

return;
}

/*#########################################################################*/

/* function for No. of floating point operations in first stage from
eq.(5.4) of Brady-Creighton */

void Flops1(double deltaT1, double muMax1, double N1, params *par)
{

double E, fMax, Npf1, Npc1;
fMax = par->InPar.fMax;

Npc1 = par->OutPar.Npc[1];
Npf1 = par->OutPar.Npf[1];

E = (Npf1/Npc1 > 1.0) ? Npf1/Npc1 : 1.0;
par->OutPar.inCohCompt[1] = fMax* deltaT1*Npc1* E* (N1-1.0);;

par->OutPar.CohCompt[1] = fMax* deltaT1*Npc1*12.0*N1*log(2.0*fMax*deltaT1)
/log(2.0);

par->OutPar.Compt[1] = par->OutPar.inCohCompt[1] + par->OutPar.CohCompt[1];

return;

}

/*#########################################################################*/

/* function for computing power in any higher stage incoherent stage based on

eq.(5.5) of Brady Creighton */
/* Explanation: the value of the computing power for the i^{th} stage depends

on the variables of the i^{th} stage and also of the (i-1)^{th}
stage. DeltaT1, muMax1, N1 and X1 represent the variables of the (i-1)^{th}

stage while deltaT2, muMax2, N2 represent the vairables of the i^{th} stage
(there is no dependence on X2) */

double Flops2(int k, double x[], params *par)
{

double temp, A, B, D;
int i;
double *deltaT=NULL;

double *muMax=NULL;
double *N=NULL;
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deltaT = vector(1,k);

muMax = vector(1,k);
N = vector(1,k);

for (i=1; i<=k; i++)
{

deltaT[i] = x[3*(i-1)+1];
muMax[i] = x[3*(i-1)+2];

N[i] = x[3*(i-1)+3];
}

A = (par->OutPar.Npc[k]/par->OutPar.Npf[k-1]<1.0)? 1.0 :
par->OutPar.Npc[k]/par->OutPar.Npf[k-1];

B = (deltaT[k]/deltaT[k-1] < 1.0)? 1.0: deltaT[k]/deltaT[k-1];

D = (par->OutPar.Npf[k]/par->OutPar.Npc[k] < 1.0) ? 1.0 :

par->OutPar.Npf[k]/par->OutPar.Npc[k];

par->OutPar.inCohCompt[k] = par->OutPar.FalseAlarm[k-1]
* A*B*(D*(N[k]-1.0));

par->OutPar.CohCompt[k] = par->OutPar.FalseAlarm[k-1]* A*B
*(640.0*N[k]*deltaT[k]/par->InPar.Tsft);

temp = par->OutPar.inCohCompt[k] + par->OutPar.CohCompt[k];

/* temp = par->OutPar.FalseAlarm[k-1]* A*B*(640.0*N[k]
*deltaT[k]/par->InPar.Tsft + D*(N[k]-1.0));*/

/* de-allocate memory */

free_vector(deltaT,1,k);
free_vector(muMax,1,k);
free_vector(N,1,k);

return temp;

}

/*#########################################################################*/

/* Computing power for final coherent stage */ /* Uses formula for

$C^{coh}$ from Curt’s notes */

double FlopsCoh(double x[], params *par)
{

double Fn, fMax, Tcoh, temp, A;

int nStages;

/* Assuming that the n^{th} stage has the longest total observation time so
that coherent observation time must be Tcoh = Nn*deltaTn. Note: this is
only valid for the "BC mode", In "fresh mode" we should take a sum over

the Ni*deltaTi */
/* This should use a better value for muMax but for now use the arbitrary

value 0.8 */

nStages = par->InPar.nStages;
A = (par->OutPar.NpfCoh/par->OutPar.Npf[nStages] <1.0)?
1.0 : par->OutPar.NpfCoh/par->OutPar.Npf[nStages];

Fn = par->OutPar.FalseAlarm[nStages];

fMax = par->InPar.fMax;
Tcoh = par->OutPar.Tcoh;
temp = Fn*A*12.0*fMax*Tcoh*log( (2*fMax*Tcoh))/log(2.0);/* resampling method*/

/*temp = exp(Fn)*A*(Tcoh/ x[3*(nStages-1)+1])*640.0*(Tcoh/T_sft); C(i)_sft*/

return temp;
}
/*--------------------------------------------------------------------------*/

/* Solution of the false dismissal constraint */

double Threshold(double deltaT, double mu, double N, double h, double
FalseDiss)
{

double temp, erfcinv, mean, sigma;

erfcinv = gsl_cdf_ugaussian_Qinv( FalseDiss )/sqrt(2.0);
mean = 2.0*N + N*(1.0-mu/3.0)*h*deltaT/2.0; /* the mean */

sigma = sqrt(2.0*N + N*(1.0-mu/3.0)*h*deltaT ); /* the std. dev. */

temp = mean - sqrt(2.0)*erfcinv*sigma;

if (temp < 0.0) temp=0.0;

return temp;
}

/*-------------------------------------------------------------
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* Modules for calculating No. of patches in parameter space for

* directed and all sky Stack-Slide searches
*-------------------------------------------------------------*/

/*---------------------------------------------------------------------*/

double Gs(int s, double N)
{

double out;

switch (s)
{
case 0: out = 1.0;

break;
case 1 : out = (PIE/(6.0*sqrt(5.0))) * sqrt(5.0*N*N-4.0);

break;
case 2 : out = (PIE*PIE/(180.0*sqrt(105.0))) * sqrt(175.0*pow(N,6.0)

- 840.0*pow(N,4.0)
+ 1100.0*N*N -432.0);

break;

case 3 : out = (PIE*PIE*PIE/(75600.0*sqrt(105.0)))*sqrt(3675.0*pow(N,12.0)
-58800.0*pow(N,10.0)

+363160.0*pow(N,8.0)
-1053360.0*pow(N,6.0)
+1484336.0*pow(N,4.0)

-987840.0*N*N+248832.0);
break;

}

return out;
}

/*--------------------------------------------------------------------*/

double Ns(int s, double deltaT, double muMax, double fMax, double
tauMin) {

double out;

out = 1.0;

if (s > 0)
{

out = pow(fMax,s) * pow(deltaT, 0.5*s*(1.0*s+3.0))
/ ( pow(muMax/(1.0*s), 0.5*s) * pow(tauMin, 0.5*s*(1.0*s+1.0)));
}

return out;

}

/*----------------------------------------------------------------------*/

/* Calculation of number of patches in parameter space for Direct

search */ double NP(double deltaT, double muMax, double N, double
fMax, double tauMin) {

double NS[4], G[4], Np, temp;
int k;

for (k=0; k<=3; k++)
{

NS[k] = Ns(k, deltaT, muMax, fMax, tauMin);
G[k] = Gs(k, N);

}

Np = NS[0] * G[0];

if (Np < NS[1] * G[1]) Np = NS[1] * G[1];
if (Np < NS[2] * G[2]) Np = NS[2] * G[2];

if (Np < NS[3] * G[3]) Np = NS[3] * G[3];

temp=Np;

if (Np<1.0) temp=1.0;
return temp;

}

/*-------------------------------------------------------------------*/

/* Number of patches in parameter space for all-sky search:
eq.(2.22) of BC */

double NPallsky(double deltaT, double muMax,
double N, double fMax, double tauMin)

{
double H[4], X[4], out1, out2, out, temp;

int s, k;

for (s=0; s<=3; s++) H[s] = 1.0;

for (s = 0; s <= 3; s++)

{



116 APPENDIX B. COMPUTER CODES USED IN OPTIMIZATION STRATEGIES

for (k=0; k <= s; k++)

{
H[s] *= 1.0 + 0.3 * AU * pow(OMEGA,k+1) * pow(tauMin,k)

/ (LIGHT * factorial(k) * sqrt(MskyS(deltaT, muMax, N, s, fMax)));
}

X[s] = MskyS(deltaT, muMax, N, s, fMax) * Ns(s, deltaT, muMax, fMax, tauMin)

* Gs(s, N) * H[s] * pow(1.0*s, 0.5*s) / (pow(1.0*s+2.0, 0.5*s));
}

/* output is largest element of X[s] */

out1 = (X[0] > X[1]) ? X[0] : X[1];
out2 = (X[2] > X[3]) ? X[2] : X[3];
out = (out1 > out2) ? out1 : out2;

temp=out;

if (out<1.0) temp=1.0;
return temp;

}

/*-------------------------------------------------------------------*/

/* Number of sky-patches */

double MskyS(double deltaT, double muMax, double N, int S, double fMax)
{

double A, B, C;
double temp, Ms;

/* notation from Brady-Creighton eq.(2.23) */

A = 0.014;
B = 0.046 * pow(deltaT/86400.0,2);
C = 0.18 * pow(deltaT/86400.0,5) * pow(N,3);

temp = sqrt(1.0/(A*A) + 1.0/(B*B) + 1.0/(C*C));

Ms = 0.25 * (1.0*S+2.0) * fMax * fMax / (muMax * temp);

return Ms;

}

/*---------------------------------------------------------------
* Routines for memory allocation taken mostly from numerical recipes

*--------------------------------------------------------------*/
/* allocation a vector with subscript range nl..nh */

double *vector(long nl, long nh)
{

double *v;

v = (double *)malloc((size_t) ((nh-nl+1+1)*sizeof(double)));

if (!v) nrerror("allocation failure in vector()");
return v-nl+1;

}

/*---------------------------------------------------------------*/

/* allocation of a matrix with range(nrl..nrh,ncl..nch) */

double **matrix(long nrl, long nrh, long ncl, long nch)
{

long i, nrow = nrh-nrl+1, ncol = nch-ncl+1;

double **m;

/* allocate pointers to rows */
m = (double **)malloc((size_t)((nrow+1)*sizeof(double*)));

if (!m)
nrerror("allocation failure 1 in matrix()");

m += 1;

m -= nrl;

/* allocate rows and set pointers to them */
m[nrl] = (double *)malloc((size_t)((nrow*ncol+1)*sizeof(double)));
if (!m[nrl])

nrerror("allocation failure 2 in matrix()");
m[nrl] += 1;

m[nrl] -= ncl;

for (i=nrl+1; i<=nrh; i++)
m[i] = m[i-1]+ncol;

return m;
}

/*--------------------------------------------------------------*/

/* free memory allocated to vector */

void free_vector(double *v, long nl, long nh)
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{

free((char*) (v+nl-1));
return;

}

/*--------------------------------------------------------------*/

/* free memory allocated to matrix */

void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)

{
free((char*)(m[nrl]+ncl-1));
free((char*)(m+nrl-1));

}

/*--------------------------------------------------------------*/

/* error messages */ void nrerror(char error_text[]) {
fprintf(stderr, "Numerical Recipes run-time error....\n");
fprintf(stderr, "%s\n", error_text);

fprintf(stderr, "...now exiting to system...\n");
exit(1);

return;
}

/*--------------------------------------------------------------*/
/* factorial function (to be used only for small integers) */

int factorial(int N)
{

int k, out;

out = 1;

if (N > 0)

{
for (k = 1; k <= N; k++) out *= k;

}

return out;

}

/*------------------------------------------------------------------*/

/* Log(N!) by Stirling’s approximation */

double stirling(double N)
{

double x;
x = 0.5*log(2.0*PIE) + (N+0.5)*log(N) - N;
return x;

}

/*------------------------------------------------------------------*/

/* Random generator function ran1*/

double ran1(long *idum)

/*Minimal random number generator of Park and Miller with Bays-Durham
shuffle and added safeguards. Returns a uniform random deviate between

0.0 and 1.0 (exclusive of the endpoint values). Call with idum a negative
integer to initialize; thereafter, do not alter idum between successive
deviates in a sequence. RNMX should approximate the largest floating

value that is less than 1.*/

{
int j;

long k;
static long iy=0;
static long iv[NTAB];

double temp;

if (*idum <= 0 || !iy)
{ /*Initialize.*/

if (-(*idum) < 1) *idum=1; /*Be sure to prevent idum =0 */
else *idum = -(*idum);

for (j=NTAB+7;j>=0;j--)

{ /*Load the shuffle table (after 8 warm-ups).*/
k=(*idum)/IQ;
*idum=IA*(*idum-k*IQ)-IR*k;

if (*idum < 0) *idum += IM;
if (j < NTAB) iv[j] = *idum;

}
iy=iv[0];

}

k=(*idum)/IQ; /*Start here when not initializing.*/



118 APPENDIX B. COMPUTER CODES USED IN OPTIMIZATION STRATEGIES

*idum=IA*(*idum-k*IQ)-IR*k; /*Compute idum=(IA*idum) % IM without*/

/*over- flows by Schrage’s method.*/

if (*idum < 0) *idum += IM;
j=iy/NDIV; /* Will be in the range 0..NTAB-1*/

iy=iv[j]; /*Output previously stored value and refill the shuffle table.*/

iv[j] = *idum;
if ((temp=AM*iy) > RNMX)

return RNMX; /*Because users don’t expect endpoint values.*/

else

return temp;

}

/* Random generator function ran2*/

double ran2(long *idum)

/*Long period (> 2 ?? 10^18) random number generator of L’Ecuyer

with Bays-Durham shuffle and added safeguards. Returns a uniform
random deviate between 0.0 and 1.0 (exclusive of the endpoint values).
Call with idum a negative integer to initialize; thereafter, do not

alter idum between successive deviates in a sequence. RNMX should
approximate the largest floating value that is less than 1. */

{

int j;
long k;

static long idum2=123456789;
static long iy=0;

static long iv[NTAB];
double temp;

if (*idum <= 0)
{ /*Initialize.*/

if (-(*idum) < 1) *idum=1; /*Be sure to prevent idum = 0.*/
else *idum = -(*idum);

idum2=(*idum);

for (j=NTAB+7;j>=0;j--)

{ /*Load the shuffle table (after 8 warm-ups).*/
k=(*idum)/IQ1;

*idum=IA1*(*idum-k*IQ1)-k*IR1;
if (*idum < 0) *idum += IM1;
if (j < NTAB) iv[j] = *idum;

}
iy=iv[0];

}

k=(*idum)/IQ1; /*Start here when not initializing.*/
*idum=IA1*(*idum-k*IQ1)-k*IR1; /*Compute idum=(IA1*idum) % IM1 without

overflows by Schrage’s method.*/

if (*idum < 0) *idum += IM1;

k=idum2/IQ2;
idum2=IA2*(idum2-k*IQ2)-k*IR2; /*Compute idum2=(IA2*idum) % IM2 likewise.*/
if (idum2 < 0) idum2 += IM2;

j=iy/NDIV; /*Will be in the range 0..NTAB-1.*/
iy=iv[j]-idum2; /*Here idum is shuffled, idum and idum2 are

combined to generate output.*/

iv[j] = *idum;
if (iy < 1) iy += IMM1;
if ((temp=AM*iy) > RNMX)

return RNMX; /*Because users don’t expect endpoint values.*/

else
return temp;

}

B.4 Ameba

/*-------------------------------------------------------------------
* This module contains the Amebsa routines for mininization (Simulated

* Annealing Method) and is taken from Numerical recipes
*-------------------------------------------------------------------*/

#include "Header.h"

/*-------------------------------------------------------------------*/
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/* Function for performing the minimization */

void minimize(double **p, double values[], int nDim, double pb[], double *yb,
double fTol, double (*funk)(double [], params *),
int *iter, double temptr, params *par)

/*Multidimensional minimization of the function funk(x) where

x[1..ndim] is a vector in ndim dimensions,by simulated
annealing combined with the downhill simplex method of Nelder

and Mead.The input matrix p[1..ndim+1][1..ndim] has ndim+1
rows,each an ndim dimensional vector which is a vertex of the
starting simplex.Also input are the following:the vector

y[1..ndim+1],whose components must be pre-initialized to the
values of funk eval- uated at the ndim+1 vertices (rows)of p

ftol the fractional convergence tolerance to be achieved in the
function value for an early return;iter and temptr The routine

makes iter function evaluations at an annealing temperature
temptr then returns.You should then decrease temptr according
to your annealing schedule,reset iter and call the routine

again (leaving other arguments unaltered between calls).If iter
is returned with a positive value, then early convergence and

return occurred. If you initialize yb to a very large value on
the rst call,then yb and pb[1..ndim] will subsequently return
the best function value and point ever encountered (even if it

is no longer a point in the simplex).*/

{
int i, ihi, ilo, j, n, mpts=nDim+1;

double rtol, sum, swap, yhi, ylo, ynhi, ysave, yt, ytry, *psum;

psum = vector(1,nDim);

tt = -temptr;
GET_PSUM

for (;;)
{

ilo=1; /*Determine which point is the highest (worst), */

ihi=2; /*next-highest, and lowest (best).*/
ynhi=ylo=values[1]+tt*log(ran2(&idum)); /*Whenever we look at */

yhi=values[2]+tt*log(ran2(&idum)); /* a vertex, it gets a random*/
if (ylo > yhi) /*thermal fluctuation.*/

{
ihi=1;
ilo=2;

ynhi=yhi;
yhi=ylo;

ylo=ynhi;
}

for (i=3;i<=mpts;i++)
{ /*Loop over the points in the simplex.*/

yt=values[i]+tt*log(ran2(&idum)); /*More thermal fluctuations.*/
if (yt <= ylo)

{
ilo=i;
ylo=yt;

}
if (yt > yhi)

{
ynhi=yhi;
ihi=i;

yhi=yt;
}

else if (yt > ynhi)
{

ynhi=yt;
}

}

rtol=2.0*fabs(yhi-ylo)/(fabs(yhi)+fabs(ylo));
/*Compute the fractional range from highest to lowest and return if

satisfactory.*/
if (rtol < fTol || *iter < 0)

{ /*If returning, put best point and value in slot 1.*/

swap=values[1];
values[1]=values[ilo];

values[ilo]=swap;
for (n=1;n<=nDim;n++)

{
swap=p[1][n];
p[1][n]=p[ilo][n];

p[ilo][n]=swap;
}

break;
}

*iter -= 2;

/*Begin a new iteration.First extrapolate by a factor -1 through the
face of the simplex across from the high point,i.e.,relect the

simplex from the high point.*/
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ytry=amotsa(p,values,psum,nDim,pb,yb,funk,ihi,&yhi,-1.0, par);

if (ytry <= ylo)
{

/*Gives a result better than the best point,so try an additional
extrapolation by a factor of 2*/

ytry=amotsa(p,values,psum,nDim,pb,yb,funk,ihi,&yhi,2.0, par);

}
else if (ytry >= ynhi)

{
/*The reflected point is worse than the second-highest,so look for

an intermediate lower point, i.e., do a one-dimensional
contraction.*/

ysave=yhi;

ytry=amotsa(p,values,psum,nDim,pb,yb,funk,ihi,&yhi,0.5, par);
if (ytry >= ysave)

{ /*Can’t seem to get rid of that high point.*/
for (i=1;i<=mpts;i++)

{ /*Better contract around the lowest (best) point.*/
if (i != ilo)

{

for (j=1;j<=nDim;j++)
{

psum[j]=0.5*(p[i][j]+p[ilo][j]);
p[i][j]=psum[j];

}

values[i]=(*funk)(psum, par);
}

}
*iter -= nDim;

GET_PSUM /*Recompute psum*/
}

}

else ++(*iter); /*Correct the evaluation count.*/
}

free_vector(psum,1,nDim);
}

double amotsa(double **p, double values[], double psum[], int nDim,
double pb[], double *yb,double (*funk)(double [], params *),

int ihi, double *yhi, double fac, params *par)
/*Extrapolates by a factor fac through the face of the simplex across

from the high point, tries it, and replaces the high point if the new
point is better. */

{

int j;
double fac1, fac2, yflu, ytry, *ptry;

ptry=vector(1,nDim);
fac1=(1.0-fac)/nDim;

fac2=fac1-fac;
for (j=1;j<=nDim;j++)

{
ptry[j]=psum[j]*fac1-p[ihi][j]*fac2;

/******* Tries to get rid of the negative values of vertices ******/

switch(j%3)
{

case(1):
if (ptry[j]>=0.01*86400)

qtry[j]=ptry[j];

else
ptry[j] = qtry[j];

break;
case(2):

if (ptry[j]>=0.001 && ptry[j]<0.90)
qtry[j]=ptry[j];

else

ptry[j] = qtry[j];
break;

case(0):
if (ptry[j]>=5.0)

qtry[j]=ptry[j];

else
ptry[j] = qtry[j];

break;
}

/****************************************************************/
}

ytry=(*funk)(ptry, par);

if (ytry <= *yb)
{ /*Save the best-ever.*/

for (j=1;j<=nDim;j++) pb[j]=ptry[j];
*yb=ytry;

}

yflu=ytry-tt*log(ran2(&idum));/*We added a thermal fluctuation to all */
if (yflu < *yhi)/* the current vertices, but we subtract it here, so as*/

{ /*to give the simplex a thermal Brownian motion: */
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values[ihi]=ytry; /*It likes to accept any suggested change. */

*yhi=yflu;

for (j=1;j<=nDim;j++)
{

psum[j] += ptry[j]-p[ihi][j];

p[ihi][j]=ptry[j];
}

}
free_vector(ptry,1,nDim);

return yflu;
}
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Appendix C

The CVS versions of
ComputeFStatistic v2 code used for
the analysis done in chapter 5

ComputeFStatistic\_v2:

LALRCSID.h,v 1.6 2007/06/08 14:41:52 bema

LALAtomicDatatypes.h,v 1.9 2007/06/08 14:41:52 bema

LALDatatypes.h,v 1.19 2007/06/08 14:41:52 bema

AVFactoriesH.m4,v 1.2 2004/11/04 22:48:56 jolien

LALStdio.h,v 1.2 2007/06/08 14:41:53 bema

LALMalloc.h,v 1.4 2007/06/08 14:41:52 bema

XLALError.h,v 1.12 2007/06/08 14:41:53 bema

LALError.h,v 1.3 2007/06/08 14:41:52 bema

LALStatusMacros.h,v 1.25 2007/06/08 14:41:52 bema

LALStdlib.h,v 1.12 2007/06/08 14:41:53 bema

LALConstants.h,v 1.12 2007/06/08 14:41:52 bema

LALDetectors.h,v 1.8 2007/08/13 16:16:59 whelan

DetectorSite.h,v 1.14 2007/08/13 16:16:59 whelan

LALBarycenter.h,v 1.12 2007/06/08 14:41:50 bema

LALInitBarycenter.h,v 1.4 2007/07/17 13:34:03 bema

StringInput.h,v 1.4 2007/06/08 14:41:53 bema

ConfigFile.h,v 1.11 2005/07/12 13:12:19 reinhard

SFTutils.h,v 1.31 2007/02/15 12:25:03 reinhard

Date.h,v 1.65 2007/06/08 14:41:43 bema

SkyCoordinates.h,v 1.19 2007/06/08 14:41:47 bema

RngMedBias.h,v 1.3 2007/06/08 14:41:59 bema

LALRunningMedian.h,v 1.8 2007/06/08 14:41:59 bema

UserInput.h,v 1.21 2007/02/22 16:32:27 reinhard

SeqFactoriesH.m4,v 1.3 2004/11/10 20:41:21 jolien

PulsarDataTypes.h,v 1.18 2006/11/22 20:30:27 reinhard

SFTfileIO.h,v 1.34 2006/12/13 16:56:24 bema

ExtrapolatePulsarSpins.h,v 1.9 2006/10/30 18:27:34 reinhard

NormalizeSFTRngMed.h,v 1.16 2007/08/21 00:39:15 reinhard

ComputeFstat.h,v 1.35 2006/12/06 15:14:19 reinhard

DetResponse.h,v 1.11 2007/06/08 14:41:56 bema

DetectorStates.h,v 1.4 2006/10/30 10:09:40 reinhard

LUT.h,v 1.11 2007/02/26 13:16:26 badri

PHMD.h,v 1.9 2006/03/14 10:48:40 badri

HoughMap.h,v 1.9 2006/03/14 10:48:40 badri

LALHough.h,v 1.11 2006/02/20 17:28:02 badri

LogPrintf.h,v 1.4 2007/02/01 14:37:04 reinhard

lalapps.h,v 1.2 2007/06/08 15:29:50 bema

PtoleMetric.h,v 1.19 2007/06/08 14:41:50 bema

PulsarTimes.h,v 1.11 2007/06/08 14:41:50 bema

StackMetric.h,v 1.11 2007/06/08 14:41:50 bema
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DopplerScan.h,v 1.54 2007/09/01 19:04:17 reinhard

DopplerFullScan.h,v 1.4 2007/02/01 21:57:05 reinhard

HeapToplist.h,v 1.15 2007/06/08 15:29:51 bema

ComputeFStatistic_v2.c,v 1.248 2007/09/17 20:31:16 reinhard

LALRCSID.h,v 1.6 2007/06/08 14:41:52 bema

HeapToplist.h,v 1.15 2007/06/08 15:29:51 bema

HeapToplist.c,v 1.20 2007/06/08 15:29:51 bema

LALRCSID.h,v 1.6 2007/06/08 14:41:52 bema

LALAtomicDatatypes.h,v 1.9 2007/06/08 14:41:52 bema

LALDatatypes.h,v 1.19 2007/06/08 14:41:52 bema

LALMalloc.h,v 1.4 2007/06/08 14:41:52 bema

XLALError.h,v 1.12 2007/06/08 14:41:53 bema

LALError.h,v 1.3 2007/06/08 14:41:52 bema

LALStatusMacros.h,v 1.25 2007/06/08 14:41:52 bema

LALStdlib.h,v 1.12 2007/06/08 14:41:53 bema

LALDetectors.h,v 1.8 2007/08/13 16:16:59 whelan

DetectorSite.h,v 1.14 2007/08/13 16:16:59 whelan

LALStdio.h,v 1.2 2007/06/08 14:41:53 bema

LALConstants.h,v 1.12 2007/06/08 14:41:52 bema

LALBarycenter.h,v 1.12 2007/06/08 14:41:50 bema

PulsarTimes.h,v 1.11 2007/06/08 14:41:50 bema

StackMetric.h,v 1.11 2007/06/08 14:41:50 bema

AVFactoriesH.m4,v 1.2 2004/11/04 22:48:56 jolien

StringInput.h,v 1.4 2007/06/08 14:41:53 bema

ConfigFile.h,v 1.11 2005/07/12 13:12:19 reinhard

Date.h,v 1.65 2007/06/08 14:41:43 bema

LALInitBarycenter.h,v 1.4 2007/07/17 13:34:03 bema

Velocity.h,v 1.10 2006/02/11 19:29:47 badri

TwoDMesh.h,v 1.8 2007/06/08 14:41:50 bema

LogPrintf.h,v 1.4 2007/02/01 14:37:04 reinhard

SkyCoordinates.h,v 1.19 2007/06/08 14:41:47 bema

PtoleMetric.h,v 1.19 2007/06/08 14:41:50 bema

SFTutils.h,v 1.31 2007/02/15 12:25:03 reinhard

RngMedBias.h,v 1.3 2007/06/08 14:41:59 bema

LALRunningMedian.h,v 1.8 2007/06/08 14:41:59 bema

PulsarDataTypes.h,v 1.18 2006/11/22 20:30:27 reinhard

ComputeFstat.h,v 1.35 2006/12/06 15:14:19 reinhard

DetResponse.h,v 1.11 2007/06/08 14:41:56 bema

DetectorStates.h,v 1.4 2006/10/30 10:09:40 reinhard

DopplerScan.h,v 1.54 2007/09/01 19:04:17 reinhard

DopplerScan.c,v 1.110 2007/09/02 22:42:38 reinhard

LALRCSID.h,v 1.6 2007/06/08 14:41:52 bema

LALAtomicDatatypes.h,v 1.9 2007/06/08 14:41:52 bema

LALDatatypes.h,v 1.19 2007/06/08 14:41:52 bema

LALMalloc.h,v 1.4 2007/06/08 14:41:52 bema

XLALError.h,v 1.12 2007/06/08 14:41:53 bema

LALError.h,v 1.3 2007/06/08 14:41:52 bema

LALStatusMacros.h,v 1.25 2007/06/08 14:41:52 bema

LALStdlib.h,v 1.12 2007/06/08 14:41:53 bema

LALDetectors.h,v 1.8 2007/08/13 16:16:59 whelan

DetectorSite.h,v 1.14 2007/08/13 16:16:59 whelan

AVFactoriesH.m4,v 1.2 2004/11/04 22:48:56 jolien

LALConstants.h,v 1.12 2007/06/08 14:41:52 bema

SkyCoordinates.h,v 1.19 2007/06/08 14:41:47 bema

LALStdio.h,v 1.2 2007/06/08 14:41:53 bema

LALBarycenter.h,v 1.12 2007/06/08 14:41:50 bema

PtoleMetric.h,v 1.19 2007/06/08 14:41:50 bema

LatticeCovering.h,v 1.5 2007/01/31 00:18:41 reinhard

LogPrintf.h,v 1.4 2007/02/01 14:37:04 reinhard

StringInput.h,v 1.4 2007/06/08 14:41:53 bema

ConfigFile.h,v 1.11 2005/07/12 13:12:19 reinhard

DetectorStates.h,v 1.4 2006/10/30 10:09:40 reinhard

Date.h,v 1.65 2007/06/08 14:41:43 bema

DetResponse.h,v 1.11 2007/06/08 14:41:56 bema
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SFTutils.h,v 1.31 2007/02/15 12:25:03 reinhard

RngMedBias.h,v 1.3 2007/06/08 14:41:59 bema

LALRunningMedian.h,v 1.8 2007/06/08 14:41:59 bema

PulsarDataTypes.h,v 1.18 2006/11/22 20:30:27 reinhard

FlatPulsarMetric.h,v 1.5 2007/01/31 00:32:26 reinhard

PulsarTimes.h,v 1.11 2007/06/08 14:41:50 bema

StackMetric.h,v 1.11 2007/06/08 14:41:50 bema

ComputeFstat.h,v 1.35 2006/12/06 15:14:19 reinhard

DopplerScan.h,v 1.54 2007/09/01 19:04:17 reinhard

DopplerFullScan.h,v 1.4 2007/02/01 21:57:05 reinhard

DopplerLatticeCovering.h,v 1.3 2007/02/09 11:57:09 reinhard

DopplerFullScan.c,v 1.14 2007/02/09 11:56:59 reinhard

LALRCSID.h,v 1.6 2007/06/08 14:41:52 bema

DetectorStates.h,v 1.4 2006/10/30 10:09:40 reinhard

LALAtomicDatatypes.h,v 1.9 2007/06/08 14:41:52 bema

LALDatatypes.h,v 1.19 2007/06/08 14:41:52 bema

LALMalloc.h,v 1.4 2007/06/08 14:41:52 bema

XLALError.h,v 1.12 2007/06/08 14:41:53 bema

LALError.h,v 1.3 2007/06/08 14:41:52 bema

LALStatusMacros.h,v 1.25 2007/06/08 14:41:52 bema

LALStdlib.h,v 1.12 2007/06/08 14:41:53 bema

LALStdio.h,v 1.2 2007/06/08 14:41:53 bema

LALConstants.h,v 1.12 2007/06/08 14:41:52 bema

LALDetectors.h,v 1.8 2007/08/13 16:16:59 whelan

DetectorSite.h,v 1.14 2007/08/13 16:16:59 whelan

SkyCoordinates.h,v 1.19 2007/06/08 14:41:47 bema

Date.h,v 1.65 2007/06/08 14:41:43 bema

DetResponse.h,v 1.11 2007/06/08 14:41:56 bema

LALBarycenter.h,v 1.12 2007/06/08 14:41:50 bema

SFTutils.h,v 1.31 2007/02/15 12:25:03 reinhard

RngMedBias.h,v 1.3 2007/06/08 14:41:59 bema

LALRunningMedian.h,v 1.8 2007/06/08 14:41:59 bema

PulsarDataTypes.h,v 1.18 2006/11/22 20:30:27 reinhard

PulsarTimes.h,v 1.11 2007/06/08 14:41:50 bema

AVFactoriesH.m4,v 1.2 2004/11/04 22:48:56 jolien

PtoleMetric.h,v 1.19 2007/06/08 14:41:50 bema

FlatPulsarMetric.h,v 1.5 2007/01/31 00:32:26 reinhard

FlatPulsarMetric.c,v 1.15 2007/05/06 12:38:46 reinhard

LALRCSID.h,v 1.6 2007/06/08 14:41:52 bema

LALAtomicDatatypes.h,v 1.9 2007/06/08 14:41:52 bema

LALDatatypes.h,v 1.19 2007/06/08 14:41:52 bema

LALMalloc.h,v 1.4 2007/06/08 14:41:52 bema

XLALError.h,v 1.12 2007/06/08 14:41:53 bema

LALError.h,v 1.3 2007/06/08 14:41:52 bema

LALStatusMacros.h,v 1.25 2007/06/08 14:41:52 bema

LALStdlib.h,v 1.12 2007/06/08 14:41:53 bema

LALDetectors.h,v 1.8 2007/08/13 16:16:59 whelan

DetectorSite.h,v 1.14 2007/08/13 16:16:59 whelan

AVFactoriesH.m4,v 1.2 2004/11/04 22:48:56 jolien

LALConstants.h,v 1.12 2007/06/08 14:41:52 bema

SkyCoordinates.h,v 1.19 2007/06/08 14:41:47 bema

LALStdio.h,v 1.2 2007/06/08 14:41:53 bema

LALBarycenter.h,v 1.12 2007/06/08 14:41:50 bema

PtoleMetric.h,v 1.19 2007/06/08 14:41:50 bema

LatticeCovering.h,v 1.5 2007/01/31 00:18:41 reinhard

LogPrintf.h,v 1.4 2007/02/01 14:37:04 reinhard

DetectorStates.h,v 1.4 2006/10/30 10:09:40 reinhard

Date.h,v 1.65 2007/06/08 14:41:43 bema

DetResponse.h,v 1.11 2007/06/08 14:41:56 bema

SFTutils.h,v 1.31 2007/02/15 12:25:03 reinhard

RngMedBias.h,v 1.3 2007/06/08 14:41:59 bema

LALRunningMedian.h,v 1.8 2007/06/08 14:41:59 bema

PulsarDataTypes.h,v 1.18 2006/11/22 20:30:27 reinhard

FlatPulsarMetric.h,v 1.5 2007/01/31 00:32:26 reinhard
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PulsarTimes.h,v 1.11 2007/06/08 14:41:50 bema

StackMetric.h,v 1.11 2007/06/08 14:41:50 bema

ComputeFstat.h,v 1.35 2006/12/06 15:14:19 reinhard

DopplerScan.h,v 1.54 2007/09/01 19:04:17 reinhard

DopplerFullScan.h,v 1.4 2007/02/01 21:57:05 reinhard

DopplerLatticeCovering.h,v 1.3 2007/02/09 11:57:09 reinhard

DopplerLatticeCovering.c,v 1.9 2007/08/20 22:52:43 reinhard

LALRCSID.h,v 1.6 2007/06/08 14:41:52 bema

LALAtomicDatatypes.h,v 1.9 2007/06/08 14:41:52 bema

LALDatatypes.h,v 1.19 2007/06/08 14:41:52 bema

lalapps.h,v 1.2 2007/06/08 15:29:50 bema

LALMalloc.h,v 1.4 2007/06/08 14:41:52 bema

XLALError.h,v 1.12 2007/06/08 14:41:53 bema

LALError.h,v 1.3 2007/06/08 14:41:52 bema

LALStatusMacros.h,v 1.25 2007/06/08 14:41:52 bema

LALInitBarycenter.c,v 1.10 2007/08/15 17:11:30 bema

SFTfileIO.c,v 1.126 2007/08/27 14:13:17 bema

UserInput.c,v 1.39 2006/07/10 09:38:25 reinhard

ConfigFile.c,v 1.25 2007/09/08 19:04:24 reinhard

FileIO.c,v 1.19 2007/08/22 16:17:19 bema

StreamSequenceInput.m4,v 1.4 2005/02/18 03:09:47 jolien

StringToken.c,v 1.2 2007/06/08 14:41:53 bema

VectorFactories.m4,v 1.5 2003/09/29 00:33:24 dwchin

NormalizeSFTRngMed.c,v 1.34 2007/09/17 12:47:31 reinhard

RngMedBias.c,v 1.4 2007/06/08 14:41:59 bema

SkyCoordinates.c,v 1.12 2007/06/08 14:41:47 bema

GPStoFloat.c,v 1.11 2007/06/08 14:41:43 bema

GPStoUTC.c,v 1.31 2007/06/08 14:41:43 bema

IncrementGPS.c,v 1.16 2007/06/08 14:41:43 bema

ComputeFstat.c,v 1.70 2007/09/17 12:47:31 reinhard

ProjectMetric.c,v 1.5 2007/06/08 14:41:51 bema

DetectorStates.c,v 1.8 2006/10/30 10:09:44 reinhard

PtoleMetric.c,v 1.31 2007/06/08 14:41:51 bema

SFTutils.c,v 1.52 2007/08/21 00:25:50 reinhard

ExtrapolatePulsarSpins.c,v 1.10 2006/10/23 18:44:47 reinhard

TwoDMesh.c,v 1.9 2007/06/08 14:41:51 bema

TBaryPtolemaic.c,v 1.6 2007/06/08 14:41:51 bema

DTEphemeris.c,v 1.7 2007/06/08 14:41:51 bema

CoherentMetric.c,v 1.8 2007/06/08 14:41:51 bema

TComp.c,v 1.3 2007/06/08 14:41:51 bema

LALBarycenter.c,v 1.10 2007/07/18 16:32:02 bema

LatticeCovering.c,v 1.4 2007/01/31 00:18:48 reinhard

GetEarthTimes.c,v 1.4 2007/06/08 14:41:51 bema

TwoDMeshInternal.c,v 1.12 2007/06/08 14:41:51 bema

TSpin.c,v 1.4 2007/06/08 14:41:51 bema

LALGSL.c,v 1.3 2007/06/08 14:41:53 bema

CreateDetector.c,v 1.21 2007/08/13 16:16:59 whelan

VectorSequenceFactories.m4,v 1.4 2001/08/21 04:19:49 jolien

LALRunningMedian.c,v 1.13 2007/06/08 14:41:59 bema

TerrestrialCoordinates.c,v 1.18 2007/06/08 14:41:47 bema

CelestialCoordinates.c,v 1.9 2007/06/08 14:41:47 bema

LMST1.c,v 1.26 2007/06/08 14:41:43 bema

HeapSort.c,v 1.11 2007/06/08 14:41:59 bema
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