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Abstract

The mammalian brain is, with its numerous neural elements and structured complex connectiv-
ity, one of the most complex systems in nature. Recently, large-scale corticocortical connectiv-
ities, both structural and functional, have received a great deal of research attention, especially
using the approach of complex networks. Understanding the relationship between structural
and functional connectivities is of crucial importance in neuroscience. Here, we try to shed
some light on this relationship by studying synchronization dynamics in a realistic anatomical
network of cat cortical connectivity. We model the nodes (cortical areas) by a subnetwork of in-
teracting excitable neurons (multilevel model) and by a neural mass model (population model).
With weak couplings, the multilevel model displays biologically plausible dynamics and the
synchronization patterns reveal a hierarchical cluster organization in the network structure. We
can identify a group of brain areas involved in multifunctional tasks by comparing the dynami-
cal clusters to the topological communities of the network. The relationship between structural
connectivity and functional connectivity at different levels of synchronization is explored. With
strong couplings of multilevel model and by using neural mass model, the dynamics are charac-
terized by well-defined oscillations. The synchronization patterns are mainly determined by the
node intensity (total input strengths of a node); the detailed network topology is of secondary
importance. The structure of the dynamical clusters significantly differs from the anatomical
clusters. The improved multilevel model, e.g., with biologically more relevant chemical cou-
pling and detailed intra-areal communication, exhibits similar dynamical patterns in the two
regimes. Thus, the study of synchronization in a multilevel complex network model of cortex
can provide insights into the relationship between network topology and functional organization
of complex brain networks.
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Zusammenfassung

Das Gehirn von Säugetieren stellt mit seinen zahlreichen, hochgradig vernetzten Neuronen
ein natürliches Netzwerk von immenser Komplexität dar. In der jüngsten Vergangenheit sind
die großflächige kortikale Konnektivitäten, sowohl unter strukturellen wie auch funktionalen
Gesichtspunkten, in den Fokus der Forschung getreten. Die Verwendung von komplexe Netz-
werke spielt hierbei eine entscheidende Rolle. Es ist für die Neurowissenschaften von tragen-
der Bedeutung das Verhältnis von struktureller und funktionaler Konnektivität zu verstehen. In
der vorliegenden Dissertation versuchen wir, dieses Verhältnis durch Untersuchung der Syn-
chronisationsdynamik anhand eines realistischen Modells der Konnektivität im Kortex einer
Katze näher zu beleuchten. Wir modellieren die Knoten (Kortexareale) durch ein Subnetz-
werk interagierender, erregbarer Neuronen (multilevel model) und durch ein Modell von Neu-
ronenensembles (population model). Bei schwacher Kopplung zeigt das multilevel model eine
biologisch plausible Dynamik und die Synchronisationsmuster lassen eine hierarchische Or-
ganisation der Netzwerkstruktur erkennen. Indem wir die dynamischen Cluster mit den topo-
logischen Einheiten des Netzwerks vergleichen, sind wir in der Lage die Hirnareale, die an
der Bewältigung komplexer Aufgaben beteiligt sind, zu identifizieren. Desweiteren wird das
Verhältnis von struktureller und funktionaler Konnektivität auf verschiedenen Stufen der Syn-
chronisation näher untersucht. Bei starker Kopplung im multilevel model und unter Verwendung
des Ensemblemodells weist die Dynamik klare Oszillationen auf. Die Synchronisationsmuster
werden hauptsächlich durch die Eingangsstärke an den einzelnen Knoten bestimmt, während
die genaue Netzwerktopologie zweitrangig ist. Die Struktur der dynamischen Cluster unter-
scheidet sich signifikant von der der anatomischen Cluster. Eine Erweiterung des Modells auf
andere biologisch relevante Faktoren, wie der exakten Modellierung chemischer Synapsen und
der interarealen Kommunikation, bestätigt die vorherigen Ergebnisse. Die Untersuchung der
Synchronisation in einem multilevel model des Kortex ermöglicht daher tiefere Einblicke in
die Zusammenhänge zwischen Netzwerktopologie und funktionaler Organisation in komplexen
Hirn-Netzwerken.
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List of Abbreviations and Annotations

AC anatomical connectivity
FC functional connectivity
EC effective connectivity

V visual system
A auditory system
SM somato-motor system
FL fronto-limbic system

RN random network
SWN small-world network
SFN scale-free network

EEG electroencephalography/electroencephalogram
MEG magnetoencephalography
fMRI functional magnetic resonance imaging
DTI diffusor tensor imaging
TI tracer injections
LFP local field potential

FHN FitzHugh-Nagumo model
ML Morris-Lecar model
NMM Neural mass model

AP action potential
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x, V potential
x̄ mean field signal of a single area
X mean field signal of the whole network
A(i, j) adjacency matrix
W (i, j) weighted matrix

ki degree of node i
Si intensity of node i
wIJ reciprocal strength
MI matching index
H Hamming distance

MC anatomical matrix of cat cortex
ML local matrix of connections within a single area
MA anatomical network
MF functional network
C dynamical cluster
CS effective cluster

r(i, j) Pearson correlation matrix
R average correlation coefficient of r(i, j)
rX correlation between local mean field x̄ and global mean field X
rC correlation between dynamical and effective clusters

QA modularity of MC

QC modularity of r(i, j)
Q4 modularity of MC for partition V, A, SM, FL systems
QF modularity of r(i, j) for partition V, A, SM, FL systems

P0 non-connections in MC

P1 uni-directional connections in MC

P2 reciprocal connections in MC
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Chapter 1

Introduction

The mammalian brain is a complex system par excellence. This body organ is a unique mix-
ture of various kinds of cells, linked by numerous synapses to form columns, circuits and ar-
eas. Brain anatomy, function, ongoing neurochemical processes, cognition and information
transmission, all of them tightly interrelated, have already been the subject of investigation for
centuries. An innumerable amount of information about brain anatomy and function has been
collected [21, 64], different methods to analyze its structure and function have been applied,
and various plausible interpretations of neuronal properties have been proposed.

One part of the research has concentrated on the topological properties of the cortex. Cor-
tical anatomical connectivity has been described as a hierarchy of interacting elements of dif-
ferent functions and different interconnections. There are at least three basic levels in this hier-
archy: i) the microscopic level of interacting neurons, ii) the mesoscopic level of minicolumns
and local neural circuits, and iii) the macroscopic level of large-scale organization of the brain
areas linked with nerve fiber projections [21, 95, 100, 111]. While details at the first two levels
are still largely missing, extensive information has been collected about the last level in the
brain of animals such as cats [99, 100] and macaque monkeys [41].

In parallel, investigation of brain activity has also placed significant emphasis on the func-
tion of individual brain areas and the functional interactions between them. Modern brain
imaging techniques, e.g., functional magnetic resonance imaging (fMRI), allow researchers
to explore this functional connectivity during special tasks. The recorded neural dynamics are
studied by numerous linear and nonlinear time series analysis methods [11]. Functional cor-
relations are manifested by interdependence and synchronization of the dynamical activities of
different areas over a wide range of spatial and temporal scales [11, 73, 108].

The brain activity reflects a hierarchical organization of the dynamics which most likely
arises from a hierarchy within the complex cortical networks [111]. For example, in an anes-
thetized state, the activity patterns reflect the functional architecture of the underlying anatomy
[39]. Similarly, the coordination of the internal brain states in the form of inter-areal correlation
gives origin to highly specific patterns corresponding to the functional networks. Detailed anal-
ysis of the properties of both the anatomical and the functional brain networks is then further
required.
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2 CHAPTER 1. Introduction

The graph theory approach is widely employed to explore the organization and features of
complex networks such as the brain networks. This universal approach relies in representing
the topological structures as graphs [5, 19, 20]. Special attention is paid to global properties
of complex networks, such as scale-free and small-world features [119, 126, 127]. The net-
work analysis of the anatomical connectivity of the mammalian cortex [108] and the functional
connectivity of the human brain [11] have shown that both share typical features of many real
complex networks. Neural anatomical network structures on various levels, especially the large-
scale cortical networks, display characteristics of small-world networks, e.g., high clustering
and short pathlength. This might allow the system to perform both specialized and integrated
processes. Additionally, the robustness of cortical networks against node lesion manifests prop-
erties similar to those of scale-free networks [63]. The organization of the functional connectiv-
ity based on large-scale measurement of brain activities like fMRI [38, 98] also exhibits basic
properties of small-world and scale-free networks [11].

Considering all these observations and parallelism, it is of fundamental importance to under-
stand the interrelationship between topological structures and the dynamics of the brain. Hence,
questions treated in this dissertation are: What is a meaningful approach to study such a com-
plex system as the brain? What kind of model should be used? What is the relationship between
the anatomical and functional connectivities? How will the underlying anatomical connectivity
affect the dynamics of the brain?

To comprehend better the principles underlying brain dynamics, various models of neuronal
activity have been studied for a long time. In physics, most of the studies have concentrated on
the dynamics of the network, using generic oscillators (periodic or chaotic) as the nodes of typ-
ical network models like small-world and scale-free networks, globally or sparsely connected
with random architectures [15, 23, 70]. The ability of the network to achieve rather idealized
complete synchronization or coherent collective oscillations and the dynamical regimes, such
as asynchronous on-going activity with balancing between excitation and inhibition [23, 125]
were examined. However, neural networks display several levels of topological organization
that are not well-accounted for by such typical network models [105]. In addition, the oscilla-
tory dynamics of neurons cannot be sufficiently described by low-dimensional oscillators, and
synchronization behavior is often far from the ideal situation [45, 97, 103].

On the other hand, in neuroscience, a wide spectrum of neuronal models realistically capturing
processes ranging from the behavior of a single cell to large-scale neuronal population activity
has been presented. However, concentration on an individual neural element and investigation
of its activity cannot shed much light on the dynamics of the whole system. The interactions
between the neurons cannot be considered to be only the perturbation of the process going on
within the cells. The effects of neural communication are large and in the approach to study
the neural dynamics we should examine the system globally [65]. Thus, ‘bottom-up’ modeling
of the large cortical networks and investigating their synchronization behavior should provide
meaningful insight into the problem. In this approach, the system consists of basic dynamical
and topological units, e.g., single neurons, linked in the specific complex topology [22, 59, 77,
96, 130]. The topological model can represent a local neuronal ensemble of a cortical area
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or the hierarchically organized architecture of the brain, reflecting for example the anatomical
cortical connectivity of cat or monkey [41, 100].

The idea to use well-known cortical networks in the modelling of the neural dynamics and
investigating its relation to the underlying topology has already been considered in the liter-
ature. One of the first models was proposed by Kötter and Sommer [69]. The dynamics of
areas in a cat cortical network were modeled by a simple threshold activation function and the
activity propagation was compared with experimental results, see also [118]. The same model
was used later for modeling of the activity in the thalamo-cortical network of the cat [102].
Sporns et al. [110] chose a different approach, where the main goal was to compare functional
patterns of network activity to anatomical structure. Areas linked by excitatory connections and
self-inhibitory links were driven by a constant input in the form of uncorrelated noise. Later,
Kiss [66] used a model of the cat cortex as a basis for the simulation of population activity on
the mesoscopic level. He concentrated on the dynamics of the network after area lesions and
information processing in the large-scale model. There have been also several works simulat-
ing cortical activity and adopting a two-level hierarchy (level of neurons and level of areas),
but either simplifying the network architecture [67] or the dynamics of single units [120]. Re-
cently, the very ambitious Blue Brain Project [77] has aimed to build a detailed and large-scale
computer model of mammalian brain using realistic morphological properties of neurons and
neuronal connectivity. Currently, a single cortical column has been reconstructed.

The above-mentioned studies were the main motivation for our modeling. We wanted to
build a more complex and more realistic model of a neural network with improved dynamical
properties. We have constructed a complex large-scale brain network using the ‘bottom-up’
approach. The cortical network is simulated by a multilevel model, a network of networks,
where each cortical area is modeled by a subnetwork of interacting excitable neurons. We focus
on the systems level of the connectivity formed by long-range projections among cortical areas.
The dynamics of the nodes (cortical areas) in the networks is simulated with various models.
These subnetworks have typical small-world topology which accounts for the basic features of
realistic neuronal connectivity at the cellular level [26]. Such a general model should be able
to capture and mimic various dynamical processes, as well as the wide spectrum of possible
neuronal topologies. Our central task is to use this hierarchical neural model to study the impact
of the known anatomical topology on dynamical processes.

The presented dissertation is organized into seven chapters. In Chapter 2, we introduce
different types of neural connectivity together with their examples and methods how to extract
them. The general concept of the connectome is sketched. In parallel, the basics of graph
theory and its application in neural networks are discussed. Chapter 3 details the network of cat
cortex and we design a two-level hierarchical model of the neural network topology. Structural
details are presented and all network parameters are summarized. In Chapter 4, we deal with the
dynamical characteristics of neurons representing an elementary unit in our model. The basic
neuronal properties are listed and their specific roles in the neuronal dynamics are explained.
Results of the simulations of the multilevel model are presented in Chapter 5, where we show
different regimes of synchronization in the hierarchical networks. The analysis concentrates
on the clustering behavior of the simulated neural activity and the study of their relationship



4 CHAPTER 1. Introduction

with the underlying anatomical structures of the network. The dynamics of the cat cortical
network are compared to the dynamics of randomized networks and we demonstrate different
mechanisms of synchronization organization. Chapter 6 is devoted to the dynamics of the set of
the neural mass model modeled on the cat cortical network (for comparison with dynamics of
the multilevel model). In the last chapter, Chapter 7, we conclude the work and discuss possible
improvements and extensions of the model.



Chapter 2

Connectivity of brain networks

To discover the relationship between neural topology and neural dynamics requires, one re-
quires a detailed knowledge about the structure of both of them. In this chapter, we describe
different types of neural connectivity and show examples. The graph theory approach, widely
applied to complex networks such as neural networks, is introduced to allow us to define the
properties of brain anatomical and functional network topologies. We present the concept of a
connectome, which is the parcellation of the brain into small components and basic units, linked
and organized at various levels and hierarchies. The next section concerns the establishment of
the connections and interactions between them. We discuss possible ways to extract functional
networks.

2.1 Types of neural connectivity

The connections (links) between individual elements (neurons, areas) of brain can be identified
in many ways. We can distinguish realistic anatomical links between cortical areas or estimate
the correlation of their activity or the influence of one area over another one. Here, we introduce
brief definitions of three types of neural connectivities [73, 108], which can be applied to every
level of brain anatomical or functional hierarchy.

Anatomical connectivity (AC) can be defined as the set of all physical (structural) connections
between neural units, cell assemblies or brain areas at a given time [108]. Anatomical
links between neurons or cortical areas can be identified from the similar morphology
(anatomy) or function of the neuron or area. These links, e.g. connections between the
cortical areas of cat visual system [41], play an important role in communication and thus
are a major determinant of functional properties [110]. The connections are relatively
static at short time scales (seconds to minutes), but exhibit plasticity at longer time scales
(due to development or learning).

Functional connectivity (FC) describes temporal correlations between neurophysiological
events (spatially neighboring or distant) based on their correlation/covariance, spectral

5



6 CHAPTER 2. Connectivity of brain networks

coherence or phase-locking [46, 108]. Generally, this type of connectivity depends on the
method of evaluation of the relationship (different methods lead to different estimates)
and on the time (changes occurring in tens to hundreds of milliseconds). It can contribute
to changes in the anatomical connections (spike-timing-dependent synaptic plasticity).
FC mainly describes the pattern of the neural activity — what the brain does [73]. An ex-
ample of FC is a correlation between voxels of fMRI measurements of brain activity [38].

Effective connectivity (EC) represents the set of causal effects of one neural system on another
one, mediated directly or indirectly [73, 108]. For instance, at the synaptic level EC
corresponds to a connectivity matrix of effective synaptic weights [46]. In comparison to
FC (patterns of the activity), the EC offers the explanation of the origin of these patterns
— how the brain does what it does [73]. The proper combination of the FC and of a
selected causality model, specifying the links between units, is the key in the estimation
of EC.

In our work, we have mainly concentrated on the first two types of connectivity — the
anatomical connectivity drawn from known corticocortical fiber connections and the functional
connectivity estimated from simulations of a large-scale model of cortex. As a model of anatom-
ical connectivity and basis for our simulations, we chose cat cortex; its size, connectivity and
topological properties have already been described in detail [99, 100, 108]. The main task is
to find the intriguing relationship between these connectivities by comparing the corresponding
anatomical and functional networks. Before we start to describe the properties of the individ-
ual connectivities in detail, we introduce the basics of graph theory analysis, the data analysis
method to study the network topology.

2.2 Basics of graph theory analysis

Neural networks, along with other complex systems like metabolic pathways or the World Wide
Web, are composed of sets of interacting elements with non-trivial topology. Such systems can
be represented as a graph – basic elements as nodes (e.g, neurons or areas) and interactions
between these individual elements as links (e.g., synapses and fibers) connecting particular
nodes. The strength of the connection between two nodes corresponds to the strength of the
interaction between them.

Each graph (network) can be characterized by the adjacency matrix describing the connec-
tions between the elements. For n neurons, we obtain an n×n matrix A(i, j) with all-zero main
diagonal and connections between neurons i and j being specified as:

A(i, j) =
{

1 if ∃ connection between i, j and i 6= j;
0 if @ connection between i, j.

We talk about a undirected graph, if the direction of interactions is not specified, i.e., A(i, j) =
A( j, i). In a directed graph, the connections A(i, j) and A( j, i) are strictly distinguished. Ad-
ditionally, a weight w(i, j) (strength) of the connections can be specified, where W (i, j) is the
weight matrix combining topology and weights, W (i, j) = w(i, j)A(i, j).
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The graph theory approach allows us to represent cortical areas of the cat brain and connec-
tions between them in the form of the network shown in Fig. 2.1. The cat cortical network is a
directed network with numerous reciprocal links; additionally, a weight from the range 0 to 3 is
assigned to each link. The entire matrix will be described in detail in Chapter 3.
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Figure 2.1: The representation of cat cortex in the form of the network: (a) binary matrix
with unspecified weights, (b) weighted matrix, where the different symbols represent different
connection weights: 1 (black ◦ sparse), 2 (blue • intermediate) and 3 (red ∗ dense). The organi-
zation of the system into four topological communities (functional subsystems, V, A, SM, FL)
is indicated by the solid lines. See Chapter 3 for detailed description of the systems.

To characterize the structure and type of this network, we interprete and evaluate the main
topological properties relevant for our later analysis, taking a cortical area as a basic unit of a
network.

• The most basic node characteristic is its degree k. For an area i, ki is the number of
connections of the area i to the other areas in the network, i.e.,

ki = ∑
j

A(i, j).

Incoming degree kin (afferent connections) and outgoing degree kout (efferent connec-
tions) of an area can be differentiated.

• The intensity of a node Si, expresses the total strength of connections of the node (incom-
ing Sin and outgoing Sout). It is the complete sum of the strength of all cortical fibers of
the area:

Si = ∑
j

W (i, j).

• Additionally, we also define reciprocity strength as the average weight of the links be-
tween two nodes:

wi j ≡ (W (i, j)+W ( j, i))/(2wmax).
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2wmax is the maximal bidirectional weight, e.g., in the case of the cat cortical network [99],
the maximal weight is wmax = 3.

• The Matching Index MI between two nodes quantifies the number of their common neigh-
bors. For comparative reasons it is convenient to normalize it by the the number of non-
overlapping connections of these two nodes:

MI(i, j) =
∑n

l=1 A(i, l)A( j, l)
ki + k j−∑n

l=1 A(i, l)A( j, l)
.

Then MI(i, j) = 1 only if areas i and j receive input entirely from the same areas, and
MI(i, j) = 0 if all inputs to i and j come from completely different areas. MI can be
regarded as an estimation of the “functional similarity” of the nodes [51].

Based on the topology of the network and the structural properties, we distinguish four common
types of networks — regular networks, small-world networks (SW), scale-free networks (SF)
and random networks, see Fig. 2.2.

Figure 2.2: Different kinds of networks: (a) regular, (b) small-world, (c) scale-free and (d)
random.

Roughly speaking, in regular networks, nodes usually have connections to a constant number
of nearest neighbors (Fig. 2.2(a)), whereas in random networks, the number and topology of
connections between nodes are entirely random (Fig. 2.2(d)). Small-world (SW) topology rep-
resents an intermediate structure between the random and regular one (Fig. 2.2(b)). Scale-free
(SF) networks are characterized by the presence of a few hubs, i.e., nodes with a very high
number of connections (Fig. 2.2(c)). Several authors have presented a general overview of
these different kinds of networks, their network properties and the influence of such properties
on the network dynamics [19, 20, 84, 137].

SF and SW networks have especially been at the center of interest because of their common
occurrence in nature, e.g., SF networks in functional brain networks [38] and SW networks
in cortical networks [108, 110], in the neuronal network of Caenorhabiditis elegans [127] and
also in the functional networks [11]. We will pay special attention to the SW type of networks,
originally proposed by Watts and Strogatz [127]. At the beginning, each unit of the network
connects to a number ka of the nearest neighbors, alternatively specified by a connection density
parameter pring = ka/n. Later, links are rewired with a probability prew to a randomly selected
node, which introduces some long-range connections (‘shortcuts’). The parameters pring and
prew are crucial for the selection of specific network character (regular, small-world or random),
see [127].
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Taking a neural network as an example of SW topology, the high average clustering coeffi-
cient, expressing the large number of densely interconnected nodes, points out the existence of
clusters of neurons. The presence of a few shortcuts decreases the path length, i.e., the distance
between two nodes i and j. The efficiency of neural communication within and between cell as-
semblies is increased in networks with such properties. The spreading of the signal often leads
to synchronization of the dynamics of neurons [71, 72, 79, 47]. Such enhanced synchronization
has also been confirmed by analytical studies [9, 88]. It has been argued that the evolution of
systems into networks with small-world topology probably attempts to maximize the dynamical
complexity while minimizing wiring costs, i.e., cost-effective information processing [11].

The use of graph theory methods has revealed many basic characteristics of brain networks.
Now, we introduce the general anatomical connectivity of the brain at different levels and its
topological properties.

2.3 Anatomical connectivity

Mammalian brain consists of a vast number of neurons that are interconnected in complex
ways [111]. In recent years, the network of anatomical links connecting various neural ele-
ments, the connectome, has been the subject of intensive investigation. From numerous neu-
rohistological studies, information about the morphology, location and connections of different
types of neuronal cells, microcircuits and anatomical areas has been collected and sorted. This
data plays an important role in creating a global image of the brain. The implementation of
such topological information in a large-scale neuronal model might help us to understand the
mechanisms of temporal and spatial spreading of brain activity.

2.3.1 Connectome

We describe the general structure of the mammalian connectome. Although the details of the
neuronal network architecture are not fully known, several levels of cortical connectivity can be
defined [111].

Microscopic connectivity

In the human brain, approximately 1011 neurons are linked together by 1014−15 connec-
tions, which corresponds to about 104 synapses per neuron on average. The network is
rather sparsely connected, with mainly local connectivity. Usually, each neuron makes
contact to its closest neighbor only by one synapse or not at all [21, 95]. The interneu-
ron connectivity patterns are very plastic, where changes are partially predetermined by
genetic constraints and later modified by factors like learning and nutrition. Since for a
long time it has not been possible to extract the microscale connectivity [18, 78, 104], the
neural connections are commonly modelled as a graph. The architecture often takes the
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form of a small-world network [71, 72, 79]. Other topologies are also considered, rang-
ing from random [23, 59, 70] or globally coupled networks [15, 48, 53] to more realistic
topologies reflecting spatial growth of the cortex [62].

Mesoscopic connectivity

The next level in the brain anatomical network is made up of cortical minicolumns. A
cortical minicolumn, a narrow chain of neurons organized in the vertical direction across
cortical layers II–VI, is considered to be a basic functional unit for processing information
in the brains of mammals [18, 94, 95]. Such local circuits consist of only 80–100 neurons
with an architecture more complex than just random or distance dependent connections
patterns. Further, the minicolumn is deemed to be a basic building block of the com-
plete connectome [25, 111]. A set of these functionally specialized and precisely rewired
small neuronal populations (usually 60–80 units) later gives rise to the cortical column
(macrocolumn).

Macroscopic connectivity

In the cerebral cortex, neurons are also organized into numerous regions (areas) that dif-
fer in cytoarchitecture and function. These areas, originally defined and listed by Brod-
mann at the beginning of the 20th century, may be assumed to be basic elements at the
macroscale [21]. The architecture and function of the areas, as well as the topology of
the neuronal fiber connections linking different areas have been the subject of intensive
investigation. The anatomical network of visual cortex of monkey was described for the
first time in 1991 by Felleman and van Essen [41]. More recently, cortical maps of other
species like rat [24] and cat [99, 100] have been published. Analysis of the obtained cat
anatomical cortical network revealed that the network possesses the small-world proper-
ties [11, 108].

This detailed knowledge of the anatomical connectivity at the systems level of functional brain
areas offers a good starting point to explore the undergoing dynamical processes.

2.3.2 Data extraction and databases

Anatomical information collected about the different levels of connectome has comes exclu-
sively by invasive techniques (e.g., cutting axons and observing degeneration of cells, study
of postmortem brains, microinjection of dyes followed by autoradiographic imaging), meaning
that such information was mainly collected from animal studies. Several other factors like the
high number of neurons, complex network topology or plasticity, make it impractical to extract
the precise connectivity at the anatomical microlevel. Newly developed imaging methods like
Diffusive Tensor Imaging may later help to obtain the details of human anatomical connectiv-
ity [37].

All the extracted information about the anatomical connectivity of a number of animal
species has been summarized and presented in various databases on several web sites. At the



2.4. Functional connectivity 11

mesoscopic scale the databases ‘Microcircuit’ [3] or ‘Wormatlas’ [6] offer insights into local
circuit connectivity. The database ‘Cocomac’ [2] contains connectivity maps of macroscopic
cortical networks of macaque monkey, and ‘BrainMaps’ [1] maps the anatomical details of
different animal species like domestic mouse, rat, cat, and several types of monkeys.

Our first task is to construct a topological model based on the known anatomical structure,
which will provide the basis for modeling the dynamics of the system. We extract and inves-
tigate functional networks to understand how the anatomical connectivity corresponds to the
dynamics. In the next section, we describe what functional connectivity and functional net-
works are and how we obtain them.

2.4 Functional connectivity

In the nervous system, processing and transmission of information are encoded in the form of
electrical activity of individual neurons. The specific dynamical interactions between neural
elements and their statistical dependencies give rise to functional connectivity (FC) [33, 46].
Being closely related to the underlying anatomical network [110], FC can be also estimated
at different levels of brain hierarchy, as described in Section 2.3. At the microscopic level,
single neuron activity can be recorded with an intracellular microelectrode. The change of
membrane voltage is expressed in the form of an action potential (AP). The dendritic synaptic
activity of all neurons within a certain volume, a local field potential (LFP), can be measured
by a single extracellular electrode. Synchronized firing of neighboring neurons and summated
postsynaptic potentials plus the AP of the active neuron give rise to the LFP. On this mesoscopic
level, a large number of summed postsynaptic potentials from the surface of several square
centimeters of cortex creates the EEG signal. This signal can be divided into several frequency
bands, each related to a certain mental state. The EEG signal is complex, reflecting the strongly
nonlinear neural dynamics and the intricate structure of the neuronal connections. The different
types of neurophysiological data can be obtained under different conditions, either in the basic
resting state or while the brain is being stimulated, directly by strychnine injections [118] and
by transcranial magnetic stimulation or indirectly in the form of mental tasks. In addition to
the records of the physiological signals, various neural models allow us to simulate neuronal
activity at different levels: action potentials, local field potentials or mean field activities of
whole areas (see review [11]).

To obtain functional networks from data (physiological records or neural simulations), we
proceed in two steps:

1. Evaluation of functional connectivity
To evaluate the FC between a pair of nodes or in a specific frequency band, we can use either
linear measures like cross-correlation, coherence and partial correlation [33, 98] or nonlin-
ear measures like mutual information [110], generalized synchronization [13], synchronization
likelihood [114, 116, 117], phase synchronization measures [90] or wavelet analysis [4].
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It is difficult to decide which method allows us to extract functional connectivity most effec-
tively [33]. Linear methods are more sensitive in the detection of the presence of neuronal
coupling and allow a fast characterization of data, but they are not able to capture nonlinear fea-
tures. Nonlinear techniques better handle nonlinearity in the data, but they are computationally
demanding.

2. Extraction of functional networks
The pairwise FC between different regions forms a matrix from which the functional network
can be extracted. A specific threshold is applied to this matrix and as a result an undirected graph
is derived. If the value of the functional connectivity is larger than the threshold, a functional
link between two corresponding elements is established. Connections with the FC smaller than
the threshold are removed. The final structure of the functional network, represented by a binary
matrix, depends on the number of regions included, the method chosen for the estimation of the
functional connectivity and the thresholding rule [11].

Similar to anatomical networks, the topological properties of functional networks are the
subject of intensive investigation. There is evidence of SW properties in functional networks,
based mainly on the presence of network characteristics such as short average path length and
high clustering coefficient [4, 11, 12, 98]. Degree distribution offers additional information
about the network: It might vary from the power law distribution of SF networks [38] to the
exponential truncated power law somewhere between the exponential law of SW and power
law of SF networks. The resulting degree distribution guarantees the presence of a few hubs,
but not as many as in SF networks. This property protects functional networks from attack and
makes the network more resilient [4, 115]. Recently, functional networks were also described
as fractal SW networks [12]. The small-world topology may play an important role in cognitive
processes, e.g., the change in cognitive ability associated with Alzheimer’s disease has been
linked to the increased path length in the functional network [115].

2.5 Summary of the chapter

We have defined the three basic types of brain connectivity (anatomical, functional and effec-
tive) and introduced the basics of graph theory, allowing us to represent the connectivity as a
network and estimate the network properties. Details and properties of anatomical and func-
tional connectivity were mentioned together with how to obtain and analyze the anatomical and
physiological data. At the end, we discussed the extraction of functional networks from the
data.



Chapter 3

Network topology of a large-scale model

After introducing the idea of the connectome in the previous chapter, we use the anatomical
information to build a hierarchical model of the brain. First, we describe the anatomical con-
nectivity of the brain at the macroscale found in the cat cortical network. Each cortical area is
modeled by a subnetwork resembling basic features of the microscale connectivity. The result-
ing system is then a network of networks.

3.1 Cat cortical network

One of the most detailed brain anatomical connectivities known is that of a cat cortical network,
see Fig. 3.1 [100]. This system serves as the basis for our model. The first collation of cat
corticocortical connections, including 65 areas and 1139 reported links, was presented by Scan-
nell et al. [99]. The results of the study were later completed and reorganized, which led to the
origin of a corticocortical network of 53 cortical areas and additional thalamo-cortical network
of 42 thalamic areas [100].

Figure 3.1: Topographical map of cat cerebral cortex (taken from [99]).

13
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The corticocortical network of cat used in our model is composed of 53 highly reciprocally
interconnected brain areas, see Fig. 3.2. The density of afferent and efferent axonal fibres is
expressed in three levels — ‘3’ for the densest bundles of fibres, ‘2’ for intermediate or unknown
density and ‘1’ for the weakest connections. The value 0 characterizes absent or unknown
connections. These values convey more the ranks of the links than the absolute density of the
fibres, in the sense that a ‘2’ is stronger than a ‘1’ but weaker than a ‘3’ [99, 100]. All together,
there are around 830 connections in the corticocortical network with an average of 15 incoming
links and with average incoming strength of 26 per area.

Figure 3.2: Connectivity matrix representing connections between 53 cortical areas of cat brain.

In the network of cat cortical connections, four distinct subsystems can be identified. Three
of the subsystems — visual (V, 16 areas), auditory (A, 7 areas) and somato-motor (SM, 16
areas) — involve regions participating in the processing of sensory information and execution
of motoric function. The fourth subsystem — fronto-limbic (FL, 14 areas) — consists of various
cortical areas related to higher brain functions, like cognition and consciousness.
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The optimal placement of the cortical areas in the connectivity matrix was found by using
a nonmetric multidimensional scaling optimization method and already presented in the paper
of Scannell et al. [99]. Such rearrangement of the areas led to the origin of these 4 subsystems
described above. Later, several other methods based on network connectivity were applied to
confirm this optimal arrangement [49, 50, 100]. As a very relevant method we only mention
the evolutionary optimization algorithm [49], where the number of connections between units
of the cluster is maximized while inter-cluster connections are minimized. The resulting four
clusters agreed with the functional subsystems defined previously.

The corticocortical network has been subject to much detailed analysis based on graph the-
ory (e.g., clustering coefficient, average path length, matching index and many other statistical
properties) [108, 112] and theoretical neuroanatomy (e.g., segregation and integration) [107].
Most of the studies focused on revealing the small-world nature of the structure of the cortex.
The presence of clusters is one of the cortical characteristics. Parcellation of the cortex into ar-
eas performing specialized functions corresponds to functional segregation. Cortical networks
are also characterized by short path length between areas due to the few long-range connec-
tions; this short path length allows efficient inter-areal communication. This corresponds to the
idea of functional integration of information. The robustness of such networks [61] and their
hierarchical organization in the anatomical structure [31] have also been examined.

Because the properties of the structure of the cat cortex are well known, we chose the model
of cat cortical connectivity as the basis for our model of macroscopic anatomical connectivity.
We distinguish two types of model, differing in their representation of the areas: (i) In one case,
we extend the network structure and build a two-level network, i.e., a network of networks.
Cortical areas appear in the model as subnetworks. The global dynamics of each area arise
from the interaction and superposition of the dynamics of individual neurons. (ii) In the second
case, the dynamics of the area are modeled directly by a population model and the structure
of the network corresponds to the basic cat cortical matrix. Now we concentrate only on the
topology of the multilevel model.

3.2 Hierarchical model — network of networks

Due to the modular and hierarchical organization of the human connectome, simple models
of individual cortical levels do not offer an appropriate insight into the complex dynamics oc-
curring in such a complex topology. Thus, our model combines two cortical levels into one
framework. The higher level copies the known connectivity of real neuroanatomical data, par-
ticularly the interconnectivity between 53 cat cortical areas [99, 100]. At the lower level, single
cortical areas are modeled by large neuronal ensembles. Implementation of these two layers
gives rise to a specific topology—a network of networks, see Fig. 3.3. Some of the previous
studies have already dealt with such two level models (neuronal and areal) [109, 120]; however,
none of them has introduced a detailed network topology in such an extension. As we will show
in Chapter 5, this type of hierarchical network structure plays a crucial role in the uncovering
of dynamical properties of the system, see also [132, 138, 139]. In the following section, we
describe the details of the topology of the model and discuss possible modifications.
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Figure 3.3: The modeled system—a network of networks. Note that the local subnetworks
representing cortical areas have small-world structure.

3.2.1 Global cortical network

We chose the cat cortical map (see Fig. 3.1) as the representation of the large scale connectivity
in our model. The cat cortex, together with the cerebral cortex of the macaque monkey, are the
most completely described brain systems among the mammals. We will consider only cat cor-
ticocortical connections (cortical map) in our modeling, omitting corticothalamic connections.
Our knowledge of the topological properties provides a good starting point for the investigation
of the relationship between structure and dynamics. The model, however, is flexible enough
to allow for the inclusion of any known cortical connectivity or artificially created network of
long-range cortical connections. The cat cortical map is, in evolutionary terms, not so closely
related to the structure of the human cortex. To minimize this difference, one can replace the
cat matrix with the cortical map extracted from macaque monkey or possibly with a map of the
human connectome in the future.

3.2.2 Local neuronal network

The individual cortical areas differ in cytoarchitecture and function. Due to these natural dis-
tinctions, we model each area as a local network, i.e., a population of neurons having its own
topology.

It has already been reported in several studies [21] that local connections are more frequent
than long-range ones, although the exact neuronal topology is unknown. Considering this fact,
we have chosen a small-world architecture as a minimal model [79].

As soon as the local connections were established, we distinguished two types of neurons
— excitatory and inhibitory. It is known that approximately 75–80% of the neurons are exci-
tatory (pyramidal type with spines for specific excitatory synapses) and the remaining 20–25%
are inhibitory neurons (interneurons, smooth cells with inhibitory synapses) [59, 64]. In our
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simulations, we randomly selected the inhibitory neurons with a probability pinh = 0.25. We
considered all inter-areal links to be excitatory, since only pyramidal neurons are involved in
the long-range inter-areal connections. Inhibitory connections are involved in long-range con-
nectivity only at the local level (within cortical columns [26]); due to the absence of a myelin
layer, they are not able to reach the speed necessary for signal transmission without significant
delay and loss of data [21]. Additionally, we also have to take into account signals coming from
other cortical areas (inter-areal links). If two areas are connected, only 5% of neurons within
each area receive or send signals to the other area. On average, up to 30–40% of neurons of one
area can be involved in communication with other areas [131].

We performed two studies which differed in the topology of long-range connections and the
neuronal model together with the art of the neuronal coupling (discussed later in Chapter 4).
We summarize the properties of the model topology for each case:

1. In the first part of our research, neurons communicate through the mean field signal,
i.e., the selected 5% of neurons of one area get the mean field signal x̄ = (1/n)∑n

i xi of
averaged activity of n neurons from another linked area I. The coupling strengths for
intra-areal coupling gint , i.e., the local excitatory and inhibitory synapses, have the same
values. The inter-areal coupling strength gext differs from the local ones and both gint and
gext play a key role in identifying different dynamical regimes.

2. In the second study, we randomly selected pext = 5% of the neurons of a ‘receiving’
area to receive signals from pext = 5% of the neurons of a ‘sending’ area. Basically,
we fix a total number of long-range connections between areas I and J as (n ∗ ka ∗ pext).
The selected receiving neurons of area I receive numerous inputs from selected sending
excitatory neurons of area J. We avoid multiple links, i.e., two neurons from different
areas can be connected only once. All established connections are directional. As we
vary the coupling strength of the connections, here, for excitatory gexc and inhibitory ginh
neurons, we obtain different dynamical regimes.

Table 3.1 offers an overview of all network parameters presented in the model of the network
topology.

3.3 Summary of the chapter

Let us briefly summarize the structures of the model networks:

(i) In the first case, the system represents a network of networks, see Fig. 3.3. The upper
level corresponds to the known anatomical connectivity map of 53 cat cortical areas. At the
lower level, a single cortical area is modeled by a large neuronal population of excitatory and
inhibitory neurons. The topology and the size of the local network can be adjusted by chang-
ing the network parameters. We randomly choose 5% of the neurons to receive an input from
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Parameter Description
N Number of areas
n Number of neurons per area
ka Number of connections per neuron within an area

prew Probability of rewiring
pinh Ratio of inhibitory neurons
pext Ratio of neurons of one area involved in long-range connections
gint Non-normalized intra-areal (internal) strength of synapses
gext Non-normalized inter-areal (external) strength of synapses
gexc Non-normalized strength of excitatory synapses
ginh Non-normalized strength of inhibitory synapses

Table 3.1: Parameters of the network—structure and connections

another connected cortical area, thus forgetting the layered structure of the cortical area and cor-
responding topological details. Here, we consider two different topologies. In the first topology,
the neurons receive an input in the form of average mean field signal of a sending area. We ex-
amine dynamical regimes obtained by variation of inter-areal and intra-areal coupling strengths.
In the second topology, 5% of the neurons of area J receive an input from 5% of the neurons
(only excitatory) in connected area I.

(ii) The second investigated model of connected neural populations mimics the neural dy-
namics on the macroscopic level. The number of neural populations and the connections be-
tween them reflect the topology of the cat cortical network.

The following chapter deals with the dynamics occurring in all types of model topology.



Chapter 4

Modeling the global dynamics of the
neuronal population

Up to now we have presented the brain as a complex network of interacting elements and mainly
discussed the details of brain anatomy and connectivity at different levels (Chapter 2). Based on
this knowledge we have built a hierarchical model of brain, a network of networks (Chapter 3).
In this chapter, we will concentrate on the neuronal dynamics and discuss the most relevant
neuronal properties needed to model brain activity. The resulting dynamical patterns will be
used to determine the functional networks. The linkage between the anatomical and functional
networks will be examined later (see Chapter 5, 6).

In attempt to model the global dynamics of the neuronal populations, usually measured
as EEG or LFP (Section 2.4), two main approaches are widely applied. The first approach
simulates a network of neurons, where the combination of the nontrivial connectivity of neurons
and the nonlinear behavior of the single neuron gives rise to complex dynamics. Following this
idea, we have constructed a model with a network of neurons representing a cortical area. A
set of neurons is connected according to a specific pattern of small-world network connectivity
observed commonly in nature. The second approach models the mean activity of the entire
ensemble of neurons. Such a population can represent a cortical column, or part of or the
entire cortical area. The output signal is generated from sets of different types of neurons like
pyramidal cells and excitatory and inhibitory neurons. Our model of neural mass mimics the
activity of a brain area. In this chapter, we present the details of both approaches.

4.1 Single neuron model

Neurons possess a complex morphology to handle the specific tasks of information transmis-
sion and communication. The representation of neurons as a spatially extended unit with an
intricate geometry would lead to a composite structural model of the neuron, computationally
very expensive (see, e.g., [77]). Therefore, to simplify the neuronal model, neurons can be
modeled as dynamical systems with an emphasis on the various ionic currents that determine

19
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the neuronal excitability and response to stimuli. The neuronal response can be captured by a
simple threshold or excitable model and the dynamics of the neurons can be described by two
variables V and W :

V̇i = f (Vi, Ibias)+ Isyn
i (t)+ Iext

i (t) (4.1)
Ẇi = h(Wi) (4.2)

The dynamics of the fast variable V , imitating the membrane potential, are predetermined by
a function f of two parameters: the membrane potential V and the basic current Ibias, which
flows into the neuron and sets up the neuronal excitability. Moreover, the membrane potential
V is modified by the total synaptic current Isyn coming from other connected neurons and the
external current Iext , representing perturbations from lower brain parts. The dynamics of slow
recovery variable W , modeled by a function h, account for the activity of various ion channels.

Excitable neurons can be categorized into two classes based on their excitability and their
response to an input [55, 57, 71]. Class 1 excitability contains those neurons able to encode
the strength of the input into their firing activity, even with a weak input (Fig. 4.1(a)). Such
neurons undergo a saddle-node bifurcation, with firing frequencies ranging from 2 to 200 Hz.
Typical cells with such activity are pyramidal neurons, representing the majority of the cortical
units. Class 2 excitability neurons do not respond to the input so flexibly and cannot fire at
low frequencies (Fig. 4.1(b)). Their dynamics are characterized by a Hopf bifurcation, with
an on/off behavior: Either the neuron does not fire, or it fires at a high frequency (like 40
Hz) [55, 71, 113].
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Figure 4.1: Dependence of the firing rate on the intensity of the applied current (Morris-Lecar
model adopted from [123]): (a) Class 1 excitability, (b) Class 2 excitability.

From a variety of point spike models, e.g., Integrate-and-fire model, Hindmarsh–Rose model,
Izhikevich model (see [55, 92]), we chose two different types of model. In addition to the details
of the neuronal models, the properties of the neuronal coupling and stimulation are described
and discussed in the following section.
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4.1.1 Model of a single neuron

We introduce two neuronal models that capture the main features of neuronal dynamics like
spiking, resting state, etc. The first model, the FitzHugh-Nagumo model, is an excellent exam-
ple of an excitable system of class 2. This simple model of a relaxation oscillator is commonly
used in neuroscience but has also various other applications, like in the kinetics of chemical re-
actions, or in solid state physics [89]. The second model is the Morris-Lecar model (ML), which
is a canonical prototype for different classes of neuronal membranes. With a slight variation of
the parameters, the ML model is able to exhibit both class 1 and class 2 neuronal dynamics.

4.1.1.1 FitzHugh-Nagumo model

FitzHugh proposed a model in 1961 [42], which was originally called the Bonhoeffer-van der
Pol model. His main aim was to investigate basic dynamic interrelations between state variables
of a cell membrane. At the same time, Nagumo constructed an electronic circuit exhibiting the
same properties as the FitzHugh model [58] and now the model is known as the FitzHugh-
Nagumo model (FHN). We adopted the version of the FHN introduced by Pikovsky et al. [89]
and later used in numerous studies [52, 101, 135, 140]:

εẋi = xi− x3
i

3
− yi, (4.3)

ẏi = xi + ai. (4.4)

The fast excitable variable x represents the membrane potential; its cubic nonlinearity allows
regenerative self-excitation via positive feedback (Eq. 4.3). The slow recovery variable y is
responsible for accommodation and refractory behavior; its linear dynamics produce slower
negative feedback (Eq. 4.4).

The small value of the time scale parameter (ε = 0.01) allows the separation of the motion of
the two variables x and y. The parameter a is a bifurcation parameter responsible for excitatory
properties of the system, where |a| > 1 corresponds to a stable fixed point and |a| < 1 to a
limit cycle. We set ai ∈ (1.05,1.15), and thus the neurons are in the excitable state, close
to the bifurcation threshold. A small perturbation of such a state switches the activity to the
oscillatory regime (see Fig. 4.2). We use the FHN model to describe the dynamics of individual
neurons mainly because of its simplicity and biological plausibility [55]. This model is not a
quantitative representation of a neuron, but it rather concentrates on the qualitative properties
of neuron, modeling the dynamics of class 2 excitability. Even though it does not capture all
features of the neuronal dynamics, the model still provides a signal similar to simple neuronal
activity with properties like resting state and neuronal firing.

4.1.1.2 Morris-Lecar model

The second neuronal model we used in our simulations was the Morris-Lecar model, considered
to be a canonical prototype for two classes of neuronal membranes. The Morris-Lecar model
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Figure 4.2: (a) FHN neuron in oscillatory state. (b) Phase portrait for FHN neuron.

was introduced by Morris and Lecar in 1981 during a series of studies of the excitability of
the barnacle giant muscle fiber [93]. The dynamics of the cell membrane was determined by
transmembranar currents — the voltage-gated Ca2+ current, the voltage-gated delayed-rectifier
K+ current and the leak current. The original third-order system of nonlinear equations denotes
the voltage V and the activity of the depolarizing Ca2+ and hyperpolarizing K+ channels. Due
to the fact that calcium channels respond to V very rapidly, instantaneous activation is assumed
and the model can be reduced to the two-dimensional form (Eqs. 4.5– 4.6) [93]:

CV̇ = I−gL(V −VL)−gKW (V −VK)−gCaMinf(V )(V −VCa), (4.5)
Ẇ = λ(V )(Winf(V )−W ), (4.6)

where

Minf(V ) = 0.5
[

1 + tanh
(

V −V1

V2

)]
, (4.7)

Winf(V ) = 0.5
[

1 + tanh
(

V −V3

V4

)]
, (4.8)

λ(V ) = φcosh
(

V −V3

2V4

)
. (4.9)

The activity of Ca2+ channels is included in the membrane voltage V , whereas the variable W
represents the fraction of the open K+ channels. C stands for the membrane capacitance per
unit area and φ is a temperature-like scale factor, a decay rate of W , here considered to be a
constant. ga are the conductances and Va resting potentials for calcium, potassium and leak
channels (a = Ca,K,L). Each neuron receives a constant input I, which determines the state of
the neuron — either the resting (excitable) state, when the input is smaller than a critical bias
current (I < Ic), or the oscillatory state, when the input is above the threshold (I > Ic). Fig. 4.3
shows the phase portrait of the oscillatory regime with corresponding voltage dynamics. We
set Ii ∈ (37.0,38.0), when neurons are in the excitable state, close to the bifurcation threshold.
Oscillations are achieved after perturbation of dynamics either through noise or signals from
other neurons. All other parameter values were taken from Tsumoto [123] (Tab. 4.1) to model
the dynamics of a single class 1 excitability neuron. The ML model is special since it can, with
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Figure 4.3: (a) Oscillatory dynamics of a ML neuron, class 1 excitability. (b) Phase portrait for
ML neuron.

small change of parameters, also exhibit dynamical features of class 2 excitability (Fig 4.1(b)).
Tsumoto has also shown that the parameters gCa, φ, V3 and V4 are crucial in the switching of the
dynamics. When Iext is relatively small, the simple change of the value of V3 from 12 to 2 mV
causes the dynamics to switch from class 1 to class 2 excitability, see [8, 123]. Thus, this model
is suitable for modeling of heterogeneous groups of neurons. The same model with slightly
different parameters was also used in our large-scale simulations of a neural network [10].

gL[µS/cm2] 2 VL[mV] -60 V1[mV] -1.2
gK[µS/cm2] 8 VK[mV] -80 V2[mV] 18
gCa[µS/cm2] 4 VCa[mV] 120 V3[mV] 12

φ[s−1] 1.0
15.0 I[mA] 38.5 V4[mV] 17.4

Table 4.1: Parameters of ML model of neuron (adopted from Tsumoto et al. [123]).

4.1.2 Factors influencing dynamics of a neuron

Previously described neuronal models can truly mimic the dynamics of a single neuron under
certain conditions (in steady or oscillatory state, under stimulus). In the modeling of simple
neuronal systems, two additional features are of great importance — (i) the presence of noise
in the system, which determines the dynamical state of the neuron (oscillation) and (ii) the art
of coupling of the basic elements, i.e., neurons or areas, expressing the influence of one system
upon another one.

4.1.2.1 Role of noise in neural system

In the living brain, neurons in the normal state usually do not exhibit strong activity. According
to some estimates, they are silent 99% of the time, just sitting below the critical threshold and
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being ready to fire [44]. In our models, the neurons are also initially set to the excitable state
(parameters a in the FHN model and I in the ML model are below the critical threshold).

We add Gaussian white noise 〈ξi(t)ξ j(t − τ)〉 = δi jδ(τ) to mimic the intrinsic stochastic
character of neuronal dynamics, caused by stochastic processes like synaptic transmission or
spontaneous release of neurotransmitter into the synaptic cleft [28, 113]. The tunable parameter
D (see later Eqs. 5.2, 5.13) scales the intensity of this random input. To obtain the natural firing
rate of individual neurons (1–3 Hz), we can vary the intensity D until the expected firing rate is
reached.

In some work, neurons are stimulated by multiple inputs of Poissonian noise to simulate external
influences, e.g., from subcortical areas [23, 44, 56, 70]. In the study of a large-scale neuronal
system [10, 133], we implemented both Gaussian and Poissonian noise.

4.1.2.2 Synaptic coupling between cortical neurons

1011 neurons in the human brain form a sparse network, where an average neuron forms about
103− 104 synaptic connections. There are two distinct types of synaptic coupling: electrical
and chemical [64].

Electrical coupling (linear) appears only locally through the close contact of the cell membrane
of the neurons (3.5 nm) without the presence of synaptic neurotransmitter. The informa-
tion about the change of membrane potential of one neuron is transmitted directly as a
current flowing through ion channels called gap junctions. The simplest linear coupling
between two neurons i and j would take the form

xi = f (xi)+ g(x j− xi),

where g is a strength of the connection [54]. Such diffusive coupling is not the most
typical case in the mammalian cortex (occurs mainly in interneurons), but we use it in one
part of our study to simplify that stage of our simulation (see later Section 5.1, Eq. 5.1).

Chemical connections (nonlinear) represent the majority of connections between neurons in
the neocortex. The principle of signal transmission is based on the release of chemical
messengers from the depolarized presynaptic neuron, which consequently bind to the re-
ceptors of the postsynaptic neuron. This causes the flow of ions in the postsynaptic neuron
leading to the polarization of the membrane. Depending on the type of the receptor, we
can distinguish excitatory or inhibitory neurons, which occur in the ratio of about 3:1 (im-
plemented in the model as pinh = 0.25). Excitatory neurons enhance the spreading of the
action potential and excite the postsynaptic neuron. Inhibitory neurons inhibit neuronal
activity and act to hyperpolarize the postsynaptic membrane.

Several models of chemical coupling are widely used, varying from a simple one expressed by
a ‘threshold’ function [54] to more complex ones described by sets of equations [48, 64, 71,
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Parameter Excitatory Inhibitory
Es (mV) 0 -80
αs (ms−1 mM−1) 2 0.5
βs (ms−1) 1 0.1

Table 4.2: Parameters of the synaptic coupling for excitatory and inhibitory neurons.

72]. In the second part of our study (Section 5.2), we adopted the model of chemical coupling
described by Lago-Fernández [71], which will be now discussed in detail. The input from the
synapses to the neuron Isyn

i (see Eq. (5.13)) is added to the fast voltage variable V . This synaptic
term represents the total synaptic current to the ith cell, i.e., the sum of signals (spikes) from
all pre-synaptic neurons, k = 1, . . . ,ntotal . ntotal is the number of afferent synaptic connections
from all local and extra-areal neurons to neuron i:

Isyn
i (t) =

ntotal

∑
k

gi jr j[Vi(t)−Es]. (4.10)

The response from an individual synapse is modeled by the difference between the membrane
potential of the postsynaptic neuron Vi and the reversal potential Es (see a similar approach
in [70, 71, 72]). Es stands for Eexc or Einh depending on whether the presynaptic neuron is
excitatory or inhibitory. The parameter gi j is the maximum conductance per unit area, which
determines the connectivity and coupling strength between the postsynaptic i and presynaptic j
neurons. In the case of disconnected neurons, we have gi j = 0; gi j > 0 indicates the presence
of excitatory links and gi j < 0 the presence of inhibitory ones.

The amount of released neurotransmitter into the synaptic cleft determines the fraction of the
open channels r in the postsynaptic neuron:

ṙ j = αsx j(1− r j)−βsr j, (4.11)

where αs and βs are time-dependent rise and decay constants, with s symbolizing whether the
neurons are excitatory or inhibitory. The corresponding values of the parameters for synaptic
coupling are summarized in Table 4.2. Neurotransmitter concentration x j is typically modelled
as a square pulse, see Destexhe et al. [36]. To make the change in the concentration smoother,
the limits in the transmitter concentration at a constant presynaptic potential Vpre are expressed
by the function f (Vpre):

ẋ j = α( f (Vpre)− x j), (4.12)

f (Vpre) =
σ

1 + exp(−(Vpre−θ)/T )
, (4.13)

where α = 5 ms−1, σ = 2.84 mM, θ = 2 mV, T = 5 mV [72].

With this model of the chemical synapses, the coupling gains nonlinear terms and the dynamics
of the network become even more complex.
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4.1.2.3 Other neuronal properties

There are several other neuronal properties modulating neuronal reaction and activity propaga-
tion within the network that we did not consider in our research. One of them is the spreading of
the signal in the network, influenced by transduction delays tdel . Delays typically vary between
0.1–20 ms [68] and depend on the neuronal morphology [40]. Further, the strength of the synap-
tic connection is plastic; the mechanism of spike-timing-dependent plasticity (STDP) [17, 106]
modifies the weight of connection between the neurons in dependence on the exact time differ-
ence between postsynaptic ti and presynaptic t j spike arrival, see [56, 106].

These properties also play a significant role in the dynamics of the brain, but because
of the added model complexity, high computational costs would incurred when adding such
properties. Example of their implementation in a large-scale model of brain can be found
in [10, 14, 133].

As one can see, the modeling of a network of coupled neurons with many biological details
of neuronal dynamics and coupling can be quite complex. A neural mass model offers an
alternative way to model the dynamics of the neuronal population; we discuss its properties in
the next section.

4.2 Neural mass model

EEG measurements record the mean activity of a population of neurons in the brain, often
exhibiting rhythmic oscillations within well-defined frequency bands. A neural mass model de-
scribes the activity of such populations of cortical neurons and can reproduce the main features
of EEG dynamics.

The first models of neuronal dynamics on the macroscopic scale appeared in the early
1970s [32, 43]. Lopes da Silva constructed a simple lumped parameter model of two popu-
lations of neurons (excitatory and inhibitory) coupled with negative feedback, generating an
alpha rhythm [32]. Later, Jansen et al. [16] extended this model by modeling three subgroups:
excitatory pyramidal cells and excitatory and inhibitory interneurons, adding also nonlinear
terms to the equations. Wendling et al. [128, 129] concentrated in their works on modeling
different patterns of EEG signals observed in epileptic patients. An improved version of the
previous two models [16, 32] was able to generate EEG signals from multiple coupled neuronal
populations in various frequency bands. The next variant of the model contained four neuronal
subsets; the inhibitory neurons were further distinguished with fast or slow kinetics [128]. Re-
cently, David mimicked EEG/MEG dynamics using hierarchically coupled models of neuronal
populations [34, 35] and Ursino et al. [124] presented a model with parallel implementation of
three different populations reproducing different rhythms of brain activity.

In our work, we use the neural mass model and parameters presented in [129], see Fig. 4.4
for a graphical representation of the model.
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Figure 4.4: Neural mass model, adopted from [16]. Here, y0 stands for vp, y1 for ve and y2 for
vi, p(t) is the noise input, as shown later in Chapter 6.

Here, a population of neurons contains two subpopulations: subset 1 consists of pyramidal
cells receiving excitatory or inhibitory feedback from subset 2. Subset 2 is composed of local
interneurons receiving excitatory inputs. This model describes the evolution of the macroscopic
variables, i.e., average postsynaptic membrane potentials vp for pyramidal cells, and ve, vi for
the excitatory and inhibitory interneurons, respectively. A static nonlinear sigmoid function
f (v) = 2e0/(1+er(v0−v)) converts the average membrane potential into an average pulse density
of action potentials. v0 is the postsynaptic potential corresponding to a firing rate of e0, and r is
the steepness of the activation. The dynamical equations for a single population are:

v̈p
I = Aa f (ve

I − vi
I)−2av̇p

I −a2vp
I , (4.14)

v̈i
I = BbC4 f (C3vp

I )−2bv̇i
I−b2vi

I, (4.15)

v̈e
I = AaC2 f (C1vp

I )−2av̇e
I −a2ve

I , (4.16)

where vp
I , vi

I and ve
I are the postsynaptic membrane potentials of the area I. A detailed interpre-

tation and the standard parameter values of this model are presented in Table 4.3. The details of
the dynamics of multiple coupled populations and their relationship to the underlying anatomy
will be discussed in the next chapter (Chapter 6).

4.3 Summary of the chapter

We have presented two different approaches to model the dynamics of neural ensemble. (i) The
first approach considers the single neuron to be the basic element of the population. Connect-
ing numerous neurons gives rise to the population dynamics representing a cortical area in our
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Parameter Value Interpretation
A 3.25 mV average E synaptic gain
B 22 mV average I synaptic gain
1/a 100 s−1 dendritic average time constant in the feedback E loop
1/b 50 s−1 aver. time constant in the feedback I loop
C1 C=135 aver. number of synaptic contacts in the E feedback loop,
C2 0.8 C
C3 0.25 C aver. number of synaptic contacts in the I feedback loop
C4 0.25 C
v0, e0, r (mV) parameters of the nonlinear asymmetric sigmoid function

Table 4.3: Model parameters, their values and interpretation (E = excitatory, I = inhibitory),
adopted from [128, 129].

study. We have shown two point models with different excitability classes — the FitzHugh-
Nagumo (FHN) and Morris-Lecar (ML) models. The FHN model captures the basic features of
the neuronal dynamics and has class 1 excitability. It is a rather simple model, computationally
inexpensive and thus suitable for the modeling of large networks. We coupled the set of FHN
neurons by simple electrical coupling. However, in reality, around 70% of neurons are pyrami-
dal cells with class 2 excitability and the neuronal coupling is mediated by chemical transmitter
with complex dynamics. The ML model is suitable for simulations of such properties and more-
over by the change of only a few variables, it can switch its behavior to class 1 excitability. The
neuronal model composed of ML neurons is coupled by chemical synapses. These features
increase the biological relevance of the model but also the computational difficulties. (ii) The
second approach uses a neural mass model to imitate the dynamics of neuronal ensembles. This
model substitutes the modeling of the dynamics of the network of neurons representing one
cortical area.

The general dynamics generated by these diverse models will be presented and discussed in
the next chapters (Chapter 5 and 6).



Chapter 5

Hierarchical model of cat cortex

We investigated the behavior of the multilevel model with two different types of neuronal dy-
namics. In the first case, the neurons represented by FitzHugh-Nagumo model are electrically
coupled and the areas communicate through the mean field signal. The second case employs
the neuronal model of Morris-Lecar coupled through chemical synapses with neuron-to-neuron
communication between areas. This synaptic coupling has a nonlinear character, which makes
the neuronal dynamics more complex. Here, we will describe the main features of the dynam-
ics induced by both models, reveal the hierarchy of functional networks, that is similar to the
structure of the underlying anatomical network, and show the presence of functional clusters.
We will also discuss the reasons for such behavior and its biological relevance.

5.1 Network of electrically coupled FHN neurons

5.1.1 General dynamics of the model

As we have already introduced in Chapter 3, in our model of the cat cortex the neurons stand
for the basic elements of the two-level hierarchical network. The general set of equations of the
whole system in the case of FHN neurons takes the form:

εẋI,i = fFHN(xI,i,yI,i)+
gint

ka

n

∑
j

ML
I (i, j)(xI, j− xI,i)

+
gext

〈w〉
N

∑
J

MC(I,J)LI,J(i)(x̄J− xI,i), (5.1)

ẏI,i = hFHN(xI,i,yI,i)+ DξI,i(t), (5.2)

where x is the membrane potential modelled by a particular function f , see Eq. 4.3. It is also
modulated by the input from neighboring neurons from the local network (coupling represented

29
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by local connectivity matrix ML) and input from remote neurons from other areas (coupling
represented by cat cortex connectivity matrix MC). Here, we set up that the connected areas
communicate through their mean field activity x̄ = (1/n)∑n

j x j. The label LI,J(i) is 1 if neuron
i is among the 5% within area I receiving the mean field signal from area J, otherwise, LI,J(i)
is 0 [131]. In spite of the fact that diffusive electrical coupling occurs only in a minority of
the neuronal synapses, we use it in our model in order to simplify the connections between the
neurons. Once the dynamical principles of the simpler model are understood, we will use more
realistic chemical coupling (see Section 5.2). To each neuron, we add the weak Gaussian white
noise ξ with intensity D = 0.03 to the slower variable to simulate the natural perturbation of the
dynamics (Eqs. 4.4, 5.2). We tune the parameter D until we do not obtain signal for one area,
similar to the background irregular neuronal activity of a silent neuron. Such signal corresponds
to the average neuronal activity of the set of coupled neurons in the resting state with occasional
bursts of activity, similar to EEG signal at resting state [87]. The coupling properties and the
role of the noise in the system have been described in details in Section 4.1.2. We would like
to emphasize that the Euler method, used for numerical integration, is appropriate due to the
stochastic term ξ in the system. The model is coded in the Fortran 90 programming language.

Parameter study

We simulate the above system of Eqs. 5.1–5.2, the network of networks of FHN neurons, up
to time t = 2000. A time step ∆t = 0.001 is applied which is sufficiently small for the stochastic
dynamics. To keep the simulation time reasonable, we fix the small-world subnetworks to have
n = 200 neurons, ka = 12 neighboring links, and a probability of rewiring of prew = 0.3. Despite
the relatively large value of the rewiring probability we still obtain the small-world properties of
the network. We select n = 200 as large enough to exclude the system size effects by checking
the amplitudes (standard deviation) of the mean field x̄ of the individual SWNs without external
coupling (gext = 0). We also ran the whole system with other values of prew and n, and two
different settings of the parameters gint and gext that select the two main dynamical regimes (see
later in this section); the obtained results confirm the robustness of the dynamics to changes in
the local network topology.

Except for the noise intensity parameter D, here fixed to a constant level, the dynamics of the
system are controlled only by the internal gint and external gext coupling strengths. We explore
the parameter space for gint and gext and investigate how the dynamics of the individual areas
are synchronized. To evaluate the degree of synchronization among these stochastic signals, a
simple but effective linear measure, the Pearson correlation coefficient r, is used. We compute
this correlation coefficient between the the mean field activities x̄I of the areas using long time
series after the transient, namely,

r(I,J) =
〈x̄I x̄J〉−〈x̄I〉〈x̄J〉

σ(x̄I)σ(x̄J)
, (5.3)

where 〈·〉 denotes averaging over time. Further, the average correlation coefficient over all the
N(N−1) pairs of areas,

R = [1/N(N−1)]
N

∑
I 6=J

r(I,J), (5.4)
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quantifies the overall level of synchronization in the whole network system.

In the local SWNs, the spiking dynamics and the synchronization of the neurons are mainly
controlled by the internal coupling gint [135] that determines the mutual excitation between any
pair of neurons. For small gint , a neuron is primarily activated by the noise, and not usually by
the spiking activity of its neighbors. Thus, we observe irregular spiking patterns for individual
neurons. The mean field x̄ is characterized by some clear deviations from the baseline, demon-
strating the weak synchronization within and also between the subnetworks (Fig. 5.1(a)). Such
mean field activity of individual areas can be regarded as an analogue of the EEG signal [87].
The weak synchronization between such signals of the different areas is also shown by a small
average correlation coefficient R (Fig. 5.4(a)). Increase of the coupling strength gint leads to the
increase of the synchronization between the neurons within the local subnetworks, manifested
by the presence of some apparent peaks in x̄ (Fig. 5.1(b)). With large enough gint , the neu-
rons are mutually excited, achieving both strongly synchronized and regular spiking behavior
(Fig. 5.1(c)), indicating an almost global synchronization of the network.
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Figure 5.1: Typical time series of the mean field dynamics x̄ of one area with different coupling
strengths (gint = gext): (a) gint = 0.06, (b) gint = 0.082 and (c) gint = 0.12. Notice the different
scales on the vertical axes.

Additionally to the main driving parameter of the network, gint , the external coupling gext
has also an effect on the synchronization of the neurons in the local network (amplitudes of x̄),
as well as on the control of the synchronization between the areas. For small gint , the infrequent
and irregular spiking activity of one area does not very much affect the behavior of the other
connected areas. The correlations between the areas are not strong even for significantly large
gext (r ≤ 0.1). This is mainly due to the fact that only 5% of the neurons receive signals from
another connected area [131]. For intermediate gint (e.g., 0.080± 0.003), the effect of gext on
the total synchronization of the network is clearly visible (Fig. 5.3(a)). With large values of gint ,
the frequent and regular spiking activity of one area has significant effects on the spike timing
of the other connected areas. The whole network exhibits strong synchronization even for
relatively small gext . Fig. 5.2 illustrates the typical behavior in three regimes. We can observe
some weakly synchronized activities among certain areas in Fig. 5.2(a), the slight increase in
the amplitude of the spikes in the transient regime in Fig. 5.2(b) and the high spiking amplitude
with some temporal interruption of the strong synchronization in some areas in Fig. 5.2(c).
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The behavior of the system in the weak synchronization regime, i.e., the infrequent spik-
ing of neurons and the irregular activity of the weakly synchronized brain areas, is biological
plausible and comparable to normal brain activity. On the other hand, the regular spiking char-
acteristically found in the strong synchronization regime, both in the dynamics of single neurons
and brain areas, could correspond to pathological states such as epileptic seizure [70, 74].
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Figure 5.2: Spatio-temporal patterns of the mean activity x̄I at different coupling strengths
(gint = gext): (a) gint = 0.06 (b) gint = 0.082 and (c) gint = 0.12. Note the different scales in the
colorbars.

Further, we focus on the correlation of the areas, R, at various coupling strengths. A plot of
R as a function of the coupling strengths gint and gext is shown in Fig. 5.3(a). We have averaged
the results over 10 realizations of the initial conditions and the topology of the SW subnetworks
for each set of the parameters. As already discussed, an increase of the coupling strengths gint
leads to stronger interaction of the neurons and to a rapid growth of their synchronous activity
within and across areas for non-vanishing gext (Fig. 5.3(b)).

The correlation matrices r(I,J) for the three regimes are shown in Fig. 5.4. Although the
average levels of synchronization R are very different, the correlation patterns display some
dynamical clusters, where a dynamical (functional) cluster is defined as a group of brain ar-
eas communicating much more strongly within this set than with the areas in the rest of the
brain [122] (see also the definition of functional connectivity in Section 2.1). In the weak syn-
chronization regime with the correlation r ∈ [0,0.1], four dynamical clusters are visible that
resemble the underlying anatomical structure (Fig. 5.4(a)). The transient regime, correlations
in the range [0,0.4], captures the reorganization of areas into three dynamical clusters. Fig-
ure 5.4(b) does not clearly show these three clusters, but such separation is later revealed by
clustering analysis. Finally, in the strong synchronization regime with r ∈ [0.6,1.0], we can
observe two dominant clusters (Fig. 5.4(c)). These clusters are also evidently present in the
spatio-temporal patterns in Fig. 5.2(c).

The characterization of these dynamical clusters and their precise relation to the underlying
anatomical communities was our main concern and will be presented in the next section.
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Figure 5.3: (a) Dependence of the average correlation coefficient R on the internal and external
coupling strength gint and gext . (b) The effect of the internal coupling strength gint on the global
correlation R (with fixed gext = 0.06).
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5.1.2 Revealing the network hierarchy

Visual inspection of the correlation matrix r(I,J) shows a good match between the dynami-
cal clusters in the weak synchronization regime and the underlying anatomical communities.
Fig. 5.4(a) suggests that the dynamics of the present multilevel model has a nontrivial orga-
nization and an intriguing relationship with the network topology. To better characterize this
relationship, let us now concentrate on the distribution of the correlation under four conditions.
First, we are interested in the distribution of r(I,J) among all pairs of areas: this exhibits a
Gaussian peak around zero, but with a long tail toward large positive values. The significance
of these large values is confirmed by comparison to correlation r(I,J) of surrogate data obtained
by random shuffling of the original time series x̄I . Further, based on the argument of the signal
propagation, we distinguish three types of connections between any pair of areas in the network:

• reciprocal connections (P2)

• uni-directional connections (P1)

• non-connections (P0)

0 0.1 0.2
0

0.1

0.2

0.3

r(I,J)

p
ro

b
a

b
ili

ty

(a)

0 0.2 0.4
0

0.1

0.2

0.3

0.4

r(I,J)

(b)

0.6 0.8 1
0

0.1

0.2

0.3

0.4

r(I,J)

(c)

Figure 5.5: Distribution of the correlation r(I,J) (a) g = 0.07, (b) g = 0.082 and (c) g = 0.12
for all nodes (black line), P2 (blue line), P1 (red line) and P0 (green line). The dashed-dotted
line denotes the results for the surrogate data.

The distributions of r(I,J) for these three cases display well-separated peaks in the weak
coupling regime (Fig. 5.5(a)). The dynamics of the cortical areas connected by reciprocal
anatomical links, P2, tends to be more strongly correlated than the dynamics of areas con-
nected by one link, P1. Compared to the surrogate data, almost all the P2 pairs have significant
correlations. With strong coupling (e.g., g≥ 0.09), the excitation propagates through the whole
network and the separation of distributions of correlations is no longer so clearly pronounced
(Fig. 5.5(c)). Generally, with increase of the reciprocity and the strength of the connection, we
observe a shift of the peak of the distribution towards larger correlation values.
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The weak coupling regime is biologically more realistic with a low frequency and irregular
spiking behavior. Here, the propagation of the signal between connected areas is mediated by
synchronized activities (peaks in x̄). A temporal correlation is most likely established when the
receivers produce similar synchronized activities by this input, or when two areas are excited
by correlated signals from common neighbors. Due to the weak coupling and the existence of
subnetworks, such a synchronized response does not always occur, thus a local signal (excita-
tion) does not propagate through the whole network. As a result, the correlation patterns are
closely related to the network topology, although the values are relatively small due to infre-
quent signal propagation. With strong coupling, the signal can propagate through the whole
network strongly influencing also distant areas and leading to high correlation among areas, as
corresponds to pathological situations, such as epileptic seizures [70].

5.1.2.1 Functional connectivity

To characterize the obtained dynamical networks, their topology and relation to the underlying
anatomy, we use several graph theoretical measures described previously in Section 2.2. First,
link reciprocity and its impact on the correlation of the activity between areas is considered.
Figure 5.5 displays larger values of correlation between areas that are anatomically connected
by reciprocal links. Furthermore, correlation is also expected to depend on the connection
weights. We define the reciprocal weight, wIJ , as the normalized sum of the link strengths
between I and J. In Fig. 5.6(a), the pairwise wIJ is shown for the anatomical connectivity
matrix MA.
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Figure 5.6: Properties of the anatomical network MA: (a) reciprocal weight wIJ of the anatomi-
cal links and (b) matching index MI of input neighbors.

However, pairwise connection weight alone does not completely explain the strength of
correlation between two areas; the common environment of areas might also play an important
role. The matching index MI quantifies the number of common neighbors between the nodes.
For illustration, the MI matrix from the anatomical connectivity of cat cortex is presented in
Fig. 5.6(b). As can be seen, the MI values of the areas within the anatomical communities V,
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A, SM and FL are high (internal MI). On the contrary, the MI of areas in different communities
(external MI) is heterogeneous, i.e., only some areas share many common neighbors with areas
in other communities.

Our goal is to study how much the correlation between cortical areas depends on these mea-
sures. We extract functional networks MF to analyze more closely the relationship between the
anatomical topology and functional connectivity. The approach, commonly used in experimen-
tal studies working with a set of recorded brain data, consists of applying a threshold Rth to the
correlation matrix r(I,J) (see detailed description in Section 2.4 and [4, 38, 98, 117]). A pair of
areas is considered to be functionally connected if the correlation between them is larger than
the threshold :

MF(I,J) =
{

1 if r(I,J)≥ Rth;
0 otherwise.

We compare these functional networks MF at different Rth to the topological features of the
anatomical network MA and examine how the various levels of synchronization reveal different
scales in the topology. We focus on the biologically meaningful weak coupling regime and take
g = 0.07 as the typical case. (See Fig. 5.7 for several selected functional networks.)

In each MF we consider only expressed areas and links. An area is expressed when it has at
least one functional link to another area, i.e., their correlation is higher than the threshold Rth.
We calculate the average 〈wIJ〉 (Fig. 5.8(a)) and average MI of functional connections, distin-
guishing whether areas belong to the same community (Fig. 5.8(b), black line) or to different
communities (red line).

Additionally, due to the sparseness of functional links at high Rth thresholds, functional net-
works are separated into several connected components, i.e., areas form groups that are inter-
nally connected, but disconnected between them. In Fig. 5.9, the number of connected compo-
nents within each MF is presented.

Now we proceed to discuss the organization properties of functional networks at different levels
of synchronization.

1. When Rth is very close to the maximal value of the correlation matrix r(I,J), only a
few areas with P2 links within the auditory system A are functionally expressed, because
of their strong anatomical links and sharing of many common neighbors. In Fig. 5.8(a),
〈wIJ〉= 1 for the highest thresholds, meaning that these nodes are anatomically connected
by strong bidirectional links. With lower values, e.g., Rth = 0.07 (Fig. 5.7(a)), about two-
thirds of the areas are active but only 10% of the P2 links and none of the P1 links are
present. This is manifested in high values of 〈wIJ〉. Interestingly, all functional links
correspond to anatomical connections within the communities V, A, SM, and FL, form-
ing “core” functional subnetworks. However, MF is distributed into several components
(Fig. 5.9).
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Figure 5.7: The functional networks at various thresholds for g = 0.07: (a) Rth = 0.070, (b)
Rth = 0.065, (c) Rth = 0.055 and (d) Rth = 0.019. The red ◦ stand for P2 connections, blue ones
for P1 and green ones for P0 links. The small black dots indicate the anatomical connections.
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Figure 5.8: Properties of functional networks with various correlation thresholds. (a) Average
reciprocal weight of links expressed in MF . (b) Anatomical matching index of MF . Black
line: average MI of intracommunity links; red line: average MI of intercommunity links; and
horizontal blue line: global average of MI matrix (in Fig. 5.6(b)). Vertical lines correspond
to the four snapshots in Fig. 5.7: (1) Rth = 0.070, (2) Rth = 0.065, (3) Rth = 0.055 and (4)
Rth = 0.019.
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Figure 5.9: Number of connected components of MF at various thresholds: (1) Rth = 0.070, (2)
Rth = 0.065, (3) Rth = 0.055 and (4) Rth = 0.019.
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2. At lower values, e.g., Rth = 0.065 (Fig. 5.7(b)), as more areas from the respective commu-
nities are expressed, the small components grow and merge. There are only five compo-
nents closely following the anatomical communities. The small decrease of 〈wIJ〉 shows
that the new functional links still correspond to strong and bidirectional anatomical con-
nections. The internal 〈MI〉 remains high (Fig. 5.8(b), black line), denoting that anatom-
ical communities are densely connected. Here, the first intercommunity functional links
are also expressed. Precisely, these links functionally connect the cortical areas that have
many common neighbors belonging to different communities, as manifested by the peak
in the external 〈MI〉 (Fig. 5.8(b), red line). In the core subnetwork the areas communi-
cate more frequently within respective community. Such activity suggests a specialized
function of this community.

3. Moving to a slightly lower threshold, e.g., Rth = 0.055 (Fig. 5.7(c)), a transition occurs in
the organization of MF . Even though, the majority of links occur within the anatomical
communities V, A, SM and FL, a few intercommunity connections lead to the merging
of all components into a single connected functional network (Fig. 5.9). In this way,
communication between all the cortical areas is possible and determines the clustered
structure of the functional network. At this stage, still only about one third of the anatom-
ical P2 links and very few P1 links are expressed. With such a low connection density,
MF already reflects the main properties of MA: high clustering and community structure,
although the anatomical connectivity is much denser. This suggests high robustness and
the existence of many parallel paths of information processing.

4. With additional reduction of the threshold, e.g., at Rth = 0.019 (Fig. 5.7(d)), all P2 links
are just fully expressed and about 70% of P1 links too. Meanwhile, about 4% of noncon-
nected pairs (P0) establish significant functional connections (significance level≈ 0.004),
since they have many common neighbors. The functional network reflects rather faith-
fully the anatomical network (Fig. 5.7(d)). A further reduction of Rth is not very mean-
ingful because too many insignificant correlations could be mistaken as functional con-
nections.

Several cortical areas with the highest correlations have been observed to form the cores of
the subsystems. When identifying these nodes, we realize that these areas are those known to
perform the primary and highly specialized functional tasks. For example, areas 17 (I = 1) and
18 (I = 2) are the primary visual areas, processing visual stimuli to the higher visual centers
(Fig. 5.7(a)). Later expressed areas, which are involved in the dynamics of two subsystems,
e.g., area AES (I = 15) visible in Fig. 5.7(c), correspond to the areas where information from
different sensory modalities converges [100]. We call them bridging nodes and they will be
discussed in detail in Section 5.1.3.4.

Moreover, to compare the matrices MF and MA in a more quantitative manner, we take
the binary matrix of MA, symmetrize all P1 links and compute the Hamming distance H. The
Hamming distance is a measure used to compare two networks, and equals to the number of
different values in two adjacency matrices [30]; we use it to tell us the percentage of elements
between MF and the binary MA that are different (see Eq. 5.5).



40 CHAPTER 5. Hierarchical model of cat cortex

H(MF ,MA) =
1

2N2{N2−
N

∑
i=1

N

∑
i= j

δ(MF(i, j),MA(i, j))}, (5.5)

where δ is the Kronecker delta.

The distance between MF and MA is minimal when Rth≈ 0.019, with a very small Hamming
distance H = 0.074 (Fig. 5.10). Interestingly, this threshold is exactly where the full distribution
of R starts to deviate from the Gaussian and the distribution of P2 links separates from that of the
surrogate data, at a significance level ≈ 0.4% (Fig. 5.5(a), vertical solid line). We find that such
a natural choice of Rth always reproduces the network topology well, and maintains a minimal
H (≈ 0.06) for all coupling strengths 0.04≤ g≤ 0.08.
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Figure 5.10: Hamming distance H between MA and MF vs. Rth. Vertical lines correspond to
the four snapshots in Figure 5.7

In summary, we have observed that nodes connected by strong bidirectional links and having
many common neighbors are highly correlated, and thus, they are the first to be expressed
as functionally interacting. The strongest correlation occurs between nodes within the same
anatomical community. Besides, the internal 〈MI〉 (Fig. 5.8(b), black line) remains stable over
all Rth, and much higher than the global 〈MI〉 between all areas (Fig. 5.8(b), horizontal blue
line). This confirms a high functional similarity between areas within the same community
even when they are not anatomically connected. It also illustrates the capability of different
communities (V, A, SM and FL) to perform specialized information processing. Generally,
cortical areas belonging to different communities have a few common neighbors, as seen in
Fig. 5.6(b). The fast decrease of external 〈MI〉 confirms this fact, as the number of functional
links increases with decreasing Rth (Fig. 5.8(b), red line). However, the peak at Rth ∼ 0.06−
0.07 points out a transition in the dynamics. The change in the systems activity is triggered by
a few intercommunity functional links between certain cortical areas in different communities,
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but which have high functional similarity. All areas of the network merge into a single connected
component. This potentially permits the integration of specialized information.

5.1.2.2 Detecting the network communities

As we have shown the complex network has a tendency to form clusters and we have revealed
a hierarchy in its dynamical organization similar to the structural one. At different thresholds,
various number of components, consisting of the areas having the dynamics in certain range,
can be detected. Our next point is to find out the optimal number of communities into which
areas should be separated, based on the similarity of their dynamics.

First, let us introduce the modularity measure which quantifies the diverse formations of
communities and allows to choose optimal partitions. This measure was defined by Newman
and Girvan [7, 85, 86] for the evaluation of community structure in complex networks. The
modularity measure Q is defined as follows:

Q = ∑
k

ekk−a2
k , (5.6)

where ekk is the fraction of all links in the network that connect the nodes within community
k, and ak = ∑l ekl is the fraction of links from the whole network that connect to nodes in the
community k. The value of Q > 0 indicates the presence of community structure, with the
limiting case Q = 1 occurring when the division of elements into the communities is perfect.

To characterize the formation of functional clusters according to the anatomical communi-
ties, we consider the four communities (k = V, A, SM, FL). The functional modularity QF based
on the functional connectivity of MF at various Rth is measured (Fig. 5.11, black line). Further,
the modularity Q4 based on the anatomical connectivity MA (here we use the binary matrix) is
also calculated as Q4 = 0.284 (horizontal red line in Fig. 5.11). In a broad range of Rth, QF is
much larger than Q4, and they coincide at the natural threshold Rth = 0.019 (Fig. 5.11). This
provides meaningful insights into how the densely connected cortical subsystems (e.g., commu-
nities V, A, SM, FL) can perform highly specialized functions (the strongest synchronization)
by a subset of areas and connections.

The above analysis based on functional networks reveals that the most prominent clusters
of the hierarchically organized network are consistent with the four known anatomical commu-
nities.

Next, we use the agglomerative method of hierarchical clustering [76] (the algorithm comes
from the Statistics Toolbox in Matlab, version 7.0.1) and construct a typical hierarchical tree of
the dynamical network (for the weak coupling regime, see Fig. 5.12(a)). The method is based
on the grouping of objects into subsets (clusters) in a series of steps. In this case, the fusion of
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Figure 5.11: Modularity of anatomical network Q4 (red line) and modularity QF (black line) of
MF considering the four subdivisions (V, A, SM, FL) vs. Rth. Vertical lines correspond to the
four snapshots in Fig. 5.7

objects into clusters is determined by the similarity or distance between them. The procedure
‘linkage’ specifies how the distance should be evaluated.

Here, we calculate the dissimilarity matrix d = [d(I,J) = 1− r(I,J)] and apply ‘average
linkage’, which defines the distance between the clusters as an average of distances between
all pairs of objects coming from two groups. The segmentation of areas into the clusters was
optimal, confirmed also by the control algorithm.
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Figure 5.12: (a) The hierarchical tree of the dynamical clusters at g = 0.07. (b) Modularities
QC (red ◦) and QA (black •) vs. the number of clusters Nc. The dashed line denotes Q4.

At each level of the hierarchical tree, a set of Nc functional clusters is detected. The next
intriguing question coming out is what are the underlying topological links within and across
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Table 5.1: Overview of different types of modularity
.

modularity using network number of communities
QA MA various
QC r(I,J) various
QF MF 4 anatomical
Q4 binary MA 4 anatomical

these dynamical clusters? We calculate both the anatomical modularity QA (using the anatom-
ical matrix MA) and the functional modularity QC (using the correlation matrix r(I,J)). In
order to avoid thresholding the correlation matrix and to use all its values, we define QC as an
extension of Q in Eq. 5.6:

ekl = ∑
I 6=J

r(I,J), where I ∈ k,J ∈ l. k, l = 1, · · · ,Nc. (5.7)

Here ekl is the fraction of the total strength of correlation between communities k and l. Strik-
ingly, at different levels of the hierarchy (varying Nc), QC and QA follow each other closely
(Fig. 5.12(b)). This proves that the dynamical organization reveals hierarchical scales in the
network topology. At Nc = 4, both QC and QA are maximal, approaching Q4 of the four com-
munities in the anatomical network.

Table 5.1 summarizes the difference of QC and QA from QF and Q4. QF and Q4 are obtained
for the 4 cortical subsystems V, A, SM, FL using the particular extracted functional network MF

and the binarized anatomical matrix MA, respectively. QC and QA are calculated for various
numbers of communities in the dynamics of correlation matrix r(I,J) and the original anatomi-
cal matrix MA.

The behavior described above is common for coupling strength g≤ 0.08, although the aver-
age and maximal values of the correlation R increase with g. However, for g≥ 0.084 the system
achieves strong local synchronization, and each area becomes significantly correlated with the
rest of the network.

5.1.3 Clustered structure of functional networks

As we have already confirmed in the previous Section 5.1.2, the optimal number of clusters,
coming out from the most natural division of the areas in the weak coupling regime, is four. In
the original matrix of the cat cortical network, the anatomical connections create also four spe-
cific communities consistent with the functional subsystems V, A, SM and FL, see Section 3.1.
Here, we will explore the distribution of areas into the dynamical clusters using cluster analysis
and discuss how the resulting clusters correspond to the underlying anatomical communities.
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To analyze the dynamical clusters we apply a hierarchical clustering algorithm, described in
Section 5.1.2, to create a cluster tree. A typical hierarchy of the clusters (dendrogram) is shown
in Fig. 5.13(a), (b) and (c) for three different types of synchronization regimes.

area

(a)

area

(b)

area

(c)

Figure 5.13: A typical hierarchical tree of the dynamical clusters in the weak coupling regime
(a) g = 0.07, transient regime (b) g = 0.082 and strong coupling regime (c) g = 0.12.

In dendrograms, the distance between two objects (areas or clusters) is represented by the
height of each line connecting two objects together. The higher the lines, the more distant the
objects are, and so they are less likely to belong to the same group. With weak coupling, the
nodes preserve their own dynamics without being influenced very much by other nodes, and the
correlation is low and thus the distance between individual areas is relatively high (Fig. 5.13(a)).
The highest levels of the hierarchical tree point out how the brain areas agglomerate to form
the four main dynamical clusters. The different colors correspond to different clusters. By
increasing the coupling strength, the activity of the areas is interrelated and becomes more
correlated. Such behavior leads to the formation of one dominant and three small additional
clusters (Fig. 5.13(b)). When the coupling is large, the mean activities of the majority of areas
are strongly synchronized; this is also expressed by the short distance between the individual
objects on the lower levels of the dendrogram. The areas merge into two clusters, but there are
still several nodes preserving their own dynamics (Fig. 5.13(c)). The distance between the two
main clusters is large because of different dynamics.

The hierarchical clustering algorithm does not directly indicate the optimal number of clus-
ters into which the areas should be divided. To compare the anatomical and the correlation
clusters, we concentrate on the level in the hierarchy of the cluster where the correlation matrix
decomposes into the four clusters. Such a number of clusters corresponds to the natural divi-
sion coming out from the modularity measure and the number of anatomical communities. At
this level, the cluster formation in the weak, transient and the strong synchronization regimes is
demonstrated and described. The details of the distribution of areas into the clusters in all these
three cases of coupling strength are presented in Figs. 5.14, 5.16 and 5.18.
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5.1.3.1 Weak synchronization regime

In the weak synchronization regime, neurons fire with low frequencies characterized by irregu-
lar spiking sequences and irregular mean activity as we have seen in Fig. 5.1(a). The integration
of areas into the dynamical clusters due to the synchronization of areas closely resembles the
pattern of communities obtained using the graph theoretical tools based on the anatomical struc-
tures, see Fig. 2.1 and [49, 50]. Typical dynamical clusters for the weak synchronization regimes
are shown in Fig. 5.14. The four dynamical clusters C coincide with the functional subdivision
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Figure 5.14: Dynamical clusters (red ◦) with weak coupling strength g = 0.07, compared to the
underlying anatomical connections (black ·).

(anatomical communities) of the cortex — C1 (V), C2 (A), C3 (SM), C4 (FL). However, it is also
important to note that there are a few bridging nodes which belong to one anatomical commu-
nity but join another dynamical cluster. For example, the area I = 49 (anatomically named as
’36’ in the cat cortex) coming from the fronto-limbic system appears in the dynamical cluster
C2, which is mainly composed of areas from the auditory system (Fig. 5.14 (C2)). A closer
inspection shows that these nodes bridging different anatomical communities and dynamical
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clusters are exactly the areas sitting in one anatomical community but in close connectional
association with the areas in other communities [100]. Detailed analysis of these bridging areas
will follow later.

To measure in a more quantitative way the coincidence of the dynamical clusters and the
anatomical communities, we examine each dynamical cluster and check which anatomical com-
munities the areas come from. Additionally, we also investigate how the areas of a topological
community are involved into different dynamical clusters. The distribution of the dynamical
clusters into the anatomical communities and vice versa is summarized in Fig. 5.15. A dom-
inant bar with a ratio ≈ 1 in the respective histograms points out the agreement between the
dynamical clusters and topological communities. The presence of the small bars indicates the
intercluster connections, the bridging nodes.

V A SM FL
0

0.5

1

C
1

ra
ti
o

V A SM FL

C
2

V A SM FL

C
3

V A SM FL

C
4

1 2 3 4
0

0.5

1
V

C

ra
ti
o

1 2 3 4

A

C
1 2 3 4

SM

C
1 2 3 4

FL

C

Figure 5.15: Upper panel: composition of dynamical clusters from different anatomical commu-
nities. Lower panel: participation of the areas of a community in different dynamical clusters.
The results correspond to the clusters in Fig. 5.14 at g = 0.07.

.

5.1.3.2 Intermediate synchronization regime

The transient regime between the weak and strong couplings typical for g ∈ (0.080±0.003) is
characterized by the formation of one major cluster and three small clusters (Fig. 5.16). The
major cluster C3 consists of the somato-motor system and absorbs almost half of the areas from
FL system and several areas from the V and A systems (Fig. 5.16 (C3)). Remarkably, areas
from V (I = 13,14) are the same as the bridging nodes which connect at weak coupling the
visual part to the other systems. The number of areas in the cluster C4 is markedly reduced in
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comparison to the size of the FL. Only the cluster C2 corresponding to the auditory system A
remains relatively independent, linked only through area I = 22 (Epp) to the central cluster C3
(Fig. 5.16 (C2)).
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Figure 5.16: Dynamical clusters (red ◦) with intermediated coupling strength g = 0.82, com-
pared to the underlying anatomical connections (black ·).

We evaluate again the correspondence of the dynamical clusters and the anatomical commu-
nities. These distributions (of the dynamical clusters in the anatomical communities and vice
versa) are presented in Fig. 5.17.

The agreement between the dynamical clusters and topological communities is clearly seen
by a dominant bar with a ratio ≈ 1 in the respective histograms. Clusters C1, C2 and C4 are
created each only by areas from one specific community. Only cluster C3 contains areas from
all communities and links them all together. Investigating the structure of C3, community SM
can be found exclusively here and thus somato-motor areas are dynamically joining the other
three communities.
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Figure 5.17: Upper panel: composition of dynamical clusters from different anatomical commu-
nities. Lower panel: participation of the areas of a community in different dynamical clusters.
The results correspond to the clusters in Fig. 5.16 at g = 0.082.

5.1.3.3 Strong synchronization regime

In the third synchronization regime, typical for stronger internal coupling (g& 0.09), the mean
field signals of the areas exhibit regular spikes with high amplitude and frequency, which have a
higher correlation between the areas. This type of clustering dynamics is mainly characterized
by two dominant clusters that contain the majority of nodes and with a few single areas as
separate clusters (Fig. 5.18). When the coupling strength gint is increased (e.g., from 0.08
to 0.09), the three dynamical clusters corresponding to the major parts of the V, SM and FL
communities as in Fig. 5.16 (C1,C3,C4) merge to a single large cluster containing most of the
nodes of the network (Fig. 5.18 (C3)). The community SM plays a crucial role in the formation
of this large dynamical cluster: by increasing the coupling strength, the C3 cluster expands
and absorbs large parts from the V and FL communities due to the strong intercommunity
connections of the SM community with them (see also Fig. 5.19).

The auditory system A remains independent (Fig. 5.18 (C2) and Fig. 5.19). The cluster for-
mation behavior in the strong coupling regime is also in good agreement with the intercommu-
nity connectivity summarized in Table 5.2. There are also two single areas showing themselves
as independent clusters — area I = 8 from V system representing C1 and area I = 53 from FL
as the C4 cluster. It turns out that these are the nodes with the minimal intensities in the network
(S53 = 8 and S8 = 11). For other parameter combinations, different areas may remain indepen-
dent, e.g., I = 1 (17), 8 (VLS), 21 (VPc), 23 (Tem), 47 (RS) and 53 (Hipp). The dynamical
independency of these several areas may arise from their specific biological origin. For exam-
ple, the exclusion of the hippocampus, I = 53 (Hipp), from the dominant network dynamics can
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Figure 5.18: Dynamical clusters (red ◦) with strong coupling strength g = 0.12, compared to
the underlying anatomical connections (black ·). C1 and C4 contain only a single node, I = 8
from V and I = 53 from FL.
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be caused by its distance from the sensory periphery [100].
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Figure 5.19: Upper panel: composition of dynamical clusters from different anatomical commu-
nities. Lower panel: participation of the areas in a community into different dynamical clusters.
The results correspond to the clusters in Fig. 5.18 (g = 0.12).

We have found that variation of the internal and the external coupling strengths gint and
gext does not much affect the formation of the cluster C2. The formation of this independent
cluster, mainly composed of areas from the auditory system in the weak (Fig. 5.14), intermediate
(Fig. 5.16), and the strong (Fig. 5.18) synchronization regimes, is due to strong (weight=2–3)
and almost global internal connections within A and few intercommunity connections to other
communities. Such connectivity provides a reason for the strong stability of this dynamical
cluster in all synchronization regimes, irrespective of the coupling strength.

Later we will show that the clustering patterns from the strong synchronization regime re-
main almost the same in randomized networks. These randomized networks preserve the same
size of the network and the incoming and outgoing intensities SI of individual areas as in the
cat cortical network. In these networks, the auditory system A no longer forms a distinct cluster
when the pronounced intracommunity connections are destroyed in the randomized networks.

5.1.3.4 Presence of bridging nodes

As we have already mentioned (see Section 5.1.3.1), the dynamical clusters in the weak and
transient synchronization regimes are characteristized by the presence of the bridging nodes.
These nodes vary between different realizations and for different coupling strengths. For exam-
ple, in the weak regime we can observe slightly different combinations of such bridging areas
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Table 5.2: Input degree (intensity) of the areas in and among the four anatomical communities.
E.g., the community V receives 51 connections from SM.

CM V A SM FL
V 140 (264) 11 (15) 51 (76) 53 (71)
A 11 (14) 34 (63) 1 (2) 27 (42)

SM 28 (38) 2 (2) 178 (340) 53 (67)
FL 45 (57) 20 (31) 54 (65) 118 (225)

like: I = 12 (20a), 13 (20b), 14 (7), 15 (AES), 16 (PS), 22 (EPp), 23 (Tem), 33 (6m), 43 (Ia),
44 (Ig), 46 (CGp) and 49 (36). Here we try to describe the nodes’ structural properties by using
graph theoretical measures, and point out their biological tasks and functions.

One of the basic characteristics of the nodes in the network is their degree ki (number of con-
nections) and intensity Si (total strength of connections), previously introduced in Section 2.2.
Not all connections in the cat matrix are reciprocal, so we can distinguish incoming and out-
going degree and the intensity of the node. Fig. 5.20 displays the information about the degree
and intensity of the areas in the network of the cat cortex.
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Figure 5.20: (a) degree and (b) intensity of areas of the cat cortex (incoming - black line,
outgoing - red line)

Table 5.2 summarizes the overall connection degrees and intensities among the four anatom-
ical communities. As is also clear from the table, the number of intracommunity connections
(placed on the diagonal) confirms the dense communication within the community compared
to weaker connections to the other communities (low nondiagonal values for intercommunity
connections).

Coming back to the areas we have identified as bridging nodes, we concentrate on the incom-
ing degree and the intensity of these areas from other areas within the respective communities
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Table 5.3: Input degree (intensity) from the four communities (V, A, SM, FL) to the bridging
nodes (identified across various parameters), which are in one topological community (CM) but
in another dynamical cluster (CL).

area (name) CM(CL) V A SM FL
12 20a V(C4) 10(23) 1(2) 2(2) 7(9)
13 20b V(C4) 6(10) 1(2) 2(2) 8(11)
14 7 V(C3,4) 6(8) 1(2) 9(18) 7(10)
15 AES V(C2,3) 9(16) 1(1) 12(20) 6(8)
16 PS V(C4) 10(15) 0(0) 0(0) 6(8)
22 EPp A(C1,4) 7(10) 4(6) 1(2) 8(12)
23 Tem A(C1,4) 0(0) 2(4) 0(0) 6(10)
43 Ia FL(C3) 5(5) 3(4) 9(10) 8(16)
44 Ig FL(C1) 6(9) 3(4) 12(14) 7(13)
46 CGp FL(C2,3) 4(7) 2(4) 7(9) 11(19)
49 36 FL(C1,2) 8(10) 4(8) 9(9) 11(20)

Figure 5.21: Cat cortex with colour marked bridging areas, corresponding to Table 5.4.

and from other communities (Table 5.3). Comparing to the global connection degrees (inten-
sities) of the communities presented in Table 5.2, we can see that these few bridging nodes
identified in our dynamical clustering analysis can form a significant part of the intercommu-
nity connections. In particular, the the area I = 14 from the V community accounts for almost
one fifth of the afferent connections from SM to V, and dynamically it joins the cluster C3 in
Fig 5.14.

Table 5.4 summarizes once again the most commonly appearing bridging areas, their lo-
cation in the cortex, and the function with which they are associated. This list is in strikingly
good agreement with all those special areas pointed out previously [100] that may play special
multifunctional roles in information processing in the brain. Additionally, for a better overview
of the crucial areas we have marked their position in the map of the cat cortex, see Fig. 5.21.

Our results suggest that, due to the role of the intercommunity association played by these
nodes, they are acting as the bridge of communication among the functional communities. We
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Table 5.4: List of the bridging nodes together with their location and functions with which they
are involved.

name area location function/involved in task
20a 12 temporal cx. high level visual processing, recognition memory
20b 13 temporal cx. static object vision, similar to 20a
7 14 parietal cx. cells responsive to sensory stimuli

visuomotor coordination
AES 15 ectosylvian g. a region of multimodal cortex, sensitive to motion

and visuospatial and other sensory stimuli
PS 16 suprasylvian area visual system, related to limbic structures
EPp 22 ectosylvian g. visual and auditory association area
Tem 23 tempor. aud. f. higher auditory area
Ia 43 insular cx. related to limbic cortex and to homeostatic function
Ig 44 insular cx. response to visual stimuli and multimodal stimulation
CGa 45 cingulate cx. central station for top-down and bottom-up processes
CGp 46 cingulate cx. input from thalamus, hippocampus
35 47 perirhinal cx. sensory information from all sensory regions
36 49 perirhinal cx. important for memory, links to hippoc. and vis. areas

assume that the dynamics of these nodes integrates the dynamics of different anatomical com-
munities.

5.1.3.5 Role of intensity in the network dynamics

We have seen that the connectivity of nodes within and between clusters plays an important role
in the dynamics of the network. To better understand the different mechanisms of cluster forma-
tion in different synchronization regimes, we compare the cat cortical network with equivalent
random networks. We generate random networks (MR) using a rewiring algorithm proposed by
Milo et al. [80]. The main idea is that the degrees and weights of the incoming connections of
the cat cortical network MC are preserved, but any other topological organization is destroyed.
Specifically, two pairs of connected nodes are randomly selected, (x1, y1) and (x2, y2), and the
connections are changed to (x2, y1) and (x1, y2) if such connections do not exist. This procedure
is repeated until the network becomes random. We perform simulations of the dynamics using
the randomized matrix MR and analyze the clusters for the weak (gint = 0.06,gext = 0.12) and
strong (gint = 0.12,gext = 0.12) synchronization regimes. The behavior of the mean activities
of the subnetworks and the overall degree of synchronization are very similar to the original cat
cortical network (compare Fig. 5.22 with Figs. 5.1 and 5.3), but the dynamical organization
changes substantially, see Figs. 5.23 and 5.24.

As seen in Figs. 5.23 and 5.24, which show one typical realization of the random networks
for both the weak and the strong synchronization regimes, we have one major cluster and sev-
eral other clusters each containing only a few (1–3) nodes. In the strong synchronization regime
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Figure 5.22: Spatio-temporal patterns of the mean activity x̄I in random networks at different
coupling strengths gint keeping gext fixed at gext = 0.12: (a) gint = 0.06 and (b) gint = 0.12. The
corresponding correlation patterns for the same parameters are shown in (c) and (d). Note the
different scales in the colorbars.
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the auditory cluster is destroyed (compare C2 in Fig. 5.16 and Fig. 5.24); most of its areas join
the major cluster, since these areas are no longer strongly connected among themselves. Nev-
ertheless, the major cluster C3 and the independent single nodes C1 and C4 in Fig. 5.16 remain
largely unchanged in the random network (see Fig. 5.24). This suggests that the dynamical or-
ganization in the strong synchronization regime is mainly determined by the input degrees and
intensities of the nodes, which are the same in the original and in the randomized networks.
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Figure 5.23: Dynamical clusters (red ◦) with weak internal coupling strength gint = 0.06 (gext =
0.12), compared to the underlying random connections (black ·).

The next analysis concentrates on the strong synchronization regime, where the dependence
of synchronization on the intensities is confirmed. First, we can assume the following dynamics
for the mean activity of the subnetworks:

˙̄xI = F(x̄I)+ geff
N

∑
J

MR(I,J)(x̄J− x̄I), (5.8)

where F(x̄I) represents the complicated collective dynamics of the subnetworks and geff de-
notes the effective coupling between the mean activities, both depending on gint and gext . Ac-
cording to some recent analysis on general weighted networks of oscillators [134, 136], when
the network is sufficiently random, the input to a node I from its kI neighbors is already close
to the global mean field X = (1/N)∑N

J x̄J if the degree kI is large enough, namely, we can take
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Figure 5.24: Dynamical clusters in the random network with strong internal coupling strength
gint = 0.12 (gext = 0.12).
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N

∑
J

MR(I,J)x̄J ≈
[ N

∑
J

MR(I,J)
]
X (5.9)

with intensity SI as the sum of the total input weights to the node I

SI =
N

∑
J

MR(I,J) (5.10)

and get the following approximation

˙̄xI = F(x̄I)+ geffSI(X − x̄I), kI À 1. (5.11)

This first-order approximation in Eq. 5.11 means that nodes with large intensities S are more
strongly coupled to the global mean field X and synchronize closer to it. The nodes usually
synchronizing with X form an effective cluster, while the nodes with small intensities S are not
significantly influenced by the activity of other nodes and preserve their own rather independent
dynamics. A comparison of the intensities of the nodes in Fig. 5.20(b) with the clusters in
Fig. 5.23 already provides some evidence for the above argument.

To prove the results of the theoretical analysis that with increasing intensity the activity of
areas corresponds closer to mean field activity, we compute the correlation between the local
mean field x̄I and the global mean field X , denoted by rX(I), for each area I. A plot of rX as a
function of the intensity S is shown in Fig. 5.25. Hence several nodes have identical intensity,
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Figure 5.25: The correlation rX between the local and global mean field, as a function of the
intensity S of the nodes, for the randomized network (red line) and for the original cat network
(black line).

we take the average value among nodes with the same intensity S. We can see that for the
random network, rX is an almost monotonously increasing function as we would expect from
Eq. 5.11. An exception is node 19 (degree k = 7) with intensity S = 11 which connects to
several neighbors with large intensities in this realization of the random network so that it has a
larger rX . From this, we conclude that the major cluster is composed of nodes with intensities S
larger than some threshold Sth, because these nodes are dynamically close enough to the global
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mean field X . Thus, we create a set of effective clusters CS based on the incoming intensities S
in the following way:

CS(I,J) =
{

1 if SI ≥ Sth and SJ ≥ Sth;
0 otherwise. (5.12)

A suitable value of the threshold Sth can be obtained by examining the correlation rC be-
tween the matrix of the dynamical cluster C3 in Fig. 5.24 and the matrix of the effective cluster
CS defined in Eq. 5.12. The relationship of this correlation coefficient rC to the threshold value
Sth is shown in Fig. 5.26(c). The matrix CS corresponding to the maximal correlation rC at
Sth = 12 is shown in Fig. 5.26(b). We can see that it differs from the dynamical cluster (plotted
again in Fig. 5.26(a)) only by a single area I = 21 in this realization of the random network.
The area 21 has an intensity S = 13 just beyond the threshold Sth and the dynamics are marginal
to the major cluster. The other two areas I = 8 and I = 53 having intensities smaller than
the threshold Sth are considered to be independent clusters, which is also consistent with the
observation directly from the dynamical pattern.
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Figure 5.26: The relationship between dynamical clustering and node intensity in random net-
works. (a) Major dynamical cluster as in Fig. 5.24 (C3). (b) Effective cluster CS defined by
Eq. (5.12) with the threshold Sth = 12. (c) The correlation rC between the dynamical cluster in
(a) and the effective cluster CS, as a function of the threshold Sth.
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Now we perform the same analysis for the original cat cortical network. The correlation rX
between the local mean field x̄I and global mean field X displays a similar trend as the random
networks (Fig. 5.25). The lowest correlation corresponds to the area I = 53 (Hippocampus)
from the FL system with the minimal intensity S = 8. However, there are several areas with
intermediate intensities S∼ 12−13 and S∼ 20, but with significantly lower correlation. These
are the areas I = 19,17,21,20 (AAF, AI, VPc, P) belonging to the auditory system which form
another dynamical cluster (Fig. 5.16 (C2)). The effective cluster CS obtained by thresholding
the intensities with the optimal value Sth = 14 is shown in Fig. 5.27(b). Apart from a few nodes
(I = 18,20) from the auditory system, the argument based on intensities also explains the major
dynamical organization in the system.
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Figure 5.27: The relationship between dynamical clustering and node intensity in the original
cat cortical network. (a) Major dynamical cluster as in Fig. 5.18 (C3). (b) Effective cluster CS

defined by Eq. 5.12 with the threshold Sth = 14. (c) The correlation rC between the dynamical
cluster in (a) and the effective cluster CS, as a function of the threshold Sth.

The above comparison shows that when the coupling is large and synchronization is strong,
the organization of the systems into topological communities may not reveal dynamical spe-
cialization. The communities having significant intercommunity interactions (V, SF and ML)
merge to form a single cluster, see also Table 5.2. The nodes having low connectivity to the rest
of the network stay relatively independent, and the dynamical organization is mainly controlled
by the intensities, regardless of the network topology.
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5.2 Network of ML neurons with chemical coupling

5.2.1 General dynamics of network of coupled ML neurons

The previous model of the network of coupled FHN neurons has unveiled a hierarchical topol-
ogy of the functional networks. For various dynamical regimes, different mechanisms of dy-
namical clustering were detected and described. However, the FHN neuronal model has class 1
excitability and such models do not show high sensitivity to external inputs. A sensitive coding
of the synaptical input to the neuronal firing activity is one of the main tasks of neurons. Thus,
in the second study, we have selected a model neuron of class 2 excitability: the Morris-Lecar
model. Similar to the case of the FHN model in the global network 4.1.1.1, the membrane
potential V is predeterminantly modeled by a particular function fML, see Eq. 4.5. This basic
potential of a single neuron is modulated by the input from the local network — the neighboring
neurons (coupling represented by ML) and the input from remote neurons from the other cor-
tical areas (coupling represented by MC). Here, areas do not communicate through their mean
field activity but through the individual activity of neurons involved in inter-areal communica-
tion (marked in the matrix L). The entire network contains only chemical synapses. The noise ξ
stimulating the spontaneous activity of the neuron is added to the voltage variable V . A function
hML, see Eq. 4.6, depicts the dynamics of the slow variable W . The dynamics of the model is
described by:

CV̇I,i = fML(VI,i,WI,i)+ DξI,i(t)− gI,i,I, j

ka

n

∑
j

ML
I (i, j)rI, j(VI,i−Es)

− gI,i,J, j

ka〈Sin〉pext

N

∑
J

MC(I,J)LI,J(i, j)rJ, j(VI,i−Es), (5.13)

ẆI,i = hML(VI,i,WI,i). (5.14)

We fix the small-world subnetworks to have the following properties: the number of neurons
n = 200, the number of neighboring links ka = n∗0.1 and the probability of rewiring prew = 0.3.
Such network properties allow us to keep the simulation time reasonable and also to compare
the network of ML neurons with the previously simulated system of FHN neurons. Each neuron
is in the excitable state, with Ii < Ic and Ii ∈ (37.0,38.0). Additionally, neurons receive Gaussian
noise ξ. The coupling between local neurons, connected according ML matrix, is scaled by the
average number of intra-areal connections ka. In the case of long-range connections (L matrix),
the synaptic coupling is averaged over the total number of neurons from the distant area sending
signals to the specific neuron, i.e., ka〈Sin〉pext . 〈Sin〉 = 26 is the average input intensity to all
cortical areas and pext expresses the proportion of neurons from a single area involved in long-
range communication, here pext = 0.05 [131]. The parameter ES stands for the resting potential
of the neuron and its value determines the type of synapses (0 mV for excitatory and -80 mV
for inhibitory synapse, see Table 4.2).

We have simulated this system of Eqs. 5.13 and 5.14, the network of networks of ML neu-
rons, up to time t = 30 s, and the first three seconds were ignored to remove the effects of
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transients. The first order Euler algorithm was used during numerical integration, with a time
step ∆t = 0.1 ms. The model is coded in the Fortran 90 programming language. A simulation of
1 second of the neural activity of the whole model takes approximately 30 minutes on average
on a Pentium 4 desktop PC.

Parameter study

We are interested in the specification of the strength of the different types of synapses whose
variations allows us to investigate dynamics in various regimes. Generally, due to the smaller
number of inhibitory neurons (and thus inhibitory synapses), these connections are usually
stronger than the excitatory ones. Thus, we assume different coupling strengths for the ex-
citatory (g1,exc) and inhibitory (g1,inh) synapses within a cortical area. The modification of g1,exc
and g1,inh balances the excitatory and inhibitory inputs to the neurons within a single cortical
area and achieves the ‘natural’ firing frequency of neurons in the range of 1–3 Hz (see Sec-
tion 4.1.2 and [44, 56, 70]). To exclude the dependence of the neuron firing rate on the network
size, we additionally normalize the coupling strength by the number of connections per area
(ka). In the work of Barbosa et al. [10], a description of an efficient search for the optimal
coupling parameters was presented. We have followed this procedure, implementing it in three
steps; the basic settings are done for a single SW network of 200 neurons and averaged over 10
different realizations of the network topology and initial conditions.

• Noise level

As we have mentioned previously (Section 4.1.2), neurons in their natural state with-
out the presence of an external input do not fire very frequently. Taking into account
their ‘resting’ frequency, we stimulate them with Gaussian noise of different intensities D
added to the fast variable V (Eq. 4.5) of each neuron. This is done for all 200 uncoupled
neurons and we calculate their average frequency at specific a D (Fig. 5.28 (a)). Finally,
the intensity D = 4.9 was selected, where the average frequency of firing is faver = 2.5
Hz; see also the individual frequencies of the neurons in Fig. 5.28(b).

• Strength of the excitatory connections

After the neuronal background activity has been set to 2.5 Hz, we change the strength
of the excitatory connections between neurons, g1,exc. The inhibitory connections are
neglected since g1,inh = 0. As one would expect, the stronger the excitation g1,exc, the
higher the frequency of firing is. Neurons are mutually excited through their connections
and due to the presence of the shortcuts in the SW structure the signal quickly spreads
through the whole network. Fig. 5.29(a) shows the increase of the average frequency
of neuronal firing with an increase of the coupling strength. For further simulations we
select g1,exc = 0.9, where slow saturation of the frequency starts, i.e., the speed of the
signal transmission is almost maximal.

• Strength of the inhibitory connections

As the last step, we activate inhibitory connections in the network. The ‘natural firing
frequency’ of a neuron is the result of the balanced excitatory and inhibitory strengths
affecting it. The inhibitory synapses compensate the excitation of the network and de-
crease the average frequency of neurons (Fig. 5.29(b)). We fix the inhibitory strength to
be g1,inh = 1.8, where the frequency of firing reaches approximately 3 Hz.
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Figure 5.28: Dependence of the frequency of firing of neurons on the background noise (for a
set of 200 neurons, averaged for 10 realizations with different initial conditions). (a) D is varied,
g1,exc = g1,inh = 0, (b) frequency of the individual neurons at D = 4.9 for one realization; the
difference is due to heterogeneity in the excitability.
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Figure 5.29: Dependence of the frequency of firing of neurons on the external input (for a set of
200 neurons). (a) D = 4.9, g1,exc is varied, g1,inh = 0, (b) D = 4.9, g1,exc = 0.9, g1,inh is varied.
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Finally, we obtain parameters so that the local network of 200 neurons exhibits a natural fre-
quency of firing. These parameters are: D = 4.9, g1,exc = 0.9, g1,inh = 1.8. Then, we simulate
the whole network of 53 connected areas. The inter-areal connections are excitatory in charac-
ter. We keep their value the same as for the local excitation within an area, i.e., g1,exc = g2,exc.
The only difference is in the normalization of the coupling strength g2,exc of the inter-areal
connections, as described previously. In the next parts we will distinguish only excitatory and
inhibitory strengths and refer to them as gexc and ginh.

In comparison to the large-scale network of FHN neurons, here the situation is different.
The internal dynamics of the areas are driven by both parameters gexc and ginh, whereas the
interconnections are only excitatory. Thus, inhibitory coupling affects the dynamics of the
system only at the local level. Starting with the coupling strengths gexc = 0.9 and ginh = 1.8
typical for the frequency of approximately 3 Hz for a single area, we coupled also areas with
the gexc = 0.9. The presence of inputs from other areas increases the average firing frequency of
the areas and of the whole system to approximately 9 Hz. In the following section, the regimes
of various frequencies, both higher and lower, obtained for couplings gexc ∈ (0.4− 0.9) and
ginh ∈ (1.8−4.8), are explored.

Here, we present three different regimes of the system dynamics. In the first regime of
weak synchronization at gexc = 0.5, the presence of the noise and the relatively strong value of
inhibitory coupling (ginh = 3.8) determine the neuronal dynamics. The excitatory couplings,
internal and external, are not sufficient to stimulate a frequent firing activity of neurons; the
neurons fire irregularly with some occasional spikes. The mean field signal of a single area V̄ is
relatively flat with small deviations from the baseline (Fig. 5.30(a)). Again, the mean field sig-
nal can be considered as an analogy of the EEG signal during resting state [87]. With gexc = 0.6
and ginh = 1.8, the mutual excitation of the neurons is stronger than the local inhibition. In this
transient regime the global dynamics are not much suppressed and the mean field signal differs
moderately from the signal occuring with weak excitatory coupling (Fig. 5.30(b)). Approaching
a high value of gexc = 0.9, with ginh = 3.8, the incoming excitation from other areas enhances
the activity of the whole neuronal ensemble. Several neurons, excited already by strong internal
coupling, receive external signal and the SW topology allows a fast spreading of the positive ac-
tivity across the subnetwork. All neurons fire more frequently with regular spiking behavior and
the average mean field signal of a single area exhibits numerous prominent spikes (Fig. 5.30(c)).

The various dynamical regimes are also clearly present in the spatio-temporal patterns in
Fig. 5.31. In the weak synchronization regime, the dynamics of the individual areas do not
exhibit prominent peaks, the signals oscillate around V =−34 mV and most of the areas display
similar behavior. In the transient regime (Fig. 5.31(b)), a few areas are more active, with a
slightly higher average mean field signal. Strong excitation at gexc = 0.9 leads to clearly visible
oscillations of the mean field dynamics of all areas. The presence of the dynamical clusters is
here not so visible (Fig. 5.31(c)).

We conclude that the global dynamics are under significant influence of excitation and inhi-
bition. It seems that the dynamics of the subnetworks are more sensitive to the fragile balance
between excitation and inhibition than to the strength of the global and local synaptic inputs.
Changes to excitation can be compensated by changes in inhibition, but small deviations from
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Figure 5.30: Typical time series of the mean field dynamics x̄ of one area with different coupling
strengths: (a) gexc = 0.5 and ginh = 3.8, (b) gexc = 0.6 and ginh = 1.8 (c) gexc = 0.9 and ginh = 3.8.
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the balanced state can lead to abnormal activity similar to the strongly synchronized neuronal
activity during epileptic seizure [70, 74].

We apply the Pearson correlation coefficient r (Eq. 5.3) to quantify how the individual areas
interact. The correlations between the mean field signals are computed and averaged over 10
realizations of different local network structures (SW network) and neurons involved in the
long-range connections. Figure 5.32(a) shows the average correlation coefficient of all pairs of
areas (Eq. 5.4) at specific gexc and ginh values. The plot reveals how the neural activity depends
on the excitatory and inhibitory coupling strength. The size of increment for excitatory coupling
is only 0.1, whereas the inhibition is incremented with a stepsize of 1.0. The system is more
sensitive to change of the excitatory coupling: even with a small increase, the correlation can
be substantially stronger. The effect of changing the inhibitory coupling is more pronounced
in the more synchronized networks: with strong excitation (e.g., gexc = 1.0), the decrease of
synchronization caused by an increase of inhibition is clearly visible, see also [70].
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Figure 5.32: (a) Dependence of the average correlation coefficient R on the excitatory and
inhibitory coupling strength gexc and ginh. (b) The effect of the internal coupling strength gexc
on the correlation (at fixed ginh = 3.8).

The correlation matrices averaged over 10 realizations for three combinations of parameters
gexc and ginh are shown in Fig. 5.33. The different realizations can result in slightly different
correlation patterns and the averaged version of correlation matrix can have different correlation
structure.

A weak synchronization regime (see Fig. 5.33(a)) is observed for values gexc ≤ 0.5 when
ginh = 3.8. Most of the cortical areas are weakly correlated since inhibitory couplings show
a larger influence over the neuronal dynamics than excitatory ones. The maximal correlation
between the area activity reaches 0.11 but the average correlation is very small (R = 0.02). In
the correlation pattern four clusters are visible. A transient regime can be observed at, e.g.,
gexc = 0.6 and ginh = 1.8. Synchronization between the areas is larger, with the maximum at
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Figure 5.33: Correlation matrices r(I,J) corresponding to the spatio-temporal patterns in
Fig. 5.31. (a) gexc = 0.5 and ginh = 3.8, (b) gexc = 0.6 and ginh = 1.8 (c) gexc = 0.9 and ginh = 3.8.
Note the different scales in the colorbars.

r = 0.3 leading to small changes in the dynamical patterns, see Fig. 5.33(b). The region of
auditory areas becomes more independent, while new intercommunity connections appear be-
tween the SM and FL systems. The strong synchronization regime gexc ≥ 0.9 is characterized
by strong interactions of the dynamics of cortical areas and the presence of two functional clus-
ters (Fig. 5.33(c)). The correlations within those clusters are high (up to maximal r = 0.82
for gexc = 0.9 and ginh = 3.8). Intercluster correlation values are substantially smaller with a
minimum of 0.21.

Similar to Section 5.1.2, we have calculated the distribution of correlation coefficients of
all pairs of areas with respect to the underlying links, in order to evaluate the relation between
topology and dynamics. Three different variants of node connectivity are considered — recip-
rocal links (P2), uni-directional links (P1) and an absence of connections (P0). Fig. 5.34 shows
the distributions for three different coupling regimes.
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Figure 5.34: Distribution of the correlation r(I,J) for (a) gexc = 0.5 and ginh = 3.8, (b) gexc = 0.6
and ginh = 1.8 (c) gexc = 0.9 and ginh = 3.8 for all nodes Pall (black line), P2 (blue line), P1 (red
line) and P0 (green line).
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The first dynamical regime is characterized by weak coupling, e.g., gexc = 0.5 and ginh = 3.8
with low correlation values between the areas, r ∈ [−0.05,0.1]. The three distributions for
Pall (general distribution of correlation), P2 and P1 are grouped around zero with a prominent
Gaussian peak and long tail towards positive values (Fig. 5.34(a)). Most of the correlations
with positive nonzero values are between reciprocally connected nodes (P2 distribution). The
distributions of correlations in the transient regime are already shifted towards higher correlation
again with the presence of long tails towards higher correlation values (Fig. 5.34(b)). Such
forms of the distributions indicate the presence of several nodes with stronger activity and higher
correlation between their mean field activities. For ginh = 0.6 and ginh = 1.8 the correlation
values lie around r ∈ [0,0.3], comparable to the transient regime of FHN model dynamics r ∈
[0,0.35]. At strong coupling values, e.g., gexc = 0.9 and ginh = 3.8, the distributions significantly
overlap, with their peaks at around 0.65.

Stronger excitation leads to stronger synchronization of areas. The synaptic inputs from
distant areas modifies the activity of the neuronal ensemble. The external coupling of areas
enhances their common synchronization, here expressed as a higher correlation between their
mean activities, see Fig. 5.32. Modulation of the inhibitory coupling strength has more impact
on local activity than on global activity.

5.2.1.1 Firing frequency of areas vs. coupling strength and intensity of areas

We also recorded the spiking time of all neurons during simulations. Spikes were registered
whenever V reached 10 mV. The firing frequency was calculated by averaging the number of
spikes over the time of simulation and the number of neurons. Additionally, the firing frequency
of individual areas was estimated. Figure 5.35 presents the average firing frequency of the whole
system for various values of gexc and ginh.
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Figure 5.35: Dependence of the average frequency of neuronal firing on the internal and external
coupling strength gexc and ginh.
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We can clearly see the trend of increasing frequency with increased excitation at fixed values
of ginh, e.g., from faver = 2.89 Hz when gexc = 0.4 to faver = 9.95 Hz when gexc = 1.0 (here,
ginh = 1.8). Also, a decrease in the inhibitory coupling ginh leads to a higher frequency of firing,
e.g., from faver = 4.9 Hz when ginh = 4.8 to faver = 9.13 Hz when ginh = 1.8 (here, gexc = 0.9).
Again, the change of inhibition has a stronger effect in the strongly synchronized networks with
large gexc.
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Figure 5.36: ML model with gexc = 0.5 and various values of ginh: 1.8 (black line), 2.8 (red),
3.8 (green) and 4.8 (blue line). (a) Firing frequency of cortical areas. (b) Dependence of the
average firing frequency on the intensity of the area.

Changing the coupling strength between areas influences the neuronal response in the way of
increase or decrease of firing frequency. However, such change is also due to strong influence of
intensity, and varying of the coupling strengths causes mainly the shift of frequency in vertical
direction (see Fig. 5.36). The higher the intensity of an area, the higher the firing frequency.
The neural mass model exhibits a similar behavior in response to the external input to the neural
mass (see later Chapter 6).

The network of FHN neurons has different frequency characteristics. In this case, for a
weak synchronization regime, the higher the intensity of area, the lower the firing frequency
(Fig. 5.37). The reason for this reversed dependence can be the presence of the electrical cou-
pling in the system which occurs only occasionally in the nervous system. Here, we present the
dynamics of the weak synchronization regime, where the intensity of the areas does not play
a significant role. Neuron are mainly driven by local connections in the subnetworks and the
long-range connections are very weak. Most of the neurons are silent and due to the diffusive
homogeneous coupling, they influence the global dynamics of the whole network and decrease
the activity of the firing neurons. The effect of coupling is continuous in contrast to the pulse
character of chemical synapses.
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Figure 5.37: FHN model with coupling values gint = 0.7 and gext = 0.7. (a) Firing frequency of
cortical areas. (b) Dependence of the average firing frequency on the intensity of the area.

5.2.2 Functional clusters and networks

The correlation patterns visible in Fig. 5.33 point out the existence of several groups of areas
with correlated dynamics. To further analyze the structure of such dynamical patterns at various
coupling strengths, we apply the method of hierarchical clustering described previously (Sec-
tion 5.1.2). The hierarchical trees for three different regimes are presented in Fig. 5.38. The
dendrograms show the separation of areas into diverse groups and subgroups, where the length
of the bar characterizes the similarity of the areal dynamics. Specific colors denote the clusters
typical for those regimes. For the weak synchronization regime (Fig. 5.38(a)), the dynamics of
the areas do not differ too much, and the intracluster distances at the lowest level of separation
are significantly larger than the distances between the four major clusters. The transient regime
(Fig. 5.38(b)) is characterized by the more closely related dynamics of areas. The intracluster
structure is more complex, with distances of various lengths, displaying also stronger interac-
tions between areas. Finally, in the strong synchronization regime (Fig. 5.38(c)), the mean field
signals of areas from the major cluster are strongly correlated and thus, the intracluster distances
are short. On the other hand, the distance between this cluster and the remaining areas is large
and these few separate nodes preserve their rather independent dynamics.

In our analysis, we concentrate on the level of four clusters in various regimes, which we expect
to agree with the four anatomical clusters.

5.2.2.1 Weak synchronization regime

As a typical representative of a weak synchronization regime we take gexc = 0.5 and ginh = 3.8.
The neurons are only weakly mutually excited. The average frequency of firing of neurons is
low, as is also the case for the correlation between areas. The activity does not spread through
the entire network and is preserved mainly in the local structures. The areas group functionally
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Figure 5.38: Typical hierarchical tree of the dynamical clusters in the weak coupling regime (a)
gexc = 0.5 and ginh = 3.8, transient regime (b) gexc = 0.6 and ginh = 1.8 and strong coupling
regime (c) gexc = 0.9 and ginh = 3.8..

into four clusters C1—C4, which are in good agreement with the anatomical communities (C1
corresponds to V, C2 to A, C3 to SM and C4 to FL systems). The functional clusters communi-
cate through the several bridging nodes, here areas 13 (20b), 14 (7) and 39 (SSAo). These areas
are known to be involved in multifunctional tasks. Typical dynamical clusters for this regime
are shown in Fig. 5.39.

5.2.2.2 Intermediate synchronization regime

The system with parameters gexc = 0.6 and ginh = 1.8 represents an intermediate synchroniza-
tion regime (see Fig. 5.40). From three visible functional clusters, two of them reflect the
communities V and A. The rest of the areas from V and A and from both communities SM and
FL are joined and form one dominant cluster. The exchange of the information between those
three clusters is mediated by areas 13 and 14 from the visual system and area 22 situated in
the auditory community. The fourth cluster, C4, has only a single area — area 53. The small
intensity of this area, causing weaker external input, preserves its dynamical independence.

5.2.2.3 Strong synchronization regime

Figure 5.41 shows clusters in a strong synchronization regime with gexc = 0.9 and ginh = 3.8.
The main cluster C3 is a set of areas belonging anatomically to the V, SM and FL systems.
Cluster C2 contains only several auditory areas, where the remaining auditory areas are respon-
sible for the communication between the clusters C2 and C3. The cluster C2 is stable across all
dynamical regimes. Even at strong coupling, the core of the auditory system remains indepen-
dent. Such behavior can be explained by strong interactions of the areas within the anatomical
auditory system. Here, the intracommunity links are denser and stronger than intercommunity
ones, see Table 5.2. The last two clusters consist of the single areas 8 and 53. As we can see,
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Figure 5.39: Dynamical clusters (red ◦) with weak coupling strength gexc = 0.5 (ginh = 3.8),
compared to the underlying anatomical connections (black ·).
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Figure 5.40: Dynamical clusters (red ◦) with intermediated coupling strength gexc = 0.6 (ginh =
1.8), compared to the underlying anatomical connections (black ·).
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at this stage, the dynamics of areas are strongly predetermined by the area intensities. The ar-
eas with the lowest intensities stay independent, while strongly connected areas become highly
correlated.
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Figure 5.41: Dynamical clusters (red ◦) with strong coupling strength gexc = 0.9 (ginh = 3.8),
compared to the underlying anatomical connections (black ·). Note that clusters C1 and C4
comprise only the single areas 8 and 53, respectively.

5.2.2.4 Presence of bridging nodes

As is visible in Figs. 5.39–5.41, the dynamical clusters in weak and transient synchronization
regimes communicate through the bridging nodes (areas sitting in one anatomical community
but functionally located in other clusters, see Section 5.1.3.4). The occurrence of bridging nodes
changes with the different realization and synchronization regimes. Here, we have selected
three dynamical patterns with a characteristic number and location of the functional clusters.
With weak coupling, four clusters with numerous bridging nodes are present — 4 (PLLS),
7 (ALLS), 9 (DLS), plus those found in the model network with electrical coupling, which
are areas 12 (20a), 13 (20b), 14 (7), 15 (AES), 16 (PS). Latter five areas are involved in the
multifunctional tasks, connecting the visual system, the place of their anatomical location, with
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other basic systems like the somato-motor and fronto-limbic communities. Two other areas
from the auditory system, 22 (EPp) and 23 (Tem), also participate in the communication with
SM and FL systems. Table 5.4 shows the function and location of these bridging nodes in the
cortex, which probably integrate the dynamics of different anatomical communities.

Other areas from Table 5.4 only occur occasionally. Area 53 (Hipp) is the most common
bridging node and at the same time in strong synchronization regime it represents an indepen-
dent node with preserving its own dynamics. This feature is caused by the small intensity of the
area, which determines the amount of communication and information transmission with the
rest of the network.

We would like to stress again, that each realization has a different cluster structure and the
presented averaged correlation matrices already display average dynamical patterns. Here, the
most important thing is that the ML model with chemical coupling reproduces the dynamical
organization of the FHN model with electrical coupling. The results obtained for the biologi-
cally more plausible ML model with chemical coupling confirmed the presence of the complex
hierarchical topology of the functional networks. Thus, it implies that the functional networks
are independent of details of neurons representing dynamics, and are strongly related to the
underlying anatomy, especially its hierarchical nature. Simple models like neural mass model
do not show such behavior; the regime with hierarchical functional organization is not present.

5.3 Summary of the chapter

The results from the study of dynamics of large-scale hierarchical model can be summarized as
follows:

• The only parameters that we varied in the models were the coupling strengths. The dy-
namics of the first model of FHN neurons with heterogeneous internal and external elec-
trical coupling are mainly driven by local coupling strength and not so much by global
coupling strength. The second model of ML neurons with distinguished excitatory and
inhibitory chemical coupling shows a nontrivial dependence on the coupling strengths.

• We have identified three main dynamical regimes obtained for certain coupling strengths
(weak, intermediate and strong synchronization regimes) in both models.

• The relationship between structure and function varies in these dynamical regimes. How-
ever, the dynamics of specific regimes exhibits similar correlation patterns for both types
of multilevel models.

• In the biologically plausible regime of weak synchronization, the dynamical clusters
closely correspond to the topological communities. In the light that structure determines
dynamics and dynamics controls function, these results provide an explanation from the
viewpoint of network dynamics for the coincidence between the topological communi-
ties and the functional subdivisions of the brain cortex [49, 50]. The dynamics are mainly
controlled by the global structures in the network.
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• The areas important for intercommunity communication and information integration act
as bridges between different anatomical communities and dynamical clusters. These ar-
eas are the same as those previously found to be crucial for the global functioning of
the system [100]. They have higher number of connections to the other areas, which
predetermines that they will be ‘integrators’ in the cortical network.

• Different structures of the functional networks obtained by variation of the threshold of
correlation unveil the hierarchical structure of dynamics. The lowest level comprises
nodes that are strongly coupled and synchronized within their anatomical community,
but with a low number of intercommunity links. The next areas to be expressed are the
‘bridging’ areas, which have numerous corticocortical links.

• The regime with intermediate coupling strengths shows a transition of the dynamics; the
dynamics of cortical areas is more strongly correlated and creates three dynamical clus-
ters.

• The abnormal synchronous activity of large neuronal ensembles, e.g., during epileptic
seizures [70, 74], is a typical behavior for the regime of large couplings and strong syn-
chronization. Here, the organization of the network into communities does not always
separate the dynamics into the corresponding functional clusters. Only two functional
clusters are observed. The failure to form different dynamical (functional) clusters indi-
cates the failure to perform distinct functional tasks in different functional subsystems of
the cortex during pathological events.

• The synchronization patterns in the strong synchronization regimes are mainly controlled
by the local structural statistics of the nodes, i.e., input intensities. This is confirmed
by the mean field analysis of the dynamics and by comparison to structures present in
randomized networks. Note that other mechanisms of cluster formation in sparsely con-
nected networks have been also reported [60].

• Even though the synchronization patterns in the two hierarchical models correspond, the
firing activity of the areas differs in these models, pointing out the nontriviality of the
neural dynamics.

• In the case of chemical coupling, which occurs frequently in biological systems, the av-
erage firing frequency of ML neurons of one area reflects the strength of the areal con-
nectivity to the other areas. The higher the areal intensity, the higher the firing frequency.
The hierarchical model of FHN neurons shows the reverse relationship of areal intensity
and firing activity. This probably happens because of the diffusive electrical coupling,
which modifies the neuronal dynamics to the averaged global activity of the whole area.

Thus, one can conclude that a biologically realistic large-scale hierarchical model of the
cortex succesfully reveals part of the complex relationship between functional connectivity and
its underlying neural substrate.



Chapter 6

Neural mass model of cortical dynamics

The analysis of the multilevel model of cat cortex has revealed a close relationship between the
underlying structure and system dynamics. The correlations of the mean field activity of sets
of neurons representing cortical areas are in correspondence with the coupling between these
areas. As an alternative for a small-world network of neurons representing a cortical area, we
can use a population model. Such models are commonly used in the modeling of the EEG
activity of a neuronal ensemble. Would such a model, implemented in the cat cortical network,
generate a similar pattern of dynamics as the multilevel model? The main aim of this chapter
is to study dynamics of a network of neural mass models (previously described in Section 4.2)
and the structure-function relationship.

6.1 Dynamics of neural mass model

The neural mass model that we use is a set of pyramidal cells and excitatory and inhibitory
interneurons [129]. The activity of such a model is expressed as a difference between the post-
synaptic membrane potential of excitatory ve and inhibitory vi interneurons as V = ve− vi, see
Fig. 6.1(a). In the model of the cat cortical network, each macroscopic neural mass oscillator
represents a single area. The areas are linked according to the anatomical connectivity repre-
sented by the coupling matrix MA

IJ , shown in Figure 3.2. The external input from other groups
of neurons and noise are fed into the population of excitatory interneurons. The equations of
the whole system take the form:

v̈p
I = Aa f (ve

I − vi
I)−2av̇p

I −a2vp
I , (6.1)

v̈i
I = BbC4 f (C3vp

I )−2bv̇i
I−b2vi

I, (6.2)

v̈e
I = Aa

[
C2 f (C1vp

I )+ pI(t)+
g
〈S〉

N

∑
J

MA
IJ f (ve

J− vi
J)
]

−2av̇e
I −a2ve

I , (6.3)
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We normalize the coupling strength g by the mean incoming intensity 〈S〉 of areas repre-
sented in the matrix MA

IJ . As in [129], in our simulations, we take pI(t) = p0 +ξI(t), where ξI(t)
is Gaussian white noise with standard deviation D = 2. The main results do not show a sensitive
dependence on D. We fix p0 = 180 so that the system is in the periodic regime corresponding
to alpha waves.
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Figure 6.1: (a) Typical activity V of the uncoupled neural mass model. (b) The average corre-
lation coefficient R vs. the coupling strength g in Eq. 6.3.

More sophisticated population models contain up to four subsets of neurons linked with
various nonlinear functions, e.g., see Ursino et al. [124]. These models are able to exhibit a
wide frequency spectrum of activity corresponding closely to the biological signals measured
in human EEG.

We have observed the dependence of the oscillations of coupled populations on the strength
of the coupling, see Fig. 6.1(b). Synchronization between the areas is measured by the linear
correlation coefficient r(I,J) between the population outputs VI and VJ , already defined in Sec-
tion 5.1.1 in Eq. 5.3. Other measures, like phase synchronization, would provide very similar
information about the intercorrelation between the areas. The average correlation of all pairs
of areas R (see Eqs. 5.3, 5.4), is shown in Fig. 6.1(b) as a function of the coupling strength g.
The results indicate that no clear correlation occurs for weak coupling g< 5. For large coupling
values, some nontrivial correlation seems to be expressed. This observation is in correspon-
dence with the behavior of large-scale hierarchical model of the brain activity (see Fig. 5.3(b)
for comparison).

In Fig. 6.2, the correlations for two different regimes are displayed. The dynamical pattern is
not structured at very weak coupling, but at stronger couplings (g≥ 5), the system forms a large
cluster including most of the areas from V, SM and FL. The auditory system A remains relatively
independent. This is consistent with the intercommunity connectivity shown in Table 5.2.
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Figure 6.2: Correlation matrices r(I,J) of the cat cortical network with (a) weak coupling g = 2
and (b) strong coupling g = 15. In (c), we see r(I,J) for a randomized network with g = 15.
Note the different scales in the colorbars.

6.2 Impact of node intensity on areal dynamics

As we have already discussed in Section 5.1.3.5, random networks of coupled oscillators (xI)
with a sufficiently strong coupling can achieve a high level of global synchronization [134,
136]. Such synchronization is expressed as a collective oscillation in the mean activity X =
(1/N)∑N

I xI . The cat cortical network exhibits an organization of communities, but it also
possesses many random-like connections between the communities. Similar to the multilevel
model, a mean field approximation might provide a relevant explanation of the dynamical or-
ganization in the strong coupling regime. The average input that a node I receives from its kI
direct neighbors can be replaced by the mean activity f (X), i.e. ∑N

J MA
IJ f (VJ)≈ SI f (X) where

X = (1/N)∑N
J VJ . The coupling term in Equation 4.16 can be written as

g
〈S〉

N

∑
J

MA
IJ f (ve

J− vi
J)≈ gSI

〈S〉 f (X). (6.4)

In this first-order approximation, the nonlinearity of the original sigmoid function f (v) is also
neglected. It means that nodes with large intensities S are more strongly coupled to the global
mean field X . These nodes usually synchronize with X and form an effective cluster. However,
nodes with small intensities S are not significantly influenced by the activity of other nodes and
preserve their own, rather independent, dynamics.

The above analysis has been again largely confirmed by our simulations (see also Sec-
tion 5.1.3.5). We calculate the correlation coefficient RX between the activity VI of an area and
the global mean field X = (1/N)∑N

I VI . In Fig. 6.3, RX is averaged for nodes with the same
values of intensity S and plotted for various coupling strengths. It is roughly an increasing func-
tion of S. We have performed simulations on randomized cat cortical networks, maintaining
both the input degree kI and intensity SI of all the nodes [80]. In this case, the results of RX
again shows a monotonous increase with the intensity S (Fig. 6.3). The fluctuation of RX of the
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Figure 6.3: Correlation RX between the activity of an area VI and the global mean field X , as a
function of the intensity S. Solid lines: g = 10, dashed lines: g = 20. Black points correspond
to the original cat cortical network, while red points correspond to the randomized matrix.

original cortical network is mainly due to the clustered organization at various levels (Fig. 6.3).
We also show a typical correlation pattern of these randomized networks; for a more detailed
comparison see Fig. 6.2(c). The major dynamical organization is very similar for both the cat
network and the randomized network. This correspondence points out that dynamics using a
neural mass oscillator depend little on the detailed network topology, but largely on the input
intensity of the nodes.

There is little direct relationship between the pairwise coupling MA
IJ and the strength of

synchronization rI,J . To demonstrate this, we distinguish three cases for any pair of nodes in
the network: reciprocal projections (P2), uni-directional couplings (P1) and non-connection
(P0) (see also Section 5.1.2). We compute the distribution of the correlation rI,J for these cases
separately. Figure 6.4(a) depicts the weak coupling (e.g., g = 2), where the distributions for
P0, P1 and P2 pairs coincide and display a Gaussian shape centered at zero. Compared to the
distribution obtained by computing the correlation for uncoupled nodes (g = 0) (Fig. 6.4), we
can see that most of the correlations are insignificant. With increased coupling (e.g., g = 5), the
correlation between P2 pairs is only slightly stronger than for P1 pairs. All three distributions
still significantly overlap, what is also observed for strong couplings at g = 20 and comparable
to the strong coupling regime at hierarchical model (Fig. 5.5(c)).

6.3 Summary of the chapter

We have described the dynamics of the cortical network modeled by a set of neural mass oscil-
lators.

• In general, two dynamical regimes at the weak and strong coupling were detected.
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g = 5 and (c) g = 20. The dash-dotted red lines in (a) and (b) indicate the distribution between

uncoupled areas (g = 0). The different shapes of the distributions in (a) and (b) are due to

different bin sizes.

• Analysis of the correlation patterns of cortical areas for both regimes did not clearly

detect the presence of hierarchical clusters in the dynamics, as was found in the case of

the multilevel model.

• Results have also shown that the dynamics of the network of the generic oscillators (in

our case neural mass oscillators) depend on single node characteristics, but the network

topology is not very relevant. This is manifested in the well expressed, single-scale oscil-

lations generated by the model.

• At a sufficiently strong coupling strength, the sustained oscillations propagate continu-

ously from a node to its neighbors and next neighbors. As a result, the whole system

oscillates collectively. In reality, continuous and large-scale spreading of neural activ-

ity in a strongly synchronized manner occurs only in pathological states like epileptic

seizures [70].

• Other generic models of oscillators with noise (e.g., Van der Pol), models of excitable/spik-

ing neurons, such as the simple integrate-and-fire model, or linear dynamical models

based on Gaussian stochastic processes [110] would generate similar results, especially

at the systems level.

The spontaneous EEG signal of healthy humans exhibits a broad range of timescales [87],

which are not accounted for in this model. Thus, such a simplified model of EEG activity seems

to be far less suitable to investigate the relationship between structural and functional connec-

tivity when compared to the model of coupled excitable elements with structured connectivity

presented previously. On the other hand, even if this model is not able to mimic resting state

of the brain with background spontaneous activity, a set of coupled neural mass oscillators with

forward, backward and lateral processes was recently used to model event-related responses in

the brain [35]. Estimation of the coupling parameters of such models using empirical data can

be used to assess causal (effective) connectivity between brain areas.
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Conclusion

In this dissertation, the relationship between topological structures and synchronization dynam-
ics of neural networks was investigated by using a realistic network of cat corticocortical con-
nectivity. The simulated system, a network of networks, represents a multilevel model which
focuses on the organization of the highest network level, modeling each cortical area by a one-
level SW subnetwork. The results obtained from this multilevel model are compared to the
model where a population model stands for a single area.

7.1 Main results

The main finding is that the dynamics of the multilevel model show a hierarchical organization
revealing different levels of modular organization in the anatomical connectivity of the cortico-
cortical networks. The model of coupled neural populations does not reflect closely the modular
structure of the dynamics. The most important results are summarized in the following part:

7.1.1 Hierarchical model of the cortex

• Three main dynamical regimes with weak, intermediate and strong synchronization have
been observed depending on the coupling strength between the neurons and between the
areas.

• In the biologically plausible regime of weak synchronization, the dynamical clusters un-
veil the topological communities of the anatomical network.

• Several areas bridge different anatomical communities and functional clusters in the weak
coupling regime.

• In the functional networks extracted from the model, a hierarchical structure of dynamics
is manifested.
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• Large coupling leads to a strong synchronization of areal activity with similar dynamical
behavior as observed, for example, by epileptic seizures.

• The dynamics at strong coupling are mainly determined by local structural properties of
the areas (input intensities).

7.1.2 Population model of the cortex

• The weak coupling regime of this model does not reveal dynamical patterns which would
reflect the underlying topology.

• Whenever the coupling becomes significant, the oscillatory model displays a prominent
two-cluster behavior, as in the strong coupling regime of the hierarchical model.

• At stronger coupling, dynamical patterns are largely determined by the total input strength
(intensity) of nodes, but not by the detailed network topology.

We stress again that the striking relationship between the dynamical organization and the
network topology in the weak coupling regime results from our biologically plausible modeling
of the cortical areas as subnetworks of excitable neurons. Due to the nature of localized signal
propagation, such a hierarchical network of excitable elements appears to be more efficient in
the detection of hierarchical communities in a broad range of complex systems than schemes
based on self-sustained oscillator models [7] (especially when the community structures are not
very clear).

Our findings are also interesting from the general perspective of network dynamics. Previ-
ous analysis of synchronization dynamics has mainly focused on the stability of the ideal case
of the complete synchronization state as a function of the global statistics of the networks, such
as the mean degree, or the ratio of maximal and minimal eigenvalues, etc. [9, 15, 27, 82, 83,
88, 121, 134, 136]. Here, we have shown that the detailed dynamical organization varies in
different dynamical regimes, determined by different underlying topological structures of the
same network (e.g., more local features of communities, or more global measures of intensity).
This study reveals both the possibilities and the limitations of the complex network approach
for the understanding of complex systems based on the interaction topology. The results also
provide an additional motivation to characterize complex network systems beyond global statis-
tics, since more local or detailed connection structures can be the most important determinants
for the dynamical behavior of the system.

7.2 Further work

The presented analysis of the dynamical clusters provides a meaningful bridge that mediates
the gap between the topology (communities) and function (functional subdivision) of the brain
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cortex, even when the model subnetworks are strongly simplified and the dynamics do not re-
flect specific information processing. In the future, the model should be extended and improved
in several ways to capture more realistic information processing in the brain:

1. Biologically, a system of 105 neurons with around 104 synapses per neuron correspond-
ing to a cubic millimeter of cortex is the minimal system size at which the complexity
of the cortex can be represented [21, 81]. Supplementary levels of clustered network
organization representing minicolumns, columns and cellular circuits within each corti-
cal area would better model the realistic connectivity. The organization of neurons into
the horizontal cortical layers could be considered, eventually. In addition, the obtained
significant functional correlations are relatively low (max. 0.1− 0.2) in the biologically
plausible regime. Such an extended hierarchical representation of the cortex could signif-
icantly broaden these regimes, with a corresponding increase of correlation strength, as
observed experimentally [38, 98, 115, 117]. Besides this, the thalamo-cortical connectiv-
ity [100] can be taken into account.

2. Cortical neurons exhibit rich dynamics, e.g., tonic spiking and burst firing, which would
require more subtle neural models. These different firing modes have significant effects
on the synchronization of coupled neurons [91], which may affect global functional con-
nectivity. Moreover, in reality, both classes of excitability and also both types of coupling
(electrical and chemical) are present in the global neuronal population. A biologically
more realistic coupling could be achieved with the addition of synaptic plasticity and
time delay in the transmission of the signal. Another possibility would be to model each
node of the subnetwork by another population of neurons (three-level hierarchy) and to
employ neural mass models [34] for the node dynamics. Biologically based population
models, such as the neural mass oscillator, can reproduce all frequency ranges observed
in brain dynamics under different physiological states [34].

3. In the future the proposed framework could be used to investigate the relative contribu-
tions of network topology and task-related network activations to functional brain con-
nectivity and information processing. The model dynamics could be compared to the
observed activity spread in the cortex [69, 75, 102] and to the functional connectiv-
ity [4, 12, 38, 98, 115, 117] at suitable spatio-temporal scales. However, this achieve-
ment would require significant developments in neurophysics, in the theory of dynamical
complex networks, in algorithms of parallel computing [14, 81] as well as in the high-
resolution neurological recordings.

These more realistic implementations would allow localized and strong synchronization in
some low-level clusters and naturally organized dynamics at higher levels. Thus, the biologi-
cally plausible regimes would be significantly broadened.

However, this ‘bottom-up’ approach faces a huge gap of information regarding the details
of the structures of the anatomical and functional connectivities crossing various hierarchies.
Due to the invasive nature of neuroanatomical techniques (mainly by tracer injection), the topo-
logical properties of human connectome remain largely unclear [29, 111]. The most complete
data about the anatomical connectivity are available only from animal brains. For this reason,
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a direct comparison with the large-scale functional networks from human fMRI seems to be
infeasible within foreseeable time. In spite of the progress made in revealing the general prin-
ciples of structural and functional networks, the relationship between these two parts is still an
open problem requiring significant development in various fields ranging from neurobiology to
complex system theory.
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Appendix A

Appendix: Source code

The subroutine Matrices3Dnetwork creates a two-level model of a network. The upper
level is represented by the ‘mcat’ network, and the structure of the lower level, an individual
area, is of small-world character.

SUBROUTINE Mat r i ce s3Dne twork ( mcat , Ninh )

IMPLICIT NONE
INTEGER(KIND=4) , PARAMETER : : m=53 , n =200 , ka= i n t ( n ∗ 0 . 1 )
INTEGER(KIND=4) : : i1 , i2 , j1 , j2 , jn , ab , l2 , c
REAL(KIND=8) : : ran1 , a1 , b , a2
INTEGER(KIND=4) , INTENT( IN ) : : mcat (m,m)
INTEGER(KIND=4) , INTENT(OUT) : : Ninh (m, n )
INTEGER(KIND=4) , DIMENSION(m, n , n ) : : m1(m, n , n ) , m2(m, n , n ) ,

m lo ca l (m, n , n ) , NN(m, n , 0 : n )

! m1 , m2 − b a s i c r e g u l a r m a t r i x (1 and 0 ) , ka n e a r e s t n e i g h b o u r s
DO i 1 =1 ,m, 1

DO j 1 =1 , n , 1
DO j 2 = 1 , ( ka +1) ,1

c=mod ( ( n +( j1 −1)+( j2−1)−ka / 2 ) , n )+1
i f ( j 1 /= c ) m1( i1 , j1 , c )=1
m2( i1 , j1 , c )=m1( i1 , j1 , c )

END DO
END DO

END DO

! g e n e r a t i o n o f t h e smal l−world ne twork − r e w i r e d m2 m a t r i x
! i f a>p , c o n n e c t i o n s t a y s = 1 , weaker c o n n e c t i o n , r e w i r i n g ,
! f i n d i n g t h e new 2 . node and a v o i d s e l f c o n n e t i o n and
! d o u b l e c o n n e c t i o n
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DO i 1 =1 ,m, 1
DO j 2 =1 , n−1 ,1

DO j 1 =1+ j2 , n , 1
IF ( ( m1( i1 , j1 , j 2 ) . EQ . 1 ) ) THEN

a1= ran1 ( idum )
IF ( a1 . GT . p ) THEN

m2( i1 , j1 , j 2 )=1
m2( i1 , j2 , j 1 )=1

ELSE IF ( a1 . LE . p ) THEN
b = ran1 ( idum )
j n =INT ( b∗n )+1
IF ( ( j n . NE . j 1 ) .AND. ( m2( i1 , j1 , j n ) . NE . 1 ) ) THEN

m2( i1 , jn , j 1 )=1
m2( i1 , j1 , j n )=1
m2( i1 , j2 , j 1 )=0
m2( i1 , j1 , j 2 )=0

ELSE IF ( ( j n . EQ . j 1 ) . OR . ( m2( i1 , j1 , j n ) . EQ . 1 ) ) THEN
DO WHILE ( ( j n . EQ . j 1 ) . OR . ( m2( i1 , j1 , j n ) . EQ . 1 ) )

b = ran1 ( idum )
j n =INT ( b∗n )+1

END DO
m2( i1 , jn , j 1 )=1
m2( i1 , j1 , j n )=1
m2( i1 , j2 , j 1 )=0
m2( i1 , j1 , j 2 )=0

END IF
END IF

END IF
END DO

END DO
END DO

! i n c l u d e e x c i t a t o r y and i n h i b i t o r y c o n n e c t i o n s − mloc a l
DO i 1 =1 ,m, 1

DO j 2 =1 , n , 1
a2= ran1 ( idum )
IF ( a2 . LT . p2 ) THEN

ab = −1
Ninh ( i1 , j 2 )=1

ELSE
ab = 1

END IF
DO j 1 =1 , n , 1

mlo ca l ( i1 , j1 , j 2 )= ab∗m2( i1 , j1 , j 2 )
END DO
a2= ran1 ( idum )

END DO
END DO
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! m a t r i x f o r f a s t e r c o m p u t a t i o n − i n d i c e s o f l o c a l y c o n n e c t e d
! neurons NN
DO i 1 =1 ,m, 1

DO j 1 =1 , n , 1
NN( i1 , j1 , 0 ) = 0
DO j 2 =1 , n , 1

IF ( ml oc a l ( i1 , j1 , j 2 ) . ne . 0 ) THEN
NN( i1 , j1 , 0 ) =NN( i1 , j1 , 0 ) + 1
l 2 =NN( i1 , j1 , 0 )
NN( i1 , j1 , l 2 )= j 2 ∗ml oca l ( i1 , j1 , j 2 )

END IF
END DO

END DO
END DO

RETURN
END SUBROUTINE Mat r i ce s3Dne twork

The subroutine Matrices3Dmeanfield creates a network of networks, with 5% of neurons
of an area receiving the mean field signals from connected areas.

SUBROUTINE M a t r i c e s 3 D m e a n f i e l d ( Labelnn , L a b e l g l )

IMPLICIT NONE
INTEGER(KIND=4) , PARAMETER : : m=53 , n =200 , num1=20
REAL(KIND=8) , PARAMETER : : p3 =0 .05
REAL(KIND=8) : : ran1 , a3
INTEGER(KIND=4) : : i1 , i2 , j1 , j2 , NN2,
INTEGER(KIND=4) : : Labe l (m,m, n )
INTEGER(KIND=4) , INTENT(OUT) : : Labe lnn (m, n , 0 : num1 )

! i n i c i a l i z a t i o n t o 0
Labe l ( 1 :m, 1 : m, 1 : n )=0
Labe lnn ( 1 :m, 1 : n , 1 : num1)=0

! s e l e c t i n g neurons g e t t i n g e x t r a−a r e a l i n p u t
DO i 1 =1 ,m, 1

DO i 2 =1 ,m, 1
DO j 1 =1 , n , 1

a3= ran1 ( idum )
IF ( a3 . LE . p3 ) THEN

Labe l ( i1 , i2 , j 1 )=1
ELSE

Labe l ( i1 , i2 , j 1 )=0
END IF

END DO
END DO
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END DO

! f o r each neuron j 1 from each area i 1 s a v i n g number
! and i n d i c e s o f c o n n e c t e d a r e a s i 2 s e n d i n g i n p u t
DO i 1 =1 ,m, 1

DO j 1 =1 , n , 1
NN2=0
DO i 2 =1 ,m, 1

IF ( Labe l ( i1 , i2 , j 1 ) . eq . 1 ) THEN
NN2=NN2 + 1
Labe lnn ( i1 , j1 , NN2)= i 2

END IF
END DO
Labe lnn ( i1 , j1 , 0 ) =NN2

END DO
END DO

RETURN
END SUBROUTINE M a t r i c e s 3 D m e a n f i e l d

The subroutine Matrices3Dchemsynap generates long-range connections between cortical
area, where the Mt links are established of neuron-to-neuron character. Multiple links between
two neurons from two areas are avoided.

SUBROUTINE Matr ices3Dchemsynap ( mcat , Ninh , L a b e l n e u r , Labelnn , L a b e l g l )

IMPLICIT NONE
INTEGER(KIND=4 ) , PARAMETER : : m=53 , n =200 , ka= i n t ( n ∗ 0 . 1 ) ,

num1=20 , num2=20
REAL(KIND=8 ) , PARAMETER : : p3 =0 .05
INTEGER(KIND=4) : : i1 , i2 , j1 , j2 , NN2, NN3, Ml , Mt
REAL(KIND=8) : : ran1 , x1 , x2
INTEGER(KIND=4 ) , INTENT( IN ) : : mcat (m,m) , Ninh (m, n )
INTEGER(KIND=4) : : NN area (m, n ) , NN neuron (m, n , 0 :m) , numbe ( n )
INTEGER(KIND=4 ) , INTENT(OUT) : : Labe lnn (m, n , 0 : num1 ) ,

L a b e l n e u r (m, n ,m, n ) ,
L a b e l g l (m, n , 0 : num1 , 0 : num2 )

! Labe lnn ( i1 , j1 , NN2) − save i n d i c e s o f a r e a s i 2 s e n d i n g t o i1 , j 1
! L a b e l g l ( i1 , j1 , NN2 , NN3) − save t h e i n d e x o f neuron j 2 from i 2
! L a b e l n e u r ( i1 , j1 , i2 , j 2 ) − save a l l e s t a b l i s h e d c o n n e c t i o n
! NN neuron ( i1 , j1 , NN2) − c o u n t # o f neurons g e t t i n g from i 2
! NN area ( i1 , j 1 ) − c o u n t # o f a r e a s s e n d i n g t o i1 , j 1

! i n i t i a l i z a t i o n t o 0
Labe lnn ( 1 :m, 1 : n , 0 : num1)=0



90 CHAPTER A. Appendix: Source code

L a b e l g l ( 1 :m, 1 : n , 0 : num1 , 0 : num2)=0
NN area ( 1 :m, 1 : n )=0
NN neuron ( 1 :m, 1 : n , 1 :m)=0

Mt= i n t ( n∗ka∗p3 )

CALL M a t r i c e s 3 D n e t w o r k

! f o r each c o n n e c t e d a r e a s ( i2−>i 1 ) a s p e c i f i c number Mt o f
! c o n n e c t i o n s i s e s t a b l i s h e d , where we g e n e r a t e j 1 ( from i 1 )
! g e t t i n g c o n n e c t i o n from i 2 and a l s o g e n e r a t e c o n n e c t i o n j 2
! ( from i 2 ) s e n d i n g t o j 1 ( from i 1 )

DO i 1 =1 ,m, 1
NN2=0
DO i 2 =1 ,m, 1

IF ( mcat ( i1 , i 2 ) / = 0 ) THEN
Ml=0
numbe ( 1 : n )=0
DO WHILE ( Ml<Mt )

x1= ran1 ( idum )
j 1 = i n t ( x1∗N) + 1
x2= ran1 ( idum )
j 2 = i n t ( x2∗N) + 1

! i f j 2 i s e x c i t a t o r y neuron and i f
! c o n n e c t i o n j1 , j 2 do n o t e x i s t ,
! e s t a b l i s h c o n n e c t i o n
IF ( ( Ninh ( i2 , j 2 ) = = 0 ) . and . ( L a b e l n e u r ( i1 , j1 , i2 , j 2 ) = = 0 ) ) THEN

L a b e l n e u r ( i1 , j1 , i2 , j 2 )=1

! save i n d e x o f i2 , ONLY ONCE
! i f neuron j 1 appears f o r t h e f i r s t t i m e t h e n
! c o u n t number o f a r e a s s e n d i n g t o i1 , j 1
IF ( numbe ( j 1 )==0) THEN

NN area ( i1 , j 1 )= NN area ( i1 , j 1 )+1
numbe ( j 1 )=1

ELSE
NN area ( i1 , j 1 )= NN area ( i1 , j 1 )

END IF

NN2=NN area ( i1 , j 1 )
Labe lnn ( i1 , j1 , NN2) = i 2
Ml=Ml+1
NN neuron ( i1 , j1 , NN2)= NN neuron ( i1 , j1 , NN2) + 1
NN3=NN neuron ( i1 , j1 , NN2)
L a b e l g l ( i1 , j1 , NN2, NN3)= j 2

END IF
END DO
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END IF
END DO
DO j 1 =1 , n

Labe lnn ( i1 , j1 , 0 ) = NN area ( i1 , j 1 )
DO i 2 =1 , NN area ( i1 , j 1 )

L a b e l g l ( i1 , j1 , i2 , 0 ) = NN neuron ( i1 , j1 , i 2 )
END DO

END DO
END DO

RETURN
END SUBROUTINE Matr ices3Dchemsynap
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[133] L. Zemanová, C. S. Zhou, and J. Kurths. Lectures in Supercomputational Neuro-
science:Dynamics in Complex Brain Networks, chapter Building a large-scale compu-
tational model of a cortical neuronal network. Springer, Berlin, 1st edition, 2008.

[134] C. S. Zhou and J. Kurths. Dynamical weights and enhanced synchronization in adaptive
complex networks. Phys. Rev. Lett., 96:164102, 2006.

[135] C. S. Zhou, J. Kurths, and B. Hu. Array-enhanced coherence resonance: nontrivial effects
of heterogeneity and spatial independence of noise. Phys. Rev. Lett., 87(9):098101, 2001.

[136] C. S. Zhou, A. E. Motter, and J. Kurths. Universality in the synchronization of weighted
random networks. Phys. Rev. Lett., 96:034101, 2006.
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