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Kurzfassung

Meine Dissertation behandelt verschiedene neue rauschinduzierte Phänomene
in anregbaren Neuronenmodellen, insbesondere solche mit FitzHugh-Nagumo Dy-
namik.

Ich beschreibe das Auftreten von vibronischer Resonanz in anregbaren Syste-
men. Sowohl in einer anregbaren elektronischen Schaltung als auch im FitzHugh-
Nagumo Modell zeige ich, daß eine optimale Amplitude einer hochfrequenten
externen Kraft die Signalantwort bezüglich eines niederfrequenten Signals ver-
bessert. Weiterhin wird der Einfluß von additivem Rauschen auf das Zusammen-
wirken von stochastischer und vibronischer Resonanz untersucht. Dieser Effekt
der vibronischen Resonanz kann auf räumlich ausgedehnte anregbare Systeme in
Form einer verbesserten Ausbreitung eines niederfrequenten Signals durch eine
optimale hochfrequente Kraft erweitert werden. Weiterhin untersuche ich Syste-
me, die sowohl oszillierende als auch anregbare Eigenschaften beinhalten und da-
durch zwei interne Frequenzen aufweisen. Diese Frequenzen zeigen sich zum einen
in den Grenzzyklen der Standardspikes und zum anderen in denen von Oszilla-
tionen mit kleiner Amplitude unterhalb der Anregungsschwelle (Canard-Orbits).
Ich zeige, daß in solchen Systemen der Effekt der stochastischen Resonanz deut-
lich erhöht werden kann, wenn eine zusätzliche hochfrequente Kraft in Resonanz
mit den kleinen Oszillationen unterhalb der Anregungsschwelle hinzugenommen
wird. Es ist beachtenswert, daß diese Verstärkung der stochastischen Resonanz
eine geringere Rauschintensität zum Erreichen des Optimums benötigt als die
standartmäßige stochastische Resonanz in anregbaren Systemen.

Ich untersuche Frequenzselektivität bei der rauschinduzierten Signalverar-
beitung von Signalen unterhalb der Anregungsschwelle in Systemen mit vie-
len rauschunterstützten stochastischen Attraktoren. Diese Attraktoren entstehen
durch eine Kopplung über die Variable mit der langsamen Dynamik zwischen
identischen anregbaren Oszillatoren. Diese Art der Kopplung sorgt für mehre-
re nebeneinander existierende gemittelte Perioden, die verschieden zu denen ei-
nes isolierten Oszillators sind. Diese neuen Attraktoren mit den abweichenden
gemittelten Perioden weisen auch unterschiedliche Phasenbeziehungen zwischen
den einzelnen Elementen auf. Ich zeige, daß die Signalantwort des gekoppelten
Systems unter verschiedenen Rauscheinwirkungen deutlich verbessert oder auch
reduziert werden kann durch das Treiben einzelner Elemente in Resonanz mit
diesen neuen Resonanzfrequenzen, die mit passenden Phasenbeziehungen korre-
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spondieren.
Weiterhin konnte ich einen rauschinduzierten Phasenübergang von einem

selbstoszillierenden System zu einem anregbaren System nachweisen. Dieser Über-
gang erfolgt durch eine rauschinduzierte Stabilisierung eines deterministisch in-
stabilen Fixpunktes der lokalen Dynamik, während die gesamte Phasenraum-
struktur des Systems erhalten bleibt. Die räumliche Kopplung ist erforderlich,
um Fluktuationen zu unterdrücken (über die Bildung von Klustern, wenn lokale
Kopplung vorhanden ist). Dadurch führt die gemeinsame Wirkung von Kopp-
lung und Rauschen zu einem neuen Typ von Phasenübergängen und bewirkt
eine Stabilisierung des Systems. Das sich daraus ergebende rauschinduziert an-
regbare Regime zeigt charakteristische Eigenschaften von klassisch anregbaren
Systemen, wie stochastische Resonanz und Wellenausbreitung. Dieser rauschin-
duzierte Phasenübergang ermöglicht dadurch die Übertragung von Signalen durch
ansonsten global oszillierende Systeme und die Kontrolle der Signalübertragung
durch Veränderung der Rauschintensität. Insbesondere eröffnen diese theoreti-
schen Ergebnisse einen möglichen Mechanismus zur Unterdrückung unerwünsch-
ter globaler Oszillationen in neuronalen Netzwerken, welche charakteristisch für
abnorme medizinische Zustände, wie z.B. bei der Parkinson’schen Krankheit oder
Epilepsie, sind. Die Wirkung von Rauschen würde dann wieder die Anregbarkeit
herstellen, die den normalen Zustand der erkrankten Neuronen darstellt.
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Abstract

My thesis is concerned with several new noise-induced phenomena in excitable
neural models, especially those with FitzHugh-Nagumo dynamics. In these ef-
fects the fluctuations intrinsically present in any complex neural network play a
constructive role and improve functionality.

I report the occurrence of Vibrational Resonance in excitable systems. Both
in an excitable electronic circuit and in the FitzHugh-Nagumo model, I show that
an optimal amplitude of high-frequency driving enhances the response of an ex-
citable system to a low-frequency signal. Additionally, the influence of additive
noise and the interplay between Stochastic and Vibrational Resonance is ana-
lyzed. This effect can be extended to spatially extended excitable media, taking
the form of an enhanced propagation of the low-frequency signal. Further, I study
systems which combine both oscillatory and excitable properties, and hence in-
trinsically possess two internal frequencies, responsible for standard spiking and
for small-amplitude oscillatory limit cycles (Canard-orbits). I show that in such
a system the effect of Stochastic Resonance can be amplified by an additional
high-frequency signal which is in resonance with the oscillatory frequency. This
amplification needs much lower noise intensities than for conventional Stochastic
Resonance in excitable systems.

I study frequency selectivity in noise-induced subthreshold signal processing in
a system with many noise-supported stochastic attractors which are created due
to slow variable diffusion between identical excitable elements. Such inhibitory
coupling permits the coexistence of several average periods distinct from that of
an isolated oscillator and of several phase-relations between elements. I show that
the response of the coupled elements at different noise levels can be significantly
enhanced or reduced by forcing some elements into resonance with these new
frequencies which correspond to appropriate phase-relations.

A noise-induced phase transition to excitability is reported in oscillatory me-
dia with FitzHugh-Nagumo dynamics. This transition takes place via noise-
induced stabilization of a deterministically unstable fixed point of the local dy-
namics, while the overall phase-space structure of the system is maintained. Spa-
tial coupling is required to prevent oscillations through suppression of fluctuations
(via clustering in the case of local coupling). Thus, the joint action of coupling
and noise leads to a different type of phase transition and results in a stabilization
of the system. The resulting noise-induced regime is shown to display properties
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characteristic of excitable media, such as Stochastic Resonance and wave propa-
gation. This effect thus allows the transmission of signals through an otherwise
globally oscillating medium. In particular, these theoretical findings suggest a
possible mechanism for suppressing undesirable global oscillations in neural net-
works (which are usually characteristic of abnormal medical conditions such as
Parkinson’s disease or epilepsy), using the action of noise to restore excitability,
which is the normal state of neuronal ensembles.
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Chapter 1

Introduction

Random fluctuations influence our life in nearly every situation, and so noise
plays an important role in the understanding and description of nature. Robert
Brown observed in 1827 that small pollen grains suspended in water display a
very irregular motion which gained fame as the Brownian Motion [1]. He could
exclude any specifically organic origin of this motion. It was a long time before
Einstein in 1905 and independently in 1906 Smoluchowski published a statistical
explanation of the Brownian Motion. They recognized that the motion evoked by
frequent impacts on the pollen grain of the permanently moving molecules of the
surrounding water is so complicated that its effect on the pollen grain can only
be described in a probabilistic way. They abstracted numerous impacts from the
water molecules to a stochastic force. The desire to reduce the complexity of a
real system embedded in a complex environment is often the origin of a stochastic
formulation of a problem which is usually more elegant and practicable. An
actual example of a simplifying effect of stochastic models arose in the climate
research. The description of ocean and atmosphere dynamics needs thousands
of deterministic equations, whereas including noise can reduce the number of
equations. The possible reason for the Permian extinction has been discussed and
explained in Ref. [2] with help of the stochastically driven escape of a potential
well.

There exist different sources of noise in real systems [3–5]. In chemical reac-
tions noise results from temperature fluctuations and finite-size effects, in lasers
quantum fluctuations are the dominant random effect, while in climate models
the numerous impacts from annual and other cycles might be looked upon as
rapid fluctuations on the long time scale, e.g. ice ages. In neurons, the stochas-
ticity originates from different sources. The random synaptic input from other
neurons is the most important one, but a random switching of ion channels and
the quasi-random release of neurotransmitter by the synapses also contribute to
the stochasticity in neurons.

From everyday experience most people know noise only as a nuisance. Ran-
dom fluctuations cause disorder or hinder the transmission of information. Nor-
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mally, one tries to reduce the influence of noise on experiments, e.g. by cooling
or by filtering the random fluctuations or by averaging over many repetitions of
the experiment. In contrast to the usual role of noise as a nuisance, under cer-
tain conditions noise can also play a constructive (“ordering”) role in nonlinear
systems far from equilibrium. The growing interest in such noise-induced effects
originates from the increasing number of noise-induced phenomena discovered in
natural systems.

An instructive example of a noise-induced enhancement of signal processing
concerns the sensory nervous system of a paddlefish [6]. The paddlefish is able to
detect the electrical signals of the muscle activity of its planktonic prey daphnia
and feeds itself by capturing daphnia. In a laboratory experiment the paddlefish
was swimming in an aquarium and the number of captured daphnia per time unit
was counted. Additionally two electrodes were put in the aquarium to supply
electrical noise which mimics the environmental noise in a natural habitat. At a
certain finite electrical noise intensity the paddlefish caught a maximum number
of planktonic prey. Hence, the noise helps the paddlefish to detect the position
of the planktonic prey. This influence of noise on the sensory nervous system of
a paddlefish is manifestation of the stochastic behavioral resonance effect in a
natural biological system.

The effect of noise in brain activity evokes special interest. Despite (or maybe
because of) the many noise sources in such a neural network, the brain acts very
reliably and needs only a very small amount of energy (about 12 W according
to Ref. [7]). A growing number of scientific results suggests that noise plays
a constructive role in brain activity. For instance, a noise-induced effect has
been demonstrated in the visual processing area of the human brain [8]. In this
experiment a periodic light signal was sent to one eye, whereas the other eye was
subjected by noise, represented by light with fluctuating intensity. The result
was that the noise improved the processing of the periodic signal sent to the first
eye.

Next I describe the modeling of neural activity with a simple reaction-diffusion
model.
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1.1 The neural FitzHugh-Nagumo model

Excitable systems attract large interests and can be found in many natural sys-
tems and realistic models, for instance, in laser systems, neural networks, chem-
ical reactions and climate dynamics, to mention only the most important fields
of research [9–19]. All excitable media have in common a threshold of excitation
and the three states: a “rest” state, an “excited” (or “firing”) state and a “re-
covery” (or “refractory”) state. The rest state can be simply an equilibrium (or
fixed) point or a small-amplitude subthreshold limit cycle. Small perturbations
below the threshold of excitation result in small-amplitude linear response near
the rest state [Fig. 1.1(a)]. Sufficient large perturbations beyond the threshold
enable the system to leave the rest state, going through the firing and recovery
state before it reenters the rest state again [Fig. 1.1(b)]. The strongly nonlinear
behavior results in a large difference in the response to small changes in the input
and is accomplished by a large excursion through the phase space, the so-called
spike. A larger input impulse does not change the dynamics and the response
significantly [Fig. 1.1(c)]. The system is very refractory during a spike and does
not response upon further perturbations, which means that it takes a certain re-
covery time before another excitation can initiate a second spike [Fig. 1.1(d) and
(e)].

Excitable media, a typical example of nonlinear systems far from equilibrium,
implies a reset mechanism, i.e. a continuous energy supply and a feedback loop.
Such a non-equilibrium state can be realized e.g. by external pumping in a laser
system, by a permanent matter flow in chemical reactions or by ion pumping
across a cell membrane in neurons which leads to a potential difference across
them.

Hodgkin and Huxley [20] have shown that these excitable properties can
be modeled by a four-dimensional nonlinear differential equation. Later it was
demonstrated by FitzHugh [21] and others that two nonlinear differential equa-
tions suffice for a qualitative study and understanding of excitability. They sug-
gested the FitzHugh-Nagumo (FHN) model which is at the center of interest in
this work. Excitability can be also observed in even simpler models, e.g. one-
dimensional systems with a reset rule like integrate-and-fire models or phase
models. Such models are used to study specific aspects of excitability. Behavior
is made more complicated and richer by coupling of many excitable systems. De-
pending on the strength and the type of coupling very different spatiotemporal
phenomena can be observed, e.g. pulse and spiral propagation, periodic pattern
in space and/or time, scroll waves, localized spots, and spatiotemporal chaos.

Since the focus of this work is the FHN neural model, I give a rough sketch of
the rather complicated neural dynamics. Detailed explanation of neural models
are given for instance in Refs. [22–24]. A typical neuron consists of three parts:
the soma or cell body, the dendrites and the axons, which are both extending
branches of the soma. A key feature is the difference in the electrical potential
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input phase dynamic output

(a)

(b)

(c)

(d)

(e)

Figure 1.1: Features of excitable systems which may be found in the FitzHugh-
Nagumo model. The left column depicts the different signals, which cause very
different results in the dynamics in the phase space (middle column) and in the
output (right column). The stable state is represented by the full circle in the
middle plots.(a) An input below the threshold (dashed line) leads to a small
motion around the stable state; (b) an input beyond the threshold initiates an
escape from the rest state and leads to a large-amplitude excursion of the system’s
variables (spike); (c) further increase of the input amplitude does not influence
the form of the spike significantly; (d) the system is insensitive during a spike,
i.e. a second perturbation in the refractory time does not evoke a second spike;
(e) but after this time, the system is accessible again and a second signal leads
to a second spike.
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in the different parts of the neuron and in the surroundings, which leads to a
voltage across the nerve membrane. The nerve membrane is a lipid bilayer and
is almost a barrier for ions and acts consequently as a capacitor. The gates in
the membrane (ion pumps and ion channels) control the ion flow across them
and hence support or change the voltage. Input from other neurons (in the order
of 104) enters the neuron across the synapses located on the branches of the
dendritic tree in the form of miniature current pulses. Depending on the nature
of the synapse (excitatory or inhibitory), the current pulse is either positive or
negative. These are summed across the tree, yielding a net input current which
induces variations of the potential difference across the cell membrane in the
soma hillock (spike initiating zone). If this potential reaches a threshold, a sharp
voltage pulse (an action potential or spike) is generated in the axon. Once a spike
sets in, the shape of it does not depend on the details of the stimulation. The
neuron demonstrates an all-or-nothing behavior response to current stimulation.
The spike-generation of neurons includes all the above-mentioned properties of
excitable media. This spike rapidly propagates along the axon to send a signal
to other neurons [25].

The first model of neurons was suggested by Hodgkin and Huxley [21] to
describe the spike-generation in the giant axon of squids. It predicts the voltage-
dependent conductances influenced by two sorts of ion channels selective for
sodium and potassium, respectively. The FitzHugh-Nagumo (FHN) model was
proposed in Ref. [21, 26] as a simplification of the famous model by Hodgkin and
Huxley [21] and is a simple example of two-dimensional excitable dynamics. It de-
scribes qualitatively rather than quantitatively the response of an excitable nerve
membrane to external stimuli. Important features are the inclusion of a refrac-
tory mechanism and the existence of different refractory states, as well as states
of enhanced and depressed excitability depending on the external stimulation.

A general form of the FHN model is given by

ε
dx

dt
= f(x)− y , (1.1)

dy

dt
= γx− βy + a + s(t) + ξ(t) , (1.2)

where x(t) is the activator variable (representing the membrane potential in the
neural case) and y(t) is the inhibitor variable (related to the conductivity of
the potassium channels existing in the neuron membrane [18]). Here s(t) is a
periodic signal and ξ(t) is a Gaussian white noise with zero mean and correlation
〈ξ(t)ξ(t′)〉 = σ2

aδ(t− t′). In neural models, the time-scale factor ε is much smaller
than one (ε ≈ 0.01) and implies that x(t) is the fast and y(t) is the slow variable.
The nonlinear function f(x) is one of the nullclines (curves with ẋ = 0, ẏ = 0
respectively) of the deterministic system and a common choice of this function is

f(x) = x− x3

3
. (1.3)
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The deterministic FHN model exhibits excitable behavior when the activator
nullcline (i.e. ẋ = 0) ync,x = f(x) intersects only once with the linear nullcline
of the inhibitor variable (i.e. ẏ = 0) ync,y = γ

β
x + a

β
and the intersection point

is a stable fixed point (resting state) on the left branch of the cubic nullcline.
For the sake of reduction of the parameters, I chose β = 0.0 and γ = 1.0, i.e. I
consider a perpendicular inhibitor nullcline in the x-y phase plane [Fig. 1.2]. The
intersection point between the two nullclines (a fixed point) reads then x0 = −a,
y0 = a3

3
− a. The transition between excitable and oscillatory regimes occurs by

changing a via a supercritical Hopf bifurcation. An excitable behavior can be
found for |a| > 1, because the fixed point (x0,y0) is stable. For |a| < 1 the fixed
point becomes unstable and hence a self-oscillating behavior appears. I note that
for β 6= 0.0 even a bistable regime can be created. However, I shall not extend
the discussion about the bifurcation analysis because it is not necessary for the
following investigations. For detail see e.g. Refs. [21, 27].

In the excitable regime, sufficiently strong perturbations (i.e. beyond the
excitation threshold), either in x or y, lead to a far-reaching excursion in the
phase plane [Fig. 1.2]. At first a fast motion in the x-direction to the right branch
of the cubic nullcline takes place followed by a slow motion along this right branch
until the local maximum is reached (“firing” of a neuron). Then a fast motion in
the negative x-direction appears back to the left branch subsequently followed by
a slow one along the left branch (“refractory state”) to the rest state. The single
spike in the deterministic FHN [Fig. 1.2 (left column)] is initiated by a suitable
initial condition, caused, for instance, by an external stimulus. If sufficiently
strong noise (σ2

a > 0) is present, the excitation process occurs permanently when
the system reaches the rest state after firing a spike and passing the refractory
state [Fig. 1.2 (right column)]. The sequence of action potentials (time series of
activator variable x) resembles the spontaneous activity of a neuron.

When an additive signal (s(t) = A cos(ωt)) is present, the evoked spikes will
be correlated with this signal. For weak subthreshold signals, noise is absolutely
necessary to stimulate spikes and an optimal noise intensity maximizes the cor-
relation between the signal and the response, the manifestation of Stochastic
Resonance (SR) in the neural FHN model (see chapter 1.2.2).

Some approximations and limitations are needed for the motivation of a pure
additive signal (I(t) = s(t) + ξ(t)) in Eq. (1.2) for a neuron. The input signal
of a neuron is a summation of the stimuli (spikes) from all synaptic connections.
The following assumptions are needed:

• The input is nearly balanced between excitatory and inhibitory current,
i.e. the mean value of the total current 〈I(t)〉 is small with respect to the
excitation threshold.

• The spikes from different synapses are statistically independent.

The first assumption can be realized by a suitable ratio of numbers and/or ampli-
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Figure 1.2: Dynamics of the FHN model in the phase plane with the nullclines
(top row) and the corresponding time series of the activator variable (bottom
row) according to Eqs. (1.1), (1.2) and (1.3) with parameters ε = 0.01, a =
1.05, β = 0.0, γ = 1.0. The cubic line illustrates the activator nullcline and
the perpendicular straight line the inhibitory one in the phase plane. The left
column depicts a spike in the deterministic FHN evoked by an appropriate initial
condition. Right: a stochastic realization for σ2

a = 0.01 and s(t) = 0.

tudes of the two spike types (excitatory/inhibitory) [28]. The second one is only
an approximation [29]. A subgroup of input neurons may generate a signal by
a common time-dependent spike rate. We consider an input current consisting
of a summation of spike trains with a periodically modulated rate. Due to the
high number of neurons the resulting input signal is a rather continuous random
process with periodically modulated variance. This is an example for a noise-
encoded signal. There is no reason to expect that the number of activator and
inhibitor input neurons are balanced. In this case the resulting input current
is a random process with both signal-dependent mean and variance, hence an
additive signal appears in addition to the noise-encoded signal. Beside the input
subgroup many other neurons stimulate the neuron under consideration and per-
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form a massive input from the neural background [24]. That is the contribution
of incoherently firing neurons, which are functionally far from the input subgroup
and from each other. Their firing rate can be assumed as temporally constant.
A pure additive signal can be achieved if only excitatory (or inhibitory) neurons
with time-dependent rates are present in the input area and a large number of
excitatory and inhibitory neurons with constant rate compose the background
contribution. The second group cares for the balance between the two types of
stimuli, as in the first assumption above. Under these conditions we obtain a
total input current that is a noise with constant intensity but time-dependent
mean value. Only in this situation can one separate noise and signal. Such a re-
sulting input is similar to that assumed for receptor neurons. For a more detailed
explanation see e.g. Refs. [24, 30].

In the next section I outline the most relevant noise-induced effects.
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1.2 Effects of noise in neural systems

Here I review two noise-induced effects in which noise plays the constructive role
and increases the level of ordering or synchrony in the system and the noise-
induced phase transition in which noise leads to a qualitative changing of the
system properties.

1.2.1 Coherence Resonance

Coherence Resonance (CR) is a noise-induced effect and describes the occur-
rence and optimization of periodic oscillatory behavior due to noise perturbations
[Fig. 1.3]. It has been found that at a certain noise intensity the system responds
with a maximal periodicity, i.e. with an enhanced coherence in the output. Both
an increase and a decrease of the noise amplitude away from this optimal value
lead to a decreasing of the coherence. CR has been observed in excitable systems
like the Hodgkin-Huxley model [31], the FitzHugh-Nagumo systems [32], leaky
integrate-and-fire models [33], the Plant/Hindmarsh-Rose neural model [34], and
in dynamic systems which besides show jumps between several attractors [35].
Besides the neural context, CR can be found in climate [17] and laser models
[36, 37].

nonlinear system
noise regular output

Figure 1.3: Coherence Resonance principle: proper noise intensity optimizes the
periodicity of the system output.

Although CR is not in the center of this work, a sketch of the CR in excitable
systems helps to understand the generation of the eigenfrequency in the variations
of the Stochastic Resonance effects considered here. The CR effect requires an
internal time-scale which is provided by excitable systems with the excursion time
te (firing plus recovery time), i.e. the time which is needed by the system for a
full round trip (spike) from the leaving of the rest state to the reentering of it
(see chapter 1.1). Additionally, the CR is determined by the activation time ta
as the second time-scale. This is the time needed for the escape from the rest
state. The statistics of these two times are quite different: while the activation
time depicts a strong dependence on the noise intensity and approximately obeys
Poissonian statistics, the excursion time corresponds to the decay times of the
unstable states (firing and recovery state) and hence it depends much less on
the noise intensity than the activation time. The activation and excursion time
results in the interspike interval T . For increasing noise intensity the activation
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time decreases rapidly to almost zero, hence the interspike interval is determined
by the excursion time which is approximately noise independent for small and
intermediate noise intensity. For this optimal noise intensity the system responds
with a very regular (coherent) spiking behavior. A well-pronounced peak in
the spectrum appears. Further increasing the noise intensity leads to a random
variation of the excursion time and the interspike intervals become more random
and the coherence decreases again. In summary, the CR effect rests upon the
competition between the excursion time with a weak noise dependency and the
strong noise-dependent activation time, which in the optimal coherent regime is
just negligibly small. Detailed discussions of CR can be found e.g. in Refs. [19,
32].

With the help of this sketch of the mechanism and features of CR, I describe in
the next section the manifestation of the Stochastic Resonance effect in excitable
systems.

1.2.2 Stochastic Resonance

Stochastic Resonance (SR) is probably the most famous and established effect
among noise-induced phenomena. SR describes the improved synchronization
of the system output with the input due to an intermediate and optimal noise
intensity [Fig. 1.4].

noise

output

signal under threshold

nonlinear system

Figure 1.4: Stochastic Resonance principle: proper noise intensity optimizes the
signal transmission.

This noise-induced effect can be easily illustrated by the example of the ex-
citable system and will be discussed with the help of the FHN model according to
Eqs. (1.1), (1.2) and (1.3) in chapter 1.1 with the parameters noted there. If the
periodic signal s(t) = A cos(ωt) is strong, the response will follow this forcing,
i.e. the spikes evoked will be correlated to the signal phase. This can be easily
understood in the FHN model for very slow driving (adiabatic case), where the
signal acts effectively as a static modulation of the inhibitor y nullcline. A nega-
tive signal (s(t) < 0) shifts the y nullcline (perpendicular straight line top left in
Fig. 1.2) to the right-hand side in the phase space so that the fixed point is in the
middle unstable branch of f(x) (the middle part of the cubic x nullcline). In this
case, the system responds with an oscillatory behavior (limit cycle). Hence, it
fires sustainedly even in the absence of noise. During the opposite half period of
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the signal, the signal will be positive and the y nullcline is shifted in the opposite
direction. Consequently, the system will be even less excitable (i.e. includes a
higher threshold) than in the absence of a signal. As a result no spikes appear in
the output. The whole response contains spike trains modulated with the signal
frequency ω.

The presence of noise leads to a random location of the spikes, but the prob-
ability of a firing depends on the signal. In contrast, small-amplitude signals
(below the threshold of excitation) cannot stimulate spikes by themselves, but
only small oscillations around the resting state so that they change the thresh-
old of excitation. With the help of noise, spikes may nevertheless be generated
and will be correlated to the weak signal. The signal effectively modulates the
threshold. At a finite noise intensity the noise is sufficiently strong to evoke regu-
lar spikes during the negative signal (reduced threshold compared to the absence
of a signal), as in the optimal CR case, and weak enough not to stimulate reliable
spikes in the opposite positive signal phase (enhanced threshold), as in the sub-
optimal CR case with a lack of noise. Both an increase and a decrease of the noise
intensity from the optimal noise amplitude lead to a reduced synchronization of
the system output with the input. This is the basics of SR in excitable systems
as it is well known from the literature [38, 39]. An example of the SR in the FHN
model can be seen in Fig. 3.1 in chapter 3.2.

The SR behavior becomes evident in the power spectrum of the output, which
consists of a noisy background spectrum and an additional peak at the driving
frequency and its higher harmonics. Possible quantifications of SR are the weight
of the peak itself as well as the signal-to-noise ratio to the background spectrum.
Both measurements pass through a maximum as a function of noise intensity by
appearing of SR. The amplitude of the signal frequency in the output can be
measured also in a noise-free situation, which allows a comparison with the de-
terministic case and is the preferential measure of SR in this thesis. This measure
is defined in the following as the linear-response parameter Q (see Refs. [39, 40]
and Eqs. (2.3)-(2.5)).

Scientific interest in SR is evoked by its wide occurrence in many research
fields. SR has been found among other phenomena in monostable [41], excitable
[19, 38], non-dynamic [42] and non-potential [43] systems. There exist many ex-
amples of SR in realistic models and different experimental set-ups. In particular,
one should mention SR in an ice-age model [44], where the notation SR was in-
troduced. SR has also been found in ring lasers [45], in systems with electronic
paramagnetic resonance [46], in tunnel diodes [47], in experiments with Brown-
ian particles [48], in chemical systems [49, 50], in visual perception [51, 52], in the
food detection system of paddlefish [6] and in human cognition [53].

Next I review noise-induced transitions, which lead to a qualitative changing
of system-immanent properties.
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1.2.3 Noise-induced transitions

In such noise-induced effects as CR (chapter 1.2.1) or SR (chapter 1.2.2) noise
does not change the system qualitatively. In contrast, Noise-induced Transition
(NIT) describes the modification of the system’s immanent features due to noise,
i.e. changing the noise intensity leads to a new state, which is qualitatively differ-
ent to the previous one. This transition can be described by an appropriate order
parameter. One can regard NIT in non-equilibrium systems as a generalization
of phase transitions in equilibrium systems. Following the analogy between the
equilibrium phase transition and the non-equilibrium NIT, the noise plays the role
of the temperature and the order parameter describes the phase of the system
[54]. NIT in spatially extended systems can be considered as noise-induced phase
transitions in analogy to equilibrium phase transitions in the thermodynamics.
Some possible classification of NITs can be given as follows:

1. NITs in zero-dimensional systems

(a) NITs which lead to the appearance of additional extrema (maxima or
minima) in the system’s probability distribution

(b) NITs which lead to the parametric excitation of oscillations

2. NITs in spatially extended systems, or bona-fide phase transitions

(a) NITs in spatially extended systems which lead to the appearance or
the disappearance of new stable states

(b) NITs in spatially extended systems which lead to the appearance or
the disappearance of new behavior regimes.

This classification of NITs does not claim to be final, because NITs are an
ongoing topic and I expect further discoveries of new transitions. Nevertheless,
the suggested classification, as an enlargement of the one in Ref. [55], should help
the interested reader to recognize the differences and common features in the
wide field of NITs.

The first class of NITs (1a) occurs in zero-dimensional systems with multi-
plicative noise and describes the appearance of additional extrema (maxima) in
the system probability distribution (see the book [2]) or the disappearance of old
ones [56]. This NIT is based on the effect, that multiplicative noise changes the
“stochastic” potential, which effectively determines the behavior of the system.
In this case, the location of the extrema in the system probability distribution
can be used as the order parameter. Such a transition type has been observed,
for instance, in biological models describing the dynamics of population growth,
in the genetic model used for theoretical and experimental study of genotype
dynamics in a fluctuational environment [2, 57], in chemical reactions [2], and in
an electrical parametric oscillator [58].
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The second kind of NIT (1b, excitation of oscillations, for review see Ref. [59])
can be found in oscillatory systems. In this situation, the average of the instan-
taneous amplitude of oscillations or the average of its square is a proper order
parameter. There exists a critical noise value. Above it, oscillations are excited,
whereas below it, no oscillations appear. The parametric excitation of oscillations
due to multiplicative noise is the reason of these NITs and the multiplicative noise
changes the frequency randomly. This type of NIT can be found e.g. in a pen-
dulum with randomly vibrated axis [60] and in nonlinear models to describe the
dynamics of childhood epidemics [61].

All bona-fide phase transitions (class 2a and 2b) are based on an averaged
influence of multiplicative noise and the stabilizing effect of coupling. A simple
explanation could be to “heat” a previously stable deterministic state, whereas
other regions in the state space are “cooled”. The noise strength has to be
large enough to exceed the deterministic restoring force and to enhance nonlinear
behavior. In zero-dimensional systems, the noise-induced transition cannot be
observed clearly, because the new state is a compromise between the deterministic
restoring force and the selective heating / cooling due to the multiplicative noise
being overwhelmed by the randomness of noisy motion. The necessary coupling
provides for a suppression of large fluctuations.

The third kind of NIT (2a) describes transitions in spatially extended systems
which lead to qualitative changes in the stable states (for review see Ref. [62]). In
particular, NIT leads to bistability in the mean field in a deterministic monostable
system and evokes a doubling and shifting of the stable state. Afterwards, due
to the coupling, the elements in the spatially extended systems tend either to
the left or to the right well of the bistable mean field potential, and then the
symmetry and ergodicity are broken compared to the deterministic monostable
system. In this case the order parameter, which determines the phase of a system,
is the mean field. Such NITs have been found in biological systems with diffusion
[63], in generic models [64–67], or in particular Ginzburg-Landau equations. The
additional memory of colored noise is critical for these transitions [68–70] and
leads to a growing disorder in the system by increased correlation.

The last class of NIT which leads to qualitative changes in the behavior regime
(2b) results on the one hand in a qualitative jump in the oscillation amplitude
from a nonzero value to zero (in practice close to zero due to random fluctuations)
or vice versa. On the other hand this NIT induces a qualitative change in the
recurrence mechanism to a stable state. In this case the response of the system can
be given in terms of an averaged trend, expressed by the small-noise-expansion [1,
62]. Such kind of phase transition has been found in models of neural networks for
a transition from an excitable to an oscillatory behavior [71, 72], from a bistable
to an excitable dynamics [73, 74] and conversely from an excitable to bistable
dynamics [19]. The phase transition from an oscillatory state to an excitable
regime (see chapter 4.1 and [75]) discussed in this work, belongs also to this class
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of NIT. The choice of a proper order parameter depends on the NIT considered.
For instance, the NIT from an excitable to a bistable regime can be described
by the size and the statistics of coherent space-time clusters [19] which represent
the excited or quiescent cells in a three-dimensional space formed by the two
spatial dimensions and the temporal axis. The relative resting time has turned
out to be a proper order parameter for the NIT from the self-sustained oscillatory
regime to the noise-induced excitable dynamics [75] and measures the time which
oscillators spend in the vicinity of the noise-induced stable fixed point related to
the whole measuring time.

The introduction proceeds with a sketch of the theoretical treatment of sys-
tems with multiplicative noise.

1.2.4 Theoretical treatment of systems with multiplica-
tive noise

In this chapter I review the small-noise-expansion which I use in chapter 4.1 to
evaluate the systematic contribution of the multiplicative noise, i.e. we separate
the systematic contribution from the stochastic one. For a deeper review see e.g.
books [1, 62]. The explanation and notations follow the one in book [62] and have
a general character.

We consider the following one-dimensional reaction-diffusion equation for field
φ(x, t):

∂φ

∂t
=

∂2φ

∂x2
+ f(φ) + ε1/2g(φ)η(x, t) , (1.4)

where parameter ε measures the strengths of the noise explicitly. We assume
that η(x, t) is a Gaussian white noise with zero mean and correlation given by

〈η(x, t)η(x′, t′)〉 = 2C

( |x− x′|
λ

)
δ(t− t′) . (1.5)

The parameter λ is the characteristic length of the spatial correlation of the
noise. It is well known that in zero-dimensional systems (i.e., systems with no
spatial dependence), multiplicative noise induces new phenomena, which cannot
be observed in the presence of additive noise [2]. The difference results from the
systematic contribution coming from the multiplicative noise coupling. The key
point of this approach is the fact that the noisy term in Eq. (1.4) has a non-
vanishing mean when the coupling function g(φ) is not a constant. The mean
value of the noisy term can be evaluated with help of the spatially extended
version of Novikov’s theorem [62]:

〈g(φ)η(x, t)〉 =

∫ t

0

dt′
∫

dx 〈η(x, t)η(x′, t′)〉
〈

δg(φ(x, t))

δη(x′, t′)

〉
. (1.6)
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By inserting the correlation function Eq. (1.5) in Eq. (1.6) and conducting
the time integration one achieves:

〈g(φ)η(x, t)〉 =

∫
dxC(x, x′)

〈
g′(φ(x, t))

δφ(x, t)

δη(x′, t′)

∣∣∣∣
t′=t

〉
. (1.7)

Formal time integration of φ(x, t) in Eq. (1.4) and afterwards derivation with
respect to η(x′, t′) allows the evaluation of the response function,

δφ(x, t)

δη(x′, t′)

∣∣∣∣
t′=t

= ε1/2C(0)g(φ(x, t))δ(x− x′) . (1.8)

By inserting Eq. (1.8) in Eq. (1.7) and integration one obtains

〈g(φ)η(x, t)〉 = ε1/2C(0)〈g(φ)g′(φ)〉 . (1.9)

According to this result, Eq. (1.4) can be rewritten then with a noise-free
systematic part and a mean-free stochastic contribution,

∂φ

∂t
=

∂2φ

∂x2
+ h(φ) + ε1/2ξ(φ, x, t) , (1.10)

with a new systematic reaction term

h(φ) = f(φ) + εC(0)g′(φ)g(φ) , (1.11)

and a new noise term ξ(φ, x, t) of zero mean

ξ(φ, x, t) = g(φ)η(x, t)− ε1/2C(0)g′(φ)g(φ) . (1.12)

Now I go back to my special situation of Gaussian white noise with zero mean
and δ-correlation in space and time,

〈η(x, t)η(x′, t′)〉 = σ2
m δ(t− t′) δ(x− x′) . (1.13)

Then Eq. (1.11) reads,

h(φ) = f(φ) +
1

2
σ2

m g′(φ)g(φ) , (1.14)

where σ2
m represents the multiplicative noise intensity.

Next I complete the introduction with the motivation, the aims and the
sketched structure of my thesis.
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1.3 Aims, motivation and structure of the thesis

The past several decades have been marked by intensive investigations of noise-
induced phenomena in excitable neural models. These studies have included both
experiments in vivo [6] as well as extensive numerical simulations and theoretical
approximations [19]. However, despite these investigations main questions have
remained unclear; I will discuss in this dissertation a few of them.

The response of an excitable system to a bichromatic periodic signal with two
very different frequencies and the influence of additive noise upon this system set
up has not been investigated. Such bichromatic signals are pervasive in differ-
ent fields, e.g. in brain dynamics [76], where for instance bursting neurons may
exhibit two widely different time-scales, in telecommunications [77], where infor-
mation carriers are usually high-frequency waves modulated by a low-frequency
signal that encodes the data, in laser physics [78], and in neuroscience [79]. The
beneficial role of high-frequency (ultrasonic) driving has already been reported as
increased drug uptake by brain cells [80], acceleration of bone and muscle repair
[81], and resonantly enhanced biodegradation of micro-organisms [82]. Addition-
ally, ultrasonic irradiation of two widely different frequencies has been seen to
enhance cavitation yield [83]. The response of a bistable potential system to a
bichromatic periodic signal has been investigated in Ref. [40] and denoted the
enhancement of the signal processing at a low frequency by an additional high-
frequency signal as vibrational resonance. Nevertheless, it was unclear whether
such an enhancement can be observed also in excitable systems. The influence of
noise and the interplay of noise and high-frequency signal upon the signal pro-
cessing at the desired low frequency were interesting open problems. In this field,
the question arose whether noise can replace the high frequency and vice versa.
This topic becomes more complicated when the excitable system offers a second
subthreshold eigenfrequency.

Typically, studies of SR do not demonstrate a sensitive dependence on the
frequency of the forcing. The role of the signal frequency for excitable systems
has been studied in [84–89] for isolated FHN, when the characteristic time of the
system, defined by an external period providing the maximal level of synchro-
nization, practically coincides with the excursion time of an excitable element,
and this time is the single natural reference point for time scale. Such a form of
frequency selectivity can also be important for biological membranes in enzymatic
systems [90]. In other studies the frequency sensitivity in weak signal processing
results from a resonance between small oscillations around a steady state and
a signal [91–94]. Hence, despite different excitation mechanisms, the oscillation
frequency is defined by the parameters of isolated elements. On the other hand,
it has been shown that the dominance of inhibitory coupling between identical
oscillators results in the generation of many stable limit cycles with different pe-
riods and phase relations [95, 96]. This form of coupling between oscillators may
provide a broad spectrum of additional frequencies in the system’s behavior. Os-
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cillatory media with inhibitory coupling have very rich dynamics and have been
reported to be important in numerous physical [97], electronic [98], and chemical
systems [99, 100]. The influence of this new resonance frequency evoked by dif-
ferent phase relations between the inhibitor-coupled oscillators on the Stochastic
Resonance and the frequency-selective information transmission has not yet been
considered.

It was not clear whether noise can suppress oscillations and induce excitable
properties, i.e. whether a noise-induced phase transition from a self-sustained
oscillatory state to an excitable regime exists. In contrast to standard phase tran-
sitions and other studies on excitable systems [71–74, 101], in this noise-induced
phase transition the increase of noise enhances the stability in the system and
restores excitable properties instead of further randomizing the dynamics or os-
cillation excitation. The interplay between excitable and oscillatory dynamics in
noisy systems is an important current issue [102]. In particular, such a noise-
induced phase transition could be a possible mechanism to suppress undesirable
global oscillations in neural networks, which are usually characteristic of abnor-
mal medical conditions such as Parkinson’s disease or epilepsy. Then the action of
noise is used to restore excitability, which is the normal state of neural ensembles.

The need to study these unresolved problems and to shed light on the con-
structive role of stochasticity in information exchange between neural clusters
has motivated the present research and contributed to the aim of this work. It is
to investigate new nonlinear phenomena in complex noisy neural systems which
may result in changing dynamical regimes or in the appearance of excitability
itself. Following this aim, I study the following problems:

1. I investigate new resonance phenomena in excitable systems. I consider the
influence of a bichromatic signal consisting of a low-frequency component
(that contains the information) and a high-frequency component and com-
pare it with the Stochastic Resonance effect. I demonstrate the vibrational
resonance effect in excitable systems. I extend the vibrational resonance
to spatially distributed systems as the vibrational propagation. Further
on, I investigate the interplay between a high-frequency driving force, a
subthreshold eigenfrequency and the system response at a different signal
frequency.

2. I study the Stochastic Resonance effect in inhibitor-coupled FitzHugh-
Nagumo models consisting of two or three coupled excitable oscillators.
Especially, I consider the frequency selectivity due to the different phase
relation between the elements. I investigate whether the information can
be transmitted through the region with hidden or suppressed oscillations.

3. Finally, I suggest a new noise-induced phase transition from a self-sustained
oscillatory state to an excitable regime. I explain the noise-induced ex-
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citability analytically with the help of the small-noise-expansion and in-
vestigate numerically the conditions of this transition. I demonstrate the
Stochastic Resonance effect in the new noise-induced excitable system as
a doubly stochastic effect. In this effect both multiplicative and additive
noise have to be optimized independently to maximize the system response
at a signal frequency. The noise-induced excitability can be used for reliable
information transmission. To demonstrate this I study a wave front propa-
gation and a spiral formation in a two-dimensional lattice of noise-induced
locally-coupled excitable systems.

The work is structured as follows: In chapter 2 I present new resonance phe-
nomena in excitable systems. Then I discuss in chapter 3 the frequency selective
Stochastic Resonance effect in chains of inhibitor-coupled excitable FitzHugh-
Nagumo models. After that, I investigate in chapter 4 a new noise-induced
phase transition from a self-sustained oscillatory state to an excitable regime
and demonstrate the doubly Stochastic Resonance (chapter 4.2) and a reliable
information transmission (chapter 4.3). Finally in chapter 5 I summarize the
results and discuss the outlook of the present research. The thesis ends with
acknowledgements, bibliography and an appendix.
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Chapter 2

New resonance phenomena in
excitable systems

Signal detection by nonlinear systems can be considerably affected by external
influences. The most relevant example of this fact is Stochastic Resonance (SR),
where the response of a nonlinear system to a weak deterministic signal is en-
hanced by external random fluctuations [39] (see also chapter 1.2.2 and Fig. 1.4).
Initially reported in bistable systems [44], SR has been found in many models
and even natural systems [45, 103], including excitable media [38].

excitable media

low frequency under threshold

high frequency

pulsetrains with low frequency

Figure 2.1: Vibrational resonance principle: high-frequency vibrations optimize
the signal transmission at a low-frequency signal.

In bistable systems, it has been shown that the role of noise in improving
the quality of signal detection can be played by other types of driving, such as
a chaotic signal [104] or a high-frequency periodic force [40]. In the latter case,
known as vibrational resonance (VR), the system is under the action of a two-
frequency signal [Fig. 2.1]. Such bichromatic signals are pervasive in different
fields, including brain dynamics [76], where for instance bursting neurons may
exhibit two widely different time scales, and telecommunications [77], where infor-
mation carriers are usually high-frequency waves modulated by a low-frequency
signal that encodes the data. Two-frequency signals are also of interest in sev-
eral other fields, such as laser physics [78], acoustics [105], neuroscience [79], and
physics of the ionosphere [106]. The beneficial role of high-frequency (ultrasonic)
driving has already been reported as increased drug uptake by brain cells [80],
acceleration of bone and muscle repair [81], and resonantly enhanced biodegra-

19



dation of micro-organisms [82]. Additionally, ultrasonic irradiation of two widely
different frequencies has been seen to enhance cavitation yield [83].

I start the investigations with the vibrational resonance effect in an excitable
neural FitzHugh-Nagumo model.
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2.1 Vibrational resonance and vibrational prop-

agation

In contrast to the investigations in bistable systems, in this work I analyze the ef-
fect of high-frequency forcing in signal detection by excitable systems, and demon-
strate the occurrence of VR in excitable media. As explained in chapter 1.1,
excitable systems have only one stable fixed point, but perturbations above a
certain threshold induce large excursions in phase space, which take the form of
spikes of fixed shape. The duration of these excursions introduces an intrinsic
time-scale in the system. Excitable systems are naturally sensitive to external
perturbations. By way of example, they exhibit a resonant response to external
harmonic driving [92, 107]. Here I establish that this response can also be en-
hanced by a second, higher-frequency periodic driving. In essence, I show that
for an optimal amplitude of the high-frequency forcing, signal processing at the
low-frequency driving is enhanced. This result indicates that the role of noise
in standard Stochastic Resonance in excitable systems can also be played by a
monochromatic driving.

First, I show that VR occurs in a simple electronic circuit with excitable
properties, and confirm this effect by numerical simulation of the paradigmatic
FitzHugh-Nagumo (FHN) model in an excitable regime. Next I study the effect
of noise on this phenomenon, concluding that SR in excitable systems can be con-
trolled by high-frequency driving. Finally, I show that this effect can also be ob-
served in spatially extended systems of coupled excitable oscillators, in the form
of resonant vibrational propagation of a low-frequency signal through the sys-
tem for an optimal high-frequency driving applied to all elements in the system.
Again, this result parallels the constructive role of noise in signal propagation
through nonlinear media, which has been substantially studied in recent years in
excitable [108], bistable [109], and even monostable [110] systems. The present
results show that similar enhanced propagation can be obtained by replacing the
broadband noisy driving with a single-frequency signal.

2.1.1 Vibrational resonance in an excitable electronic cir-
cuit

In order to demonstrate the occurrence of VR in an excitable system, I start with
an experimental system and we have constructed an electronic circuit based on
Chua’s diode, which has been implemented with an operational amplifier (OA)
taken from the integrated circuit TL082 [Fig. 2.2]. When the voltage that controls
this OA is asymmetric the circuit becomes excitable [74]. The experiment and
the measurements were performed by my collaborators in Spain.

The signals from two function generators operating at widely different fre-
quencies (1 kHz/50 kHz) are added and introduced into the system through the
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Figure 2.2: Excitable electronic circuit exhibiting vibrational resonance.

1 nF condenser, as shown in Fig. 2.2. We have analyzed the behavior of the
circuit for increasing amplitudes of the high-frequency (HF) harmonic driving,
while keeping the amplitude of the low-frequency (LF) signal component fixed.
The results are plotted in Fig. 2.3 (left) in terms of the voltage drop at the 1 nF
condenser. For a small enough amplitude of the HF component the total sig-
nal is below threshold, and hence there are no spikes in the system output, as
shown in regime A of Fig. 2.3 (left). If we increase slightly the amplitude of the
HF component, spikes start to appear at the low-frequency (regime B). In this
regime processing of the information (which is encoded in the LF signal) begins
to occur, but can be considerably improved by further increasing the number of
spikes per half period of the LF signal, since in this way the energy contained at
this frequency is also increased. This happens in regimes C and D, which show
the optimal detection of the LF signal. With further increase of the HF ampli-
tude (regime E), the system fires immediately after reaching the stable point, so
that the output mainly contains only the frequency of the excitable system itself
(eigenfrequency). Hence the LF component basically disappears from the system
output, and signal processing is degraded again. This is a manifestation of vibra-
tional resonance in an excitable medium, where an intermediate amplitude of a
high-frequency driving leads to a resonant response at the low-frequency signal.
A qualitative analysis of VR in this electronic circuit can be found in Fig. 2.5 by
the calculation of the linear response Q of the system at the low-frequency signal
in the output according to Eqs. (2.3)–(2.5) but with respect to voltage time series
in Fig. 2.3 (left) instead of y(t).
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Figure 2.3: Left: Experimental results exhibiting vibrational resonance in the
excitable electronic circuit of Fig. 2.2 under the action of a bichromatic signal.
The voltage drop at the 1 nF condenser is plotted for different amplitudes of
the high-frequency harmonic forcing: (A) 0.435 V, (B) 0.465 V, (C) 0.66 V, (D)
0.985 V, and (E) 1.385 V. The amplitude of the low-frequency component is fixed
to 1.3 V. Right: Corresponding regimes obtained by numerical simulations of the
FitzHugh-Nagumo model (Eqs. (2.1) and (2.2)) for different HF amplitudes: (A)
B=0.05, (B) B=0.0505, (C) B=0.055, (D) B=0.065, and (E) B=0.07. The other
parameters for the numerical simulation are: ε = 0.01, a = 1.05, A = 0.01,
ω = 0.1, Ω = 5.0, and σ2

a = 0.0.
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2.1.2 Vibrational resonance in the FitzHugh-Nagumo
model

The model. Next I show that the behavior reported in the previous section
is not particular to the special experimental system considered, but is a typical
property of excitable systems. To that end I study numerically the FitzHugh-
Nagumo (FHN) model, which is a paradigmatic model describing the behavior of
firing spikes in neural activity [18], and in general the activator-inhibitor dynamics
of excitable media [10] instead of the differential equations describing the Chua’s
diode. In the presence of two harmonic signals, this model is defined by the
following set of coupled equations:

ε
dx

dt
= x− x3

3
− y , (2.1)

dy

dt
= x + a + A cos(ωt) + B cos(Ωt) + ξ(t) , (2.2)

where x(t) is the activator variable (representing the membrane potential in the
neural case) and y(t) is the inhibitor (related to the conductivity of the potassium
channels existing in the neuron membrane [18]). The value of the time scale ratio
ε = 0.01 is chosen so that the activator evolves much faster than the inhibitor.
Under these conditions the system is excitable for a > 1 [32]; I choose a =
1.05. ξ(t) is a Gaussian white noise with zero mean and correlation 〈ξ(t)ξ(t′)〉 =
σ2

aδ(t − t′). The terms A cos(ωt) and B cos(Ωt) stand for the low- and high-
frequency components of the external signal, respectively. In what follows I will
choose A = 0.01, so that the system is below the excitation threshold (which is
Athr ≈ 0.075 for B = 0), and Ω >> ω, in particular Ω = 5 and ω = 0.1. In
Eq. (2.2) I have considered no phase shift between the two driving signals, but
as demonstrated below, the existence of an arbitrary phase shift does not alter
the results that follow. To integrate the model (2.1)-(2.2) I have used Heun’s
algorithm [62].

The manifestation of VR in the time series. First I consider the noise-
free case σ2

a = 0 and, mimicking the electronic implementation described in the
previous section, I fix the amplitude of the LF signal component and increase
the HF amplitude. The different regimes exhibited by the FHN model under
these conditions are shown in Fig. 2.3 (right). These regimes closely resemble
the preceding observations made in the electronic circuit (compare left and right
plots in the figure). As in that case, an increase of the HF amplitude B initially
improves (regimes A-D) and finally degrades (regime E) signal processing at
the low frequency, in what constitutes another case of vibrational resonance.
Several additional aspects of the system behavior can be found in this model
with respect to the electronic implementation. For instance, in regime E [Fig. 2.3

24



20 25 30 35 40
t

−4
−3
−2
−1

0
1
2
3
4

x(
t)

−4
−3
−2
−1

0
1
2
3
4

x(
t)

(a)

(b)

Figure 2.4: (a) Oscillations exhibited by the bichromatically forced FHN model
Eqs. (2.1)-(2.2) at a frequency close to the system’s own frequency, and (b) at
the driving high-frequency. The amplitude of the HF forcing is B = 0.1 and 10,
respectively. The other parameters are the same as in Fig. 2.3 (right).

(right)] it is clearly seen that the intervals between spikes are not constant. This
happens when the amplitude of the HF force is such that the system starts to
fire asynchronously with respect to the signal. In this case, during one half of
the signal period the system has to wait some time before spiking, whereas in
the other half period the system can fire sooner once it reaches the stable point.
This happens because in the latter case the time during which the signal is
above threshold is larger, while the waiting time is close to the half period of the
high-frequency force. Increasing the amplitude B further leads to a very regular
spiking, as in the regime E of the electronic circuit [see also Fig. 2.4(a)]. Finally,
for large enough values of B I obtain a new regime that has not been observed
in the circuit. In this regime, the oscillations happen with a frequency different
from the system’s own frequency (i.e. the one related to the intrinsic time scale
of the spiking behavior), but correspond in fact to the high-frequency component
(Ω = 5 in this case). This regime is depicted in Fig. 2.4(b), where it is compared
with the above-mentioned case where each spike follows the previous one almost
periodically with the system-internal frequency [Fig. 2.4(a)].

The linear response Q as a measure of VR. The VR effect illustrated in
Fig. 2.3 can be quantified by computing the linear response Q of the system (i.e.
the component from the Fourier spectrum) at the signal frequency ω, which is
given by [39, 40]:
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Figure 2.5: Linear response Q of the FHN model (Eqs. (2.1)-(2.2)) at the low-
frequency ω versus the amplitude B of the high-frequency input signal. The
parameters for the numerical calculations are: ε = 0.01, a = 1.05, A = 0.01,
ω = 0.1, and Ω = 5.0. The inset shows the corresponding figure for the electronic
circuit results presented in Fig. 2.3 (left).

Qsin =
ω

2nπ

2πn
ω∫

0

2y(t)sin(ωt) dt , (2.3)

Qcos =
ω

2nπ

2πn
ω∫

0

2y(t)cos(ωt) dt , (2.4)

Q =
√

Q2
sin + Q2

cos , (2.5)

when n is the number of periods Ts = 2π
ω

, covered by the integration time. The
linear response Q depicts the amplitude of the LF signal in the output.

The dependence of this linear response on the amplitude of the high-frequency
driving [Fig. 2.5] displays a resonant form with a clearly expressed maximum at
B ∼ 0.06, similar to what happens in SR. The staircase form of this dependence is
caused by the abrupt discrete appearance of new spikes or the discrete shifting of
a spike about a high-frequency period in the spike train as the forcing amplitude
increases. For a detailed description of the VR effect in the excitable FHN model,
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first, I explain the origin of the staircase pattern of the linear response Q in
Fig. 2.5, then I consider the influence of a phase shift and different frequency
ratios of the bichromatic signal and finally I investigate the influence of additive
noise.

Origin of the staircase pattern in the linear response Q. Fig. 2.6 de-
scribes in exemplary form the dip in the linear response Q at B ≈ 0.062 in
Fig. 2.5. Increasing of B from 0.0613 (a) to 0.0617 (b) leaves the time series
unchanged and so the linear response Q persists. The increase of B up to 0.0618
(c) results in a shifting of the first spike about one HF period in advance and
in the appearance of an additional spike at the end of the spike train, but the
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Figure 2.6: Left: the zoomed linear response of the system at the low-frequency
ω versus the amplitude B at B ≈ 0.062 [see Fig. 2.5]. The letters a-f refer to the
underlying time series on the r.h.s. Right: time series of the activator variable
x corresponding to the edges of the linear response Q at B ≈ 0.062 l.h.s. The
parameters are: ε = 0.01, a = 1.05, A = 0.01, ω = 0.1, Ω = 5.0 and (a)
B = 0.0613, (b) B = 0.0617, (c) B = 0.0618, (d) B = 0.0623, (e) B = 0.0624,
(f) B = 0.0625. The dashed line illustrates one period of the input signal with
the frequency ω = 0.1. The input signal is shifted vertically and rescaled for a
better matching with the output.
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other eight spikes remain in the previous position. According to Eqs. (2.3)-(2.5)
the first and last spike decrease the linear response Q, because they are located
in the opposite period of the signal compared to the rest of the spikes. The rise
up to B = 0.0623 (d) does not alter the spike contribution in the time series and
hence the linear response Q persists again. Increased amplitude B = 0.0624 (e)
shifts only the second spike about one HF period in advance closer to the border
of the half LF period and hence Q is decreased again. Further increasing of B up
to 0.0625 (f) shifts all spikes from number three up to one or two (only the last
one) HF periods forward in time. As result, one more spike is concentrated in the
half LF period of the signal, and consequently the linear response Q is increased.
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Figure 2.7: Left: the linear response of the system Q at the low-frequency ω
versus the amplitude B for different phase shifts between high and low-frequency
signal. The bold line includes no phase shift (ϕ = 0.0) as in Fig. 2.5 and the other
lines illustrates exemplary the phase shifts ϕ = 0.628, 2.512, and 3.758. Right:
the linear response of the system Q at the low-frequency ω versus the amplitude
B for different frequencies Ω without phase shift. The frequency Ω is: 5.0 (dotted
bold line), 1.84× e (solid line), and 5.3 (dashed line). The bold dotted line and
the solid lines partially coincide. All the other parameters, except for the noted
ones, are the same as in Fig. 2.5.

Influence of phase shift and frequency. The staircase pattern persists (al-
though its shape may change) when a phase shift between high and low frequency
is added or when the frequency ratio between the two periodic signals changes,
even when this ratio is incommensurate. Fig. 2.7 (left) illustrates the persistence
of the stepped form of the linear response Q by introducing a phase shift ϕ in
the high-frequency signal B cos(Ωt+ϕ). The different phase relations result only
in a small variation of the linear response Q. Fig. 2.7 (right) shows the qualita-
tive persistence of the stepped form by changing the frequency ratio in a small

28



range. I have checked that the resonance displayed in Fig. 2.5 persists for a wide
range of values of the high frequency around Ω = 5.0 (the values tested cover
the range 2.4–17.0 [Fig. 2.8]). However, due to the additional interplay between
the HF signal and sub-threshold oscillations, the position and amplitude of the
resonance peak vary with the value of the high frequency. This interplay, related
to the so called Canard trajectories, will be discussed in detail in chapter 2.2.
This dependence of the VR effect from the high frequency constitutes a differ-
ence with respect to the standard SR effect, and could be useful for determining
the system’s natural selectivity of special frequency components from the white
noise when SR occurs.
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Figure 2.8: The linear response of the system Q at the low-frequency ω versus
the amplitude B for different high frequencies Ω. 1: Ω = 2.4, 2: Ω = 5.0, 3:
Ω = 10.0, 4: Ω = 14.0, 5: Ω = 15.0, and 6: Ω = 17.0. All the other parameters
are the same as in Fig. 2.5.

Influence of additive noise. So far we have not considered the influence of
noise in the behavior of the FHN model. In order to study the interplay of VR
and SR in this system, I now increase the intensity σ2

a of additive noise in the sys-
tem. Fig. 2.9 (left) shows that by adding noise to the system the linear response
dependence is shifted to the left and decreased. Hence, with increasing noise the
maximum of the linear response is achieved for a smaller value of B [compare
curves 1 and 2 in Fig. 2.9 (left)]. This fact could be relevant for efficient infor-
mation processing, because natural fluctuations or noise (unavoidably present in
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experimental systems) are able to replace a fraction of the high-frequency driving
and help to reduce the necessary input energy. If the noise intensity is too large,
VR disappears [curve 4 in Fig. 2.9 (left)].
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Figure 2.9: Linear response of the system at the low-frequency ω in the presence of
additive noise: left versus the HF amplitude B for different intensities of additive
noise (curve 1 – σ2

a = 0, curve 2 – σ2
a = 0.05× 10−3, curve 3 – σ2

a = 0.25× 10−3,
curve 4– σ2

a = 3× 10−3); and right versus the noise intensity σ2
a for different HF

amplitudes (curve 1 – B = 0, curve 2 – B = 0.04, curve 3 – B = 0.06, curve 4 –
B = 0.07, curve 5 – B = 0.1).

Next I analyze the linear response of the system as a function of noise intensity
for varying amplitude B of the HF forcing [Fig. 2.9 (right)]. For no HF amplitude
(curve 1 in the figure) standard SR is found. Adding then a high-frequency
driving to the signal improves SR, because the resonance curve is shifted to lower
values of σ2

a and is increased [curve 2 in Fig. 2.9 (right)]. Hence the amount of
noise needed for optimal signal processing is smaller. One can thus interpret
that a high-frequency driving allows us to control Stochastic Resonance, i.e. a
HF signal can replace a fraction of additive noise in the SR effect and improves
the signal processing in the SR effect. Further increase of B to the value which
corresponds to the optimal amplitude B = 0.06 in the noise-free case leads only
to a monotonous decrease of the quality of signal processing with increasing noise
intensity σ2

a, shown as curve 3 in Fig. 2.9 (right). But its value at zero noise is the
largest one among all curves, as expected from the optimal driving amplitude –
compare the values at σ2

a = 0 of all the curves in Fig. 2.9 (right) with curve 1 in
Fig. 2.9 (left). For even larger values of B, signal processing has very bad quality
for all intensities of additive noise (curves 4 and 5).
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2.1.3 Resonant vibrational propagation

When excitable systems are coupled spatially in an extended medium, excitation
pulses are able to propagate through the system in a very efficient way. Con-
sequently, it is interesting to analyze whether the phenomenon of vibrational
resonance can be generalized to the case of spatially extended systems. To that
end I consider a chain of coupled excitable oscillators, whose behavior I represent
now by the Barkley model [111] to illustrate the general aspect of VR:

dui

dt
=

1

ε
ui(1− ui)

(
ui − vi + b

a

)
+

D

∆x

∑

j∈N(i)

cijuj + Ai cos(ωt) + B cos(Ωt) ,

dvi

dt
= cui − vi , (2.6)

where i is the cell index along the chain, and I take Ai = 0 for i > iex. In what
follows I used the following values for the model parameters: ε = 0.01, a = 0.85,
b = 0.18, and c = 0.7 (for which the system operates locally in an excitable
regime) and the coupling strength is taken D = 0.05. The weight coefficients
cij correspond to the first-order discretization of the Laplacian operator [112]
with ∆x = 0.25. Every oscillator in the chain is driven by a high-frequency
signal B cos(Ωt), with Ω = 5.0, and the oscillators with i < iex are additionally
under the action of the low-frequency information-carrying signal A cos(ωt), with
ω = 0.1 and A = 3.0.

The behavior of this spatially extended system is illustrated in Fig. 2.10.
When no high-frequency vibration (B = 0) is applied to the oscillators the signal
is unable to propagate for the coupling strength chosen [Fig. 2.10 (left)]. However,
if I now apply a HF vibration (B = 1.6) to all oscillators in the chain, the LF
information-carrying signal propagates through the whole chain of oscillators as
a train of pulses [Fig. 2.10 (right)]. The mechanism of this effect is based on the
occurrence of VR in single oscillators, but now the input of each oscillator (for
i > iex) comes from the output of the previous element in the chain. For oscilla-
tors out of the signal-input area (i > iex), the LF signal input originates from the
response of the left neighbor due to the local coupling. The stimulations from
the spiking behavior of this neighbor are too weak to force the oscillator beyond
the threshold of excitation and therefore to evoke a spike without any additional
forcing because the coupling is too small. Only in the presence of HF forcing in
every element, these oscillators (i > iex) are able to reach the threshold of ex-
citation and produce spikes. At a suitable and finite HF amplitude, only spikes
synchronized with the LF signal are evoked and an optimal signal transmission
controlled by the HF forcing appears [Fig. 2.10 (right)]. A further increase of the
HF amplitude beyond this optimal value leads to a permanent spiking behavior of
all oscillators and the synchronization with the LF signal vanishes, i.e. the signal
transmission decreases again. Hence, the effect of VR in excitable oscillators can
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Figure 2.10: Resonant vibrational propagation in a excitable medium. A chain
of coupled oscillators (Eqs. 2.6) is represented along the horizontal axis z. Time
evolution goes from bottom to top. Left: without HF vibration (B = 0); right:
with HF vibration (B = 1.6). The first 100 oscillators (i < iex) are always driven
by the low-frequency signal. An increase of high-frequency vibration leads to
propagation of the information LF signal.

be observed in spatially extended systems as a resonant vibrational propagation
(VP).

In conclusion, I have studied several aspects of the dynamic response of ex-
citable systems to bichromatic signals with two very different frequencies. I have
demonstrated the existence of two phenomena: vibrational resonance in zero-
dimensional systems and resonant vibrational propagation in spatially extended
media. Experimental results obtained in an excitable electronic circuit have been
confirmed by a numerical analysis of the FitzHugh-Nagumo model. In particular,
it has been shown that an optimal amplitude of the high-frequency component
of the signal can optimize signal processing of the low-frequency component,
which encodes the information. I have also shown that, in the presence of noise,
high-frequency driving can substitute a fraction of the noise and hence control
the effect of Stochastic Resonance. The reverse is also true: additive noise can
replace a fracture of the high-frequency vibrations in the vibrational resonance
effect. The latter case could be interesting to reduce the needed input energy in
the VR effect, because noise is everywhere present in natural systems. In spa-
tially extended excitable media, vibrational resonance enhances propagation of
the low-frequency signal through the system by means of the action of the high-
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frequency driving. I have reported vibrational resonance and resonant vibrational
propagation in simple systems and paradigmatic models, and have studied these
effects in a general framework, hence I expect that these findings will be relevant
for different fields, including communication technologies, optics, chemistry, neu-
roscience, and medicine. Given the ubiquity of two-frequency signals in neural
systems, mentioned already in the introduction, this result could be of special
interest in the study of the activity of neural ensembles, and in general in wave
propagation in excitable activatory-inhibitory systems.

Next I extend the study of new resonance phenomena in excitable systems to
systems with additional Canard dynamics.
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2.2 Canard-enhanced Stochastic Resonance

In this part of the work I study the SR effect in another class of systems, that
differs from those already explored by the fact that this class possesses properties
of both oscillatory and excitable behavior. As a paradigmatic model for such
systems I consider again the FitzHugh Nagumo (FHN) oscillator.

Generally, the FHN model is tuned to exhibit either an oscillatory behavior
with strongly nonlinear oscillations in the system or an excitable behavior with a
stable fixed point and the feature that relatively small perturbations can lead to
a large excursion (excursion loop or spike) [32, 38, 113]. In contrast to this we are
interested in a FHN model that is tuned to have both oscillatory and excitatory
properties. Such dynamics take place in FHN-like models [114] or in biophysical
models [115, 116], if their parameters are chosen in the region of the so-called
“Canard” bifurcation [117, 118]. In these works a Canard solution is a solution of
a singular perturbed system which passes close to a bifurcation point and follows
a repelling slow manifold for a considerable amount of time.

For the FHN model the Canard phenomenon means that there are quasi-
harmonic oscillations with small amplitude and small periods [Fig. 2.11]. The
parameter region between pure excitable and oscillatory cases is typically very
narrow if the stiffness of the oscillator is large (ε << 1). But the value of stiffness
is not obligatorily large and is defined by the kinetic parameters of the specific
models. A crucial feature of Canard-like behavior is that a very small change in
the control parameter may lead to a large difference in the trajectories and hence
produce oscillations with different frequencies. This change can be also induced
by the action of noise, if the system possesses Canard-like oscillations.

The idea of using a system with several intrinsic frequencies as a signal receiver
in the presence of noise has been already reported in the literature. For example,
in a bistable underdamped system, Stochastic Resonance may happen due to
intrawell as well as to interwell motion [119]. Further on, it was described that
non-adiabatic resonance under the action of a high frequency can exist in a noisy
excitable system [85]. In all these works, the improvement of signal processing
occurs due to the resonance interplay between an incoming periodic signal and
one of the internal frequencies of the oscillating system. In contrast to this case, I
consider here the situation in which an additional high-frequency signal improves
the detection of a low-frequency signal, i.e. it is crucial that the system is under
the action of multi-frequency signal. A similar problem formulation was studied
in [120], where it was shown that adding a high-frequency signal may help the
detection of a low-frequency signal and leads to a heterodyning effect in a two-
dimensional oscillator with one internal frequency near a saddle-node bifurcation.
However, this effect occurs due to the action of a resonant high-frequency signal on
a detection threshold near a saddle-node bifurcation (see also a case of coupled
oscillators [121]), whereas in our case we investigate a noisy system with two
different internal frequencies under the action of a two-frequency signal, and the
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resonance effect at one higher internal frequency leads to the amplification of
Stochastic Resonance at another low frequency.

I consider FHN systems under the action of a subthreshold bichromatic signal,
which consists of two parts: the first one has the frequency of an investigated
signal, and the second one has a higher frequency. I demonstrate the effect of SR
amplification when the higher frequency is in resonance with the frequency of the
Canard oscillations of this system. Let me point out again, two-frequency signals
are widely used in communications [77], neuroscience [79], laser-physics [78], and
acoustics [105]. Additionally, a beneficial role of high-frequency (HF) driving has
already been found in several biological phenomena, such as increased drug uptake
by brain cells [80], improvement of bone and muscle healing [81], or enhanced
biodegradation of micro-organisms [82]. The effect, discussed in this part, is
also closely connected to the vibrational resonance (VR) in excitable systems
previously presented (see chapter 2.1 and [122]), where the high-frequency driving
acts as noise and improves the signal processing. VR demonstrates a resonance-
like behavior with respect to the amplitude of the HF signal. In contrast to VR,
in Canard-enhanced SR it is crucial that not the amplitude but the frequency of
the HF signal should be in resonance with the oscillatory behavior of a system.

−3.0 −2.0 −1.0 0.0 1.0 2.0
x

−1.0

0.0

1.0

2.0

y

trajectory
nullclines

a <= 0.9862

a > 0.9866
a = 0.9864

a = 0.9866

Figure 2.11: The dependence of the trajectories and the appearance of Canard
trajectories on the parameter a in the FHN model without noise and without
driving forces.
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2.2.1 The model with Canard dynamics

I study the following known FHN model (see Eqs. (2.1) and (2.2)):

ε
dx

dt
= x− x3

3
− y , (2.7)

dy

dt
= x + a + ξ(t) + s(t) , (2.8)

where ξ(t) is Gaussian white noise of the intensity 〈ξ(t)ξ(t′)〉 = σ2
aδ(t − t′)

and the parameter a determines the behavior of the system. For a > 1.0 the
unforced FHN model (s(t) = 0, σ2

a = 0) is excitable and for a < 1.0 it shows an
oscillatory behavior. At this bifurcation point a = 1.0 the stability of the only
fixed point x0 = −a, y0 = a3

3
− a will be changed. Between these two cases an

intermediate behavior can appear. For values of the parameter a slightly beyond
the bifurcation point, small oscillations near the unstable fixed point exist instead
of large spikes. To illustrate this, in Fig. 2.11 trajectories in the phase space of
the FHN system without driving force and noise are plotted in dependence on the
parameter a. For a ≤ 0.9862 and ε = 0.1 (much larger than in chapter 2.1.2) the
FHN model oscillates on the well-known big excursion loop. In the intermediate
parameter region 0.9864 ≤ a < 1 and ε = 0.1 there is also an oscillatory behavior
but the loops (Canard trajectories) in the phase space are much smaller than the
excursion loops. Between both possible traces there is a clear gap so that these
both kinds of oscillations can be easily distinguished.

The Canard trajectories exist also for smaller ε like 0.01 (which I use in the
chapters 2.1.2 and 4), but the intermediate parameter region of a (where Canard
oscillations exist) tends to zero for decreasing ε and the period of subthreshold
oscillations near the bifurcation point is Tsth ≈ 2π

√
ε [114]. Hence, for ε = 0.01

the subthreshold oscillations are very fast and so the trajectory loops are very
small. In the following I fix the parameter ε = 0.1 to have a system with a
significant intermediate region where Canard oscillations exist. Similar values
of ε (parameter to separate a slow- and fast-moving variable) were used also in
different papers for the modeling of biological and chemical processes [123–125]
and so the choice has natural links. In spite of the fact that frequently-used
harmonic and singular approximations of FHN studies are very suitable for the
mathematical treatment of model behavior, in the real processes the stiffness is
in between these two limit cases.

An important fact of the treatment of the Canard oscillations is that a very
small change in the parameter a leads to a large difference in the trajectories.
This change in the parameter a can be caused by some instantaneous influence
of noise. Beside the expected case for the parameter a typical for the Canard
phenomenon, Canard-like trajectories can be observed also in the excitable regime
a > 1 close to the bifurcation point if the FHN system is forced by additive noise
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Figure 2.12: Occurrence of spike and Canard trajectories in a noise-driven FHN
model (Eqs. (2.7) and (2.8)) in the excitable regime. The parameters are ε = 0.1,
a = 1.01 and σ2

a = 0.0004.

ξ(t). This can be easily seen in Fig. 2.12, where trajectories in the phase space
were plotted for the parameters ε = 0.1, a = 1.01, σ2

a = 0.0004 (in the excitable
regime) and there are no periodic driving forces. Only the noise drives the FHN
system and leads to the Canard-like trajectories and the spikes and therefore,
again the FHN system behaves with two different frequencies of the two cycles
which can certainly be used in signal processing.

These different trajectories manifest themselves in a polymodal interspike
interval histogram (ISIH) not only when the parameter a is chosen from the
interval corresponding to the Canard orbits (as in Ref. [114]) but for a which
provides an excitable regime [Fig. 2.13]. I have chosen the most pronounced
examples of ISIH polymodality but this type of distribution is preserved in some
intervals of the essential parameters: a ∈ [1.0, 1.05], ε ∈ [0.02, 0.2] under the
appropriate noise amplitudes. The first peak in the ISIH [Fig. 2.13] corresponds
to the excursion time te of the large spikes and the Canard trajectories lead to
the polymodality. The period duration of the Canard loops coincides with the
distance between two consecutive peaks in the ISIH.

Next I add a driving force s(t) = Acos(ωt) and investigate the linear response
Q of the periodic driven system at the input frequency ω. To evaluate the ampli-
tude of the input frequency in the output signal, I calculate the Fourier coefficient
Q for the input frequency ω. I use the linear response Q instead of the power
spectrum because I am interested in the transmission of the information encoded
in the frequency ω. For this task the linear response Q is a much more compact
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Figure 2.13: ISIH in a noise-driven excitable FHN model (Eqs. (2.7) and (2.8)).
The parameters are a = 1.01 and σ2

a = 0.0004. There is no signal (s(t) = 0.0)
and the parameter ε is variable.

tool than the power spectrum [39, 110]. In contrast to Eqs. (2.3)-(2.5), now the
linear response Q is based on the activatory variable x.

First I look for the resonance frequencies of the system to find both internal
frequencies (Canard frequency and frequency of the spiking behavior). Therefore
I calculate the linear response Q versus the circle frequency of the driving force.
I consider three cases: a) a = 1.01, FHN in a mono-stable excitable regime; b)
a = 1.0, FHN at the bifurcation point; and c) a = 0.998, FHN in an oscilla-
tory regime with small Canard oscillations around the unstable fixed point and
small amplitudes compared with the amplitude of a spike. The amplitude of the
periodic driving force is chosen small enough so that the system needs noise to
reach the threshold and to produce a spike. The following Figs. 2.14 - 2.16 show
the dependence of the linear response Q on the input frequency for these three
cases and various noise intensities σ2

a. The linear response Q refers to the variable
input frequency and measures the amplitude of the input frequency in the output
signal.

The first peak in all Figs. 2.14 - 2.16 at ω = 1.3 corresponds to a period
length of T = 4.83 and is caused by the firing of a spike. The second peak at
about ω = 2.6 to 2.9 is caused by the Canard oscillations near the fixed point
x0, y0 with a small amplitude compared with the big spike. In opposition to the
resonance frequency of the spike, the position of the Canard-resonance frequency
(ΩC) depends on the parameter a and the noise intensity σ2

a. This can also be
easily seen in the phase space in Figs. 2.11 - 2.12. The trace of the spikes is
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Figure 2.14: Resonances for the periodically driven (A = 0.03) FHN system in
the excitable regime (a = 1.01) under the influence of different noise intensities.

very stable and narrow and so the time for one round trip during a spike is
independent of the parameter a and the noise while the traces for the Canard
oscillations fill a much wider area in the phase space and we can observe a shifting
of the Canard-resonance frequency by changing a and σ2

a. It is important to note
that a peak at the Canard frequency exists even for smaller noise intensities,
when the peak at the spiking frequency is not yet pronounced. This explains the
fact that adding the driving force at this Canard frequency can be successfully
used in the improvement of signal-receiving, even if the information is carried by
another low frequency.

It is noteworthy that similar high-frequency resonance has been described
recently in the Hodgkin-Huxley model [126] and it was proposed in the “resonate-
and-fire” neural model [91] but its background is the oscillatory convergence to
the rest state instead of the Canard phenomenon. For a more stiff FHN oscillator
only the low-frequency peak in ISIH is observed and its coherence is maximal if
the period is equal to the time of cycle excursion, as has been shown in Ref. [85].

2.2.2 Enhancement of Stochastic Resonance

With the knowledge of the Canard-resonance frequency I demonstrate that the
response of the system to a given input frequency is improved. We now force the
FHN system with two different but fixed frequencies

s(t) = Acos(ωt) + Bcos(Ωt).
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Figure 2.15: Resonances for the periodically driven (A = 0.02) FHN system at
the bifurcation-point (a = 1.0) under the influence of different noise intensities.

The basic idea is that the information is stored in a low-frequency input signal
with a circle frequency ω and an amplitude A. The additional high-frequency
input signal Bcos(Ωt) and the noise afford the threshold to be reached and so
both are necessary to produce a spike. The amplitude of both periodic input
signals are chosen small enough that they cannot produce a spike without noise.
A similar situation was in the study of the vibrational resonance in the previous
section 2.1 [122]. But the setup of the parameters there did not support the use
of the Canard resonance in the signal-processing very well.

In Fig. 2.17 two typical time series of the x variable are plotted for the Canard-
resonant case [Fig. 2.17(a)] and the non-resonant case [Fig. 2.17(b)]. The differ-
ence between these two figures is the frequency Ω of the high-frequency input
signal: the first shows the case of resonant forcing with the Canard frequency
(Ω = ΩC) and the second corresponds to the forcing out of the Canard frequency
(Ω 6= ΩC). As an important result the amplitudes of the small oscillations around
the fixed point in the original time series x(t) are different. Because of the res-
onance between the external high-frequency force and the noise-induced small-
amplitude oscillations in the Canard-resonant case, the amplitude of these small
oscillations are enhanced and the FHN in this regime can more easily reach the
firing threshold with the help of noise. As a result, we can observe a behavior
that is more synchronized with the low-frequency input signal.

In natural systems with such a spiking behavior like neurons only the spikes
themselves are important for the information transmission. As shown above,
small Canard oscillations near the fixed point are very important for the behav-
ior of the FHN itself, but not for the information transmission. To evaluate the
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Figure 2.16: Resonances for the periodically driven (A = 0.01) FHN system in the
oscillatory regime (a = 0.998) under the influence of different noise intensities.

information transmission, I calculate again the response of the system Qth but
replace the original time series x(t) by a reduced time series without oscillations
around the fixed point but with the spikes which are responsible for the informa-
tion exchange. To distinguish between a spike and the subthreshold oscillations I
set the threshold of detection xth = 0.0. If x(t) is smaller than xth, I replace x(t)
by the value of the fixed point x0. For x(t) ≥ xth I use the original value of x(t).
This replacement is used only for the calculation of the Qth parameter and not
for the simulation of the original time series with the Heun method. The filtered
time series are also plotted in Fig. 2.17 by the dashed line. In Figs. 2.18 - 2.20
(excitable regime, at the bifurcation point, and oscillatory regime, respectively)
the dependencies of the quality of the information transmission (represented by
the Qth parameter at the low-frequency ω) on the noise intensity σ2

a are depicted
for different frequencies Ω of the high-frequency driving force. In this way we
consider only the spikes for the information transmission.

All three cases have in common that without noise (σ2
a = 0) we observe no

information transmission, because Qth is zero. That means the FHN system does
not show a spiking behavior. These figures demonstrate the bell-shaped form
of Qth, a well known SR effect [39], for all different high-frequencies. In the
range of lower noise it can be clearly seen that for the HF part of the signal
being in resonance with Canard frequency, the SR effect at the low-frequency ω
is significantly enhanced. In this region there is a significant difference in the Qth

parameter between the forcing at the Canard-resonance frequency (Ω = ΩC) and
the forcing out of the Canard resonance (Ω 6= ΩC). The difference in the Qth
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Figure 2.17: Time series of the activatory variable x(t) for the excitable FHN
system driven by additive noise and two periodic forces. The high-frequency input
signal is in resonance with the Canard frequency Ω = ΩC = 2.73 (a) and out of
resonance with the Canard frequency Ω = 2.0 6= ΩC (b). For a better recognition
of the signal processing with the low-frequency input signal this periodic input
signal is also plotted (with a 10 times higher amplitude then in the model). The
other common parameters are ε = 0.1, a = 1.01, σ2

a = 0.000375, A = 0.007,
ω = 0.251 and B = 0.025

parameter is caused only by a change of the frequency Ω of the HF signal because
the amplitudes are the same within one figure. This effect can be understood as
the coexistence of two resonances. The first resonance happens between the
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Figure 2.18: Signal processing at the low-frequency ω input-signal versus the
noise intensity for various frequencies of the high-frequency input-signals Ω for
the FHN system in the excitable regime. Parameters: a = 1.01, A = 0.007,
B = 0.025, ω = 0.251. The Canard-resonance frequency is ΩC = 2.73 [Fig. 2.14].

high-frequency of a signal and the frequency of Canard oscillations. If these two
frequencies are similar, this resonance amplifies the conventional SR for a signal
with low frequency.

The signal enhancement may be presented also in the form of interspike inter-
val histograms. In Fig. 2.21 the ISIH is depicted for the same parameters which
are used for both time series in Figs. 2.17(a) and (b). Both ISIHs were calculated
with the same length of 100000 time units for the underlying time series in Ca-
nard resonance (Ω = 2.73 = ΩC) and out of resonance (Ω = 2.0 6= ΩC). In the
resonant case many more spikes occur and, hence, the peaks of ISIH have higher
values. The first maximum in the ISIH for both time series is between T = 4.8
and 4.9 and corresponds exactly to the resonance frequency of the spikes. The
time of the first maximum is the minimal time between two adjacent spikes when
one spike follows the other one without any waiting time, i.e. without any small
Canard oscillation.

For the Canard-resonant case we observe the expected multimodal structure
with peaks located at multiples of the period length of the Canard oscillations
or high-frequency force at Thf = 2.3 (respectively Ω = 2.73 with Thf = 2π

Ω
). This

modulation is very regular. By forcing out the Canard resonance with Ω = 2.0
(i.e. Thf = 3.14) the first three peaks are approximately at the same position
as in the resonant case. Although I force out the Canard frequency, one or two
Canard periods can occur between two adjacent spikes. Except for these three
peaks in the ISIH the multimodal structure with the period of the Canard period
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Figure 2.19: Signal processing at the low-frequency ω input signal versus the
noise intensity for various frequencies of the high-frequency input signals Ω for
the FHN system at the bifurcation point. Parameters: a = 1.0, A = 0.01,
B = 0.02, ω = 0.251. The Canard-resonance frequency is ΩC = 2.62 [Fig. 2.15].

is suppressed. For higher interspike intervals a modulation with the period of
T ≈ 3 can be observed, that corresponds to the high-frequency input signal. In
this case the Canard oscillation can succeed only for two periods and loses the
competition with the high-frequency forcing after this time and the waiting time
will be dominated now by integer numbers of the high-frequency period.

In conclusion, I have considered signal processing in the noisy system which
possesses both oscillatory and excitable properties under the action of an addi-
tional HF signal. This system was represented by the FHN model with a stiffness
between pure excitable and oscillatory regime. I have demonstrated the possi-
bility of amplifying the SR effect in such systems using the Canard oscillations.
In this effect the HF signal that is in resonance with the frequency of Canard
oscillations strongly improves signal processing of the low-frequency signal. The
effect shows a frequency selectivity and disappears in the region out of resonance
with the Canard frequency.

For supercritical Hopf bifurcation in FHN-like models this phenomenon is
relevant for biology if the stiffness of the system (a degree of excitability) is
limited by the interval ε ∈ [0.01, 0.2] in order to get the observable periods of
noise-induced Canard-like orbits. In this interval very small noise is necessary
for a significant improvement of signal processing. It means, e.g for neurons, the
possibility of a new regulation of signal processing which, in addition to the choice
of the value of the bifurcation parameter, can control the signal transmission in
a small noisy environment.
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Figure 2.20: Signal processing at the low-frequency ω input signal versus the
noise intensity for various frequencies of the high-frequency input signals Ω for
the FHN system in the oscillatory regime. Parameters: a = 0.998, A = 0.005,
B = 0.01, ω = 0.251. The Canard-resonance frequency is ΩC = 2.86 [Fig. 2.16].

I hope that these theoretical findings will stimulate experimental work to find
new possibilities of signal reception and propagation in systems which demon-
strate Canard-like oscillations, especially in nonlinear chemical systems [127] or
in biophysical models [115, 116]. Moreover, dynamic systems which have some
specific regime between excitable and oscillatory states are not limited by the
FHN with Canard phenomenon. Recently it has been shown that the modified
Oregonator equations have three steady states and excitation occurs via resonance
between damped HF oscillations around the stable fixed point and periodic per-
turbations with an appropriate tuning frequency [92]. A similar SR enhancement
by HF signal may be also expected in this chemical system with low excitability.

In the next chapter, I investigate spatially extended FitzHugh-Nagumo models
with an inhibitory coupling and their frequency selectivity.
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Figure 2.21: ISIH by forcing of the excitable FHN system in (Ω = 2.73 = ΩC)
and out of the Canard resonance (Ω = 2.0 6= ΩC). The other common parameters
are ε = 0.1, a = 1.01, σ2

a = 0.000375, A = 0.007, ω = 0.251 and B = 0.025 (as in
Fig. 2.17).
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Chapter 3

Noise-induced signal processing
in systems with complex
attractors

Typically, studies of SR do not demonstrate a sensitive dependence on the fre-
quency of the forcing. Partially this is caused by using an adiabatic approximation
which is applied to get analytic results about SR. There are only some investiga-
tions in which the frequency of the signal is the essential parameter. Gang et al.
[128] have shown that SR in specifically globally coupled large bistable systems
with two series of cells demonstrates the bell-shaped dependence on the signal
frequency. Lindner et al. [129] have shown the amplification of the spectral power
at particular frequencies in small arrays of underdamped monostable oscillators.
The role of the signal frequency for excitable systems has been studied for isolated
FHN [84–89], when the characteristic time of the system, defined by an external
period providing the maximal level of synchronization, practically coincides with
the excursion time of an excitable element, and this time is the single natural
reference point for time scale. Such a form of frequency selectivity can also be im-
portant for biological membranes in enzymatic systems [90]. In other studies the
frequency sensitivity in weak signal processing results from a resonance between
small oscillations around steady state and a signal [91–94]. Hence, despite differ-
ent excitation mechanisms, the oscillation frequency is defined by the parameters
of isolated elements. On the other hand, our mechanism of frequency-selective
SR is based on the appearance of new resonance frequencies due to special phase
relations in an inhibitor-coupled array.

Oscillatory media with inhibitor-coupling have very rich dynamics and have
been reported to be important in numerous physical [97], electronical [98], and
chemical systems [99, 100]. To be specific, the inhibitory form of coupling is used
to explain morphogenesis in Hydra regeneration and animal coat-pattern forma-
tion [130], or to provide the understanding of pattern formation in an electron-
hole plasma and low temperature plasma [97]. In chemistry, the effective increase
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of inhibitor-diffusion by reduction of activator-diffusivity via the complexation of
iodide (activator) with the macromolecules of starch results in a Turing structure
formation [131].

It has been shown that the dominance of such a coupling between identical
oscillators results in the generation of many stable limit cycles with different
periods and phase relations [95, 96]. This type of diffusion is referred to as the
class of “dephasing” interaction because there is a large area of the phase space
where the phase points repel each other due to this interaction. Dephasing is a
source of multi-rhythmicity, which was observed in different systems [132–135]
and leads to a broad spectrum of additional frequencies in the system’s behavior.
For excitable noisy elements the dephasing interaction of stochastic limit cycles
(instead of deterministic ones) may provide coexistence of spatiotemporal regimes
which are selectively sensitive with respect to the period of external signals. In
these systems noise plays at least two roles: (i) it stimulates firings of stable
elements and, consequently, their interaction during return excursion and (ii) it
stimulates transitions between coupling-dependent attractors if they occur and
have visible life times.

In this part I investigate the influence of the signal frequency in the SR effects
in a system of inhibitor-coupled excitable oscillators. The discussion to this part
is structured as follows. After the explanation of the model equations and the
method used to estimate signal processing (chapter 3.1), I review the classical
SR effect in an isolated excitable oscillator in chapter 3.2 to emphasize the dif-
ference with the selective SR in a coupled system. Then I study in chapter 3.3 a
chain of two identical inhibitor-coupled excitable oscillators. In this situation the
phase relation becomes important for the resonance frequency and the anti-phase
motion exhibits another resonance frequency than that of an isolated oscillator.
In contrast to an isolated oscillator, the ensemble reacts very sensitively upon
the new resonance frequency of the anti-phase attractor. This new frequency
selectivity can be used for an enhancement of the signal processing and informa-
tion transmission in the SR effect at this new resonance frequency. After that,
I study in chapter 3.4 a chain of three coupled elements with a richer spectrum
of the phase relations and the frequencies. Beside the anti-phase motion (two
in-phase oscillators are in anti-phase with the third one), this system demon-
strates the so-called “dynamic trap” regime in which the middle element does
not produce spikes because of anti-phase motion of neighbors. This additional
resonance frequency of the ensemble permits demonstration of frequency-selective
modifications of the signal processing.
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3.1 The model

I study several rather simple small arrays of inhibitory diffusively-coupled sta-
tionary but very strongly excitable FitzHugh Nagumo models (FHN) under the
action of white additive noise and subthreshold periodic signal which is applied
to one of the elements. I show that for some values of the signal period the
dependence of SR measures on the noise level has a second maximum and the
dependence of SR on the values of the signal period under some fixed noise re-
sembles the conventional resonance.

In order to get the reference frame for further comparisons, I begin with study
of the dependence of classical SR on the signal period in the simplest version of
the FHN model. The previous investigation [85] was very limited in relation to
the value of the periods studied. The model is given by the following Eqs.:

ε
dx

dt
= y − x3

3
+ x , (3.1)

dy

dt
= a− x + ξ(t) + Asin(

2π

Ts

t) . (3.2)

Following a cooperation with a group in Moscow, Russia, here I have adapted
some signs in Eqs. (3.1) and (3.2) in comparison with the previously-used differen-
tial equations (2.1) and (2.2) for the FHN model to make the results comparable.
The small changes lead only to a reflexion of the nullclines in the phase plane at
the ordinate and do not influence the qualitative dynamics of the model. Fur-
ther, I express the circle frequency ω in Eq. (3.2) by the period Ts: ω = 2π

Ts
. This

should assist a better recognition of the different periods in the multi-rhythmic
system. The dynamic of the activator variable x is much faster than that of
the inhibitor y, as indicated by the small time-scale-ratio parameter ε. I fix a
close to the bifurcation in the interval a ∈ [1.01, 1.03] (excitable regime) in order
not to use high-level noise to excite oscillations and thereby to avoid masking of
the fine structure of the interspike intervals histograms. Here ε is in the range
ε ∈ [0.0001, 0.001], which is significantly smaller compared to those that are
commonly used and which I use in chapters 2 and 4. Such a stiff excitation is
needed to provide fast jumping between the attractors. The stochastic forcing
is represented by Gaussian white noise ξ(t) with zero mean and intensity σ2

a:
〈ξ(t)ξ(t′)〉 = σ2

aδ(t − t′). The harmonic signal is subthreshold, A < a − 1.0. To
evaluate the amplitude of the input frequency in the output signal, I calculated
the linear response Q [39, 40] at the input frequency ω = 2π

Ts
according to the

Eqs. (2.3) - (2.5) but with respect to the activator variable x(t).
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3.2 Classic Stochastic Resonance in an isolated

FitzHugh-Nagumo model
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Figure 3.1: The linear response Q for an isolated FHN (Eqs. (3.1) and (3.2)) as
function of the noise intensity σ2

a for different signal periods Ts = 2.8 (a), 3.2 (b),
3.4 (c) and 4.0 (d). Other parameters are a = 1.02, ε = 0.0001, A = 0.01.

Fig. 3.1 shows the dependence of the linear response Q on the noise amplitude
for different values of the signal period. All curves demonstrate standard SR
behavior, but the influence of the period is not weak especially for Ts = 3.2 which
corresponds to the duration of excursion time after firing te. For this period the
optimal signal amplification takes place in a broad range of noise amplitude.
Further on, the resonance frequency depends on the noise intensity σ2

a and hence
the driving period Ts can be in resonance only at a suitable range of σ2

a and not
overall [Fig. 3.1(b)]. This explains the appearance of the additional maximum in
the dependence for Ts = 3.2. A detailed investigation of the resonant forcing of
an isolated FHN can be found in Ref. [85]. Under strong noise, the realizations
of stochastic cycles are very similar to corresponding noisy limit cycle (e.g. with
A=.99) and the dependence of the linear response Q on the period under fixed
large noise contains the conventional main resonance and secondary resonances
at T=1.6, 1.08, at least [Fig. 3.2].

A conventional resonance occurs when the time moments of the end-of-phase
point excursions coincide with “negative” phase of the signal, which significantly
facilitates the next firing (a is shifted closer to 1.0). Fig. 3.2 illustrates that if the
signal period is one half or one third of the excursion time te then the secondary
resonances occur.
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Figure 3.2: The dependence of the linear response Q for an isolated FHN (Eqs.
(3.1) and (3.2)) on the signal period Ts for several values of the noise level σ2

a = 0.0
(a), 3× 10−6 (b), 1× 10−5 (c), 1× 10−4 (d).
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3.3 Frequency-dependent Stochastic Resonance

in two coupled oscillators

Now I consider two identical and coupled elements and introduce the diffusion of
the inhibitory variables:

ε
dx1,2

dt
= y1,2 −

x3
1,2

3
+ x1,2 , (3.3)

dy1,2

dt
= a− x1,2 + ξ1,2(t) + A1,2sin(

2π

Ts

t) + D(y2,1 − y1,2) , (3.4)

where the signal is applied only to the first element (A1 = 0.01 and A2 = 0.0),
and 〈ξi(t)ξj(t

′)〉 = σ2
aδ(t− t′)δi,j. The parameter D denotes the coupling strength

and is fixed to D = 0.1.
I investigate the dynamics of Eqs. (3.3) and (3.4) in the same region of the

signal periods and noise levels as in Figs. 3.1 and 3.2. Fig. 3.3 presents the de-
pendence of Q on the noise intensity for Ts = 3.2− (a) and Ts = 4.2− (b).

Under the action of weak noise the first element shows SR at any Ts and
the transmission of the signal to the second element is observed starting from
the SR-optimal noise. For standard SR a further evolution of Q with noise for
both element should be a continuous decreasing of Q. The same is true for the
elements coupled via their fast variables, but the inhibitor-coupled relaxation ex-
citable elements demonstrate a large second peak. Numerical simulations have
shown that the second resonance peak appears for driving periods Ts between
4.2 and 4.5 [Fig. 3.3(b)]. The nature of this peak is the noise-induced anti-phase
stochastic cycle in the presence of the coupling. It has been shown recently that
in a broad interval of noise amplitudes the anti-phase cycle dominates and results
in a new type of coherence resonance [136]. The period of this cycle depends on
the coupling strength and the noise amplitude which define the position of the
second peak on the curve Q(σ2

a) in Fig. 3.3(b). The influence of the stiffness is also
essential because for ε > 0.001 the second peak cannot be clearly observed, but
the rate of Q(σ2

a) decreasing is less than that for standard SR [Fig. 3.1]. A similar
double maximum in the power spectral amplitude at the forcing frequency as a
function of the noise intensity has been found recently but for an underdamped
bistable system where two maxima are linked with two noise-induced motions: in-
trawell and interwell [119]. These results show that one can use inhibitor-coupled
oscillators for frequency selection in Stochastic Resonance. It is noteworthy that
a multi-peak coherence resonance has also been observed in coupled FHN models
[137].

52



10
−6

10
−5

10
−4

10
−3

σa

2

0.0

0.2

0.4

0.6

0.8
Q

1
2 a)

10
−6

10
−5

10
−4

10
−3

σa

2

0.0

0.2

0.4

0.6

0.8

Q

1
2 b)

Figure 3.3: The linear response Q for two inhibitor-coupled FHN’s (Eqs. (3.3)
and (3.4)) as function of the noise intensity for signal periods Ts = 3.2 (a) and
Ts = 4.2 (b). Other parameters are a = 1.02, ε = 0.0001, A1 = 0.01, A2 = 0.0
and D = 0.1.
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3.4 Frequency-dependent Stochastic Resonance

in a chain of three oscillators

Three identical coupled elements in a chain can demonstrate a richer set of regimes
which depend on the configuration:

ε
dx1,2,3

dt
= y1,2,3 −

x3
1,2,3

3
+ x1,2,3 , (3.5)

dy1

dt
= a− x1 + ξ1(t) + A1sin(

2π

Ts

t) + D(y2 − y1) , (3.6)

dy2

dt
= a− x2 + ξ2(t) + A2sin(

2π

Ts

t) + D(y1 − y2) + D(y3 − y2) , (3.7)

dy3

dt
= a− x3 + ξ3(t) + D(y2 − y3) , (3.8)

where 〈ξi(t)ξj(t
′)〉 = σ2

aδ(t− t′)δi,j.
Let us analyze possible attractors in the autonomous system of three inhibitor-

coupled identical oscillators. For a linear chain of oscillators whose bifurcation
parameters are close to Hopf bifurcation, three main types of stable attractors
occur [138]. The first is in anti-phase regime in which oscillators at the ends
move in anti-phase with the middle one. The second type was called “dynamic
trap” because the anti-phase motion of the end’s oscillators does not permit
the firing of the middle one. The third type is not a single attractor but a
family of attractors which may be designated as “n/2/n”, where n = 3, 5, 7....
The value of n depends on the coupling strength and the distance of a from
the bifurcation value. The closer a is to 1.0 (for FHN model), the larger is
the value “n” and the stronger is the crowding of attractors. If the elements
do not oscillate deterministically but are excited by noise, then the observed
stochastic collective modes only partially resemble these types of regimes due
to noise-dependent perturbations of trajectories. The attractors “n/2/n” will be
practically corrupted by noise. This type of multimodal distribution is not model-
specific and was observed for auto-oscillating [139] and excitable [140] electronic
arrays with dephasing (inhibitory) interactions.

Fig. 3.4 shows the distribution of interspike intervals (ISIs) for 3 coupled ex-
citable elements without an external signal. It can be clearly seen that only
two stochastic attractors are really manifested in the ISI distributions. In the
dynamic trap, in which the first and the third oscillator are moved in average
in anti-phase, their interspike intervals are around T ≈ 3.0 that is very close to
the excursion time te = 3.2. Since the system is symmetric, the ISI histograms
of the first and third element are identical. In this regime the ISI distribution
for the middle element is very broad and polymodal. There are only infrequent
realizations with very large ISI for the second element. In the anti-phase regime,
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Figure 3.4: The ISI distributions for a chain of 3 coupled excitable elements
(Eqs. (3.5) - (3.8)) and no signal (A1,2 = 0.0). The ISI distributions of the first
and the third (1+3) oscillator are denoted by a dashed line and the second one
(2) by a solid line. The other parameters are a = 1.02, D = 0.1, σ2

a = 10−4 and
ε = 0.0001.

in which the first and the third oscillator are moving in average in-phase but in
anti-phase with middle oscillators, they all have the same average period about
Tanti ≈ 4.2 under the given set of the other parameters. Fig. 3.5 shows typical
selected time series of the inhibitor variables y(t) of the three coupled oscillators
related to the two main phase regimes, anti-phase motion Fig. 3.5(a) and dynamic
trap Fig. 3.5(b).

The life-times and periods of attractors depend on the coupling strength and
noise values which may be adjusted to enhance (or to inhibit) the acceptance of
a sinusoidal signal of a given period. To check this possibility, I calculate Q(σ2

a)
for different signal periods and present results which clearly reflect the specific
modification of signal acceptance. I consider two cases:

Case 1: The harmonic signal with A1 = 0.01 is applied only to the first
oscillator (A2 = 0.0). The corresponding dependencies of the linear response,
measured for all three oscillators, are shown in Fig. 3.6 for different periods of
the external signal Ts. As discussed above, we have in this system two noise-
supported attractors: a dynamic trap (T = 3.0−3.6) and an anti-phase attractor
(T ≈ 4.2). These two time scales demonstrate themselves also in the frequency
selectivity by signal processing. If the signal period Ts < 3.0 (e.g. Ts = 2.8)
or Ts > 5.5, the behavior of Q1(σ

2
a) is quite similar to that of isolated FHN

and Q2 ≈ Q3 have only one peak as in the classical SR [Fig. 3.6(a) and (f)]. If
the signal period is in the interval Ts ∈ [3.0, 3.4] then Q1 declines sharply in
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Figure 3.5: The time-series intervals selected from trajectory giving ISI distribu-
tion of Fig. 3.4. They present the anti-phase regime (a) and “dynamic trap” (b).
The parameters are a = 1.02, D = 0.1, σ2

a = 10−4, ε = 0.0001 and A1,2 = 0.0 (no
signal).

comparison with an isolated FHN in Fig. 3.1 but Q3 dramatically increases for
noise amplitudes in the interval σ2

a ∈ [10−5, 5×10−5] [Fig. 3.6(b), (c) and (d)], i.e.
the signals with these periods easily penetrate through the middle element and
are selectively manifested in the time series of the third oscillator. For Ts > 3.6 Q3

decreases again [Fig. 3.6(e)]. The reason for this phenomenon is the coincidence
of the signal period with the average values of the interspike intervals of the
stochastic dynamic trap [Fig. 3.5(b)]. In this regime the average ISI of the first
and the third element are equal and their interspike distributions are significantly
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Figure 3.6: The dependencies of the linear response Q for a chain of 3 elements
(Eqs. (3.5)-(3.8)) as a function of the noise intensity for different signal periods:
Ts = 2.8 (a), 3.0 (b), 3.2 (c), 3.4 (d), 4.5 (e), 6.0 (f); a = 1.02, ε = 0.0001,
D = 0.1. The signal of the amplitude A1 = 0.01 is applied to the first oscillator
only (A2 = 0.0).
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narrower than that of the second element. Therefore, the signal manifestation in
the behavior of the second oscillator is small for this interval of the signal period.

If the noise amplitude is larger than 5× 10−6, the average activation time of
excitation is small and several stochastic attractors may occur, but the harmonic
signal supports those which have a similar value of average period. The next
stochastic attractor which has a noticeable life-time (not very sensitive to noise)
under stronger noise is the anti-phase oscillation with the average period Tanti ≈
4.2. The second peak on the curves Qi(σ

2
a) at Ts = 4.0−4.5 at about σ2

a ≈ 2×10−4

is realized for all oscillators [Fig. 3.6(e)], because the average ISIs are the same for
all elements in this regime [Fig. 3.5(a)]. All the three oscillators generate similar
spike sequences and hence perform with nearly the same linear response Q. For
the current model and the given set of other parameters, the distance between the
ISIs of the two different phase regimes (anti-phase and dynamic trap) is not large
[Fig. 3.4] and the selectivity of signal enhancement is limited by noise-induced
transitions between these regimes.

Case 2: The harmonic signal is applied only to the middle element (A1 = 0.0
and A2 = 0.015). This example of the selective enlargement of Q(σ2

a) is presented
in Fig. 3.7(a,b). For Ts = 3.2, which corresponds to the maximal manifestation
of the signal in the behavior of an isolated oscillator up to noise amplitude 10−4

[Fig. 3.1], the function Q2 dramatically decreases if the noise is around 10−5.
Such behavior reflects the absence of small ISIs in the time series of the second
element after this noise value. The increase of signal period up to Ts = 4.5 results
in the appearance of the second peak on all curves Q1,2,3(σ

2
a) and that is similar

to Fig. 3.6(e) except that here Q2 is larger than Q1,3 because the signal is applied
to the middle element of the chain.

Thus, the presence of a double resonant peak structure of Q(σ2
a) is caused by

the coexistence of two stochastic limit cycles which share the phase space due
to the inhibitor exchange. In our model the distances between average periods
of attractors are not large and therefore the amplitudes of the second peaks in
the Figs. 3.3, 3.6 and 3.7 are noticeable but not so pronounced as compared with
the standard SR peak which, however, is almost the same for any values of the
external periods.

The attractors differ not only by periods but by phase relations as well; that
opens the possibility for additional checking of our explanation by the simulta-
neous application of two harmonic subthreshold signals with appropriate phase
shift. For instance, the second peak on the Q1,2,3 has a larger height if two signals
are applied to the end’s oscillators in-phase, but Q1,2,3 is almost negligible if the
same signals are in anti-phase each other.

The manifestation of the described effects depends not only on the stiffness
but on the other model parameters too: the coupling strength and the proximity
of a to the bifurcation value. These studies have shown that the results are
retained under a 2-fold changing of coupling and the difference (a− 1.0).

In summary, I have demonstrated the frequency-selective response and in-
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Figure 3.7: The linear response Q as a function of the noise intensity for signal
periods Ts = 3.2 (a) and Ts = 4.5 (b). a = 1.02, ε = 0.0001, D = 0.1. The
periodic signal A2 = 0.015 is applied only to the middle oscillator (A1 = 0.0).

formation propagation in a noisy system which consists of inhibitor-coupled ex-
citable units and is driven by a subthreshold harmonic signal. The signals with
periods from some intervals (e.g Ts ∈ [4.0, 4.5]) may be enhanced not only for
small but also for larger noise which are typically ineffective for standard SR. The
signals with shorter periods (e.g. Ts ∈ [3.0, 3.2]), which are the most effective for
SR, may be strongly inhibited under some noise levels in comparison with an iso-
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lated FHN in Fig. 3.1. The background of the selectivity is the multi-rhythmicity
generated by the inhibitor-coupling in combination with the high stiffness of ele-
ments which provides the fast transitions between stochastic attractors.

The mechanism of this selectivity can be explained by the appearance of new
resonance frequencies of the coupled system which are caused by different phase
relations of the oscillators and differ from the resonance frequency of an isolated
FHN. Especially the resonance frequencies of the anti-phase and dynamic trap
regime exhibit stable attractors in a noisy environment. By forcing one element
of the network in resonance with these coupled dependent resonance frequencies,
we observe an additional resonance peak in the SR curve besides the typical
bell-shaped curve of standard SR. Another interesting phenomenon which I have
explained is the masking of the information flow in the dynamic trap regime. In
this effect, the last oscillator in the row shows a much better response at the signal
frequency which was fed at the first oscillator of the row than the middle one. I
believe that study of the frequency-selective SR and the masking of information
flow in an array due to inhibitor-coupling can be useful for understanding of
multi-frequency information exchange mechanisms in neural networks. Because
of the generality of these effects for diffusive coupled activator-inhibitor oscillator
arrays and not only to FHN systems, I expect that the findings can be applied
also in other fields, e.g. in chemistry or biology.

It is important to note that these results contribute also to the study of
fundamental synchronization phenomena [141]. In frames of this study SR can
be considered as a synchronization-like phenomenon, in which optimal noise in-
duces phase synchronization between output and input signal. In Ref. [142] it
has been shown that in deterministic systems of coupled elements, synchroniza-
tion can happen through the asynchronized region. The effect, considered here,
demonstrates a synchronization-like behavior through the dynamic trap, and can
be considered as a stochastic analogue of this kind of phase synchronization in
deterministic systems.

The next chapter concerns a noise-induced phase transition to an excitable
regime. The difference from to the previously-investigated noise-driven effects
consists in the fact that the excitable property is evoked by noise itself and
vanishes in the absence of noise.
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Chapter 4

Noise-induced excitability and
related effects

4.1 Phase transition to excitability generated

by multiplicative noise

Recent investigations have shown that parametric noise is able to induce a bona-
fide transition from an excitable to an oscillatory regime, via a renormalization of
the parameters defining the local dynamics of the system [71, 72]. This mechanism
has also been found responsible for inducing excitability in bistable [73, 74] and
subexcitable [71, 101] media. In all those cases, however, noise has the expected
role of increasing dynamical instability. In this chapter I show, on the other
hand, that certain types of noise operate in the opposite direction of constructive
influence, namely enhancing stability in the system. In particular, I demonstrate
that random fluctuations can induce a transition from oscillatory to excitable
behavior, by stabilizing a deterministically unstable fixed point of the dynamics,
while preserving the overall phase space structure that leads to large amplitude
pulses (but which will then be triggered only by above-threshold perturbations).
In contrast to previous results on noise-induced excitability, spatial coupling is
absolutely essential in this case, in order to prevent noise-driven oscillations from
exciting the system and converting it back into an oscillator. In that sense, cou-
pling plays here a role similar to that of standard phase transitions, suppressing
fluctuations and coupling the stable regions. It prevents the system from visiting
the whole available phase space and locks it close to the stable steady state (un-
til a perturbation triggers an excitable spike). Noise-induced phase transitions
between homogeneous phases have long been known to use the joint action of cou-
pling and noise in this way [62, 65]; here I extend this fundamental mechanism
to the field of excitable dynamics.

To demonstrate this noise-induced excitability (NIE) I consider a system of
coupled FitzHugh-Nagumo (FHN) elements in the oscillating state and under
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the action of multiplicative noise. The mechanism of a noise-induced phase tran-
sition is explained theoretically in the framework of a small-noise-expansion of
the model, which extracts the systematic contribution of the multiplicative noise
accounting for the excitability restoration. The excitable character of the noise-
induced regime is demonstrated by showing the existence of Stochastic Resonance
and wave propagation through the system in the following chapters 4.2 and 4.3.

4.1.1 The model with noise-induced excitability

I analyze the following set of N coupled FHN oscillators:

dui

dt
=

1

ε
(F (ui)− vi) + Du (ūi − ui) , (4.1)

dvi

dt
= cui + d + viξi(t) + Dv (v̄i − vi) , (4.2)

where x̄i ≡ 1
N

∑N
j=1 xj, xi = ui, vi and the self-activation term of ui is given by a

piecewise linear approximation of the cubic function, used in the previous FHN
models:

F (u) =




−1− u + b
u + b
+1− au + b

u ≤ −1
2

−1
2

< u < 1
1+a

u ≥ 1
1+a

.

I use this piecewise linear approximation of the cubic function in Eq. (4.1) in-
stead of a cubic function as in the previous equations for the FHN model (e.g.
Eq. (2.1)), in anticipation of a possible analytic approximation of the noise-
induced excitability. An analytic approximation of the FHN model without the
noise-induced phase transition to the excitability has been given in Ref. [88] for
such a piecewise linear approximation of the cubic function. This approximation
is based on a time-scale separation between fast and slow variable. Possibly one
could find an analytic approximation of the NIE by a combination of the approx-
imation suggested in Ref. [88] and the small-noise-expansion [62]. In a neural
context, u(t) represents the membrane potential of the neuron and v(t) is related
to the time-dependent conductance of the potassium channels in the membrane
[18]. The dynamics of the activator variable u is much faster than that of the
inhibitor v, as indicated by the small time-scale-ratio parameter ε. Coupling is
considered in both the activator and the inhibitor and is taken to be global, al-
though as I will show later in chapter 4.3, similar results are obtained for local
diffusive coupling. The coupling strengths are denoted by Du and Dv. Random
fluctuations are represented by the δ−correlated Gaussian noise ξi(t), with zero
mean and the correlation 〈ξi(t)ξj(t

′)〉 = σ2
mδ(t− t′)δi,j. This multiplicative noise

term is interpreted in the Stratonovich sense [62].
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4.1.2 Analytical description of the noise-induced phase
transition

I have calculated the non-zero mean of the multiplicative noise term viξi in
Eq. (4.2) with help of the small-noise-expansion [62] (see also chapter 1.2.4) by
〈viξi〉 = (σ2

m/2)vi. Therefore, in the presence of fluctuations the effective local
dynamic of the inhibitor variable is given by v̇i = cui +d+(σ2

m/2)vi, at first order
in the noise intensity. The corresponding nullclines of an isolated oscillator for
increasing multiplicative intensity are represented in the phase plane of Fig. 4.1.
Without noise the nullcline for the slow variable v (curve 1) crosses the nullcline
of the fast variable (inverted-N piecewise line) in its middle segment, so that the
crossing point is an unstable steady state and the system exhibits an oscillatory
behavior. An increase of the multiplicative noise intensity σ2

m leads to a tilting
and shifting of the v−nullcline [curves 2-4 in Fig. 4.1]. As a result, for large
enough σ2

m (in the present case for σ2
m & 0.033) the crossing occurs in the left

segment of the u-nullcline and the fixed point becomes stable.

−2.0 −1.0 0.0 1.0 2.0
 u

1.0

1.5

2.0

2.5

3.0

v

1
2

3
4

Figure 4.1: Nullclines of a single FHN oscillator in phase space. The inverted-N
piecewise line corresponds to the noise-independent nullcline of the activator u.
The other lines (1-4) describe the tilting of the inhibitor nullcline by increasing
the noise intensity: 1 – σ2

m = 0.0, 2 – σ2
m = 0.0334, 3 – σ2

m = 0.06, 4 – σ2
m = 0.1.

Other parameters are a = 1.0, b = 2.0, c = 0.2 and d = 0.075

Throughout this process, however, the overall phase space structure of the
system is not changed, which allows perturbations of the noise-induced stable
fixed point to excite large-amplitude excursions towards the right segment of the
u-nullcline (excited branch). In particular, in an isolated oscillator, perturbations
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due to the noise itself may induce a stochastic limit cycle which prevents the sys-
tem from escaping out of the oscillatory regime. In other words, the transition
to excitability cannot be observed in isolated oscillators, in spite of the renormal-
ization of the dynamical parameters due to noise. In the presence of coupling,
the weight of those oscillators that are not firing prevents these noise-induced
excursions and leads to effective excitability.

4.1.3 Manifestation of the noise-induced phase transition
in the time series
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Figure 4.2: Time series of the mean field of the activator variable u (left) and
the inhibitor variable v (right), with increasing multiplicative noise intensity: (a)
σ2

m = 0.0, (b) σ2
m = 0.033, (c) σ2

m = 0.045, (d) σ2
m = 0.05 and (e) σ2

m = 0.08.
Other parameters are N = 500, ε = 0.01, a = 1.0, b = 2.0, c = 0.2, d = 0.075
and Du = Dv = 100.

Figure 4.2 depicts the appearance of NIE, by plotting the time series of the
activator’s mean field, u(t) = (1/N)

∑N
i=1 ui(t), and the inhibitor’s mean field,

v(t) = (1/N)
∑N

i=1 vi(t). Because of the relatively large values of the coupling
strengths (which nevertheless have the order of magnitude of ε−1), the time series
of the single oscillators differs only very slightly from that of the mean field,
i.e. the oscillators are synchronized. Figure 4.2(a) displays the regular self-
sustained oscillations of the system without noise. Increasing the multiplicative
noise intensity σ2

m leads to an increase and randomization of the time interval
between consecutive spikes, as seen in Figs. 4.2(b–d). Finally, for large enough
noise no spike appears [Fig. 4.2(e)]. This corresponds to an oscillation suppression

64



due to multiplicative noise: the system stays at the noise-induced stable fixed
point. But besides an oscillation suppression, the system also exhibits excitable
properties when perturbations (other than the stabilizing noise) affect the system.
As will be shown below, this noise-induced regime displays Stochastic Resonance
when driven periodically (chapter 4.2), and wave propagation in the case of local
coupling (chapter 4.3).

4.1.4 The bifurcation diagram

The phase transition and the influence of the number of coupled FHN oscillators
can be illustrated by the bifurcation diagrams Fig. 4.3. There the v-coordinates
of intersection point of the trajectory with the inhibitor nullcline (slow variable
v) are plotted versus the multiplicative noise intensity σ2

m as the control param-
eter. The tilting of the inhibitor nullcline due to multiplicative noise is taken
into account by the small-noise-expansion [Fig. 4.1]. Thus, every point in the
bifurcation diagrams denotes a crossing of the trajectory in the phase space with

the line u = −d−(σ2
m/2)v

c
. Time series of 1000 time units were calculated for ev-

ery parameter set, but the first 100 time units were excluded for the bifurcation
diagrams to avoid transient states. Despite the stabilizing property of the multi-
plicative noise, one can clearly see the stochastic character of the NIE. For finite
size the phase transition from the self-sustained (two branches in the bifurcation
diagrams) to the noise-induced excitable regime (only one close to the stable
fixed point) does not exhibit a sharp boundary and the boundary itself is influ-
enced by the number of coupled FHN oscillators. In an ensemble of 100 coupled
FHN oscillators [Fig. 4.3 (top)] one cannot find an explicit phase transition in
the multiplicative noise range σ2

m ∈ [0.0, 0.1]. A system consisting of 300 FHN
oscillators [Fig. 4.3 (middle)] undergoes the phase transition at σ2

m between 0.074
and 0.076 and one with 500 FHN oscillators [Fig. 4.3 (bottom)] between 0.064
and 0.066. All the multiplicative noise intensities are greater then the boundary
for the phase transition σ2

m ≈ 0.033 predicted by the small-noise-expansion. The
reason is that the approximation considers the average systematic action of noise
in first order and not the short-time fluctuations in individual oscillators. The
dynamic of an individual oscillator in the coupled ensemble is depicted by the
example of one selected oscillator in the bifurcation diagram. The fluctuations
of an individual oscillator are larger than those of the mean field. The stochastic
properties at the noise-induced stable fixed point also mask the phase transition
and the oscillation suppression. This effect is especially pronounced in small
ensembles, because small fluctuations lead to the reaching of the threshold of
some oscillators. If several oscillators occasionally and simultaneously cross the
threshold, they produce large spikes and also push the other oscillators above
the threshold. As a result, a spike in the mean field can be observed. This is
related to the problem, that one can not reliably distinguish a noise-perturbed
self-sustained oscillating system and a noise stimulated excitable system by the
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Figure 4.3: The finite size effect in bifurcation diagrams: v-intersection point of
the trajectories with the v-nullcline versus multiplicative noise intensity σ2

m. The
bold filled circles denote the intersection point of the mean field of the inhibitor
variable v and the small points that of an exemplary chosen oscillator. The
number of coupled FHN oscillators is increased from 100 (top), 300 (middle) up
to 500 (bottom). The other parameters are ε = 0.01, a = 1.0, b = 2.0, c = 0.2,
d = 0.075 and Du = Dv = 100 (same as in Fig. 4.2).

resulting time series. The probability of such an event decreases with an increase
of oscillator numbers and larger threshold of excitation, i.e. larger multiplicative
noise σ2

m.

66



4.1.5 Phase diagrams

In order to describe quantitatively the transition towards excitability, I compute
the relative resting time with respect to the whole measuring time. Due to the
random character of the time series, I need to specify a measurement threshold. I
define the resting time with two different conditions: weak as the interval during
which every oscillator fulfills condition ui < −0.5 and strong, if ui < −0.5 and
vi ≤ 1.85. The first weak requirement corresponds to the absence of spikes, and
hence measures the noise-induced oscillation suppression, and the second checks
additionally the absence of large excursions towards the left on the left branch of
the u−nullcline. Such excursions would lead to a large excitation threshold and
weaken the system’s excitability. The threshold for the relative resting time is
set to 0.98.
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Figure 4.4: A phase diagram for the transition from a self-sustained oscillatory
regime to NIE. Coupling strength Du versus multiplicative noise intensity σ2

m for
300 coupled elements and for different coupling strengths Dv. The excitable state
is defined, if oscillators fulfill the condition ui < −0.5 for 98% of time. The solid
lines denote an approximation of the boundary of phase transition.

According to the previous definitions, Figs. 4.4 and 4.5 display a phase dia-
gram in the plane of parameters Du − σ2

m distinguishing the regions where the
original oscillatory behavior and the noise-induced excitable (NIE) regime exist
for different inhibitor coupling strengths Dv. The boundary at σ2

m ≈ 0.06 of
the NIE corresponds basically to the condition ui < −0.5, and the right one
of the NIE balloon in Fig. 4.5 to vi < 1.85. The difference in the boundary at
σ2

m ≈ 0.06 between the weak and strong condition can be understood as follows:
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Figure 4.5: A phase diagram for the transition from a self-sustained oscillatory
regime to NIE. Coupling strength Du versus multiplicative noise intensity σ2

m

for 300 coupled elements and for different coupling strengths Dv. The excitable
state is defined, if oscillators fulfill the condition ui < −0.5 and vi ≤ 1.85 for
98% of time. The splines are fitted polynomials to approximate the boundary of
phase transition. For inhibitor coupling Dv = 10 no NIE can be observed in the
depicted parameter plane Du - σ2

m.

The threshold for the relative resting time of 0.98 permits the oscillators to stay
2% of the time outside the resting conditions. Consequently some infrequent
noise-stimulated spikes can occur in the NIE state. The NIE, defined with strong
conditions, excludes a larger part of the trajectory of a spike because a significant
fracture of the left branch of the activator nullcline (u̇(t) = 0) is outside of the
additional strong condition vi ≤ 1.85, whereas the weak condition includes this
nullcline completely. Hence, the strong condition excludes a part of the recovery
time which is related to the movement on the left branch of the u-nullcline. The
recovery time depicts a significant time of the spike cycle due to the relatively
slow movement along this branch of the u-nullcline caused by the small time-scale
separation factor ε = 0.01. As a result, the 98% threshold for the relative resting
time admits more infrequent spikes at the weak NIE condition then at the strong
one and so the boundary oscillatory → NIE is slightly shifted to a higher multi-
plicative noise intensity σ2

m in Fig. 4.5 then in Fig. 4.4. The NIE region shrinks
in size as Dv decreases. In other words, minimum coupling strengths of both the
activator and the inhibitor are required for the NIE regime to exist.

Figure 4.6 pictures the dependence of the transition to NIE on the number
of coupled elements of the system. As in standard phase transitions, the region
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Figure 4.6: Phase diagram for the transition from a self-sustained oscillatory
regime to NIE according to the strong definition. Number of coupled elements
N versus multiplicative noise intensity σ2

m for Du = 416 and Dv = 64.

of noise intensity values for which NIE exists becomes larger as the number of
oscillators increases. We can also see that a minimum number of elements is
needed to achieve the excitable regime (in the present case ∼250).

The strong condition of NIE is the proper measure for describing the excitable
property with sufficiently small threshold and hence with a high sensitivity to
perturbations. This treatment of NIE will be used in the following chapter for
demonstrating typical effects in excitable systems in the noise-induced excitable
system.

4.1.6 Discussion of the short-time evolution

Van den Broeck et al. [67] have found analytically and numerically a noise-
induced phase transition from a monostable (potential well at zero) to a bistable
state (with two nonzero potential wells) on short time-scales in a single poten-
tial and argued that coupling of many systems leads to an enlargement of the
time-scale on which the bistable state subsists. The particle initially in such
a noise-induced bistable potential behaves for short times as in a determinis-
tic bistable potential and tends to one nonzero potential well, while on longer
time-scales one can observe a movement to zero and hence a monostable po-
tential determines the dynamic. In contrast to that finding the noise-induced
phase transition from oscillatory to excitable state does not demonstrate such
short-time stability. Figure 4.7 depicts the time-dependent evaluation of the first
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moment of the activator variable u (lower) and the inhibitor variable v (upper)
of a single FHN oscillator. The average runs over 500 realizations and the com-
mon initial state is u(t = 0) = −0.71875 and v(t = 0) = 1.71875, which is the
noise-induced fixed point for the considered noise intensity σ2

m = 0.08, according
to the small-noise-expansion. Following the idea of Van den Broeck et al. [67],
short-time stability would lead to a persistence of the first moments in the vicinity
of the noise-induced fixed point, but the single FHN oscillator leaves the initial
state and simultaneously the noise-induced fixed point in the case σ2

m = 0.08
(solid line). By comparing it with the deterministic undisturbed self-sustained
oscillatory FHN (σ2

m = 0.0 - dashed line), the FHN under the action of multi-
plicative noise leaves the vicinity of the noise-induced fixed point faster then the
undisturbed FHN and so no noise-induced stability on short time-scales in single
FHN can be observed.
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Figure 4.7: The first moments of the short-time evolution of the activator variable
u (lower) and the corresponding inhibitor variable v of a single uncoupled FHN
oscillator, starting from initial state u(t = 0) = −0.71875 and v(t = 0) = 1.71875.
The ensemble average < · > runs over 500 realizations. The parameters are:
ε = 0.01, a = 1.0, b = 2.0, c = 0.2, d = 0.075, Du = Dv = 0.0 and σ2

m = 0.0
(dashed line), and 0.08 (solid line).
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4.1.7 Influence of linear coordinate transformation

Additionally the question arises: what is the influence of the additive noise com-
ponent on the phase transition? During the spike the inhibitor variable v occu-
pies the range approximately between 1.5 and 2.5 [Figs. 4.1 and 4.2 (right)]. The
noise-induced stable fixed point is located at v0 ≈ 1.7. Hence, these values of
the inhibitor variable v lead to an additive noise component in the multiplicative
noise term viξi(t) in Eq. (4.2). To clarify the influence of this component a coor-
dinate transformation v′ = v−e is investigated which leads to a shift of the phase
space in the v direction. For e ≈ 1.7 the noise-induced fixed point is shifted close
to the v origin. The exact value of e, to set the fixed point to v′0 = 0, depends
on the multiplicative noise intensity σ2

m. The coordinate transformation results
in the following differential equations:

dui

dt
=

1

ε
(F (ui)− v′i + e) + Du (ūi − ui) , (4.3)

dv′i
dt

= cui + d + (v′i + e)ξi(t) + Dv (v̄′i − v′i) , (4.4)

where x̄i ≡ 1
N

∑N
j=1 xj, xi = ui, v

′
i and the self-activation term of F (ui) is un-

changed compared to Eq. (4.1).
The multiplicative noise term (v′i + e)ξi(t) in Eq. (4.4) has a non-zero mean given
by 〈(v′i + e)ξi〉 = (σ2

m/2)(v′i + e) according to the small-noise-expansion [62] (see
also chapter 1.2.4 and compare with chapter 4.1.2). Therefore, in the presence
of fluctuations the effective local dynamics of the inhibitor variable are given by
v̇′i = cui + d + (σ2

m/2)(v′i + e), at first order in the noise intensity. The cor-
responding nullclines of an isolated oscillator for increasing multiplicative noise
intensity are represented in the phase plane in Fig. 4.8 (lines 1 and 2 and the
inverted-N piecewise line). The coordinate transformation with e = 1.71875
leads to a translation of the whole phase space to lower v values [compare with
Fig. 4.1] and the v coordinate of the noise-induced stable fixed point is zero for
the shown noise intensity σ2

m = 0.08 (intersection point between line (2) and the
inverted-N piecewise line). The transformation does not influence the mechanism
of NIE. The simultaneous action of noise upon (v′i + e) is the important point
in this consideration. If one would consider independent and uncorrelated noise
for each part of the sum, i.e. one replaces (v′i + e)ξi by v′iξi + eζi with ξi and ζi

Gaussian white noise with the same intensity σ2
m but spatially and temporally

uncorrelated, the effective local dynamics of the inhibitor variable would be given
by v̇′i = cui + d + (σ2

m/2)v′i and one examines a totally different system with-
out NIE. It is noteworthy that this replacement is not caused by the coordinate
transformation, leads to a different system and is used only in this consideration.
Although a sufficient noise intensity σ2

m = 0.08 acts upon the FHN oscillators,
the system remains self-sustainedly oscillatory because the unstable fixed point
is left unstable [Fig. 4.8: intersection point between line (3) and inverted-N
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piecewise line]. Numerical simulations have confirmed these results of the small-
noise-expansion, that the noise has to act simultaneously on (v′i+e) to reach NIE.
These considerations show that additive noise is not able to cause a noise-induced
phase transition from an oscillatory to an excitable state and only the systematic
action of multiplicative noise results in the NIE.
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 u

−0.5
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12
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Figure 4.8: Nullclines of a single FHN oscillator after coordinate transformation
with e = 1.71875 in phase space. The inverted-N piecewise line corresponds to
the noise-independent nullcline of the activator u. The lines (1 and 2) describe
the tilting of the inhibitor nullcline by increasing the noise intensity: σ2

m = 0.0 (1)
and σ2

m = 0.08 (2). The line (3) demonstrates the vanishing of NIE by splitting
the multiplicative noise term (v′i + e)ξi into two parts with independent noise
sources with same noise intensity σ2

m = 0.08. Other parameters are a = 1.0,
b = 2.0, c = 0.2 and d = 0.075.

Next, I want to show the excitable properties, especially the threshold behav-
ior, of the noise-induced excitable media by performing the Stochastic Resonance
effect, as a typical effect in excitable systems.
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4.2 Stochastic Resonance in noise-induced ex-

citable systems

Defined as the enhanced response to an external signal for an optimal amount of
noise, Stochastic Resonance (SR) has long been found in excitable media [30, 38,
143]. In order to show that the NIE regime possesses all immanent properties of
excitable systems, I now examine the response of the system to external periodic
driving and an additive source of noise. The dynamical behavior of the inhibitor
is then given by:

v̇i = cui + d + viξi(t) + Dv (v̄i − vi) + ζi(t) + A cos ωt , (4.5)

where ζi is a Gaussian white noise with intensity σ2
a, the intensity of the mul-

tiplicative noise is taken large enough to make the system excitable, and the
amplitude A of the external forcing is chosen small enough so that no excita-
tion is produced in the absence of the additive noise. We are interested in the
response of the system at the signal frequency ω when the additive noise inten-
sity σ2

a is increased. Figure 4.9 displays the time series of the averaged activator
(left) and the inhibitor (right) concentration for different additive noise intensi-
ties, superimposed with the periodic input signal (with rescaled amplitude for a
better comparability with the output signal). In the absence of additive noise
[Fig. 4.9(a)], the signal alone is too small to reach the excitation threshold, and
the system remains at the noise-induced stable fixed point. When additive noise
is added, spikes appear more and more frequently [Fig. 4.9(b) and (c)], until at
an optimal noise intensity the spikes occur basically synchronously with the sig-
nal [Fig. 4.9(d)]. Further increase of additive noise destroys the synchronization
effect [Fig. 4.9(e)].

To evaluate the linear response Q of the system at the input frequency ω I
extract the parameter Q from a signal 〈ur〉 as in [39, 110], where

Qsin =
ω

2nπ

2πn
ω∫

0

2〈ur(t)〉sin(ωt) dt

Qcos =
ω

2nπ

2πn
ω∫

0

2〈ur(t)〉cos(ωt) dt

Q =
√

Q2
sin + Q2

cos,

when n is the number of periods Ts = 2π
ω

, covered by the integration time.
In order to compute this quantity, I neglect subthreshold dynamics and re-

place the global signal by 〈ur(t)〉 = Θ (〈u〉 − uthreshold) − 0.6Θ (uthreshold − 〈u〉),
where 〈· · · 〉 denotes the average over the population and uthreshold = −0.45. The
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Figure 4.9: The time series of the average activator (left) and inhibitor (right)
concentration for increased additive noise intensity and σ2

m = 0.08: (a) σ2
a = 0.0,

(b) σ2
a = 0.1, (c) σ2

a = 0.5, (d) σ2
a = 2.0, and (e) σ2

a = 5.0. The parameters are
Du = 100, Dv = 100, A = 0.012 and ω = 0.0175. Other parameters are those of
Fig. 4.2: ε = 0.01, a = 1.0, b = 2.0, c = 0.2 and d = 0.075.

numerical results are shown in Fig. 4.10 both with and without the multiplicative
noise. The typical bell-shaped SR curve appears only in the presence of a suit-
able multiplicative noise intensity (i.e. in the NIE regime), whereas in the original
self-sustained oscillatory regime (without multiplicative noise), the SR effect can-
not be observed. The former behavior corresponds to a double stochastic effect
[110, 144–146], because optimal response in the presence of additive noise occurs
due to a property (excitability) which is induced by a second, multiplicative noise
and can be classified as doubly Stochastic Resonance.

A smaller signal amplitude A = 0.005 requires a smaller excitation thresh-
old, i.e. lower multiplicative noise, and smaller additive noise for optimizing the
linear response Q [Fig. 4.11]. The sensitivity of the system increases by decreas-
ing the noise-induced threshold of excitation closer to the bifurcation point, see
σ2

m = 0.068 (square), σ2
m = 0.06 (diamond) and σ2

m = 0.05 (triangle). The reso-
nance curve for σ2

m = 0.06 (diamond) exceeds that of the original self-oscillatory
system σ2

m = 0.0 (crosses) and demonstrates the qualitative enhancement of the
signal response due to the noise-induced phase transition considered. In this case,
σ2

m = 0.06 (diamond), the signal is not subthreshold because a small response
without any additive noise (due to the logarithmic scaling only σ2

a = 0.01 is shown
as smallest value) appears but nevertheless additive noise can optimize the re-
sponse. Similar signal constellations have been found as well in natural systems,
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Figure 4.10: Response of the system, consisting of 500 oscillators, to the signal
frequency ω versus additive noise intensity, for σ2

m = 0.0 (crosses) and σ2
m = 0.08

(circles). Parameters are Du = 100, Dv = 100, A = 0.012 and ω = 0.0175.
Other parameters are those of Fig. 4.2: ε = 0.01, a = 1.0, b = 2.0, c = 0.2 and
d = 0.075.

e.g. Ref. [6]. The curve σ2
m = 0.05 (triangle) corresponds to the regime between

regular self-sustained oscillatory and noise-induced excitable. According to the
phase diagrams Figs. 4.4 - 4.6, this state is outside the noise-induced excitable
regime but beyond the bifurcation point at σ2

m ≈ 0.033. The rare self-excited
spikes still remaining at this intermediate multiplicative noise intensity are sup-
pressed during one half of the signal period and supported during the other one,
and hence in the absence of additive noise a signal-modulated spike series results.
In other words, the period signal switches the system synchronously from small-
noise-stimulated dynamics during one half of the signal period to rest during the
other one.

In order to investigate the signal processing in this intermediate region, I have
calculated the response of the system to the signal frequency ω by increasing the
multiplicative noise intensity σ2

m without additive noise (σ2
a = 0.0) [Fig. 4.12]. A

resonance curve, similar to a bell-shaped SR curve, demonstrates a significant
enhancement of the signal processing compared to the deterministic situation
σ2

m = 0.0 at the beginning. The maximum σ2
m,max = 0.04 is located close to the

bifurcation point σ2
m ≈ 0.033 and demonstrates the very high sensitivity of the

system in the vicinity of the phase transition. It is noteworthy that Fig. 4.12
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Figure 4.11: The response of the system, consisting of 500 oscillators, to the signal
frequency ω versus additive noise intensity (logarithmic scaling), for σ2

m = 0.0
(crosses), σ2

m = 0.05 (triangle), σ2
m = 0.06 (diamond) and σ2

m = 0.068 (square).
Other parameters are Du = 100, Dv = 100, A = 0.005, ω = 0.0175, ε = 0.01,
a = 1.0, b = 2.0, c = 0.2 and d = 0.075.

demonstrates only an effect similar to SR, but in contrast to SR, multiplicative
noise plays the essential role and the systematic action of multiplicative noise
leads to a qualitative changing of the system properties due to the noise-induced
phase transition.

In the light of these results, one could speculate that sensory adaptation by
noise in living organisms [6] can be possible even in oscillatory situations because
parametric noise can suppress undesirable oscillations and enhances sensitivity
to a signal.

I proceed in the next section with the demonstration of spatiotemporal pattern
formation in a noise-induced excitable lattice as a further demonstration of the
excitable properties.
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Figure 4.12: The response of the system to the signal frequency ω versus multi-
plicative noise intensity without additive noise (σ2

a = 0.0). Other parameters are
Du = 100, Dv = 100, A = 0.005, ω = 0.0175, ε = 0.01, a = 1.0, b = 2.0, c = 0.2
and d = 0.075.
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4.3 Signal propagation in a two-dimensional lat-

tice of local coupled noise-induced excitable

FitzHugh-Nagumo models

One of the main characteristics of excitable media is their ability to sustain loss-
less propagation of structures. This is, for instance, the way in which electrical
pulses propagate through neural tissue in physiological systems [18]. The NIE
regime reported here offers the possibility of a signal propagation through oscilla-
tory media. Additionally, NIE allows the activation/deactivation of the excitable
property, in such a way that information transmission can be controlled by mul-
tiplicative noise.

In order to verify that the NIE regime allows the propagation of excitable
structures, I substitute the global coupling considered so far (Eqs. (4.1)–(4.2))
by a local diffusive coupling. Hence the coupling term in Eqs. (4.6)–(4.7) is now
given by x̄i ≡ 1

N
∑

j∈n.n xj, where the sum runs only over the N nearest neighbors
of site i, and xi = ui, vi. In what follows I consider a 2-dimensional lattice with
fixed or periodic boundary conditions:

dui

dt
=

1

ε
(F (ui)− vi) + Du (ūi − ui) , (4.6)

dvi

dt
= cui + d + viξi(t) + Dv (v̄i − vi) . (4.7)

Additionally, the u - nullcline is now given by:

F (u) =




−1− u + b
gu + b + 1

2
(g − 1)

+1− au + b− 1
2

+ a(1
g
− 1

2
)

u ≤ −1
2

−1
2

< u < 1
g
− 1

2

u ≥ 1
g
− 1

2
,

to provide that the slope of its unstable middle branch decreases and the excursion
time te becomes smaller. The dynamical equation of v with the multiplicative
noise term, on the other hand, remains unchanged, and thus the noise-induced
transition mechanism described above persists [Fig. 4.13].

Under these conditions, this system displays a noise-induced phase transition
to excitability, as for global coupling, via the formation of clusters of stable el-
ements [Fig. 4.14]. The color coding runs from black for ui = −2.0 to white
for ui = 6.0 over 128 gray levels. These figures depict the transient state from
a random initial condition to the excitable state. A random realization of the
uniform distribution with ui ∈ [−2.0, 6.0] and vi ∈ [1.0, 3.0] is chosen as ran-
dom initial conditions to demonstrate the strong attraction of the noise-induced
fixed point. The 200 × 200 FHN oscillators with periodic boundary conditions
considered here occupy initially the whole phase space, shown in Fig. 4.13. The
multiplicative noise with σ2

m = 0.072 acts on every local coupled oscillator and no
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Figure 4.13: The nullclines of a single FHN oscillator. The inverted-N piecewise
line (a,b and c) corresponds to the noise-independent nullcline of the activator
u with the reduced middle slope g = 0.2. The dashed lines (d) and (e) denote
the activator nullcline considered before [Fig. 4.1]. The lines (1) and (2) describe
the tilting of the inhibitor nullcline by increasing the noise intensity: σ2

m = 0.0
(1) and σ2

m = 0.072 (2). Other parameters are a = 1.0, b = 2.0, c = 0.2 and
d = 0.075.

further influences are present here. In the first figures a formation and growth of
local excited clusters can be observed (time t up to 0.2 time units) until the sup-
pression of the spikes due to the coupling and the multiplicative noise dominates.
In this situation from t = 0.6 time units no spiking oscillator can be observed
and every oscillator is attracted by the noise-induced fixed point.

In the NIE region (i.e. for large enough σ2
m), independently of the initial

conditions every oscillator of the coupled ensemble moves to the NIE fixed point
and remains there. As a consequence, the media can transmit an information
signal. In this situation, the spatiotemporal response of the system to a plane
wave perturbation is depicted in Fig. 4.15 (left column). The simulations start
with uniform initial conditions ui = −0.7 and vi = 1.7 near the noise-induced
fixed point at time t = 0.0 and include periodic boundary conditions. After a
transient state (as in Figs. 4.14), at time t = 10.0 six rows of oscillators in the
bottom are excited by setting these oscillators above the excitation threshold to
ui = −0.3 and vi = 1.3. Additionally the next 6 rows below the first one are
set in a refractory state at ui = −1.0 and vi = 2.0 to suppress a bidirectional
wave-front propagation in the lattice with periodic boundary conditions. All other
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Figure 4.14: Snapshots of the activatory variable u of an array of 200×200 FHN’s
during the unperturbed transition from a random initial condition at t = 0.0 to
the NIE state. The time increases from left to right and from top to bottom.
First row: t = 0.05, 0.1, 0.15, 0.2 and 0.3, and second row: t = 0.4, 0.5, 0.6, and
6.0. Other parameters are ε = 0.01, a = 1.0, b = 2.0, c = 0.2, d = 0.075, g = 0.2,
Du = 416, Dv = 64, and σ2

m = 0.072.

oscillators outside the noted excitation area are not excited by this external signal.
These stimulations persist only 0.7 time units and after this stimulation time all
oscillators remain unperturbed. We observe a clear propagation of the plane
wave. The wave front dies when it reenters the lattice on the bottom (t = 28)
because the refractory time of the oscillators is greater than the traveling time
of the wave front across the 600× 600 lattice. The front hits oscillators far from
the noise-induced fix-point and disappears. The lattice with this size is too small
to observe a reproducing wave front with periodic boundaries. In larger lattices
one would observe a permanent reproducing wave front.

The sensitivity and the feature of information transmission can be observed
only in the noise-induced excitable regime Fig. 4.15 (left column) and not in
the deterministic self-sustained oscillatory system Fig. 4.15 (right column). Both
columns differ only by the multiplicative noise intensity (left: σ2

m = 0.072, hence
the NIE regime and right: σ2

m = 0.0, the self-sustained oscillatory regime). All
the other conditions like excitation, coupling and parameters are the same. In
the self-sustained oscillatory regime Fig. 4.15 (right column) the small excitation
is not large enough to initiate propagating and stabile spikes. Only a phase
shift is caused, but no propagation can be observed. The coupling leads to a
reduction of the phase shift and hence to a loss of the information. The self-
sustained oscillations appear at the time t = 18.8 and t = 31.0, but they are not
related to the information seeded by the initiated wave front and only destroy
the information transmission.

Spiral wave propagation can also be demonstrated in this system [Fig. 4.16
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(left)]. The initialization of the spiral was implemented similarly to the above-
noted wave front with the difference that the stimulation takes place in the middle
of the lattice and only half of the rows are excited as one can see in the first figure
on the top left. In the absence of multiplicative noise, on the other hand, the
system exhibits a synchronous self-sustained oscillatory behavior and no wave
propagation can be observed [Fig. 4.16 (right)]. The self-sustained oscillations
take place at about time t ≈ 18, t ≈ 31, and t ≈ 44. This means that the
presence of multiplicative noise is crucial for information transmission in this
system.

In summary, I have studied a different kind of phase transition in which the
application of noise to an array of oscillating elements leads to the suppression of
oscillations and induces excitability. The appearance of noise-induced excitability
is a collective effect, and occurs via a phase transition due to the joint action of
coupling and multiplicative noise. In contrast to standard phase transitions and
other studies on excitable systems [71–74, 101], the increase of noise enhances the
stability in the system and restores excitable properties. This noise-supported
excitability displays characteristic properties of standard excitable media, such
as Stochastic Resonance and wave propagation. Since SR relies on a property of
the system which is in turn induced by noise, optimization of both noise sources
is needed, and hence this effect is an example of a doubly stochastic phenomenon
[144]. The interplay between excitable and oscillatory dynamics in noisy systems
is a current important issue [102]. In particular, these theoretical findings suggest
a possible mechanism to suppress undesirable global oscillations in neural net-
works (which are usually characteristic of abnormal medical conditions such as
Parkinson’s disease or epilepsy), using the action of noise to restore excitability,
which is the normal state of neural ensembles.

81



Figure 4.15: Snapshots of the activatory variable u for increasing time (from
top to bottom). The left column shows the propagation of a wave front in an
600 × 600 array at time steps 11.0, 12.0, 18.5, 20.0, 28.0, and 31.0 time units
in the noise-induced excitable regime (σ2

m = 0.072). The right column depicts
the deterministic self-sustained oscillating regime (σ2

m = 0.0) at the same time
steps and demonstrates the necessity of the excitable property for the information
transmission. Other common parameters are ε = 0.01, a = 1.0, b = 2.0, c = 0.2,
d = 0.075, g = 0.2, Du = 416, and Dv = 64.
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Figure 4.16: Snapshots of the activatory variable u for increasing time (from top
to bottom). The left column shows the propagation of a spiral in an 2600× 2600
array at time steps 12, 18, 32, 42, 44, and 60 time units in the noise-induced
excitable regime (σ2

m = 0.072). The right column depicts the deterministic self-
sustained oscillating regime (σ2

m = 0.0) at the same time steps and demonstrates
the necessity of the excitable property for the spiral formation. All the other
conditions and parameters are the same in both columns and in Fig. 4.15.
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Chapter 5

Conclusions and outlook

In this thesis I have investigated several new noise-induced phenomena in neural
models with FitzHugh-Nagumo dynamics. The main results and the conclusions
can be grouped into three parts.

First, I have investigated new resonance phenomena in excitable systems: the
vibrational resonance (VR), vibrational propagation (VP) (chapter 2.1) and the
Canard-enhanced Stochastic Resonance (chapter 2.2). The VR effect is a spec-
ification of SR in a single excitable element, where the additive noise term is
replaced by a periodic signal with a fixed high frequency and a variable am-
plitude, i.e. the excitable element is subjected to a bichromatic signal. I have
shown that an optimal amplitude of the high-frequency component of the signal
can optimize signal processing of the low-frequency component, which encodes
the information. This result has been observed in an excitable electronic circuit
and has been confirmed by a numerical analysis of the FitzHugh-Nagumo model.
The numerical simulations have shown that the VR effect is qualitatively inde-
pendent of the frequency of the high-frequency component in the bichromatic
signal. This frequency influences mainly the position of the resonance curve by
increasing the high-frequency amplitude. I have also shown that in the pres-
ence of noise, high-frequency driving can substitute a fraction of the noise and,
hence, can control the effect of Stochastic Resonance. This connection between
SR and VR is reversible, i.e. additional additive noise can replace a part of the
high-frequency driving in the VR effect and can help to reduce the needed input
energy for an optimal signal processing. I have demonstrated that in spatially
extended excitable media, the vibrational resonance mechanism enhances prop-
agation of the low-frequency signal through the system using the high-frequency
driving. The vibration propagation can be considered as the spatial extension of
the vibrational resonance.

I have investigated the Canard-enhanced Stochastic Resonance, which is a
combination of SR and VR in systems with Canard oscillations. Numerical simu-
lations have shown a significant enhancement of the Stochastic Resonance curve
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when the high-frequency component of the bichromatic periodic signal is in res-
onance with the Canard eigenfrequency, i.e. the optimization of the system re-
sponse at the desired low frequency by increasing additive noise intensity. The
effect shows a frequency selectivity and disappears in the region out of resonance
with the Canard frequency. This phenomenon of Canard-enhanced SR could
be found not only in the oscillatory regime, where the Canard oscillations are
self-excited, but also in an excitable regime, i.e. where the subthreshold Canard
oscillations are evoked by noise. This phenomenon is relevant in biology if the
stiffness of the system is limited by the interval ε ∈ [0.01, 0.2] in order to get
the observable periods of noise-induced Canard-like orbits. In this interval very
small noise is necessary for a significant improvement of signal processing. It
means, e.g. for neurons, the possibility of a new regulation of signal processing.
In addition to the choice of the value of the bifurcation parameter, this regulation
can control the signal transmission under a small noisy environment.

These theoretical findings should stimulate experimental work to find new
possibilities of signal reception and propagation in systems which demonstrate
Canard-like oscillations, especially in nonlinear chemical systems [127] or in bio-
physical models [115, 116]. Here one should mention the recent experimental
observation of Canard oscillations in a diode laser system [147]. This experiment
offers the opportunity to prove the Canard-enhanced SR experimentally. More-
over, the dynamic systems, which have some specific regime between excitable
and oscillatory states, are not limited by the FHN with Canard phenomenon.
Recently it has been shown that the modified Oregonator equations have three
steady states and excitation occurs via resonance between damped HF oscillations
around the stable fixed point and periodic perturbations with an appropriate tun-
ing frequency [92]. A similar SR enhancement by HF signal may also be expected
in this chemical system with low excitability.

Second, I have studied an effect of noise-induced signal processing in systems
with complex attractors (chapter 3). I have demonstrated there a frequency
selective response and information propagation in a noisy system which consists
of inhibitor-coupled excitable units and is driven by a subthreshold harmonic
signal. The mechanism of this selectivity can be explained by the appearance of
new resonance frequencies of the coupled system which are caused by different
phase relations of the oscillators and differ from the resonance frequency of an
isolated FHN. The inhibitor-coupled system of two or three FHN oscillators offers
a richer eigenfrequency spectrum then an isolated FHN oscillator. Especially the
resonance frequencies of the anti-phase and dynamic trap regime exhibit stable
attractors in a noisy environment. By forcing one element of the network in
resonance with these coupling-dependent resonance frequencies, one observes an
additional resonance peak in the SR curve besides the typical bell-shaped curve
of standard SR. Another interesting phenomenon which I have explained is the
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masking of the information flow in the dynamic trap regime. In this effect, the
last oscillator in the row shows a much better response at the signal frequency
which was fed to the first oscillator of the row, than the middle one. I believe that
the study of the frequency-selective SR and the masking of information flow in an
array due to inhibitor-coupling can be useful for understanding of multi-frequency
information-exchange mechanisms in neural networks. Because of the generality
of these effects for diffusive coupled activator-inhibitor oscillator arrays, I expect
that these theoretical findings can be applied also in other fields, e.g. in chemistry
or biology.

It is important to note that these results contribute also to the study of
fundamental synchronization phenomena [141]. In frames of this study, SR can be
considered as a synchronization-like phenomenon, in which optimal noise induces
phase synchronization between output and input signal.

This research field can be continued in two directions. The first direction
includes investigations of systems with more than three elements and in other
spatial configurations than the chain (e.g. ring or two-dimensional networks).
The problem arises that the number of complex attractors and consequently the
number of eigenfrequencies increases rapidly. The growing number of attrac-
tors are located closer in the phase plane and so the coupled system can jump
easily between them in a noisy environment. Due to these complications a clear
frequency selectivity could disappear. The second direction is devoted to the con-
sideration of an ensemble of non-identical coupled FHN oscillators. For instance,
one could investigate a chain of three oscillators, where the middle element is in a
self-sustained oscillatory regime, whereas the first and the last one are excitable.
The dynamic trap regime could lead to a suppression of the self-sustained oscilla-
tions in the middle element, whereas a signal transmission at a certain resonance
frequency from the first to the last elements survives. Such a set-up could be a
possible mechanism to suppress undesirable oscillations in neural networks which
are typical for abnormal medical conditions like Parkinson’s disease or epilepsy.
One could imagine that the middle self-sustained oscillator represents a diseased
neuron which breaks up the information transmission between the healthy first
and third neurons. The described frequency-selective SR effect in the dynamic
trap regime could be a mechanism to suppress the undesirable oscillations of the
diseased neuron and to restore the information flow. Additionally, this system
acts as a filter due to the frequency selectivity. Only the resonance frequency of
the “dynamic trap” regime can be transmitted.

Third, I have examined a new noise-induced phase transition from a self-
sustained oscillatory regime to an excitable behavior and related effects which
are enabled by this new phase transition (chapter 4). This noise-induced ex-
citability includes inevitably an oscillation suppression by noise. The appearance
of noise-induced excitability is a collective effect, and occurs via a phase transi-
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tion due to the joint action of coupling and multiplicative noise. In contrast to
standard phase transitions and other studies on excitable systems [71–74, 101],
the increase of noise enhances the stability in the system and restores excitable
properties.

This noise-supported excitability displays characteristic properties of standard
excitable media, such as Stochastic Resonance, wave propagation and spatiotem-
poral pattern formation. Since SR relies on a property of the system which is in
its turn induced by noise, optimization of both noise sources is needed, and hence
this effect is an example of a doubly stochastic phenomenon [144]. With the help
of the noise-induced excitability, I extend the system classes with a flexible and
reliable information transmission ability to self-sustained oscillatory systems with
an unstable fixed point.

These theoretical findings suggest a possible mechanism to suppress undesir-
able global oscillations in neural networks (which are usually characteristic of
abnormal medical conditions such as Parkinson’s disease or epilepsy), using the
action of noise to restore excitability, which is the normal state of neural en-
sembles. Alternatively, the deep brain stimulation [148, 149] with a permanent
periodic high-frequency electrical signal (> 100Hz) is already used to suppress
such undesirable global oscillations in neural networks. The problem is, that the
brain can adapt itself to this periodic signal and the oscillation-suppression effect
of this method decreases. In consequence, the voltage has to be increased in
time. This is a kind of addiction. To overcome this problem, one could use the
new suggested method of oscillation suppression and reconstruction of excitable
properties with help of the noise-induced phase transition described. In this way
noise could help to reconstruct the sensitivity of neural ensembles for signaling
without the negative addiction effect, because the noise consists of irregular ran-
dom fluctuations and so the brain probably will not adapt itself so easily to the
noise stimulation. Additionally, the noise-induced excitability offers the oppor-
tunity to enable or suppress the information transmission in a coupled system in
a surprising way: an increase of noise enables information exchange, whereas a
lack of noise hinders it. Furthermore, this noise-induced excitability could open
an opportunity to control pacemaker dynamics, so that the pacemaker fires peri-
odically only in the absence of noise and falls silent in a noisy surrounding. These
theoretical findings contribute also to the investigation of the interplay between
excitable and oscillatory dynamics in noisy systems which is a current important
issue [102].

The investigation of NIE can be progressed in several different directions.
First, an experimental realization of the noise-induced excitability is most desir-
able. To achieve this one should develop a theoretical description of the effect in
the paradigmatic FitzHugh-Nagumo neural model to a more realistic model. This
investigation should be carried out in close cooperation with experimentalists and
neuroscientists. An experimental realization includes the challenge to build up
and control a large ensemble of coupled elements. A more theoretical development
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could concern itself with an analytical approximation of the noise-induced phase
transition. To this aim one could use a combination of the small-noise-expansion
and the two-state approximation for the FHN model given in Ref. [88]. The
analytic approximation of the FHN model is based on a time-scale separation be-
tween fast and slow variables and is performed in a piecewise linear FHN model.
Further it would be important to analyze the influence of correlations (spatial
and / or temporal) between the noise sources in different coupled elements. The
investigation of other noise-induced phase transitions has shown that the addi-
tional memory of colored noise is critical for these transitions [69, 70] and leads to
a growing disorder in the system by increased correlation. I would expect that an
increased correlation of noise leads to a reduction of the oscillation suppression
and so to destruction of the noise-induced excitability. This investigation should
clarify what, and which kind of correlation does still provide the phase transition
before it vanishes.
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Let me kindly thank Prof. Dr. Garćıa-Ojalvo for hosting my stay at the Uni-
versity of Terrassa and for our very fruitful scientific collaboration.

My best acknowledgments go to Prof. Dr. Garćıa-Ojalvo, Prof. Dr. Kurths,
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Rev. Lett. 81, 5048 (1998); J. Garćıa-Ojalvo, A.M. Lacasta, F. Sagués, and
J.M. Sancho, Europhys. Lett. 50, 427 (2000).
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A noise-induced phase transition to excitability is reported in oscillatory media with FitzHugh-
Nagumo dynamics. This transition takes place via a noise-induced stabilization of a deterministically
unstable fixed point of the local dynamics, while the overall phase-space structure of the system is
maintained. Spatial coupling is required to prevent oscillations through suppression of fluctuations (via
clustering in the case of local coupling). Thus, the joint action of coupling and noise leads to a different
type of phase transition and results in a stabilization of the system. The resulting regime is shown to
display characteristic traits of excitable media, such as stochastic resonance and wave propagation. This
effect thus allows the transmission of signals through an otherwise globally oscillating medium.

DOI: 10.1103/PhysRevLett.91.180601 PACS numbers: 05.40.–a, 05.70.Fh
phase space and locks it close to the stable steady state taken to be global, although as we will show later, similar
Excitable systems are highly sensitive to perturbations,
which trigger large-amplitude spiking responses above a
small threshold. Noise, in particular, exerts an important
influence in their dynamics. An optimal amount of noise,
e.g., induces in them a coherent output in the form of
roughly periodic spike trains, provided the random fluc-
tuations are large enough to excite the system as soon as
the refractory time from the previous spike is over (but
not so large that the phase-space structure is destroyed)
[1]. This effect, known as coherence resonance, has been
observed in physical, chemical, and biological systems
[2], making them behave effectively as oscillators.

Further investigations have shown that parametric
noise is able to induce a bona fide transition from an
excitable to an oscillatory regime, via a renormalization
of the parameters defining the local dynamics of the
system [3,4]. This mechanism has also been found re-
sponsible for inducing excitability in bistable [5,6] and
subexcitable [3,7] media. In all those cases, however,
noise has the expected role of increasing dynamical in-
stability. In this Letter we show, on the other hand, that
certain types of noise operate in the opposite direction of
constructive influence, namely, enhancing stability in the
system. In particular, we demonstrate that random fluc-
tuations can induce a transition from oscillatory to ex-
citable behavior, by stabilizing a deterministically
unstable fixed point of the dynamics, while preserving
the overall phase-space structure that leads to large-am-
plitude pulses (but which will then be triggered only by
above-threshold perturbations). In contrast to previous
results on noise-induced excitability, spatial coupling is
absolutely essential in this case, in order to prevent noise-
driven oscillations from exciting the system and convert-
ing it back in an oscillator. In that sense, the coupling
plays a role similar to that of standard phase transitions,
suppressing fluctuations and coupling the stable regions.
It prevents the system from visiting the whole available
0031-9007=03=91(18)=180601(4)$20.00 
(until a perturbation triggers an excitable spike). Noise-
induced phase transitions between homogeneous phases
have long been known to use the joint action of coupling
and noise in this way [8,9]; here we extend this funda-
mental mechanism to the field of excitable dynamics.

To demonstrate this noise-induced excitability (NIE)
we consider a system of coupled FitzHugh-Nagumo
(FHN) elements in the oscillating state and under the
action of multiplicative noise. The mechanism of a
noise-induced phase transition is explained theoretically
in the framework of a small-noise expansion, which ex-
tracts the systematic contribution of the multiplicative
noise accounting for the excitability restoration. The ex-
citable character of the noise-induced regime is demon-
strated by showing the existence of stochastic resonance
and wave propagation through the system.

Model.—We analyze the following set of N coupled
FHN oscillators:

_uu i �
1

"
�F�ui� � vi��Du� �uui � ui�; (1)

_vv i � cui � d� vi�i �Dv� �vvi � vi�; (2)

where �xxi �
1
N

PN
j�1 xj, xi � ui; vi, and F�u� is given by

F�u� �

8><
>:

�1� u� b; u � � 1
2 ;

u� b; � 1
2 < u< 1

1�a ;

�1� au� b; u � 1
1�a :

In a neural context, u�t� represents the membrane poten-
tial of the neuron and v�t� is related to the time-dependent
conductance of the potassium channels in the membrane
[10]. The dynamics of the activator variable u is much
faster than that of the inhibitor v, as indicated by the
small time-scale-ratio parameter ". Coupling is consid-
ered in both the activator and the inhibitor and is
2003 The American Physical Society 180601-1
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results are obtained for local diffusive coupling. Random
fluctuations are represented by the �-correlated Gaussian
noise �i�t�, with zero mean and the correlation
h�i�t��j�t0�i � �2

m��t� t0��i;j. This multiplicative noise
term is interpreted in the Stratonovich sense [9].

Phase transition to excitability.—The multiplicative
noise term vi�i in Eq. (2) has a nonzero mean given by
hvi�ii � ��2

m=2�vi [9]. Therefore, in the presence of fluc-
tuations the effective local dynamics of the inhibitor
variable is given by _vvi � cui � d� ��2

m=2�vi, at first
order in the noise intensity. The corresponding nullclines
of an isolated oscillator for increasing multiplicative in-
tensity are represented in the phase plane of Fig. 1 (left
panel). Without noise the nullcline for the slow variable v
(curve 1) crosses the nullcline of the fast variable (in-
verted-N piecewise line) in its middle segment, so that
the crossing point is an unstable steady state and the
system exhibits an oscillatory behavior. An increase of
the multiplicative noise intensity �2

m leads to a tilting and
shifting of the v nullcline [curves 2–4 in Fig. 1 (left
panel)]. As a result, for large enough �2

m (here for �2
m *

0:033) the crossing occurs in the left segment of the u
nullcline and the fixed point becomes stable. Throughout
this process, however, the overall phase-space structure of
the system is not changed, which allows perturbations of
the noise-induced stable fixed point to excite large-am-
plitude excursions towards the right segment of the u
nullcline (excited branch). In particular, in an isolated
oscillator, perturbations due to the noise itself may induce
a stochastic limit cycle which prevents the system from
escaping out of the oscillatory regime, i.e., the transition
to excitability cannot be observed in isolated oscillators,
in spite of the renormalization of the dynamical parame-
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FIG. 1 (color online). Left panel: nullclines of a single FHN
oscillator in phase space. The inverted-N piecewise line corre-
sponds to the noise independent nullcline of the activator u. The
other lines (1–4) describe the tilting of the inhibitor nullcline
by increasing the noise intensity: 1—�2

m � 0:0; 2—�2
m �

0:0334; 3—�2
m � 0:06; 4 —�2

m � 0:1. Right panel: time series
of the mean field of the fast variable u with increasing the
multiplicative noise intensity: (a) �2

m � 0:0; (b) �2
m � 0:033;

(c) �2
m � 0:045; (d) �2

m � 0:05; and (e) �2
m � 0:08. Other

parameters are a � 1:0, b � 2:0, c � 0:2, and d � 0:075.

180601-2
ters due to noise. In the presence of coupling, the weight of
those oscillators that are not firing prevents these noise-
induced excursions and leads to effective excitability.

Figure 1 (right panel) depicts the appearance of NIE, by
plotting the time series of the activator’s mean field,
u�t� � �1=N�

P
N
i�1 ui�t� for a system of 500 coupled ele-

ments, with the coupling strengths Du � 100 and Dv �
100 and the time-scale-ratio parameter fixed to " � 0:01.
Because of the relatively large values of the coupling
strengths (which nevertheless have the order of magni-
tude of "�1), the time series of the single oscillators
differs only very slightly from that of the mean field,
i.e., the oscillators are synchronized. Figure 1(a) displays
the regular self-sustained oscillations of the system with-
out noise. Increasing the noise intensity �2

m leads to an
increase and randomization of the time interval between
consecutive spikes, as seen in Figs. 1(b)–1(d). Finally, for
large enough noise no spike appears [Fig. 1(e)]. This
corresponds to an oscillation suppression due to multi-
plicative noise: the system stays at the noise-induced
stable fixed point. But besides an oscillation suppression,
the system also exhibits excitable properties when per-
turbations (other than the stabilizing noise) affect the
system. As shown below, this noise-induced regime dis-
plays stochastic resonance when driven periodically and
wave propagation by local coupling.

In order to describe quantitatively the transition to-
wards excitability, we compute the relative resting time
with respect to the whole measuring time. Because of the
random character of the time series, we need to specify a
measurement threshold. We define the resting time as the
interval during which every oscillator fulfills the condi-
tions ui <�0:5 and vi � 1:85. The first requirement
corresponds to the absence of spikes, and the second
checks the absence of large excursions towards the left
on the left branch of the u nullcline. Such excursions
would lead to a large excitation threshold and weaken
the system’s excitability. The threshold for the relative
resting time is set to 0.98.

According to the previous definitions, Fig. 2(a) displays
a phase diagram in the plane of parameters Du � �2

m
distinguishing the regions where the original oscillatory
behavior and the NIE regime exist. The left boundary of
the NIE balloon corresponds basically to the condition
ui <�0:5 and the right one to vi < 1:85. The NIE region
shrinks in size as Dv decreases (results not shown). In
other words, minimum coupling strengths of both the
activator and the inhibitor are required for the NIE re-
gime to exist. Figure 2(b) pictures the dependence of the
transition to NIE on the number of coupled elements of
the system. As in standard phase transitions, the region of
noise intensity values for which NIE exists becomes
larger as the number of oscillators increases. We can
also see that a minimum number of elements is needed
(in the present case �250).

Stochastic resonance in NIE.—Defined as the en-
hanced response to an external signal for an optimal
180601-2
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0.05 0.06 0.07 0.08 0.09 0.10
σm

2

0

100

200

300

400

500
D

u

o
sc

ill
at

o
ry

ex
ci

ta
b

le

0.04 0.05 0.06 0.07 0.08 0.09 0.10
σm

2

200

300

400

500

N

ex
ci

ta
b

le

o
sc

ill
at

o
ry

(a) (b)

FIG. 2. Phase diagram for the transition from a self-sus-
tained oscillatory regime to NIE. (a) Coupling strength Du
versus multiplicative noise intensity �2

m for 300 coupled ele-
ments. (b) Number of coupled elements N versus multiplicative
noise intensity �2

m for Du � 416 and Dv � 64.
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amount of noise, stochastic resonance (SR) has long been
found in excitable media [11–13]. In order to show that
the NIE regime possesses all immanent properties of
excitable systems, we now examine the response of the
system to external periodic driving and an additive source
of noise. The behavior of the inhibitor is then given by

_vv i�cui�d�vi�i�Dv� �vvi�vi���i�fcos!ft; (3)

where �i is a Gaussian white noise with intensity �2
a, the

intensity of the multiplicative noise is taken large enough
to make the system excitable, and the amplitude f of the
external forcing is chosen small enough so that no ex-
citation is produced in the absence of the additive noise.
We are interested in the response of the system at the
signal frequency !f when the additive noise intensity �2

a
is increased. Figure 3 (left panel) displays the time series
of the averaged activator concentration for different addi-
tive noise intensities, superimposed with the periodic
input signal (with enlarged amplitude for a better com-
parability with the output signal). In the absence of addi-
tive noise [Fig. 3(a)], the signal alone is too small, and the
system remains at the noise-induced stable fixed point.
When additive noise is added, spikes appear more and
more frequently, until at an optimal noise intensity the
spikes occur basically synchronously with the signal
[Figs. 3(b)–3(d)]. Further increase of additive noise de-
stroys the synchronization effect [Fig. 3(e)].

To evaluate the linear response Q of the system at the
input frequency !f we extract the parameter Q from a
signal huri as in [14,15]. In order to compute this quantity,
we neglect subthreshold dynamics and replace the global
signal by hur�t�i � ��hui � uth� � 0:6��uth � hui�,
where h
 
 
i denotes the average over the population and
uth � �0:45. The numerical results are shown in Fig. 3
(right panel) both with and without the multiplicative
noise. The typical bell-shaped SR curve appears only in
the presence of a suitable multiplicative noise intensity
(i.e., in the NIE regime), whereas in the original self-
sustained oscillatory regime (�2

m � 0:0), the SR effect
cannot be observed. The former behavior corresponds to a
double stochastic effect [15–18], because optimal re-
sponse in the presence of additive noise occurs due to a
180601-3
property (excitability) which is induced by a second,
multiplicative noise. In light of these results, one could
speculate that sensory adaptation by noise in living
organisms [19] can be possible even in oscillatory situ-
ations because parametric noise can suppress undesirable
oscillations.

Wave propagation in NIE.—One of the main character-
istics of excitable media is their ability to sustain propa-
gation of structures. This is, e.g., the way in which
electrical pulses propagate through neural tissue in physi-
ological systems [10]. The NIE regime reported here
offers the possibility of a signal propagation through
oscillatory media. Additionally, NIE allows the activa-
tion/deactivation of the excitable property so that infor-
mation transport can be controlled by multiplicative
noise.

In order to verify that the NIE regime allows the
propagation of excitable structures, we substitute the
global coupling considered so far by a local diffusive
coupling. Hence the coupling term in Eqs. (1) and (2) is
now given by �xxi �

1
N

P
j2n:nxj, where the sum runs only

over the N nearest neighbors of site i. In what follows we
consider a 2-dimensional lattice with fixed boundary
conditions. Additionally, the u nullcline is now given by

F�u� �

8><
>:

�1� u�b; u�� 1
2 ;

gu�b� 1
2 �g� 1�; � 1

2<u< 1
g�

1
2 ;

�1� au�b� 1
2� a�1g�

1
2�; u� 1

g�
1
2 ;

in such a way that the slope of its unstable middle branch
decreases, so that the refractory time becomes smaller.
The dynamical equation of v, on the other hand, is un-
changed from Eq. (2), and thus the noise-induced tran-
sition mechanism described above persists. Under these
conditions, this system displays a noise-induced phase
180601-3



FIG. 4. Snapshots of the activatory variable u for increasing time (from left to right). The
upper row shows the propagation of a plane wave front in an 130� 130 array at time steps 10.9,
11.5, 12.3, 13.4, and 14.2 time units. The lower row shows spiral wave propagation in a 1000�
1000 array at time steps 11.0, 13.5, 14.5, 16.0, and 21.0 time units. Parameters are " � 0:01,
a � 1:0, b � 2:0, c � 0:2, d � 0:075, g � 0:2, Du � 416, Dv � 64, and �2

m � 0:072.
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transition to excitability, as for global coupling, but in this
case via the formation of clusters of stable elements. In the
NIE region (i.e., for large enough �2

m), independently of
the initial conditions every oscillator of the coupled en-
semble moves to the NIE fixed point and remains there. In
this situation, the spatiotemporal response of the system
to a plane-wave perturbation is depicted in Fig. 4 (upper
row). We observe a clear propagation of the plane wave
from bottom to top. Spiral wave propagation can also be
seen in Fig. 4 (lower row). In the absence of multiplicative
noise, on the other hand, the system exhibits a synchro-
nous self-sustained oscillatory behavior and no wave
propagation can be observed. This means that the pres-
ence of multiplicative noise is crucial for information
transmission in this system.

In summary, we have studied a different kind of phase
transition in which the application of noise to an array of
oscillating elements leads to the suppression of oscilla-
tions and induces excitability. The appearance of noise-
induced excitability is a collective effect and occurs via a
phase transition due to the joint action of coupling and
multiplicative noise. In contrast to standard phase tran-
sitions and other studies on excitable systems [3–7], the
increase of noise enhances the stability in the system and
restores excitable properties. This noise-supported excit-
ability displays characteristic properties of standard ex-
citable media, such as stochastic resonance and wave
propagation. Since SR relies on a property of the system
which is in turn induced by noise, optimization of both
noise sources is needed, and hence this effect is an ex-
ample of a doubly stochastic phenomenon [16]. The inter-
play between excitable and oscillatory dynamics in noisy
systems is a current important issue [20]. In particular,
these theoretical findings suggest a possible mechanism to
suppress undesirable global oscillations in neural net-
works (which are usually characteristic of abnormal
medical conditions such as Parkinson’s disease or epi-
lepsy), using the action of noise to restore excitability,
which is the normal state of neuronal ensembles.
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Abstract

We report the occurrence of vibrational resonance in excitable systems. Namely, we show that an optimal amplitu
high-frequency driving enhances the response of an excitable system to a low-frequency signal. The phenomenon is
in an excitable electronic circuit and in the FitzHugh–Nagumo model. In this last case we also analyze the influence of
noise and the interplay between stochastic and vibrational resonance. Additionally, we show that this effect can be ex
spatially extended excitable media, taking the form of an enhanced propagation of the low-frequency signal.
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Signal detection by nonlinear systems can be c
siderably affected by external influences. The most
evant example of this fact is stochastic resonance (S
where the response of a nonlinear system to a weak
terministic signal is enhanced by external random fl
tuations [1]. Initially reported in bistable systems [2
SR has been found in many models and even na
systems [3,4], including excitable media [5].

In bistable systems, it has been shown that
role of noise in improving the quality of signal d
tection can be played by other types of driving, su

* Corresponding author.
E-mail address: jordi.g.ojalvo@upc.es (J. García-Ojalvo).
0375-9601/03/$ – see front matter 2003 Elsevier Science B.V. All rig
doi:10.1016/S0375-9601(03)00681-9
-

as a chaotic signal [6] or a high-frequency perio
force [7]. In the latter case, known asvibrational res-
onance (VR), the system is under the action of a tw
frequency signal. Such bichromatic signals are pe
sive in many different fields, including brain dynami
[8], where, for instance, bursting neurons may exh
two widely different time scales, and telecommuni
tions [9], where information carriers are usually hig
frequency waves modulated by a low-frequency s
nal that encodes the data. Two-frequency signals
also of interest in several other fields, such as la
physics [10], acoustics [11], neuroscience [12], a
physics of the ionosphere [13]. The beneficial role
high-frequency (ultrasonic) driving has already be
reported as increased drug uptake by brain cells [
acceleration of bone and muscle repairing [15], a
resonantly enhanced biodegradation of micro-or
hts reserved.
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nisms [16]. Additionally, ultrasonic irradiation of tw
widely different frequencies has been seen to enha
cavitation yield [17].

In contrast to the investigations in bistable syste
in this Letter we analyze the effect of high-frequen
forcing in signal detection byexcitable systems, and
demonstrate the occurrence of VR in excitable me
Excitable systems have only one stable fixed point,
perturbations above a certain threshold induce la
excursions in phase space, which take the form
spikes of fixed shape. The duration of these exc
sions introduces an intrinsic time scale in the syst
Excitable systems are naturally sensitive to exte
perturbations. By way of example, they exhibit a r
onant response to external harmonic driving [18,1
Here we establish that this response can also be
hanced by a second, higher frequency periodic driv
In essence, we show that for an optimal amplitude
the high-frequency forcing, signal processing at
low-frequency driving is enhanced. This result in
cates that the role of noise in standard stochastic
onance in excitable systems can also be played
monochromatic driving.

First, we show that VR occurs in a simple ele
tronic circuit with excitable properties, and confir
this effect by numerical simulation of the parad
matic FitzHugh–Nagumo (FHN) model in an excitab
regime. Next we study the effect of noise on this p
nomenon, concluding that SR in excitable systems
be controlled by high-frequency driving. Finally, w
show that this effect can also be observed in s
tially extended systems of coupled excitable osci
tors, in the form of resonant vibrational propagation
a low-frequency signal through the system for an o
mal high-frequency driving applied to all elements
the system. Again, this result parallels the constr
tive role of noise in signal propagation through no
linear media, which has been substantially studie
recent years in excitable [20], bistable [21], and ev
monostable [22] systems. The present results s
that similar enhanced propagation can be obtaine
replacing the broadband noisy driving with a sing
frequency signal.

2. Vibrational resonance in an excitable electronic
circuit

In order to demonstrate the occurrence of VR
an excitable system, we have constructed a sim
electronic circuit based on Chua’s diode, which h
been implemented with an operational amplifier (O
taken from the integrated circuit TL082 (see Fig.
When the voltage that controls this OA is asymme
the circuit becomes excitable [23].

The signals from two function generators operat
at widely different frequencies (1 kHz/50 kHz) a
added and introduced into the system through the 1
condenser, as shown in Fig. 1. We have analy
the behavior of the circuit for increasing amplitud
of the high-frequency (HF) harmonic driving, whi
keeping the amplitude of the low-frequency (L
signal component fixed. The results are plotted
Fig. 2 (left) in terms of the voltage drop at the 1
Fig. 1. Excitable electronic circuit exhibiting vibrational resonance.
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romatic
5 V, (B)
onding
Fig. 2. Left: experimental results exhibiting vibrational resonance in the excitable electronic circuit of Fig. 1 under the action of a bich
signal. The voltage drop at the 1 nF condenser is plotted for different amplitudes of the high-frequency harmonic forcing: (A) 0.43
0.465 V, (C) 0.66 V, (D) 0.985 V, and (E) 1.385 V. The amplitude of the low-frequency component is fixed to 1.3 V. Right: corresp
regimes obtained by numerical simulations of the FitzHugh–Nagumo model for different HF amplitudes: (A)B = 0.05, (B)B = 0.0505, (C)
B = 0.055, (D)B = 0.065, and (E)B = 0.07.
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condenser. For a small enough amplitude of the
component the total signal is below threshold, a
hence there are no spikes in the system output
shown in regime A of Fig. 2 (left). By increasin
slightly the amplitude of the HF component, spik
start to appear at the low frequency (regime B).
this regime processing of the information (which
encoded in the LF signal) begins to occur, but c
be considerably improved by further increasing
number of spikes per half period of the LF signal, sin
in this way the energy contained at this frequen
is also increased. This happens in regimes C and
which show the optimal detection of the LF sign
With further increase of the HF amplitude (regim
E), the system fires immediately after reaching
stable point, so that the output mainly contains o
the own frequency of the excitable system. Hence
LF component basically disappears from the sys
output, and signal processing is degraded again.
is a manifestation of vibrational resonance in
excitable medium, where an intermediate amplitud
a high-frequency driving leads to a resonant respo
at the low-frequency signal.
3. Vibrational resonance in the
FitzHugh–Nagumo model

Next we show that the behavior reported in t
previous section is not particular to the experimen
system considered, but is a generic property of
citable systems. To that end we study numerically
FitzHugh–Nagumo (FHN) model, which is a parad
matic model describing the behavior of firing spik
in neural activity [24], and in general the activato
inhibitor dynamics of excitable media [25]. In th
presence of two harmonic signals, this model is
fined by the following set of coupled equations:

(1)ε
dx

dt
= x − x3

3
− y,

(2)
dy

dt
= x + a +Acos(ωt)+B cos(Ωt)+ ξ(t),

wherex(t) is the activator variable (representing t
membrane potential in the neural case) andy(t) is the
inhibitor (related to the conductivity of the potassiu
channels existing in the neuron membrane [24]). T
value of the time scale ratioε = 0.01 is chosen so tha
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system,

results
Fig. 3. (a) Oscillations exhibited by the bichromatically forced FHN model (1)–(2) at a frequency close to the own frequency of the
and (b) at the driving high-frequency. The amplitude of the HF forcing isB = 0.1 and 10, respectively. (c) ResponseQ of the system at the low
frequencyω vs. the amplitudeB of the high-frequency input signal. The inset shows the corresponding figure for the electronic circuit
presented in Fig. 2 (left).
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the activator evolves much faster than the inhibi
Under these conditions the system is excitable fora >

1 [26]; we choosea = 1.05. ξ(t) is a Gaussian white
noise with zero mean and correlation〈ξ(t)ξ(t ′)〉 =
σ 2
a δ(t − t ′). The termsAcos(ωt) andB cos(Ωt) stand

for the low- and high-frequency components of t
external signal, respectively. In what follows we w
choseA = 0.01, so that the system is below th
excitation threshold (which isAthr ≈ 0.075 forB = 0),
and Ω 	 ω, in particularΩ = 5 andω = 0.1. In
Eq. (2) we have considered no phase shift betw
the two driving signals, but it can be checked that
existence of an arbitrary phase shift does not alter
results that follow. To integrate model (1)–(2) we ha
used Heun’s algorithm [27].

First we consider the noise-free caseσa = 0 and,
mimicking the electronic implementation described
the previous section, we fix the amplitude of the
signal component and increase the HF amplitude.
different regimes exhibited by the FHN model und
these conditions are shown in Fig. 2 (right). The
regimes closely resemble the preceding observat
made in the electronic circuit (compare left and rig
plots in the figure). As in that case, an increase
the HF amplitudeB initially improves (regimes A–D)
and finally degrades (regime E) signal processing
the low frequency, in what constitutes another c
of vibrational resonance. Several additional aspe
of the system behavior can be found in this mo
with respect to the electronic implementation. F
instance, in regime E (Fig. 2 right) it is clearly se
that the intervals between spikes are not const
This happens when the amplitude of the HF fo
is such that the system starts to fire asynchrono
with respect to the signal. In this case, during o
half of the signal period the system has to wait so
time before spiking, whereas in the other half per
the system can fire sooner once it reaches the s
point. This happens because in the latter case
time during which the signal is above threshold
larger, while the waiting time is close to the ha
period of the high-frequency force. Increasing
amplitudeB further leads to a very regular spikin
as in the regime E of the electronic circuit (see a
Fig. 3(a)). Finally, for large enough values ofB we
obtain a new regime that has not been observe
the circuit. In this regime, the oscillations happ
with a frequency different from the own frequen
of the system (i.e., the one related to the intrin
time scale of the spiking behavior), but correspond
fact to the high-frequency component (Ω = 5 in this
case). This regime is depicted in Fig. 3(b), where i
compared with the above mentioned case where e
spike follows the previous one almost periodica
with the system internal frequency (Fig. 3(a)).

The VR effect illustrated in Fig. 2 can be quantifi
by computing the responseQ of the system (i.e., the
component from the Fourier spectrum) at the sig

frequencyω, which is given byQ =
√
Q2

sin +Q2
cos,
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e

Fig. 4. Response of the system at the low frequencyω in the presence of additive noise: (a) versus the HF amplitudeB for different intensities
of additive noise (curve 1:σ2

a = 0, curve 2:σ2
a = 0.05× 10−3, curve 3:σ2

a = 0.25× 10−3, curve 4:σ2
a = 3× 10−3; and (b) versus the nois

intensityσ2
a for different amplitudes (curve 1:B = 0, curve 2:B = 0.04, curve 3:B = 0.06, curve 4:B = 0.07, curve 5:B = 0.1).
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where

Qsin = ω

πn

2πn/ω∫
0

y(t)sin(ωt) dt,

(3)Qcos= ω

πn

2πn/ω∫
0

y(t)cos(ωt) dt.

The dependence of this response on the amplitud
the high-frequency driving (Fig. 3(c)) displays a re
onant form with a clearly defined maximum atB ∼
0.06, similarly to what happens in SR. The stairca
form of this dependence is caused by the abrupt
crete appearance of new spikes in the spike train
the forcing amplitude increases. The staircase pat
persists (although its shape may change) when the
quency ratio between the two periodic signal chang
even when this ratio is incommensurate. We h
checked that the resonance displayed in Fig. 3(c)
sists for a wide range of values of the high-freque
aroundΩ = 5.0 (the values tested cover the ran
2.0–17.0). However, due to the additional interp
between the HF signal and sub-threshold oscillatio
the position and amplitude of the resonance peak v
with the value of the high frequency. This behav
constitutes a difference with respect to the stand
SR effect, and could be useful for determining the s
tem’s natural selectivity of special frequency comp
nents from the white noise when SR occurs.

So far we have not considered the influence of no
in the behavior of the FHN model. In order to stu
the interplay of VR and SR in this system, we no
increase the intensityσ 2

a of additive noise in the sys
tem. Fig. 4(a) shows that by adding noise to the sys
the response dependence is shifted to the left and
creased. Hence, with increasing noise the maximum
the response is achieved for a smaller value ofB (com-
pare curves 1 and 2 in Fig. 4(a)). This fact could be
evant for an efficient information processing, beca
natural fluctuations or noise (unavoidably presen
experimental systems) are able to replace a fractio
the high-frequency driving and help to reduce the n
essary input energy. If the noise intensity is too lar
VR dissapears (curve 4 in Fig. 4(a)). Next we anal
the response of the system as a function of noise
tensity for varying amplitudeB of the HF forcing (see
Fig. 4(b)). For no HF amplitude (curve 1 in the figur
standard SR is found. Adding then a high-freque
driving to the signal improves SR, because the re
nance curve is shifted to lower values ofσ 2

a and is
increased (curve 2 in Fig. 4(b)). Hence the amo
of noise needed for an optimal signal processing
smaller. We can thus interpret that a high-freque
driving allows us to control stochastic resonance. F
ther increase ofB to the value which corresponds
the optimal amplitudeB = 0.06 in the noise-free cas
leads only to a monotonous decrease of the qualit
signal processing with increasing noise intensityσ 2

a ,
shown as curve 3 in Fig. 4(b) (but its value at ze
noise is the largest one among all curves, as expe
from the optimal driving amplitude – compare the v
ues atσ 2

a = 0 of all the curves in Fig. 4(b) with curv
1 in Fig. 4(a)). For even larger values ofB, signal
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horizontal

tion LF
Fig. 5. Resonant vibrational propagation in a excitable medium. A chain of coupled oscillators (Eqs. (4)) is represented along the
axisz. Time evolution goes from bottom to top. Left: without HF vibration (B = 0); right: with HF vibration (B = 1.6). The first 100 oscillators
(i < iex) are always driven by the low-frequency signal. An increase of high-frequency vibration leads to propagation of the informa
signal.
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processing has very bad quality for all intensities
additive noise (curves 4 and 5).

4. Resonant vibrational propagation

When excitable systems are coupled spatially
an extended medium, excitation pulses are able
propagate through the system in a very efficient w
Consequently, it is interesting to analyze whet
the phenomenon of vibrational resonance can
generalized to the case of spatially extended syste
To that end we consider a chain of coupled excita
oscillators, whose behavior we represent now by
Barkley model [28]:

dui

dt
= 1

ε
ui(1− ui)

(
ui − vi + b

a

)

+ D

�x

∑
j∈N(i)

cij uj +Ai cos(ωt)+B cos(Ωt),

(4)
dvi

dt
= cui − vi,

where i is the cell index along the chain, and w
take Ai = 0 for i > iex. In what follows we used
the following values for the model parameters:ε =
0.01, a = 0.85, b = 0.18, andc = 0.7 (for which
the system operates locally in an excitable regim
and the coupling strength is takenD = 0.05. The
.

weight coefficientscij correspond to the first-orde
discretization of the Laplacian operator [29] wi
�x = 0.25. Every oscillator in the chain is drive
by a high-frequency signalB cos(Ωt), with Ω = 5.0,
and the oscillators withi < iex are additionally unde
the action of the low-frequency information-carryi
signalAcos(ωt), with ω= 0.1 andA= 3.0.

The behavior of this extended system is illustra
in Fig. 5. When no high-frequency vibration (B = 0)
is applied to the oscillators the signal is unable
propagate for the coupling strength chosen (Fig
left). However, if we now apply a HF vibration (B =
1.6) to all oscillators in the chain, the LF informatio
carrying signal propagates through the whole ch
of oscillators as a train of pulses (Fig. 5 right). T
mechanism of this effect is based on the occurre
of VR in single oscillators, but now the input o
each oscillator (fori > iex) comes from the output o
the previous element in the chain. Hence, the ef
of VR in excitable oscillators can be observed
spatially extended systems as a resonantvibrational
propagation.

5. Conclusions

We have studied several aspects of the dynam
response of excitable systems to bichromatic sig
with two very different frequencies. We have demo
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al
strated the existence of two phenomena: vibratio
resonance in zero-dimensional systems and reso
vibrational propagation in spatially extended med
Experimental results obtained in an excitable el
tronic circuit have been confirmed by a numeri
analysis of the FitzHugh–Nagumo model. In part
ular, it has been shown that an optimal amplitude
the high-frequency component of the signal can o
mize signal processing of the low-frequency com
nent, which encodes the information. We have a
shown that in the presence of noise high-freque
driving can substitute a fraction of the noise a
hence control the effect of stochastic resonance
spatially extended excitable media, vibrational re
nance enhances propagation of the low-frequency
nal through the system by means of the action
the high-frequency driving. We have reported vib
tional resonance and resonant vibrational propaga
in simple systems and paradigmatic models, and h
studied these effects in a general framework, hence
expect that these findings will be relevant for diffe
ent fields, including communication technologies, o
tics, chemistry, neuroscience, and medicine. Given
ubiquity of two-frequency signals in neural system
mentioned already in the introduction, this result co
be of special interest in the study of the activity of ne
ron ensembles, and in general in wave propagatio
excitable activatory–inhibitory systems.
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Oscillatory amplification of stochastic resonance in excitable systems
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We study systems which combine both oscillatory and excitable properties, and hence intrinsically possess
two internal frequencies, responsible for standard spiking and for small amplitude oscillatory limit cycles
~Canard orbits!. We show that in such a system the effect of stochastic resonance can be amplified by appli-
cation of an additional high-frequency signal, which is in resonance with the oscillatory frequency. It is
important that for this amplification one needs much lower noise intensities as for conventional stochastic
resonance in excitable systems.

DOI: 10.1103/PhysRevE.68.026214 PACS number~s!: 05.45.2a, 05.40.Ca
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I. INTRODUCTION

The response of an excitable system to an external si
is a key effect of information processing in a single excita
oscillator or networks of excitable elements. Several intrig
ing phenomena have been found in the study of this eff
One of the most interesting and counterintuitive effect is s
chastic resonance~SR! @1#, initially found in bistable systems
@2#, and later confirmed in a large variety of physical@1# or
biological systems@3#, including also noise-induced struc
tures@4# and excitable systems@5#. In SR an optimal amoun
of noise, acting upon an excitable system, increases the q
ity of the signal received via noise-induced synchronizat
@6#. Noteworthy, SR has been also found not only in exc
able neural systems itself@7# or brain processing area@8#, but
also in the behavior of the whole organisms@9#. In spatially
extended systems SR manifests itself in the signal trans
sion, resulted in a noise-induced propagation in bistable@10#,
excitable@11#, or monostable systems@12,13#.

In SR a part of the noise energy is used for construc
purposes, to cause a form of synchronization between in
and output signals. Several investigations have been
formed to find possibilities for the amplification of this e
fect. Array-enhanced SR has been considered in R
@14,15#, where it has been shown that embedding of the p
cessing element in a network of elements with optimal c
pling and noisy strength@16# can improve the signal. This
effect is closely connected and sometimes conceptually
distinguishable from spatiotemporal SR@17# or SR in ex-
tended bistable systems@18#. Another possibility to amplify
the SR effect has been exploited in Ref.@15# by application
of noninvasive control of SR. In this case, the external fe
back has enhanced the response of a noisy system to a m
chromatic signal. Finally, there were investigations, wh
have shown that with internal colored noise the SR effect
be enhanced in systems with a large memory time@19#.

In this paper we study the SR effect in another class
systems, which differs to already explored ones by the
that this class possesses properties of both oscillatory
excitable behavior. As a paradigmatic model for such s
tems we consider the famous FitzHugh-Nagumo~FHN! os-
cillator, known for its simplicity and rather realistic simula
tion of neural activity.
1063-651X/2003/68~2!/026214~7!/$20.00 68 0262
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Generally, the FHN model is tuned to exhibit either
oscillatory behavior with strongly nonlinear oscillations
the system or an excitable behavior with a stable fix po
and the feature that relatively small perturbations can lea
a large excursion~excursion loop or spike! @20,5,21#. In con-
trast to this we are interested in a FHN model that is tuned
have both oscillatory and excitatory properties. Such dyna
ics takes place in FHN-like models@22# or in biophysical
models@23,24#, if their parameters are chosen in the regi
of the so-called ‘‘Canard’’ bifurcation@25,26#. In these works
a Canard solution is a solution of a singular perturbed sys
which passes close to a bifurcation point and follows a
pelling slow manifold for a considerable amount of time.

For the FHN model the Canard phenomenon means
there are quasiharmonic oscillations with small amplitu
and small periods~see Fig. 1!. The parameter region betwee
pure excitable and oscillatory cases is typically very narr
if the stiffness of the oscillator is large («!1). But the value
of stiffness is not obligatory large and is defined by the
netic parameters of the specific models. A crucial feature
Canard-like behavior is that a very small change in the c
trol parameter may lead to a large difference in the trajec

FIG. 1. The dependence of the trajectories and the appearan
Canard trajectories on the parametera in the FHN model without
noise and without driving forces.
©2003 The American Physical Society14-1
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VOLKOV et al. PHYSICAL REVIEW E 68, 026214 ~2003!
ries and hence produce oscillations with different frequ
cies. This change can be also induced by the action of no
if the system possesses Canard-like oscillations.

The idea to use a system with several intrinsic frequen
as a signal receiver in the presence of noise has been alr
reported in the literature. For example, in a bistable und
damped system, stochastic resonance may happen both
to intrawell as well as interwell motion@27#. Further on, it
was described that nonadiabatic resonance under the a
of a high frequency can exist in a noisy excitable syst
@28#. In all these works, the improvement of a signal proce
ing occurs due to the resonance interplay between an inc
ing periodic signal and one of the internal frequencies of
oscillating system. In contrast to this case, we consider h
the situation in which an additional high-frequency sign
improves the detection of a low-frequency signal; i.e., it
crucial that the system is under the action of multifrequen
signal. A similar problem formulation was studied in Re
@29#, where it was shown that adding a high-frequency sig
may help the detection of a low-frequency signal and le
to a heterodyning effect in a two-dimensional oscillator w
one internal frequency near a saddle-node bifurcation. H
ever, this effect occurs due to the action of a resonant h
frequency signal on a detection threshold near a saddle-n
bifurcation ~see also a case of coupled oscillators@30#!,
whereas in our case we investigate a noisy system with
different internal frequencies under the action of a tw
frequency signal, and the resonance effect at one highe
ternal frequency leads to the amplification of stochastic re
nance at another low frequency.

We consider FHN system under the action of a subthre
old bichromatic signal, which consists of two parts: the fi
one has the frequency of an investigated signal, and the
ond one has a higher frequency. We demonstrate the effe
SR amplification, when the higher frequency is in resona
with the frequency of the Canard oscillations of our syste
Noteworthy, two-frequency signals are widely used in co
munications@31#, neuroscience@32#, laser physics@33#, or
acoustics @34#. Additionally, the beneficial role of high
frequency~HF! driving has been already found in sever
biological phenomena, such as increased drug uptake
brain cells@35#, improvement of bone and muscle healin
@36#, or enhanced biodegradation of microorganisms@37#.
The effect, presented in this paper, is also closely conne
to vibrational resonance~VR! in excitable systems@38#,
where the high-frequency driving acts as noise and impro
the signal processing. VR demonstrates a resonancelike
havior with respect to the amplitude of the HF signal.
contrast to VR, in Canard-enhanced SR it is crucial that
the amplitude butthe frequencyof the HF signal should be in
resonance with the oscillatory behavior of a system.

II. THE MODEL

We study the following FHN model:

« ẋ~ t !5x~ t !2
x~ t !3

3
2y~ t !, ~1!
02621
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ẏ~ t !5x~ t !1a1j~ t !1Fext~ t !, ~2!

where j(t) is Gaussian white noise of the intensi
^j(t)j(t8)&5sa

2d(t2t8) and the parametera determines the
behavior of the system. Fora.1.0 the FHN model is excit-
able, and fora,1.0 it shows an oscillatory behavior. At th
bifurcation pointa51.0 the stability of the only fix point
xf52a, yf5(a3/3)2a will be changed. Between these tw
cases an intermediate behavior can appear. For values o
parametera slightly beyond the bifurcation point, small os
cillations near the unstable fix point are existing instead
large spikes. To illustrate this, in Fig. 1 trajectories in t
phase space of the FHN system without driving force a
noise are plotted in dependence on the parametera. For a
<0.9862 and«50.1, the FHN model oscillates on the wel
known big excursion loop. In the intermediate parameter
gion 0.9864<a,1 and«50.1, there is also an oscillator
behavior but the loops~Canard-trajectories! in the phase
space are much smaller than the excursion loops. Betw
both possible traces is a clear gap, so that both of these k
of oscillations can be easily distinguished.

The Canard trajectories exist also for smaller«-like 0.01,
but the intermediate parameter region ofa ~where Canard
oscillations exist! tends to zero for decreasing«, and the
period of subthreshold oscillations near the bifurcation po
is Tsth'2pA« @22#. Hence, for«50.01 the subthreshold
oscillations are very fast, and so the trajectory loops are v
small. In the following, we fix the parameter«50.1 to have
a system with a significant intermediate region where Can
oscillations exist. Similar values of« ~parameter to separat
a slow and a fast moving variable! were used also in differ-
ent papers for the modeling of natural processes@39–41#,
and so our choice has natural links. In spite of the fact t
frequently used harmonic and singular approximations
FHN studies are very suitable for the mathematical tracta
ity of the model behavior, in the real processes the stiffnes
in between these two limit cases.

An important fact of the treatment of the Canard oscil
tions is that a very small change in the parametera leads to
a large difference in the trajectories. This change in the
rametera can be caused by some instantaneous influenc
noise. Beside the expected case for the parametera typical
for the Canard phenomenon, Canard-like trajectories can
observed also in the excitable regimea.1 close to the bi-
furcation point if the FHN system is forced by additive noi
j(t). This can be easily seen in Fig. 2, where trajectories
the phase space were plotted for the parameters«50.1, a
51.01,sa

250.0004~in the excitable regime!, and there is no
periodic driving forces. Only the noise drives the FHN sy
tem and leads to the Canard-like trajectories and the spi
and therefore, again the FHN system behaves with two
ferent frequencies of the two cycles, which can be certai
used in signal processing.

These different trajectories manifest themselves in a po
modal interspike interval histogram~ISIH! not only when the
parametera is chosen from the interval corresponding to t
Canard orbits~as in Ref.@22#! but for a which provides an
excitable regime~see Fig. 3!. We have chosen the most pro
4-2
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nounced examples of ISIH polymodality but this type of d
tribution is preserved in some intervals of the essential
rameters: aP@1.021.05#,«P@0.220.02# under the
appropriate noise amplitudes.

Next we add a driving forceFext(t)5bcos(vt) and inves-
tigate the response of the periodic driven system at the in
frequency. To evaluate the amplitude of the input freque
in the output signal, we calculate the Fourier coefficientQ
for the input frequencyv. We use theQ parameter instead o
the power spectrum because we are interested in the tr
port of the information encoded in the frequencyv. For this
task theQ parameter is a much more compact tool than
power spectrum@1,12#:

Qsin5
v

2npE0

2pn/v

2x~ t !sin~vt ! dt,

FIG. 2. Occurrence of spike and Canard trajectories in a n
driven FHN model in the excitable regime.

FIG. 3. ISIH in a noise driven excitable FHN model. The p
rameters area51.01, «50.1.
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Qcos5
v

2npE0

2pn/v

2x~ t !cos~vt ! dt,

Q5AQsin
2 1Qcos

2 .
First we look for the resonance frequencies of the sys

to find both internal frequencies~Canard frequency and fre
quency of the spiking behavior!. Therefore we calculate the
Q parameter versus the circle frequency of the driving for
We consider three cases:~a! a51.01, FHN in a monostable
excitable regime;~b! a51.0, FHN at the bifurcation point
~c! a50.998, FHN in an oscillatory regime with small Ca
nard oscillations around the unstable fix point and small a
plitudes compared with the amplitude of a spike. The am
tude of the periodic driving force is chosen small enough
that the system needs noise to reach the threshold an
produce a spike. Figures 4–6 show the dependence of thQ

e FIG. 4. Resonances for the periodically driven (b50.03) FHN
system in the excitable regime (a51.01) under the influence o
different noise intensities.

FIG. 5. Resonances for the periodically driven (b50.02) FHN
system at the bifurcation point (a51.0) under the influence of dif-
ferent noise intensities.
4-3
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parameter on the input frequency for these three cases
various noise intensitiessa

2 . The Q parameter refers to th
variable input frequency and measures the amplitude of
input frequency in the output signal.

The first peak in Figs. 4–6 atv51.3 corresponds to a
period length ofT54.83 and is caused by the firing of
spike. The second peak at aboutv52.6–2.9 is caused by th
Canard oscillations near the fix pointxf , yf with a small
amplitude compared with the big spike. In opposition to t
resonance frequency of the spike, the position of the Can
resonance frequencyVC depends on the parametera and the
noise intensitysa

2 . This can be also easily seen in the pha
space in Figs. 1 and 2. The trace of the spikes is very st
and narrow, and so the time for one round-trip during a sp
is independent of the parametera and the noise, while the
traces for the Canard oscillations fill a much wider area
the phase space. Hence we can observe a shifting of
Canard-resonance frequency by changinga and sa

2 . It is
important to note that a peak at the Canard frequency ex
even for smaller noise intensities, when the peak at the s
ing frequency is not yet pronounced. This explains the f
that adding the driving force at this Canard frequency can
successfully used in the improvement of a signal receivi
even if the information is carried by another low frequen

Noteworthy, similar high-frequency resonance has b
described recently in the Hodgkin-Huxley model@42# and it
was proposed in the ‘‘resonate-and-fire’’ neuron model@43#,
but its background is the oscillatory convergence to the
state instead of the Canard phenomenon. For a more
FHN oscillator, only the low-frequency peak in ISIH is ob
served, and its coherency is maximal if the period is equa
the time of cycle excursion as it has been shown in Ref.@28#.

III. ENHANCEMENT OF STOCHASTIC RESONANCE

With the knowledge of the Canard-resonance frequen
we demonstrate that the response of the system to a g
input frequency is improved. We force the FHN system w

FIG. 6. Resonances for the periodically driven (b50.01) FHN
system in the oscillatory regime (a50.998) under the influence o
different noise intensities.
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two different but fixed frequencies,

Fext~ t !5bcos~vt !1Ccos~Vt !.

The basic idea is that the information is stored in a lo
frequency input signal with a circle frequencyv and an am-
plitude b. The additional high-frequency input signa
Ccos(Vt) and the noise helps to reach the threshold, so b
are necessary to produce a spike. The amplitude of both
riodic input signals are chosen small enough that they can
produce a spike without noise. A similar situation was in t
study of the vibrational resonance@38#. But the setup of the
parameters in Ref.@38# did not allow use of the Canard reso
nance in the signal processing.

In Fig. 7, two typical time series of thex variable are
plotted for the parameters«50.1, a51.01, sa

250.000 375,

FIG. 7. Time series of thex(t) variable for the excitable FHN
system driven by additive noise and two periodic forces. The hi
frequency input signal is in resonance with the Canard freque
~a! and out of resonance with the Canard frequency~b!. For a better
recognition of the signal processing with the low-frequency inp
signal, this periodic input signal is also plotted~with a ten times
higher amplitude than in the model!.
4-4
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C50.025, b50.007, v50.251, andV52.73 for Fig. 7~a!
and V52.0, respectively, for Fig. 7~b!. The difference be-
tween these two figures is the frequencyV of the high-
frequency input signal: the first one shows the case of re
nant forcing with the Canard frequency (V5VC) and the
second one corresponds to the forcing out of the Can
frequency (VÞVC). As an important result, the amplitude
of the small oscillations around the fix point in the origin
time seriesx(t) are different. Because of the resonance
tween the external high-frequency force and the no
induced small amplitude oscillations in the Canard-reson
case, these small oscillations are enhanced by amplitude
the FHN in this regime can easier reach the threshold of
firing with the help of noise. As a result, we can observe
behavior that is more synchronized with the low-frequen
input signal.

In natural systems with such a spiking behaviorlike ne
rons, only the spikes themselves are important for the in
mation transport. As shown above, small Canard oscillati
near the fix point are very important for the behavior of t
FHN itself, but not for the information transport. To evalua
the information transport, we calculate again the respons
the system,Qth , but replace the original time seriesx(t) by
a reduced time series without oscillations around the
point. In this way we consider only the spikes for the info
mation transport. To distinguish between a spike and the s
threshold oscillations, we set the threshold of detectionxth
50.0. If x(t) is smaller thanxth , we replacex(t) by the
value of the fix pointxf . For x(t)>xth , we use the original
value ofx(t). This replacement is used only for the calcu
tion of the Qth parameter and not for the simulation of th
original time series with the Heun method. The filtered tim
series are also plotted in Fig. 7 by the dashed line. In F
8–10~excitable regime, at the bifurcation point, and oscil
tory regime, respectively! the dependencies of the quality o
the information transport~represented by theQth parameter

FIG. 8. Signal processing at the low-frequency (v) input signal
versus the noise intensity for various frequencies of the hi
frequency input signalsV for the FHN system in the excitabl
regime. Parameters:a51.01, b50.007,C50.025, andv50.251.
The Canard-resonance frequency isVC52.73, see Fig. 4.
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at the low frequencyv) on the noise intensitysa
2 are de-

picted for different frequencies of the high-frequency drivi
force.

All three cases have in common that without noise (sa
2

50) we observe no information transport, becauseQth is
zero. That means that the FHN system does not show a s
ing behavior. These figures demonstrate the bell shaped f
of Qth , well-known SR effect@1#, for all different high fre-
quencies. In the range of lower noise, it can be clearly s
that for the HF part of the signal being in resonance w
Canard frequency, the SR effect at the low frequencyv is
significantly enhanced. In this region there is a significa
difference in theQth parameter between the forcing at th

-
FIG. 9. Signal processing at the low-frequency (v) input signal

versus the noise intensity for various frequencies of the hi
frequency input signalsV for the FHN system at the bifurcation
point. Parameters:a51.0, b50.01, C50.02, andv50.251. The
Canard-resonance frequency isVC52.62, see Fig. 5.

FIG. 10. Signal processing at the low-frequency (v) input sig-
nal versus the noise intensity for various frequencies of the h
frequency input signalsV for the FHN system in the oscillatory
regime. Parameters:a50.998,b50.005,C50.01, andv50.251.
The Canard-resonance frequency isVC52.86, see Fig. 6.
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Canard-resonance frequency (V5VC) and the forcing out
of the Canard resonance (VÞVC). The difference in theQth
parameter is caused only by a change of the frequencyV of
the HF signal because the amplitudes are the same w
one figure. This effect can be understood as the coexiste
of two resonances. The first resonance happens betwee
high frequency of a signal and the frequency of Canard
cillations. If these two frequencies are similar, this resona
amplifies the conventional SR for a signal with low fr
quency.

The demonstration of signal enhancement may be
sented also in the form of interspike interval histograms.
Fig. 11 the ISIH is depicted for the same parametersv
50.251) which are used for both the time series in Figs. 7~a!
and 7~b!. Both ISIHs were calculated with the same length
100 000 time units for the underlying time series in Can
resonance (V52.735VC) and out of resonance (V52.0
ÞVC). In the resonant case, much more spikes occur,
hence, the peaks of ISIH have higher values. The first m
mum in the ISIH for both time series is betweenDt54.8 and
4.9 and corresponds exactly to the resonance frequenc
the spikes with periodT54.83. The time of the first maxi
mum is the minimal time between two adjacent spikes wh
one spike follows the other one without any waiting tim
i.e., without any small Canard oscillation.

For the Canard-resonant case, we observe the expe
multimodal structure with peaks located at multiples of t
period length of the Canard oscillations or high-frequen
force atT52.3 (V52.73). This modulation is very regula
By forcing out of Canard resonance withV52.0 or T
53.14, the first three peaks are approximately at the s
position as in the resonant case. Although we force out of
Canard frequency, one or two Canard periods can occur

FIG. 11. ISI histogram by forcing of the excitable FHN syste
in (V52.735VC) and out of the Canard resonance (V52.0
ÞVC).
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tween two adjacent spikes. Except for these three peak
the ISIH, the multimodal structure with the period of th
Canard period is suppressed. For higher interspike interv
a modulation with the period ofT'3 can be observed
which corresponds to the high-frequency input signal. In t
case the Canard oscillation can succeed only for two per
and lose the competition with the high-frequency forcing
ter this time, and the waiting time will be dominated now b
integer numbers of the high-frequency period.

IV. SUMMARY

In conclusion, we have considered a signal processin
the noisy system which possesses both oscillatory and e
able properties under the action of an additional HF sign
This system was represented by the FHN model with a s
ness between pure excitable and oscillatory regime. We h
demonstrated the possibility to amplify the SR effect in su
systems using the Canard oscillations. In this effect the
signal that is in resonance with the frequency of Canard
cillations strongly improves signal processing of the lo
frequency signal. The effect shows a frequency selectiv
and disappears in the region out of resonance with the
nard frequency.

For supercritical Hopf bifurcation in FHN-like models
this phenomenon is relevant for biology if the stiffness of t
system~a degree of excitability! is limited by the interval«
P@0.220.01# in order to get the observable periods of nois
induced Canard-like orbits. In this interval very small noi
is necessary for a significant improvement of signal proce
ing. It means, e.g., for neurons, the possibility of a new re
lation of signal processing which, in addition to the choice
the value of the bifurcation parameter, can control the sig
transmission under a small noisy environment.

We hope that these theoretical findings will stimulate e
perimental work to find new possibilities of signal receivin
and propagation in systems, which demonstrate Canard
oscillations, especially in nonlinear chemical systems@44# or
in biophysical models@23,24#. Moreover, the dynamical sys
tems, which have some specific regime between excita
and oscillatory states, are not limited by the FHN with C
nard phenomenon. Recently, it has been shown that
modified Oregonator equations have three steady states
excitation occurs via resonance between damped HF osc
tions around the stable fixed point and periodic perturbati
with an appropriate tuning frequency@45#. A similar SR en-
hancement by HF signal may also be expected in this che
cal system with low excitability.
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We study frequency selectivity in noise-induced subthreshold signal processing in a system with many
noise-supported stochastic attractors which are created due to slow variable diffusion between identical excit-
able elements. Such a coupling provides coexisting of several average periods distinct from that of an isolated
oscillator and several phase relations between elements. We show that the response of the coupled elements
under different noise levels can be significantly enhanced or reduced by forcing some elements in resonance
with these new frequencies which correspond to appropriate phase relations.

DOI: 10.1103/PhysRevE.68.061112 PACS number~s!: 05.40.Ca, 05.45.2a
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I. INTRODUCTION

The signal processing in an excitable system of oscilla
or networks is a key element of information exchange
neural networks. By the investigation of such processes
eral unexpected phenomena have been found. One o
most interesting and counterintuitive effect is stochastic re
nance~SR! @1#, initially found in bistable systems@2#, and
later studied in a large variety of physical@1# or biological
systems@3#, including also noise-induced structures@4# or
excitable systems@5,6#. SR consists in an improvement o
the system response to an input signal due to an opt
noise intensity acting upon the system. In SR a part of
noise energy is used for constructive purposes, to cau
form of synchronization between input and output sign
@7#. Several investigations have been performed to find p
sibilities for the amplification of this SR effect. Array
enhanced SR has been considered in Refs.@8,9#, where it has
been shown that embedding of the processing element
network of elements with optimal coupling and noi
strength@10# can improve the signal. This effect is close
connected and sometimes conceptually indistinguisha
from spatiotemporal SR@11# or SR in extended bistable sys
tems @12#. Another possibility to amplify the SR effect ha
been exploited in Ref.@9# by application of noninvasive con
trol of SR. In this case, the external feedback has enhan
the response of a noisy system to a monochromatic sig
Finally, there were investigations, which have shown t
with internal colored noise the SR effect can be enhance
systems with a large memory time@13#.

In isolated excitable systems, SR has been usually in
tigated for the paradigmatic FitzHugh Nagumo~FHN! model
@5,6,14,15#, as well as array-enhanced SR has been con
ered for FHN oscillators coupled via diffusion of their fa
variables. Recently it has been shown that a frequency
phase locking in an ensemble of noise stimulated excita
oscillators can be enhanced by an optimal number of cou
elements@16,17#. Typically, studies of SR do not demon
strate a sensitive dependence on the frequency of the forc
Partially this is caused by using an adiabatic approxima
which is applied to get analytic results about SR. There
only some investigations in which the frequency of the sig
1063-651X/2003/68~6!/061112~8!/$20.00 68 0611
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is the essential parameter. Ganget al. @18# have shown that
SR in specifically globally coupled large bistable syste
with two series of cells demonstrates the bell-shaped dep
dence on the signal frequency. Lindneret al. @19# have
shown the amplification of the spectral power at particu
frequencies in small arrays of underdamped monostable
cillators. To our knowledge, the role of the signal frequen
for excitablesystems has been studied in Refs.@15,17,20–
23# for isolated FHN, when the characteristic time of th
system, defined by an external period providing the maxim
level of synchronization, practically coincides with the e
cursion time of an excitable element, and this time is
single natural reference point for time scale. Such a form
frequency selectivity can be also important for biologic
membranes in enzymatic systems@24#. In other studies the
frequency sensitivity in weak signal processing results fr
a resonance between small oscillations around steady
and a signal@25–28#. Hence, despite different excitatio
mechanisms, the oscillation frequency is defined by the
rameters of isolated elements. On the other hand, our me
nism is based on the appearing of new resonance frequen
due to special phase relations in an inhibitor coupled arr

In this paper we investigate the influence of a signal f
quency in SR effects in a system of excitable oscillato
coupled via the inhibitory variable. This form of couplin
between oscillators may provide a broad spectrum of ad
tional frequencies in the system’s behavior. Oscillatory m
dia with inhibitory coupling have very rich dynamics an
have been reported to be important in numerous phys
@29#, electronical@30#, and chemical systems@31,32#. To be
particular, the inhibitory form of coupling is used to expla
morphogenesis in Hydra regeneration and animal coat
tern formation@33#, or to provide the understanding of pa
tern formation in an electron-hole plasma and lo
temperature plasma@29#. In chemistry, the effective increas
of inhibitor diffusion by reducing of activator diffusivity via
the complexation of iodide~activator! with the macromol-
ecules of starch results in a Turing structure formation@34#.
It has been shown that the dominance of such a coup
between identical oscillators results in the generation
many stable limit cycles with different periods and pha
relations @35,36#. This type of diffusion is referred to the
©2003 The American Physical Society12-1
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VOLKOV et al. PHYSICAL REVIEW E 68, 061112 ~2003!
class of ‘‘dephasing’’ interaction because there is a large a
of the phase space where the phase points repel each
due to this interaction. Dephasing is a source of multirhy
micity, which was observed in different systems@37–40#.
For excitable noisy elements the dephasing interaction
stochastic limit cycles~instead of deterministic ones! may
provide coexistence of spatiotemporal regimes which are
lectively sensitive with respect to the period of external s
nals. In these systems noise plays two roles, at least:~i! it
stimulates firings of stable elements and, consequently, t
interaction during return excursion and~ii ! it stimulates tran-
sitions between coupling-dependent attractors if they oc
and have visible lifetimes.

The paper is structured as follows. After the explanat
of the model equations and the method, used to estim
signal processing, we review the classical SR effect in
isolated excitable oscillator to emphasize the difference w
the selective SR in a coupled system. Then we study a c
of two identical inhibitory coupled excitable oscillators.
this situation the phase relation becomes important for
resonance frequency and the antiphase motion exhibits
other resonance frequency than that of an isolated oscilla
In contrast to an isolated oscillator, the ensemble reacts
sensitively upon the new resonance frequency of the
tiphase attractor. This new frequency selectivity can be u
for an enhancement of the signal processing and informa
transport in the SR effect at this new resonance freque
After that, we study a chain of three coupled elements wit
richer spectrum of the phase relations and the frequenc
Beside the antiphase motion~two in-phase oscillators are i
antiphase with the third one!, this system demonstrates th
so-called dynamic trap regime in which the middle elem
does not produce spikes because of antiphase motio
neighbors. This additional resonance frequency of the
semble enables to demonstrate a frequency selective mo
cations of the signal processing.

II. MODEL

We study several rather simple small arrays of inhibito
diffusively coupled stationary but very strongly excitab
FitzHugh Nagumo models~FHN! under the action of white
additive noise and subthreshold periodic signal which is
plied to one of the elements. The FHN model is a parad
matic model describing the behavior of firing spikes in ne
ral activity @41#, and in general the activator-inhibito
dynamics of excitable media@42#. We show that for some
values of the signal period the dependence of SR meas
on the noise level has a second maximum and the de
dence of SR on the values of the signal period under so
fixed noise resembles the conventional resonance.

In order to get the reference frame for further compa
sons, we begin with the study of the dependence of class
SR on the signal period in the simplest version of FH
model. The previous investigation@21# was very limited in
relation to the value of the periods studied. The mode
given by the following equations:
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dx

dt
5A2y1j1AssinS 2p

Ts
t D , ~1!

«
dy

dt
5x2

y3

3
1y, ~2!

where, in a neural context,y(t) represents the membran
potential of the neuron andx(t) is related to the time-
dependent conductance of the potassium channels in
membrane@41#. The dynamics of the activator variabley is
much faster than that of the inhibitorx, as indicated by the
small time-scale-ratio parameter«. It is well known that for
uAu.1 the only attractor is a stable fixed point. ForuAu,1,
the limit cycle generates a periodic sequence of spikes.
fix A close to the bifurcation in the interval@1.01,1.03# in
order not to use high-level noise to excite oscillations a
thereby to avoid masking of the fine structure of the int
spike intervals histograms. Here« is in the range
@0.0001,0.001#, which is significantly smaller compared t
those that are commonly used. Such a stiff excitation
needed to provide a fast jumping between the attractors.
stochastic forcing is represented by Gaussian white noisj
with zero mean and intensitysa

2 , ^j(t)j(t1t)&5sa
2d(t).

The harmonic signal is subthreshold,As,A21.0. To evalu-
ate the amplitude of the input frequency in the output sign
we calculated the linear response at the input freque
v52p/Ts @1#,

Qsin5
v

2npE0

2pn/v

2y~ t !sin~vt !dt,

Qcos5
v

2npE0

2pn/v

2y~ t !cos~vt !dt,

Q5AQsin
2 1Qcos

2 ,

whenn is the number of periodsTs , covered by the integra
tion time.

III. CLASSIC SR IN AN ISOLATED FHN

Figure 1 shows the dependence of the linear responsQ
on the noise amplitude for different values of the signal p
riod. For the numerical integration of the model we ha
used here and below the Heun’s algorithm@43#. All curves
demonstrate standard SR behavior, but the influence of
period is not weak especially forTs53.2 which corresponds
to the duration of excursion time after firingTexc. For this
period the optimal signal amplification takes place in a bro
range of noise amplitude. Furtheron, the resonance freque
depends on the noise intensitysa

2 and hence the driving pe
riod Ts can be in resonance only at a suitable range ofsa

2 and
not overall @Fig. 1~b!#. This explains the appearance of th
additional maximum in the dependence forTs53.2. A de-
tailed investigation of the resonant forcing of an isolat
FHN can be found in Ref.@21#. Under strong noise, the
realizations of stochastic cycles are very similar to cor
sponding noisy limit cycle~e.g., withA50.99) and the de-
2-2



ins
n

e
oi
a

is

n

igs.
ents

SR
nd
For

the
ate

an-
. It
ise
in a

pli-

i-

FREQUENCY-DEPENDENT STOCHASTIC RESONANCE IN . . . PHYSICAL REVIEW E 68, 061112 ~2003!
pendence ofQ on the period under fixed large noise conta
the conventional main resonance and secondary resona
at T51.6, 1.08, at least~Fig. 2!. A conventional resonanc
occurs when the time moments of the end of phase p
excursions coincide with ‘‘negative’’ phase of the sign
which significantly facilitates the next firing (A is shifted
closer to 1.0!. Figure 2 illustrates that if the signal period
one half or one third of the excursion timeTexc then the
secondary resonances occur.

IV. FREQUENCY-DEPENDENT SR IN TWO COUPLED
OSCILLATORS

Now we consider two identical and coupled elements a
introduce the diffusion of the inhibitory variables,

dx1,2

dt
5A2y1,21j1,21As 1,2sinS 2p

Ts
t D1C~x2,12x1,2!,

~3!

FIG. 1. The linear responseQ for an isolated FHN@Eqs.~1! and
~2!# as function of the noise intensitysa

2 for different signal periods
Ts52.8 ~a!, 3.2 ~b!, 3.4 ~c!, and 4.0~d!. Other parameters areA
51.02, «50.0001,As50.01.

FIG. 2. The dependence of the linear responseQ for an isolated
FHN @Eqs.~1! and~2!# on the signal periodTs for several values of
the noise levelsa

250.0 ~a!, 331026 ~b!, 131025 ~c!, 131024 ~d!.
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«
dy1,2

dt
5x1,22

y1,2
3

3
1y1,2, ~4!

where the signal is applied only to the first element (As 1

50.01 andAs 250.0), and^j i(t)j j (t1t)&5sa
2d(t)d i , j .

We investigate the dynamics of Eqs.~3! and ~4! in the
same region of the signal periods and noise levels as in F
1 and 2 and select the most typical results. Figure 3 pres
the dependence ofQ on the noise intensity for~a! Ts53.2
and ~b! Ts54.2.

Under the action of weak noise the first element shows
at anyTs and the transmission of the signal to the seco
element is observed starting from the SR-optimal noise.
standard SR a further evolution ofQ with noise for both
element should be a continuous decreasing ofQ. The same is
true for the elements coupled via their fast variables, but
inhibitory coupled relaxation excitable elements demonstr
a large second peak@Fig. 3~b!# for some interval ofTs
54.2–4.5. The nature of this peak is the noise-induced
tiphase stochastic cycle in the presence of the coupling
has been shown recently that in a broad interval of no
amplitudes the antiphase cycle dominates and results
new type of coherence resonance@44#. The period of this
cycle depends on the coupling strength and the noise am

FIG. 3. The linear responseQ for two inhibitor coupled FHN’s
@Eqs.~3! and ~4!# as function of the noise intensity for signal per
odsTs53.2 ~a! andTs54.2 ~b!. A51.02, «50.0001,As 150.01,
As 250.0, C50.1.
2-3



th
s
ot

rc
ee
te
o
t

se

o

ch

sy
a

ar
ac
h
dl
th
th
c
a

I
ite
on
is

-
fo

ls
er

it-

a

ing

VOLKOV et al. PHYSICAL REVIEW E 68, 061112 ~2003!
tude which define the position of the second peak on
curve Q(sa

2) in Fig. 3~b!. The influence of the stiffness i
also essential because for«.0.001 the second peak cann
be clearly observed~data not shown!, but the rate ofQ(sa

2)
decreasing is less than that for standard SR~Fig. 1!. A similar
double maximum in the power spectral amplitude at the fo
ing frequency as a function of the noise intensity has b
found recently but for an underdamped bistable sys
where two maxima are linked with two noise-induced m
tions: intrawell and interwell@45#. These results show tha
we can use inhibitory coupled oscillators for frequency
lection in stochastic resonance. Notably, a multipeakcoher-
enceresonance also has been observed in coupled FHN m
els @46#.

V. FREQUENCY-DEPENDENT SR IN A CHAIN OF THREE
OSCILLATORS

Three identical coupled elements can demonstrate a ri
set of regimes which depend on the configuration

dx1

dt
5A2y11j11As 1sinS 2p

Ts
t D1C~x22x1!, ~5!

dx2

dt
5A2y21j21As 2sinS 2p

Ts
t D1C~x12x2!1C~x32x2!,

~6!

dx3

dt
5A2y31j31C~x22x3!, ~7!

«
dy1,2,3

dt
5x1,2,32

y1,2,3
3

3
1y1,2,3, ~8!

where^j i(t)j j (t1t)&5sa
2d(t)d i , j .

Let us analyze possible attractors in the autonomous
tem of three inhibitory coupled identical oscillators. For
linear chain of oscillators whose bifurcation parameters
close to Hopf bifurcation, three main types of stable attr
tors occur@47#. The first is in antiphase regime in whic
oscillators at the ends move in antiphase with the mid
one. The second type was called ‘‘dynamic trap’’ because
antiphase motion of the end’s oscillators does not permit
firing of the middle one. The third type is not a single attra
tor but a family of attractors which may be designated
n/2/n, wheren53,5,7, . . . . Thevalue ofn depends on the
coupling strength and the distance ofA from the bifurcation
value. The closer theA to 1.0 ~for FHN model! the larger is
the valuen and the stronger is the crowding of attractors.
the elements do not oscillate deterministically but are exc
by noise, then the observed stochastic collective modes
partially resemble these types of regimes due to no
dependent perturbations of trajectories. The attractorsn/2/n
will be practically corrupted by noise. This type of multimo
dal distributions is not model specific and was observed
autooscillating@48# and excitable@49# electronic arrays with
dephasing~inhibitory! interactions.

Figure 4 shows the distribution of interspike interva
~ISIs! for three coupled excitable elements without an ext
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FIG. 4. The ISI distributions for a chain of three coupled exc
able elements@Eqs.~5!–~8!# and no signal (As50.0). The ISI dis-
tributions of first and the third~113! oscillators are denoted by
dashed line and the second one~2! by a solid line. The other pa-
rameters areA51.02, C50.1, sa

251024, and«50.0001.

FIG. 5. The time-series intervals selected from trajectory giv
ISI distribution of Fig. 4. They present the antiphase regime~a! and
dynamic trap~b!.
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FIG. 6. The dependencies o
the linear responseQ for a chain
of three elements@Eqs.~5!–~8!# as
a function of the noise intensity
for different signal periods:Ts

52.8 ~a!, 3.0 ~b!, 3.2 ~c!, 3.4 ~d!,
4.5 ~e!, 6.0 ~f!; A51.02, «
50.0001, C50.1. The signal of
the amplitude As150.01 is ap-
plied to the first oscillator only
(As250.0).
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tiv-
nal signal. It can be clearly seen that only two stocha
attractors are really manifested in the ISI distributions. In
dynamic trap, in which the first and the third oscillators a
moved in average in antiphase, their interspike intervals
aroundT'3.0 that is very close toTexc53.2. Since the sys
tem is symmetric, the ISI histograms of the first and th
elements are identical. In this regime the ISI distribution
the middle element is very broad and polymodal. There
only infrequent realizations with very large ISI for the se
ond element. In the antiphase regime, in which the first
the third oscillators are moving in average in-phase bu
antiphase with middle oscillators, they all have the same
erage period aboutTanti'4.2 under the given set of the othe
parameters. Figure 5 shows typical selected time series o
inhibitor variablesx(t) of the three coupled oscillators re
lated to the two main phase regimes antiphase motion
5~a! and of dynamic trap Fig. 5~b!.

The lifetimes and periods of attractors depend on the c
pling strength and noise values, which may be adjusted
06111
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e

re

r
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n
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u-
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enhance~or to inhibit! the acceptance of a sinusoidal sign
of a given period. To check this possibility, we calcula
Q(sa

2) for different signal periods and present results wh
clearly reflect the specific modification of signal acceptan
We consider two cases.

Case 1.The harmonic signal withAs 150.01 is applied
only to the first oscillator (As250.0). The corresponding de
pendencies of the linear response, measured for all three
cillators are shown in Fig. 6 for different periods of the e
ternal signalTs . As discussed above, we have in this syst
two noise-supported attractors: a dynamical trapT
53.0–3.6) and an antiphase attractor (T'4.2). These two
time scales demonstrate itself also in the frequency selec
ity by signal processing. If the signal periodTs,3.0 ~e.g.,
Ts52.8) orTs.5.5, the behavior ofQ1(sa

2) is quite similar
to that of isolated FHN andQ2'Q3 have only one peak as in
the classical SR@Figs. 6~a! and 6~f!#. If the signal period is in
the intervalTs5@3.0,3.4# thenQ1 sharply declines in com-
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parison with Fig. 1 butQ3 dramatically increases for nois
amplitudes in the interval@1025,531025# @Figs. 6~b!–6~d!#,
i.e., the signals with these periods easily penetrate thro
the middle element and are selectively manifested in the t
series of the third oscillator. ForTs.3.6 Q3 decreases agai
@Fig. 6~e!#. The reason for this phenomenon is the coin
dence of the signal period with the average values of
interspike intervals of the stochastic dynamic trap@Fig. 5~b!#.
In this regime the average ISI of the first and the third e
ments are equal and their interspike distributions are sig
cantly narrower than that of the second element. Theref
the signal manifestation in the behavior of the second os
lator is small enough for this interval of the signal period

If the noise amplitude is larger than 531026, the average
activation time of excitation is small and several stocha
attractors may occur, but the harmonic signal supports th
which has a similar value of average period. The next s
chastic attractor which has a noticeable lifetime~not very
sensitive to noise! under stronger noise is the antiphase
cillation with the average periodTanti'4.2. The second pea
on the curvesQi(sa

2) at Ts54.0–4.5 at aboutsa
2'2

31024 is realized for all oscillators@Fig. 6~e!#, because the
average ISIs are the same for all elements in this regime@Fig.
5~a!#. All the three oscillators generate a similar spike s
quences and hence perform with nearly the same linea
sponseQ. For the current model and the given set of oth
parameters, the distance between ISIs is not large~Fig. 4!
and the selectivity of signal enhancement is limited by noi
induced transitions between these regimes.

Case 2.The harmonic signal is applied only to the midd
element (As150.0 andAs250.015). This example of the
selective enlargement ofQ(sa

2) is presented in Fig. 7~a! and
7~b!. For Ts53.2, which corresponds to the maximal man
festation of the signal in the behavior of an isolated oscilla
up to noise amplitude 1024 ~see Fig. 1!, the functionQ2

dramatically decreases if the noise is around 1025. Such a
behavior reflects the absence of small ISIs in the time se
of the second element after this noise value. The increas
signal period up toTs54.0 results in the appearance of th
second peak on all curvesQ1,2,3(sa

2) and that is similar to
Fig. 6~e! except for hereQ2 is larger thanQ1,3 because the
signal is applied to the middle element of the chain.

Thus, the presence of a double resonant peak structu
Q(sa

2) is caused by the coexistence of two stochastic li
cycles which share the phase space due to the inhibitor
change. In our model the distances between average pe
of attractors are not large and therefore the amplitudes of
second peaks in Figs. 3, 6, and 7 are noticeable but no
pronounced as compared with the standard SR peak wh
however, is almost the same for any values of the exte
periods.

The attractors not only differ by the periods but by t
phase relations as well, which means~opens! the possibility
for additional checking of our explanation by the simult
neous applications of two harmonic subthreshold sign
with appropriate phase shift. For instance, the second p
on theQ1,2,3 has a larger height if two signals are applied
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the end’s oscillators in phase butQ1,2,3 is almost negligible if
the same signals are in antiphase each other~data not
shown!.

The manifestation of the described effects depends
only on the stiffness but on the other model parameters
the coupling strength and the proximity ofA to the bifurca-
tion value. Our studies have shown that the results are
tained under a two-fold changing of coupling and the diffe
ence (A21.0).

VI. CONCLUSION

In summary, we have demonstrated the frequency se
tive response and information propagation in a noisy sys
which consists of inhibitory coupled excitable units and
driven by a subthreshold harmonic signal. The signals w
periods from some intervals~e.g.,Ts54.0–4.2) may be en-
hanced not only for small but also for larger noise which a
typically ineffective for standard SR. The signals wi
shorter periods~e.g., Ts53.0–3.2), which are the most ef
fective for SR, may be strongly inhibited under some no
levels in comparison with Fig. 1. The background of t
selectivity is the multirhythmicity generated by the inhibito
coupling in combination with the high stiffness of elemen

FIG. 7. The linear responseQ as a function of the noise intensit
for signal periods Ts53.2 ~a! and Ts54.5 ~b!. A51.02, «
50.0001,C50.1. The periodic signalAs250.015 is applied only
to the middle oscillator (As150.0).
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which provides the fast transitions between stocha
attractors.

The mechanism of this selectivity can be explained by
appearance of new resonance frequencies of the coupled
tem which are caused by different phase relations of the
cillators and differ from the resonance frequency of an i
lated FHN. Especially the resonance frequencies of
antiphase and dynamic trap regime exhibit stable attrac
in a noisy environment. By forcing one element of the n
work in resonance with these coupling-dependent resona
frequencies, we observe an additional resonance peak in
SR curve besides the typical bell-shaped curve of stand
SR. Another interesting phenomenon, which we have
plained, is the masking of the information flow in the d
namic trap regime. In this effect, the last oscillator in the r
shows a much better response at the signal frequency, w
was fed at the first oscillator of the row, than the middle o
We believe that the study of the frequency selective SR
the masking of information flow in an array due to inhibito
coupling can be useful for understanding of multifrequen
information exchange mechanisms in neural networks.
cause of the generality of these effects for diffusive coup
v.
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activator-inhibitor oscillator arrays and not only to FHN sy
tems, we expect that the findings can be applied also in o
fields, e.g., in chemistry or biology.

It is important to note that these results contribute also
the study of fundamental synchronization phenomena@50#.
In frames of this study SR can be considered as a sync
nizationlike phenomenon, in which optimal noise induc
phase synchronization between output and input signals
Ref. @51# it has been shown that in deterministic systems
coupled elements, synchronization can happen through
asynchronized region. The effect, considered here, dem
strates a synchronizationlike behavior through the dynam
trap, and can be considered as a stochastic analog of this
of a phase synchronization in deterministic systems.
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