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Abstract

Orbits of charged particles under the effect of a magnetic field are mathematically de-
scribed by magnetic geodesics. They appear as solutions to a system of ordinary differ-
ential equations of second order. But we are only interested in periodic solutions. To
this end, we study the corresponding system of (nonlinear) parabolic equations for closed
magnetic geodesics and, as a main result, eventually prove the existence of long time
solutions.
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Zusammenfassung

In der Mathematik werden Bahnen von geladenen Teilchen unter dem Einfluss eines
Magnetfeldes durch magnetische Geodätische beschrieben. Diese Bahnen ergeben sich
als Lösungen eines Systems von gewöhnlichen Differentialgleichungen zweiter Ordnung.
Wir interessieren uns nur für periodische Lösungen. Dazu studieren wir ein System von
parabolischen (nichtlinearen) Differentialgleichungen (die Evolutiongleichung für geschlossene
magnetische Geodätische) und beweisen die Existenz von Langzeitlösungen.
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Chapter 1

Introduction

In this work we investigate a certain evolution equation, which is motivated from String
theory. Namely, let (Σ, g) and (M,G) be Riemannian manifolds, Σ be compact and
oriented, p = dim(Σ). Furthermore let Z ∈ Γ(Hom(ΛpTM, TM)) ∼= Γ(ΛpT ∗M ⊗ TM) be
a tensor field such that Ω := G(·, Z(·)) is a closed (p+1)-form. For a map ϕ ∈ C2(Σ,M),
consider the nonlinear elliptic partial differential equation

(1.1) τ(ϕ) = Z((dϕ)p(vol♯g)).

In terms of a positively oriented local orthonormal frame {ei} of Σ, τ(ϕ) and (dϕ)p(vol♯g)

are given by τ(ϕ) = (∇ei
dϕ)(ei) and (dϕ)p(vol♯g) = dϕ(e1) ∧ . . . ∧ dϕ(ep), respectively.

(dϕ)p(vol♯g) can be interpreted as vectorial volume element of Σ, being pushed forward to
M . Now, if p ≥ 1 is a positive integer and Σ is connected, then a solution to equation (1.1)
describes the orbit of a closed (p − 1)-brane under the effect of a field strength Ω. The
tensor field Z : M → Hom(ΛpTM, TM) can be interpreted as a physical force influencing
the motion of the closed (p−1)-brane. In String theory a p-brane is an ”extended object”
of dimension p. That is a 0-brane corresponds to a particle, a 1-brane to a string, 2-brane
to a membrane etc. In the case p = 1, for a map γ : Σ ∼= S1 → M , s 7→ γ(s), equation
(1.1) reduces to the equation for magnetic geodesics

(1.2)
∇

∂s
γ′ = Z(γ′).

Here, γ′(s) denotes the tangent vector of the curve γ at the point s ∈ S1. In this case
the equation describes the orbit of a charged particle under the effect of a magnetic field.
Z can be interpreted as Lorentz force.

A lot of people have investigated the following question: On which conditions can the
existence of closed magnetic geodesics be shown? They used topological methods as
Morse-Novikov theory and Lyusternik Shnirel’man theory for example; see [1], [4], [6],
[22] and the references therein. In Chapter 2 we will derive that very one equation of
motion (1.1) by the principle of stationary action from a certain U(1)-valued functional
arising in String theory and discuss this equation at the end of that chapter by an
example. In Chapter 3 we will derive the second variational formula of that String
functional.
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To the elliptic PDE (1.1) one can associate an evolution equation and study the long time
behavior of its flow. Namely, we consider, for a map ϕ : Σ× [0, T ) →M , setting ϕt(x) =
ϕ(x, t), the initial value problem of a system of nonlinear parabolic partial differential
equations

(1.3)

{
τ(ϕt)(x) = Z((dϕt)

p)(x) + ∂ϕt

∂t
(x), (x, t) ∈ Σ × (0, T ),

ϕ(x, 0) = f(x),

where τ(ϕt) = trace (∇dϕt) and f ∈ C∞(Σ,M) is a map given as initial condition.
One hopes that this problem possesses a solution for T = ∞ and that the limit map
ϕ∞ = limt→∞ ϕt : Σ → M , provided that it exists, is a solution to (1.1). We will show
that it depends on the initial condition f whether the limit map ϕ∞, provided that it
exists, satisfies equation (1.1) or not. In dim(Σ) = p = 1 the above parabolic PDE
(1.3) is called the Evolution Equation for Magnetic Geodesics. A general introduction to
nonlinear evolution equations and methods to prove existence of long time solutions are
given in [12]. The method to find a solution to an elliptic PDE by solving an associated
parabolic (evolution) equation has been applied by Eells and Sampson to prove the
existence of harmonic maps. In the literature it is known as heat flow method. We discuss
this method in Chapter 4 and provide some Bochner-type formulas for later purposes.
Good references to this topic are [7], [19] and [23].

In Chapter 5 we will show short time existence of the flow. The main ingredient of
the proof is the Inverse Function Theorem from functional analysis. Regardless of the
dimension and the curvature of Σ and M , short time existence can always be guaranteed.
For the long time existence the Bochner formulas come into play. We will use them in
Chapter 6 to prove long time existence of the flow in dim(Σ) = 1. Curvature assumptions
on M and the maximum principle are used to obtain good a priori estimates from the
Bochner formulas for the energy densities of a solution to the initial value problem (1.3).
In this way the growth rate of the solutions, as time t increases, is controlled and blow
ups are prevented.

In the Appendix we fix the notation, definitions and provide some basic facts about gerbes
and important analytical tools that are used in this work.
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General Assumptions. All appearing manifolds, maps and tensors are assumed to be
smooth unless otherwise stated. Also we explicitely note that all manifolds are assumed
to be without boundary. Furthermore we will frequently make use of ”Einstein’s sum
convention”: All sum signs are omitted if an index appears twice regardless of the position
of the indices. Then one has to think of these sums to be performed. For example, aibi is
to mean

∑
i aibi and Rl

kijglng
km is to mean

∑
k,lR

l
kijglng

km. Deviations of this convention
will be made explicit by writing out the sum signs.
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Chapter 2

First variation formula

In this chapter we will derive a formula for the first variation of a certain String functional
that involves the holonomy of a gerbe. It will be elucidating to move one step down the
hierarchy of n-gerbes and recall the well-known formula of the variation of the holonomy
of a complex line bundle with connection. Let L → M be a complex line bundle with
connection ∇ over a smooth manifold M . By a smooth variation γt of a loop1 γ : R → M
we mean a smooth map F : (−ǫ, ǫ) × R → M , (t, s) 7→ γt(s) such that γt is a loop for all
t ∈ (−ǫ, ǫ) and γ0 = γ. Putting v := dγt

dt
|t=0 and γ′ = ∂γ

∂s
, denoting the holonomy of the

line bundle along a loop γ : R → M by hol(γ) and the curvature-2-form of ∇ by Ω = Ω∇,
then the formula (see [3], p. 234 ff.)

(2.1)
d

dt
hol(γt)

∣∣∣
t=0

= −

2π∫

0

Ω(v(s), γ′(s))ds

holds. If γ is a critical point of the function hol: LM → U(1) on the loop space LM of
M , then from the above formula we get

iγ′Ω = 0,

in which i is to mean the contraction between vectors and forms. Sometimes we will
also use the notation i(ξ1, . . . , ξp) instead of i(ξ1,...,ξp). Bearing this in mind, it is natural
to expect an analogous expression for gerbes in which the curvature form of the gerbe
should appear.

For the remainder of this chapter let (Σk, g) and (Mn, G) be Riemannian manifolds, and
Σ be compact and oriented. Furthermore let G = [g, A1, . . . , Ak−1, iB] be a (k − 1)-gerbe
over M (with respect to some good open cover U = {Uα}α∈A) and Ω the globally defined
(k + 1)-curvature associated to the gerbe. We consider the U(1)-valued functional

(2.2) C∞(Σ,M) → U(1), ϕ 7→ exp(iS(ϕ)) := exp(iE(ϕ)) · hol(ϕ),

where E(ϕ) is the Energy of ϕ defined by

1By a loop we always mean a smooth map from the unit circle S1 = R/2πZ to M or what is amounting
to the same thing: a smooth 2π-periodic map γ : R → M, s 7→ γ(s).
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(2.3) E(ϕ) =
1

2

∫

Σ

〈dϕ, dϕ〉 dvolg ∈ R

and hol(ϕ) is the holonomy of G along ϕ (see Appendix C.4). Here 〈·, ·〉 denotes the
induced metric on the bundle T ∗Σ ⊗ ϕ∗TM . The so-called B-field action SB in physics
is defined by

(2.4) SB(ϕ) := −i log(hol(ϕ)) ∈ R,

so that hol(ϕ) = exp(iSB(ϕ)).

Remark 2.1. In physics one loosely refers to the string action (2.2) as ”S(ϕ) = E(ϕ) +
SB(ϕ)” and we also will repeatedly make use of this convention. We emphasize that we
keep the metric g of Σ fixed. Actually in String physics the metric is also varied, but we
are not going to do this.

We explicitly point out that the ”functional” (2.4) in general is not well-defined (not even
as a number) unless the gerbe is trivial, i.e. Ω is exact. For fixed ϕ the number SB(ϕ)
is only defined up to an integer multiple of 2π because the logarithm log is only defined
mod 2πiZ. However, we can define its variational derivative as the logarithmic derivative
of hol(ϕt) times (−i):

d

dt

∣∣∣
t=0

SB(ϕt) := −i
d

dt

∣∣∣
t=0

hol(ϕt)

hol(ϕ)
.

If the gerbe G is trivial, it can be represented in the form G = [1, . . . , i(π∗B)], where B is
a global defined (R-valued) k-form on M and the map

π :
⊔

α

Uα →M, (x, α) 7→ x

forgets about the member Uα ∈ U of the open good covering U of M from which a point
x ∈ Uα ⊂ M stems. One can think of π∗B as a family of k-forms obtained from B by
restricting it to the neighborhoods Uα. The holonomy of the gerbe G along ϕ then reduces
to

(2.5) hol(ϕ) = exp(i

∫

Σ

ϕ∗B).

Therefore, in the trivial case one defines SB by

(2.6) SB(ϕ) :=

∫

Σ

ϕ∗B.

We are interested in the Euler-Lagrange equations belonging to the functional (2.2). Let
ϕt be a smooth variation of ϕ, i.e. a smooth map F : (−ǫ, ǫ) × Σ → M, (t, p) 7→ ϕt(p)
such that ϕ0 = ϕ. Then:

d

dt

∣∣∣
t=0

exp(iS(ϕt)) = 0 ⇔
d

dt

∣∣∣
t=0
E(ϕt) +

d

dt

∣∣∣
t=0

SB(ϕt) = 0.(2.7)
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The first variation of the energy is well-known from the theory of harmonic maps (see [8],
[24])

(2.8)
d

dt

∣∣∣
t=0
E(ϕt) = −

∫

Σ

〈τ(ϕ), v〉 dvolg,

where τ(ϕ) := trace∇dϕ , v := ∂ϕt

∂t

∣∣
t=0

∈ Γ(ϕ∗TM) and ∇ denotes the induced
connection on T ∗Σ ⊗ ϕ∗TM . Here we have used the symbol 〈·, ·〉 for the metric G of M .
As we have done here, we will denote all connections and metrics on the various bundles
by the same letter, for it will always be clear from the context with respect to which
connection we are differentiating and which metric is meant. To accomplish (2.7), we

just have to compute d
dt

∣∣∣
t=0

SB(ϕt).

The local case: Let (W,x = (x1, . . . , xk) : W → U) be a coordinate neighborhood of Σ
and τ be a triangulation of Σ as in Appendix C.4. Shrinking the domain of the chart, if
necessary, we may assume that W is contained the interior of some k-face of τ . We denote
this face by σk. Choose a variation F : (−ǫ, ǫ)×Σ → M, (t, p) 7→ ϕt(p) of ϕ ∈ C∞(Σ,M)
such that ϕt(p) = ϕ(p) for all p outside of a compact subset K ⊂W , and let v = ∂ϕt

∂t

∣∣
t=0

denote the corresponding variational field. Plugging ϕt into the holonomy formula (C.1)
of Appendix C.4 and taking its logarithmic derivative (times −i) with respect to the
variational parameter at t = 0, only the integral over σk survives, i.e.

d

dt

∣∣∣
t=0

SB(ϕt) =

∫

σk

d

dt

∣∣∣
t=0
ϕ∗
tBρ(σk) =

∫

W

d

dt

∣∣∣
t=0
ϕ∗
tBρ(σk).

Let ξ1, . . . , ξk ∈ TpΣ. For notational convenience we omit the subscript ρ(σk) of Bρ(σk) in

the following calculations and put ∂ϕt

∂xi := dϕt(ξi) and ∇v
∂xi := ∇ξiv. Then differentiation of

(ϕ∗
tB)p(ξ1, . . . , ξk) = Bϕt(p)(

∂ϕt
∂x1

(p), . . . ,
∂ϕt
∂xk

(p))

at t = 0 and p ∈W yields

d

dt

∣∣∣
t=0

(ϕ∗
tB)(ξ1, . . . , ξk) =(2.9)

(∇vB)(
∂ϕ

∂x1
, . . . ,

∂ϕ

∂xk
)
∣∣∣
p
+

k∑

r=1

B(
∂ϕ

∂x1
, . . . ,

∇v

∂xr
, . . . ,

∂ϕ

∂xk
)
∣∣∣
p

= Ω(v,
∂ϕ

∂x1
, . . . ,

∂ϕ

∂xk
)
∣∣∣
p
+

k∑

i=1

(−1)i−1ξi {B(v,
∂ϕ

∂x1
, . . . ,

∂ϕ

∂xk
)}

∣∣∣
p

+
∑

i<j

(−1)i+jB(v, dϕ([ξi, ξj]),
∂ϕ

∂x1
, . . . ,

∂̂ϕ

∂xi
, . . . ,

∂̂ϕ

∂xj
, . . . ,

∂ϕ

∂xk
)
∣∣∣
p
.

For the first equals sign we have used that ∇ is torsion-free. The second equals sign
follows from dB = Ω and the general fact that for any k-form ω ∈ Γ(ΛkT ∗M) and any
vector fields X0, . . . , Xk ∈ Γ(TM) on a Riemannian manifold with Levi-Civita connection
M , we have the identity (see [21], Chapter II)

(2.10) dω(X0, . . . , Xk) =

k∑

i=0

(−1)i(∇Xi
ω)(X0, . . . , X̂i, . . . , Xk)
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at our disposal, in which the hat on X̂i indicates that this entry has to be omitted. The
result of course holds for any differentiable manifold, because the LHS and the RHS of
(2.9) do not depend on any metric structure. Integrating (2.9) with ξi = ∂

∂xi yields

d

dt

∣∣∣
t=0

SB(ϕt) =

∫

Σ

d

dt

∣∣∣
t=0
ϕ∗
tB =

∫

W

d

dt

∣∣∣
t=0
ϕ∗
tB

=

∫

U

Ω(v(x−1(z)),
∂ϕ

∂x1
(x−1(z)), . . . ,

∂ϕ

∂xk
(x−1(z))) dz1dz2. . . dzk

=

∫

W

Ω(v, (dϕ)k(vol♯g))volg

=

∫

Σ

Ω(v, (dϕ)k(vol♯g)) dvolg(2.11)

since supp(v) lies in W . For the definition of (dϕ)k(vol♯g) see Appendix A(a). In terms
of a positively oriented local orthonormal frame {ei} of Σ this is simply given by
(dϕ)k(vol♯g) = dϕ(e1) ∧ . . . ∧ dϕ(ek).

Now, we consider the general case: Let F : (−ǫ, ǫ)×Σ →M, (t, p) 7→ ϕt(p) be an arbitrary
smooth deformation of ϕ : Σ →M with variational field v. Here the support of v do not
necessarily has to lie in a chart. Because the variational derivative of SB(ϕt) at t = 0
only depends on ϕ0 = ϕ and on the t-derivative v of ϕt at t = 0, the map ϕ is critical for
the ”functional” SB among all variations iff it is critical among those variations that are
of type

(2.12) F : (−ǫ, ǫ) × Σ → M, (t, p) 7→ expϕ(p)(t · v(p)) =: ϕt(p),

in which exp is the exponential map of (M,G) and v ∈ Γ(ϕ∗TM). Thus, we con-
sider WLOG only variations of type (2.12). We choose a finite number of charts
(W1, x1), . . . , (Wm, xm) covering Σ and a subordinate partition of unity, i.e. smooth func-
tions ρ1, . . . , ρm : Σ → R with 0 ≤ ρr ≤ 1,

∑m
r=1 ρr = 1 and supp(ρr) ⊂ Wr for all

r = 1, . . . , m. We put vr := ρr·v so that supp(vr) lies inWr for all r. Furthermore we define
a smooth multi-parameter variation φ : (−ǫ, ǫ)m × Σ → M, (t1, . . . , tm, p) 7→ φ(t1,...,tm)(p)
by

φ(t1,...,tm)(p) := expϕ(p)(

m∑

r=1

tr · vr(p))

such that φ(t,...,t)(p) = ϕt(p) and

∂

∂tr
φ(t1,...,tm)(p)

∣∣∣
(t1,...,tm)=(0,...,0)

= vr(p)

for all r. Applying the previous result (2.11), we obtain

∂

∂tr
SB(φ(t1,...,tm))

∣∣∣
(t1,...,tm)=(0,...,0)

=

∫

Σ

Ω(vr, (dϕ)k(vol♯g)) dvolg.

8



Due to linearity and by virtue of the chain rule we get

d

dt

∣∣∣
t=0

SB(ϕt) =
d

dt

∣∣∣
t=0

SB(φ(t,...,t))

=
m∑

r=1

∂

∂tr
SB(φ(t1,...,tm))

∣∣∣
(t1,...,tm)=(0,...,0)

=
m∑

r=1

∫

Σ

Ω(vr, (dϕ)k(vol♯g)) dvolg

=

∫

Σ

Ω(v, (dϕ)k(vol♯g)) dvolg.(2.13)

Now, we use the musical isomorphism to associate to a (k + 1)-form Ω ∈ Γ(Λk+1T ∗M)
a smooth vector bundle homomorphism Z : ΛkTM → TM , i.e. a smooth section of
Hom(ΛkTM, TM) defined by the equation

(2.14) 〈η, Zx(ξ1 ∧ · · · ∧ ξk)〉 = Ωx(η, ξ1, . . . , ξk)

for all x ∈M and all η, ξ1, . . . , ξk ∈ TxM . Here 〈·, ·〉 denotes the metric G of M .

Remark 2.2. Equation (2.13) says that ϕ ∈ C∞(Σ,M) is a critical point of holG iff one
of the following equivalent conditions is satisfied:

a) i(dϕ)k(vol♯g)Ω = 0,

b) Z((dϕ)k(vol♯g)) = 0.

Definition 2.3. Let (M,G) be a Riemannian manifold and k ∈ N. Then an element
Z ∈ Γ(Hom(ΛkTM, TM)), determined by a closed (k + 1)-form Ω as in (2.14), is called
a k-force. We will mark the dependence on Ω by Z = ZΩ. For k = 1 we call a one-force
Z = ZΩ a Lorentz force.

In the sequel we will also denote the metric G of M by 〈·, ·〉. We summarize the previous
calculations in the following.

Proposition 2.4 (First variation formula). Let (Σk, g) and (Mn, G) be Riemannian man-
ifolds, and Σ be compact and oriented. Furthermore let Z = ZΩ be a k-force coming from
a (k−1)-gerbe over M . Then for any deformation ϕt of ϕ ∈ C∞(Σ,M) the first variation
of S is given by

(V1)
d

dt

∣∣∣
t=0

S(ϕt) =

∫

Σ

〈Z((dϕ)k(vol♯g)) − τ(ϕ), v〉 dvolg.

Here Ω is the curvature of the gerbe.

Proof. Let F : (−ǫ, ǫ) × Σ → M, (t, p) 7→ ϕt(p) be any variation of ϕ. Put v := ∂ϕt

∂t

∣∣∣
t=0

.

By combining (2.8) and (2.13) we see that the first variation of S is given by

−

∫

Σ

〈τ(ϕ), v〉 dvolg +

∫

Σ

Ω(v, (dϕ)k(vol♯g)) dvolg.

Rewriting this with (2.14) we immediately arrive at (V1) so that we are done.
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Definition 2.5. We call a critical point ϕ ∈ C∞(Σ,M) of the String action S a generalized
harmonic map.

Corollary 2.6. Let (Σ, g), (M,G) and Z be given as above in Proposition 2.4. Then
the Euler-Lagrange equation associated to the String action C∞(Σk,Mn) → U(1), ϕ 7→
S(ϕ) = E(ϕ) + SB(ϕ) is given by

τ(ϕ) = Z((dϕ)k(vol♯g)).(2.15)

Proof. This follows from (2.7) and the first variation formula.

Remark 2.7. Let (Σk, g) and (Mn, G) be compact orientable Riemannian manifolds. If
a map ϕ : Σ → M satisfies (2.15) and in addition is an isometric imbedding, then from
the definition of τ(ϕ) we have

(2.16) H(ϕ) =
1

k
Z((dϕ)k(vol♯g)).

Here H(ϕ) denotes the mean curvature vector of the isometric imbedding ϕ,

H(ϕ) =
1

k
trace∇dϕ =

1

k
τ(ϕ).

In particular, if n = k+ 1, any smooth n-form Ω on M must be a multiple of the volume
form volG of M , i.e. we can express Ω = fvolG, where f : M → R is a smooth real-valued
function. If we denote the outward unit normal field of ϕ(Σ) ⊂ M by ν, then we get
H(ϕ) = (Hν) ◦ ϕ and ZΩ((dϕ)k(vol♯g)) = ±(fν) ◦ ϕ, where H = H(ϕ) : ϕ(Σ) → R

denotes the mean curvature of ϕ(Σ) ⊂M . Hence, (2.16) becomes

(2.17) H = ±
f

k
in ϕ(Σ).

The sign depends on whether ϕ : Σ → ϕ(Σ) ⊂ M is orientation preserving (+) or
orientation reversing (-) with respect to the orientation on Σ, and the orientation on ϕ(Σ)
induced by M .

Example 2.8. For k 6= 2 let M = Sk+1 ⊂ Rk+2 be the (k + 1)-dimensional standard
sphere and G its canonical metric. Let d : M × M → [0,∞) denote the Riemannian
distance function on M . Fix a point p ∈ Sk+1 and set f(x) = d(p, x). Denote the
geodesic distance sphere of radius r by S(r) = f−1(r) and its induced metric by g(r),
r ∈ [0,∞). For r ∈ (0, π) the sphere S(r) with the induced metric is a k-dimensional
Riemannian submanifold of M = Sk+1 which is diffeomorphic to the standard sphere Sk.
Its mean curvature H = H(S(r)) is given by H(r) = − cot(r). Let Vk+1 = vol(Sk+1)
denote the volume of the standard sphere Sk+1. Moreover let n ∈ Z be an integer and

Ωn =
2πn

Vk+1

volG.

Here volG is the volume form of M = Sk+1. Since
∫

M

Ωn =
2πn

Vk+1

∫

M

volG = 2πn,

10



we may regard Ωn as curvature form of a k-Deligne class Gn ∈ Hk(M,Dk) such that
the corresponding Diximier-Douady class realizes [Ωn]/2π = n ∈ Hk+1(M,Z) ∼= Z (see
Appendix C.2). By means of (2.17) we see that for a given n ∈ Z we have to solve the
equation

H(r) = − cot(r) =
2πn

kVk+1
.

Noting that cot : (0, π) → R is bijective, we can find for any integer n ∈ Z a real number
rn ∈ (0, π) such that ιn : S(rn) →֒ Sk+1 satisfies

τ(ιn) = Zn((dιn)
k(vol♯g(rn))).

Here Zn = ZΩn and ιn : S(rn) →֒ Sk+1 is the natural inclusion which, by definition, is an
orientation preserving isometric imbedding.

b

ϕn
Sk

Sk+1

n = 0

n < 0

n > 0

p

figure 2.1. Geodesic distance spheres

Exchanging two coordinates if necessary, we may assume WLOG that the diffeo-
morphism ψr : S(r) → Sk ⊂ Rk+1, realizing S(r) ∼= Sk, is orientation preserving.
Equipping Sk with the metric gn := (ψ−1

rn )∗g(rn) obtained by pulling back the metric
of S(rn) by means of the diffeomorphism ψ−1

rn , we see that for any n ∈ Z we can find a
metric gn on Σ := Sk and an orientation preserving imbedding ϕn := ιn ◦ ψ

−1
rn : Σ → M

such that the following conditions are satisfied:

τ(ϕn) = Zn((dϕn)
k(vol♯gn

)) and gn = ϕ∗
nG.

This is the pair of Euler-Lagrange equations that one obtains if one looks for critical
points (ϕ, g) of the functional (ϕ, g) 7→ Eg(ϕ) + SB(ϕ), where also the metric is varied.

Remark 2.9. In the special case p = dim(Σ) = 1, locally we can parametrize Σ by arc
length, that is, we can always find local coordinates Φ : (−ǫ, ǫ) → U ⊂ Σ, s 7→ Φ(s) of Σ
such that for the norm of the corresponding coordinate vector field g( ∂

∂s
, ∂
∂s

) = 1 holds.

With respect to such coordinates, for ϕ = γ : Σ →M, s 7→ γ(s), putting γ′ = ∂γ
∂s

= dγ( ∂
∂s

),
equation (2.15) reduces to

(2.18)
∇

∂s
γ′ = Z(γ′),

and we recover the equation for magnetic geodesics whose solutions are known as closed
magnetic geodesics. The reason for this is that Z can be interpreted as Lorentz force and
the solutions as the orbits of a charged particle under the effect of a magnetic field. From
now on, whenever Σ ∼= S1, equations like (2.18) and expression like γ′ = ∂γ

∂s
= dγ( ∂

∂s
) are

to be understood with respect to arc length parametrization.

11
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Chapter 3

Second variation formula

Throughout the entire chapter let (Σk, g) and (Mn, G) be Riemannian manifolds, let
Σ be compact and oriented, Ω be the (k + 1) curvature of a fixed (k − 1)-gerbe G =
[g, A1, . . . , Ak−1, iB] and Z = ZΩ be the corresponding k-force. Moreover let F : (−ǫ, ǫ)×
Σ →M, (t, p) 7→ ϕt(p) be a smooth variation of a map ϕ ∈ C∞(Σ,M) with vt := ∂ϕt

∂t
. As

before, sometimes we will write 〈·, ·〉 instead of G. We recall the formula

(3.1)
d

ds
SB(ϕt) =

∫

Σ

i ∂
∂t

(ϕ∗
tΩ) =

∫

Σ

Ω(vt, (dϕt)
k(vol♯g)) dvolg.

Let e1, . . . , ek be a positively oriented orthonormal frame field near p ∈ Σ and wt be a vec-
tor field along ϕt. Set v := v0, w := w0, a := ∇wt

∂t

∣∣
t=0

. Differentiating Ω(wt, (dϕt)
k(vol♯g))

at t = 0 yields

d

dt

∣∣∣
t=0

Ω(wt, dϕt(e1), . . . , dϕt(ek)) =(3.2)

(∇vΩ)(w, dϕ(e1), . . . , dϕ(ek)) + Ω(a, dϕ(e1), . . . , dϕ(ek))

+ (ϕ∗α(w,v))(e1, . . . , ek),

where and α(w,v) is a k-form depending on Ω defined as follows. Let v, w be two smooth
vector fields on M , then α(w,v) ∈ Γ(ΛkT ∗M) is given by

(3.3) α(w,v)(η1, . . . , ηk) :=

k∑

r=1

Ω(w, η1, . . . ,∇ηrv, . . . , ηk)

for all η1, . . . , ηk ∈ Γ(TM).

For two smooth vector bundles E1, E2 over M we denote by Dk(E1, E2) the space of
differential operators of (at most) degree k mapping smooth sections from E1 to smooth
ones of E2. For k = 0 we have D0(E1, E2) = HomC∞(M)(Γ(E1),Γ(E2)) ∼= Γ(Hom(E1, E2)).
Again we use the musical isomorphism to introduce the following two mappings

L0 : Γ(ΛkTM) → D0(TM, TM) and L1 : Γ(ΛkTM) → D1(TM, TM)

by

(3.4) 〈w1, L
0
ξ1∧...∧ξk

(v1)〉 := (∇v1Ω)(w1, ξ1, . . . , ξk)

13



and

(3.5) 〈w2, L
1
η1∧...∧ηk

(v2)〉 := α(w2,v2)(η1, . . . , ηk)

for all v1, v2, w1, w2, ξ1, . . . , ξk, η1, . . . , ηk ∈ Γ(TM). For a smooth map ϕ : Σ → M the
composition of (dϕ)k with LΩ := L0 + L1 yields a mapping

Γ(ΛkTΣ) → D1(ϕ
∗TM,ϕ∗TM)

ξ 7→ LΩ
(dϕ)k(ξ).

For ξ = vol♯g we set LΩ
ϕ := LΩ

(dϕ)k(vol♯g)
. In the sequel we will write Lϕ = LΩ

ϕ for convenience.

Remark 3.1. Using the identity Ω(η, ξ1, . . . , ξk) = 〈η, Z(ξ1 ∧ . . . ∧ ξk)〉 and the relations
(3.3),(3.4),(3.5), we see that

(3.6) L0
ξ(v) = (∇vZ)(ξ)

and

(3.7) L1
η1∧...∧ηk

(w) = Z(
k∑

r=1

η1 ∧ . . . ∧ ∇ηrw ∧ . . . ∧ ηk)

hold for all v, w, η1, . . . , ηk ∈ Γ(TM) and ξ ∈ Γ(ΛkTM). Furthermore Lϕ(v) can be
computed by

(3.8) Lϕ(v) =
∇

∂t

∣∣∣
t=0
Z((dϕt)

k(vol♯g)),

where F : (−ǫ, ǫ) × Σ → M , (t, p) 7→ ϕt(p) is any variation of ϕ with ϕ0 = ϕ and
∂ϕt

∂t

∣∣
t=0

= v.

Now, integrating (3.2) with wt = vt = ∂ϕt

∂t
, a = ∇vt

∂t

∣∣
t=0

and using (3.3),(3.4),(3.5) yields
the following.

Lemma 3.2. For any variation ϕt of ϕ ∈ C∞(Σ,M) the second variational derivative
of SB is given by

(3.9)
d2

dt2

∣∣∣
t=0

SB(ϕt) =

∫

Σ

{
〈a, Z(( dϕ)k(vol♯g))〉 + 〈v, Lϕ(v)〉

}
dvolg.

From the theory of harmonic maps the second variation formula of E (see [8], [24]) is
known to be

d2

dt2

∣∣∣
t=0
E(ϕt) =

∫

Σ

{
〈Jϕ(v), v〉 + 〈−τ(ϕ), a〉

}
dvolg.(3.10)

Here Jϕ is the Jacobi operator associated to ϕ. It is a formally selfadjoint second-order
elliptic differential operator. For a local orthonormal frame field e1, . . . , ek of Σ it acts on
v ∈ Γ(ϕ∗TM) as follows:

(3.11) Jϕ(v) := −
k∑

r=1

{∇ϕ
er
∇ϕ
er
−∇ϕ

∇er er
}v −

k∑

r=1

RM(v, dϕ(er)) dϕ(er),

where the Levi-Civita connection of Σ is denoted by ∇, the induced connection of ϕ∗TM
by ∇ϕ and the curvature tensor of M by RM .
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Definition 3.3. The first sum in (3.11) is a second-order elliptic differential operator
called rough Laplacian and is denoted by ∆̄ϕ ∈ D2(ϕ

∗TM,ϕ∗TM):

(3.12) ∆̄ϕv :=
k∑

r=1

{∇ϕ
er
∇ϕ
er
−∇ϕ

∇er er
}v, v ∈ Γ(ϕ∗TM).

The second sum in (3.11) denoted by Rϕ is an element of D0(ϕ
∗TM,ϕ∗TM) and given

by

(3.13) Rϕ(v) :=

k∑

r=1

RM(v, dϕ(er)) dϕ(er), v ∈ Γ(ϕ∗TM).

The formally selfadjointness of Jϕ = −∆̄ϕ −Rϕ follows from the formally selfadjointness
of the rough Laplacian and the symmetries of RM .

Adding (3.9) and (3.10) provides us with the following.

Proposition 3.4 (Second variation formula). Let ϕ ∈ C∞(Σ,M) be a generalized har-
monic map. Then for any deformation ϕt of ϕ the formula for the second variation of S
is given by

(V2)
d2

dt2

∣∣∣
t=0

S(ϕt) =

∫

Σ

〈Jϕ(v), v〉 dvolg.

Here Jϕ : Γ(ϕ∗TM) → Γ(ϕ∗TM) is a formally selfadjoint second-order elliptic differential
operator defined by

(3.14) Jϕ := Jϕ + Lϕ,

and Lϕ : Γ(ϕ∗TM) → Γ(ϕ∗TM) is a formally selfadjoint first-order differential operator.

Proof. The terms involving the acceleration field a = ∇vt

∂t

∣∣
t=0

are canceling each other,
because ϕ is a generalized harmonic map. The formally selfadjointness of Jϕ is equivalent
to the fact that the Hessian Iϕ (see Definition 3.6 below) is a well-defined symmetric
bilinear form. The formally selfadjointness of Lϕ then follows from that of Jϕ and Jϕ.

Definition 3.5. The differential operator Jϕ defined by equation (3.14) is called gener-
alized Jacobi operator associated to ϕ.

Definition 3.6. For a generalized harmonic map ϕ ∈ C∞(Σ,M) we define the index form
(orHessian) of ϕ by

(3.15) Iϕ(ξ, η) :=

∫

M

〈Jϕ(ξ), η〉 dvolg

for ξ, η ∈ Γ(ϕ∗TM). A generalized harmonic map ϕ is called stable if Iϕ(ξ, ξ) ≥ 0 for all
ξ ∈ Γ(ϕ∗TM).

The equation Jϕ(v) = 0 as generalization of the Jacobi field equation reads:

(3.16) ∆̄ϕv + Rϕ(v) = Lϕ(v).

We call a vector field along ϕ satisfying (3.16) a generalized Jacobi field.
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Definition 3.7. A smooth map F : (−ǫ, ǫ) × Σ →M is called a harmonic variation of
ϕ if for any t ∈ (−ǫ, ǫ) the map p 7→ ϕt(p) := F (t, p) is a generalized harmonic map.

Remark 3.8. Let ϕt be a harmonic variation with ϕ := ϕ0 and v := ∂ϕt

∂t

∣∣
t=0

be the
corresponding variational field. We will show that variational fields of harmonic variations
satisfy the generalized Jacobi field equation (3.16). Choose a positively oriented local
orthonormal frame field {ej} near p ∈ Σ with ∇ei

ej
∣∣
p

= 0. Then we have at p

∇ϕt
er
∇ϕt
er
v
∣∣
t=0

= ∇ϕt
er
∇ϕt
er

∂ϕt
∂t

∣∣
t=0

= ∇ϕt
er

∇ϕt

∂t
dϕt(er)

∣∣
t=0

=
∇ϕt

∂t
∇ϕt
er
dϕt(er)

∣∣
t=0

+RM

(
dϕt(er),

∂ϕt
∂t

)
dϕt(er)

∣∣
t=0

(2.15)
=

∇ϕt

∂t
Z(( dϕt)

k(vol♯g))
∣∣
t=0

−Rϕ(v)

(3.8)
= Lϕ(v) −Rϕ(v).

For k = 1 and a smooth curve γ : S1 → M, s 7→ γ(s), putting γ′ = ∂γ
∂s

, the generalized
Jacobi field equation reduces to

(3.17)
∇2v

ds2
+RM(v, γ′)γ′ = Lγ(v).

We call a vector field v along γ satisfying (3.17) a magnetic Jacobi field. Here equa-
tion (3.17) and γ′ are to be understood as in Remark 2.9 with respect to the canonical
coordinates.
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Chapter 4

The heat flow method

Notational convention. Throughout the whole chapter let (Σk, g) and (Mn, G)
be Riemannian manifolds. Furthermore let Σ be compact and oriented and
let Z ∈ Γ(Hom(ΛkTM, TM)) be a k-force determined by some closed (k + 1)-
form Ω as in (2.14). Henceforth, we abbreviate Z((dϕ)k) = Z((dϕ)k(vol♯g)) and

Zϕ((dϕ)k) = Zϕ((dϕ)k(vol♯g)). For the sake of simplicity all appearing metrics and
covariant derivatives are denoted by 〈·, ·〉 and ∇, respectively.

In 1964 Eells and Sampson proved the existence of harmonic maps (see [7]) by the heat
flow method, that is, they demonstrated that the time limit of the solution to an associated
evolution equation is a harmonic map. We would like to use this technique to prove the
existence of a solution to (4.2). It turns out that in general this method does not yield a
solution to our problem. On the contrary, we will see that the solvability rather depends
on the initial value for the associated evolution equation. However, short time existence
of solutions to the associated evolution equation can always be shown, regardless of the
dimension of (Σ, g) and (M,G) and without making any further assumptions, excepting
that Σ is required to be compact and oriented. On the other hand, only if dim(Σ) = 1
and imposing nonpositive curvature on M , i.e. KM ≤ 0, we are able to verify existence of
long time solutions. So, we consider for a map ϕ : Σ×[0, T ) →M , setting ϕt(x) = ϕ(x, t),
the initial value problem (IVP) for the system of nonlinear parabolic partial differential
equations

(4.1)

{
τ(ϕt)(x) = Z((dϕt)

k)(x) + ∂ϕt

∂t
(x), (x, t) ∈ Σ × (0, T ),

ϕ(x, 0) = f(x),

where τ(ϕt) = trace (∇dϕt) and f ∈ C∞(Σ,M) is a map given as initial condition. We
assume that

ϕ ∈ C0(Σ × [0, T ),M) ∩ C∞(Σ × (0, T ),M).

Firstly we note the following.

Theorem 4.1. If a C2 differentiable map ϕ : Σ → M satisfies the equation for generalized
harmonic maps

(4.2) τ(ϕ) = Z((dϕ)k),

then ϕ is a C∞ differentiable map.
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Proof. Since differentiability is a local property, we may verify it locally at each point
p ∈ Σ. Choose coordinate neighborhoods (U, (xi)) around p and (V, (yα)) around ϕ(p)
such that ϕ(U) ⊂ V . In these coordinates (4.2) reads, for each ϕα = yα ◦ ϕ,

(4.3) ∆ϕα = −gijΓ̃αβγ(ϕ)
∂ϕβ

∂xi
∂ϕγ

∂xj
+ |g|

3

2

∂ϕµ1

∂x1
· · ·

∂ϕµk

∂xk
Zα
µ1...µk

,

where ∆f = −δdf = div(gradf) is the Hodge-Laplacian on functions, f ∈ C2(Σ). By
Γ̃αβγ we have denoted the Christoffel symbols of the Levi-Civita connection on M and by
|g| = det(gij) the determinant of the metric (gij) of Σ. Suppose that a C2 map ϕ satisfies
(4.3). Since the right hand side is a C1 function, in particular, it is σ-Hölder continuous
for 0 < σ < 1. From the theorem on differentiability for solutions to linear elliptic partial
differential equations (see Appendix B.1) it follows that ϕ is C2+σ and therefore the RHS
of (4.3) becomes C1+σ. From the same theorem we obtain that ϕ is C3+σ. Iterating this
argument, we see that ϕ must be C∞.

Example 4.2. Let Σ = S1 the unit circle and M = T 2 = S1 × S1 the two-dimensional
standard torus with the natural induced metrics. Recall the conventions of Remark 2.9
concerning canonical coordinates on S1. Then for a map γ : S1 × [0,∞) → M , setting
γt(s) = γ(s, t), the IVP (4.1) takes the form

(*)

{
∇
∂s
γ′t(s) = Z(γ′t)(s) + ∂γt

∂t
(s), (s, t) ∈ S1 × (0,∞),

γ(s, 0) = c(s),

where γ′t(s) = ∂γ
∂s

(s, t) and c : S1 → T 2 is a smooth initial curve. Let M̂ = S1×R ⊂ R3 be
the standard cylinder with metric induced from R3 and, denoting the standard coordinates
of R3 by (x, y, z), let the z-axis be the axis of symmetry. For the radial vector field
B̂ : R3 → R3 , given by

B̂ : (x, y, z)t 7→ (x, y, 0)t,

we define a skew-symmetric bundle homomorphism Ẑ : TM̂ → TM̂ by Ẑ(v) = v × B̂
by means of the vector product of R3, (all tangent spaces of R3 are identified by parallel
transport). We note that ∇Ẑ = 0, implying that Ẑ defines a closed 2-form Ω̂ via (2.14),
and consider for a map γ : S1 × [0,∞) → M̂ ⊂ R3 the initial value problem

(**)

{
∇
∂s
γ′t(s) = Ẑ(γ′t)(s) + ∂γt

∂t
(s), (s, t) ∈ S1 × (0,∞),

γ(s, 0) = c(s).

Since B̂ is invariant under z-translations, Ẑ descends to a well-defined parallel skew-
symmetric bundle homomorphism Z : TM → TM on the Torus M = M̂/∼= S1 × S1,
regarded as quotient of M̂ by moding out the Z-action on the second factor of M̂ = S1×R.
Hence, the entire initial value problem (∗∗) on the cylinder M̂ descends to a corresponding
initial value problem (∗) on the torus M = T 2. So, for simplicity we will do all our
computations on the cylinder M̂ . Passing to the quotient M = M̂/∼ then yields a
corresponding result for the torus. Expressing γt(s) and B̂ in cylindrical coordinates

γt(s) =




cos(ϕ(s, t))
sin(ϕ(s, t))
z(s, t)


 and B̂(r, ϕ, z) =




r cos(ϕ)
r sin(ϕ)

0


 ,
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r ∈ (0,∞), ϕ ∈ (−π, π), z ∈ (−∞,∞), a straightforward computation shows that, for
functions ϕ, z : S1 × [0,∞) → R, (∗∗) is equivalent to the following system of partial
differential equations

(+)





ϕ′′(s, t) = z′(s, t) + ϕ̇(s, t), (s, t) ∈ [0, 2π] × (0,∞),
z′′(s, t) = −ϕ′(s, t) + ż(s, t), (s, t) ∈ [0, 2π] × (0,∞),
ϕ(s, 0) = ϕ0(s),
z(s, 0) = z0(s).

Here we identify S1 ∼= R/2πZ, i.e. we regard ϕ and z as functions defined on R × [0,∞),

which are 2π-periodic in the first argument. Furthermore we abbreviate ϕ′′ = ∂2ϕ
∂s2

, ϕ′ = ∂ϕ
∂s

and ϕ̇ = ∂ϕ
∂t

(in the same way for z) and ϕ0, z0 are initial conditions. Now, let us explicitely
calculate the flow for the initial conditions

a)

{
ϕ0(s) = A cos(s)
z0(s) = B sin(s)

and b)

{
ϕ0(s) = s
z0(s) = µ cos(s),

where µ,A,B ≥ 0 are nonnegative numbers and the function ϕ0 from initial condition b)
is to be understood as being defined on [0, 2π]; in terms of γ0(s) = (cos(s), sin(s), µ cos(s))
we see that b) is a well-defined smooth initial condition γ0 : S1 ∼= R/2πZ → S1 × R. To
this end, let us introduce the complex variable ξ = ϕ+ iz. Here i denotes the imaginary
unit. Then system (+) reduces to a single partial differential equation

(++)

{
ξ̇(s, t) = ξ′′(s, t) + iξ′(s, t), (s, t) ∈ [0, 2π] × (0,∞),
ξ(s, 0) = ϕ0(s) + iz0(s).

To solve this we try a power series ansatz

ξ(s, t) =

∞∑

n=0

an(s)t
n.

Plugging this into (++) yields the following recursion formula for the coefficients an for
all n ≥ 1:

(R) an =
a′′n−1 + ia′n−1

n
, a0 = ϕ0 + iz0.

ad a): If a0(s, t) = A cos(s) + iB sin(s), for n ≥ 1 we get

an(s) =
(A+B)

2

(−2)n

n!
exp(is),

and consequently,

ξ(s, t) = a0(s) +
∞∑

n=1

(A+B)

2

(−2)n

n!
exp(is)

= A cos(s) + iB sin(s) −
(A+B)

2
exp(is) +

(A +B)

2
exp(is) exp(−2t)

=
(A−B)

2
exp(−is) +

(A+B)

2
exp(is) exp(−2t).
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We see that the limit as t→ ∞ exists, namely

ξ∞(s) = lim
t→∞

ξ(s, t) =
(A−B)

2
exp(−is).

Also one readily verifies that ξ′′∞ + iξ′∞ = 0 holds, i.e. on the torus T 2 = M̂/∼ the
corresponding loop γ∞ = limt→∞ γt : S1 → M = T 2 satisfies the equation for magnetic
geodesics

∇

∂s
γ′∞ = Z(γ′∞).

ad b): If a0(s, t) = s+ iµ cos(s), we get a1(s) = i(1 − µ exp(is)), and for n ≥ 2

an(s) =
iµ

2

(−2)n

n!
exp(is),

and thus,

ξ(s, t) = s+ it+ iµ cos(s) +
iµ

2
exp(is)

[
exp(−2t) − 1

]
.

On the torus T 2 = M̂/∼ the subsequence {ξ(s, 2πn)}n≥0 corresponds to a constant
sequence, namely to a loop γ∞ : S1 → T 2, surrounding the neck of the torus. (see
Figure 4.1) The limit of any other convergent subsequence is just a translation of that
loop γ∞ along the ”soul” of the torus, i.e. a translation in t-direction. However, since
ξ′′ + iξ′ = i 6= 0, we see that a limit loop γ∞ can never satisfy the equation for magnetic
geodesics in contrast to case a).

a): A 6= B

t = 0
t = ∞

b): µ = 0

t = 2πn,
n ∈ N

figure 4.1. The flow of the evolution equation

We may summarize as follows:
On the torus we have computed the flow of the parabolic equation for magnetic geodesics
for two families of initial conditions. For an ellipse c : S1 → T 2 as initial condition (case a))
not enclosing the neck of the torus, the limit loop γ∞, as t→ ∞, exists and is a magnetic
geodesic. In the case b) when the initial curve c : S1 → T 2 forms an ellipse enclosing the
neck of the torus, there exist convergent subsequences; but then a limit loop can not be
a magnetic geodesic. Hence, we see that the existence of a convergent subsequence such
that its limit curve satisfies the equation for magnetic geodesics depends on the initial
condition. However, for the cylinder S1×R and the torus S1×S1, respectively, long time
existence of the flow is guaranteed for any initial condition by Theorem 6.8 and Theorem
6.6, respectively.
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In general, to show existence of solutions to the equation (4.2) one has to verify the steps
of the following program:

1. Show existence of short time solutions to the parabolic initial value problem (4.1).

2. Rule out occurrence of blow ups in finite time, i.e. show existence of long time
solutions to the initial value problem (4.1).

3. Show convergence ϕt → ϕ∞ as t→ ∞ .

4. If the limit ϕ∞ exists, show that ϕ∞ satisfies (4.2).

As seen from the above example, it depends on the initial condition whether a limit map
ϕ∞, provided that it exists, is a solution to (4.2) or not. Consequently one cannot expect a
general existence result for generalized harmonic maps in the sense of Eells and Sampson.
So, we restrict ourselves to tackle the long time existence problem, i.e. in the following
chapters we are going to carry out 1) and 2) of the previous program. The strategy is
to derive some Bochner-type formulas and to use the maximum principle for parabolic
equations to get a priori estimates which allow to control the growth rate of solutions to
the IVP (4.1).
The estimates for the energy densities will show that in dim(Σ) = k = 1 everything is
fine. For dim(Σ) > 1 we would have to deal with ”bad” terms that possibly could destroy
the long time behavior of our solutions whereas short time existence can be guaranteed
without any restrictions on the dimension and the curvature of Σ and M .
For a given solution ϕ of (4.1) we set ϕt(x) = ϕ(x, t) and define

e(ϕt) :=
1

2
|dϕt|

2, (energy density)

E(ϕt) :=

∫

Σ

e(ϕt) dvolg, (energy)

κ(ϕt) :=
1

2

∣∣∣∂ϕt
∂t

∣∣∣
2

, (kinetic energy density)

K(ϕt) :=

∫

Σ

κ(ϕt) dvolg. (kinetic energy)

Now, we state a Weitzenböck formula for vector bundle valued 1-forms.

Proposition 4.3 (Weitzenböck formula). Let ω be a 1-form on a Riemannian manifold
(M, g) with values in a Riemannian vector bundle (E,∇E , h). Then

∆ω = ∆̄ω + Sω.

Here Sω ∈ Γ(T ∗M ⊗E) is given by

(4.4) Sω(X) = (R(X, ei)ω)(ei),

where {ei} is a local orthonormal frame on M , X ∈ Γ(TM) and R is the curvature tensor
corresponding to the connection on T ∗M ⊗E which is induced by the connections of T ∗M
and E, respectively.
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A proof can be found in ([26], p. 21).

Proposition 4.4 (Bochner-type formulas). Let ϕ ∈ C0(Σ×[0, T ),M)∩C∞(Σ×(0, T ),M)
be a solution to the parabolic IVP (4.1), and let ϕt(x) = ϕ(x, t). In Σ × (0, T ) we have,
(1) (Bochner formula for e(ϕt))

∂e(ϕt)

∂t
= ∆e(ϕt) − |∇dϕt|

2 + 〈RM(dϕt(ei), dϕt(ek))dϕt(ek), dϕt(ei)〉(4.5)

− 〈dϕt(Ric
Σ(ei)), dϕt(ei)〉 − 〈∇Z((dϕt)

k), dϕt〉.

(2) (Bochner formula for κ(ϕt))

∂κ(ϕt)

∂t
= ∆κ(ϕt) − |∇

∂ϕt
∂t

|2 + 〈RM(
∂ϕt
∂t

, dϕt(ei))dϕt(ei),
∂ϕt
∂t

〉(4.6)

− 〈
∇

∂t
Z((dϕt)

k),
∂ϕt
∂t

〉.

Here ∆ = −δd is the Hodge-Laplacian on C2(Σ), ∇dϕt(X, Y ) = (∇Xdϕt)(Y ), for X, Y ∈
TxΣ, is the second fundamental form of ϕt, and RicΣ and RM denote, respectively, the
Ricci tensor of Σ and the curvature tensor of M . The family {ei} represents a positively
oriented orthonormal basis for the tangent space at each x ∈ Σ. The covariant derivatives
and the metrics are the natural induced ones.

Proof. We will only show the validity of the Bochner formula for the energy density e(ϕt).
The proof for κ(ϕt) is similar. Choose a positively oriented local orthonormal frame field
{ei} near x ∈ Σ with ∇ei

ej
∣∣
x

= 0. From the Weitzenböck formula (4.4) we get at point x,

∆e(ϕt) = ∂ei
∂ei
e(ϕt)

= ∂ei
〈∇ei

dϕt(ek), dϕt(ek)〉

= 〈∇ei
∇ei

dϕt(ek), dϕt(ek)〉 + 〈∇ei
dϕt(ek),∇ei

dϕt(ek)〉

= 〈∆̄dϕt, dϕt〉 + |∇dϕt|
2

= 〈∆dϕt, dϕt〉 − 〈Sdϕt , dϕt〉 + |∇dϕt|
2

= 〈∆dϕt, dϕt〉 + |∇dϕt|
2 − 〈(R(ek, ei)dϕt)(ei), dϕt(ek)〉

= 〈∆dϕt, dϕt〉 + |∇dϕt|
2 − 〈RM(dϕt(ek), dϕt(ei))dϕt(ei), dϕt(ek)〉

− 〈dϕt(R
Σ(ei, ek)ei), dϕt(ek)〉

= 〈∆dϕt, dϕt〉 + |∇dϕt|
2 − 〈RM(dϕt(ek), dϕt(ei))dϕt(ei), dϕt(ek)〉

− 〈dϕt(Ric
Σ(ek), dϕt(ek)〉.

22



Noting ∆dϕt = −dδdϕt = ∇τ(ϕt) and that ϕt satisfies the IVP (4.1), we arrive at

∆e(ϕt) = 〈∇τ(ϕt), dϕt〉 + |∇dϕt|
2 − 〈RM(dϕt(ek), dϕt(ei))dϕt(ei), dϕt(ek)〉

− 〈dϕt(Ric
Σ(ek), dϕt(ek)〉

= 〈∇
∂ϕt
∂t

, dϕt〉 + 〈∇Z((dϕt)
k), dϕt〉 + |∇dϕt|

2

− 〈RM(dϕt(ek), dϕt(ei))dϕt(ei), dϕt(ek)〉 − 〈dϕt(Ric
Σ(ek), dϕt(ek)〉

= 〈
∇

∂t
dϕt, dϕt〉 + 〈∇Z((dϕt)

k), dϕt〉 + |∇dϕt|
2

− 〈RM(dϕt(ek), dϕt(ei))dϕt(ei), dϕt(ek)〉 − 〈dϕt(Ric
Σ(ek), dϕt(ek)〉

=
∂e(ϕt)

∂t
+ 〈∇Z((dϕt)

k), dϕt〉 + |∇dϕt|
2

− 〈RM(dϕt(ek), dϕt(ei))dϕt(ei), dϕt(ek)〉 − 〈dϕt(Ric
Σ(ek), dϕt(ek)〉.

We have made use of the relation ∇∂ϕt

∂t
= ∇

∂t
dϕt. This holds, because the covariant

derivative along mappings is torsion free.

Remark 4.5. Since Σ is compact, the unit sphere bundle SΣ is also compact. Being a
smooth function on SΣ, RicΣ achieves its minimum on it. Consequently there exists a
constant C such that RicΣ ≥ −Cg. Namely, we can take C := −min

v∈SΣ
RicΣ(v, v).

Now, set E = Hom(ΛkTM, TM).

Corollary 4.6. Let ϕ : Σ × [0, T ) → M be a solution to the IVP (4.1) and set
ϕt(s) = ϕ(s, t). Let Z = ZΩ be some k-force determined by some closed (k + 1)-form
Ω ∈ Γ(Λk+1T ∗M) as in (2.14), with |Z|L∞(M,E), |∇Z|L∞(M,E) <∞. The following holds in
Σ × (0, T ):

(1) Let C be a real number such that RicΣ ≥ −Cg. If M is of nonpositive curvature
KM ≤ 0, then

(4.7)
∂e(ϕt)

∂t
≤ ∆e(ϕt) + 2Ce(ϕt) + 2k−2k|Z|2L∞(M,E) e(ϕt)

k.

(2) If M is of nonpositive curvature KM ≤ 0, then

∂κ(ϕt)

∂t
≤ ∆κ(ϕt) + 2k−2k2|Z|2L∞(M,E) e(ϕt)

k−1κ(ϕt)(4.8)

+ 21+k/2|∇Z|L∞(M,E) e(ϕt)
k/2κ(ϕt).

The norms are given by |Z|L∞(M,E) = supM〈Z,Z〉1/2 and |∇Z|L∞(M,E) =
supM〈∇Z,∇Z〉1/2. All covariant derivatives, metrics and norms used here are the natural
ones induced by the metrics g and G.

Proof. Firstly recall the definition of (dϕ)k and the ∧̃-product in Appendix A(a). For
simplicity we will denote all appearing metrics by 〈·, ·〉.
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ad (1): Firstly we note that, for an orthonormal frame with ∇ei
ej

∣∣
x

= 0, at x

〈∇Z((dϕt)
k), dϕt〉 = ∂ei

〈Z((dϕt)
k), dϕt(ei)〉︸ ︷︷ ︸
=0

−〈Z((dϕt)
k),∇ei

dϕt(ei)〉

= −〈Z((dϕt)
k), trace∇dϕt〉

holds due to the skew-symmetry of Ω. From this we get

|〈∇Z((dϕt)
k), dϕt〉| ≤ k1/2|Z||dϕt|

k|∇dϕt|

≤ |∇dϕt|
2 +

k

4
|Z|2L∞(M,E)|dϕt|

2k.

Using this estimate, the curvature assumptions KM ≤ 0 and RicΣ ≥ −Cg, and the
Bochner formula for the energy density e(ϕt), inequality (1) readily follows.

ad (2): From

∇

∂t
Z((dϕt)

k) =
(
∇∂ϕt

∂t
Z

)
((dϕt)

k) + Z
(
(∇

∂ϕt
∂t

)∧̃(dϕt)
k−1

)
,

we see

∣∣∣
〈∇

∂t
Z((dϕt)

k),
∂ϕt
∂t

〉∣∣∣ ≤ |∇Z||dϕt|
k
∣∣∣∂ϕt
∂t

∣∣∣
2

+ k|Z||dϕt|
k−1

∣∣∣∂ϕt
∂t

∣∣∣
∣∣∣∇∂ϕt

∂t

∣∣∣

≤
∣∣∣∇∂ϕt

∂t

∣∣∣
2

+
k2

4
|Z|2L∞(M,E) |dϕt|

2k−2
∣∣∣∂ϕt
∂t

∣∣∣
2

+ |∇Z|L∞(M,E)|dϕt|
k
∣∣∣∂ϕt
∂t

∣∣∣
2

.

From this estimate, the curvature assumption KM ≤ 0 and the Bochner formula for κ(ϕt)
we obtain the desired inequality (2).

As a special case of Corollary 4.6, for k = 1 we have the following.

Corollary 4.7. Assume that Σ = S1 and Z is a Lorentz force. Let ϕ = γ : S1 × [0, T ) →
M be a solution to the IVP (4.1), and set γt(s) = γ(s, t). The following hold in S1×(0, T ):

(1’) If |Z|L∞(M,E) <∞, then

(4.9)
∂e(γt)

∂t
≤ ∆e(γt) + λ e(γt).

(2’) If KM ≤ 0 and |Z|L∞(M,E), |∇Z|L∞(M,E) <∞, then

(4.10)
∂κ(γt)

∂t
≤ ∆κ(γt) + λ κ(γt) + µ e(γt)

1/2κ(γt),

where λ = λ(M,Z) = 1
2
|Z|2L∞(M,E) and µ = µ(M,∇Z) = 23/2|∇Z|L∞(M,E) are constants

only depending on M,Z and ∇Z. All metrics and norms used here are the natural ones
induced by the metrics g and G.
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Chapter 5

Short time existence

Now, let us carry out step 1) of our program and show the short time existence of solutions
to the IVP (4.1). To this end, we cast the parabolic initial value problem in a form that
is analytically easier to handle with. As before let (Σk, g) and (Mn, G) be Riemannian
manifolds, and Σ be compact and oriented. Furthermore let Z be a smooth section of
Hom(ΛkTM, TM) ∼= ΛkT ∗M⊗TM and f ∈ C∞(Σ,M) be the initial condition from (4.1).
We use Nash’s imbedding theorem, which says that any Riemannian manifold can be
isometrically imbedded into an Euclidean space of sufficient high dimension, in order to
isometrically imbedd M into a certain Rq. Let

ι : M →֒ Rq

denote the isometric imbedding, and let M̃ be a tubular neighborhood of the submanifold
ι(M) ⊂ Rq. It can be defined as an open subset of Rq by

M̃ = {(x, v) | x ∈ ι(M), v ∈ Txι(M)⊥, |v| < ǫ(x)}.

Here ǫ : M → (0,∞) is a positive smooth function on M . By

π : M̃ → ι(M)

we denote the canonical projection which assigns to each z ∈ M̃ the closest point in
ι(M) from z. We extend this projection to a smooth map π : Rq → Rq that vanishes
outside M̃ . This can be done by choosing the positive function ǫ small enough. Also the
bundle homomorphism Z can be extended to a bundle homomorphism Z̃ : ΛkTRq → TRq,
meaning that dι◦Z = Z̃◦(dι)k holds; and we do this as follows: Denote by M̃1, M̃2 smaller
tubular neighborhoods of M such that M ⊂ M̃1 ⊂ M̃2 ⊂ M̃ holds. For example, as M̃1

and M̃2 we can take the ǫ/4-tubular neighborhood and the ǫ/2-tubular neighborhood,
respectively, both contained in the above defined ǫ-tubular neighborhood M̃ . In M̃2 we
define Z̃ by

Z̃x(ξ) := dι
(
Zπ(x)((dπ)k(ξ))

)
,

for all ξ ∈ ΛkTxR
q and all x ∈ M̃2. Here we have identified all tangent spaces

TxR
q ∼= TyR

q ∼= Rq by parallel translation. Then choose a smooth function ψ : Rq → R

with support in M̃2 such that ψ ≡ 1 in the closure of M̃1 and 0 ≤ ψ ≤ 1 in Rq hold.
Multiplying the above Z̃ defined in M̃2 by this cut-off function ψ, yields a smooth bundle
map Z̃ : ΛkTRq → TRq which is globally defined in Rq and vanishes outside M̃2.
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Now, let u : Σ × [0, T ) → M̃ be a map from Σ × [0, T ) into M̃ ⊂ Rq. Regarding u as a
function with values in Rq, we may consider the following initial value problem (IVP) for
the system of parabolic partial differential equations:

(5.1)

{
(∆ − ∂

∂t
) u(x, t) = Πu(du, du)(x, t) + Z̃u((du)

k)(x, t), (x, t) ∈ Σ × (0, T ),
u(x, 0) = ι ◦ f(x).

Here ∆ = −δd is the Hodge Laplacian of Σ componentwise applied to u and f is the map
given as initial condition of the IVP (4.1). Z̃ is the extension of the k-force as described
above and Π(du, du) is a vector in Rq defined as follows. Let {ei} be a local orthonormal
frame field on Σ regarded, by canonically extension, as a local frame field on Σ × (0, T ).
Then

(5.2) Π(du, du) := trace∇dπ(du, du) = (∇du(ei)dπ)(du(ei)).

We consider only those solutions u : Σ×[0, T ) → M̃ to the IVP (5.1) which are continuous
on Σ × [0, T ), C2 differentiable in Σ and of class C1 in (0, T ). In symbols this means

u ∈ C0(Σ × [0, T ), M̃) ∩ C2,1(Σ × (0, T ), M̃).

The relation between the two initial value problems is ruled by the following.

Proposition 5.1. Let u ∈ C0(Σ × [0, T ), M̃) ∩ C2,1(Σ × (0, T ), M̃). If u is a solution to
the initial value problem (5.1), then u(Σ× [0, T )) ⊂ ι(M) holds true and ϕ = ι−1 ◦ u is a
solution to the IVP (4.1). The converse also holds true.

Proof. Suppose that u ∈ C0(Σ× [0, T ), M̃)∩C2,1(Σ× (0, T ), M̃) is a solution to the IVP
(5.1) and let Z̃ be the extension of Z ∈ Γ(Hom(ΛkTM, TM)) constructed above. At first
we will show that u(Σ × [0, T )) ⊂ ι(M) holds. For this we define a map ρ : M̃ → Rq by

ρ(z) = z − π(z), z ∈ M̃,

and a function h : Σ × [0, T ) → Rq by

h(x, t) = |ρ(u(x, t))|2, (x, t) ∈ Σ × [0, T ).

We see, by definition, that ρ(z) = 0 iff z ∈ ι(M). Thus, we only have to verify h ≡ 0.
Since u(x, 0) = ι(f(x)) ∈ ι(M), we see h(x, 0) = 0. As u is a solution to the IVP (5.1),
we obtain with ρ(u) = ρ ◦ u

∂h

∂t
=

∂

∂t
〈ρ(u), ρ(u)〉 = 2

〈
dρ

(∂u
∂t

)
, ρ(u)

〉

= 2
〈
dρ(∆u− Π(du, du)− Z((du)k)), ρ(u)

〉
,

∆h = ∆〈ρ(u), ρ(u)〉

= 2〈∆ρ(u), ρ(u)〉 + 2|dρ(u)|2,

where 〈 , 〉 is the scalar product in Rq. The formula for the second fundamental form of
composite maps (see Lemma 5.2 below) says

∆ρ(u) = dρ(∆u) + trace∇dρ(du, du),
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where ∆ is the Hodge-Laplacian of Σ. Since, by definition, π(z) + ρ(z) = z, we have
dπ+ dρ = id and ∇dπ+∇dρ = 0. This together with the fact that the images of dπ and
ρ are orthogonal to each other yields

∆h = 2〈dρ(∆u) − trace∇dπ(du, du), ρ(u)〉+ 2|dρ(u)|2

= 2〈dρ(∆u− Π(du, du)), ρ(u)〉+ 2|dρ(u)|2,

and hence,

∂h

∂t
= ∆h− 2|dρ(u)|2 − 2〈dρ(Z̃((du)k)), ρ(u)〉

= ∆h− 2|dρ(u)|2 − 2〈Z̃((du)k), ρ(u)〉(5.3)

= ∆h− 2|dρ(u)|2.

The term 〈Z̃((du)k), ρ(u)〉 vanishes since Z̃((du)k) ⊥ ρ(u) by construction of Z̃. Then by
the Divergence Theorem (see Appendix B.6) we have for each t ∈ (0, T ),

d

dt

∫

Σ

h(·, t) dvolg =

∫

Σ

∂h

∂t
(·, t) dvolg = −2

∫

Σ

|dρ(u)|2 dvolg ≤ 0.

Since h(x, 0) = 0 from the assumption, we have

∫

Σ

h(·, t) dvolg ≤

∫

Σ

h(·, 0) dvolg = 0

and consequently h ≡ 0.

Now, we turn to the second half of the assertion. Therefore, let u : Σ × [0, T ) → M̃ be a
solution to the IVP (5.1). From the previous assertion we know that u(Σ×[0, T )) ⊂ ι(M).
Hence, we can write u = ι ◦ ϕ, where ϕ is a map from Σ × [0, T ) to M . We will show
that ϕ is a solution to the IVP (4.1). Due to the formula (see Lemma 5.2) for the second
fundamental form of composition maps for u = ι ◦ ϕ and for ι = π ◦ ι we get

∆u = trace∇dι(dϕ, dϕ) + dι(τ(ϕ)),

∇dι = ∇dπ(dι, dι) + dπ(∇dι).

Since ι : M → Rq is an isometric imbedding, the second fundamental ∇dι of ι is orthogonal
to ι(M) at each point, and thus dπ(∇dι) = 0. Combining this and the preceding equations,
we obtain

dι(τ(ϕ)) = ∆u− trace∇dπ(du, du).

Bearing in mind that dι ◦ Z = Z̃ ◦ (dι)k and dι(∂ϕ
∂t

) = ∂u
∂t

hold, we finally arrive at

dι
(
τ(ϕ) −

∂ϕ

∂t
− Z((dϕ)k)

)
= (∆ −

∂

∂t
) u− Z̃((du)k) − Π(du, du).

From this one reads off that ϕ is a solution to the IVP (4.1) if u is a solution to the initial
value problem (5.1). Analogously the converse can easily be verified.
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In the proof of the preceding proposition we have made use of the

Lemma 5.2. Let (Σ, g), (M,G) and (N, h) be Riemannian manifolds. Given maps Σ
ϕ

−→

M
ψ

−→ N , we have ∇d(ψ ◦ ϕ) = dψ(∇dϕ) + ∇dψ(dϕ, dϕ); and τ(ψ ◦ ϕ) = dψ(τ(ϕ)) +
trace∇dψ(dϕ, dϕ).

Proof. For X, Y ∈ Γ(TΣ) we compute

∇d(ψ ◦ ϕ)(X, Y ) = ∇X(dψ ◦ dϕ(Y )) − d(ψ ◦ ϕ)(∇XY )

= (∇dϕ(X)dψ)(dϕ(Y )) + dψ(∇Xdϕ(Y )) − dψ ◦ dϕ(∇XY )

= ∇dψ(dϕ(X), dϕ(Y )) + dψ(∇dϕ(X, Y )).

Since τ(·) = trace∇d(·), the formula for the tension field of composite maps follows
immediately from that for the second fundamental form by taking the trace.

From Proposition 5.1 we see that we can prove short time existence for solutions to the
IVP (4.1) by establishing short time existence for IVP (5.1). For the latter IVP one can
set up a function space which is well adapted to our problem. To this end, we follow
Ladyženskaya, Solonnikov and Ural’ceva ([15], p. 7). Given T > 0, set Q = Σ × [0, T ].
Let 0 < α < 1. Given a vector valued function u : Q→ Rq, set

|u|Q = sup
(x,t)∈Q

|u(x, t)|,

〈u〉(α)
x = sup

(x,t),(x′,t)∈Q

x 6=x′

|u(x, t) − u(x′, t)|

d(x, x′)α
,

〈u〉
(α)
t = sup

(x,t),(x,t′)∈Q

t6=t′

|u(x, t) − u(x, t′)|

|t− t′|α
,

and define the norms |u|
(α,α/2)
Q , |u|

(2+α,1+α/2)
Q by

|u|
(α,α/2)
Q = |u|Q + 〈u〉(α)

x + 〈u〉
(α/2)
t ,

|u|
(2+α,1+α/2)
Q = |u|Q + |∂tu|Q + |Dxu|Q + |D2

xu|Q(5.4)

+ 〈∂tu〉
(α/2)
t + 〈Dxu〉

(1/2+α/2)
t + 〈D2

xu〉
(α/2)
t

+ 〈∂tu〉
(α)
x + 〈D2

xu〉
(α)
x .

Here d(x, x′) is the Riemannian distance between x and x′ in Σ and ∂tu represents ∂u/∂t.
Also Dxu andD2

xu represent the first order derivative of u in Σ and its covariant derivative,
respectively. In terms of a local coordinate system (xi) in Σ and the standard coordinates
(yα) of Rq, Dxu and D2

xu are, respectively, given by

Dxu = du = ∂iu
α · dxi ⊗

∂

∂yα
,

D2
xu = ∇du = ∇i∂ju

α · dxi ⊗ dxj ⊗
∂

∂yα
,
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and |Dxu|
2
Q and |D2

xu|
2
Q are, respectively, given as

|Dxu|
2
Q = sup

(x,t)∈Q

gij∂iu
α∂ju

α,

|D2
xu|

2
Q = sup

(x,t)∈Q

gikgjl∇i∂ju
α∇k∂lu

α,

where ∂i = ∂/∂xi. With respect to these norms we define the function spaces Cα,α/2(Q,Rq)
and C2+α,1+α/2(Q,Rq), respectively, by

Cα,α/2(Q,Rq) = {u ∈ C0(Σ × [0, T ]) | |u|
(α,α/2)
Q <∞},

C2+α,1+α/2(Q,Rq) = {u ∈ C2,1(Σ × [0, T ]) | |u|
(2+α,1+α/2)
Q <∞},

and set
C2+α,1+α/2(Q,M) = {u ∈ C2+α,1+α/2(Q,Rq) | u(Q) ⊂M},

where we have naturally identified M with ι(M) ⊂ Rq. One can show that Cα,α/2(Q,Rq)

and C2+α,1+α/2(Q,Rq) are Banach spaces with norms |u|
(α,α/2)
Q , |u|

(2+α,1+α/2)
Q , respectively.

They are called Hölder spaces on Q× [0, T ]. See [9], [11] for example. C2+α,1+α/2(Q,M) is
a closed subset of C2+α,1+α/2(Q,Rq). This follows immediately because M , as a compact
subset, is closed in Rq.

Now, we prove the following.

Theorem 5.3. Let (Σ, g) and (M,G) be Riemannian manifolds, and Σ be compact and
oriented. Furthermore let Z ∈ Γ(Hom(ΛkTM, TM)). For any C2+α map f ∈ C2+α(Σ,M)
there exists a positive number ǫ = ǫ(Σ,M, Z, f, α) > 0 and a map u ∈ C2+α,1+α/2(Σ ×
[0, ǫ], M̃) such that u is a solution in Σ× [0, ǫ) to the IVP (5.1). Here, ǫ = ǫ(Σ,M, Z, f, α)
is a constant depending on Σ,M, Z, f, and α.

The main tool that we use to prove this theorem is the Inverse Function Theorem (see
Appendix B.9) for Banach spaces. It says that a C1 map is locally invertible at a point
iff its linearization is invertible at this point. The idea is to apply the Inverse Function
Theorem to reduce the solvability of a nonlinear differential equation to the solvability of
its linearized version. However, before it we review the following classically well known
result about existence and uniqueness of solutions to linear parabolic partial differential
equations. (see [15], p. 320) or ([9], p. 350 ff.)

Theorem 5.4. Let (Σ, g) be a compact Riemannian manifold of dimension k, and set
Q = Σ × [0, T ]. Given a vector valued function u : Q→ Rq, let

Lu = ∆u+ a · ∇u+ b · u− ∂tu

be a linear parabolic partial differential operator, and consider the initial value problem

(5.5)

{
Lu(x, t) = F (x, t), (x, t) ∈ Σ × (0, T ),
u(x, 0) = f(x).

Here the components of ∆u, a · ∇, b · u, ∂tu are, respectively, defined by

∆uA, aiAB (x, t)
∂uB

∂xi
, bAB(x, t)uB,

∂uA

∂t
, 1 ≤ A ≤ q.
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If

aiAB , bAB ∈ Cα,α/2(Q,R), 1 ≤ i ≤ k, 1 ≤ A,B ≤ q,

for some 0 < α < 1, then for any

F ∈ Cα,α/2(Q,Rq), f ∈ C2+α(Σ,Rq),

there exist a unique solution u ∈ C2+α,1+α/2(Q,Rq) to (5.5) such that

|u|
(2+α,1+α/2)
Q ≤ C(|F |

(α,α/2)
Q + |f |

(2+α)
Σ )

holds. Here the constant C = C(Σ, L, q, T, α) only depends on Σ, L, q, T, α.

To prove Theorem 5.3 we need a technical lemma.

Lemma 5.5. Let (Σ, g) be a compact Riemannian manifold and α′, α, ǫ ∈ R such that
0 < α′ < α < 1 and 0 < ǫ < 1, respectively. Set Q = Σ × [0, 1]. Let w ∈ Cα,α/2(Q,Rq) ⊂
Cα′,α′/2(Q,Rq) with w(x, 0) = 0 and ζ : R → R be a C∞ function satisfying ζ(t) = 1 (t ≤
ǫ), ζ(t) = 0 (t ≥ 2ǫ), 0 ≤ ζ(t) ≤ 1, |ζ ′(t)| ≤ 2/ǫ (t ∈ R). Then the following estimate
holds:

|ζw|
(α′,α′/2)
Q ≤ Cǫ(α−α

′)|w|
(α,α/2)
Q .

Here, C is a constant independent of w and ǫ.

Proof. Since, by definition, |ζw|
(α′,α′/2)
Q = |ζw|Q + 〈ζw〉

(α′)
x + 〈ζw〉

(α′/2)
t , it suffices to es-

timate each term of the sum individually. Regarding that w(x, 0) = 0 and ζ(t) = 0 for
t ≥ 2ǫ, we get

|ζ(t)w(x, t)| ≤ |ζ(t)w(x, t) − ζ(t)w(x, 0)| ≤ |ζ(t)|〈w〉
(α/2)
t |t|α/2

≤ 〈w〉
(α/2)
t (2ǫ)α/2 ≤ 2α/2|w|

(α,α/2)
Q ǫα/2.

From this and ǫα
′/2 ≤ 1 we see that |ζw|Q ≤ C1ǫ

(α−α′)/2|w|
(α,α/2)
Q . To estimate 〈ζw〉

(α′)
x we

distinguish the two cases where d(x, x′) ≤ ǫ1/2 and d(x, x′) ≥ ǫ1/2, respectively.

For d(x, x′) ≤ ǫ1/2 and x 6= x′ we have:

|ζ(t)w(x, t)− ζ(t)w(x′, t)| ≤ |w(x, t) − w(x′, t)|

≤
|w(x, t) − w(x′, t)|

d(x, x′)α
d(x, x′)α

′

ǫ(α−α
′)/2

≤ 〈w〉(α)
x d(x, x′)α

′

ǫ(α−α
′)/2

≤ |w|
(α,α/2)
Q d(x, x′)α

′

ǫ(α−α
′)/2.

For d(x, x′) ≥ ǫ1/2 we get:

|ζ(t)w(x, t) − ζ(t)w(x′, t)| ≤ |ζ(t)w(x, t) − ζ(t)w(x, 0)|+ |ζ(t)w(x′, 0) − ζ(t)w(x′, t)|

≤ 〈w〉
(α/2)
t (2ǫ)α/2 + 〈w〉

(α/2)
t (2ǫ)α/2

≤ 21+α/2 |w|
(α,α/2)
Q ǫα/2.
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Dividing both sides of this inequality by d(x, x′)α
′

and noting that d(x, x′)α
′

≥ ǫα
′/2 yields

|ζ(t)w(x, t)− ζ(t)w(x′, t)|

d(x, x′)α′
≤ 21+α/2 |w|

(α,α/2)
Q ǫ(α−α

′)/2.

Consequently we obtain

〈ζw〉(α
′)

x = sup
(x,t),(x′,t)∈Q

x 6=x′

|ζ(t)w(x, t)− ζ(t)w(x′, t)|

d(x, x′)α′

≤ sup
d(x,x′)≤ǫ1/2

{
. . .

}
+ sup

d(x,x′)≥ǫ1/2

{
. . .

}

≤ C2ǫ
(α−α′)/2|w|

(α,α/2)
Q .

After all we discuss the term 〈ζw〉
(α′/2)
t . There are only three nontrivial cases:

Case i) For t, t′ ∈ [0, 2ǫ], t 6= t′, we get:

|ζ(t)w(x, t) − ζ(t′)w(x, t′)|

≤ |ζ(t)(w(x, t)− w(x, t′))| + |(ζ(t) − ζ(t′))(w(x, t′) − w(x, 0))|

≤ |ζ(t)||w|(α,α/2)Q |t− t′|α/2 + 2ǫ−1|t− t′||w|(α,α/2)Q |t′|α/2.

Dividing both sides of the above inequality by |t− t′|α
′/2, we get

|ζ(t)w(x, t) − ζ(t′)w(x, t′)||t− t′|−α
′/2

≤ |w|
(α,α/2)
Q (2ǫ)(α−α′)/2 + 2ǫ−1(2ǫ)1−α′/2|w|

(α,α/2)
Q (2ǫ)α/2

≤ C̃3ǫ
(α−α′)/2|w|

(α,α/2)
Q .

Case ii) For t ∈ [0, 2ǫ], t′ > 2ǫ and |t− t′| > 2ǫ, we see

|ζ(t)w(x, t) − ζ(t′)w(x, t′)| = |ζ(t)||w(x, t)− w(x, 0)| ≤ |w|
(α,α/2)
Q (2ǫ)α/2.

Dividing both sides by |t− t′|α
′/2 and noting that |t− t′|α

′/2 ≥ (2ǫ)α
′/2, we obtain

|ζ(t)w(x, t) − ζ(t′)w(x, t′)||t− t′|−α
′/2 ≤

˜̃
C3|w|

(α,α/2)
Q ǫ(α−α

′)/2

Case iii) For t ∈ [0, 2ǫ], t′ > 2ǫ and |t− t′| ≤ 2ǫ, one computes

|ζ(t)w(x, t) − ζ(t′)w(x, t′)| = |ζ(t) − ζ(t′)||w(x, t) − w(x, 0)|

≤ |w|
(α,α/2)
Q (2ǫ)α/2

∣∣∣ζ(t) − ζ(t′)

t− t′

∣∣∣
α′/2

|t− t′|α
′/2|ζ(t) − ζ(t′)|1−α

′/2

≤ 2(α+α′)/2|w|
(α,α/2)
Q ǫ(α−α

′)/2|t− t′|α
′/2.

However, at all events it follows that 〈ζw〉(α
′/2)

t ≤ C3ǫ
(α−α′)/2|w|(α,α/2)Q . Hence, the in-

equalities for the three terms |ζw|Q, 〈ζw〉
(α′)
x , and 〈ζw〉

(α′/2)
t yield the desired estimate for

|ζw|
(α′,α′/2)
Q with a constant C = C1 + C2 + C3.
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Now, we turn to the proof of Theorem 5.3.

Proof. At first let Z̃ be the smooth extension of Z constructed at the beginning of this
chapter. We choose an α′ such that 0 < α′ < α < 1 and use the abbreviation ∂t = ∂/∂t.

Step 1 (Construction of an approximate solution). Consider the following initial value
problem of a system of linear parabolic partial differential equations:

(5.6)

{
(∆ − ∂

∂t
) v(x, t) = Πf (df, df)(x, t) + Z̃f((df)k)(x, t), (x, t) ∈ Σ × (0, 1),

v(x, 0) = f(x),

where we have identified f with ι ◦ f . From the assumption f ∈ C2+α(Σ,Rq) we get

Πf(df, df), Z̃f((df)k) ∈ Cα(Σ,Rq) ⊂ Cα,α/2(Σ × [0, 1],Rq),

and consequently by virtue of the previous Theorem 5.4 the existence of a unique solution

v ∈ C2+α,1+α/2(Σ × [0, 1],Rq)

to the IVP (5.6). If we denote the desired solution by u, then v approximates u at t = 0
in the following sense,

v(x, 0) = u(x, 0), ∂tv(x, 0) = ∂tu(x, 0).

Step 2 (Application of the Inverse Function Theorem). Now, putting Q = Σ × [0, 1], we
consider the differential operator

P (u) = ∆u− ∂tu− Πu(du, du)− Z̃u((du)
k)

and note that an u ∈ C2+α,1+α/2(Σ× [0, ǫ],Rq) satisfying P (u) = 0 is our desired solution.

For 0 < α′ < 1 we introduce the subspaces X and Y in C2+α′,1+α′/2(Q,Rq) and
Cα′,α′/2(Q,Rq), respectively, by

X = {h ∈ C2+α′,1+α′/2(Q,Rq) | h(x, 0) = 0, ∂th(x, 0) = 0},

Y = {k ∈ Cα′,α′/2(Q,Rq) | k(x, 0) = 0}.

The spaces X and Y are, by definition, closed subspaces; and hence Banach spaces. We
define a map P : X → Y by

P(h) = P (v + h) − P (v), for h ∈ X.

From the definition of P and X we see that P(h) ∈ Cα′,α′/2(Q,Rq) and P(h)(x, 0) = 0
for h ∈ X so that in fact P(h) ∈ Y holds true. In particular, P(0) = 0. P is Fréchet
differentiable in a neighborhood of h = 0. A direct computation using the definition of P
shows that the Fréchet derivative P ′(0) : X → Y , for h ∈ X, is given by

P ′(0)(h) = ∆h− ∂th− (dΠ)
∣∣
v
(h)(dv, dv)− 2Πv(dv, dh)

− (dZ̃)
∣∣
v
(h)((dv)k) − Z̃v(dh∧̃(dv)k−1).
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Here, Z̃(dh∧̃(dv)k−1) = Z̃((dh∧̃(dv)k−1)(vol♯g)) and (dZ̃)(h)((dv)k) =

(dZ̃)(h)((dv)k(vol♯g)), respectively. (For the definition of the ∧̃-product, see Ap-
pendix A.) From this it can readily be verified that P ′(0) : X → Y is an isomorphism
of Banach spaces. In fact, since v ∈ C2+α,1+α/2(Q,Rq), from the definition of P ′(0) and
Theorem 5.4 we see that for any K ∈ Y there exists a unique H ∈ C2+α′,1+α′/2(Q,Rq)
satisfying {

P ′(0)(H)(x, t) = K(x, t), (x, t) ∈ Σ × (0, 1),
H(x, 0) = 0.

We also see that for such a H the following estimate holds:

(5.7) |H|
(2+α′,1+α′/2)
Q ≤ C|K|

(α′,α′/2)
Q .

Since K(x, 0) = 0 and H(x, 0) = 0 hold, we obtain ∂tH(x, 0) = 0; and thus H ∈ X.
From this and the definition of X, Y and the expression for P ′(0) we know that P ′(0) is
a bounded and surjective linear mapping of Banach spaces. Equation (5.7) tells us that
P ′(0) is injective and the Open Mapping Theorem from functional analysis that also the
inverse P ′(0)−1 is bounded. Hence, P ′(0) is an isomorphism.

Applying the Inverse Function Theorem (see Appendix B.9) for Banach spaces, P : X →
Y is a homeomorphism between a sufficiently small neighborhood U of 0 ∈ X and a
neighborhood P(U) of 0 ∈ Y . This means that we can find a positive number δ =
δ(Σ,M, Z, f) > 0, depending only on Σ,M, Z and f , such that the following holds:

For any k ∈ Cα′,α′/2(Q,Rq) with k(x, 0) = 0 and |k|
(α′,α′/2)
Q < δ, there exists a h ∈

C2+α′,1+α′/2(Q,Rq) satisfying

(5.8) P(h) = k, h(x, 0) = 0, ∂th(x, 0) = 0.

Here δ = δ(Σ,M, Z, f) is a positive number determined by Σ,M, Z and f . Setting
u = v + h and w = P (v), from (5.8) we see that there exists a u ∈ C2+α′,1+α′/2(Q,Rq)
satisfying

(5.9)

{
P (u)(x, t) = (w + k)(x, t), (x, t) ∈ Σ × (0, 1),
u(x, 0) = f(x).

Step 3 (Short time existence). For a given real number ǫ > 0 consider a C∞ function
ζ : R → R satisfying ζ(t) = 1 (t ≤ ǫ), ζ(t) = 0 (t ≥ 2ǫ), 0 ≤ ζ(t) ≤ 1, |ζ ′(t)| ≤ 2/ǫ (t ∈ R).
We note that w = P (v) ∈ Cα,α/2(Q,Rq) ⊂ Cα′,α′/2(Q,Rq) and that w(x, 0) = 0 holds from
the definition of P (v), v ∈ C2+α,1+α/2(Σ× [0, 1],Rq) and v(x, 0) = f(x). From Lemma 5.5
we get a constant C > 0 independent of ǫ and w such that the estimate

(5.10) |ζw|
(α′,α′/2)
Q ≤ Cǫ(α−α

′)|w|
(α,α/2)
Q

holds. Set k = −ζw. Then k(x, 0) = 0. From (5.10) we have |k|
(α′,α′/2)
Q < δ for sufficiently

small ǫ. Thus, there exists a u ∈ C2+α′,1+α′/2(Σ× [0, ǫ],Rq) such that the following special
case of (5.9) holds: {

P (u)(x, t) = 0, (x, t) ∈ Σ × (0, ǫ),
u(x, 0) = f(x).
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In other words, we have obtained a solution u ∈ C2+α′,1+α′/2(Σ × [0, ǫ],Rq) to the initial
value problem

{
(∆ − ∂t) u(x, t) = Πu(du, du)(x, t) + Z̃u((du)

k)(x, t), (x, t) ∈ Σ × (0, ǫ),
u(x, 0) = f(x).

As we have

f ∈ C2+α(Σ,Rq), Πu(du, du), Z̃u((du)
k) ∈ Cα,α/2(Σ × [0, ǫ],Rq),

we see by Theorem 5.4 that

u ∈ C2+α,1+α/2(Σ × [0, ǫ],Rq).

Due to compactness of Σ and continuity of u we always can reach that u(Σ× [0, ǫ′]) ⊂ M̃
holds true if we choose 0 < ǫ′ < ǫ small enough . Replacing ǫ by ǫ′ if necessary, we
may assume that u(Σ × [0, ǫ]) ⊂ M̃ holds true. Thus, u is a solution to the IVP (5.1)
in Σ × [0, ǫ]. It is also clear from the above proof that ǫ > 0 is a positive number only
depending on Σ,M, Z, f and α.

As a result of combining Proposition 5.1 and Theorem 5.3, we obtain the following.

Corollary 5.6. Let (Σ, g) and (M,G) be Riemannian manifolds, and Σ be compact
and oriented. Furthermore let Z ∈ Γ(Hom(ΛkTM, TM)). For a given C2+α map
f ∈ C2+α(Σ,M) there exist a positive number T = T (Σ,M, Z, f, α) > 0 and a map
ϕ ∈ C2+α,1+α(Σ × [0, T ],M) such that

(5.11)

{
τ(ϕt)(x) = Z((dϕt)

k)(x) + ∂ϕt

∂t
(x), (x, t) ∈ Σ × (0, T ),

ϕ(x, 0) = f(x)

holds. Here, T = T (Σ,M, Z, f, α) > 0 is a constant depending on Σ,M, Z, f and α alone.

Noting the result concerning differentiability of the solutions to a linear parabolic partial
differential equation, we obtain the following.

Theorem 5.7 (Short time existence). Let (Σ, g) and (M,G) be Riemannian manifolds,
and Σ be compact and oriented. Furthermore let Z ∈ Γ(Hom(ΛkTM, TM)). For a given
C2+α map f ∈ C2+α(Σ,M) there exist a positive number T = T (Σ,M, Z, f, α) > 0 and a
map ϕ ∈ C2+α,1+α/2(Σ × [0, T ],M) ∩ C∞(Σ × (0, T ),M) such that

(5.12)

{
τ(ϕt)(x) = Z((dϕt)

k)(x) + ∂ϕt

∂t
(x), (x, t) ∈ Σ × (0, T ),

ϕ(x, 0) = f(x)

holds. Here, T = T (Σ,M, Z, f, α) > 0 is a constant depending on Σ,M, Z, f and α alone.

Proof. Let u ∈ C2+α,1+α/2(Σ × [0, T ],M) be the solution in Corollary 5.6. Since differen-
tiability is a local property, we may verify it locally at each point (p, t) ∈ Σ. As in the
proof of Theorem 4.1 denote by (xi) and (yα) the local coordinate systems near p and
ϕ(p, t), respectively. With respect to these coordinates (5.12) reads, for each ϕα = yα ◦ϕ,

(5.13) (∆ −
∂

∂t
)ϕα = −gijΓ̃αβγ(ϕ)

∂ϕβ

∂xi
∂ϕγ

∂xj
+ |g|

3

2

∂ϕµ1

∂x1
· · ·

∂ϕµk

∂xk
Zα
µ1...µk

,

where k = dim(Σ). Noting that the right hand side is C1+α,α/2 from the assumption on
u, we see that the theorem (see Appendix B.2) concerning differentiability of solutions to
linear parabolic partial differential equations implies that ϕ is C3+α,1+α/2 differentiable.
Thus, the right hand side is of C2+α,1+α/2. Then again we see that u is C4+α,1+α/2.
Iterating this argument we see that ϕ must be C∞.
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Chapter 6

Long time existence

Let (Σ, g) and (M,G) be Riemannian manifolds of dimension k and n, respectively, and
Σ be compact and oriented. Let Z ∈ Γ(Hom(ΛkTM, TM)) be a k-force determined by
some closed (k + 1)-form Ω ∈ Γ(Λk+1T ∗M) via (2.14).

To prove long time existence of a solution ϕ : Σ× [0, T ) →M to the initial value problem
(IVP) for the system of nonlinear parabolic partial differential equations

(6.1)

{
τ(ϕt)(x) = Z((dϕt)

k)(x) + ∂ϕt

∂t
(x), (x, t) ∈ Σ × (0, T ),

ϕ(x, 0) = f(x),

one has to show that it exists when T = ∞. Short time existence of a solution to
(6.1) can be guaranteed by Theorem 5.7 in contrast to long time existence. As already
mentioned in Chapter 4 it becomes an essential matter to control the growth rate of
the solution ϕ(x, t) in time t. In order to get a grip on the ”blowing up” effects of the
nonlinear terms of the equation, the dimension of Σ and the curvature of M play a
crucial role in this game. In fact, in dim(Σ) > 1 the nonlinear terms possibly may destroy
the long time behavior of our solutions. In this section we will reveal the relationship
between the existence of long time solutions to our problem and the curvature of M .
The main ingredients are the energy estimates and the maximum principle for parabolic
equations. Both are typical tools in the theory of linear partial differential equations
to get a priori estimates that allow to show e.g. uniqueness and stability of solutions.
For an introduction to this topic see [9], [20]. Here we state a version of the maximum
principle that will suffice our needs.

Lemma 6.1 (Maximum principle). Let (Σ, g) be a compact Riemannian manifold. Fur-
thermore let ∆ be the Hodge-Laplacian of Σ and L = ∆ − ∂

∂t
be the heat operator. Let

u ∈ C0(Σ × [0, T )) ∩ C2,1(Σ × (0, T )) be a real valued function in Σ × [0, T ), which is C2

in Σ and C1 in (0, T ). If u satisfies Lu ≥ 0 in Σ × (0, T ), then

max
Σ×[0,T )

u = max
Σ×{0}

u

holds. Said in words, the maximum of u in the ”cylinder” Σ × [0, T ) is achieved at the
bottom of the cylinder, i.e. in Σ × {0}.

Proof. Let δ, ǫ > 0 be positive numbers and set

ũ(x, t) = u(x, t) − δt, Q = Σ × [0, T − ǫ]
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We verify that for ũ, we have

(6.2) max
Q

ũ = max
Σ×{0}

ũ.

In fact, since ũ is continuous in Q, it attains the maximum at a point (x0, t0) ∈ Q. We
suppose that t0 > 0 and derive a contradiction from it. Since Lu ≥ 0 in Σ × (0, T ) from
the assumption, ũ satisfies at (x0, t0)

∂ũ

∂t
≤ ∆ũ− δ.

In other words, if (xi) are local coordinates near x0,

∂ũ

∂t
≤ gij

{ ∂2ũ

∂xi∂xj
− Γkij

∂ũ

∂xk

}
− δ

holds at (x0, t0). Here, Γkij’s are the Christoffel symbols of the Levi-Civita connection in
Σ. Since ũ(x0, t0) is the maximum of ũ in Q, we get

∂ũ

∂t
(x0, t0) ≥ 0,

∂ũ

∂xi
(x0, t0) = 0

and the matrix
(

∂2ũ
∂xi∂xj

)
is nonpositive definite at the point (x0, t0). But this contradicts

δ > 0. Hence, (6.2) has been proved. The lemma follows by letting δ, ǫ → 0.

In the sequel we denote by S1 the unit circle in R2, carrying the induced metric by R2.
Set E = Hom(ΛkTM, TM). From Corollary 4.7 in Chapter 4 and the maximum principle
we gain the following estimates for a solution to the IVP (6.1).

Proposition 6.2 (Energy estimates). Assume that Σ = S1 and Z is a Lorentz force. Let
ϕ = γ ∈ C2,1(S1 × [0, T ),M)∩C∞(S1 × (0, T ),M) be a solution to the IVP (6.1) and set
γt(s) = γ(s, t). Then the following hold:

(1) If |Z|L∞(M,E) <∞, then for all (s, t) ∈ S1 × [0, T ),

e(γt)(s) ≤ eλT sup
s∈Σ

e(f)(s).

(2) If KM ≤ 0 and |Z|L∞(M,E), |∇Z|L∞(M,E) <∞, then for all (s, t) ∈ S1 × [0, T ),

∣∣∣∂γ
∂t

(s, t)
∣∣∣ ≤ eCT sup

s∈Σ

∣∣∣∂γ
∂t

(s, 0)
∣∣∣.

Here, λ = λ(M,Z) and µ = µ(M,∇Z) are the constants defined in Corollary 4.7 and C =

C(Σ,M, Z,∇Z, f, T ) = λ + µ e
λT
2 max

Σ
e(f)1/2 is a constant depending on Σ,M, Z,∇Z, f

and T alone.

Proof. ad (1): From (1’) of Corollary 4.7 we see

Le(γt) =
(
∆ −

∂

∂t

)
e(γt) ≥ −λe(γt).
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Putting v(s, t) = e−λt e(γt)(s), a straightforward computation shows that v satisfies Lv ≥
0 in S1 × (0, T ). Hence, from the maximum principle and the definition of the energy
density e(γt)

e−λt e(γt)(s) = v(s, t) ≤ max
s∈S1

v(s, 0) = max
s∈S1

e(f)(s)

holds at any (s, t) ∈ S1 × [0, T ).

ad (2): Let C be the constant defined as above. From (1) of Proposition 6.2 and (2’) of
Corollary 4.7 we see that for v(s, t) := e−Ct κ(γt)(s), we have Lκ(γt) ≥ 0 in S1 × (0, T ).
Hence, from the maximum principle and the definition of the energy density κ(γt)

e−Ct
∣∣∣∂γ
∂t

(s, t)
∣∣∣
2

= 2 v(s, t) ≤ 2 max
s∈S1

v(s, 0) = max
s∈S1

∣∣∣∂γ
∂t

(s, 0)
∣∣∣
2

holds at any (s, t) ∈ S1 × [0, T ).

Proposition 6.2 implies that the growth rate of a solution γ to the initial value problem
(6.1) is uniformly bounded on S1 × [0, T ) with respect to the time variable t ∈ [0, T ), if
KM ≤ 0 and |Z|L∞(M,E), |∇Z|L∞(M,E) <∞. More precisely we state the following.

Proposition 6.3. Assume that Σ = S1. Furthermore let (M,G) be a compact Rieman-
nian manifold and ϕ = γ ∈ C2,1(S1 × [0, T ),M) ∩ C∞(S1 × (0, T ),M) be a solution to
the IVP (6.1). Set γt(s) = γ(s, t). Let KM ≤ 0 and Z be a Lorentz force. Then for any
0 < α < 1 there exists a positive number C = C(Σ,M, Z, f, α, T ) > 0 such that

|γ(·, t)|C2+α(S1,M) +
∣∣∣∂γ
∂t

(·, t)
∣∣∣
Cα(S1,M)

≤ C

holds at any t ∈ [0, T ). Here, C = C(Σ,M, Z,∇Z, f, α, T ) is a constant only depending
on Σ,M, Z,∇Z, f, α and T .

Proof. We set γ′t(s) = ∂γ
∂s

(s, t). All metrics and norms here are the natural induced ones.
As in the proof of Proposition 5.3, we assume the (M,G) is realized as a Riemannian sub-
manifold in a q-dimensional Euclidean space Rq via an isometric imbedding ι : M →֒ Rq

and that the vector valued function γ : S1 × [0, T ) → Rq is a solution to the IVP (5.1).
Furthermore let Z̃ be the smooth extension of Z, constructed at the beginning of Chapter
5. However, since γ, from the assumption, is a solution to the IVP (6.1), the solution
stays inside M ⊂ Rq and therefore all expressions, terms and constants ci, appearing in
the course of the proof will only depend on Z and its covariant derivatives, but not on Z̃
and its covariant derivatives. Thus, for simplicity we denote Z̃ by Z.

Now, depending on the point of view, γ satisfies an elliptic and, on the other hand, a
parabolic partial differential equation. We will exploit both positions in order to attain
our result. Taking the first view, γ satisfies the system of elliptic partial differential
equations

∆γ = Πγ(dγ, dγ) + Zγ(dγ) +
∂γ

∂t
,

37



where ∆ is the Hodge-Laplacian in Σ. Noting Proposition 6.2, we see that the right hand
side of the above equation is bounded independent of t ∈ [0, T ), i.e. we have

(6.3)
∣∣∣Πγ(dγ, dγ)(·, t) + Zγ(dγ)(·, t) +

∂γ

∂t
(·, t)

∣∣∣
L∞(S1,Rq)

≤ c1(Σ,M, Z, f, T ).

In fact, for all (s, t) ∈ S1 × [0, T ) we have

∣∣∣Πγ(dγ, dγ)(s, t) + Zγ(dγ)(·, t) +
∂γ

∂t
(s, t)

∣∣∣ =
∣∣∣(∇γ′t

dπ)(γ′t)(s) + Zγ(γ
′
t)(s) +

∂γt
∂t

(s)
∣∣∣

≤ |∇dπ|L∞(M,E) |γ
′
t(s)|

2 +
1

2
|Z|2L∞(M,E) +

1

2
|γ′t(s)|

2 +
∣∣∣∂γt
∂t

(s)
∣∣∣.

The right hand side of this inequality can be estimated from above by Proposi-
tion 6.2 with a constant c1 only depending on Σ,M, Z,∇Z, f and T (actually c1
also depends on |∇dπ|L∞(M,E), but we won’t pick this up in our notation). Here,
|Z|L∞(M,E) = supM〈∇Z,∇Z〉1/2 and |∇dπ|L∞(M,E) = supM〈∇dπ,∇dπ〉1/2. This shows
(6.3).

Since the image of γ is always contained in the bounded set M ⊂ Rq, at any t ∈ [0, T ) we
have

(6.4) |γ(·, t)|L∞(S1,Rq) ≤ c2(M).

Hence, by the Schauder estimate (see Appendix B.3 and B.4 ) for the solutions to an
elliptic partial differential equation, at any t ∈ [0, T ) we have

|γ(·, t)|C1+α(S1,Rq) ≤ c3(Σ, α)
(

sup
t∈[0,T )

|∆γ(·, t)|L∞(S1,Rq) + sup
t∈[0,T )

|γ(·, t)|L∞(S1,Rq)

)

≤ c4(Σ,M, Z,∇Z, f, α, T ).(6.5)

Taking the second view, γ is also a solution to the system of parabolic partial differential
equations

Lγ = Πγ(dγ, dγ) + Zγ(dγ),

where L = ∆ − ∂
∂t

is the heat operator in S1. Regarding (6.5) we see that

|Πγ(dγ, dγ)(·, t) + Zγ(dγ)(·, t)|Cα(S1,Rq) ≤ c5(Σ,M, Z,∇Z, f, α, T )

holds. Using the Schauder estimate for linear parabolic partial differential equations (see
Appendix B.3 and B.4 ), we get for any t ∈ [0, T )

|γ(·, t)|C2+α(S1,Rq) +
∣∣∣∂γ
∂t

(·, t)
∣∣∣
Cα(S1,Rq)

≤ c6(Σ, α)
(

sup
t∈[0,T )

|Lγ(·, t)|Cα(S1,Rq) + sup
t∈[0,T )

|γ(·, t)|L∞(S1,Rq)

)

≤ c7(Σ,M, Z,∇Z, f, α, T ).
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So far we have nothing said about stability and uniqueness of solutions to our problem.
This will be done now.

Theorem 6.4 (Stability and uniqueness of solutions). Assume that Σ = S1. Let (Mn, G)
be a Riemannian manifold and Z,Z ′ ∈ Γ(Hom(TM, TM)) be Lorentz forces. Let u, v ∈
C0(S1 × [0, T ),M) ∩ C2,1(S1 × (0, T ),M). Setting ut(s) = u(s, t) and vt(s) = v(s, t),
assume that u satisfies the evolution equation for magnetic geodesics

(6.6)
∇

∂s

∂ut
∂s

(s) = Z(
∂ut
∂s

)(s) +
∂ut
∂t

(s), (s, t) ∈ S1 × (0, T ),

and similarly that v satisfies (6.6) with Z ′ instead of Z. Furthermore assume that Z and
Z ′ are bounded, i.e. |Z|L∞(M,E), |Z

′|L∞(M,E) < ∞. Then for any 0 < T0 < T there exists
a constant C = C(T0) ≥ 0 such that

(6.7) |ut − vt|
2
L2(Σ,M) ≤ 2πeCt

(
|u0 − v0|

2
L∞(Σ,M) + t|Z − Z ′|2L∞(M,E)

)

holds for all t ∈ [0, T0]. Here, E = Hom(ΛkTM, TM), |Z|L∞(M,E) = supM 〈Z,Z〉1/2 and
C = C(T0) ≥ 0 is a nonnegative constant depending on T0 and other parameters. The
dependence is clarified in the course of the proof. In particular, u0 = v0 and Z = Z ′ imply
u = v throughout Σ × [0, T ).

Proof. As in the proof of Proposition 5.3 we regard u, v as vector valued functions u, v :
S1 × [0, T ) → ι(M) ⊂ Rq, and consider u, v as solutions to the system of nonlinear
parabolic differential equations (5.1). Let Z̃ and Z̃ ′ be the smooth extensions of Z and
Z ′, respectively, constructed as at the beginning of Chapter 5. However, since the solution
must stay in M ∼= ι(M) ⊂ Rq, the majority of appearing expressions, involving Z̃ and Z̃ ′,
only depend on Z and Z ′. Define a function h : Σ × [0, T ) → R by

h(s, t) = |u(s, t) − v(s, t)|2, (s, t) ∈ S1 × [0, T ).

For u1, u2 ∈ C2(S1,Rq), one computes

∆〈u1, u2〉 = 〈∆u1, u2〉 + 2〈du1, du2〉 + 〈u1,∆u2〉,

and hence for u1 = u2 = u− v we get

∆h = ∆〈u− v, u− v〉 = 2〈∆u− ∆v, u− v〉 + 2|du− dv|2.

On the other hand, one has

∂h

∂t
= 2〈∆u− ∆v −

(
Πu(du, du)− Πv(dv, dv) + Zu(du) − Z ′

v(dv)
)
, u− v〉.

Then for L = ∆ − ∂
∂t

it follows

Lh = 〈Πu(du, du)− Πv(dv, dv), u− v〉 + 〈Zu(du) − Z ′
v(dv), u− v〉(6.8)

+ 2|du− dv|2.

Now, for 0 < T0 < T we choose a number r = r(T0) such that u(S1×[0, T0])∪v(S
1×[0, T0])

is contained in the open ball B(0, r) = {x ∈ Rq | |x| < r}. Rewriting

Zu(du) − Z ′
v(dv) = (Zu − Zv)(du) + (Zv − Z ′

v)(du) + Z ′
v(du− dv)
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and applying the Mean Value Theorem to Zu − Zv, we get for any (s, t) ∈ S1 × [0, T0]

|〈Zu(du) − Zv(dv), u− v〉|(6.9)

≤ c1 |u− v|2 + 21/2|Z − Z ′|L∞(M,E) e(ut)
1/2|u− v|

+ c3 |du− dv||u− v|

≤ c1 |u− v|2 + |Z − Z ′|2L∞(M,E) + c2 |u− v|2

+ c3 |du− dv||u− v|.

Here, c1, c2, c3 ≥ 0 are nonnegative constants. c1 only depends on Σ,M,∇Z̃, T0 and on the
maximum value of the energy density e(ut) on Σ×[0, T0], c2 only on the maximum value of
the energy density e(ut) on Σ× [0, T0], whereas c3 only depends on B(0, r) and Z ′, i.e. on
T0 and Z ′. Note that the energy densities can be globally estimated independent of T0 by
virtue of Proposition 6.2. In fact, noting supB(0,r) |∇Z̃| < ∞ (here |∇Z̃| = 〈∇Z̃,∇Z̃〉1/2

as usual) and applying the Mean Value Theorem (see Appendix B.5) yields Lipschitz
continuity, namely

|Z̃x(ξ) − Z̃y(ξ)| ≤ ( sup
B(0,r)

|∇Z̃|)|ξ||x− y|

holds, for all x, y ∈ B(0, r) ⊂ Rq and all ξ ∈ ΛkRq. Here we have identified ΛkTxR
q ∼=

ΛkTyR
q ∼= ΛkRq by parallel transport. From this, (6.9) can readily be verified. Similarly

rewriting

Πu(du, du)− Πv(dv, dv)

= (Πu − Πv)(du, du) + Πv(du− dv, du) + Πv(dv, du− dv)

and applying the Mean Value Theorem to Πu − Πv, we get for any (s, t) ∈ S1 × [0, T0]

|〈Πu(du, du)− Πv(dv, dv), u− v〉|(6.10)

≤ c4 |u− v|2 + c5 |du− dv||u− v|,

where c4, c5 ≥ 0 are constants only depending on Σ,M , on the maximum values of the
energy densities e(ut) and e(vt) on S1 × [0, T0], and on derivatives of the canonical pro-
jection π : M̃ → M up to third order. Using Cauchy’s inequality ab ≤ ǫa2 + (4ǫ)−1b2

(a, b ≥ 0, ǫ > 0) for the terms

constant · |du− dv||u− v|,

we obtain from (6.8), (6.9) and (6.10) for any (s, t) ∈ S1 × [0, T0]

Lh ≥ −|〈Πu(du, du)− Πv(dv, dv), u− v〉| − |〈Zu(du) − Z ′
v(dv), u− v〉|

+ 2|du− dv|2

≥ −C|u− v|2 − |Z − Z ′|2L∞(M,E) = −Ch− |Z − Z ′|2L∞(M,E),

where C ≥ 0 is a constant only depending on Σ,M, Z,∇Z̃, Z ′, T0, on the maximum values
of the energy densities e(ut) and e(vt) on S1 × [0, T0], and on derivatives of the canonical
projection π : M̃ →M up to third order. Integrating and using the Divergence Theorem
(see Appendix B.6) yields for any t ∈ [0, T0]

d

dt

∫

Σ

h(·, t) dvolg ≤ C

∫

Σ

h(·, t) dvolg + 2π|Z − Z ′|2L∞(M,E).
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Here, g denotes the canonical metric of Σ = S1 ⊂ R2 induced by R2. Applying
Gronwall’s Lemma (see Appendix B.7) to the function H : [0, T ) → R defined by
H(t) =

∫
Σ
h(·, t) dvolg, we get for any t ∈ [0, T0]

H(t) ≤ eCt
(
H(0) + 2πt|Z − Z ′|2L∞(M,E)

)
.

Corollary 6.5. Let Σ,M, Z, Z ′, u, v and the assumptions on them as above in Theorem
6.4. If in addition M is compact, then (6.7) holds for all t ∈ [0, T ).

Proof. Since M is compact, the ball B(0, r) in the above proof can be chosen such that
M ⊂ B(0, r) ⊂ Rq. The boundedness of Z and Z ′ (need not to be assumed, but follows
from the compactness of M) implies that the energy densities e(ut) and e(vt) can be
globally estimated on [0, T ) by Proposition 6.2. Consequently the constant C ≥ 0 from
the above proof can be chosen to be independent of T0.

Finally after this preliminary work we can prove the existence of long time solutions to
the initial value problem of the parabolic equation for magnetic geodesics.

Theorem 6.6 (Long time existence). Let Σ = S1 and (M,G) be a compact Riemannian
manifold of nonpositive curvature, KM ≤ 0. Moreover let Z ∈ Γ(Hom(TM, TM)) be a
Lorentz force. Set γt(s) = γ(s, t). Then for any C2+α map f ∈ C2+α(S1,M), there exists
a unique γ ∈ C2+α,1+α/2(S1 × [0,∞),M) ∩ C∞(S1 × (0,∞),M) such that

(6.11)

{
∇
∂s
γ′t(s) = Z(γ′t)(s) + ∂γt

∂t
(s), (s, t) ∈ S1 × (0,∞),

γ(s, 0) = f(s),

holds.

Proof. Short time existence is guaranteed by Theorem 5.7, namely there exists a positive
number T = T (Σ,M, Z, f, α) > 0 such that, without making any curvature assumptions,
the initial value problem (6.11) has a solution γ ∈ C2+α,1+α/2(S1 × [0, T ],M) ∩ C∞(S1 ×
(0, T ),M) in S1 × [0, T ]. We have to demonstrate now that our solution can not blow
up in finite time if M is compact and of nonpositive curvature, KM ≤ 0, i.e. that our
solution γ can be extended to S1 × [0,∞). Setting

T0 = sup {t ∈ [0,∞) | (6.11) has a solution in S1 × [0, t]},

we must show that T0 = ∞ holds. Assume that this would not be the case. Then choose
any sequence of numbers {ti} ⊂ [0, T0) such that ti → T0 as i tends to ∞. As in the
proof of Proposition 6.3 we regard M to be an isometrically imbedded submanifold in
some Euclidean space Rq and each γ(·, ti) ∈ C∞(S1,M) as a Rq-valued function. We set
γt(s) = γ(s, t), γ′ = γ′t = ∂γ

∂s
, ∂t = ∂

∂t
and choose a positive number α′ such that 0 < α <

α′ < 1. Since S1 is compact, it follows that the imbedding Ck+α′

(S1,Rq) →֒ Ck+α(S1,Rq)
is compact. By Proposition 6.3 the sequences

{γ(·, ti)} and {∂tγ(·, ti)},
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respectively, are bounded in C2+α′

(S1,Rq) and in Cα′

(S1,Rq). Thus, there exist a subse-
quence {tik} of {ti} and functions

γ(·, T0) ∈ C2+α(S1,Rq) and ∂tγ(·, T0) ∈ Cα(S1,Rq)

such that the subsequences

{γ(·, tik)} and {∂tγ(·, tik)},

respectively, converge uniformly to γ(·, T0) and ∂tγ(·, T0), as tik → T0. Since for each tik
we have

∂tγ(·, tik) =
∇

∂s
γ′(·, tik) − Z(γ′)(·, tik),

we also get at T0

∂tγ(·, T0) =
∇

∂s
γ′(·, T0) − Z(γ′)(·, T0).

Consequently, we see that (6.11) has a solution in S1 × [0, T0]. Application of Theorem
5.7 with γ(·, T0) as initial value, yields an positive number ǫ > 0 such that the IVP

(6.12)

{
∇
∂s
γ′t(s) = Z(γ′t)(s) + ∂γt

∂t
(s), (s, t) ∈ S1 × (T0, T0 + ǫ),

γ(s, 0) = γ(s, T0)

has a solution γ ∈ C2+α,1+α/2(S1 × [T0, T0 + ǫ],M) in S1 × [T0, T0 + ǫ]. Noting that this
and the previous solution coincide on S1 ×{0}, we can patch them together to a solution
γ ∈ C2+α,1+α/2(S1 × [0, T0 + ǫ],M) to the IVP (6.11). From the arguments concerning the
differentiability of the solutions in Theorem 5.7 we see that γ is C∞ in S1 × (0, T0 + ǫ).
Hence, (6.11) has a solution in S1 × [0, T0 + ǫ] which contradicts the definition of T0.
Consequently T0 = ∞. The uniqueness of γ immediately follows from Theorem 6.4.

Remark 6.7. The compactness of Σ cannot be dropped. In general, if Σ is non-compact
the lifetime T of a solution to the IVP (6.11) may be finite. For example, let Σ = M = R

and T > 0 be a positive number. Consider the function u : R × [0, T ) → R defined by

u(s, t) =
s

T − t
.

This is a smooth function on R × [0, T ) which blows up as t → T . Let Z : TR → TR

be the bundle homomorphism defined by Zs(v) := −sv, (s, v) ∈ R × R. The function u
solves the IVP (6.11) on R × (0, T ), with initial condition u(s, 0) = s/T and the above
defined Z. In this case the parabolic equation just reads

v′ = −uv + u̇, on R × (0, T ),

where u̇ = ∂u
∂t

, v = ∂u
∂s

and v′ = ∂2u
∂s2

. This demonstrates that the lifetime of solutions to
the IVP (6.11) can be finite for non-compact Σ.

Corollary 6.8. Let (M,G) be a Riemannian manifold of nonpositive curvature, KM ≤ 0,
and Z ∈ Γ(Hom(TM, TM)) be a Lorentz force. Furthermore, let H be a discrete group
of isometries of (M,G) acting properly discontinuously on M . If Z is H-invariant, i.e.
dh ◦ Z = Z ◦ dh for all h ∈ H, and the quotient M/H is compact, then for any C2+α

map f ∈ C2+α(S1,M), there exists a unique long time solution γ ∈ C2+α,1+α/2(S1 ×
[0,∞),M) ∩ C∞(S1 × (0,∞),M) to the IVP (6.11) in M .
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Proof. Let Z be a H-invariant Lorentz force and M̃ := M/H be compact. Equipping
M̃ with the unique structure of a smooth manifold and the unique Riemannian metric
G̃ such that the canonical projection π : M → M̃ becomes a Riemannian covering, we
have KM̃ ≤ 0. The H-invariance of Z implies that it descends to a well-defined Lorentz
force Z̃ on M̃ . Now, projecting everything down to M̃ , we consider the corresponding
IVP (6.11) in M̃ with Z̃ and initial condition f̃ = π ◦ f . From Theorem 6.6 we get a long
time solution γ̃ ∈ C2+α,1+α/2(S1 × [0,∞), M̃) ∩ C∞(S1 × (0,∞), M̃) with γ̃(s, 0) = f̃(s).
By the Homotopy Lifting Property of coverings there exists a lifting γ : S1 × [0,∞) → M
of γ̃ with γ(s, 0) = f(s). Concerning differentiability properties everything is preserved
under the lifting since the covering π is smooth, i.e. γ ∈ C2+α,1+α/2(S1 × [0,∞),M) ∩
C∞(S1× (0,∞),M). Moreover one readily verifies that γ is a solution to the original IVP
(6.11) in M ; in fact, one just has to keep the following in mind: H- invariance of Z, the
evolution equation is a geometric equation, satisfying a PDE is a local property, π is a
local isometry.
The uniqueness can be similarly seen. Assume that γ1, γ2 : S1× [0,∞) →M are solutions
to the IVP (6.11) in M with γ1(·, 0) = γ2(·, 0), then γ̃i = π ◦ γi (i = 1, 2) are solutions
to the projected IVP (6.11) in M̃ which coincide on S1 × {0}. Consequently, by the
uniqueness statement of Theorem 6.11, they must agree throughout S1× [0,∞). Since S1

is connected and γ1, γ2 are both liftings of γ̃1 which agree on S1 × {0}, they must agree
throughout S1 × [0,∞). By the way, the uniqueness can also be seen by directly applying
Theorem 6.4. This is possible since the H-invariance of Z and the compactness of the
quotient M̃ = M/H imply that Z is bounded.

Example 6.9. Let (M,G) be the three-dimensional Euclidean space R3 and B ∈ R3 be
a parallel vector field in R3, (all tangent spaces of R3 are identified by parallel transport).
We define a skew-symmetric bundle homomorphism Z : TR3 → TR3, Z(v) = v × B for
all v ∈ R3, by means of the vector product. From ∇Z = 0 we see that, in fact, Z comes
from a closed two-form Ω via (2.14). Since Z is translation-invariant and the three-torus
T 3 = R3/Z3 is compact, we deduce long time existence of solutions to the IVP (6.11)
from Corollary 6.8. This holds more generally for any Z3-invariant Lorentz force Z.

Corollary 6.10. Let Σ = S1 and (M,G) be a Riemannian manifold of nonpositive
curvature, KM ≤ 0. Furthermore let Z ∈ Γ(Hom(TM, TM)) be a Lorentz force and
γ ∈ C2,1(S1 × [0, T ),M) ∩ C∞(S1 × (0, T ),M) be a solution to the IVP (6.11), where
T = sup {t ∈ [0,∞) | (6.11) has a solution in S1 × [0, t]}. Set γt(s) = γ(s, t). If T < ∞,
then for any compact subset K ⊂ M and any 0 < T0 < T , there exists a t ∈ (T0, T ) such
that γt(S

1)∩ (M −K) 6= ∅. Said in words: If the lifetime T of a solution γ is finite, then
it leaves any compact subset of M , or equivalently, if a solution γ stays its entire life in
a compact set, then its lifetime T = ∞.

Proof. Let T < ∞ and assume that the conclusion is false. Then there exist a compact
subset K ⊂M such that γ(S1 × [0, T )) ⊂ K holds. Set E = Hom(ΛkTM, TM). Now, we
proceed quite literally as in the proof of Proposition 6.3 and obtain

|γ(·, t)|C2+α(S1,M) +
∣∣∣∂γ
∂t

(·, t)
∣∣∣
Cα(S1,M)

≤ C.

Here, C = C(Σ, K,M,Z, f, α, T ) is a constant only depending on Σ, K,M,Z, f, α and T .
The only difference is that in all estimates (energy estimates etc.) one has to replace all
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appearances of | · |L∞(M,E) by | · |L∞(K,E|K). Obviously (6.4) holds since γ(S1× [0, T )) ⊂ K.
Then similarly as in the proof of Theorem 6.6 one extends the solution to S1 × [0, T + ǫ]
(for ǫ > 0 sufficient small) and produces a contradiction to the definition of T .

Conclusion and outlook. We see that the energy estimates (Corollary 4.6) are crucial
to make the ”long time existence proof ” work. If k = dim(Σ) = 1, the maximum principle
can be applied to obtain good a priori estimates for the energy densities. Even in the
case k > 1, the maximum principle is not applicable and the proof breaks down. The
greater k > 1 is, the worse the nonlinearities become. Perhaps in dim(Σ) = 2, where
the nonlinearities are ”only” of quadratic order in du, i.e. |Z((du)k)| ≤ C|du|k (C > 0
a constant) for a bounded k-force Z, existence of weak long time solution can be shown.
It would be an interesting task to prove the existence of long time solutions in this case
especially regarding the relevance of this question in String theory. Also an open question
is the third item of program presented in Chapter 4: Does one always find a convergent
subsequence of a long time solution to the IVP (6.11) when (M,G) is compact Riemannian
manifold of nonpositive curvature, KM ≤ 0?
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Appendix A

Notation and definitions

(a) Geometric notation.

Let (Σ, g) and (M,G) be Riemannian manifolds and (E,∇E, h) be a Riemannian vector
bundle over M . For simplicity we denote the metrics g,G, h and all the induced metrics
and connections on the various tensor bundles by 〈·, ·〉 and ∇, respectively. If Σ is oriented,
then we denote by volg the canonical volume form on Σ (similarly for M). If Σ is not
orientable, then in expressions ∫

Σ

f dvolg,

where f : Σ → R is an integrable function, the symbol dvolg is to mean the Riemannian
measure which can be defined for any Riemannian manifold. The notion of integrability
of functions etc., in the sense of Lesbeque, is defined with respect to this measure. A set
A ⊂ Σ is called measurable if it belongs to the Borel algebra of Σ. A map f : Σ → M is
called measurable if the preimage (under f) of any measurable subset of M is measurable.
The characteristic function of a measurable set A ⊂ Σ is denoted by χA and its volume
by V (A) =

∫
Σ
χA dvolg.

Definition A.1. A Riemannian vector bundle over M is a triple (E,∇E , h) consisting of
a real vector bundle E and a connection ∇E on E that is compatible with the metric h
of E, i.e. ∇E

Xh = 0 for all X ∈ TxM , for all x ∈M .

For a vector valued k-form ω ∈ Γ(ΛkT ∗M ⊗E) the covariant derivative is defined as usual
by (the index E is suppressed in the following formulas):

(A.1) (∇Xω)(X1, . . . , Xk) = ∇X(ω(X1, . . . , Xk)) −
∑

j

ω(X1, . . . ,∇XXj , . . . , Xk),

where X1, . . . , Xk ∈ Γ(TM). The induced curvature is defined by

(A.2) R(X1, X2)ω = {∇X1
∇X2

−∇X2
∇X1

−∇[X1,X2]}ω.

The exterior differential d : Γ(ΛkT ∗M ⊗E) → Γ(Λk+1T ∗M ⊗E) is analogously defined by
formula (2.10). Similarly one defines the co-differential δ : Γ(ΛkT ∗M⊗E) → Γ(Λk−1T ∗M⊗
E) by

(A.3) δω(X1, . . . , Xk−1) = −(∇ei
ω)(ei, X1, . . . , Xk−1),
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where {ei} is a local orthonormal frame field. The Hodge-Laplace operator ∆ : Γ(ΛkT ∗M⊗
E) → Γ(ΛkT ∗M ⊗ E) then is given by

(A.4) ∆ = −{dδ + δd},

and the rough Laplacian ∆̄ : Γ(ΛkT ∗M ⊗ E) → Γ(ΛkT ∗M ⊗ E) by

(A.5) ∆̄ω = {∇ei
∇ei

−∇∇ei
ei
}ω

Furthermore on Γ(ΛkT ∗M ⊗ E) we use the following convention for the induced metric.
Let {ei} be an orthonormal frame near x ∈M , then for α, β ∈ Γ(ΛkT ∗M ⊗E) we define

〈α, β〉∧ :=
∑

i1<···<ik

〈α(ei1, . . . , eik), β(ei1, . . . , eik)〉.

We distinguish this metric from that naturally induced metric for non totally skew-
symmetric k-linear vector valued tensor fields α, β ∈ Γ(

⊗k T ∗M ⊗ E) which is given
by

〈α, β〉 = 〈α(ei1, . . . , eik), β(ei1, . . . , eik)〉.

Note that this two definitions are related by a factor 1/k!, namely for α, β ∈ Γ(ΛkT ∗M ⊗
E) ⊂ Γ(

⊗k T ∗M ⊗ E), we have

〈α, β〉∧ =
1

k!
〈α, β〉.

In this paper we supress the subscript ∧ with the convention that 〈α, β〉 is to mean
〈α, β〉∧ if α, β ∈ Γ(ΛkT ∗M ⊗ E). In particular, for the volume element we have
|volG| = 〈volG, volG〉

1/2 = 1 due to this convention.

We recall some notions from Linear Algebra. Let (V, g) and (W,h) be a Euclidean vector
spaces. There is a canonical isomorphism V → V ∗, ξ 7→ g(ξ, ·). We denote it by ξ♭ for
ξ ∈ V and its inverse by ω♯ for ω ∈ V ∗. One can extend these musical isomorphisms from
k-vectors ΛkV to k-forms ΛkV ∗. On decomposable k-vectors it is defined by (ξ1 ∧ . . . ∧
ξk)

♭ := ξ♭1∧. . .∧ξ
♭
k and extended by linearity. In the same way one defines (ω1∧. . .∧ωk)

♯ :=
ω♯1 ∧ . . . ∧ ω♯k on decomposable k-forms. It should always be clear from the context to
which metric ♯ and ♭ are referring so that we are not picking up the reference to the metric
in our notation. Here we use the convention

(ω1 ∧ . . . ∧ ωk)(ξ1, . . . , ξk) =
∑

σ∈Sk

(−1)σω1(ξσ(1)) · · ·ωk(ξσ(k)),

where Sk denotes the permutation group of order k, i.e. σ runs over all k-permutations.
The sign (−1)σ of the permutation equals +1 if the permutation σ is even and −1 if it is
odd. More general, for linear maps A1, . . . , Ak from V to W we define a skew-symmetric
k-linear map A1∧̃ . . . ∧̃Ak : V k → ΛkW by

(A1∧̃ . . . ∧̃Ak)(ξ1, . . . , ξk) =
∑

σ∈Sk

(−1)σA1(ξσ(1)) ∧ . . . ∧ Ak(ξσ(k)).
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By the universal property of the exterior product this induces a linear map A1∧̃ . . . ∧̃Ak :
ΛkV → ΛkW , denoted by the same symbol, such that on decomposable k-vectors, we have

(A1∧̃ . . . ∧̃Ak)(ξ1 ∧ . . . ∧ ξk) =
∑

σ∈Sk

(−1)σA1(ξσ(1)) ∧ . . . ∧Ak(ξσ(k)).

For a single linear map A : V →W we define a linear map Ak : ΛkV → ΛkW by

(A.6) Ak :=
1

k!
Ak,

where Ak denotes the k-fold ∧̃-product of A with itself,

Ak = A∧̃ . . . ∧̃A︸ ︷︷ ︸
k-times

.

Note that for ξ1, . . . , ξk ∈ V with |ξi| ≤ 1 (i = 1, . . . , k), we have |Ak(ξ1 ∧ . . . ∧ ξk)| ≤

|A|k. Here |A| =
[∑

i 〈A(ei), A(ei)〉
]1/2

for any orthonormal basis {ei} of V . Let X =

Hom(V,W ) denote the vector space of endomorphisms from V to W and set Λ̃kX =
Hom(ΛkV,ΛkW ). There is a natural product Λ̃kX ⊗ Λ̃lX → Λ̃k+lX given by

(A1∧̃ . . . ∧̃Ak) ⊗ (Ak+1∧̃ . . . ∧̃Ak+l) 7→ A1∧̃ . . . ∧̃Ak+l

which is associative and symmetric. Note that in general Λ̃kX 6= ΛkX, e.g. for A ∈ X
we have A∧̃A 6= 0 in Λ̃kX, but A ∧ A = 0 in ΛkX. Let A1, . . . , Ak : E → F be bundle
homomorphisms, (E,∇E) and (F,∇F ) be bundles with connection over a Riemannian
manifold (M,G) and η, ξ1, . . . , ξk ∈ Γ(TM). Then we define a connection ∇̃ on Λ̃kX
(here X = Hom(E,F )) by

(
∇̃η(A1∧̃ . . . ∧̃Ak)

)
(ξ1 ∧ . . . ∧ ξk) :=

∇η(A1∧̃ . . . ∧̃Ak)(ξ1 ∧ . . . ∧ ξk) − (A1∧̃ . . . ∧̃Ak)
(
∇η(ξ1 ∧ . . . ∧ ξk)

)
.

For convenience we have denoted the natural induced connections on ΛkE and ΛkF , re-
spectively, simply by ∇. It follows immediately that the Leibniz rule is satisfied, i.e.

∇̃η(A1∧̃ . . . ∧̃Ak) = ∇̃ηA1∧̃A2∧̃ . . . ∧̃Ak + · · · + A1∧̃A2∧̃ . . . ∧̃Ak−1∧̃∇̃ηAk.

(b) Function spaces.

Let (Σ, g) and (M,G) be compact Riemannian manifolds and (E,∇E, h) be a Riemannian
vector bundle over M . Then we define the following spaces.

C0(Σ,M) = {u : Σ → M | u is continuous}
Ck(Σ,M) = {u : Σ →M | u is k-times continuous differentiable } for k ≥ 1
C∞(Σ,M) = {u : Σ →M | u is smooth } =

⋂∞
k=0C

k(Σ,M)
Γ(M,E) = C∞(M,E) = {s : M → E is a smooth section in E}

If the reference to the base space is clear, we just write Γ(E) = Γ(M,E).

For M = R and 0 ≤ k ≤ ∞ we set Ck(Σ) = Ck(Σ,R).
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Let | · | denote the norm induced by the h of E. Then for 1 ≤ p ≤ ∞ the Lp-spaces are
defined as follows.

Lp(M,E) = {s : M → E | s is s measurable section and |s|Lp(M,E) <∞} for p 6= ∞

Here for p = ∞, we put |s|L∞(M,E) = inf{r ∈ R | |u| ≤ r holds a.e.} and for 1 ≤ p <∞

|s|Lp(M,E) =




∫

M

|s|p dvolG




1/p

.

If E = M × Rq is the trivial bundle with canonical metric and trivial connection over
M , for 1 ≤ p ≤ ∞ we set Lp(M,Rq) = Lp(M,M × Rq) and especially for q = 1 we write
Lp(M) = Lp(M,R). By Lp(Σ,M) we mean the space {u ∈ Lp(Σ,Rq) | u(Σ) ⊂ M},
where M ⊂ Rq is regarded as an isometrically imbedded submanifold in some Euclidean
space Rq.

Let 0 < α < 1 be a positive real number, k be a nonnegative integer, and U ⊂ Rn be an
open subset in Rn. For u ∈ Ck(U) we define

|u|Ck+α(U) =
∑

|β|≤k

sup
U

|Dβu| +
∑

|β|=k

〈Dβu〉
(α)
U .

Here

〈u〉
(α)
U = sup

x,y∈U

x 6=y

|u(x) − u(y)|

|x− y|α
,

and Dβu is given by

Dβu = Dβ1

1 D
β2

2 · · ·Dβn
n u, Di =

∂

∂xi
, 1 ≤ i ≤ n,

where β = (β1, . . . , βn) denotes a multi-index consisting of n nonnegative integers βi’s
and |β| = β1 · · ·βn denotes its length. Then for k ≥ 1 the Hölder spaces are given by

Ck+α(U) = {u : U → R | u is k-times continuous differentiable and |u|Ck+α(U) <∞},

and for k = 0 we set C0+α(U) = Cα(U) = {u ∈ C0(U) | |u|C0+α(U) <∞}.

On a Riemannian manifold M one defines the Hölder spaces Ck+α(M) as follows: Let
d(x, y) be the Riemannian distance function on M and let injrad(x) denote the injectivity
radius for a point x ∈M . For a function u ∈ Ck(M), we set

〈Dku〉
(α)
M = sup

y∈B(x,injrad(x))−{x}

x∈M

|(∇ku)x − ˜(∇ku)y|

d(x, y)α
,

where ˜(∇ku)y denotes the parallel translated tensor along the unique minimal geodesic
joining x and y. On M we define a Hölder norm by

|u|Ck+α(M) =

k∑

i=0

sup
M

|Diu| + 〈Dku〉
(α)
M
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and the space Ck+α(M) as above. Here, |Diu| = 〈∇iu,∇iu〉
1/2

. If U is a convex neigh-
borhood one defines for u ∈ Ck(U)

|u|Ck+α(U) =
k∑

i=0

sup
U

|Diu| + 〈Dku〉(α)
U ,

where

〈Dku〉
(α)
U = sup

x,y∈U

x 6=y

|(∇ku)x − ˜(∇ku)y|

d(x, y)α
.

The local Hölder space Ck+α(U) is defined as above. If in addition M is compact, we
see that a function u ∈ Ck(M) belongs to Ck+α(M) iff the restriction u|U belongs to
Ck+α(U) for any convex neighborhood U ⊂M . For a vector valued function u : M → Rq,
we say that u belongs to Ck+α(M,Rq) if all its components ui belong to Ck+α(M). Finally,
by Ck+α(Σ,M) we mean the space {u ∈ Ck+α(Σ,Rq) | u(Σ) ⊂ M}, where M ⊂ Rq is
regarded as an isometrically imbedded submanifold in some Euclidean space Rq.
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Appendix B

Analytical toolbox

(a) Differentiability of solutions

Let U ⊂ Rn be a bounded and connected open set, and let P be a linear elliptic partial
differential operator given by

P =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi
+ d(x).

Theorem B.1. (1) Given 0 < α < 1, assume that aij , bi, d, f ∈ Cα(U). Then u ∈
C2+α(U) holds if u ∈ C2(U) satisfies the linear partial differential equation Pu(x) = f(x).
(2) Furthermore, if aij , bi, d, f ∈ Ck+α(U) for a given k ≥ 1, then a solution u to (1) is
Ck+2+α. In particular, if aij , bi, d, f ∈ C∞(U), then u ∈ C∞(U).

There is an analogous result for linear parabolic partial differential equations. Given
T > 0, set Q = U × (0, T ). For a function u : Q→ R, we set

〈u〉(α)
x = sup

(x,t),(x′,t)∈Q

x 6=x′

|u(x, t) − u(x′, t)|

|x− x′|α
,

〈u〉
(α)
t = sup

(x,t),(x,t′)∈Q

t6=t′

|u(x, t) − u(x, t′)|

|t− t′|α
.

The norms |u|
(α,α/2)
Q and |u|

(2+α,1+α/2)
Q are defined as (5.4) in Chapter 5 and the Hölder

spaces Cα,α/2(Q), C2+α,1+α/2(Q) with respect to these norms are as given in Appendix
A(b). We then have the following.

Theorem B.2. (1) Given 0 < α < 1, assume that aij, bi, d ∈ Cα(U) and f ∈ Cα,α/2(Q).
Then u ∈ C2+α,1+α/2(Q) holds, if u ∈ C2,1(Q) satisfies the following linear parabolic partial
differential equation (

P −
∂

∂t

)
u(x, t) = f(x, t).

(2) Let p, q be nonnegative integers. Given β, κ with |β| ≤ p, |β| + 2κ ≤ p, κ ≤ q,
assume that Dβ

xa
ij , Dβ

xb
i, Dβ

xd ∈ Cα(U) and Dβ
xD

κ
t f ∈ Cα,α/2(Q). Then a solution u to

(1) satisfy Dβ
xD

κ
t u ∈ Cα,α/2(Q) for any β, κ with |β|+2κ ≤ p+2, κ ≤ q+1. In particular,

aij , bi, d ∈ C∞(U) and f ∈ C∞(Q) imply that u ∈ C∞(Q).
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Concerning the above mentioned results see [11], [10] and [18].

(b) Schauder estimates.

Given r > 0, set B(0, r) = {x ∈ Rn | |x| < r}. For an 0 < α < 1, assume that

aij , bi, d ∈ Cα(B(0, r)), 1 ≤ i, j ≤ m,

and that P is uniformly elliptic, i.e. that

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2

holds for some constants 0 < λ ≤ Λ < ∞ and for any x ∈ B(0, r) and ξ ∈ Rn. Then,
concerning the linear elliptic partial differential operator

P =

n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi
+ d(x)

and the linear parabolic partial differential operator

L = P −
∂

∂t

the following holds.

Theorem B.3. (1) If f ∈ Cα(B(0, r)) and u ∈ C2(B(0, r)) satisfy

Pu(x) = f(x)

then u ∈ C2+α(B(0, r)) and

|u|C1+α(B(0,r/2)) ≤ C
(
|f |L∞(B(0,r)) + |u|L∞(B(0,r))

)
,

|u|C2+α(B(0,r/2)) ≤ C
(
|f |Cα(B(0,r)) + |u|L∞(B(0,r))

)

hold. Here, C is a constant only determined by n, α,Λ/λ, |aij|Cα(B(0,r)),
|bi|Cα(B(0,r)), |d|Cα(B(0,r)).

(2) Let 0 ≤ t ≤ T . If f(·, t) ∈ Cα(B(0, r)) and u(·, t) ∈ C2(B(0, r)) satisfy

Lu(x, t) = f(x, t),

then u(·, t) ∈ C2+α(B(0, r)) and

|u(·, t)|Cα(B(0,r/2)) ≤ C
(

sup
t∈[0,T ]

|f(·, t)|L∞(B(0,r)) + sup
t∈[0,T ]

|u(·, t)|L∞(B(0,r))

)

|u(·, t)|C2+α(B(0,r/2)) +
∣∣∣∂u
∂t

(·, t)
∣∣∣
Cα(B(0,r))

≤ C
(

sup
t∈[0,T ]

|f(·, t)|Cα(B(0,r)) + sup
t∈[0,T ]

|u(·, t)|L∞(B(0,r))

)

hold. Here, C is a constant only determined by n, α,Λ/λ, |aij|Cα(B(0,r)),
|bi|Cα(B(0,r)), |d|Cα(B(0,r)).
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Concerning the above mentioned results see [11] and [25].

Remark B.4. The Schauder estimates are used in Section 6; due to compactness the local
estimates presented here carry over to the entire manifold Σ in Proposition 6.3. Namely,
let r > 0 be a positive number and x1, . . . xN ∈ Σ be a finite number of points such that
B(xi, r) (i = 1, . . . N) is a convex neighborhood of xi and such that Σ =

⋃N
i=1B(xi, r).

Here, B(x, r) = {y ∈ Σ | d(x, y) < r} denotes the open ball with center x ∈ Σ and radius
r with respect to the Riemannian distance function d(x, y) on Σ. Set U = {B(xi, r)}. For
a function u ∈ Ck(Σ), we define

|u|Ck+α(U) = max
i

{|u|Ck+α(B(xi,r))}.

For a function u : Σ → Rq with components uj ∈ Ck(Σ) (j = 1, . . . , q), we set

|u|Ck+α(U) = max
j

{|uj|Ck+α(U)}.

Recalling the definition of the Hölder norm (see Appendix A(b) above), one easily verifies
that there exist constants C1 = C1(U), C2 = C2(U) > 0, only depending on U , such that

C1|u|Ck+α(U) ≤ |u|Ck+α(Σ) ≤ C2|u|Ck+α(U)

holds for all u ∈ Ck+α(Σ) . Put another way, | · |Ck+α(Σ) and | · |Ck+α(U) are equivalent
norms on the space Ck+α(Σ) for a compact Riemannian manifold Σ. So, we see that
the constant C = C(Σ,M, Z, f, α, T ) in Proposition 6.3 actually depends on the covering
U = U(Σ) so that, to be exact, one should write C = C(U(Σ),M, Z, f, α, T ). However,
we ignore this subtlety and just mention that in the proof of Proposition 6.3 one fixes
some covering and does the estimates with respect to it.

(c) Miscellaneous.

Lemma B.5 (Mean Value Theorem). Let (M, g) be a Riemannian manifold and u ∈
C1(M) be a C1 differentiable R-valued function on M . Denote by d(x, y) the Riemannian
distance function on M . Then for any compact convex subset K ⊂M

|u(x) − u(y)| ≤ sup
K

|du| d(x, y)

holds for all x, y ∈ K. Here we denote all norms which are induced by g by | · |.

Proof. Let x, y ∈ K be arbitrary points. Choose the unique minimal geodesic γ : [0, 1] →
M joining x and y in K. Applying the Mean Value Theorem to u ◦ γ : [0, 1] → R, we see

|u(x) − u(y)| = |

1∫

0

(u ◦ γ)′(s)ds| ≤ sup
K

|du|

1∫

0

|γ′(s)|ds = sup
K

|du| d(x, y).

Theorem B.6 (Divergence Theorem). Let (M, g) be a compact Riemannian manifold
and X ∈ Γ(TM) be a vector field on M . Then

∫

M

div(X) dvolg = 0,
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where dvolg denotes the Riemannian measure of M . In particular, if u : M → R is a
smooth map, then we have ∫

M

∆u dvolg = 0.

Here div(X) = trace∇X and ∆u = div(gradu). A proof can be found in [21].

Lemma B.7 (Gronwall’s Lemma). Let h(t) be a nonnegative function, continuous on
[0, T ] and differentiable on (0, T ), which satisfies for all t ∈ (0, T ) the differential inequality

(B.1) h′(t) ≤ a(t)h(t) + b(t),

where a(t) and b(t) are nonnegative, continuous functions on [0, T ]. Then

(B.2) h(t) ≤ e
∫ t
0
a(s)ds

{
h(0) +

t∫

0

b(s)ds
}

for all 0 ≤ t ≤ T . In particular, if in addition, b ≡ 0 on [0, T ] and h(0) = 0 hold, then
h ≡ 0 on [0, T ].

Proof. Put A(t) =
∫ t

0
a(τ)dτ and B(t) =

∫ t

0
b(τ)dτ . From (B.1) we see

d

ds

{
h(s)e−A(s)

}
= e−A(s){h′(s) − a(s)h(s)} ≤ e−A(s)b(s)

for all s ∈ (0, T ). Let δ, ǫ > 0 be small positive numbers. Then for any t ∈ [ǫ, T − δ] we
have

h(t)e−A(t) ≤ h(ǫ)e−A(ǫ) +

t∫

ǫ

e−A(s)b(s)ds ≤ h(ǫ)e−A(ǫ) +

t∫

ǫ

b(s)ds.

Thus, (B.2) follows by letting δ, ǫ → 0.

Definition B.8. Let X, Y be Banach spaces and U ⊂ X be an open subset of X. A
map f : U → Y is called (Fréchet) differentiable at p ∈ U if there exists a bounded linear
operator T : X → Y such that

lim
h→0

|f(p+ h) − f(p) − T (h)|

|h|
= 0.

The unique operator T satisfying this condition is called the (Fréchet) derivative of f at
p and is denoted by dfp, f∗p, f

′(p).

Theorem B.9 (Inverse Function Theorem). Let X, Y be Banach spaces. Let U ⊂ X be an
open set and f : U → Y be a map. Assume that its derivative f ′ exists and is continuous
in U . Furthermore assume that at p ∈ U , dfp : X → Y is a linear isomorphism of Banach
spaces, i.e. dfp : X → Y is a bounded linear operator, and bijective, with bounded inverse
(dfp)

−1 : Y → X. Then there exists an open neighborhood W ⊂ U of p such that f(W ) is
an open subset in Y and f : W → f(W ) is a homeomorphism.

For a proof of this theorem, see [17].
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Appendix C

Basics of gerbes

This chapter is not to be understood as an introduction to gerbes at full length. We just
review some basic facts about Deligne cohomology H•(M,D•) of a manifold M , namely
we only present here the local description of a gerbe and its holonomy in terms of an
open good cover. Roughly speaking, the Deligne complex is a truncated Čech–de Rham
complex. The cohomology of the total complex then is called the Deligne cohomology.
Similarly to Čech cohomology, one defines this in terms of an open good cover and then
passes to the direct limit with respect to refinements of open good covers. These means
that a k-Deligne class G ∈ Hk(M,Dk) is a certain cohomology class not depending on any
choices of open good covers. However, for a concrete description of Deligne cohomology
one can choose an open good cover and express it in terms of local data, i.e. we choose a
Čech representative for Deligne cohomology. For a more detailed discussion of this topic
see [3], [5], [13].

Definition C.1 (Čech representative of a gerbe). Let M be a smooth manifold and
U = {Uα}α∈A be an open good cover of M , that is, every finite intersection of elements
on U is contractible. A (k − 1)-gerbe (or a k-Deligne class) G = [g, A1, . . . , Ak] over
M can be represented by a (k + 1)-tupel of families of forms of ascending degree that
satisfy certain cocycle conditions. Namely, g is a family of smooth U(1)-valued maps
gα0,...,αk

: Uα0
∩ . . . ∩ Uαk

→ U(1) and Ar (1 ≤ r ≤ k) is a family of smooth iR-valued
differential forms Arα0,...,αk−r

of degree r which are locally defined on the (k + 1 − r)-fold
overlaps Uα0

∩ . . . ∩ Uαk−r
, satisfying the following cocycle conditions:

(δg)α0,...,αk+1
= 1 on Uα0

∩ . . . ∩ Uαk+1
,

(δA1)α0,...,αk
= (−1)k−1g−1

α0,...,αk
dgα0,...,αk

on Uα0
∩ . . . ∩ Uαk

,

(δA2)α0,...,αk−1
= (−1)k−2dA1

α0,...,αk−1
on Uα0

∩ . . . ∩ Uαk−1
,

...

Akβ − Akα = dAk−1
αβ on Uα ∩ Uβ,

where i ∈ C denotes the imaginary unit, δ the Čech differential and d the exterior differen-
tial on forms. Adopting the physicist’s convention, we will repeatedly write the top degree
term of a k-Deligne class as B := −iAk. Physicists call it the B-field or Kalb-Ramond
field.
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Definition C.2. The curvature of a gerbe G = [g, A1, . . . , Ak−1, iB] over M is the globally
defined (k + 1)-form Ω = dBα which only depends on the gerbe G. In fact, from the last
one of the above cocycle conditions we see that dBα = dBβ on Uα ∩Uβ, i.e. the family of
locally defined (k+1)-forms dBα patch together to a global well-defined (k+1)-form Ω. For
the fact that Ω does not dependent on the choice of a Čech representative, see Remark C.8
below. A gerbe is called flat if its curvature Ω vanishes. Moreover [Ω]/2π ∈ Hk+1(M,R)
is the image of an integral class and one refers to it, being the characteristic class of the
gerbe, as Diximier-Duady class c(G) of G.

Remark C.3. In physics the curvature of a gerbe is denoted by H and called the H-field.
Unfortunately this letter is reserved for the mean curvature of Riemannian hypersurfaces.
Therefore, we prefer the notation Ω for the curvature of a gerbe.

Definition C.4. Let Σ and M be smooth manifolds and U = {Uα}α∈A be an open good
cover of M . Let G = [g, A1, . . . , Ak−1, iB] be a gerbe and assume that Σ is compact,
oriented and without boundary. For a smooth map ϕ : Σ →M the holonomy of G along
ϕ is given by the formula

holG(ϕ) =
∏

σk

exp i

∫

σk

ϕ∗Bρ(σk) ·
k−1∏

r=1

∏

σk−r⊂···⊂σk

exp

∫

σk−r

ϕ∗Ak−r
ρ(σk)...ρ(σk−r)

·
∏

σ0⊂···⊂σk

gρ(σk)...ρ(σ0)(ϕ(σ0)).(C.1)

For example the last product is over all (k+1)-tupels (σ0, . . . , σk) with σ0 ⊂ . . . ⊂ σk etc.
Here we have assumed that all the σr ∈ τ are the r-dimensional faces of an adequate chosen
triangulation τ of Σ and ρ : τ → A is an index map picking up a finite number of members
of the induced cover {ϕ−1(Uα)}α∈A such that σ0 ⊂ ϕ−1(Uρ(σ0)), . . . , σ

k ∈ ϕ−1(Uρ(σk)) for
all σ0, . . . , σk ∈ τ (this is possible because Σ is compact). Often we will abbreviate
hol = holG provided that misunderstandings are excluded. In the special case M = Σ
and ϕ = id we call holG(M) := holG(id) the holonomy of G over M . Note that holG(M)
is only defined for compact, oriented M without boundary.

Example C.5. If k = 0, then a Deligne class is a smooth map f : M → U(1) and the
one-form associated to the class is f ∗θ, where θ denotes the Maurer-Cartan form on U(1).
The holonomy of the smooth map is just the product over the evaluations of f at all
points p, namely,

∏
p∈M f(p). Due to compactness this product is finite.

Example C.6. If k = 1, then a Deligne class can be represented by an isomorphism class
of complex line bundles with connection. The holonomy is the classical holonomy of a
connection.

Example C.7. If k = 2, then a Deligne class can be represented by a stable isomorphism
class of bundle gerbes with connection and curving. The holonomy is the holonomy of a
connection and curving. See [5], [16] for more details.

Definition C.8 (Gauge transformations). By a gauge transformation we mean replacing
a Čech representative of Deligne class G = [g, A1, . . . , Ak] by another Čech representative,
with respect to a fixed open good cover U = {Uα}α∈A , namely

(g, A1, . . . , Ak) → (g, A1, . . . , Ak) +D(t, T 1, . . . , T k−1),
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where D is the differential of the Deligne complex. Explicitly, this reads

g → g δ(t),

A1 → A1 + δ(T 1) + (−1)k−1 t−1dt,

A2 → A2 + δ(T 2) + (−1)k−2dT 1,(C.2)

...

Ak → Ak + dT k−1,

where h is a family of smooth U(1)-valued maps hα0,...,αk−1
: Uα0

∩ . . . ∩ Uαk−1
→ U(1)

and T r (1 ≤ r ≤ k − 1) is a family of smooth iR-valued differential forms T rα0,...,αk−1−r
of

degree r which are locally defined on the (k − r)-fold overlaps Uα0
∩ . . . ∩ Uαk−1−r

. Also
we see that the curvature Ω is unaffected by a gauge transformation, namely we have
d(−i(Ak + dT k−1)) = d(−iAk) = Ω. By the way this shows that in fact Ω does not
depend on the choice of a Čech representative, but only on the gerbe G = [g, A1, . . . , Ak].

Example C.9. Let U(1) →֒ P →M be a principal bundle over M with structure group
U(1) and connection one-form ω on P . Assume that U = {Uα}α∈A is a open good cover
such that P can be trivialized over every Uα with trivialization sα : Uα → P . If Uα∩Uβ 6=
∅, sα and sβ differ on the overlap by a transition function gαβ : Uα ∩ Uβ → U(1), namely
sβ = sα gαβ. Letting the cocycle {g′αβ} come from another trivialization {s′α}, there must
exist a family of functions {tα : Uα → U(1)} such that on Uα we have s′α = sα tα. Then
on the overlap Uα ∩ Uβ , sβ tβ = s′β = s′α g

′
αβ = sα tα g

′
αβ = sβ g

−1
αβ tα g

′
αβ must hold. This

implies

(C.3) g′αβ = gαβ tβ t
−1
α on Uα ∩ Uβ .

If we put Aα := i(s∗α ω) and A′
α := i(s′α)

∗ω, then from the transformation formula for
connection one-forms (see [2], [14] for example) we see that on Uα

(C.4) A′
α = Aα + t−1

α dtα

must hold. Obviously (C.3) and (C.4) together form a gauge transformation in the sense
of (C.2). Expressing the tα’s as tα = exp(iϕα) with real valued functions {ϕα : Uα → R}
(this is possible since the Uα’s are contractible) we can rewrite (C.4) as

(s′α)
∗ω = s∗α ω + dϕα.

This is what in electrodynamics is called a gauge transformation of a ”vector potential”
s∗α ω.
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