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In the isolated rat liver perfused in situ stimulation of the nerve bundles around the portal vein and the 
hepatic artery caused an increase of urate formation that was inhibited by the cq-blocker prazosine and the 
xanthine oxidase inhibitor allopurinol. Moreover, nerve stimulation increased glucose and lactate output 
and decreased perfusion flow. Infusion of noradrenaline had similar effects. Compared to nerve stimulation 
infusion of glucagon led to a less pronounced increase of urate formation and a twice as large increase in 
glucose output but a decrease in lactate release without affecting the flow rate. Insulin had no effect on any 

of the parameters studied. 

Urate; Allantoin; Hepatic nerve; Catecholamine; Glucagon 

1. INTRODUCTION 

The liver is innervated by sympathetic and 
parasympathetic nerves [1-4]. In the isolated rat 
liver perfused in situ it has been shown that elec- 
trical stimulation of the nerve bundles around the 
portal vein and the hepatic artery caused 
hemodynamic and a variety of  metabolic changes: 
perfusion flow was reduced [5,6]. The flow reduc- 
tion was accompanied by a redistribution of  the 
hepatic microcirculation [7,8]. Glucose and lactate 

• output increased [5,6], and ketone body formation 
[9], urea and glutamine production as well as am- 
monia uptake [10] and oxygen consumption 
decreased [7,8,11]; furthermore para-nitrophenol 
conjugation decreased [12] and glutathione efflux 
increased [13]. Stimulation of  the nerve bundles 
also caused an overflow of noradrenaline into the 
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hepatic vein [6,14], a transient release of  Ca 2+ 
followed by reuptake [13] and, conversely, a tran- 
sient uptake of  K ÷ followed by release [13]. All 
changes could partly be mimicked by circulating 
noradrenaline [5,8-10] or phenylephrine [11,13], 
yet only at hyperphysiological concentrations. 
They were mediated predominantly via or- 
sympathetic receptors. 

During the early phase of  a study of  a possible 
overflow into the hepatic vein of neuropeptides as 
putative cotransmitters of  noradrenaline it was 
observed, that a substance absorbing at 280 to 
290 nm was released upon nerve stimulation. This 
increase in absorbance was too large to be ac- 
counted for by the release of  any putative peptide 
transmitter from the synaptic cleft. The output of 
a UV absorbing metabolite from the liver seemed 
more likely and among others purine derivatives 
were taken into consideration. A systematic search 
revealed that the increase in absorbance in the ef- 
fluate from the liver was mainly due to uric acid 
(A. Nath, unpublished). 
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Uric acid is an ubiquitous degradation product 
of  purine nucleotides in mammal ian  cells [15]. 
Hyperuricemia is the major  chemical symptom of 
gout. Since no direct information on the hormonal  
and nervous regulation of  urate format ion in 
mammal ian  liver was available, it seemed to be 
worthwhile to investigate the influence of hepatic 
sympathetic nerves, noradrenaline, glucagon and 
insulin on urate formation in the liver. 

2. MATERIALS AND M E T H O D S  

2.1. Materials 
All chemicals were reagent grade and f rom com- 

mercial sources. Enzymes, ATP  and the 
Peridochrom test kit for urate determination were 
purchased f rom Boehringer (D-6800 Mannheim). 
Glucagon, insulin and noradrenalin were bought 
f rom Serva (D-6900 Heidelberg). Allopurino! was 
f rom Sigma (D-8028 Taufkirchen),  the Merck 
Glucose System for glucose determination from 
Merck (D-6100 Darmstadt) .  Prazosine was kindly 
provided by Pfizer (D-7500 Karlsruhe). 

2.2. Animals  
Male Wistar rats (160-190g ,  Winkelmann 

D-4791 Borchem) were kept on a 12 h day-night 
rhythm, 7 a.m. to 7 p.m. light, with free access to 
water and food (standard rat diet, Ssniff, D-4770 
Soest). All experiments were started between 8.30 
and 10.30 a.m. 

2.3. Liver perfusion 
Rat livers were perfused in situ without recir- 

culation in a 37°C cabinet via the portal vein nor- 
mally with a Krebs-Henseleit bicarbonate buffer,  
pH 7.4, containing 5 mM glucose, 2 mM lactate 
and 0.2 mM pyruvate. The medium was 
equilibrated with 95°7o Oz and 5°7o CO2. The flow 
rate was 4 m l . m i n - ~ . g  liver -1. In some ex- 
periments the perfusion bu f f e r  was fortified with 
0.1 °7o (w/v) bovine serum albumin and 3007o (v/v) 
bovine erythrocytes, and then equilibrated with 
13°70 02, 5°70 COz and 82°7o N2 mimicking arterial 
conditions; the flow rate was then 2 m l - m i n - l . g  
liver -1. After 30 min preperfusion the experiment 
was started; the perivascular nerves were 
stimulated with rectangular pulses (20 Hz, 2 ms, 
20 V) using a bipolar platinum electrode [5]. Hor-  
mones and drugs were infused when indicated. 

2.4. Metabolite assays 
The perfusate was collected with a fraction col- 

lector at 1 rain intervals and cooled on ice. Glucose 
and urate were determined with commercially 
available enzymatic test kits based on glucose 
dehydrogenase (EC 1.1.1.47) and urate oxidase 
(EC 1.7.3.3), respectively. Lactate was measured 
in a combined optical test using lactate 
dehydrogenase (EC 1.1.1.27) and glutamic pyruvic 
transaminase (EC 2.6.1.2) in a glutamate buffer 
system. Allantoin was determined according to 
Hornawsky and Miiller [16]. Briefly, allantoin was 
hydrolyzed in 0.5 N N a O H  to urea and glyoxylic 
acid which was reacted in HC1 to its 
phenylhydrazone and subsequently in the presence 
of  potassium hexacyanoferrate to 1,5-diphenyl- 
formazancarbonic acid, the absorption of which 
was measured at 520 nm. Hypoxanthine and xan- 
thine were determined after conversion to urate by 
xanthine oxidase (EC 1.2.3.2) with the 
Peridochrom test kit for uric acid. 

3. RESULTS 

3.1. Nerve stimulation- and hormone-dependent 
urate release 

Rat livers were perfused in a pressure-constant 
non-recirculating system with a Krebs-Henseleit 
bicarbonate buffer,  pH 7.4, offering 5 mM 
glucose, 2 mM lactate and 0.2 mM pyruvate. After 
45 min preperfusion the perivascular hepatic 
nerves were stimulated at a frequency of  20 Hz or 
either 1/~M noradrenaline, 1 nM glucagon or 
100 nM insulin were infused over a 5 min period 
(fig. l). 

Nerve stimulation caused a sevenfold increase of  
urate output (fig. 1) and a twofold enhancement of  
allantoin (not shown; f rom 13 + 0.5 to 26 + 
3 . 6 n m o l . m i n - ' . g - 1 ;  means + SE, n = 3). 
Glucose and lactate output  increased by about 2.5- 
and 2-fold, respectively. The flow rate was reduced 
by about one third. The peak values of  urate, 
glucose and lactate output were reached in 3 min, 
the peak of flow reduction 2 min after the onset of  
stimulation. The metabolic and hemodynamic 
alterations already started to return to normal  dur- 
ing the stimulation period thus showing escape 
phenomena.  

Noradrenaline infusion caused similar metabolic 
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Fig.1. Urate, glucose and lactate output and perfusion 
flow in the perfused rat liver after nerve stimulation, 
noradrenaline, glucagon and insulin. Rat livers were 
perfused with a Krebs-Henseleit bicarbonate buffer 
containing 5 mM glucose, 2 mM lactate and 0.2 mM 
pyruvate. After 45 min either the nerves around the 
portal vein and hepatic artery were stimulated 
electrically (20 Hz, 20 V, 2 ms) or noradrenaline 
(10 -6 M) or glucagon (10 -9 M) or insulin (10 -7 M) were 
infused for 5 min (hatched columns). Substrate balance 
is given by concentration in hepatic vein - concentration 
in portal vein in/zmol, ml ~ • flow in ml. min- i. g liver- ~. 

Values are means _+ SE with n = 3. 

changes as nerve stimulation; the reduction in flow 
rate, however, was lower. The escape phenomena 
of  the alterations in glucose and lactate balance 
and in flow, that were observed after nerve 
stimulation, did not occur (fig. 1). 

Glucagon infusion led to a less pronounced in- 
crease in urate output than nerve stimulation. The 
peak value was about 25 °7o lower and was reached 
only in the 4th min. Glucose output was increased 
by 3-fold, but lactate output was reduced to about 
10°70. No changes in flow rate were observed. In- 

sulin had neither metabolic nor hemodynamic ef- 
fects (fig. 1). 

The influence of  oxygen input on urate and 
allantoin formation was studied by comparing 
metabolism during perfusion with erythrocyte-free 
and erythrocyte-containing buffer supplying ox- 
ygen at a rate of  about 4 and 12/zmol.min -~-g 
liver -1, respectively (for calculation see [17]), 
which maintained the oxygen delivery clearly 
higher than the average oxygen uptake of  
2 -31 tmol -min-~-g  liver -~ [18,19]. With the 
higher oxygen input urate release was significantly 
lower (6 vs 16 n m o l - m i n - l - g  -1) and allantoin 
release higher (23 vs 12 nmol-min-~-g  -~) than 
with the lower oxygen input. Similarly, after nerve 
stimulation the increase of  urate release was 
smaller and of  allantoin formation larger with the 
higher than with the lower oxygen delivery. The 
sum of urate and allantoin release remained 
similar. 

3.2. Mechanism o f  the nerve stimulation- 
dependent increase in urate output 

Urate release was totally blocked by the 
cry-receptor blocker prazosine (table 1). Prazosine 
also blocked the increase of  urate output after 
noradrenaline; however, it did not influence the in- 
crease of urate output after glucagon (not shown). 
An unspecific interference with urate formation 
could therefore be excluded. Thus, in rat liver all 
nerve stimulation-dependent metabolic and 
hemodynamic changes so far observed [5,6,9,10] 
appear to be mediated predominantly by a-  
receptors. 

Nerve stimulation might either act via direct 
contacts of  the liver nerves with the parenchymal 
cells or indirectly via noradrenaline overflow from 
the vessels or via hemodynamic changes causing 
hypoxia (cf. fig.5 in [5]). Sodium nitroprusside, a 
smooth muscle relaxant, was used to study the role 
of  flow reduction in the mechanism of the nerve 
stimulation-dependent increase of  urate output. 
When sodium nitroprusside was infused 5 min 
before and during the stimulus all nerve 
stimulation-dependent metabolic changes were 
reduced by 30°7o but the hemodynamic effects were 
reduced by 80°7o (table 1). Thus, reduction of  per- 
fusion flow cannot be a major step in the 
mechanism of increase in urate release after nerve 
stimulation. 
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Table 1 

Alteration of the nerve stimulation-dependent increase of urate, glucose and lactate 
output and decrease in flow by allopurinol, prazosine and nitroprusside 

Additions Increase in formation of 

Urate Glucose Lactate 
(nmol. min i ~mol .  min-i (umol. min-L 

• g liver -L) .g liver l) .g liver-l) 

Decrease in 
flow (ml- min 

• g liver- 1) 

None 94_+ 16 2.5 + 0.4 0.9 + 0.1 -1.2_+ 0.2 
Aliopurinol _+ 0 a 1.8 _+ 0.4 0.9 + 0.1 - 0 . 7  + 0.1 
Prazosine 6 + 1 0.25 _+ 0.17 0.2 + 0.1 - 0 . 2  + 0.07 
Nitroprusside 58 +_ 10 1.6 +_ 0.06 0.6 + 0.03 -0 .3  +_ 0.2 

a NO statistically significant change 

The perivascular nerves were stimulated for 5 min starting 45 min after the beginning 
of perfusion. Allopurinol, prazosine or sodium nitroprusside were infused 5 min 
before and during the stimulation period to reach a final concentration in the perfusate 
of 7/~M, 0.1/~M and 10/~M, respectively. The metabolic and hemodynamic values 
represent the difference between the basic and the peak values (cf. fig.l). The values 

are means + SE with n = 3 

The transient nature o f  the increase in urate out-  
put  after nerve st imulation as well as after 
noradrenal ine or  glucagon infusion might  indicate 
that  urate was mobilized f r o m  a pre-existing pool.  
Alternatively, it might  be newly formed by an in- 
creased purine degradat ion.  One key enzyme of  
urate format ion ,  xanthine oxidase, can be in- 
hibited competit ively by allopurinol.  When  
allopurinol was infused 5 min before and during 
the st imulat ion period the increase in urate fo rma-  
t ion after nerve st imulation (table 1), 
noradrenal ine or  glucagon infusion (not shown) 
was completely abolished. It is therefore concluded 
that  the increase in urate output  was due to a de 
novo  format ion  rather than to a release f rom a pre- 
existing pool.  

Nerve st imulat ion in the presence o f  al lopurinol 
was accompanied  by an increase o f  the two im- 
mediate precursors o f  urate,  xanthine and hypox-  
anthine,  that  was in the same range as the nerve 
s t imulat ion-dependent  increase in urate fo rmat ion  
in the absence o f  allopurinol.  This indicates that  
al lopurinol acted as such by inhibiting the xanthine 
oxidase reaction (EC 1.2.3.2) and that  it did not in- 
terfere, after conversion via a salvage pa thway 
reaction to al lopurinol ribose phosphate ,  with the 
glutamine phosphor ibosy lpyrophospha te  amido-  
transferase reaction (EC 2.4.2.14), an early step in 

purine synthesis. The increase in glucose and lac- 
tate output  as well as the reduct ion in perfus ion 
flow were also slightly depressed by allopurinol 
(table 1). The mechanism o f  this al lopurinol act ion 
is not  unders tood.  

4. D I S C U S S I O N  

In all mammals  except primates the end 
products  o f  purine degradat ion are urate formed 
f rom hypoxanthine  and xanthine by the action o f  
xanthine oxidase and allantoin formed f rom urate 
by the action o f  urate oxidase; in primates lacking 
urate oxidase urate is the sole end produc t  [15]. In 
the present s tudy it has been shown in the isolated 
perfused rat liver that  electrical s t imulat ion o f  
nerves a round  the portal  vein and the hepatic 
artery as well as noradrenal ine and glucagon infu- 
sion caused a five to sevenfold increase in urate 
output  (fig. 1) and a twofold  enhancement  o f  allan- 
toin release. This increase was not  due to a release 
f rom pre-existing pools but  to a de novo  format ion  
during the st imulat ion period (table 1). 

Since both  in the erythrocyte-free perfusion with 
the usual low, but ' suff icient '  oxygen input and in 
the erythrocyte-containing perfusion with a high 
oxygen input urate release was increased several 
fold more  than allantoin release, it can be conclud-  
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ed that the urate oxidase reaction was rate limiting 
in allantoin formation.  Since oxygen is a substrate 
of  both xanthine oxidase and urate oxidase, ox- 
ygen supply could have been a limiting factor, if 
the oxygen affinity of  urate oxidase was lower than 
that  of  xanthine oxidase or if the latter enzyme 
operated in the dehydrogenase (type D) form 
[20,21]. A distinction between these possibilities 
may not be possible, because there is uncertainty as 
to the K0.5 value for oxygen of  the two oxidases in 
the cellular environment (in vitro the K0.5 for ox- 
ygen was reported to be 25-250/zM with xanthine 
oxidase [22,23] and 80-100/zM with urate oxidase 
[18]) and because in the perfused liver in contrast  
to isolated hepatocytes reactions with widely dif- 
ferent K0.5 for oxygen such as cytochrome oxidase 
and urate oxidase can exhibit a very similar 
dependence on O2 concentration [18]. 

The increase in urate format ion must be due to 
an enhanced degradation of  purine nucleotides, 
which in turn would require either an enhanced 
degradation of  nucleic acids and /o r  an increased 
de novo or salvage pathway synthesis of  purine 
nucleotides f rom 5-phosphoribosyl- l -pyrophos-  
phate. The present findings do not allow to dif- 
ferentiate between these possibilities. 

The increase in glucose output after nerve 
stimulation, noradrenaline or glucagon has been 
shown to be primarily due to an enhancement of  
glycogenolysis that is accompanied by an in- 
tracellular increase of  glucose-6-phosphate [24]. 
Therefore,  although there was no strict correlation 
between glucose output and urate formation,  it 
seems to be possible that the elevated level of  
glucose-6-phosphate caused an enhanced flux into 
the pentose phosphate pathway replenishing the 
5-phosphoribosyl- l -pyrophosphate  pool and in 
turn increasing purine nucleotide synthesis. This 
hypothesis is in agreement with the finding that 
glucagon, cAMP or adrenaline (noradrenaline was 
not tested) increased the levels of  5-phosphoribo- 
syl- l -pyrophosphate  in rat hepatocytes by 1.5-2- 
fold although with considerably slower kinetics 
[25,26]. The finding that adrenaline (noradrenaline 
was not studied) increased urate format ion slightly 
by 1.2-1.5-fold in chicken hepatocytes again with 
considerably slower kinetics [27] cannot be com- 
pared with the present observations since in birds 
urate is the end product not only of  the degrada- 
tion of  purine nucleotides as in mammals  but of  all 

nitrogenous compounds including amino acids. 
A physiological function of  the increase in urate 

format ion in the rat liver by sympathetic nerve ac- 
tion, circulating noradrenaline or glucagon is hard 
to envisage at the present stage. 
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