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Abstract

In this work, some new results to exploit the recurrence properties of quasiperiodic
dynamical systems are presented by means of a two dimensional visualization technique,
Recurrence Plots(RPs). Quasiperiodicity is the simplest form of dynamics exhibiting
nontrivial recurrences, which are common in many nonlinear systems. The concept
of recurrence was introduced to study the restricted three body problem and it is
very useful for the characterization of nonlinear systems. I have analyzed in detail
the recurrence patterns of systems with quasiperiodic dynamics both analytically and
numerically. Based on a theoretical analysis, I have proposed a new procedure to
distinguish quasiperiodic dynamics from chaos. This algorithm is particular useful
in the analysis of short time series. Furthermore, this approach demonstrates to be
efficient in recognizing regular and chaotic trajectories of dynamical systems with mixed
phase space. Regarding the application to real situations, I have shown the capability
and validity of this method by analyzing time series from fluid experiments.

Zusammenfassung

In dieser Arbeit stelle ich neue Resultate vor, welche zeigen, wie man Rekurrenzeigen-
schaften quasiperiodischer, dynamischer Systeme fiir eine Datenanalyse ausnutzen kann.
Die vorgestellten Algorithmen basieren auf einer zweidimensionalen Darstellungsmeth-
ode, den Rekurrenz-Darstellungen. Quasiperiodizitit ist die einfachste Dynamik, die
nicht-triviale Rekurrenzen zeigt und tritt haeufig in nichtlinearen Systemen auf. Nicht-
triviale Rekurrenzen wurden im Zusammenhang mit dem eingeschrankten Dreikorper-
problem eingefiihrt. In dieser Arbeit, habe ich mehrere Systeme mit quasiperiodischem
Verhalten analytisch untersucht. Die erhaltenen Ergebnisse helfen die Wiederkehreigen-
schaften dieser Systeme im Detail zu verstehen. Basierend auf den analytischen Re-
sultaten, schlage ich einen neuen Algorithmus vor, mit dessen Hilfe selbst in kurzen
Zeitreihen zwischen chaotischem und quasiperiodischem Verhalten unterschieden wer-
den kann. Die vorgeschlagene Methode ist besonders effizient zur Unterscheidung
regularer und chaotischer Trajektorien mischender dynamischer Systeme. Die prak-
tische Anwendbarkeit der vorgeschlagenen Analyseverfahren auf Messdaten, habe ich
gezeigt, indem ich erfolgreich Zeitreihen aus fluid-dynamischen Experimenten unter-
sucht habe.
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Chapter 1

Introduction

To doubt everything or to believe everything
are two equally convenient solutions;

both dispense with the necessity of reflection.
Jules Henri Poincaré (1854-1912)

Recurrence is a fundamental property in dynamical systems theory. It was Henri
Poincaré who introduced this concept in his memoir (Poincaré, 1890), which won a
prize in a mathematical competition honoring the 60th birthday of Oscar II, King of
Sweden and Norway. This work addressed the stability of the solar system. In his
research on the three body problem, Poincaré became the first person who discovered
the homoclinic points which lie at the root of chaos in deterministic system. It was
also in his memoir that Poincaré included for the first time his Recurrence Theorem.
With regard to the restricted three body problem, he established that, given certain
initial conditions, there are an infinite number of solutions that are Poisson stable. In
the definition of Poisson stability the motion of a point P is said to be stable if it
returns infinitely often to positions arbitrarily close to its initial position. Using the
formulation that today is more commonly known as Poincaré Recurrence Theorem.

From a philosophical point of view, Poincaré’s results did not receive the atten-
tion that they deserve. Some of the research that Poincaré opened was neglected,
e.g., homoclinic tangles, until the meteorologist E. Lorenz in 1963, rediscovered a de-
terministic chaotic system while he was studying the evolution of a simple model of
the atmosphere (Lorenz, 1963). The recurrence concept was further termed “naturally
occurring analogues”, i.e., dynamical states that are very close to states that have hap-
pened in the past (Lorenz, 1969). By suitable statistics the atmospheric predictability
could be revealed by studying these analogues. In 1987, J. Eckmann introduced re-
currence plots to visualize the recurrence patterns of dynamical systems by using a
two dimensional black-white plot (Eckmann et al., 1987). The calculation of this plot
is rather simple and the visualization of the dynamics is quite straightforward. This
has made this technique a promising tool in recent years. Recurrence plots have been
applied to many different data sets to characterize their underlying dynamical proper-
ties (Marwan et al., 2007).
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In this thesis, I will present both analytical and numerical results of the study of
quasiperiodic dynamics by means of recurrence plots. Quasiperiodic motion is one of
the prototypical dynamics and is especially important in Hamiltonian systems where
it plays a central role. In the case of a Hamiltonian with one degree of freedom, the
dynamics is degenerate to a periodic solution with only one frequency. Quasiperiodic
motion appears in higher dimensional systems as a linear composition of two periodic
trajectories with incommensurate frequencies, which build up a torus in phase space.
A fundamental result states that the phase space trajectories of a complete integrable
Hamiltonian system with n degrees of freedom and having n integrals of motion lie on
an n-dimensional manifold which is topologically equivalent to an n-torus. The case of
quasiperiodic solutions was overlooked in the beginning of the study of the three body
problem™. It was only almost seventy years later that Kolmogorov, Arnold and Moser
gave the first existence and convergence proof for those quasiperiodic solutions which
Poincaré had left. The main conclusion is that if the system is slightly perturbed,
most of the tori will suffer a slight deformation but will not break apart. These are
now renowned as KAM tori in honor of them (Kolmogorov, 1954; Arnold, 1963; Moser,
1967). The KAM theory was a major breakthrough in the study of the behavior of
general Hamiltonian systems.

Many of the innovative and new brilliant ideas that Poincaré developed as tools
and techniques to tackle the three body problem have a more general application not
only in the theory of differential equations, which is now more properly called dynami-
cal systems theory, but also in celestial mechanics and other branches of mathematics.
Many issues raised in modern dynamical systems theory, such as chaos and the sta-
bility analysis stem ultimately from celestial mechanics (Diacu & Holmes, 1999). A
complete historical overview of Poincaré himself and the three body problem is pre-
sented by Barrow-Green (1997). Some pioneering works touched by Poincaré have been
greatly extended in the last decades. A summary of his legacy to dynamical systems
theory, in particular about the homoclinic points is given in a report by Holmes (1990).

*Some great effort of Poincaré was devoted to the series representation of the periodic solutions and
came up with the divergence conclusion for most of the series. The interesting thing about Poincaré’s
memoir was that it did not solve the problem which Karl Weierstrass proposed for the mathematical
competition. Poincaré showed the non-existence of single-valued integrals, which was contrary to what
Weierstrass had hoped. However there was one proviso. He made it clear that he had not given a
rigorous proof for the cases when the frequencies can be fixed in advance (Barrow-Green, 1997).

Karl Weierstrass (1815-1897), was a German mathematician. He suggested the problem of finding
the convergent series representation of the three body problem. Poincaré’s results on periodic orbits
and the discovery of homoclinic points considerably extend our understanding of the solar system.
Weierstrass said:

This work cannot indeed be considered as furnishing the complete solution of the question
proposed, but that it is nevertheless of such importance that its publication will inaugurate
a new era in the history of celestial mechanics.

Poincaré was awarded the prize. Some of the content here is extracted from an article by J.J. O’Connor
and E.F. Robertson (http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Poincare.html).

The KAM theory confirms that Weierstrass’s intuition of the convergence was after all correct. The
200 year old problem of the stability has a positive answer.
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There is considerable interest in the scientific community and among the general public
in “chaos theory” which is part of the dynamical systems theory.

The paradigm of deterministic chaos has influenced our thinking in many fields of
science. Dynamical systems theory has been exhaustively applied to many interesting
problems, ranging from planetary flows to the dynamics of falling paper, from the
behavior of collective animals to the movement of the index finger. People have shown
great interest in the applications of dynamical systems to economy and to disclose the
formation mechanism of the dunes in a desert, etc. (STAM, 2007). Dynamical systems
theory continues to attract the attention of many scientists.

1.1 Outline of this Thesis

My thesis presents a theoretical and numerical study of some dynamical systems with
quasiperiodicity by means of recurrence plots.

The rest of this introductory chapter aims to provide the conceptual background to
discuss the importance of recurrences in the analysis of the dynamics of complex sys-
tems. Some basic concepts, such as recurrences, quasiperiodicity, etc., and conventional
approaches for the analysis of such systems are reviewed, too. This part contains no
new results and is rather dedicated to readers who are not familiar with these concepts
(Chapter 1).

Chapter 2 provides a brief overview of the main tool I use throughout the thesis,
namely recurrence plots (RP). Several prototypical examples of different dynamics are
shown to produce distinct patterns in the RPs. An important emphasis is placed on
the estimation of the dynamical invariants, in particular, the correlation entropy Ks.
As one application, I use the automated algorithm of Ky presented by Thiel (2004)
to disclose the complex periodic regions in terms of shrimps in the two dimensional
parameter space of a parametrically excited system. This part of the work has been
published (Zou et al., 2006).

In Chapter 3, I study analytically the recurrence plots of dynamical systems with
quasiperiodic motion. I firstly exemplify my analysis by the sine function to obtain some
theoretical indications from periodic motion, which is convenient for the extension of the
analysis to 2-torus models with nontrivial recurrences. The time indices of recurrence
patterns in the RPs are directly related to the ratio of the underlying frequencies. This
part of the work will be published (Zou et al., 2007).

In Chapter 4, I propose a procedure for distinguishing quasiperiodic orbits from
chaotic ones in short time series, which is based on the recurrence properties in phase
space. As we have seen above, quasiperiodic dynamics plays an important role in
Hamiltonian systems. I use the model of the Hénon-Heiles Hamiltonian, which was
first studied in the context of analyzing the existence of two or three constants of
motion in galactic dynamics (Hénon & Heiles, 1964). My approach is demonstrated
to be efficient in recognizing regular and chaotic trajectories of a Hamiltonian system
with mixed phase space. This part of the work has been published (Zou et al., 2007b).

In Chapter 5, I apply recurrence plots to characterize regular and chaotic orbits in
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Hamiltonian systems with divided phase space, more specifically I treat the stickiness
problem. A typical chaotic trajectory of such Hamiltonian systems might spend a long
time near the border of stable islands, showing almost regular motion. The presence
of stickiness causes some substantial difficulties in the use of conventional tools to
characterize the dynamics when only short trajectories are available. However, as
we will see, the recurrence patterns are substantially different from those of regular
trajectories. Furthermore, RPs can also be used to quantify the stickiness of a chaotic
orbit. This part of my work has been published (Zou et al., 2007a).

In Chapter 6 I analyze several data sets from experiments of fluid dynamics. The
data are provided by Prof. Peter L. Read from the University of Oxford. He and his
co-workers have designed this experiment, from which one can obtain several distinct
dynamics, ranging from steady wave states to quasiperiodic (amplitude vacillation), and
to chaotic motion (modulated amplitude vacillation). I apply the procedures proposed
in the previous chapters to these data sets and characterize the dynamics successfully.
This part of work has been submitted for publication (Zou et al., 2007).

I summarize the main results of the thesis in Chapter 7, where several remaining
open questions are also discussed. Appendix A contains a detailed description of the
shrimp structures we observed in the two dimensional parameter space of a parametri-
cally excited system.

1.2 Basic concepts

Next we introduce some basic concepts of dynamical systems theory. Following a
brief review of recurrence property of dynamical systems, we consider the conventional
methods to quantify the properties of some particular classes of dynamics. Furthermore,
the concept of quasiperiodicity is introduced later in this chapter, and will be further
studied throughout the thesis. The general discussion given here sets the context in
which we will consider the problems of a recurrence plot based analysis of dynamical
systems.

1.2.1 Dynamical systems formalism

A dynamical system consists of a set of possible states, together with a rule that
determines the present state in terms of past states (Alligood et al., 2000). The rule
may be defined as a deterministic mathematical prescription for evolving the states of
a system forward in time. Time either may be a continuous variable or else a discrete
integer-valued variable. At any particular time ¢ the state of such a system is identified
with an element z; (the current phase point) of a phase space X. In practice X is
often simply IR? and the phase point or state 2 represents the numerical value of some
physical quantity, e.g., a voltage, displacement, population etc.

The evolution rule of the dynamical system is a fixed rule that describes what future
states follow from the current state. Furthermore, it is supposed to be deterministic:
for a given time interval only one future state follows from the current state. Deter-
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mining the state for all future times requires iterating the relation many times. The
iteration procedure is referred to as solving the system or integrating the system. Once
the system can be solved and given an initial point, it is possible to determine all its
future points, the entirety of which is known as a trajectory or orbit. Before the
advent of fast computing machines, solving a dynamical system required sophisticated
mathematical techniques and could only be accomplished for a small class of dynam-
ical systems. Numerical methods executed on computers have simplified the task of
determining the orbits of a dynamical system. In terms of the memory format of a
computer, a trajectory (or orbit) reads: zg,x1,x2,..., where z¢ is the initial condi-
tion. Furthermore, one can do both qualitative and quantitative analysis based on
a trajectory obtained by computer simulation to quantify the dynamical properties.
This helps the developments of dynamical systems theory itself but also increases our
understanding of the real world (Sprott, 2003).

During the last decades considerable progress has been made in dynamical systems
theory motivated by numerical and real experiments showing complex motion. It is safe
to say that the field of dynamical systems has been growing in the interface between
sciences (e.g., physics, chemistry, geology, physiology, biology, ecology, engineering,
economy, ...) and mathematics (Strogatz, 2001). Nowadays there is a consistent theo-
retical framework which combines statistical and geometrical/topological concepts. It
provides a variety of tools to describe and understand the irregular motion and the
complex patterns observed in nonlinear systems for both numerical and laboratory
experiments.

1.2.2 Classification

A last but important point concerns the classification in dynamical systems. Depending
on the preservation of the phase space volume, there are two fundamental categories:

e Dissipative systems. The phase space is characterized by continued contraction
of the phase space volume with increasing time. A typical example is provided by
the Lorenz system. It is an important fact that dissipative systems typically are
characterized by the presence of attracting sets or attractors in the phase space.

e Conservative systems (Hamiltonian systems). The phase space is a con-
straint of the motion. The phase space volume does not vary with respect to
time. Conservative dynamical systems do not have attractors.

As we will see later that the main tool used in this thesis, namely the recurrence
plot, is commonly applied to experimental data analysis without clarifying the type
of dynamics of the system beforehand. RPs have been studied mainly for dissipative
systems (Marwan et al., 2007). In this thesis I will concentrate mainly on the analysis
of RPs of Hamiltonian systems resulting in several interesting patterns. This study
provides a deeper understanding of the applicability of RPs.
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1.2.3 Poincaré recurrences in dynamical systems

The Poincaré recurrence theorem is a basic but also fundamental result in the theory
of dynamical systems. In particular, it tells us that the existence of a finite invariant
measure causes a nontrivial recurrence in each set of positive measure. The notion of
nontrivial recurrence goes back to Poincaré in his study of the three-body problem.
He proved in his celebrated memoir 1890 that whenever a dynamical system preserves
volume almost all trajectories return arbitrarily close to their initial position and that
they do this an infinite number of times. More precisely, we have the following theo-
rem (Katok & Hasselblatt, 1995; Barreira, 2005).

Theorem 1.2.1 (Poincaré Recurrence Theorem) Given a measurable transforma-
tion T : X — X preserving a finite measure j on X, for each measurable set A C X,
we have

u{z € A: Tz € A for infinite many positive n's}) = p(A). (1.1)

The measurable transformation 7' means that p(7'(A)) = u(A) for every measurable
set A C X. In other words, the existence of a finite invariant measure guarantees that
almost every orbit starting in the set A returns infinitely often to this set.

When X is a metric space with distance D one can also establish the following
version of the recurrence theorem.

Theorem 1.2.2 For p-almost every x € X we have

lim inf D(T"x,z) = 0. (1.2)
n—oo
The identity (1.2) tells us that the orbit of u-almost every point returns arbitrarily
close to the initial point.

The idea that Poincaré used to prove the theorem of recurrences is fairly simple and
is based on the phase volume preservation for Hamiltonian systems. Unfortunately,
this theorem only provides information of qualitative nature. On the other hand it
is clearly a matter of intrinsic difficulty and not of lack of interest that less is known
concerning the quantitative behavior of recurrence. In particular it tells nothing about
the following two natural problems:

(1) the frequency with which the orbit of a point visits a given set;

(2) the rate with which the orbit of a point returns to an arbitrarily small neighbor-
hood of the initial point.

Birkhoff’s ergodic theorem gives a complete answer to the first problem (Birkhoff,
1931, 1927). The second problem experienced a growing interest during the last
decade (Afraimovich & Zaslavsky, 1997; Saussol et al., 2002). Our main object is to dis-
cuss several recent developments related to this problem, specifically, recurrence plots,
which pertain to both the qualitative and quantitative study of recurrence property of
dynamical systems.



1.2. Basic concepts 7

Moreover, the first return time of a set is defined as follows: if A C X is a
measurable set of a measurable dynamical system {X, p, T}, the first return time of
the set A is given by

T(A) =min{n >0:T"ANA # o}. (1.3)

The reflection of the first return time in a recurrence plot will be further explored in
Chapter 4 and 5 for some typical dynamical systems.

1.2.4 Prototypical dynamics and their distinction

As T mentioned in Sec. 1.2.1, computers have simplified the task of determining the
orbits of a dynamical system. However dynamical systems are typically too complicated
to be understood in terms of individual trajectories. The type of trajectory may be
more important than one particular trajectory. In this section, we describe several
typical classes of dynamics occurring in deterministic systems.

Typical dynamics

A dynamical system may have solutions of a simple form like diverging to infinity, which
is often not a sensible solution in physics and engineering. In a dissipative system, the
solutions may converge to a compact set called attractor which might be a steady
state, a periodic orbit (limit cycle) or a more complex set like a quasiperiodic orbit
or a chaotic attractor. The solutions of dissipative systems are attractive in the sense
that the final behavior does not depend on the initial conditions. When a system has
several coexisting solutions, each solution has its corresponding basin of attraction.

However, in a non-integrable Hamiltonian system, generally speaking, there are
coexisting periodic, quasiperiodic and chaotic orbits. As a consequence, the phase
space is a mixture of these solutions. We will go into details about the phase space
structure later in Chapter 5. As we mentioned above, the invariance of the phase space
volume of a conservative system rules out the existence of attractors in Hamiltonian
systems. However quasiperiodicity plays an important role in such systems (Dvorak
et al., 2005). Here we describe the quasiperiodic motion in a general framework as it
will be a major concern of this thesis.

A practical way to produce a quasiperiodic motion is the following (Stewart, 1990).
If we combine two periodic motions, the final behavior of the output is determined by
the relation between these two original periods. With two periods, the criterion for
the combination to be periodic is that the ratio of the periods should be a rational
number — an exact fraction p/q, where p and ¢ are rational numbers. The trajectory
will then repeat itself after a common period between p and g. If the ratio of periods
is irrational — for example, if the periods are 1 second and v/2 seconds — then the two
periods have no common measure and the dynamics is quasiperiodic. It does, however,
“almost repeat”, in the sense that one can find states which are as close as one likes to
the initial state. The generalization of the above practical procedure from 2-frequency
quasiperiodicity to N-frequency (N > 2) is straightforward (Ott, 1993).
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In the case of N-frequency quasiperiodic motion a dynamical variable f(t) can be
represented in terms of a function of N independent variables, G(t1,t2,...,tN), such
that G is periodic in each of its N independent variables. That is

G(tl,tg,...,ti—i-ﬂ,...,t]v) :G(tl,tg,...,ti,...,tN>, (1.4)

where, for each of the N variables, T; is the period. Furthermore, the N frequencies
Q; = 27 /T; are incommensurate. In particular, a relation of the form

mi1y +mos + - +myQy =0 (1.5)
does not hold for any set of integers, my,mo, ..., my (negative integers are allowed),
except for the trivial solution m; = mo = --- = muy = 0. In terms of the function G,

an N-frequency quasiperiodic dynamical variable f(¢) can be represented as
f(t) =Gt tt,...,1). (1.6)

f is obtained from G by setting t =t; =to = --- =ty.

As one clearly sees a periodic solution is simply the limiting case with only one
frequency in the above derivation. On the other hand, the superposition of a very
large (formally infinite, from steady state — periodic — 2-torus — 3-torus, ..., 00)
number of modes with different frequencies is one hypothesis for the occurrence of weak
turbulence put forward by Landau and Hopf and their co-workers in the 1940s (Hopf,
1948; Ott, 1993). It was supposed that an initially steady flow would produce chaos
via successive Hopf bifurcations, each adding one more mode in the dynamics. This
scenario was accepted for quite a long time but was questioned by Ruelle, Newhouse
and Takens (Newhouse et al., 1978) as they proved that a three-mode flow was gener-
ically unstable, in which the three modes could interact nonlinearly to produce chaos.
Even though three-frequency quasiperiodic orbits are expected in a typical nonlinear
dynamical system (Grebogi et al., 1983). This remains an open problem. The route
from high dimensional torus to chaos cannot be excluded in many cases. We will deal
with time series in 3-torus regime obtained by the experiment in fluid dynamics (Ran-
driamampianina et al., 2006) in Chapter 6.

Furthermore, a chaotic motion can be regarded as the superposition of an infinite
number of different frequencies with respect to the Unstable Periodic Orbits (UPOs)
of the attractor. A typical trajectory is attracted by one UPO and moves around it for
a certain time until it is close to the unstable manifold. Then it is repelled and visits
the neighborhood of another UPO. In a sense, a chaotic trajectory is chaotic because it
must weave in and around all of these unstable periodic orbits yet remain in a bounded
region of phase space. Understanding the properties of UPOs and characterization
based on UPOs provide many new insights lacking in the statistical methods (Lathrop
& Kostelich, 1989; So et al., 1996; Schmelcher & Diakonos, 1997; Lai et al., 1997). A
UPO can be easily shown by RPs representation and be localized (Bradley & Mantilla,
2002; Marwan et al., 2007).
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Characterizations of dynamics

To characterize the properties of different dynamics, scientists have developed a large
number of different approaches. Since the dynamical systems theory itself is a fast
growing field, we can only include several common methods to achieve this aim here.

Let’s start illustrating an important and widely used method in time series analysis,
namely the power spectrum (Ott, 1993). The Fourier transformation of a periodic
dynamical variable, f(t), is given by

flw) = /_ h f(t)exp(iwt)dt, (1.7)

consisting of delta function located at integer multiples of the fundamental frequency
QO =27/T,

flw) = QWZan5(w —nf). (1.8)

In the case of N-frequency quasiperiodic motion with a dynamical variable f(¢) (Eq.(1.6)),
the Fourier transform is

f(w) =27 Z anl,n27..,,nN5(w — (??,101 +ngfdy + -+ + nNQN)). (1.9)

n1,n2,...,nN

Hence, the Fourier transform of a dynamical variable f (w) consists of delta functions
at all linear integer combinations of the N fundamental frequencies 1, ..., Qx.

Note that in the quasiperiodic case the frequencies are demnse on the w-axis, but,
since their amplitudes decrease with increasing ni,ns,...,ny, peaks at frequencies
corresponding to very large values of n; are eventually below the overall noise level
of the computer precision. Hence, a quasiperiodic signal has a finite number of sharp
spectral peaks, many of which are simple harmonics of one another (Fig. 1.1(b)). In
the chaotic case, the spectrum has developed a broad continuous component, which
is far above the noise level Fig. 1.1(c). The presence of a continuous component in a
frequency power spectrum is a hallmark of chaotic dynamics. Obviously, a frequency
power spectrum is insufficient to distinguish chaos from noise as noise has also a broad
power spectrum (Fig. 1.1(d)). Next we show more appropriate approaches in this
context.

There are in principle two general classifications of the methods reported in the
literature to understand intricate chaotic dynamics. One method is motivated by a
dynamical aspect, while the other one stems from the geometric point of view. From
the dynamical perspective, one concentrates on the time evolution dynamics of
chaotic orbits. In this spirit, Lyapunov exponents, As, give a means of characterizing
the stretching and contracting characteristics of attractors. In the cases of periodic
and quasiperiodic dynamics, Ape = 0, while a positive value for chaotic orbits. N-
frequency quasiperiodic system has N zero Lyapunov exponents, namely, A\j = Ay =
-+~ = Ay = 0. Another way to quantify chaos is to calculate entropies (Mindin &
Gilmore, 1992; Gilmore, 1998), the metric entropy and topological entropy. These
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Figure 1.1: Power spectra for four typical dynamics. (a) y = sin(2nt), (b) y = sin(27t) +
sin(27v/2t), (c) z-component from the Réssler system, (d) Noise of normal distribution with
mean value p = 20 and standard deviation o = 5.

two entropies are positive for chaotic systems, zero for regular systems (periodic and
quasiperiodic) and tend to infinity for stochastic processes.

From the geometric perspective, chaotic dynamics is often characterized by a
fractal dimension. The spectrum of D, dimensions is a conventional way to quantify
the self-similarity of the strange geometrical object (Grassberger & Procaccia, 1983a,b;
Grassberger, 1983). In general, it can be shown that Dy < D; < Dy, which are partic-
ularly called correlation dimension, information dimension and box-counting
dimension, respectively.

As we will see in Chapter 2, some dynamical invariants like the Rényi entropy of
second order Ko and Dy can be estimated by means of recurrence plots. This helps
to understand the labyrinthine periodic regions in terms of shrimps embedded in the
chaotic sea of the parameter space of a parametrically excited system.

Dealing with chaos by means of one of the aforementioned approaches, much of the
discussion centers on how many data points are required to obtain reliable results with
a fast convergent rate. Generally speaking, large data sets are necessary to achieve
accurate approximations, and a good signal-to-noise ratio is required to probe the fine
structure of any fractal sets in the attractor (Abarbanel et al., 1993). However, for
experimental data analysis, such long time series are usually hardly obtained. One of
the main contributions of this thesis provides an efficient way to classify the different
dynamics in the case that only short time series are available (Chapter 4).
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1.2.5 Slater’s Theorem

In this subsection, we introduce an important result about the recurrence property of a
quasiperiodic motion, which provides a theoretical background for Chapter 4. We only
consider the 2-frequency torus case, namely with the incommensurate rotation number
v = wi/wy. A further simplified model to illustrate a uniform 2-torus quasiperiodic
motion is the circle map |

T,: T,06 =0+~ mod 1, (1.12)

where T, is a transformation mapping the unit circle onto itself with 0 and 1 being
identified. The iterates of the rotation (orbit) are correspondingly 77 = 6 +ny (mod 1).

Theorem 1.2.3 (Slater’s Theorem, Three Gaps Theorem) For any interval [ =
[a,b) C [0,1], the orbit {T'0} has at most three different recurrence times 7; which are
given by the formulas

71 = min{n : ny mod 1 < |I| = b — a},
7o = min{n : ny mod 1 > 1 —|I|}, (1.13)

T3 = T1 + To.
Thereby the third time 13 is not always realized depending on I.

Slater called this gaps theorem of the sequence ny mod 1 (Slater, 1967). Let n; be the
sequence of integers n satisfying {ny} < I. Then any difference n;;1 — n; is called a
gap. The symbol {z} denotes the fractional part of = (i.e., if [z] denotes the largest
integer not exceeding =, {x} = x—[z]). The gaps between the successive integers n such
that {nvy} < I take at most three values, one being the sum of the other two. However,
Mayer called this property of the linear rotation 7, as Three Gaps Theorem (Mayer,
1988). These two formulations of the theorem are identical. Furthermore, there is an-
other formulation of this theorem as called “Steinhaus conjecture” (Ravenstein, 1988).
Essentially, all these formulations of the theorem disclose the same dynamical property

TThe trajectory of the system will wind around the 2-torus indefinitely without ever intersecting
itself. A further simplification in the visualization of the motion of the system can be obtained by
freezing the motion in one of the direction (say 62, we use the angular coordinates 61, 62) by strobing
the system at time intervals At = 27 /w2. This corresponds to taking a slice through the 2-torus with
the plane 02 = const. The cross section of the torus is known as a Poincaré section. Trajectories on
this surface are now reduced to points on the circle of iteration.

During this time interval At, 6; advances by

A0y = wi At = 27L = 277, (1.10)
w

2

Thus, successive intersections of the trajectory with the plane may be represented by a series of points
on the circle related by (61)n4+1 = (61)n + 27, or, after removing the redundant index

Ont1 = 0p + 27. (1.11)

This is a map of the circle onto itself (Dixon et al., 1996).
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of the linear rotation T,. The result holds for two dimensional harmonic oscillators
with an arbitrary rotation number v (Pandey & Ramaswamy, 1991).

It is well known that for any integrable Hamiltonian system with two degrees of
freedom, the dynamics can be reduced to successive intersections of the phase trajectory
with a proper Poincaré section, resulting in an invariant circle S;. By Denjoy’s theorem,
any homeomorphism defined on the circle S1, T : S1 — S1, with an irrational rotation
can be conjugated to the rigid linear rotation 7’,. Hence it is clear that a similar result
holds. In particular, for any point x € Si, an irrational rotation has at most three
different recurrence times with respect to any interval in the Poincaré section 5.



Chapter 2

Recurrence Plots

Recurrence Plots (RPs), the basic tool applied throughout the thesis, are introduced.
RPs of some prototypical systems exhibit complex patterns, which motivate RPs-based
quantifications. Dynamical invariants derived from RPs are used to disclose the intri-
cate periodic regions embedded in the chaotic sea of the parameter space of a mechanical
system with parametrical excitation.

2.1 Overview of recurrence plots

RPs were originally introduced to visualize recurrences of trajectories of dynamical
systems in phase space (Eckmann et al., 1987). Suppose we have a dynamical system
represented by the trajectory {Z;} for i = 1,--- , N in a d-dimensional phase space. The
components of these vectors could be, e.g., the position and velocity of a pendulum
or quantities such as temperature, air pressure, humidity and many others for the
atmosphere. The development of the system is then described by series of these vectors,
representing a trajectory in an abstract mathematical space. We then compute the
following recurrence (binary) matrix,

Riyj :@(6— Hfz—f]H), i,7=1,..., N, (2,1)

where € is a pre-defined threshold, ©(-) is the Heaviside function and || - || is a norm
defining the distance between two points. The graphical representation of R; ;, called
“recurrence plot”, is obtained by encoding the value “one” by a black point, (i.e.,
the distance between the respective points is smaller than the predefined threshold ¢),
and “zero” by a white point (i.e., the distance between the respective points is larger
than €). By definition, the RP has always a black main diagonal line since it compares
the point with itself (i = j). Furthermore the RP is symmetric with respect to the
main diagonal.

In order to compute an RP, an appropriate norm has to be chosen. The most
frequently used norms are the Euclidean norm and the Maximum norm. Note
that, in general, the effective neighborhoods of these two norms have different shapes,
sizes and orientations with respect to the points on the trajectory. To compute RPs,

13
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the Maximum norm is often applied, because it is computationally faster and allows to
study some features in RPs analytically (Chapter 3, and also by Thiel et al. (2004a)).
However, dealing with quasiperiodic dynamics, some subtle aspects in the choice of
norms must be taken into consideration. This will be elaborated in detail in Chapter 4.

Another crucial parameter of an RP is the pre-defined threshold e. If € is chosen
too small, there may be almost no recurrence points and we cannot learn much about
the recurrence structures of the system. On the other hand, if € is too large, almost
every point is a neighbor of every other point, which leads to a lot of artefacts. Hence,
we have to find a compromise of the value of €. In general, the finite € effect cannot
be removed completely. However for some toy models (periodic and uniform 2-torus
motion), the e effect can be determined analytically (Chapter 3). Dealing with time
series, an ad hoc choice of the threshold € has been suggested as a few percentage of
the maximum phase space diameter (Zbilut & Webber, 1992). Furthermore, it should
not exceed 10% of the mean or maximum phase space diameter.

(a)10 (b)10
g 5 |7 g 5
(B [
% 3 10 % 2 10
ime ime
(0)10; a7 /// (d)10 — =
S L
Y /
[ S v / v 4 = 5
/ s
7
S S e
0 5 10 0 5 10
Time Time

Figure 2.1: Recurrence plots of four typical systems. (a) periodic motion in phase space,
(b) uniform quasiperiodic motion, (c) chaotic Rossler system (& = —y — z,y = x 4+ 0.2y, 2 =
0.2 4 z(z — 5.7)), and (d) uniformly distributed noise. The line with double arrows in (a) is
used to highlight a white vertical line.

Figure 2.1 displays the RPs of four prototypical systems, namely of a periodic mo-
tion (Fig. 2.1(a)), of a uniform quasiperiodic motion (Fig. 2.1(b)), of the chaotic Rossler
system (Fig. 2.1(c)), and of uniformly distributed independent noise (Fig. 2.1(d)). In
all represented systems recurrences are observed with rather different patterns. The
recurrence time, i.e., the time that the trajectory needs to recur to the neighborhood
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of a previously visited state, corresponds to a white vertical line in an RP (Fig. 2.1(a)).

The periodic motion is reflected by long and uninterrupted diagonal lines separated
by a constant distance, which corresponds to the period 1T of the oscillation. The
RP of a uniform quasiperiodic system is shown in Fig. 2.1(b). In contrast to the
periodic case, it also has continuous uninterrupted diagonal lines. However the distance
between the diagonal lines is not constant (indicating different return times). The RPs
of the noise consists of mainly single black points, yielding rather homogenous patterns
(Fig. 2.1(d)). The predominant structures in the RP of the chaotic Réssler system
consist of some diagonals which are shorter than those of the periodic motion. The
distance between diagonal lines is not constant due to the multiple time scales present
in the system and the interruption of the lines is due to the exponential divergence of
nearby trajectories. In the upper right of the RP there is a small window with parallel
lines, similar to the RP of the periodic case. This window can be used to localize an
unstable periodic orbit (Bradley & Mantilla, 2002; Marwan et al., 2007). The idea is
based on the close returns of the trajectory to a specific UPO (Lathrop & Kostelich,
1989). Once the orbit visits a UPO, it stays in the vicinity for a certain time interval,
which manifests itself as periodic patterns embedded in an RP. Comparing Figs. 2.1(a)—
2.1(d), one finds that the RP of quasiperiodic motion has an intermediate complexity.
This will be further studied in Chapter 4.

The concept of recurrence plots (Eq. 2.1) can be extended to the analysis of two sys-
tems. There are two alternative possibilities: cross recurrence plots (CRPs) (Mar-
wan & Kurths, 2002) and joint recurrence plots(JRPs) (Romano et al., 2004; Ro-
mano, 2004). Both definitions have their strengths and weaknesses in the investigation
of two interacting systems.

2.2 Recurrence quantification analysis

In order to go beyond the visual impression provided by RPs, the Recurrence Quan-
tification Analysis (RQA) has been introduced by Zbilut & Webber (1992); Webber
& Zbilut (1994) to quantify the structures found in RPs. The following development
and extensions of the RQA (Zbilut et al., 1998, 2002b) and later by Marwan et al.
(2002b); Marwan & Kurths (2002) have consolidated the method as a powerful tool in
nonlinear data analysis, revealing their potentials in the analysis of complex systems.
The measures are based on the diagonals and vertical line structures of the RP. Some
of the most important recurrence quantification measures are:

e Recurrence Rate (RR): defined as the percentage of black points in the RP,
i.e.

N
1 S
RE =+ > O(e — |17 — ). (2.2)

ij=1

e Determinism (DET): defined as the percentage of black points belonging to a
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diagonal line of at least length [,

X, PO

DET
L LP(1)

9y (2.3)

where P(l) denotes the probability to find a diagonal line of length [ in the RP.
This measure quantifies how predictable a system is. However, this measure does
not have the real meaning of the determinism of the process.

Average Diagonal Line Length (L;;cqn): defined as
N

Dzt P
N

> ity P

is the average time that two segments of the trajectory are close to each other,
and is related to the mean prediction time.

Lmean =

(2.4)

Divergence (DIV): defined by

DIV = !

. Linae = max ({I;}24), (2.5)

maxr

where Ly,q, is the longest diagonal line found in the RP (except the main di-
agonal). This measure was first conjectured to be proportional to the largest
Lyapunov exponent (Eckmann et al., 1987; Trulla et al., 1996), but is rather
related to the Rényi entropy of second order, Ky (Thiel et al., 2004a).

Entropy (ENTR): is the Shannon entropy of the frequency distribution of di-
agonal lines in the plot,

N
ENTR=- > p()lnp(l), (2.6)

where p(l) = P(I)/ S50 1. P(1). This measure is designed to quantify the com-
plexity of the deterministic structure in the RP.

Ratio (RATIO): is the ratio between DET and RR,

DET
RATIO = —/——. 2.7
This measure has been shown to be useful to identify some transitions in the
dynamics (Webber & Zbilut, 1994), where RR changes, but not DET.

Laminarity (LAM): analogously to the DET, it is defined as the percentage of
black points which are contained in a vertical line of at least length [,,,:

X, )

LAM .
L 1Py (1)

(2.8)
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Here P,(l) denotes the probability to find a vertical line of length [ in the RP.
LAM quantifies the laminar states of the given trajectory.

e Trapping Time (77): is the mean length of vertical lines

— Zl]\ilmin va (l)
S PoD)

which measures the mean time that the system is stuck close to a certain state.

T : (2.9)

e Maximal vertical length (V,,,,): is analogous to the longest diagonal line in
the RP.

Vinax = max ({vl}{vzvl). (2.10)

The last three measures are based on the distribution of vertical lines, which allow to
identify chaos-chaos transitions, as well as intermittency (Marwan et al., 2002b). So far,
there are more than ten different measures to quantify the line structures in an RP. This
technique has been applied to various experimental data sets, ranging from chemistry
and physiology to earth sciences and complex synchronization analysis (Romano et al.,
2005; Kurths et al., 1994; Thiel et al., 2006; Thomasson et al., 2001; Wu, 2004; Castellini
& Romanelli, 2004; Kurths et al., 2006). For an exhaustive overview of other measures
and associated applications in data analysis, see (Marwan et al., 2007).

The influence of noise on the results from the RQA is an important issue, partic-
ularly for the experimental data analysis. In principle noise can have two effects on
the line structures in RPs. It can break up black diagonals producing (mainly single)
white gaps which really are neighbors in phase space. On the contrary, non-recurrence
points could be erroneously recognized as recurrence points. If the system is contam-
inated with Gaussian white noise, both theoretical and numerical analysis show that
the choice of the threshold should be at least of five times the standard deviation of
the observational noise € ~ 5¢. This minimal choice is appropriate for a vast class of
process, yielding reliable quantifications in the RPs (Thiel et al., 2002). Not that as
e cannot be too large either as it should be much smaller than the diameter of the
attractor. A choice of € & 50 only works for low noise levels.

2.3 Dynamical invariants and RPs

The RQA measures quantify effectively the structures that different dynamical systems
exhibit in their RPs. However they are rather heuristic, typically depending on the
embedding parameters used to reconstruct the phase space trajectory. From Fig. 2.1,
it is obvious that the line lengths are linked to the predictability of the system. The
shorter the diagonals in the RP, the less predictable the system. It was first conjectured
that the inverse of the longest diagonal (except the main diagonal) is proportional to the
largest Lyapunov exponent of the system (Eckmann et al., 1987; Zbilut et al., 2002a).
However, the relationship between these maximal lines and the Lyapunov exponents is
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not as simple as it was first stated. As a matter of fact, the distribution of diagonal
lines is not directly related to the maximal Lyapunov exponents but rather to the
correlation entropy, which can be estimated by means of the recurrence matrix (Thiel
et al., 2004a). A brief overview is given in the next section.

2.3.1 Rényi entropy K,

It has been shown that dynamical invariants, such as the Rényi entropy of second
order K5 and the correlation dimension Dj, can be estimated from RPs (Thiel et al.,
2004a, 2003, 2004b). K3 can be estimated from the cumulative distribution of diagonal
lines P(1) in the RPs. The probability of finding a diagonal line of at least length [ in
the RPs of a chaotic system is given by

PA(1) ~ P2 exp(—Ksy(€)7l), (2.11)

€

where 7 is the sampling rate of the measurement. Therefore, if we represent P°(l) in a
logarithmic scale versus [ we should obtain a straight line with slope —Ks(e)7 for large
I’s. More precisely, an estimator of Ky has the following form

N -1
1 . 1 1
K(e) = == In (PE() = =~ In (ﬁ tszzjl IE)RMM). (2.12)

Note that from Eq.(2.11), the correlation dimension Dy can be obtained as by-byproduct
by considering two different thresholds € and € + Ae as follows:

Ds(e) = In (%)/m <E ;Ae). (2.13)

Analogously to Eq.(2.12), the joint Rényi entropy of second order JK; can be
estimated by using the probability of finding a diagonal of at least length [ in the JRP
instead of the RP of a single system. This extension of the estimator is useful for the
analysis of two or more interacting systems (Romano et al., 2004).

One important advantage of the estimator of the invariant K from RPs, Eq. (2.12),
is that it is independent of the choice of the embedding parameters (Thiel et al., 2004a).
However, a popular technique, Grassberger-Procaccia algorithms (Grassberger & Pro-
caccia, 1983a), to estimate the correlation entropy and the dimension in its standard
form does depend on the embedding parameters. The computation time of the estima-
tor (2.12) is greatly reduced (Thiel et al., 2004a). Note that by means of this approach,
K> is estimated from the time series, i.e., knowledge of the equations is not necessary.
This is another important advantage for the study of measured time series.

2.3.2 Shrimps in 2-D parameter space

It is well known that the entropy measures the average rate at which information is
lost. Its inverse is a rough estimate of the time for which reasonable prediction is
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expected. For a purely random system, Ko tends to infinity, a periodic system is
characterized by Ky = 0, and chaotic systems yield a positive and finite Ko. This
is expected as chaotic systems belong to a category between pure periodic and pure
stochastic systems in terms of their predictability. Hence, K5 is an appropriate measure
to distinguish different classes of dynamics of the system.

As an application of K5, we study the bifurcation structures in a two dimensional
parameter space (PS) of a parametrically excited system with two degrees of freedom.
A detailed theoretical and numerical analysis is presented in the Appendix A. We apply
the automated algorithm presented by Thiel (2004) to explore the parameter space.

The system has the following form

) k 3k k
dl = 6[0’1’01 — 517“ — %?}1 — 221)1(715 + 3’0;) — Tlvl(lt% + U%) — EzullLQ?}g],
. ) k 3k k
v = 6[—0’1u1 — Bul — —11)1 + —2u1 (3u§ + ’U%) -+ —1u1 (u% + U%) + lvl’UJzUQ],

2 2 4 4 2

1) k k
g = €|ogvg — 2y — —2( 2+ 30wy — —2u1v1u2],

2 4 2
) 1) k k
Uy = 6[—521)2 — oqug + f(Su% + v?)ug + gulvva]. (2.14)

Equations (2.14) represent an autonomous system of four ordinary differential equations
of first order, governing the slow time modulations of the amplitudes and the phases
of the approximate solutions of a parametrically excited system with two degrees of
freedom (Zou et al., 2006). We take o1 and oy as bifurcation parameters to study
the contributions of the natural frequencies to the dynamics of the system and fix the
other parameters according to their physical meanings (Zou et al., 2006).

Bifurcation diagram uncovered by K

We divide the parameter plane of (o1, 02) with step size 0.005 in o1 € [—0.4, 0.4] axis and
0.01 in o9 € [0, 2.5] axis. This produces 160 x 250 pairs of parameter values in the whole
parameter space. For each set of parameters, we use about 150 ~ 250 oscillations of the
chaotic orbit and a total of 5,000 data points to estimate Ko. Transition boundaries
uncovered by Ky are illustrated in Fig. 2.2. Dark blue regions represent Ko ~ 0
indicating regular or periodic behavior. Red parts of the plot indicate highly chaotic
behavior. We represent the Hopf bifurcation sets of the coupled mode motion L4 by a
black line in Fig. 2.2 for comparison. The line L4 is determined analytically by studying
the stability conditions of the coupled mode motion (Appendix A).

From this diagram, one finds that Ko uncovers rich dynamics inside the chaotic
region. Especially, two well pronounced periodic bands can be identified. It is rather
difficult to define the borders of any of these two regions with the analytical approach
because we cannot obtain the solutions explicitely.

Additionally, the transition sets defined by L4 agree rather well with the boundaries
indicated by K for smaller (o7 —03), which means that the analytical approach can be
successfully applied to predict the transitions when the system undergoes rather simple



20 Chapter 2. Recurrence Plots

Figure 2.2: (Color) K3 in the (01, 02) plane computed on Egs. (2.14). (Regions with Ky ~ 0
indicate regular or periodic solutions, while parts with K5 > 0 related to chaotic behavior. Two
pronounced periodic windows can be found within the tongue. The black line, Ly, is defined
by the Hopf bifurcation when the coupled mode motion loses stability.)

bifurcations. However, note that the outer border defined by K5 is slightly larger than
Ly, especially for larger (o1 — 02). This is because the higher order terms are linearized
in the vicinity of the steady states when we use the perturbation method to analyze
their stability. This means, that in principle, L4, will not be a straight line in this region
of parameter space. This effect will be enhanced for larger (07 — 03). We use all the
nonlinear terms in Egs. (2.14) without linearization to compute Ks so that from this
point of view, the out-side borders defined by this method are the genuine transition
boundaries. The approximate analytical method fails to yield suitable results in the
complex regions.

The structures tested by Lyapunov exponents )| A0 i

Furthermore, we compute the spectrum of Lyapunov exponents in the same parameter
space to validate the structures obtained by means of the automated algorithm to
compute Ky. The estimation of \; is based on Egs. (2.14), but not from time series.

Note that K5 is a lower bound for the sum of the positive Lyapunov exponents of
the system (Kantz & Schreiber, 2004), which is

Ky <> A (2.15)

Ai>0

Hence, we can expect that Z)\i>0 A; shows qualitatively the same structure in the
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Figure 2.3: (Color) Ajaq in the (01,02) plane. (Also, the blue regions with nearly zero
exponents indicate regular or periodic solutions, while red parts mean highly chaotic behavior.
The black line, L4, is defined by the stability condition of the coupled mode motion. We
continue to zoom the subregion with purple color to find shrimps.)

parameter space as K.

After computing the number of the positive Lyapunov exponents of Eqgs. (2.14), we
find that only one positive exponent exists in the entire parameter space, which means
that no hyper-chaotic motions occur. So we plot the largest Lyapunov exponent, Az,
in the parameter space in Fig. 2.3. Also, the same periodic bands as in Fig. 2.2 can be
observed in this diagram and the black line, Ly, is given for comparison. The parameter
discretization is the same as Fig. 2.2.

Both K5 and A4, indicate rather large periodic windows inside the complex region
and they show qualitatively the same structure. An especially rich behavior of the
dynamics seems to take place in the tip of the tongue (Fig. 2.3). Therefore, we zoom
into it and recognize a fairly complicated structure, where chaotic regions are riddled
with periodic bands (Fig. 2.4). These bands occasionally intersect. Some structures of
special interest can be found in this diagram marked as region A, B and C.

Shrimps structures

We continue zooming into the regions A and C' of Fig. 2.4 and the particular structures
identified are shown in Fig. 2.5 respectively.

These blue swallow-like structures, consisting of a head and four main thin legs,
are called shrimps (Gallas, 1993, 1994). Typically, at the borders of the shrimps, small
inaccuracies by choosing the parameters are sufficient to induce drastical changes in the
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Figure 2.4: (Color) Zoom into the tip of the tongue represented in Fig. 2.3. (We use high
resolutions about 1000 x 1000 points in this interval. From this diagram, the largest three
shrimps marked as region A, B and C, are observed together with other smaller ones in this
system.)

final behavior. This effect makes it impossible for the approximate analytical method
to uncover these structures. Shrimps have been found in chaotic maps (Gallas, 1993)
but also in the Rossler system (Thiel, 2004). Recently, Bonatto and Gallas have found
shrimps also in laser dynamics (Bonatto et al., 2005; Bonatto & Gallas, 2007).

In order to study the transition properties of the shrimp borders, one has to resort
to numerical simulations. When the parameters transit the inner and outer boundaries
of the shrimps, the system undergoes the period doubling and type-I intermittency
route to chaos respectively (Zou et al., 2006).

Both K (from time series) and A4, (from the equations) in parameter space can
help us to identify these complex periodic windows in the region, where the analyti-
cal approach fails, and guide us to choose parameters properly to find transitions to
chaos. The discovery of such complex periodic windows in the chaotic regions allows
for the control of chaos by choosing the parameters within the shrimps (Gallas, 1993).
This characteristic is very important for experiments because it shows how to choose
the parameters to avoid or to obtain chaos. This is of importance, e.g., when chaos
deteriorates the working conditions in some engineering machines.
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Figure 2.5: (Color) Shrimps detected by K.
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Chapter 3

Analytical Description of RP for
Quasiperiodic Systems

We study recurrence plots (RPs) of systems which exhibit the simplest example of
non-trivial recurrences, namely in the case of a quasiperiodic motion. This case can
still be studied analytically and constitutes a link between simple periodic and more
complicated chaotic dynamics. Since we deal with non-trivial recurrences, the size of
the neighborhood € to which the trajectory must recur, is larger than zero. This leads
to a non-zero width of the lines, which we determine analytically for both periodic and
quasiperiodic motion. The understanding of such microscopic structures is important
for choosing an appropriate threshold € in Eq. 2.1 to analyze experimental data by
means of RPs.

3.1 Non-trivial recurrences

The terminology of RPs indicates that this plot captures the recurrence property of the
underlying process. A periodic system has a trivial recurrence since it recurs exactly
after one period in phase space. The presence of non-periodic recurrent points is often
referred to as nontrivial recurrence. Note that in the case of nontrivial recurrences,
the trajectory only recurs to the vicinity of the reference point but an exact recurrence
cannot be obtained. Dynamical systems with nontrivial recurrence can be split into
two distinct groups (Katok & Hasselblatt, 1995):

(a) Systems with a similar behavior for different orbits and low complexity of the
global orbit structure, e.g., rotations on the circle, translations and linear flows
on the torus, and, to a large extent, completely integrable Hamiltonian systems.

(b) Systems with different asymptotic behavior for different initial conditions, insta-
bility of asymptotic behavior with respect to initial conditions, and high (expo-
nential) complexity of the global orbit structure, e.g., by the exponential growth
of periodic orbits and a positive topological entropy.

25
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Obviously, in group (a) we find the first indication of complicated asymptotic behavior
with nontrivial recurrences, which is one of our major concerns in this chapter.

In this chapter, we perform an analytical analysis to capture the time indices of
recurrences in an RP. We firstly exemplify our analysis for the sine function to obtain
some theoretical indications from periodic motion, which makes it convenient to extend
the analysis to 2-torus models having quasiperiodic motion with nontrivial recurrences.

The outline of this chapter is as follows: In Sec. 3.2, € is set to zero to find the exact
recurrence time indices for the sine function. The non-trivial recurrence problem of
quasiperiodic dynamics is illustrated in Sec. 3.3, followed by its analytical analysis in
Sec. 3.4. Afterwards, we deal with the Heaviside function with non-zero € directly, both
in the sine function and the torus model in Secs. 3.5 and 3.6, respectively. After these
analyses, the black areas (Marwan, 2003; Marwan & Kurths, 2005) and their respective
mechanisms become quite clear and some conclusions are drawn in the last section.

3.2 RPs of sine function in case of e =0

In order to yield an analytical description of RPs, we first set ¢ = 0 in the Heaviside
function of Eq. (2.1) in the following two sections. This assumption guarantees that
every black point in the RPs is an exact recurrence point, which indicates that the
trajectory repeats itself showing periodic behavior. Note that on the torus with % ¢Q
(Q s the set of all rationals), there would be no recurrences in case of € = 0, i.e., only the
black main diagonal remains. The advantage of setting ¢ = 0 is that we can treat the
Heaviside function much more conveniently, since the equations are easier to evaluate
than inequalities. We shall use the maximum norm for our analytical analysis and the
advantage of this will become clear during the derivation of the recurrence time index
below, especially important for 2-torus models.

Let us start by searching the indices of recurrences for a sine function. Two points
of the trajectory are denoted by ¥; = x; = sinwt; and ¥; = x; = sinwt;, where t;,t;
represent the time and the period is 7' = 27 /w. Hence, the recurrence condition is

maz||Z; — Z;|| = maz| sinwt; — sinwt;|| = |sinwt; — sinwt;| = 0. (3.1)

Hence, the exact recurrent time indices are
2 2 1
ti—tj=k— =kxT, or ti+tj=k—+ " =kxT+=T, k=0,1,2,3. (32)
w w o w 2

The structures in RPs satisfying the conditions (3.2) are reflected by 45° degree lines
(parallel to the main diagonal) and the 135° anti-diagonal lines, respectively, which is
shown in Fig. 3.1(a).

Next, we come to the sine function in its phase space, i.e., the points of the trajectory
are given by two dimensional vectors: ¥; = (sinwt;,coswt;). The condition for the
recurrence is obtained in a similar way as

maz||Z; — Z;| = maz|/(sinwt; — sinwt;), (coswt; — coswt;)|| = 0. (3.3)
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Figure 3.1: (a) RP of a sine function without embedding; (b) RP of a sine function with
embedding, which indicates that all the anti-diagonals disappear.

This condition is equivalent to the following two equations

sinwt; — sinwt; = 0,
{ ' J (3.4)
coswt; — coswt; = 0.
Hence, the time indices for the exact recurrence points are
2
ti—tj:kf:kXT, k:1,2,3,"'. (35)
w

Comparing conditions (3.5) and (3.2), we find that all the anti-diagonal lines disappear
because of the embedding, which is shown in Fig. 3.1(b). From this figure, it becomes
obvious that the vertical distances between diagonal lines are directly related to the
period of the underlying process.

The embedding effect in a single sine dynamical variable can also be studied in the
following way. We first reproduce the RPs for the sine series (without embedding) as
shown by blue color in Fig. 3.2. Then, specify a suitable time delay, 7, in this single
series and overlap the RPs of this new series, as shown by red color, with the original
one in the same plot. Obviously, one finds that this overlapping causes the anti-diagonal
lines to dispart and diagonal lines to coincide. The residual effect of overlapping yields
the same RPs as shown in Fig. 3.1(b). The choice of a suitable time delay 7 can
be implemented on the autocorrelation function or on the mutual information widely
applied in phase space reconstruction techniques (Abarbanel et al., 1993).

3.3 RPs of quasiperiodic dynamics

In a periodic motion states recur at a fixed time interval equal to the period and hence
the problem of recurrence in an RP is fully solved. The situation is somewhat more
intricate in the presence of quasiperiodic dynamics, which we deal with now.

Two possibilities to implement quasiperiodic dynamics are the two models: phase
model and a model with parametric equations in three dimensional orthogonal coordi-
nate system in phase space. These two models produce the same uniform quasiperiodic
motion. In our derivation below the phase model is suitable for the heuristic analysis,
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I 4T

Figure 3.2: (Color) The overlapping of the RPs of the original single sine series, blue color, and
that of a newly generated series with time delay 7, red color. The anti-diagonal lines dispart
and the residual image of the two colors consists of 45° diagonals only as shown in Fig. 3.1(b).

while the model with 3-D parametric equations is proper for obtaining the time indices
of recurrences in an RP and determining the € effects to the line structures explicitely.

First, we start from the phase model to illustrate the recurrence properties of the
quasiperiodic dynamics. The uniform motion on the torus is represented by two angle
variables ¢1 and ¢2 whose evolution is parameterized by the time t as the following (Ka-
tok & Hasselblatt, 1995; Schimansky et al., 1997)

= t
{¢1t P10 + w1 mod 27, (3.6)

Gat = P + woat

where wi,ws are the corresponding angular velocity with the rotation number v =
w1/we. The phase space of the system is a square of size equal to 27 imposed by the
modulus in Egs. (3.6). Figure 3.3(a) illustrates the phenomenon of recurrence for the
dynamical system: the trajectory starts inside a square of sides e parallel to the phase
space axes and, after a number of re-injections, traverses again this square. The nature
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Figure 3.3: (a)Illustration of recurrence of torus with w;/ws = v/2; (b) The corresponding
RPs with e = 0.5.

of the flow depends on the arithmetical properties of the slope % whether it is rational
or irrational. If the slope is rational, i.e., if wy/wy = m/n for some integers m,n with
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no common factors, all trajectories are closed orbits on the torus (¢; completes m
revolutions in the same time that ¢y completes n revolutions).

However, if the slope is irrational, every trajectory winds around endlessly on the
torus, never intersecting itself and yet never quite closing. Thus the flow is dense to be
quasiperiodic on the torus. Of course, the size of the square in Fig. 3.3(a) affects the
recurrence time significantly, which is our object of study in this chapter.

It is impossible to directly substitute the solution of Egs. (3.6) into the Heavi-
side function to determine the time indices of recurrences because of the discontinu-
ity brought by the modulus. However, one can analyze it in the following heuristic
way (Schimansky et al., 1997). When a recurrence within the e interval occurs at
time ¢, the values of the angular coordinates (¢1¢,, ¢2¢,) differ from their initial values
10, P20 by integer multiples of 27 plus two quantities 1, d2 the absolute values of which
lie between 0 and €/2:

wity, = 2mm + 01,
1 DS e e < S (3.7)
waty = 21 + d2, 2 2
The recurrence time ¢, therefore satisfies the relation
2 1) 2 )
tp:£m+—1:—7rn+—2 (3.8)
w1 w1 w9 w9

implying that m,n must in turn obey to

m = nw—2 + %[52;2 — (51] (3.9)
If % is rational the motion is periodic and states recur exactly (¢ = 0) after a period
equal to 27 divided by the common divisor of wy and wo, and d; = do = 0. If on the
other hand wy /wy is irrational, Eq. (3.9) cannot be fulfilled if §; and Jy are different
from zero.

From the view-point of RPs, the diagonal lines as shown in Fig. 3.3(b) are approx-
imations to the corresponding irrational number with € precision. This means, that
with a certain threshold € > 0 the following relation holds

v = i T, where m,n are integers. (3.10)

wy N

The above derivation of Eq. (3.10) from the time indices of recurrences in an RP is
obtained from a dynamical perspective. The mechanism for the lines in an RP will
become even clearer with the model of parametric equations in the next section. Both
models show the same dynamics with slightly different coordinate representations. The
periodic boundary condition (modulus) introduced in the phase model makes it difficult
to calculate the recurrence matrix (2.1) analytically. Therefore, we concentrate on the
model with parametric equations in the 3-D phase space to perform a further analysis
in the following sections.
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Figure 3.4: RPs of the torus for two different threshold. Left (a): ¢ = 0.3; Right (b): ¢ = 0.4.
The parameters are R = 4,7 = 0.5 and v = (v/5 — 1)/2.

3.4 The 2-torus model in 3-D phase space in case of ¢ = 0

The phase model is used to study the recurrence problem of the quasiperiodic dynamics
concisely. However, the amplitude of the oscillations influences the dynamics signifi-
cantly in many real situations. Additionally, from the RPs point of view, the threshold
€ is a value defined as a proper proportion of the phase space radius. Hence, two radius
variables are introduced to measure the size of the torus in space in this section. With
this model, we will uncover the relationship between the time index of recurrences in
an RP to the frequency ratio straightforwardly. Note that the setting ¢ = 0 allows us
again to evaluate the Heaviside function conveniently.

In the three-dimensional state space, the trajectories for quasi-periodic motion are
constrained to the surface of a torus. A mathematical description of this kind of motion
is given by

1 (R + rsinwit) coswat
U(t)=| z2 | = | rcoswit , (3.11)
x3 (R 4+ rsinwit) sinwat

with two angular frequencies w; and we (Hilborn, 2000). The frequency w; corresponds
to the rate of rotation about the cross section (with radius r) with period 77 = 27 /wy,
while the frequency ws corresponds to the large circumference (with radius R) with
period Ty = 27 /w9. The rotation number ~ is defined as v = wj /ws. For illustrations,
two typical RPs of the above system with two different choices of the threshold are
shown in Fig. 3.4.

As we have done for the sine function, the condition for the recurrences is given by

mazx||(R + rsinwit;) coswat; — (R + rsinwit;) cos watj, (3.12)
rcoswit; — rcoswity, (3.13)
(R + rsinwit;) sinwat; — (R + rsinw;t;) sinwst;|| = 0, (3.14)

where t; and ¢; denote the time indices of any two points on the trajectory. All three
components of the above expression of the maximum norm have to vanish to find a
recurrent point in case of € = 0, which permits us to deal with them one by one. Let
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Figure 3.5: A schematic formation mechanism of the anti-diagonal lines. The direction of the
motion is assumed to be counterclockwise. The € neighborhood is defined by shaded area.

us start our discussion with the second term (3.13). The first necessary condition is
obtained as
ti—tj:m2£, or ti-i-tj:in, m=1,2,3,---. (315)
w1 w1
If the time indices for the points ¥; and ¥; do not satisfy the above relationship, this
will be reflected by a white point in the RP. So it is necessary to check whether the
other two conditions are fulfilled only if the second term is satisfied.

In the next step, the time index t; = t; + m2m/wy of (3.15) is substituted into
the first component of the maximum norm to check the other necessary conditions
for recurrence. The reason why we do not consider the condition t; 4 t; = m2m /wy
is the following: suppose that (;,v;) are close. If the condition ¢; + t; = m2m/wy
was true, it would mean that (¥4, ¥j—1) should stay close for a while. Typically, this
cannot be true as can be seen by monitoring the uniform motion of two points along
a circle, as shown in Fig. 3.5. However, if all the points are projected onto the z-axis,
then this becomes possible. The formation of 135° anti-diagonal patterns is due to
false recurrences caused by an insufficient embedding, which means that two points go
in opposite directions. The anti-diagonal lines have already been found for the sine
function as shown in Fig. 3.1(a). (see also Fig.3 (Gao & Cai, 2000) and explanations
therein).

With the first necessary condition t; = t; + m2mw/w; of (3.15), one can simplify the
first component of the norm (3.12) as follows:

(R + rsinwit;) coswat; — (R 4 rsinwit;) coswat;
2
=[R+ rsinwi (t; + mw—zr)] coswat; — (R + rsinwit;) coswat;
= (R + rsinwit;) (cos wat; — coswat;). (3.16)

g

A B

For the ring torus, A # 0 since R > r. So setting B = 0, the time index for the
recurrence can be obtained as
21

P
ti—tj=n—, or ti+tj=n—, n=123,. (3.17)
w2 w2
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Again, the relevant time index is t; = t; +n2m Jws for the same reason discussed before.
Fortunately, the third component of the maximum norm (3.14) always vanishes when
Egs. (3.17) and (3.15) are satisfied.

Hence, the relevant time indices of recurrence conditions are the following:

w1 (3.18)

P
ti—tj=n—=nxTy, n=123 .
w2

2
{titjmﬂmle, m=1,2,3,---,

Note that it is impossible to find integer time indices which satisfy the two above
expressions simultaneously because the ratio v = wj /ws is incommensurate, while m, n
are integer numbers.

From the RPs point of view, the diagonal lines shown in Fig. 3.4 are approximations
to an irrational number using rationals. In other words, if a black point is obtained
in the RP with a certain threshold € > 0, it means that Eq. (3.10) holds. From the
above analysis, we have related the time index in the RPs to the frequency ratio of the
torus. The approximation (3.10) has important implications in number theory, stating
that an irrational number can be approximated arbitrarily closely by rational numbers
whose denominators are arbitrarily large (Hardy & Wright, 1954).

The diagonal line structures as shown in Fig. 3.4 show rich behavior and are deter-
mined by the interplay between the arithmetic properties of the rotation number and
the threshold e, which has been discussed in detail by Zou et al. (2007b).

3.5 RPs of sine function in case of ¢ > 0

So far, we have performed the analytical analysis of RPs in case of € = 0 to search the
exact recurrence time index in both the sine function and 2-torus models. However,
for the original definition of RPs, the predefined threshold € is larger than zero. Hence,
it is both theoretically and practically important to continue investigating the effects
of non-zero € in the analytical analysis. In this section, we start from the simple sine
function with embedding in the two-dimensional phase space and a single sine function
without embedding in subsection (3.5.1) and (3.5.2), respectively.

3.5.1 Sine function with embedding

Let us start by considering the sine function with embedding. The condition for recur-
rence described by Eq. (3.3) in the previous section becomes now

maz|| sinwt; — sinwt;, coswt; — coswt;|| < e. (3.19)

The above condition can be split into the following two inequalities:

t; +1; t; —t; 1
osw(l_i_J)sinw(l ])|<

| ;
2 2 2
(3.20)
ti +t; ti —t; 1
{|sinw(l+])sinw(l ])|<f€.
2 2 2
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Figure 3.6: Schematic description of the effect caused by €, where Ad = 2/w arcsin(e/v/2).
The shaded areas make the lines in the RPs with thickness.

Combining the two inequalities by adding the square product of two sides respectively,
we obtain the following inequalities for the recurrence time index,

2 2 2 2
_ 2 arcsin — + [l ti—t; < — arcsin —— + k:—Tr, k=1,2,3,---. (3.21)
w V2 w w V2 w
Comparing the above inequalities (3.21) with Eq. (3.5), one finds that € > 0 causes
the lines to become “thicker”, i.e., we do not just have a line but a band of width
2Ad = %arcsin %, as indicated schematically in Fig. 3.6.

3.5.2 Sine function without embedding

In this subsection, we consider the analytical treatment of RPs with € > 0 for the sine
function without embedding. In other words, the recurrence condition (3.1) turns out
to be

ti +t; ti —t; 1
|cosw(l2+ ])sinw(l2 ])|<2e. (3.22)

A B

Therefore, we have to consider four different cases with respect to different combination
of terms A and B depending on their sign. Here, only one case (with A > 0, B > 0) is
treated because the results can be extended easily to the other three cases, which are
shown by the shaded area in Fig. 3.7. The boundary of the variation of A and B is
defined by AB = %e.

Now we can go beyond to obtain the time indices within that shaded area. In the
case of € > 0, two different recurrence conditions which can be obtained from (3.22)
are the following,

2 € 2 2 € 2
— - arcsin o— + k; <ti—t; < _ arcsin o— —i—k;, k=1,2,3,---. (3.23a)
~—
AA
€ 2 2 € 2w
o ALceos o + k; <ti+t; < -—  Arceos o +(k + 1);, k=1,2,3,---. (3.23b)

AB
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Figure 3.7: (a) Four different combinations of A and B of the relationship (3.22). The product
of the maximal variation satisfies A1 B; = Ay By = %6. The axes A and B correspond to the
position with e = 0. The area delimited by hyperbolic curves is filled with black points, which
can also be regarded as a blow up of one crossing of the lines in the right panel. (b) Zoom of
one RP which satisfies the recurrent time indices expressed by (3.23a, 3.23b). The positions of
AA and AB have been rotated 45° clockwise for better illustration in (a).

From these inequalities (3.23a, 3.23b), one finds that the effects of € are the same as
those for the case with embedding. The non-zero e causes the lines become thicker, with
AA being the maximal distance in the diagonal direction and AB in the anti-diagonal
direction, respectively, from the lines with ¢ = 0. The maximal variation of the product
AAAB is determined by

AAAB = % arcsin i arccos % (3.24)
The above relation also explains the thick line structure as shown by Marwan & Kurths
(2005); Marwan (2003) for zoomed microscopic structures in RPs, showing that the
variations in two directions are inverse proportionally related. An enlarged part of
the RPs with the time indices satisfying the inequalities (3.23a, 3.23b) is shown in
Fig. 3.7(b).

Note that Eq. (3.24) and its corresponding structure in the RP is due to the insuffi-
cient embedding. If a proper embedding dimension is chosen, we do not have to consider
this effect because all the anti-diagonals disappear. In other words, we can only observe
45° bands parallel to the main diagonals, which have a width 2Ad, 4. = % arcsin %, as
discussed in the previous subsection. Hence, we can also safely conclude that the fol-
lowing valuable recurrence time index is still reflected by the inequality (3.23a), even in
the case without embedding. Of course, for practical applicability, a proper embedding
dimension and a corresponding suitable time delay for the phase space reconstruction
have to be considered. Both embedding dimension and time delay are crucial to ensure
that all the anti-diagonal lines disappear. Otherwise, a small portion of black points
remains in the anti-diagonal direction due to improper time delay and the finite € effect.
This becomes even more important when the RQA measures are applied to experimen-
tal time series. Even low levels of observational noise change the statistics considerably.
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Figure 3.8: Zoom of the same piece of the RPs of 2-torus in 3-D phase space for two € to show
the effects to the line structures. (a) e = 0.37 and (b) ¢ = 0.53.

To solve this problem, a threshold e which is at least five times the standard deviation
of the observational Gaussian noise o has been proposed by Thiel et al. (2002).

3.6 RPs of torus for ¢ > 0

Next, we go back to the 2-torus in 3-D phase space with the parametric equations
(3.11) to analyze the recurrence matrix for e > 0. For the mathematical model of torus
in 3-D phase space, it is reasonable not to consider the time index of (¢; +t;) because
the embedding dimension is sufficient.

Comparing the inequalities (3.22, 3.23a) and the second term of the maximum norm
Eq. (3.13) in the case of € > 0, we obtain the following valuable time indices in terms
of inequalities

2 L€ 2w 2 L€ 2T
——arcsin —— +m— <t; —t; < —arcsin —~+m—, m=1,2,3,---,
w1 r w1 w1 r w1
—_——
A
2 . € 2 2 . € 2 (3.25)
——arcsin —= +n— <t; —t; < —arcsin —=+n—, n=1,2,3,---.
w2 2R w2 w2 2R w2
\ A

The detailed derivation of these inequalities is given in the next section. Comparing
the above set of inequalities with Eqgs. (3.18), we see that the approximation (3.10)
using rationals to approximate the irrational number v still holds and the effects of
the threshold value € are again just to cause thicker lines with width A and A', which
is similar to the case of the sine function. We enlarge in the same line segments of
the RPs for two different € values in Fig. 3.8 to show that increasing ¢ makes the lines
broader.
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3.7 Recurrence conditions of torus

In this section we present a detailed derivation of the recurrence condition of the in-
equality group (3.25). Comparing the inequalities (3.22, 3.23a) and the second term of
the maximum norm Eq. (3.13) in the case of € # 0, we obtain the following valuable
time indices in terms of the inequalities

2 . € 2 2 . € 2
——arcsin —+m— <t; —t; < —arcsin —+m—, m=1,2,3,---.  (3.26)
w1 2r w1 w1 2r w1
~————
A

7

We consider the limit case with “=" in the above inequality and substitute it in the
first component of the maximum norm and simplify in the following way

(R + rsinwit;) coswat; — (R 4 rsinwit;) coswat;
-9
=[R+rsinw(t; £ A+ mw—zr)] coswat; — (R + rsinwit;) cos wat;
[R+ rsin(wit; & wiA)] coswat; — (R 4 7sin wit;) cos wat;

=[R + rsinwit; cos wlﬁ +7r coswitjsin wlﬁ (coswat; — coswat;). (3.27)
A1 A2

When A is small, the terms A; and As can be approximated by 1 and 0, respectively.
Hence, the above relationship has the same simplified form as the term (3.16) shown
in the first section,

(R + rsinwit;)(coswat; — coswat;). (3.28)

If the A is not small, which means A; and Ay can not be approximated by 1 and 0, we
can still argue that the effects of A are something like a perturbation to the first term
since the assumption R >> r always holds in the ring torus. So the above simplified
term can be written as

(R+rsinwit; + A)(cos wat; — cos wat;). (3.29)

R

The relevant time index obtained from this relation with the threshold e is:

2 2 2 2
— 2 arcsin— + n=t < ti—t; < — arcsin — + n—ﬂ, n=123---. (3.30)
w2 2R w2 w2 2R w2

Combining (3.26) and (3.30), the inequality group (3.25) is obtained.

3.8 Summary and discussion

In the this chapter, a detailed theoretical analysis of the line structures in RPs for
periodic and quasiperiodic dynamics has been performed and the mechanism for the
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formation of the line structures has been related directly to the time indices of the
trajectory. These results provide a deeper understanding of the microscopic texture of
RPs.

First, this analysis has been applied to the sine function both in one dimension
and then one embedded in a two dimensional phase space. The time indices for the
recurrence are sought explicitely. All the lines perpendicular to the main diagonal only
exist in the case of one-dimensional phase space because of the insufficient embedding.
The effects of a non-zero € in the recurrence matrix are that the lines become thicker.
The boundaries of the recurrence areas have been explicitely expressed by the threshold
used in the RPs, which helps to choose € properly for the RPs computation.

Furthermore, the analytical approach is extended to 2-torus models with non-trivial
recurrence property. The e effects to the line structure in an RP have been investigated
analytically in the model with 3-D parametric equations in phase space. The time
indices of recurrences are related to the frequency ratio of the system. Furthermore,
the relationship between the line structures and associated recurrence statistics are
determined by the arithmetic property of the irrational number, which is discussed
by Zou et al. (2007b) in detail. Meanwhile, great attention has to be paid to the
norm selection for the RPs computation, though the maximum norm allowed us to
analytically derive the rotation number. The Euclidean distance is more appropriate
for the model with parametric equations, while the maximum norm works well for
the phase model. Therefore, the selection criteria of a norm for the RP computation
depend not only on the dynamics itself but also on the coordinate representation of the
system (Zou et al., 2007b).






Chapter 4

Identifying Quasiperiodic
Dynamics in Short Time Series

In this chapter, I propose a procedure to distinguish quasiperiodic from chaotic orbits
in short time series, which is based on the recurrence properties in phase space. The
histogram of the return times based on recurrence plots is used to disclose the recurrence
property consisting of only three peaks which is imposed by Slater’s theorem. Noise
effects on the statistics are studied. My approach is demonstrated to be efficient in
distinguishing regular and chaotic trajectories of Hamiltonian systems with mixed phase
space.

4.1 Brief overview of quasiperiodicity

Let us start reviewing a quasiperiodic dynamics in the context of recurrence plots.
We reproduce Fig. 2.1 in Fig. 4.1 for convenience. The recurrence time corresponds
to a white vertical line in an RP (Fig. 4.1(a)). RPs of quasiperiodic motion exhibit
intricate line structures with non-equal distances, (Fig. 4.1(b)), a complete systematic
description of which is still lacking. In this chapter, we analyze quasiperiodic dynamics

(@10~ (b) (c) 7 (d)
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Time Time Time Time

Figure 4.1: RPs of four different cases: (a) periodic, (b) quasiperiodic, (c¢) chaotic, and (d)
Gaussian white noise. The line with double arrows in (a) is used to denote a white vertical line.

39
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in the context of RPs and discuss the relationship to the rather old, but little-known
Slater’s theorem (Slater, 1967). This theorem has recently demonstrated to be a useful
and fast tool to determine the existence of shearless tori in (quasi-)Hamiltonian sys-
tems (Altmann et al., 2006a). Based on Slater’s theorem, we propose a procedure that
allows distinguishing quasiperiodic from chaotic dynamics in rather short time series by
means of the RP analysis. In the literature, the power spectrum has been widely used
to distinguish quasiperiodicity from chaos. However, for an appropriate estimation of
the power spectrum rather long time series from a stationary regime are necessary,
and in many applications only short time series are available. In this chapter, we pro-
pose a method which overcomes this difficulty. Furthermore, it can also be applied to
multivariate data.

Let us recall that two-frequency quasiperiodic motion densely fills the surface of a
torus, which is parameterized by two phase variables with incommensurate (average)
frequencies; say w; < ws. The rotation number + defined as v = :‘J’—; is an irrational
number. In an RP with ¢ > 0, the white vertical lines between diagonals represent
rational approximations of v because they “measure” (within a precision €) the common
multiples of 77 = 27 /w; and Ty = 27/wy. In other words, for a tolerance of order e,
the rationals m/n with the smallest n that approximate v within that tolerance give
rise to black points in the RP. Rational approximations of irrational numbers have a
fundamental meaning in number theory, as any irrational number can be approximated
arbitrarily closely by rational numbers whose denominators are arbitrarily large (Hardy
& Wright, 1954). This approximation is captured by the white vertical lines in the RP.
Hence, in the following analysis, we mainly focus on these white vertical lines.

This chapter is organized as follows. In Sec. 4.2, the histogram of white vertical
lines is introduced to link the line structures in an RP to Slater’s theorem. In Sec. 4.3,
the result is illustrated in the case in which the rotation number is the golden mean. In
Sec. 4.4 we use the analysis of the recurrence times to distinguish between chaotic and
quasiperiodic dynamics in short time series. The effects of the type of the norm and
noise on the return times are studied in Secs. 4.5 and 4.6, respectively. Finally, some
conclusions are drawn and discussed in the last section.

4.2 Slater’s Theorem and line structures in the RPs

We have seen in Fig. 4.1(b) that the RP of a quasiperiodic trajectory consists of diagonal
lines with different distances between them, reflecting the existence of different return
times. In this section, we show their relationship to Slater’s theorem.

As we know from Chapter 3, in a three-dimensional phase space, a simple example of
quasiperiodic motion can be expressed by Egs. (3.11). Here, we mainly concentrate on
the dynamical properties from the numerical point of view. To illustrate the properties
of the RP, the parameters in Egs. (3.11) are chosen to be R = 4, r = 0.5, and 7y =
(v/5 —1)/2. The sampling time is At = T», which leads to the points on a Poincaré
section perpendicular to the longitudinal direction. The advantage of sampling every
T5 will be illustrated in Sec. 4.5. The length of the time series is 5,000 points.
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As mentioned before, the rough common period T for the two time scales is given
by the time after which the trajectory returns to the e neighborhood of a reference
point. Hence, the smaller the value of ¢ is, the better the approximation must be to
observe a recurrence. Hence, the threshold e determines the length of the white vertical
lines in the RP.

The RP of #(t), Egs. (3.11), and its corresponding histogram of white vertical lines
for a fixed value of € = 0.2 are plotted in Figs. 4.2(a) and 4.2(b), respectively. We
observe that in the histogram of white vertical lines there are only three peaks at
[ = 5,8, and 13. Moreover, one verifies that these peaks are shifted to smaller values
as € is increased, which is clearly seen in Figs. 4.2(c) and 4.2(d).
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Figure 4.2: RPs and the corresponding histograms of the white vertical lines. (a),(b) e = 0.2
and (c),(d) e = 0.3. The maximal distance is denoted as d3 in (a).

In order to understand the histogram of white vertical lines of the RP for quasiperi-
odic trajectories (Figs. 4.2(b) and 4.2(d)), we briefly recall Slater’s theorem (Slater,
1967). The quasiperiodic dynamics on a 2-torus can be reduced, via a Poincaré section,
to an invertible circle map, which is conjugated to the (irrational) linear rotation on a
unit circle:

F: 60,41 =0,+~ mod 1. (4.1)

Hence, F' is the circle homeomorphism with 0 and 1 being identified. The properties
of this linear rotation depend on the arithmetic properties of the rotation number ~.
Equation (4.1) can be analytically derived from Eqs. (3.11) by introducing a Poincaré
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section perpendicular to the longitudinal direction of the toroidal surface, which can be
easily obtained by the sampling rate At = T, (Zou et al., 2007). Slater’s theorem states
that for any irrational linear rotation and any connected interval of size €, there are at
most three different return times, one of them being the sum of the other two. Two
of these three return times are always the consecutive denominators in the continued
fraction expansion of the irrational rotation number ~.

Hence, the three return times in the RP of the quasiperiodic trajectory (3.11) are
a consequence of Slater’s theorem. As the points of the successive irrational linear
iteration are uniformly distributed on the circle, the return times depend only on the
size of the interval. Therefore, the positions of the peaks of the histogram are shifted
to larger values as this size is decreased.

However, it is important to note that nonlinearities typically induce non-uniformities
in the distribution of the points on the Poincaré section, which automatically implies
that intervals of equal length are not equivalent (they would become intervals with
different lengths under the homeomorphism that allows conjugacy to a rigid rotation
by Denjoy’s theorem). As a consequence, the return times to intervals of the same
size around different reference points are in general not equal; see, e.g., (Mayer, 1988;
Theunissen et al., 1999; Buric et al., 2005). Note that, in particular, the average return
time for a given interval A of a map only depends on the integral | A f(x)dx, where
f(z) is the (smooth) invariant density (Theunissen et al., 1999). This and other subtle
aspects of the recurrences are discussed in Sec. 4.5 where we also study a generic case.

4.3 Example: dynamics with the golden mean as the ro-
tation number

We have observed that for uniform quasiperiodic dynamics the white vertical lines
in RPs fully reflect the three return times property predicted by Slater’s theorem,
independently of the position of the reference point. Furthermore, the values of the
white vertical lines are determined by the size of the recurrence interval e. In this
section, we extend our analysis to explore the dependence of recurrences (i.e., white
vertical lines) on € in more detail. We set the rotation number equal to the golden
mean, v = (v/5 — 1)/2, as this irrational number has the simplest continued-fraction
expansion. We have also tested the situation with the rotation number set to the silver
mean, v = /2 — 1, which is shown at the end of this chapter in Section 4.9.

4.3.1 Fibonacci sequence

To analyze the effect of the size of € on the white vertical lines of the RP, we compute the
dependence on € of the largest white vertical line; see Fig. 4.3(a). We find that the max-
imal white vertical lines are related to the Fibonacci sequence 0,1, 1,2,3,5,8,13,21,...,
which is defined recursively by

Foyi=F,+ Fh-1, n=123,---, and Fy=0, F;=1. (42)
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Figure 4.3: (a) The maximum white vertical line versus ¢ for the golden mean. The numbers on
the plateaus of the curve satisfy the Fibonacci sequence. (b) The e values against the maximal
white vertical lines in a logarithmic scale plot. The straight line is with slope —1 as expected
by Eq. (4.5).
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Figure 4.4: (a) Three white vertical lines in dependence of € values for the golden mean. (b)
The € values against the white vertical lines in a logarithmic plot.

It is well known that P
lim —L = 4. (4.3)

n—oo [,

Instead of plotting only the maximal white vertical line, we now plot in Fig. 4.4(a)
the lengths of all the white vertical lines found in the RP. We observe that for each value
of €, at most three different lengths of white vertical lines are obtained, in agreement
with Slater’s theorem. Note that the lengths also satisfy the sum rule, and for this
particular rotation number they are proportional to the Fibonacci sequence, with a
constant equal to 1 as the time unit is precisely the discrete time of the map (4.1).

4.3.2 Tolerance analysis of the rational approximations

We have seen in the previous sections that, when dealing with quasiperiodic dynamics,
the RP reflects the rational approximations to the corresponding frequency ratio of the
motion. For practical applications, it is worth discussing and quantifying the degree of
the approximation and the associated reliability.
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According to number theory, an irrational number ~ is particularly hard to approx-
imate if it satisfies a Diophantine condition — namely, the following inequality

m C
‘7 - E’ = lg(m,n)’ > B (4.4)

for some positive numbers C, 3 > 1. It is a basic fact that this set of numbers that are
poorly approximated by rationals has Lebesgue measure one (Meiss, 1992). In the case
of the numbers of constant type, as the quadratic irrationals, g = 1.
The minimal distance d given by the best rational approximation scales in the
following way:
d~n" (4.5)

From the RP point of view, this tolerance level d corresponds to the threshold value
e for the computation and n corresponds to the length of the white vertical lines in
the plot. For the golden mean, a quadratic number we observe the scaling behavior
d ~n~! as expected (see Section 4.7). Hence, the relation between the threshold e and
the lengths of the white vertical lines in the RP reproduces this scaling behavior, which
is seen in log-log scale in Figs. 4.3(b) and 4.4(b).

4.4 Distinction between quasiperiodic and chaotic dynam-
ics in short time series

As we have seen in the previous sections, the quasiperiodic dynamics has three re-
turn times for a recurrence interval, providing a rather simple technique to detect
quasiperiodicity. However, due to the fact that the probabilities of the three respective
return times are different from each other as indicated by the value on the y axis in
Figs. 4.2(b) and 4.2(d), time series with length of more than three orbital periods are
required to discard quasiperiodicity. In this section, we apply this property to dis-
tinguish quasiperiodic from chaotic orbits in the case that only short time series are
available.

As a case study, we take the Hénon-Heiles Hamiltonian H (Hénon & Heiles, 1964)

1 1 2
H= §(p33 + pZ) + 3 (mz + 9 4 222y — gyB), (4.6)

where p, = & and p, = y. The corresponding canonical equations read

Pz = —T — 22y, py:_y_x2+y27 T = pg, y:py‘ (47)
The Hénon-Heiles system was first studied in the context of analyzing the existence
of two or three constants of motion in galactic dynamics (Hénon & Heiles, 1964).
Depending on different energy values of the system, it admits a significant number of
both regular and chaotic orbits. As the energy increases, the Kolmogorov-Arnold-Moser
(KAM) tori begin to dissolve via archipelago formation and the chaotic sea begins
to expand. After the last KAM torus has disappeared, a single chaotic component
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covers almost the entire allowed region of phase space (Lichtenberg & Lieberman, 1992).
Throughout this section, we choose an intermediate value of the energy H = 0.125, since
for this value the regular region has approximately the same size as that of the chaotic
one.

4.4.1 Visualization: Poincaré map versus RP

Since the system is Hamiltonian, energy conservation imposes trajectories to reside in a
three-dimensional volume into the four-dimensional space (z, p,, v, py). It is well known
that a proper construction of a Poincaré section allows for an easy visualization of the
motion. We define the Poincaré section as x = 0,2 < 0. The successive crossings of the
trajectories with this section are shown in Fig. 4.5(a) for ten randomly chosen initial
conditions. For each trajectory, we terminate the integration of Eqs. (4.7) when 2,000
points on the surface of the section are obtained. The integration is carried out using a
fourth-order Runge-Kutta integrator with a fixed step size of 0.01 time units. The time
interval between two consecutive crossings on the section corresponds to the pseudo-
period of one oscillation. The chaotic and quasiperiodic trajectories are identified from
Fig. 4.5(a) as sequences of points in the resulting Poincaré surface of section which,
respectively, fill an area and lie on closed smooth curves. This leads to the pictorial
notion of a mixed phase space where “islands” of quasiperiodicity surrounding elliptic
points are surrounded by the chaotic sea.
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Figure 4.5: (a) The crossings of trajectories with the Poincaré section defined by x = 0,2 < 0
for ten random initial conditions for the case with energy H = 0.125. (b) About ten oscillations
of a quasiperiodic orbit with the initial values (0.004793,0.479291,0.149994, —0.001275). (c) A
chaotic orbit with the initial conditions (0.004876,0.487553, —0.001108, —0.110757).

The RPs of these 2,000 crossings on the Poincaré section are shown in Fig. 4.6.
From this figure, the RP of the quasiperiodic orbit consists of continuous diagonal lines
besides regular dashed lines (Fig. 4.6(a)). However, the RP of the chaotic orbit has
a substantially different line structure (Fig. 4.6(b)) with many random lines of short
length.

In practical applications it may be problematic to define a Poincaré section due to
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Figure 4.6: RPs of the Poincaré section points of two typical trajectories: (a) quasiperiodic
and (b) chaotic.

two reasons: first, systems with more than two degrees of freedom might be very difficult
to visualize, and second, the dynamical equations may be unknown. Furthermore, if
the time series is not very long, the resulting number of points on the Poincaré section
might be not enough to conclude whether the successive crossings fall on a closed curve
or belong to the chaotic sea. In this case, the RP analysis can distinguish between
quasiperiodic and chaotic orbits in a more efficient way.

4.4.2 Histogram of white vertical lines in RPs

In order to test the efficiency of RPs when applied to short time series, we take a
quasiperiodic orbit and a chaotic one, of which about ten oscillations are shown in
Figs. 4.5(b) and 4.5(c). There are 600 data points for the quasiperiodic trajectory,
while 700 point for the chaotic orbit. In the following analysis, we try to distinguish
between both of them from these ten orbital periods. The results do not depend on the
specific initial conditions of the trajectories, and we do not use a Poincaré surface of
section either, so we face the problem of analyzing these raw time series without prior
knowledge about the Hamiltonian.

First, we present the results in the original space, i.e., we use the trajectories in
the four-dimensional (4-D) phase space denoted as (z, %, y,y) by integrating Eqgs. (4.7)
directly. Figures 4.7(a) and 4.7(d) show the projections onto the (z,#) plane of a
quasiperiodic and a chaotic orbit, respectively. The associated RPs are generated sam-
pling the trajectory every 0.1 t.u.; see Figs. 4.7(b) and 4.7(e). The corresponding
histograms of the white vertical lines in RPs are represented in Figs. 4.7(c) and 4.7(f),
respectively. These histograms allow us to distinguish both cases: only three princi-
pal peaks exist for quasiperiodic motion. Furthermore, the length of the largest white
vertical line is the sum of the other two. In our particular case, the (sharp) peaks are
centered at 17 = 18.45, 15 = 24.6, and 13 = T + 15 = 43.05. However, for the chaotic
case, there are more than three peaks in the histogram, which noteworthily do not
satisfy the very restrictive sum rule of Slater’s theorem: for the three principal return



4.4. Distinction between quasiperiodicity and chaos 47

(b) (c) 100
60 8
£
<] ©
g4 < 50
= 3
20 1S
>
b4
0 0
0 20 _ 40 60 0 10 20 30 40 50 60
Time Vertical white lines
(e) (f) 100
60 2
£
o ©
g% = 50
= 3
20 IS
=}
=z
0 0 A I
0 20 _ 40 60 0 10 20 30 40 50 60
Time Vertical white lines

Figure 4.7: (a),(d) The projection of the original trajectory in the (z, ) plane. (b),(e) Recur-
rence plots. (c),(f) The corresponding histogram of white vertical lines in RPs. The first row
(a)—(c) is for the quasiperiodic orbit and the second row (d)—(e) is for the chaotic case.

times in Fig. 4.7(f) we have T = 6.7, T; = 35.8, and T3 = 49.6. Note that there
are two small peaks at the positions 13.8 and 28.8. Note that both the sum rule and
the number of peaks indicate the character of the time series. Hence, by means of the
return times it is possible to distinguish between quasiperiodic and chaotic dynamics
from very-short-time series.

We note that in Slater’s theorem time is a discrete quantity (like in circle and
Poincaré maps); hence, in principle it would be possible to find a system with very low
temporal coherence where continuous time and discrete time (from a Poincaré section)
are considerably unrelated. We have not encountered this problem, and in turn our
histograms always present sharp peaks.

4.4.3 Results for embedded scalar time series

Next, we present the results in the case that only one short scalar time series (Figs. 4.5(b)
and 4.5(c)) is available for the computation of each histogram. The conventional de-
lay embedding is applied before computing the RP. We use an embedding dimension
m = 4 and time delay 7 = 1.7 t.u., estimated by the autocorrelation function (Abar-
banel et al., 1993). The projections of the quasiperiodic and chaotic orbits on the
(x,z¢4+-) plane are shown in Figs. 4.8(a) and 4.8(d), which give fairly faithful visual
reproductions of the original phase space as Figs. 4.7(a) and 4.7(d). After the phase
space reconstruction, the RP for each case is shown in Figs. 4.8(b) and 4.8(e). The
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Figure 4.8: (a),(d) The projections of the embedded trajectory in the (z,x;1,) plane. (b),(e)
Recurrence plots. (¢),(f) The corresponding histogram of white vertical lines in RPs. The first
row (a)—(c) is for the quasiperiodic case and the second row (d)—(e) is for the chaotic case.

associated histograms of the white vertical lines are plotted in Figs. 4.8(c) and 4.8(f),
respectively. Based on the histogram of Fig. 4.8(c) and the relationship between these
three peaks T = 18.5, T5 = 24.4, and T5 = 43 ~ T} + T5, one can conclude that the
motion is quasiperiodic. However, we get a completely different picture for the chaotic
orbit (Fig. 4.8(f), T{ =7, T5 = 14, Ty = 22, T; = 28.8, and T} = 36.1).

4.4.4 Comparison with power spectrum

In the literature, the historically favored method to distinguish quasiperiodic from
chaotic orbits is based on the power spectrum. Theoretically, one knows that quasiperi-
odic trajectories yield discrete Fourier spectra whereas chaotic orbits yield continuous
(broad) ones. Based on the program “spectrum” of the TISEAN program package (Heg-
ger et al., 1999) the power spectra for our two short time series (Fig. 4.9) show that
we can hardly discern a significant difference between them. This is due to the rather
short time series used.

Furthermore, the histograms of the white vertical lines in the RPs are constructed
from the trajectory in phase space (with four variables (x,Z,y,y) for example, or
(, Tigr, Tigor, Ttsr) if it is embedded from the x component), which is an advan-
tage to the conventional power spectrum analysis based on scalar time series. This also
prompts the applicability in dealing with multidimensional data analysis. Therefore,
in a sense the histogram of white vertical lines of the RP contains more information
about the dynamics than the power spectrum.
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Figure 4.9: Power spectra for two cases: (a) quasiperiodic and (b) chaotic. The y axes are in
logarithmic scale.

Comparing the histograms and the power spectra, one can infer the existence of
quasiperiodicity efficiently from short time series with the aid of the recurrence prop-
erties.

4.5 Norm effects on the return times

Slater’s theorem states that, for any irrational linear rotation on the unit circle, at most
three different return times to a connected interval are observed. The application of
this theorem to recurrence plots, where one considers recurrences to every point of the
trajectory, deserves some caution. Nevertheless, we will see below that considering the
recurrences to a fixed point of the trajectory, i.e., using one single column of the RP,
this problem can be solved.

First of all, one must differentiate between discrete- and continuous-time systems.
If we are able to define a Poincaré section for the system under study, we can apply
Slater’s theorem directly for the recurrence to a given point, but as we show below,
we must take some care for the RP where we count the recurrences to all points. The
case of a continuous time series is more complicated and encompasses more subtle
aspects that we analyze at the end of this section. It is well known that a quasiperiodic
dynamics can be represented by two phase variables, the proper choice of a norm in
this case is illustrated in Section 4.8.

4.5.1 Circle map model

Once we have a proper Poincaré section of the system under study, we have to choose a
norm. In general, due to the lack of uniformity of the motion, intervals with the same
length (of the closed curve formed intersecting the torus) are not equivalent. This is
something one must always take into account. As non-uniformity is not known in ad-
vance, we cannot avoid effects associated with it. In any case, in the ideal case of a
linear rotation on the unit circle (4.1), the Euclidean norm is the optimal one. There-
fore, as a rule, the Euclidean norm should be the preferred choice for this particular
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Figure 4.10: The effective recurrence interval is denoted by thick arcs. (a) The Euclidean
norm yields the same arc length independent of the position due to the symmetry property. (b)
The maximum norm yields recurrence intervals of different length due to the invariance of the
orientation AX in the horizontal (AY in the vertical, respectively) direction to the reference
point.
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Figure 4.11: White vertical lines versus the position on the Poincaré section. (a) The Euclidean
norm and (b) the maximum norm.

case. Figure 4.10 exemplifies the superiority of the Euclidean norm over the maximum
norm (that yields recurrence intervals of different length).

In order to show the effect of the maximum norm more clearly, we plot the lengths
of the white vertical lines in the RP (using the third component, z3 = const. of the
vector U of Eq. (3.11) as the Poincaré surface) with respect to the position on the circle.
The value of the threshold e is the same as used in Fig. 4.2(b) for better comparison.
For illustration, we define a phase variable, say ® = arctanxs/(x; — R), to denote the
specific position on the circle.

If the Euclidean norm is used, the return times depend only on the size of the
recurrence interval and the number of different recurrence times is 3 (Fig. 4.11(a)). In
contrast, for the maximum norm, Fig. 4.11(b) shows that for every reference point, only
three different return times are observed. However, the values of these return times
vary with the position on the circle. For example, for & = 7, the return times are 3, 5,
and 8, but for & = 27, the return times are 5, 8, and 13. Hence, if we count all return
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times in the RP computed with the maximum norm, we obtain four instead of three
recurrence times.

4.5.2 Three-dimensional phase space model

Let us see now in more detail how Slater’s theorem relates to RPs in a generic situation
of recognizing a quasiperiodic flow on a torus. For each point the intersection of the
recurrence “ball” (of “radius” €) and the torus gives a two-dimensional recurrence region
on the torus. Unless the flow is meandering at the scale of the recurrence region, every
recurrence region is crossed by the flow in a regular way (locally every trajectory enters
and exists the region once). Hence, for every point of the trajectory the recurrence
region encloses a connected recurrence interval as required by Slater’s theorem.

The first obvious problem that will typically arise studying a continuous flow is the
nonequivalence of different points of the trajectory (due to the different size, orientation,
etc., of recurrence regions and due to the non-uniformity of the flow). This will lead
to different return times for each point, even if all of them satisfy separately Slater’s
theorem (like in Fig. 4.11). In Fig. 4.12(a), we illustrate some possible idealized ways
for the flow to pass the recurrence regions. Intuitively one expects more than three
different white vertical lines in the RP as shown in Fig. 4.12(b), where the maximum
is used and the sampling time At = 0.01 t.u. in system (3.11).

Another possible problem that could arise is related to the measure of the continuous
time. As Slater’s theorem applies to a discrete-time model, the validity of its extension
to a continuous case could be hampered by an extremely poor time coherency. Anyway,
we do not expect this will be a serious problem in most applications, as above with the
Hénon-Heiles system.

The third unavoidable problem is due to the finite sampling time (see (Facchini
& Kantz, 2007) for a recent study of this problem). As shown in Fig. 4.12(a4), some
recurrences may be skipped if the sampled trajectory jumps over the recurrence region,
which would result in an apparent violation of Slater’s theorem. This last reason is
related to the shape of the torus, which for instance is linked to the values of two radii
R and 7 in Eq. (3.11). The curvature of the torus determines how the trajectory enters
in the recurrence region. The histograms of the white vertical lines for two different
radii » = 2.5 and 3.5 with the same R = 4 are shown in Fig. 4.13 for long trajectories,
presenting more than three principal peaks in both cases.

From the above analysis, we see that the norm can affect the statistics of the genuine
recurrence property of quasiperiodic dynamics, although these coordinate representa-
tions are dynamically equivalent. This could be also one reason why the estimation
of the correlation entropy Ko from time series from a quasiperiodic fluid flow data
is larger than zero (Thiel et al., 2004a). For a practical investigation, we should not
restrict ourselves to a particular norm, since the norm effects cannot be eliminated com-
pletely. Instead, we can test the statistics for different norms to minimize the effects of
the coordinates to obtain a reliable result.

As we have mentioned above, we can avoid the norm effects by considering recur-
rences to a fixed point of the trajectory, i.e., considering one single column of the RP.
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Figure 4.12: (a) Schematic description of the relationship between the flow and the recurrence
regime on the Poincaré section. The lines with arrows indicate the direction of the flow showing
different ways to pass the area. The central circle is the reference point. (as) shows the effect
of the sampling denoted by black points. (b) RP of quasiperiodic trajectory obtained from
Eq. (3.11). The maximum norm and a sampling time At = 0.01 are used.
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Figure 4.13: Histograms of the white vertical lines of the RPs of Eqgs. (3.11) with R = 4 but
for two different values of the radius: (a) r = 2.5 and (b) r = 3.5 (¢ = 0.25 in both cases).

In this case, we will obtain the three return times predicted by Slater’s theorem. If, on
the other hand, we do want to average the return times over all points of the trajectory,
we could make use of the dashed structures found in the RPs of quasiperiodic dynamics

(Fig. 4.12(b)). This structure seems to be characteristic of quasiperiodic dynamics and
needs further investigation.

4.6 Noise effects on the return times

In experimental time series, one is always confronted with measurement errors. Hence,
it is necessary to analyze the influence of noise on the return times for quasiperiodic
motion.

Here, we study the influence of additive (i.e., observational) noise. We generate a
time series with a fixed sampling At = T» of the system (3.11) with rotation number
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Figure 4.14: (Color online) (a) Poincaré section of Eq. (3.11), 23 = const., corrupted by 10%
of independent Gaussian noise. The original circle is marked by red color. The phase variable ®
is defined as arctan xo/(x; — R). (b) RP with € = 0.2. Compared to Fig. 4.2(a), the continuous
lines are broken, leading to sub-distances.

equal to the golden mean. We add independent Gaussian noise with standard deviation
Onoise = 0 to each coordinate x; of the crossings on the Poincaré section, where o;
is the standard deviation of the j-th component and a = 0.1 is the noise level. In
Fig. 4.14(a), the “corrupted” points on the Poincaré surface (1 — x2) are represented,
and the corresponding RP is illustrated in Fig. 4.14(b).

We already know that in the histogram of white vertical lines only three peaks should
be observed (Fig. 4.2(b)). In the case that the trajectory is corrupted by 10% of noise,
the continuous lines are broken into small pieces. The probability to find only three
return times decreases and some other return times appear (e.g., 34 in Fig. 4.15(a)).
Figure 4.15(b) shows the return times as a function of the position of the circle.

From Fig. 4.14, we see that the line structures are significantly changed. As a con-
sequence, the number of return times is susceptible to observational noise. However, a
threshold e that is at least 5 times the standard deviation of the observational Gaussian
noise o can yield reliable statistics (Thiel et al., 2002). This criterion is based on the
analytical computation of the probability of a recurrence point in the RP to be correctly
recognized in the presence of observational noise. Thiel et al. (2002) have found that
the choice € ~ 50 is optimal for a wide class of processes. Based on the suggestion of
that finding (Thiel et al., 2002), choosing € approximately 5 times the standard devi-
ation of the noise, the effects of noise hampering the detection of quasiperiodicity are
reduced, as shown in Fig. 4.16(a). Not that as e cannot be too large either as it should
be much smaller than the diameter of the attractor. A choice of € ~ 50 only works
for low noise levels. In this diagram, we count the number of return times in the RPs
versus €/o for six different noise levels . From Fig. 4.16(a), we see that the optimized
€opt A Do can be used to recover the three return times to a large extent if there is
noise. This recovery is rather good since one often finds three or four values if €,y
is applied. Furthermore, the sum relationship between them still holds. A theoretical
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Figure 4.15: (a) Histogram of white vertical lines in the RP based on the Poincaré section
points of Eq. (3.11) corrupted by 10% of noise. (b) The return times as a function of the
position on the Poincaré section.
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Figure 4.16: (Color online) Quasiperiodic trajectory with observational noise for six different
levels. (a) The number of white vertical lines versus €/o. The noise/signal level is given in the
legend value. A close look at smaller values is shown in the inset. (b) The same plot of (a)
with the y axis in logarithmic scale.
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argument for the choice of the optimized e is given by Thiel et al. (2002).

To illustrate the robustness of our procedure to the observational noise we compare
the quasiperiodic case with the chaotic one. Hence, we apply the same analysis to two
prototypical chaotic systems in the presence of additive noise: namely, the Bernoulli
map f(z) = 2z (mod 1) on the unit interval and the Rossler system & = —y — z, §y =
x4+ 02y, 2 =024 (z —5.7)z. In the former case the noise is added only to the
x direction, whereas in the latter case the noise enters along the two directions of
the Poincaré surface of section. We study the influence of the noise with standard
deviation, oy0ise = a0j, to each coordinate for these two systems, as we have done
for the quasiperiodic case (Fig. 4.17). Comparing this figure to Fig. 4.16(b), we can
distinguish between chaos and quasiperiodic motion in the presence of noise if we choose
an appropriate €. For ¢/0 ~ 5, in the case of the quasiperiodic motion, we obtain three
or four return times as we discussed above, whereas for the chaotic cases, for similar
values of ¢/o the number of return times is much larger. We stress that the sum
relationship between different return times does mot hold anymore if the dynamics is
chaotic.

©
—~
O
-
—
o
©

(a)107;

%) a e oo
g 10% g @%&i:iﬁﬂ”’@**v@eex
S S
2
2 5 10°——0.01
S o S =002
§ . § 0.03
——0.04 ——0.04
—+-0.05 —+0.0§
Lol 010 o010
0 10 20 30 0 10 20 30
e/o e/o

Figure 4.17: (Color online) The number of white vertical lines versus €/o for two chaotic
systems with observational noise for six different levels. The y axes are in logarithmic scale and
the noise/signal ratio is given in the legend. (a) The Bernoulli map and (b) the Réssler system.

Note that the numerical results presented in this section are based on the crossings
on the Poincaré section. As stated before, for many practical applications, a proper
Poincaré section is rarely available. We will study noise effects on more realistic situa-
tions systematically in a forthcoming paper.

4.7 Scaling behavior of the tolerance analysis

The tolerance analysis in this section is based on the rational approximation (by con-
tinued fractions) to a given irrational rotation number. For convenience, we consider
a linear rotation (¢ 2(t) = wi2t), as shown in Fig. 4.18(a). Both phases have recur-
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Figure 4.18: (a) A short piece of a trajectory on the torus (¢1, ¢2). (b) Schematic illustration
for the relationship between two errors.

rences at times 77(m) = 2rm/w; and Th(n) = 27n/wy, which are almost simultaneous
(T = T») when m/n ~ w;/wy = ~. At T1(m) the recurrence error is given only by the
second phase d¢o = 2mm/~v, and analogously at T(n), d¢; = 2wny. As illustrated in
Fig. 4.18(b) the minimal distance d is reached at a time 7" between T} and T with

d— |0¢10¢2| (4.8)

V(661)% + (6¢2)

Now, let us denote the distance between an irrational number and a rational one
by €(mn) =7 — - Then we have

m
=2 = (— 2mn = 2 4.
0Py = y2mn (n + E(m,n))2mN TN € (1) (4.9)
_ — (1 - Zmm) — oy mn)
0y =2mm/y = (1 )2mn = —2mn . (4.10)
Y Y

Substituting Egs. (4.9) and (4.10) into Eq. (4.8), the minimal distance d satisfies

€ (m,n) | .
V1+92

If the rational number m/n is a convergent of the continued fraction expansion then

% < |e@mm)l < % In particular, for irrational numbers of constant type, including

quadratic irrationals, 8 = 1, which implies d ~ n~!.

d=2mn (4.11)

4.8 Norm effect in phase model

As we already have seen in Sec. 3.4 and the previous Sec. 4.7, it is much more convenient
to use the phase model to obtain the heuristic analysis. In this model, the phase plane
(¢1, ¢2) is a square of size 27 filled densely with the flow. The boundaries of ¢; = 0
and ¢1 = 27 are identified, respectively, ¢o = 0 and ¢o = 27 are identified too.

In Fig. 4.19, we show a short section of the trajectory. Clearly, the direction of the
flow is determined by the slope 1/7. Therefore, in this case neither the Euclidean norm
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Figure 4.19: Quasiperiodic dynamics with phase model. Along the flow direction: (a) the
maximum norm, (b) the Euclidean norm and (c¢) the normalized box according to the direction
of the flow.

nor the Maximum norm are proper choices because the boundaries defined by them are
not perpendicular to the direction of the flow. In order to avoid this effect to identify
the recurrence property properly, the orientation of the box needs to be normalized so
that it follows the direction of the flow. In the case of the phase model, (Egs.(3.6)),
the normalized box is suggested as shown in Fig. 4.19(c).

4.9 Dynamics with the silver mean as the rotation number

We present here the numerical results for the silver mean (W95 = \/2—1) and comment
on the similarities and differences with respect to the golden mean case.

First of all we write the sequence of rational approximations to the silver mean:

%, %, %,%, %.... The n-th term is given by WM = G, _1/G,,, where the G,, are

analogous to the Fibonacci numbers and are defined recursively by the Pell sequence
Gpy1 = 2G, + G-, n=1223,... (4.12)

and

Go=0, Gi=1. (4.13)

The maximal white vertical lines of the recurrence plots for different values of € are
shown in Fig. 4.20. The results are analogous to Fig. 4.3; denominators of the continued
fraction expansion appear as required by Slater’s theorem, but now they only appear
every two plateaus.

4.10 Summary and discussion

We have studied the recurrence properties of quasiperiodic dynamics by means of re-
currence plots. Despite the simplicity of the dynamics, the line structures of RPs turn
out to be quite intricate and display a rich behavior. The analysis has been performed
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Figure 4.20: (a) The maximal vertical distances versus e for the silver mean. The Pell numbers
are denoted by A, while o for the Farey neighbors of the Pell numbers. The inset shows the
sequence when the € is less than 0.04. (b) Double-logarithmic plot of (a).

for uniform and non-uniform quasiperiodic motion. We have exemplified our results for
the cases that the rotation number is the golden mean and the silver mean. The his-
togram of white vertical lines in an RP successfully captures the recurrence properties,
having at most three different return times in the most favorable case.

In general situations, where one analyzes a continuous time series from a system
with very non-uniform dynamics, more than three vertical line lengths may be observed
but they have to fit the very restrictive sum rule imposed by Slater’s theorem. This
allows one to discard the existence of quasiperiodicity in very short time series once
the sum relation is not fulfilled. To guarantee the existence of quasiperiodicity one
would need longer time series, because (Hamiltonian) chaos may exhibit seemingly
quasiperiodic motion for some time if one observes confined chaos or the systems is
under the stickiness effect. Our approach has several advantages with respect to the
conventional techniques: e.g., the power spectrum. Furthermore, it is robust against
observational noise if the proper choice of a recurrence interval e being 5 times the
standard deviation of noise is taken.



Chapter 5

Characterization of Stickiness

I propose Recurrence Plots (RPs) to characterize the stickiness of a typical area-
preserving map with coexisting chaotic and regular orbits. The difference of the recur-
rence properties between quasiperiodic and chaotic orbits is revisited, which helps to
understand the complex patterns of the corresponding RPs. Moreover, several mea-
sures from the recurrence quantification analysis are used to quantify these patterns.
Among these measures, the recurrence rate, quantifying the percentage of black points
in the plot, is applied to characterize the stickiness of a typical chaotic orbit. The
advantage of the recurrence based method in comparison to other standard techniques,
is that it is possible to distinguish between quasiperiodic and chaotic orbits that are
temporarily trapped in a sticky domain, from very short trajectories.

5.1 Overview of Hamiltonian chaos

It is well-known that the phase space of a non-integrable Hamiltonian system is neither
entirely regular nor entirely chaotic. The whole phase space is a complicated mixture of
domains of chaotic trajectories coexisting with domains of regular or periodic ones. In
other words, the full space is decomposed into subregions associated with qualitatively
distinct dynamical properties (Lichtenberg & Lieberman, 1992). The regular dynamics
consists of quasiperiodic orbits lying on tori and periodic orbits, while chaotic orbits
are expected to fill the corresponding subspace densely (Umberger & Farmer, 1985). In
the case of two dimensional area-preserving maps, invariant circles separate the phase
space, preventing trajectories in the chaotic sea from entering any island, and regular
trajectories inside an island from reaching the chaotic sea. Hence, the characterization
of orbits as regular or chaotic is crucial and it has attracted much attention.

In the literature, a frequently used method for this problem is the estimation of
Lyapunov exponents (Ott, 1993). This measure is well justified and standard for the
characterization of the nature of orbits. Chaotic motion is characterized by a positive
Lyapunov exponent (in the case of the area-preserving maps, the sum of all exponents is
zero). Regular orbits, on the other hand, have zero Lyapunov exponents. However when
resorting to numerical calculations, only a finite time is used, producing the so-called

59
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local (or finite-time) Lyapunov exponent. This is of course even more important when
dealing with experimental data, because of the rather small number of measurements.
Calculations of finite-time Lyapunov exponents in Hamiltonian systems were performed
by Kantz & Grassberger (1987). It seems to be impossible to apply all other methods
and their associated developments reported in the literature as it is a fast growing
field. For a review of such methods, see Ref. (Contopoulos, 2004). Therefore, we only
mention one popular approach in this spirit: the spectra of stretching numbers (or
local Lyapunov exponents for only one iteration time), which have been shown to be
efficient in distinguishing chaotic from regular trajectories (Contopoulos et al., 1997;
Contopoulos, 1998, 2004).

When the previous measures are applied, considerable attention is paid to the corre-
sponding convergence rate, as it ensures a reliable characterization. This is particularly
important for Hamiltonian systems with mixed phase space which are divided into dif-
ferent ergodic components. The dynamics inside each of these components might be
regular (periodic or quasiperiodic) or chaotic. However due to the existence of stable
islands, a typical chaotic trajectory will need a long time to fill its corresponding com-
ponent in phase space. In particular, once the chaotic orbit is close to an island, it will
stay close to it and be almost regular in its motion for a rather long time. After this
transient period it escapes to the large chaotic sea. Such a long-term confinement of
the trajectory in this domain is called stickiness (Karney, 1983; Meiss & Ott, 1985).
Stickiness delays the convergence and might also cause some substantial difficulties in
the use of Lyapunov exponents and the spectrum of stretching numbers. Therefore,
characterizing a chaotic orbit reliably requires a huge computational effort. In some
sense, it is reasonable to define a temporarily “sticky” chaotic orbit on time scales when
it is stuck, respectively, a “filling” chaotic orbit on time scales when it travels unimped-
edly throughout the chaotic region (Kandrup et al., 1999). This classification is rather
useful for one carefully chosen chaotic orbit, which has a strong sticking time (Con-
topoulos et al., 1997). Note these two different and relative concepts coincide in the
limit of long time when referring to one chaotic orbit.

The origin of the stickiness does not have a universal scenario. One mechanism that
generates stickiness is by means of cantori, consisting of sets of destroyed tori, which
serve as partial barriers. The orbits can cross a cantorus, albeit after a long time (Meiss
& Ott, 1985). Islands-around-islands scenarios were reported in the literature (Meiss,
1992; Zaslavsky, 2002; Afraimovich et al., 2000). Other simple mechanisms of sticki-
ness cannot be excluded, such as the existence of one single marginal unstable fixed
point (Artuso & Prampolini, 1998), or one-parameter families of marginal unstable
periodic orbits in the phase space (Altmann et al., 2006b). The first known example
of stickiness was presented by Contopoulos (1971). Nowadays, it has been accepted as
a fundamental property of Hamiltonian systems. Stickiness may produce anomalous
transport, which perhaps is the most prominent consequence (Zaslavsky, 2002).

In this chapter, we propose an algorithm based on Recurrence Plots (RPs) to char-
acterize stickiness. We use the standard map, a two-dimensional area-preserving map,
as a prototypical example. We follow the idea of Kandrup et al. (1999) and categorize
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the trajectories into: quasiperiodic, sticky and filling chaotic orbits. Note that the
stickiness is a general property of Hamiltonian chaos. Hence the concept of a sticky or-
bit only refers to the particular time scale when it is stuck. But the use of this concept
makes it convenient for us to compare the differences between these orbits and refer to
the results reported by Contopoulos et al. (1997); Contopoulos (1998). As the name
suggests, RPs concentrate on the recurrence properties of the orbits. As a result, a
two-dimensional black-white plot (RPs shown in Sec. 5.3) can be used to visualize the
difference between quasiperiodic and sticky orbits. One popular method to characterize
stickiness uses the distribution P(T") of the recurrence times {11,75,...,T,...} of a
typical chaotic orbit to a predefined recurrence region. The stickiness is quantified in
terms of an asymptotic power-law decay P(T) ~ T~7 for large T', where + is a scal-
ing exponent (Chirikov & Shepelyansky, 1984; Zaslavsky, 2002). This power-law can
be related to the decay of the correlation function, survival probability and transport
properties (Zaslavsky, 2002). The Recurrence Quantification Analysis (RQA), which is
based on RPs, can also characterize the stickiness in a similar way.

The outline of the chapter is as follows: In Sec. 5.2 the recurrence properties of
quasiperiodic orbits to a predefined interval are reviewed. In Sec. 5.3, we apply RPs to
visualize the differences between ordered and chaotic orbits. The RQA measures are
used to quantify the patterns in the RPs in Sec. 5.4. Furthermore, in Sec. 5.5 we follow
a typical chaotic orbit and use RQA to quantify its stickiness.

5.2 Recurrences of quasiperiodic and chaotic orbits

We consider the standard map, which is a paradigmatic example of an autonomous
near-integrable system with two degrees of freedom:

K.
Yntl = Yn + o sin(27x,),
T

o(t) : mod 1 (5.1)

Tl = Tn + Ynt1,

with & denoting a nonlinearity parameter. This model is probably the best-studied
chaotic Hamiltonian map (Lichtenberg & Lieberman, 1992). It can be interpreted as
a Poincaré section of a periodically kicked rotor. It also approximates other physical
situations, such as the Fermi accelerator model.

For small nonlinearity parameters x, those tori with a Diophantine rotation number,
ie, Qe {Q:|nQ—m|> 5 Vm,n € Z,n # 0} for some 7 > 1 and ¢ > 0 survive (Meiss,
1992). The onset of chaos is connected to the destruction of tori, i.e., the change
of tori into cantori, as the perturbation increases. As a consequence, chaotic and
regular trajectories are intimately intermingled. The KAM surfaces isolate the layers
of stochasticity from each other and the stochastic excursions are constrained by nearby
KAM curves.

Based on Slater’s theorem presented in Chapter 1, the detection of quasiperiodicity
can be performed simply by counting the number of different return times that the
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Figure 5.1: (Color) The phase portrait of the standard map (5.1) with different perturbation
values, (a) K = 0.8, (b) kK = 1.4. The color is determined by the number of different return
times. The value 1 corresponds to periodic orbits.

orbit needs to recur to the neighborhood of a reference point #,..r. The torus is iden-
tified with at most three different return times, which does not hold for chaotic orbits.
This theorem has recently demonstrated to be a useful and fast tool to determine the
existence of quasiperiodicity in non-Hamiltonian systems (Altmann et al., 2006a). Note
that Slater’s theorem does not impose any constrictions on the size of €, provided it does
not cover the whole trajectory in phase space. Therefore, for the implementation of
this result, we do not have to worry about having very long recurrence times. Choosing
a larger value of € we can decrease the recurrence times to the starting interval.

We use this idea and apply it to the map (5.1). Several typical trajectories on
the phase plane are shown in Fig. 5.1. In this plot, each orbit has a length of N =
2 x 107 points*. The color is encoded as follows. Firstly, for each trajectory, we choose
randomly a reference point ¥..; and specify a recurrence interval of € size around this
point. Then, we count the number of different return times for this trajectory. Finally,
we assign a color to the trajectory with respect to the number of different return times,
and plot each trajectory with the associated color. In Fig. 5.1(a) we represent the
color-coded orbits for kK = 0.8. For kK < k¢ = 0.9716---, many rotational invariant
tori are preserved while some are destructed. When x > k. (Fig. 5.1(b), x = 1.4) no
rotational tori are left. In both cases, we have fixed the size of the recurrence interval
to € = 0.015. Trivially, periodic orbits have only one return time (darkest blue color).
For quasiperiodic orbits (including rotational and librational circles), the number of
return times is at most 3. In contrast, chaotic trajectories have a much larger number
of return times (red color). Therefore, we see that counting the number of different
return times allows classifying the type of dynamics reliably.

*In our computations 500 initial values are chosen randomly. From these trajectories several typical
orbits are represented to be computer memory efficient. If we did not proceed so, a figure like Fig. 5.1
(a) would require approximately 15 GB of hard-disk space. There are no trajectories in the white
regions of Fig. 5.1 for the initial values we choose, which are excluded from the colorbar.
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Another interesting property revealed by this analysis is the distinction between
different stochastic layers. Taking Fig. 5.1(a) as an example, the chaotic region (A4;)
around the period one elliptic orbit, (x,y) = (0.5,0) = (0.5, 1), has a much higher value
of the number of returns, compared to the chaotic region (Ay) around the period two
elliptic orbits, (0,0.5) = (0.5,0.5). The same holds for the chaotic regions (A3) around
the period three and four elliptic orbits(Ay), as shown by gradually different colors.

From these two diagrams, one clearly observes the differences between the regular
and chaotic orbits by their associated number of different return times. The predefined
size of the recurrence interval € only influences the number of return times of chaotic
trajectories, which increases with €. In contrast, the number of return times for regu-
lar orbits (periodic and quasiperiodic) is constant with e. Analogously, the length of
the time series does not influence the number of return times for regular orbits. For
chaotic orbits, the number of return times increases with the length of the trajectory.
Summarizing, the number of return times for a quasiperiodic orbit is always at most 3,
independently of the value of € and of the length of the trajectory. The only restriction
for the value of € is that it does not cover the whole trajectory in phase space.

5.3 Recurrence plots of ordered and chaotic orbits

As mentioned in the introduction, the phase space of non-integrable Hamiltonian sys-
tems is divided into subregions with regular and chaotic orbits, producing a complicated
mixture of both. A typical chaotic trajectory spends a long time in the neighborhood
of stable islands, showing almost regular behavior before going to the large chaotic sea.
During this particular time, the orbit is stuck and referred to as sticky orbit (Con-
topoulos et al., 1997; Kandrup et al., 1999).

In this section, we use the method of Recurrence Plots (RPs) to distinguish between
quasiperiodic and sticky orbits in short trajectories. To illustrate our idea, we choose
a sticky orbit as suggested by Contopoulos et al. (1997). The first 3,000 iterates of
the trajectory are shown in Fig. 5.2(b). This orbit escapes to the large chaotic area
after approximately 1.65 x 10° iterations. We call this escape time 7., which is about
2 orders of magnitude larger than our “observation”. In Fig. 5.2(a), we also plot one
librational quasiperiodic orbit together with a filling chaotic one for better comparison.
Based on the representations in the phase space, it is not possible to discern whether
the red curve is quasiperiodic or chaotic, since the number of iterations is much less
than T.s.. Therefore, it is necessary to look at other properties of the orbit. To this
end, we concentrate on the recurrence properties of the orbit.

When calculating the recurrence matrix (2.1), an ad hoc way is to choose € corre-
sponding to 10% of the size of the corresponding component and the Euclidean norm is
applied (Marwan et al., 2007). Figure 5.3(a) shows the RP of the quasiperiodic orbit.
It consists mainly of uninterrupted diagonal lines. The number of different distances
between these lines is at most three in accordance with Slater’s theorem. The RP of
the sticky orbit exhibits a quite different feature: it consists of many dashed diagonal
lines (Fig. 5.3(b)). Comparing this RP to the RP of the filling orbit (Fig. 5.3(c)), we
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Figure 5.2: (Color online) The phase portrait of the standard map for x = 5.0. (a) The first
3,000 iterates of three orbits are plotted with different colors: quasiperiodic (blue), sticky (red)
and filling chaotic (black). (b) The first 3,000 iterates of the sticky orbit. (c) The first 1.7 x 105
iterates of the sticky orbit.

note that the diagonal lines of the sticky orbit are much longer, reflecting the fact that
the sticky orbit is more regular than the chaotic one. The RP of the filling chaotic orbit
is composed of a large number of short diagonals, which are distributed more homoge-
neously. The large black structure along the main diagonal of (c), leaving two almost
blank bands in the vertical and horizontal directions, is due to the presence of the
stable islands. When the chaotic trajectory visits the neighborhood of a stable island,
the dynamics is again stuck for some time (Fig. 5.3(d)). We notice a relatively “weak”
sticky behavior compared to the “strong” stickiness of Fig. 5.3(b) within our observa-
tion time. Note that stickiness is a general property of a chaotic orbit in Hamiltonian
systems.

From the above RP representations, it is rather straightforward to see the differences
between them, showing that RPs are a powerful tool for the characterization of the
dynamics. Note that it is possible to distinguish between quasiperiodic and sticky
orbits even in much shorter trajectories than 3,000 iterates. Using Slater’s theorem,
it is possible to detect the existence of quasiperiodicity in only 10 orbital periods with
about 700 points (Zou et al., 2007Db).

An alternative method to distinguish quasiperiodic from chaotic orbit is based on
stretching numbers. The calculation of the spectrum of stretching numbers proposed
by Contopoulos et al. (1997); Contopoulos (2004) consists of two steps. First, one
specifies an infinitesimal deviation from the initial condition to compute the stretching
numbers, which only works in the case that the equations are known. The second step is
to construct the spectrum taking care of the bin size and the number of bins. In order to
obtain a reliable spectrum, at least 103 ~ 10* points are required (Contopoulos, 1998).
This is computationally more complicated than the RPs we proposed here, which are
simple and numerically convenient. We only consider the distance between any two
points of the trajectory and encode the recurrence matrix into a two dimensional plot.
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Figure 5.3: RPs of different trajectories consisting of 3,000 iterations. (a) quasiperiodic orbit,
(b) sticky orbit, (c) filling chaotic orbit and (d) Zooming of the black structure in (c).

5.4 Recurrence quantification analysis of the stickiness

In order to quantify the patterns in the RPs, several measures are commonly used,
which are comprised in the Recurrence Quantification Analysis (RQA) (Marwan et al.,
2007). Here, we apply three measures, namely, RR, DET, and Ly,eqn to quantify the
patterns in the RPs. An introduction of the other measures is given in Chapter 2. For
this study, we calculated all other RQA measures and found similar results to those
presented in this chapter.

The values of the three measures computed from the first 3,000 iterations of each
trajectory (quasiperiodic, sticky and chaotic) are summarized in Table 5.1. We observe
that RR and L,yecqn discern very clearly between the different orbits. The only measure,
that does not perform sufficiently well, is DET’, which is probably due to the ambiguity
by choosing l,,i, (Marwan et al., 2007).

In order to compare the recurrence based method with other standard techniques,
we calculate the Lyapunov exponents, Ap,q:, in dependence on the iteration time for
the three orbits (Fig. 5.4). From this figure, we see that on short time scales (i.e., time
series with a length less than 10%), Ajqe is not able to distinguish between sticky and
quasiperiodic orbits. In the present case, A4, works only if the length of the time
series is much larger than 105 (i.e., no less than 108). In contrast, the method of RPs
is able to characterize the dynamics from very short time series (3,000 data points),
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| €=0.025 | RR | DET | Limcan |
quasiperiodic | 0.131 | 0.67 | 25.80

sticky 0.074 | 0.68 | 12.99
filling chaotic | 0.006 | 0.64 5.12

Table 5.1: Three selected RP-based measures of complexity computed from trajectories shown
in Fig. 5.3(a,b,¢) (lynin = 2).

1.5

filling orbit

max

0.5

quasiperiodic

10* 10° 10° 10" 10
Time

Figure 5.4: (Color online) Lyapunov exponents for three orbits in dependence on the iteration
time. Since the initial conditions for the sticky and filling orbits are in the same chaotic
component, A\, converge to the same value 1.406, albeit after a long time.

both visually (Fig. 5.3) and quantitatively (Tab. 5.1).

Furthermore, following the sticky orbit for a long time (e.g., N = 3 x 10%), the RQA
measures are able to capture the dynamical transition of the trajectory. Due to the
large number of points of the orbit, we analyze it by applying the RQA measures in
moving windows of length w (Fig. 5.5). The size of each window is w = 5,000 points
and there are 4,500 points overlapped between two consecutive windows. Hence, the
measures defined above correspond to a respective running window, RR;, DET; and
Leanis, © = 1,...,600. In Fig. 5.5, the selected RQA measures are monitored in
dependence on time. These measures capture the transition time 7., reasonably well,
e.g., DET decreases suddenly at the transition point because the trajectory becomes
more irregular. Note that the additional parameter w can be chosen rather arbitrary
as long as sufficient recurrences are obtained within a window.

Another way to visualize long sticky orbits is to apply the windowed and meta
recurrence plots (Casdagli, 1997). The meta RPs are obtained by covering an RP with
w X w-sized squares and by averaging the recurrence points contained in each window.
Consequently, a windowed recurrence plot is an N, X Ny-matrix, where N, is the
floor-rounded N/w and consists of values not limited to zero and one, which suggests
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Figure 5.5: RQA measures in dependence on time for the sticky orbit. The size of each window
is w = 5,000 points and there are 4,500 points overlapped between two consecutive windows.
The vertical dash line corresponds to the transition time around 1.65 x 10° . The length of the
orbit is N = 3 x 10° points.

a color-encoded representation. These values correspond to the cross correlation sum

I J
1 w w o R N
Clel.))=— > Y. Ole—lE - LI=1~. (5.2)

i=1+(I— 1w j=1+(J—1)w

The meta RP has been defined as a distance matrix derived from the cross correlation
sum (5.2),

Die.1,.]) = }2(0(6, [1)+Cle, J,J) — 20(e, I, J)). (5.3)

By applying a further threshold to D(e, I, J), a black-white dotted representation is also
possible. These modified RPs were successfully used to characterize non-stationarity
in time series (Casdagli, 1997). Furthermore, meta recurrence plots correspond to
a zooming-out version of the normal RPs. These modified RPs help to shorten the
computation time significantly, at least of the order of N even for a naive configura-
tion (Casdagli, 1997). The most important advantage of meta-RPs is that they make
the visualization of long data sets possible. In Fig. 5.6 the thresholded meta RP of
a sticky orbit is represented. There is a dramatic change in the density of recurrence
points at the time when the trajectory leaves the sticky region for the chaotic sea. The
transition point is clearly visible (red lines) in the plot.

As we see from Table 5.1 and Fig. 5.5(a), RR is much higher for sticky orbit com-
paring to filling orbit. This is due to the fact that the trajectory is confined to a rather
small subset of the phase space. This is related to the mean recurrence time

o0
<T>= / TP(T)AT = —— (5.4)
0 (1)
where P(T) is the distribution of the recurrence times {71, 7%, ..., T, ...} of the orbit
to a predefined recurrence region and () is the measure of this recurrence region.
This is the so-called Kac’s lemma (Kac, 1959). For the numerics, the integral should
be replaced by a sum. As we mentioned in the introduction, a typical recurrence time
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Figure 5.6: (Color online) Thresholded meta recurrence plot of the sticky orbit. There exists
a significant change in the density at the transition point denoted by red lines. The window
size w = 5, 000.

distribution P(T') of a chaotic orbit in a Hamiltonian system shows an exponential
decay for short times related to the events that do not stick, followed by a power-
law decay for large times attributed to the stickiness. The exponent is proportional
to the mean recurrence time < 7' > of Eq. (5.4). When the trajectory is not stuck,
one expects a large value of < T' > as it has an exponential decay. On the contrary,
smaller < T" > is observed on the time scales when it is stuck. The trajectory shows
a slower divergence (power-law decay) in the “sticking” window. In terms of RR, for
this particular window, w;, more black points are obtained leading to a higher value of
RR. Furthermore, the slow divergence is reflected by relative longer diagonal lines in
the RPs. As a consequence, the value of DET is also higher during the sticking events.

5.5 Quantification of stickiness by RP

During its evolution in time, a typical chaotic orbit visits the neighborhood of the stable
islands from time to time. Next, we study the stickiness in a more general framework
by means of one measure of RQA, namely RR. The calculations based on other RQA
measures can be performed in a similar way.

We use again the standard map (5.1) with k = 1.5. The variation of RR;,i =
1, %, in running windows of length w is monitored. Figure 5.7 illustrates a typical
chaotic orbit and its associated variation of RR in dependence on time. When the
trajectory is trapped in a sticky region, the RR shows a significant change due to the
regular evolution in this particular time interval. As Fig. 5.7(b) indicates, two major
sticky time epochs are obtained corresponding to two sticky regions, denoted as “I” and
“IT” . In the bottom panels (Fig. 5.7(c, d)) the corresponding trajectories are shown
for comparison. Furthermore, one finds that a small proportion of sticking time occurs
at the window number = 45, indicating that the trajectory is stuck for a smaller time
compared to the regions “I” and “II”. In what follows, we only consider the sticking
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Figure 5.7: (Color online) (a) The phase portrait of the parameter £ = 1.5 with initial values
indicated by the black upward triangle point for 2 x 10° iterates. Sticky regions “I” and “II”
are colored with red and blue respectively. (b) Dependence of the RR with a running window
of size w = 5,000 with 4,500 points overlapped between two consecutive windows. The small
peak at ~ 45 is due to weaker stickiness in comparison with “I” and “II”. The series of the
sticking events is denoted by {t1,t2,%3,...}. (c), (d) Two major sticky regions in the phase
plane.

events without the specifications of the location of the sticky regions. It is not necessary
to do so since there are many different stable islands in phase space.

From the variation of RR with time, the sticking events are identified by those
regimes where RR is larger than RR., (Fig. 5.7(b)). Here RR,, is chosen to be 5%
higher than the overall average level when the trajectory is not stuck. However, the
choice of RR,, is not crucial, as the value of RR for the sticking events is much higher
than the value for the events they do not stick. Hence, based on Fig. 5.7(b), we obtain
a series {t1,to,t3,...,t;,...,00} with ¢; denoting the duration of the i-th sticking event.
The duration of the i-th sticking event is then the time interval t; = w/A; between the
i-th and (i + A;)-th windows satisfying Hﬁ;l O(RRiym — RR.) = 1. We can now
consider the probability to find a sticking event which has a time span t > 7, namely
by the calculation of the following cumulative distribution

p(t>7)=> P(t). (5.5)

This cumulative distribution is shown in Fig. 5.8, indicating a power law decay p(t >
7) ~ 777 with v ~ 1.924. This result is in good agreement with the results from
the recurrence time statistics analysis presented by (Chirikov & Shepelyansky, 1984;
Zaslavsky, 2002).
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Figure 5.8: Cumulative distribution of sticking events of duration ¢ greater than 7. A single
chaotic trajectory consisting of 10° iterations has been used for the computation.

5.6 Summary and discussion

We have used the method of Recurrence Plots (RPs) to characterize the stickiness in
non-integrable Hamiltonian systems. This approach enables distinguishing clearly be-
tween regular (periodic and quasiperiodic) and chaotic orbits from very short trajecto-
ries. Slater’s theorem guarantees at most three different return times for a quasiperiodic
orbit to come back to a predefined recurrence interval. The persistence of this number
in integrable Hamiltonian systems with two degrees of freedom allows us to divide the
phase space into regular and chaotic subregions rather easily. The RPs of chaotic or-
bits during the sticking time are substantially different from the RPs of quasiperiodic
trajectories.

Furthermore, measures from the Recurrence Quantification Analysis (RQA) char-
acterize the complex patterns in the RPs, allowing the distinction between chaotic
orbits that are temporarily trapped in a sticky domain and quasiperiodic orbits from
very short trajectories. Based on these RQA measures, the dynamical transitions from
sticky regions to the large chaotic sea are also captured. Following a single chaotic
trajectory, we have found an asymptotic power-law decay of the cumulative distri-
bution of the duration of sticking events, in accordance with results reported in the
literature (Chirikov & Shepelyansky, 1984; Zaslavsky, 2002).



Chapter 6

Application to Experimental
Data

The procedure proposed in the previous chapters is tested on experimental data from
fluid dynamics. The system is known to have a variety of qualitatively different flow
patterns depending on the parameters of the experimental setup. The data sets used in
the present work are from periodic, quasiperiodic, and chaotic regimes. My procedure
is efficient in detecting the existence of quasiperiodicity in short time series. I also
extend the analysis to a three-frequency quasiperiodic process, which shed light on the
application to higher dimensional tori.

6.1 Data sets

This experiment was designed by Prof. Peter L. Read and his colleagues from the
University of Oxford. The details of the experiment presented below can be found in
the paper by Read et al. (1992).

6.1.1 Experimental setup

Baroclinic instability is one of the dominant energetic processes in the large-scale at-
mospheres of the earth and other terrestial planets. A series of laboratory experiments
has been presented investigating regular and chaotic baroclinic waves.

One archetypical means of studying the properties of fully developed baroclinic
instability in laboratory experiments is the thermally driven rotating annulus. The
experimental setup consists of a rotating annulus of conventional design with two up-
right coaxial brass cylinders of radii » = 2.5cm and 8.0cm, and two rigid, insulating
horizontal boundaries in contact with the fluid at z = 0 and 14cm. The apparatus was
mounted on a turntable such that its vertical axis of symmetry coincides with the axis
of rotation. The annulus was rotated about its vertical axis of symmetry and differ-
entially heated horizontally at the side-walls. The inner cylinder was cooled and the
outer was warmed.

71
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The working fluid consisted of a 25% solution by volume of glycerol in water, with
a mean density of 1.081g ecm™ at 20 °C, kinematic viscosity v of 3.18 x 10~2cm?s™!,
thermal diffusivity & of 1.20 x 10 3cm?s™! and Prandtl number Pr(= v/k) of 26.4.

The annulus was designed for the precision measurement of fluid and boundary
temperatures (via thermocouples), and of total heat transport. Temperature at the
boundaries and in the fluid were measured using copper-constantan thermocouples
(sensitivity ~ 40V per K). In the fluid, thermocouples were located at mid-height

and mid-radius in the convection chamber.

6.1.2 Data description

The system is well known to exhibit a rich variety of different flow regimes, depending on
the imposed experimental parameters (i.e., rotation rate, temperature contrast, aspect
ratio, viscosity, thermal diffusivity and density of the fluid). The different regimes
that can be obtained include steady axisymmetric flows and spatially irregular flows.
The flows measured were in the baroclinically unstable regime, and took the form
of azimuthally-propagating traveling waves. In this case of intermediate parameter
configurations, the system exhibits spatially regular waves drifting through the annulus
which can be steady baroclinic waves, waves with periodic amplitude modulation or
vacillation (AV), quasiperiodic or chaotically modulated amplitude vacillations (MAV),
other forms of so-called structural vacillation (SV).

The time series consisted of temperature typically measured in the fluid at 1.5 ~ 2s
intervals, placing 200 or more samples per wave drift period. The particular time series
investigated here were taken from a single thermocouple probe for cases (iv), (iii) and
(ii). More precisely (the numbering in the following is referred to as the cases described
by Read et al. (1992)), the time series are:

(iv) Steady wave solution.

The temperature signal exhibits a simple periodic oscillation as the wave pattern
drifts past the fixed measurement point.

(iii) Amplitude vacillation (AV).
This case is identified as a quasiperiodic dynamics of amplitude vacillation with
the azimuthal wavenumber m = 3 flow. The wave drift is still evident as a slow,
regular oscillations in the temperature signal, but the (fast) modulation in the
amplitude is also evident. AV is characterized by the periodic growth and decay
of the wave amplitude with little change in wave shape.

(ii) Modulated amplitude vacillation (MAV).

This case is identified as a low-dimensional chaotically modulated amplitude vac-
illation wave. The modulation in the amplitude ignites a complex and rapidly
varying temperature signal.

The results of the above reference (Read et al., 1992) are analyzed in the context of
a bifurcation analysis using nonlinear time series analysis techniques, including power
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spectral analysis, phase space reconstruction, and Lyapunov exponent estimation. The
dynamical invariants Ky and Ds have been estimated by means of RP for cases (ii)
and (iii) (Thiel et al., 2004a). The algorithm to calculate K2 and Dy can also be
found in Chapter 2. The estimations of Ky and Ds are independent of the embedding
parameters (Thiel et al., 2004a).

6.2 Aims

Here, our major aim is to detect the existence of quasiperiodic dynamics in short time
series and test the applicability of the procedure I proposed in the previous chapters
to real data. In our numerical simulations below, we use time series of about ten
oscillations of quasiperiodic process (AV). In this period of time, there are 4,000 data
points for the quasiperiodic trajectory, while 3,000 points for the periodic and chaotic
orbits. Dealing with such short recordings of measurements, other methods to detect
quasiperiodicity face several practical difficulties:

e The power spectrum analysis is insufficient in the case that only short time series
are available.

e Phase space plot, Poincaré section points are not enough:

In practical applications it may be problematic to define a Poincaré section due
to the reasons explained in Sec. 4.4.1.

e Lyapunov exponents:

In experimental studies, one can only rely on the finite-time estimation to draw
a conclusion for the global picture of the system. This is also the case for the
estimation of other dynamical invariants, such as correlation dimension.

In general, a long time series is necessary for the above mentioned methods to obtain
a reliable characterization of the underlying process.

6.3 The procedure

As we have seen in Fig. 2.1(a), in an RP a return time is reflected by a white vertical
line, therefore, we regard these two concepts as equivalent in this context. In the case of
a uniform quasiperiodic motion, the RP consists of continuous diagonal lines with three
different white vertical lines imposed by Slater’s theorem (see, e.g., Figs. 4.2). Hence,
our procedure to distinguish periodic, quasiperiodic dynamics from chaos is simply by
studying the existence of three different return times of the underlying process.
However, in order to detect the existence of quasiperiodicity in short time series,
we need to extend our analysis from relying on the construction of a proper Poincaré
section to deal with raw experimental data. To that end, three steps are necessary:
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Step 1

Step 2

Step 3

Calculation of the recurrence plot of the trajectory. This step is important for
the visualization aspect and shows the detailed recurrence patterns qualitatively.
The line structures corresponding to periodic, quasiperiodic and chaotic motion
are clearly distinguished using this two dimensional plot.

Calculation of the histogram of the white vertical lines (recurrence times) of the
plot. This step quantifies the recurrence patterns quantitatively. In the case of
quasiperiodic dynamics, the histogram consists of three principal peaks corre-
sponding to three different return times. Furthermore, the value of the largest
white vertical line is the sum of the other two. In contrast, in the chaotic case,
there are in general more than three peaks in the histogram, which noteworthily
do not satisfy the very restrictive sum rule of Slater’s theorem.

Calculation of the cumulative probability of the white vertical lines. It is numer-
ically convenient to consider the cumulative probability distribution of the white
vertical line larger than 7. By this way, the peaks in the histogram obtained in
the above step are identified as the transitions in the cumulative distribution.
Hence, the peaks which have a large quota in the histogram produce a big jump
in the cumulative distribution.

Steps 2 and 3 essentially disclose the same property about the distribution of the white
vertical lines in the RP. The advantage of the cumulative distribution representation
is that the contribution of different white vertical lines is clearly distinguishable as we
will see below.

The application of Slater’s theorem to recurrence plots, where one considers re-
currences to every point of the trajectory, deserves some caution. It is attributed to
the dynamics itself as well as the method we use. Some of important points are the
following;:

Nonequivalence of norms.

The choice of a norm in the recurrence matrix is perhaps the first cause to ob-
tain more than three return times. The effective recurrence interval defined by
different norms, e.g., the Euclidean norm and the Maximum norm has in general
different shapes, sizes and orientations with respect to the position of the points
on the trajectory. In the particular case of a uniform quasiperiodic dynamics on
a circle, the use of the Maximum norm results in an extra return time (Zou et al.,
2007b).

Temporal effect and the sampling time.

Dealing with time series, the existence of possible tangential motion leads to peaks
in the histogram having a certain width. The temporal effect can be reduced with
a correction of Theiler window in the calculation of the recurrence matrix (Theiler,
1986). Some recurrences may be skipped if the sampled trajectory jumps over
the recurrence region, which would result in an apparent violation of Slater’s
theorem.
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The above two points result from the methodological aspect, while the next two are
because of the dynamics itself.

e Effective recurrence interval. The next obvious problem is the nonequivalence
of different points of the trajectory since nonlinearity induces non-uniformities in
the distribution of the points on the Poincaré section, which implies that intervals
of equal length are not equivalent.

e Degree of curvature of the torus.

This reason can be reduced to the same as the previous one if a Poincaré section
is obtained. The effective recurrence interval is greatly influenced by the local
curvature of the torus. In a general case, the geometrical shape of the attractor
in phase space is unknown. As a consequence, one might have more than three
return times.

These subtle aspects have to be taken care of when dealing with experimental data.
However, another property of quasiperiodic dynamics is the sum rule between three
return times, which is stated as showing deeper relations between them by Slater’s
theorem. This sum rule is crucial and should not be overlooked. We always must test
the existence of three different return times in combination with the sum rule.

6.4 Classification of dynamics from short time series

As Recurrence Plots (RPs) are used to visualize the recurrences of trajectories of dy-
namical systems in phase space, the reconstruction of the attractor in phase space is a
necessary precondition. Here, the reconstruction of phase portraits is based on Takens’
time-delay embedding. The time delay 7 is estimated by the zero-crossing of the au-
tocorrelation function. An embedding dimension d is determined by a vanishing of the
false nearest neighbors. The TISEAN programs are implemented to estimate these two
parameters for the embedding (Hegger et al., 1999). We obtain the same embedding
dimension d = 6 but different time delays for three time series, in particular, 7, = 218s
(periodic), 75 = 136.5s (quasiperiodic), and 7;; = 118s (chaotic).

6.4.1 Distinction in one window

First, we analyze a segment of the first 6,000s from each time series, periodic (iv),
quasiperiodic (iii), and chaotic (ii). This section of series for three cases are shown
in Fig. 6.1(a), Fig. 6.2(a) and Fig. 6.3(a), respectively. In this period of time, the
quasiperiodic case has about ten oscillations (drift periods).

The analysis of the case (iv) with periodic steady wave solution is shown in Fig. 6.1.
The RP consists of uninterrupted diagonal lines with equal distance, which is deter-
mined by the drifting period of the temperature signal. In this case, it is trivial to
observe only one peak in the histogram. Correspondingly, only one transition occurs
in the cumulative distribution.
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Figure 6.1: For the periodic case (iv). (a) time series, (b) projection of the phase portrait on the
plane (T}, Tiy3-), (¢) recurrence plot, (d) histogram of the white vertical lines, (e) cumulative
probability to find a white vertical line of length larger than 7, and (f) power spectrum. We
obtain continuous diagonal lines in the RP with only one equal distance indicated by one peak
in the histogram and one transition in the cumulative probability distribution.

The analysis of case (iii) with amplitude vacillation is shown in Fig. 6.2. In this
case, there are only three principal peaks. Furthermore, the peaks are centered at T} =
547.5, Ty = 2157, and T3 = 2706 ~ T} +T5. Note that there is a small peak centered at
Tertra = 1594.5, which has a very small contribution to the statistics. In the cumulative
probability distribution, the transition at the position T¢,:q is indistinguishable.

The analogous analysis for case (ii) with modulated amplitude vacillation (MAV) is
shown in Fig. 6.3. The RPs consist of mainly short diagonal lines. As a consequence,
there is a large number of different peaks in the histogram and many transition points
in the cumulative probability distribution. Furthermore, the sum rule does not hold.

6.4.2 Dependence on the choice of the segment

In order to show the dependence on the choice of the particular segment from the time
series, we take randomly 2,000 windows of the same length from the original time
series. For each window, we do the same calculation as performed in Figs. 6.1-6.3 to
obtain the histogram of white vertical lines and the cumulative probability distribution.
Afterwards, we do the average over these 2,000 windows. The results are shown in
Fig. 6.4, which indicates the difference between three types of dynamics.

From this figure, it is straightforward to see again the periodic wave solution has
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Figure 6.2: For the 2-torus case (iii) of amplitude vacillations. (a) time series, (b) projection
of the phase portrait on the plane (T3, Ti+3.), (c) recurrence plot, (d) histogram of the white
vertical lines, (e) cumulative probability to find a white vertical line of length larger than 7,
and (f) power spectrum. There are three main peaks in the histogram, and correspondingly

three main transitions in the cumulative probability distribution.
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Figure 6.3: For the chaotic case (ii) of modulated amplitude vacillations. (a) time series, (b)
projection of the phase portrait on the plane (7}, T;13,), (¢) recurrence plot, (d) histogram of
the white vertical lines, (e) cumulative probability to find a white vertical line of length larger
than 7, and (f) power spectrum. There are more than three peaks in the histogram and more
transitions in the cumulative probability distribution.
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Figure 6.4: Average over 2000 windows for three cases. (a), (b), and (c) histogram of the
white vertical lines. (d), (e), and (f) cumulative distribution of the white vertical line larger
that 7. (a, d) periodic —iv (b, e) AV —iii, and (c, f) MAV — ii.

only one equal distance in the RP as indicated by one abrupt transition in Fig. 6.4(a,
d). In the case of AV solution, we find six major peaks with the absolute values centered
at T1 = 547.5,T» = 1594.5,T5 = 2157,T, = 2706,T5 = 3255, and Tg = 4863, which
seems to violate Slater’s theorem. However depending on the probability to have these
respective values (Fig. 6.4(b, e)), we could identify two relative different categories.
The first class is {17, T3, Ty ~ T} + T3} having a large portion in the histogram, which
is the same as in Fig. 6.2(d, e). The second class is {T%,75,Ts}. Furthermore, the
second class is a derivation of the first class, namely, T ~ T3 — 11,15 ~ 11 + Ty, and
Ts =~ T3+ T4. The occurrence of more than three different vertical distances in the RP
is due to the non-uniformity of the trajectory and the possible complex shape of the
attractor in phase space, which has been stated in Sec. 6.3 in terms of the variation of
the effective recurrence interval along the trajectory. On the other hand, based on the
simple relation between these six different return times, we conjecture that the sum
rule is a basic property of a quasiperiodic motion, which serves as another important
and robust criterion to detect the existence of quasiperiodicity.

However, in the chaotic case, we obtain many more different return times. Also
the sum rule is violated (Fig. 6.4(f)). Furthermore, in Fig. 6.4(f), we observe one
prominent transition at around the third major return time 7 = 1322, which implies
that this recurrence time has a larger quota comparing to others. These three cycles
reflect a characteristic period of the attractor in the sense that after this time, most of
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Figure 6.5: Average over 2000 windows for the chaotic Rossler system. (a) histogram of the
white vertical lines, and (b) cumulative distribution of the white vertical line larger than 7.

the points recur close to their initial state.

6.4.3 Comparison to chaotic Rossler system

For a better comparison, we apply the same procedure to the chaotic Rossler system
(with parameters ¢ = 0.2,b = 0.2, and ¢ = 5.7). The histogram of the white verti-
cal lines and its associated cumulative probability distribution (averaged over 2,000
randomly chosen windows) are shown in Fig. 6.5. The cumulative distribution shows
a rather similar variation as the case of MAV in Fig. 6.4(f). At the same time, an
abrupt transition at three cycles indicates that most of the points come back to the
neighborhood of the initial state after three oscillations, after which the reliable scaling
region for the estimation of the correlation entropy Ky sets in (Thiel et al., 2003).

6.5 Analysis of the 3-torus quasiperiodic dynamics

6.5.1 Data description

The data set from the 3-torus regime is from a different experimental setup, which is
obtained from a three-dimensional direct numerical simulation in an air-filled rotating
baroclinic annulus. Randriamampianina et al. (2006) have done this numerical analysis.
The use of air as the working fluid, instead of water-glycerol in the previous sections,
is because it has a small Prandtl number close to unity which could result in reveal-
ing subtle phenomena. The occurrence of a three-frequency quasiperiodic modulated
amplitude vacillation is perhaps the most important consequence. The time series is
measured at 1.6875s sample interval. The embedding parameters are 7 = 185.625s and
d = 6, which are estimated by the same procedure as in Sec. 6.4.

6.5.2 Results from the recurrence analysis

Note that Slater’s theorem holds only for 2-frequency quasiperiodic motion. In the case
of a higher dimensional torus (N > 2), one finds a finite number of different return



6.6. Summary and discussion 81

times, in general much larger than 3, to a recurrence interval of a given length (Mayer,
1988).

We first take a segment of the first 8,450s from the time series. There are about
5,000 data points in this window, and it shows about ten drifting periods (Fig. 6.6(a)).
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Figure 6.6: For the 3-torus case. (a) time series, (b) projection of the phase portrait on the
plane (T, Tt+3+), (¢) recurrence plot, (d) histogram of the white vertical lines, (e) cumulative
probability to find a white vertical line of length larger than 7, and (f) power spectrum.

In this case, uninterrupted diagonals are obtained in the RP together with some
short lines (Fig. 6.6(c)), which shows more regular structures compared to the chaotic
case (Fig. 6.3(c)). Both the histogram of the white vertical lines and the cumulative
distribution show a finite number of return times, which is certainly larger than three.
However from the probability distribution (Fig. 6.6(e)), we can conjecture that RPs
give a priority to three return times centered at 77 = 761,7T> = 5641, and T3 = 6409 ~
T1 4+ T5 as they show dominant peaks.

The average over 2,000 random windows also implies the regularity of the dynamics,
which is shown in Fig. 6.7 with a finite number of abrupt transitions in the cumulative
probability distribution.

6.6 Summary and discussion

The numerical results of this chapter confirm that the procedure that I have proposed
can be also successfully applied to real data analysis. The main results are the following:
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Figure 6.7: For the 3-torus case. (a) Histogram of white vertical lines averaged over 2,000
random windows, and (b) Cumulative probability distribution based on (a).

e In the periodic case (steady wave solution),

RPs show continuous uninterrupted diagonal lines with equal distance, which
illustrates itself as a typical periodic process in terms of RPs.

e In the 2-torus quasiperiodic case (periodic amplitude vacillation),

continuous diagonal line with three different distances are observed in the RPs.
The maximal distance is the sum of the other two, according to Slater’s theorem.

e In the 3-torus quasiperiodic case (quasi-periodic amplitude vacillation),

the RPs have uninterrupted diagonal lines, which indicates substantial difference
with the RPs of the chaotic dynamics. There are more than three return times.
However from the cumulative probability distribution of the white vertical lines,

we see that RPs have preference over three major distances and the sum rule
holds for them.

The characterization of a higher dimensional torus needs further studies, which
is interesting from a theoretical point of view. Basically no theory is available to
study this case. However, the characterization of this type of dynamics by means
of recurrence sheds light on this problem.

e In the chaotic case (chaotically modulated amplitude vacillation),

only interrupted diagonal lines are observed in the RPs in combination with a
large number of different distances, which is clearly different to the quasiperiodic
motion case (including 2-torus and 3-torus). There is a large number of different
return times in the histogram and the cumulative distribution, which noteworthily
do not satisfy the very restrictive sum rule of Slater’s theorem.



Chapter 7

Conclusions and Outlook

The main results of my thesis are summarized in this final concluding part. Addition-
ally, some open questions are discussed, as well as the outlook of this thesis.

7.1 Conclusions

In this work I have studied recurrences mainly in quasiperiodic dynamical systems by
means of recurrence plots (RPs). To understand this particular dynamics in the context
of RPs, a combination of theoretical analysis and numerical demonstrations has been
performed. The thesis at hand mainly aimed to contribute to methodological questions
of the investigation of quasi-periodicity. Some of important results are the following:

1. The RPs of quasiperiodic dynamics consist of three different white vertical lines.
Among them, the maximum distance is the sum of the other two values. Based on
this fact, I have proposed a procedure to detect the existence of quasi-periodicity
in short time series. In general situations, where one analyzes a continuous time
series from a system with strongly non-uniform dynamics, more than three vertical
line lengths may be observed but my computations show that they fit the very
restrictive sum rule imposed by Slater’s theorem. The histogram of the white
vertical lines and the cumulative probability to find a return time larger than 7
are computed to detect the three return times.

2. My approach is efficient in distinguishing regular from chaotic trajectories of
Hamiltonian systems with mixed phase space using short time series. It was il-
lustrated in both the Hénon-Heiles system and standard map. A typical chaotic
trajectory in such systems has a strong intermittent behavior, namely sticki-
ness. The presence of stickiness causes some substantial difficulties in the use of
conventional tools to characterize the dynamics when only short trajectories are
available. We find that the patterns in the RPs of quasiperiodic and chaotic orbits
are qualitatively different. These differences in the RPs allow distinguishing be-
tween regular and chaotic orbits that are temporarily trapped in a sticky domain
in short trajectories. Furthermore, applying recurrence quantification analysis
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it is possible to distinguish these recurrence patterns quantitatively. However,
other existing techniques, such as power spectrum, Lyapunov exponents, etc., are
not able to distinguish between chaotic and quasiperiodic dynamics in short time
series.

. Furthermore, I have tested the proposed methods in experimental data. De-

pending on the imposed experimental setup, the system exhibits a rich variety
of different dynamics. I have analyzed the data from the periodic, quasiperiodic,
and chaotic regimes. The results show the efficiency and validity of my procedure
in characterizing the dynamics in short time series. I have also extended the
analysis to the three-frequency quasiperiodic dynamics and also in this case three
main return times are found, which additionally satisfy the sum rule. T3 torus
could be easily identified by mean of recurrence analysis.

. A detailed theoretical analysis of the line structures in RPs for quasiperiodic

dynamics has been performed and the mechanism for the formation of the line
structures has been related directly to the time indices of the trajectory. These
results provide us a better understanding of the microscopic texture of RPs. The
€ effects to the line structure in an RP have been investigated analytically in
the model with 3-D parametric equations in phase space. The boundaries of the
recurrence areas caused by a non-zero threshold have been explicitely expressed in
dependence on e. These results help to choose € properly for the RPs computation.

. I have applied an automated algorithm to estimate the Rényi entropy of second

order K5 to the two dimensional parameter space of a parametrically excited
system with two degrees of freedom. I have found that the parameter space is filled
with labyrinthine periodic regions embedded in the chaotic sea. Furthermore,
shrimp structures have been identified.

7.2 Outlook

This work raises several out-reaching questions. Some of them concern the limits of the
particular method I have proposed above and require a reorientation. Others emerge
from ideas and concepts and initiate a new field of research. A list of open questions
and possible extensions is as follows:

1. The analytical derivation of recurrence time indices in an RP is carried on the

quite simple sine function with trivial recurrence and the 2-torus models, which
exhibit nontrivial recurrence with low complexity. However, a large number of
systems show nonlinear dynamical properties possessing high complexity. The
extensions of the present analysis to systems with nontrivial recurrences belonging
to group (b) (Katok & Hasselblatt, 1995) would be interesting.

. My procedure is powerful in detecting the existence of quasiperiodic dynamics in

short time series. This method might also be relevant for the study of engineering
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problems, such as the long term behavior of underwater sound propagation in the
framework of ray chaos theory, where quasiperiodic dynamics constitutes the
regular region in the phase space (Bodai et al., submitted). Another particular
interesting problem, which could be analyzed by our approach, is the investigation
of the transition to chaos via the Takens-Ruelle-Newhouse route, which is closely
related to the occurrence of weak turbulence in fluid dynamics (Newhouse et al.,
1978; Read, 2001). Applications to these more complex systems will be addressed
in future work.

3. In the present work, the main analysis concentrates on quasiperiodic dynamics
with two incommensurate frequencies. I use several models, such as the phase
model, 3-D parametric equations model, the Hénon-Heiles Hamiltonian, and stan-
dard map to demonstrate the applicability of my approach. The extension to
higher dimensional systems by RPs analysis needs further study. Slater’s theo-
rem is only valid for the 2-torus quasiperiodic case. Basically no theory exists in
this case. The thoroughly study of the n-dimensional tori would be interesting
from a theoretical and practical point of view.

4. A last particularly interesting problem is the extension from stable tori to unstable
tori. In a model consisting of three Lorenz oscillators coupled in a ring way (Pazé
& Matias, 2005), the high-dimensional chaotic set is created in a hetero-clinic
global bifurcation which yields an infinite number of unstable tori. The onset
of phase synchronization is related to phase-locking on the surface of unstable
tori (Pazé et al., 2003). In a more general situation, synchronization could oc-
cur with the winding number locking on a two-dimensional torus (Anishchenko
et al., 2006). Effective methods to detect and localize an unstable tori in high
dimensional systems are still lacking and would be very relevant for a deeper
understanding of the topology of these attractors.
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A.1 Introduction

A fundamental problem in the study of nonlinear coupled oscillators is to determine the
bifurcation diagram in parameter space (PS) (Guckenheimer & Holmes, 1990; Wiggins,
1990). However, methods to identify all kinds of bifurcations that may occur and the
parameter values at which they take place for a particular system are still lacking.
Several software packages, e.g., AUTO (Doedel & et al., 1997), have been developed
to perform a bifurcation analysis numerically. These programs have been applied to a
variety of systems exhibiting complex dynamics that typically take place in scientific
and engineering disciplines, such as 2D predator-prey models or a non-smooth Chua’s
circuit system (Madan, 1993). Though much insight into these systems has been gained
recently, it has still not been possible to understand the labyrinthine periodic regions
embedded in the chaotic sea of the PS (Barreto et al., 1997).

In this paper, we study a parametrically excited oscillatory system with two degrees
of freedom, which is composed of a damped Mathieu oscillator and a damped harmonic
oscillator coupled by nonlinear terms. Both the Mathieu oscillator and the harmonic
one are simple models, such as a pendulum the point of suspension of which is subjected
to vertical excitation (Nayfeh & Mook, 1981). This parametrical excitation makes it
practically impossible to obtain the analytical solution even if the equation is linear
because the coefficients of the system vary periodically. With this excitation, a system
may undergo complex transition processes, such as modulated chaos, which is observed
in two coupled parametrically excited van der Pol oscillators (Bi, 2004). Additionally,
internal resonance phenomena, i.e., that two natural frequencies of the system are
commensurate, may occur in a system with two degrees of freedom. When an internal
resonance occurs, the two modes may interact with each other and lead to more complex
bifurcations. In this paper, we will investigate the bifurcations as well as the dynamics
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in the presence of both external and 1 : 1 internal resonance.

Firstly, we use the average method (Nayfeh & Mook, 1981) to derive the equations
governing the amplitudes and phases of the system. After analyzing the steady states,
the bifurcation sets are defined based on their associated stability conditions. To our
knowledge, this approximate analytical method has the same theoretical fundamentals
as AUTO. However, these approximate methods fail in the regions where the explicit
expressions for the solutions cannot be obtained from the equations. In these regions,
we use the Rényi entropy of second order Ky, estimated from Recurrence Plots (RPs),
to uncover the transition boundaries in detail.

By means of Ko, we find many periodic windows, which are mostly shrimp struc-
tures (Gallas, 1993) of different sizes. These results which are computed from the
integrated trajectories (i.e., time series), are validated by a comparison to the respec-
tive Lyapunov exponents. Furthermore, numerical simulations are carried out to study
the dynamics within the periodic windows. We find a period doubling sequence and
intermittency routes, along which the stable periodic solutions lose stability. Hence,
we can characterize the bifurcation properties of the shrimp boundaries.

The outline of this paper is as follows: in Sec. A.2, we introduce the equations of the
considered system. The analytical bifurcation analysis is given in Sec. A.3. In Sec. A .4,
we explain how to estimate Ko from RPs. In Sec. A.5 we show the results obtained by
K> in PS. These results are tested by comparing them to the corresponding Lyapunov
exponents in Sec. A.6. Then, the numerical simulations are applied to characterize the
different bifurcation properties of the shrimp boundaries in Sec. A.7. Finally, some
conclusions are drawn in Sec. A.8.

A.2 Equations of the system and average method

In this section, we introduce the model system and use the averaging method to trans-
form the original coupled nonlinear model into an autonomous one, the averaged sys-
tem.

Parametrically excited equations can be applied to describe standing, traveling and
rotating waves in physical systems, such as floating vessels (Nayfeh & Mook, 1981).
Nowadays, the parametric excitation can be provided by modern actuators in mecha-
tronic and smart structures, e.g., in actively controlled magnetic bearings.

We consider a damped Mathieu oscillator coupled to a damped harmonic one by
nonlinear terms. It has two degrees of freedom expressed in the following form

Gi + (W — epcost)qr + ediqy + e(ki1gd + kaqugd) = 0,
G2 + w%qz + €dago + e(kgqfqg) =0, (A.1)

where w; and wy are commensurate fundamental frequencies, p is the amplitude of the
parametric excitation, and d; and Jo are damping coefficients. The constants k; and
ko are of order 1 and ¢ < 1. We only consider positive damping values which is typical
in most engineering and physical problems.
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In order to investigate the dynamics in the presence of both external and inter-
nal resonance, we follow the approach presented in (Bi, 2004) and first introduce the
detuning parameters o; and g, such that

1 1

wi= 7 0L wy =7 —e€on (A.2)

Here, o1 and o9 represent the deviation of the excitation frequency from the first and
second natural frequency respectively. Note that (o1—03) represents the deviation from
the internal resonance and is of order O(e). Based on the averaging method in (Nayfeh
& Mook, 1981), we can assume the form of the solutions to be given by

NN

1 1 1
qi = pi cos(§t +6:), ¢ = —5pi sin(gt +6;), (1=1,2). (A.3)

Substituting (A.3) into (A.1), we obtain the following autonomous system

d ) ) 1 .
e _ 6[——1p1 - gpl sin 2607 + Zkgplpg sin(260; — 267)],

a2

T [~ — Bcos26, + 2 - - 20, — 2

pn e[—o1 5 €08 01 + 4k1p1 + 2k2p2 + 4k2p2 cos (264 02)],

dp2 02 1 .

pre 6[—5p2 + Zka%pQ sin(—260; + 267)],

do 1 1

ditz =€[—o9 + §k2p% + Ekw% cos(—26; + 267)]. (A4)

Using the canonical variables
U1 = p1 COS (91, V1 = pP1 sin (91, U = P2 COS 92, V2 = P2 sin 92, (A5)

and substituting in Eqgs. (A.4), we find

. 51 1% kg 3k1 k‘g
Uy = €[orvg — Eul — 5111 — Zvl(ug + 3@%) — Tvl(u% + v%) — 5'&1“2?}2],
. ) k 3k k
U1 = €[—o1up — ﬁul — —11)1 + —2u1(3u% + v%) + —lul(u% + U%) + —zvlugvg],
2 2 4 4 2

) k k
'lig = 6[0’21)2 — *QUQ - l( % + 31)%)1)2 - ﬁulvluQ],

2 4 2

) k k

Vg = 6[—521)2 — oouo + f(?)u% + 'U%)'LLQ + ?21111)11)2]. (A.G)

Egs. (A.4) and (A.6) represent an autonomous system of four ordinary differential
equations of first order, governing the slow time modulations of the amplitudes and the
phases of the approximate solutions are given by (A.3). From this averaged system,
we can study the response behavior of the original system with external force. Note
that limit cycles of (A.6) correspond to quasi-periodic solutions of (A.1). In the next
section, we will use Egs. (A.6) to perform a bifurcation analysis.

We take o1 and o9 as bifurcation parameters to study the contributions of the nat-
ural frequencies to the dynamics of the system and fix the other parameters according
to their physical meanings as proposed in (Bi, 2004).
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A.3 Bifurcation analysis of the steady states

We start analyzing the steady states of the systems (A.4) and (A.6) and their respec-
tive stability in this section. Additionally, the transition boundaries will be defined
according to their stability conditions.

From Egs. (A.4) and (A.6), we obtain three kinds of steady states, which are the fol-
lowing: i) the trivial solution: p; = 0, p2 = 0, ii) the single mode solution: p; # 0, p2 = 0
and iii) the coupled mode solutions: p; # 0, pa # 0. The stability conditions of these
steady states can be determined by the eigenvalues of the Jacobian matrix evaluated
at their respective solutions. The characteristic polynomial to compute eigenvalues for
the general case has the following form

aip — A a2 a3 aiy
PO\ = as1 a2 — A as3 an | (A7)
asi azy  azz — A as
aq a42 as3  aqq — A

where the expressions for a;;(i,j = 1,2, 3,4) are given in the Appendix. We denote the
above determinant as

P(A) = M+ a103 4+ aa)\? + az\ + ay, (A.8)

for the convenience of further analysis.
Thus, from Eq.(A.8), the condition for the trivial solution i) to lose stability is

1 1
Ly : 16% - Z,uQ +0? =0, (A.9)
and the transition boundaries for the single mode motion ii) are given by
2 2, 3,94, 1o
L2 N —kQ,OlO'Q + 0'2 + Ekal + 1(52 = 0 (AlO)

The coupled mode solutions iii) are coupled in the following way

63 ko ko

ZZ + (EP% — o)’ = (ZP%)Q,
01 302, ki 5 P02 Fy2
2 - - = (5= Al
(g + 5+ ot St + P22 = () (A1)

We cannot get these transition sets explicitly. Applying the Hurwitz criterion to (A.8),
two possible critical boundaries of coupled mode motion may be defined. One of them
is

Ly: ay=0, (a1 >0,az>0,a3(aiaz — az) —alag > 0), (A.12)
from which a generalized static bifurcation may occur. The other possible boundary is

given by
Ly: az(aias —az) —alay =0, (a1 > 0,a2 > 0,a4 > 0), (A.13)
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Figure A.1: Bifurcation diagram in the (o, 03) parameter plane. (The coupled mode motions
lose its stability via a Hopf bifurcation, L4. The line L3 does not exist for the present parameters.
T: Trivial solution, SM: Single mode solution, CR: Complex region defined in the text. The
region between the dashed line Ly and solid line Ly is for the coupled mode motion.)

from which a generalized Hopf bifurcation can be found.

To visualize these transitions in PS, we first fix the following values for the param-
eters of the system to

€=0.01,1=08,0 =0.1,60 =0.1,k; = 1, ky = 8, (A.14)

and plot them in the (07, 092) plane. Here, we also note that the coupled mode solutions
lose stability via a Hopf bifurcation because for the values given by (A.14), one finds
a1 > 0,a2 > 0,a4 > 0, and therefore, L3 does not exist. The transition sets defined by
the approximated analytical method are shown in Fig. A.1.

This diagram shows that the bifurcation process from a zero solution to coupled
mode motion of this system takes place as follows: the single mode solution bifurcates
from the boundary Lq, of the critical stable region of the zero solution via the static
bifurcation. At the stable boundaries for the single mode solution Lo, the generalized
static bifurcation may take place, which then leads the system to the stable coupled
mode motion. The coupled mode motion loses stability via a Hopf bifurcation, which
is indicated by L4. Finding the bifurcation curves, where these states change their
stability, allows us to obtain subregions showing qualitatively different behavior in the
PS.

However, the transition sets remain unclear in the region where the coupled mode
motion loses stability, i.e., between the L, boundaries (CR). The approximate method
used above is also not appropriate there because the solutions cannot be obtained
explicitly if we only consider the Eqgs. (A.6). Therefore, we call this region complex
region (CR), as shown in Fig. A.1. We will use the Rényi entropy of second order K,
and the Lyapunov exponents to explore the transition sets in this region.
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A.4 Recurrence plots and Rényi entropy K>

Before discussing the structure identified by Ky in PS, we first recall the techniques
recently presented in (Thiel et al., 2003) to estimate this entropy from recurrence plots
(RPs) and present some remarks about Ky computations.

RPs were originally introduced to visualize the recurrences of trajectories of dy-
namical systems in phase space (Eckmann et al., 1987). These plots have proved to be
rather useful in the analysis of time series and been the basis for the Recurrence Quan-
tification Analysis(RQA) (Webber & Zbilut, 1994; Zbilut et al., 1998; Marwan, 2003),
which has been developed to quantify structures found in RPs. The RQA measures
have been applied to various experimental data sets, especially in chemistry, physiol-
ogy and earth science (Romano et al., 2005; Marwan et al., 2002b; Zbilut et al., 2002b;
Marwan et al., 2002a; Kurths et al., 1994).

Additionally, it has recently been shown that dynamical invariants, such as the
Rényi entropy of second order K5 and the correlation dimension Ds, can be estimated
from RPs (Thiel et al., 2004a, 2003; Romano et al., 2004; Thiel et al., 2004b). The
entropy measures the average rate at which information is lost. Its inverse is a rough
estimate of the time for which reasonable prediction is expected. For a purely random
system, K tends to infinity, a periodic system is characterized by K = 0, and chaotic
systems yield a positive and finite K5, as they belong to a category between pure
periodic and pure stochastic systems in terms of their predictability. Hence, K5 is an
appropriate measure to distinguish different behaviors of the system.

Suppose we have a dynamical system represented by the trajectory {z;} for i =
1,---, N in a d-dimensional phase space measured at sampling rate 7. Then, we com-
pute the recurrence matrix

Ri,j:@(ﬁ—”fi—fju), ’i,j:1...N, (A,15)

where € is a pre-defined threshold and ©(-) is the Heaviside function. The graphical
representation of R; ;, called “recurrence plot”, is obtained by encoding the value one
by a “black” point, (i.e., the distance between any two points is smaller than the
predefined threshold €), and zero by a “white” point (i.e., the distance between any
two points is larger than €).

The Rényi entropy of second order Ks can be estimated from the cumulative dis-
tribution of diagonal lines P¢(l) in the RPs as reported in (Thiel et al., 2003). The
probability of finding a diagonal line of at least length [ in the RPs of a chaotic system
is given by

P(1) ~ P2 exp(— Ky (e)7l). (A.16)

Therefore, if we represent PS(l) in a logarithmic scale versus [ we should obtain a
straight line with slope —Kj(¢e)7 for large I’s, which is independent of e. Thus, K2 can
be estimated from RPs. This method has been applied to asses the earth’s temperature
predictability (Thiel, 2004) and to study the extrasolar planetary systems (Asghari
et al., 2004).
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Figure A.2: (Color) K in the (o1, 02) plane computed on Egs. (A.6). (Regions with Ky ~ 0
indicate regular or periodic solutions, while parts with K5 > 0 related to chaotic behavior. Two
pronounced periodic windows can be found within the tongue. The black line, Ly, is defined
by the Hopf bifurcation when the coupled mode motion loses stability.)

One important advantage of the estimator of Ky from RPs, Eq. (A.16), is that
it is independent of the choice of the embedding parameters (Thiel et al., 2004a).
Furthermore, by means of this approach, Ky is estimated from the time series, i.e.,
knowledge of the equations is not necessary. This is another important advantage for
the study of measured time series. For the cases considered in this paper, we used
trajectories of 5,000 data points to estimate Ky at each point of the PS, applying the
automated algorithm presented in (Thiel, 2004).

A.5 Transition boundaries uncovered by entropy K-

In this section, we present the main result of this paper. By computing K5 in PS, we
find some periodic windows of complex shape, called shrimps, which cannot be detected
by the analytical approach. The results are illustrated in Fig. A.2.

We divide the (01, 02) space with equal size 0.01 into 160 x 250 pairs of parameter
values. Dark blue regions are characterized by K» ~ 0 indicating regular or periodic
behavior. Red parts of the plot indicate highly chaotic behavior. We represent the
Hopf bifurcation sets of the coupled mode motion, L, from Fig. A.1, by a black line in
Fig. A.2 for comparison.

From this diagram, one can find that Ks uncovers rich dynamics inside the region
labeled “CR” in Fig. A.1. Especially, two well pronounced periodic bands can be
identified. It is rather difficult to define the borders of any of these two regions with
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the analytical approach because we cannot obtain the solutions explicitely.

Additionally, the transition sets defined by L4 agree rather well with the boundaries
indicated by Ky for smaller (o7 — 02), which means that the analytical approach can
be successfully applied to predict the transitions when the system undergoes rather
simple bifurcations. However, note that the outer border defined by Ks is slightly
larger than Ly, especially for larger (01 — o2). This is because the higher order terms
are linearized in the vicinity of the steady states when we use the perturbation method
to analyze their stability. This means, that in principle, L4, will not be a straight line
in this region of PS. This effect will be enhanced for larger (o1 — 02). As we use all the
nonlinear terms in Eqgs. (A.6) without linearization to compute Ka so that from this
point of view, the out-side borders defined by this method are the genuine transition
boundaries. The approximate analytical method fails to yield suitable results in the
complex regions (CR).

In the next section, we compute the spectrum of Lyapunov exponents in the same
PS to validate the structures obtained by means of the automated algorithm to compute
K.

A.6 The structures tested by Lyapunov exponents >0 i

We calculate the Lyapunov exponents of Eqs. (A.6) using Wolf’s method (Wolf et al.,
1985) in the same region of the PS.

Note that K5 is a lower bound for the sum of the positive Lyapunov exponents of
the system (Kantz & Schreiber, 2004), which is

Ky <) A (A.17)
Ai>0

Hence, we can expect that ) A;>0 Ai shows qualitatively the same structure in the PS
as Ko.

After computing the number of the positive Lyapunov exponents of Eqs. (A.6),
we find that only one positive exponent exists in the entire PS, which means that no
hyper-chaotic motions occur. So we plot the largest Lyapunov exponent, Apqz, in the
PS in Fig. A.3. Also, the same periodic bands as in Fig. A.2 can be observed in this
diagram and the black line, Ly, is given for comparison. The parameter discretization
is the same as Fig. A.2.

Both K5 and \,q; exhibit rather large periodic windows inside the complex region
and they show qualitatively the same structure. A specially rich behavior of the dy-
namics seems to take place in the tip of the tongue (Fig. A.3). Therefore, we zoom
into it and recognize a fairly complicated structure, where chaotic regions are riddled
with periodic bands (Fig. A.4). These bands occasionally intersect. Some structures of
special interest can be found in this diagram marked as region A, B and C.

These blue swallow-like structures, consisting of a head and four main thin legs,
are called shrimps (Gallas, 1993, 1994). Further zooms of these complex periodic
windows are represented in Fig. A.5. Typically, at the borders of the shrimps, small
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-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
01

Figure A.3: (Color) Apqq in the (o1,02) plane. (Also, the blue regions with nearly zero
exponents indicate regular or periodic solutions, while red parts mean highly chaotic behavior.
The black line, L4, is defined by the stability condition of the coupled mode motion. We will
continue to zoom the subregion with purple color in the next figures.)

-0.34 -0.33 -0.32 -0.31 -0.3 -0.29

Figure A.4: (Color) Zoom into the tip of the tongue represented in Fig. A.3. (We use high
resolutions about 1000 x 1000 points in this interval. From this diagram, the largest three
shrimps marked as region A, B and C', are observed together with other smaller ones in this
system.)
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-0.326 -0.322
01

Figure A.5: (Color) Left: Shrimp detected by K in region A. IB: Inner Boundary; OB: Outer
Boundary. Right: Shrimp in region C'. The intersection points of the ellipse with the inner
boundaries are denoted as IB; 5, while OB, 2 stand for the intersections with the outer ones.

inaccuracies by choosing the parameters are sufficient to induce drastical changes in
the final behavior (Gallas, 1994). This effect makes it impossible for the approximate
analytical method used in Sec. A.3 to uncover these structures. Shrimps have been
found in chaotic maps (Gallas, 1993) but recently also in the Réssler system (Thiel,
2004).

Both Ky and A4, in PS can help us to identify these complex periodic windows
in the region, where the analytical approach fails, and guide us to choose parameters
properly to find transitions to chaos. The numerical integrations of the system confirm
the existence of these structures in PS, as we will see in the next section.

A.7 Transition properties of the shrimp borders

In order to study the dynamics of the system within and near the shrimps in more
detail, we simulate trajectories by the fourth order Runge-Kutta integration approach
in these regions in the averaged system (Egs. (A.6)).

We continue zooming into the regions A and C of Fig. A.4 in Fig. A.5 respectively.
We choose region C' as a prototypical window and follow first the vertical dashed double
arrow line in Fig. A.5 to study the transitions to chaotic behavior. The trajectories for
(01,02) = (—0.305,0.27) are shown in Fig. A.6. First, we follow the downward arrow
direction and decrease o3 to 0.2687 (Fig. A.7). Comparing Fig. A.7 with Fig. A.6, we
find that the first mode doubles already, while the second one remains unchanged. If
we continue decreasing oy to 0.2686, the first mode undergoes a further doubling and
the second one begins doubling too, which is shown in Fig. A.8.

From Figs. A.6- A.8, we can conclude that the doubling sequence of the two modes
does not take place simultaneously as the parameters vary. When oy is further de-
creased, the period doubling of the two modes can hardly be distinguished if we only
use phase portraits, as shown in Fig. A.9. However, an approximate Poincaré section
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Figure A.6: Trajectories for (o1, 02) = (—0.305,0.27).
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Figure A.7: Trajectories for (o1,02) = (—0.305,0.2687).

allows to illustrate this cascade.

One may suspect that the period of the second mode also doubles during the first
stage, which cannot be observed in the (ug, v2) projection of the phase space. Actually,
by counting the number of points on the Poincaré section (v; = 0,v; < 0), we obtain
the same period doubling sequence as observed from the phase portrait above. The
points on the Poincaré section for the corresponding stages are shown in Fig. A.10.
This period doubling sequence can also be observed from the first return map of the
first component of the system, as shown Fig. A.11.

Moreover, if we decrease oo to 0.2684, we obtain a chaotic attractor, the Poincaré
section of which is shown together with the respective return map of the first component
in Fig. A.12. The corresponding largest Lyapunov exponent is Ay,q: = 0.04.

However, increasing oo along the upward arrow direction to cross the outer bound-
ary, the intermittency route to chaos is observed, which can be seen by plotting the
time dependence of the first component u; (Fig. A.13). The mean length of the laminar
intervals appears to vary at a rate proportional to | oo — (02)er |_% as type-I intermit-
tency close to a saddle-node bifurcation, where (02)q ~ 0.27552 is the onset of chaotic
behavior.

In order to understand the effects caused by the shrimp orientation, we compute the
Lyapunov exponents along an ellipse which intersects the shrimp, as shown in Fig. A.5.
The intersection points of the ellipse with inner boundaries of the shrimp are denoted as
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Figure A.8: Trajectories at (01, 02) = (—0.305,0.2686). The doubling of the first mode is hard
to distinguish from this figure because the newly born periods are very close. It is rather simple
to observe this effect using a Poincaré section, as shown in Fig. A.10.

7.0 ) 2
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Figure A.9: Trajectories at (01,02) = (—0.305,0.26851) undergo a further period doubling
bifurcation. However the doubling of both modes are hard to distinguish from this figure. This
effect can be seen on a Poincaré section as shown in Fig. A.10.

1By, while OB 5 are for the intersections with the outer ones. The results for the two
largest Lyapunov exponents computed in counterclockwise direction (& € [0 ~ 27]) are
shown in Fig. A.14. We focus on the relative larger intervals where the ellipse intersects
the head part of the shrimp, denoted by 1By — OBy and by OBy — I By;. We observe
that the second Lyapunov exponent approaches zero at the period-doubling bifurcations
when the parameters transit the inner boundaries (IBj2), whereas A\; ~ 0. However
when the parameters cross the outer boundaries (OB 2), we find Ay | ® — (Pop, )er \%
and Ay o<| © — (PoB,)er \%, respectively, where (®Pop,)er ~ 1.817, (PoB,)er ~ 4.267.
The relation is presented in Fig. A.15 for one case as explained in the ref. Pazd &
Matias (2005). The variation of A2 along the ellipse shows the different bifurcation
properties and validates the results obtained above.

It is important to note that both observed phenomena, i.e., the non-simultaneous
period doubling of the two resonant modes and the intermittency transitions, also
occur in the other shrimp structures, A and B. The only difference between these two
regions and region C' is that the second frequency doubles first while the first mode is
one step behind when the parameters cross the inner boundary as indicated in Fig. A.5.
However, intermittency routes to chaos are also obtained when the parameter values
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Figure A.10: The points of (o1,02) on the Poincaré section v; = 0 (v < 0) for
doubling sequence. The parameter values of o9, from a) to d), are: 0.27,0.2687,0.2686,0.26851,

period

respectively, while 01 = —0.305. The small frames inside the figure are zooms of the nearby
points.
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Figure A.11: The return map of the first component on the section v; = 0 (v; < 0) for period
doubling sequence. The parameter values of g, from a) to d), are: 0.27,0.2687,0.2686,0.26851,

respectively, while o; = —0.305.
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Figure A.12: The chaotic attractor on the section v; = 0 (v; < 0), for (01,02) =

(—0.305,0.2684). a) (u2,v2) points on this section, b) the corresponding return map of the
first component.

Figure A.13: The time dependence of u; variable when (o1, 02) = (—0.305,0.275504), o2 is
slightly smaller than (o2).- = 0.27552 for the onset of chaotic motion. All components show
such a intermittency property.
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Figure A.14: The two largest Lyapunov exponents \; 2 as a function of the angle ® in radians
with 27 ~ 6.28. The dashed vertical lines correspond to the points at which the ellipse intersects
the shrimp boundaries as in Fig. A.5.
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Figure A.15: Xy versus | ® — (®op,)er |2 in the intermittency transition, where (®op, )er ~
4.267 stands for the onset of chaotic behavior.

reach the outer boundary.

A.8 Conclusions

In this paper, we have performed a bifurcation analysis in the two dimensional param-
eter space (PS) of a damped Mathieu oscillator coupled with a damped harmonic one
with parametrical excitation. We have used both analytical and numerical approaches
to uncover the transition boundaries in this space.

The transition boundaries in PS are first obtained analytically. They divide the
space into different regions corresponding to trivial solution, single mode motion, cou-
pled mode motion and complex region respectively (Fig. A.1). This stability condition-
based approach can be successfully applied for the bifurcation analysis of oscillating
systems when they undergo rather simple transitions.

In order to analyze the behavior of the system within the complex region, the Ko
approach estimated by recurrence plots (RPs) has been applied, as in this region the
analytical approach is not appropriate anymore. The structures in the chaotic region
are found to be riddled with pronounced periodic bands. An important finding of our
analysis is that we also detect shrimps, i.e. periodic windows of complex structure,
which occur often in the PS of chaotic maps. These results were then validated by
Lyapunov exponents which are estimated from the equations. Furthermore, a detailed
numerical simulation is applied to characterize the period doubling sequence and type-I
intermittency properties when the parameters transit the inner and outer boundaries
of the shrimps, respectively.

To yield a deeper understanding of shrimps and their associated bifurcation prop-
erties in ODEs systems, further investigations are needed. The shrimp-shaped periodic
windows, although occurring frequently in chaotic maps, are not occurring in all sys-
tems (Gallas, 1993). In the Lorenz system, only some periodic bands can be observed
but no shrimp-like structures, even when we extend the computation in a rather large
PS (Thiel, 2004).
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The discovery of such complex periodic windows in the chaotic regions allows for
the control of chaos by choosing the parameters within the shrimps (Gallas, 1993).
This characteristic is very important for experiments because it shows how to choose
the parameters to avoid or to obtain chaos. This is of importance, e.g., when chaos
deteriorates the working conditions in some engineering machines.

We used numerical algorithms to find these structures in the system. But note
that the results obtained by the approximate analytical method and A\, are based
on the equations of the system. In many practical problems, it would be difficult to
provide analytical expressions to describe the dynamics. Typically only time series of
observations are available. We could not use the equations for the analytical bifurcation
analysis and do the equation-based Lyapunov exponent computations. In principle one
can also estimate the Lyapunov exponent from time series (Kantz & Schreiber, 2004),
but this is much more challenging than computing them from equations. In this case, we
recommend to use K3 estimated from RPs to identify the transition boundaries because
this approach is actually based on the time series we get from the measurement of the
system. This method should be promising for the bifurcation analysis in experimental
time series analysis and even in on-line control.

Appendix
The elements of the determinant (A.7) in Sec. A.3 are shown below.
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