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Abstract

Magnetorotational instability (MRI) is one of the most important and most common

instabilities in astrophysics. Today it is widely accepted that it serves as a major

source of turbulent viscosity in accretion disks, the most energy efficient objects in

the universe.

The importance of the MRI for astrophysics has been realized only in recent fifteen

years. However, originally it was discovered much earlier, in 1959, in a very different

context. Theoretical flow of a conducting liquid confined between differentially rotat-

ing cylinders in the presence of an external magnetic field was analyzed. The central

conclusion is that the additional magnetic field parallel to the axis of rotation can

destabilize otherwise stable flow. Theory of non-magnetized fluid motion between

rotating cylinders has much longer history, though. It has been studied already in

1888 and today such setup is usually referred as a Taylor-Couette flow.

To prove experimentally the existence of MRI in a magnetized Taylor-Couette flow

is a demanding task and different MHD groups around the world try to achieve it.

The main problem lies in the fact that laboratory liquid metals which are used in

such experiments are characterized by small magnetic Prandtl number. Consequently

rotation rates of the cylinders must be extremely large and vast amount of technical

problems emerge. One of the most important difficulties is an influence of plates en-

closing the cylinders in any experiment. For fast rotation the plates tend to dominate

the whole flow and the MRI can not be observed.

In this thesis we discuss a special helical configuration of the applied magnetic field

which allows the critical rotation rates to be much smaller. If only the axial magnetic

field is present, the cylinders must rotate with angular velocities corresponding to

Reynolds numbers of order Re ≈ 106. With the helical field this number is dramat-

ically reduced to Re ≈ 103. The azimuthal component of the magnetic field can be

easily generated by letting an electric current through the axis of rotation,

In a Taylor-Couette flow the (primary) instability manifests itself as Taylor vortices.

The specific geometry of the helical magnetic field leads to a traveling wave solution

and the vortices are drifting in a direction determined by rotation and the magnetic

field. In an idealized study for infinitely long cylinders this is not a problem. How-

ever, if the cylinders have finite length and are bounded vertically by the plates the

situation is different.

In this dissertation it is shown, with use of numerical methods, that the traveling

wave solution also exists for MHD Taylor-Couette flow at finite aspect ratio H/D,

H being height of the cylinders, D width of the gap between them. The nonlinear

simulations provide amplitudes of fluid velocity which are helpful in designing an

experiment. Although the plates disturb the flow, parameters like the drift velocity

indicate that the helical MRI operates in this case.

The idea of the helical MRI was implemented in a very recent experiment PROMISE.

The results provided, for the first time, an evidence that the (helical) MRI indeed

exists. Nevertheless, the influence of the vertical endplates was evident and the ex-

periment can be, in principle, improved. Exemplary methods of reduction of the

end-effect are here proposed.

Near the vertical boundaries develops an Ekman-Hartmann layer. Study of this layer

for the MHD Taylor-Couette system as well as its impact on the global flow properties

is presented. It is shown that the plates, especially if they are conducting, can disturb

the flow far more then previously thought also for relatively slow rotation rates.





Zusammenfassung

Die magnetische Scherinstabilitaet (engl. MRI) ist eine sehr häufig in der Astrophysik

anzutreffende Instabilität. Es wird heute weithin angenommen, dass sie die Ursache

für die turbulente Viskosität in Akkretionsscheiben ist, den Objekten mit der höchsten

Energieeffizienz im Kosmos.

Die Bedeutung der MRI ist erst in den letzten fünfzehn Jahren klargeworden. Ent-

deckt wurde sie jedoch schon viel früher, im Jahre 1959 in einem völlig anderen

physikalischen Kontext. Die Strömung in einer leitfähigen Flüssigkeit zwischen differ-

entiell rotierenden Zylindern unter dem Einfluss eines externen Magnetfeldes wurde

theoretisch untersucht. Die Schlussfolgerung war, dass das zugesetzte Magnetfeld

eine sonst stabile Strömung destabilisieren kann. Die Geschichte der Theorie von

Strömungen zwischen Zylindern reicht bis ins Jahr 1888 zurück. Heute wird ein

solcher Aufbau üblicherweise als Taylor-Couette-Strömung bezeichnet.

Ein System rotierender Zylinder, zwischen denen sich flüssiges Metall befindet, war

Gegenstand des kürzlich durchgefḧrten Experiments PROMISE. Die Ergebnisse bele-

gen zum ersten Mal experimentell die Existenz der MRI. Um die notwendigen Dreh-

zahlen gering zu halten, wurde ein spezielles, helikales Magnetfeld angelegt.

Gegenstand dieser Dissertation ist die theoretische Behandlung der magnetohydro-

dynamischen Taylor-Couette-Strömung, ähnlich der des Experiments PROMISE. Ins-

besondere der Einfluss der vertikalen Ränder (Deckel) wird untersucht. Es wird

gezeigt, dass die MRI auch in Zylindern mit endlicher Höhe und mit begrenzenden

Deckeln einsetzt.

In der Nähe der vertikalen Ränder bildet sich eine Ekman-Hartmann-Schicht. Die Un-

tersuchung dieser Schicht im Zusammenhang mit dem MHD-Taylor-Couette-System

sowie ihr Einfluss auf die globalen Strömungseigenschaften werden vorgestellt. Es

wird gezeigt, dass die Deckel - insbesondere wenn sie elektrisch leitend sind - die

Strömung stärker beeinflussen können als bisher angenommen, selbst bei den gerin-

gen Drehzahlen. Es werden Methoden zur Verringerung dieser unerwünschten Ef-

fekte vorgeschlagen.
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Chapter 1

Introduction

The remoteness and scale of astronomical systems preclude the possibility of any attempt to

control them. For most types of astrophysical objects long timescales make theirs evolution un-

observable. Therefore, unlike a classical physicist, an astronomer usually is forced to work with

a ,,snap-shot” of reality. Consequently astrophysicists must have developed a research strategy

which significantly differs from strategies used by, for example, atomic physicists or biochemists.

Based on physical assumptions, a model is created and then its predictions are compared with the

observed ,,snap-shot” reflecting complex features of our universe. Therefore it is not common

but very exiting when a fundamental astrophysical process can be directly observed in action

under controlled laboratory conditions down on the Earth.

Naturally in order to model such process one has to design a proper experimental setup which

resembles physics involved on astrophysical scales. An interesting example is a recent ,,Riga

dynamo experiment” (Gailitis et al., 2000, 2001) which demonstrated a phenomena well known

in theory as cosmic dynamo (Ponomarenko, 1973; Krause and Rädler, 1980; Dobler et al., 2002).

Using a facility which was able to spirally rotate liquid sodium at temperature about 250 ◦C with

velocity of order of 15 m/s, it has been shown that initially weak magnetic field is amplified and

the expected exponential growth of non-axisymmetric mode m = 1 has been reported.

The subject of this thesis is theory connected with an another recent experiment, PROMISE

– Potsdam-ROssendorf Magnetic InStability Experiment. As stated in the acronym, the aim of

the experiment was to model an astrophysical process known as MagnetoRotational Instability –

MRI. It is widely accepted that MRI plays a crucial role in large class of astrophysical objects. In

particular it serves as a source of turbulent viscosity in accretion disks – the most energy efficient

objects in the universe.

1.1 Accretion disks and the MRI

Let us consider cloud of gas surrounding a compact, massive object. Since any gas particle

certainly possesses some angular momentum it will not free-fall onto the central body but instead

eventually it will settle on a circular orbit around the object. It will stay there unless energy and

angular momentum will be extracted in which case it will spiral inwards. The spiraling matter

tends to form an accretion1 disk.

The accretion disk arise in variety of astrophysical conditions, along the most important

classes are binary star systems or active galactic nuclei. Most of the stars are found in binary

(or multiple) systems and it is common that they are both of different types. In such a binary

system the star with higher mass will evolve faster and will eventually become a compact object,

1lat. accretio refers to the accumulation of matter onto a massive central body.
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e.g. a neutron star or a black hole. The other companion can later expand so that its outer

atmosphere reaches so called Roche lobe and its matter falls onto the compact object forming a

disk.

Active galactic nuclei (AGN) and quasars (active nuclei of young galaxies) are the most spec-

tacular forms of accretion disks. AGN is a compact region at the center of a galaxy which is

characterized by enormous rate of emitted energy and it is the most luminous persistent sources

in the universe. These objects are thought to be accretion disks formed around supermassive

black holes.

Another important example are protoplanetary disks which surround T Tauri stars. These

disks, formed from an interstellar medium (from which the central star was also formed), are

the precursors of planetary systems.

Common feature for all the accretion disks is that theirs circular differential rotational profile

is Keplerian2:

Ω(r) =

√

GM∗

r3
, (1.1)

r being distance from the central body with mass M∗. The amount of energy which can be

emitted by an accretion disk from a gas with mass m is equal to the binding energy of the

innermost orbit

Eaccr =
GM∗m

R∗

. (1.2)

If the central object is more compact, i.e., has larger mass and smaller radius R∗ then more

energy can be extracted from any gas particle. We notice that this mechanism is far more efficient

than, for example, nuclear burning. For a typical neutron star with R∗ ≈ 10 km and with solar

mass M∗ = M⊙ from each gram of the infalling matter the generated energy is of order of

1020 erg. The typical nuclear burning hydrogen into helium gives Enuc = 0.007mc2, so that each

gram provides about 6 × 1018 erg of the radiated energy. On the other hand, for a less compact

object like a white dwarf with solar mass, the efficiency of accretion is much less than from the

burning.

A seminal work in the disk accretion theory has been performed by Shakura and Sunyaev

(1973). The authors have developed equations governing a flow in a thin, steady, subsonic

accretion disk surrounding a black hole. One of the most fruitful assumptions was to describe

any physical mechanism responsible for extraction of the angular momentum form the infalling

matter by a single dimensionless parameter α. There must exist a viscous process which allows

the angular momentum to be transported outwards. Let us assume that the viscosity ν in such

process is due to the turbulent motions of some kind

ν ∼ L U , (1.3)

where L is the length scale of turbulent eddies, U the velocity scale. For accretion disks we may

assume that those scales are smaller than height of the disk H and sound speed in the disk cs
respectively, so that

ν = α cs H, α ≤ 1. (1.4)

2At least in regions where general relativity does not play significant role. At the inner edge of a disk around a black
hole these effects become crucial. A simple treatment of the problem can be realized by applying so called pseudo-
Newtonian potential. The simplest example of such potential is Φ = −GM/(r − rg) where rg = GM/c2 is the
Schwarzschild radius. It correctly resembles marginally stable and marginally bound orbits. A more exact solution, also
for rotating black holes, has been proposed by e.g. Mukhopadhyay (2002)
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Having this defined one can derive all important parameters (like thickness, time scale of

evolution or emitted spectrum) characterizing the disk with given α and with given accretion

rate Ṁ . Nevertheless one can not make any quantitative predictions unless there is provided

a physical explanation for nature of the turbulent, or any other, viscosity and therefore the α

parameter.

In the first place the molecular viscosity, undoubtedly existing, is much too small to allow

construction of an accretion disk with reasonable parameters and accretion rates.3 The linear

hydrodynamical instability can not operate since Rayleigh criterion (local)

∂r(r
2Ω) ≥ 0 for stability (1.5)

is always fulfilled for the Keplerian rotation. The criterion states that the specific angular mo-

mentum l = r2Ω must increase outwards for hydrodynamically stable flows.

Various other possible explanation for the apparent viscosity have been proposed, including

transfer of angular momentum by magnetic stresses (already suggested by Shakura and Sun-

yaev, 1973), convective instability (Livio and Shaviv, 1977) or spiral waves. However, none of

those propositions was widely accepted as a major, efficient mechanism providing the necessary

viscosity and the subject became a long-standing challenge to the theory of accretion disks.

The explanation has been given in a work by Balbus and Hawley (1991). They have shown

that for accretion disks there exists a very powerful, local shearing instability mediated by a

weak magnetic field. The importance of magnetic fields has been recognized before but stabil-

ity analyses were usually in gasdynamical character. Balbus & Hawley argued that even very

small magnetic seed field cannot be ignored when considering linear disturbances and that the

underlying instability is generally applicable and very effective.

The derived criterion for stability can be stated as

∂rΩ
2 ≥ 0 for stability, (1.6)

so that if there exists a weak poloidal magnetic field component (not too strong though) and

angular velocity decreases outwards the flow can become unstable. Since the above criterion is

easily violated in astrophysical disks we expect that the MRI arise. The fastest growing wavenum-

bers have huge growth rates of order of 0.75Ω independently of the strength of the magnetic

field. The wavelengths are much smaller then the height of the disk and therefore one expects

turbulence to be developed.

The most important consequence of this instability is that it provides a convincing explanation

for the transport of angular momentum in a differentially rotating medium. A simple quantitative

picture of the phenomenon can be given as follows: consider an outwardly displaced fluid ele-

ment in a disk embedded in a vertical magnetic field. There is a tendency that the magnetic field

tries to enforce solid body rotation by resisting shearing, consequently the displaced element is

forced to rotate too fast in its new position. When the restoring forces are unable to overcome

this effect, the fluid element is driven away and the angular momentum is transported.

When considering what happens in nonlinear fully saturated state one has to perform numer-

ical calculations. Local box simulations of the nonlinear development of the MRI reach state of

magnetohydrodynamical turbulence (see e.g. Hawley et al., 1995; Brandenburg et al., 1995). It

is characterized by anisotropic Reynolds and Maxwell stress tensors and the angular momentum

is indeed transported outwards, while the turbulence is supported by shearing in the disk. More

complex physics in the disks also have been studied, including radiation, stratification, Hall ef-

3For more details on basics of accretion disk theory and nature of the viscosity, the reader can refer to work by Pringle
(1981).
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fect or non-uniform conductivity. Global models of the disks also have been studied (e.g. Kersalé

et al., 2004). For more information about transporting the angular momentum in accretion disks

the reader can refer to reviews, Balbus and Hawley (1998); Balbus (2003).

It is not to be forgotten that the interaction of the gaseous medium with magnetic fields

requires that the gas is a good conductor. Usually this condition is easily fulfilled since the gas

is hot and well ionized. However, for cold protostellar disks it may not be the case since the

conductivity is very small, of order 10−9 S/m (Brandenburg and Subramanian, 2005). Therefore

one should consider other mechanisms governing such disks, for example Hall conductivity may

be critical in this regime. Other, quite new and convincing explanation, is non-axisymmetric

hydrodynamical instability for stratified disks (Dubrulle et al., 2005).

We also shall mention that the accretion disks are not the only astrophysical objects which are

subject to MRI. The differential rotation and magnetic fields, two essential components necessary

for MRI also exist for example in stars. It is possible for a star, unlike for a disk, to rotate as a solid

body but, depending on the type of the star, it is likely that there exists a region with differential

rotation. For example in the sun the solar interior rotates uniformly up to radius of 0.7R⊙. At

this distance there exist a region called tachocline where the solid body rotation changes to a

differential one which is characteristic for the solar outer envelope.

1.2 The MRI Experiment

It is surprising that while astrophysicists have been looking for the explanation of the mechanism

for the angular momentum transport, thirty years before work by Balbus & Hawley a correspond-

ing phenomenon has been already discussed. However, in a different contest.

Consider two concentric, independently rotating cylinders with the gap between them filled

with a liquid, see Fig. 1.1. This setup has been experimentally studied by Couette (1888) and

Mallock (1888). Although the system is conceptually very simple it provides amazingly reach

variety of complex solutions and become a classical case for fluid dynamics.4 In magnetohy-

drodynamics (MHD) there exists analogously defined problem where the fluid is assumed to be

conducting and the cylinders are placed in an external magnetic field.

The stability of the classical Couette flow (or Taylor-Couette flow as it is often named) has

been subject to intensive study, highlighted by landmark work by Taylor (1923). Prior to Tay-

lor’s results, Rayleigh (1917) has defined criterion (1.5) according to which the inviscid flow is

always hydrodynamically stable if the cylinders rotate in such a way that the angular momentum

increases with distance r from the axis of rotation.5 For the MHD case it was work by Velikhov

(1959) and later, with more general treatment, by Chandrasekhar (1960). They have shown that

a conducting fluid with zero resistivity undergoing Couette flow with externally applied, vanish-

ingly small magnetic field obeys precisely the criterion (1.6). Therefore in this limit a sufficient

condition for stability is that angular velocity increases with r. The magnetized flow can be un-

stable whereas the purely hydrodynamical one is stable. However, even the unstable flow can be

always stabilized with sufficiently strong magnetic field.

It is remarkable that the Rayleigh criterion is not recovered in the limit of small applied

magnetic field. The origin of the instability lies in fact that in fluid with zero resistivity the lines

of magnetic forces are permanently attached to the fluid (freezed-in), independently of strength

of the applied field. The criterion is connected with presence of the field only, not its strength.

4This complexity is reflected in the number of papers concerning the subject. For example search for on-line issues
of ,,Physics of Fluids” with the word ,,Couette” in abstract gives about 20.000 papers. Similarly the matter is popular
among astrophysicists, Nasa’s ADS system returns about 3.000 abstracts with the ,,Couette” word.

5More details on stability of the Couette flow will be presented in Chapter 2 of this thesis.
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Figure 1.1: Sketch of the Taylor-Couette flow. On the left side we see part of concentric, infinitely long

cylinders filed with liquid in the gap between them. If rotation velocity of the both cylinders lies in a certain

range, i.e., exceeds a critical value which depends on the problem geometry then Taylor vortices develop.

Here these vortices are represented by contour lines of stream function ψ and a color map associated with

value of ψ. In the incompressible flow the fluid tends to move along those contour lines, for reddish colors

the movement is clockwise, for the bluish ones counter-clockwise. On the right side the cylinders are

covered with rotating plates. The cylinder rotation rates do not exceed the critical value and therefore there

are no Taylor vortices. However, due to imbalance in pressure close to the endplates there exists a circular

motion – two Ekman vortices can be seen.

The flow can be stabilized by applying magnetic field, its minimum strength for given conditions

can be determined by considering an explicit solution and will be discussed later.

Only after Balbus & Hawley showed that a related process plays crucial role on astrophysical

scales the Couette flow has gained significant attention among astrophysical community.6 A clear

link between MHD astrophysics and MHD experiment has been created. Proving in a laboratory

that such very basic instability exists and directly study its properties become a challenge for

different MHD groups along the world (see e.g. Rosner et al., 2004). In the last years interest

of theoretical and experimental fluid dynamicists in MHD Taylor-Couette flow was somewhat

renewed, it turned out that there exists new territory in the field to be explored. Doubtless

a connection between the astrophysical theories and the laboratory experiments is very much

appreciated.

Beside proving a physical theory there is one more, important point connected with such ex-

periments which cannot be underestimated. Astrophysics is very complex, operates usually in

highly nonlinear regime and on very broad range of length scales and time scales. It is under-

stood that most of the modern results ultimately come from numerical simulations. Much of our

understanding concerning astrophysical objects relies on accuracy of such calculations, proper

treatment of boundary conditions, etc. There exists a need for testing astrophysical codes, used

numerical methods and validating them against data collected from the experiments. Therefore

6However Balbus & Hawley were not the first ones to realize that the stability of MHD Couette flow can be considered
in astrophysical theories. For example Fricke (1969) has investigated local stability of differential rotation in stars in the
presence of magnetic fields. He realized that there exists a connection with Chandrasekhar’s work but his results have
gone unappreciated and in any way were not so directly related to angular momentum transport like in the work by
Balbus & Hawley.
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such laboratory experiments can assure us that the codes and the methods used to solve, for

example, MHD equations are reasonable and one can trust that the calculated results indeed

correspond to real physical mechanisms.

We should stress that, obviously, there exist considerable limitations in computational tech-

niques. It is not possible to perform, e.g., fully nonlinear simulations of a global turbulent MHD

Couette flow of a liquid with small conductivity. The different scales which are involved prohibit

such calculations. Therefore the experiments are the only way to obtain certain classes of results,

for example scaling of Reynolds stresses in turbulent flow for broad range of the rotation rates.

The magnetized Taylor-Couette flow is still considered as a good prototype for an MRI ex-

periment. The main difficulty is that laboratory liquids have such conductivity and viscosity that

it is difficult to excite MRI modes. Different groups have incorporated various approaches to

the problem. For example a group from Princeton Plasma Physics Laboratory has constructed

two cylinders with radii 7 cm and 20.3 cm with height of 28 cm, the cylinders can rotate with

4000 rpm and 533 rpm respectively, a vertical external magnetic field is applied (Ji et al., 2001).

When such large rotation rates are involved there is a need for special treatment of the plates

enclosing the rotating cylinders which is an engineering challenge, perhaps very difficult to over-

come (this matter will be discussed later in the thesis). A different group works on dynamo

and MRI experiment in New Mexico Institute of Mining and Technology (Noguchi et al., 2002).

Theirs device is a bit larger but also must rotate very fast.

A novel configuration of an externally applied magnetic field was suggested by Hollerbach

and Rüdiger (2005) and it led to a different experimental setup. It has been shown that if the

axial field is replaced by a helical one the necessary rotation rates are much smaller, so it is

much easier to built an appropriate device. Accordingly, the undesired effects generated by the

plates covering the cylinders are less important however not negligible. Moreover there exists

an additional frequency associated with this type of instability. This frequency can be easily

measured and can serve as an important quantity parameter indicating the phenomena.

On these basis the PROMISE experiment has been proposed. The major theoretical part of

the project has been done in AIP – Astrophysikalisches Institut Potsdam (Potsdam Institute for

Astrophysics) and the experiment has been built and conducted in Forschungszentrum Dresden-

Rossendorf (Research Center Dresden-Rossendorf). The PROMISE facility consists of two rotating

cylinders with radii 4 cm and 8 cm, the gap between them is filed with the liquid alloy GaInSn.

External coils produce the axial magnetic field of order 10 mT, an electric current let through the

axis of rotation generates the azimuthal component. Two ultrasonic transducers measure vertical

velocity fluctuations inside the fluid (for more information about the facility see Appendix A).

The results from the first stage of the experiment, which have confirmed the existence of the

magnetorotational instability with spiral magnetic fields, have been published in Stefani et al.

(2006); Rüdiger et al. (2006); Stefani et al. (2007).

Results presented in thesis help to understand what is the influence of the plates covering the

rotating cylinders. The plates are undoubtedly present in any real experiment. It also has been

shown, for the first time, what are velocity amplitudes in a fully saturated nonlinear state, and

how the developed traveling wave interacts with the vertical boundaries. The detailed study of

the vertical hydromagnetic boundary layer has been presented.

1.3 Structure of the thesis

In this dissertation we will focus on solving incompressible MHD equations under specific bound-

ary conditions relevant to a magnetized Couette flow with an externally applied spiral magnetic
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field. Let us start with the Maxwell equations in SI units:

∂tB = − rotE, (1.7a)

div B = 0, (1.7b)

1

c2
∂tE = rotB − µ0J , (1.7c)

div E = ρeµ0c
2, (1.7d)

where µ0 is the magnetic permeability, ρe the electric charge density. The Ohm’s law with the

electric conductivity σ

J = σ(E + U × B). (1.8)

Assuming that time scale on which the electric field varies exceeds the Faraday time τf = η/c2,

η ≡ 1/µ0σ being the magnetic diffusivity, we can safely neglect the displacement current (the

condition is always met in the field of our interest). Therefore instead of (1.7c) we use the

classical Ampère’s law J = rotB/µ0 and insert it into (1.7a) so we obtain (using the Ohm’s law

and the fact that div B = 0) the induction equation, Eq. (1.9c).

The dynamical equation for the velocity u is a typical Navier-Stokes equation supplemented

by the Lorentz force, J × B. From the assumption of incompressibility (which is fulfilled for

laboratory liquid metals) and the equation of continuity ∂tρ = − div(ρu) we obtain additional

requirement that u is divergence free. So the full set of MHD equations to be solved can be

written as

∂tu + (u · ∇)u = −1

ρ
∇p+ ν∇2u +

1

ρ
J × B, (1.9a)

div u = 0, (1.9b)

∂tB = η∇2B + rot(u × B), (1.9c)

div B = 0, (1.9d)

where ρ is the density, ν the kinematic viscosity. The set of Eqs. (1.9) together with boundary

conditions related to Taylor-Couette setup fully define problem of our interest.

In Chapter 2 we discuss the stability of MHD Taylor-Couette flows and present a numerical

method used to solve the above set of equations in the limit of highly resistive flows. The method

is capable of solving axisymmetric flows with periodic vertical boundary conditions (i.e., analo-

gously to infinitely long cylinders which is a usual assumption in a linear analysis) or finite ones

(which corresponds to cylinders enclosed by endplates; the plates can have different mechanical

and magnetic properties).

Chapter 3 discusses in more details the case when an external spiral magnetic field is applied

to the flow for both periodic and finite cylinders. We present study of the traveling wave in the

nonlinearly saturated state. It is also shown that the torque at the walls is increased so that the

angular momentum is indeed transported outwards. The problems due to endplates are pointed

out.

In the PROMISE experiment the both endplates had different rotational and magnetic prop-

erties. This led to additional problems which are addressed in Chapters 3 and 4. In Chapter 4

we propose a simple method of reducing the influence of the plates and present how this would

improve the experiment.
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More detailed study of the vertical boundary layers for the flow with the external axial mag-

netic field is presented in Chapter 5. It is shown that there exists an electric Hartmann current

which interacts with the magnetic field which leads to a different class of flows, namely Taylor-

Dean flows. Linear stability of this flow is also analyzed.

Results presented in this thesis were used in the following, published papers: Stefani et al.

(2006); Szklarski and Rüdiger (2006); Stefani et al. (2007); Szklarski (2007) and one submitted:

Szklarski and Rüdiger (2007).



Chapter 2

MHD Taylor-Couette flow

Numerical formulation

2.1 Introduction

Motion of an incompressible, viscous fluid confined between two rotating, coaxial cylinders has

been originally investigated by Couette (1888) and Mallock (1888). This system has been subject

of a seminal paper by Taylor (1923). Prior to the Taylor’s work many attempts were made to pre-

dict instability of a solution to the equations of hydrodynamics of viscous fluids. However, none

of them succeeded which lead to confusion concerning applicability of Navier-Stokes equations.

Taylor has shown that the methods for stability calculations as well as the assumed boundary

conditions give results which exactly match experimental data. His work was extraordinary from

the theoretical as well as the experimental point of view.

The system of rotating cylinders very well suits for a quantitative comparison between the

theory and the experiment. Slow and slight increase in rotation rates gives rise to more complex

fluid states. The first transition, primary instability, occurs when the homogeneous flow with zero

z, r components of velocity and φ component matching parabolic Couette solution breaks down

into Taylor vortices. Then, depending on the rotation rates of the both cylinders, one can observe

various flow stages: traveling, modulated waves, dominating non-axisymmetric disturbances,

spiral or featureless turbulence and more, see Fig. 2.1, for a review see e.g. Tagg (1994).

The Taylor-Couette flow can also be realized in short cylinders, i.e., when ratio of the gap

width D to the height H becomes an additional parameter Γ ≡ H/D and endplates which

enclose cylinders drive secondary flow. The enclosed system is characterized by multiplicity of

solution and is an excellent subject to the bifurcation theory – there exist non-unique solutions

for the same boundary conditions, so which state sets in depends on history of the parameters.

One of the peculiar solutions are anomalous modes. In this state one large vortex filling almost

the entire gap can be observed and four counter rotating to it, smaller ones, placed in the corners

(Youd and Barenghi, 2006).

When the liquid is replaced by a conducting fluid and an external magnetic field is applied

additional body force acting on the fluid arises. This leads to a new family of problems – magne-

tohydrodynamical Taylor-Couette flows. Properties of such flows depend on strength and geom-

etry of the applied field, magnetic properties of the cylinders and the endplates and, naturally,

magnetic properties of the liquid (e.g. Willis and Barenghi, 2002a).
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Figure 2.1: Left: line indicating onset of stability, after Taylor (1923). Horizontal/vertical axis represent

rotation rates of the outer/inner cylinder, open points represent experimental results, filled points theoreti-

cal calculation, the dashed line is the Rayleigh criterion. We notice that there are more experimental than

theoretical data which is unusual in today’s physics. However, back in 1923 computing values of all the

integrals was very time consuming. Right: Phase diagram for experimental setup with η̂ = 0.883, Γ = 30,

after Andereck et al. (1986).

In this chapter we will discuss equations governing the MHD Taylor-Couette flow along with

the appropriate boundary conditions and a brief description of numerical methods which are

used to solve them. Important features concerning stability of such flows are pointed out.

2.2 The equations

A sketch of the Taylor-Couette flow is depicted in Fig. 2.2. Two concentric cylinders have radii

Rin, Rout and they rotate with Ωin,Ωout, the rotation ratio is defined as

µ̂ ≡ Ωout/Ωin. (2.1)

We will consider two distinct classes of the problem: infinite cylinders Γ = H/D → ∞ and finite

ones Γ = 10 (unless explicitly stated otherwise), for the latter different rotational properties of

the endplates will be applied. The gap ratio is

η̂ ≡ Rin/Rout, (2.2)

through this work we use η̂ = 1/2.

The fluid confined between the cylinders is a liquid metal and is assumed to be incompress-

ible, conducting, with the kinematic viscosity ν, the density ρ, the magnetic diffusivity η, µ0 is

the magnetic permeability.

We now start with classical equations of magnetohydrodynamics (for complete derivation see

e.g. Chandrasekhar, 1961). The momentum equation with the Lorentz force:

∂tu + (u · ∇)u = −1

ρ
∇p+ ν∇2u +

1

µ0ρ
(rotB) × B, (2.3a)

the induction equation

∂tB = η∇2B + rot(u × B), (2.3b)
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Figure 2.2: The geometry of the problem – two concentric cylinders with radii Rin = 4 cm, Rout = 8 cm

rotating with Ωin, Ωout. Bz and Bφ are the external magnetic fields. Bφ is induced by an axial current

flowing through a rod placed along the axis of rotation. In the PROMISE experiment cylinders have length

of H =40cm (Γ=10) and are covered with endplates. The liquid is a mixture of gallium, indium and tin.

from the equation of continuity for an incompressible flow it follows that the velocity field u

must be solenoidal as is, of course, the magnetic field B

div u = 0, (2.3c)

div B = 0. (2.3d)

The cylinders are embedded in an externally applied magnetic filed B0. We work in the

cylindrical coordinates (r, φ, z) with the unit vectors êr, êφ, êz. The most general form of the

field, which is steady and current free, considered in this thesis is

B0 = B0

(

βRin

r
êφ + êz

)

, (2.4)

where the parameter β denotes ratio of the azimuthal field to the constant axial field B0êz at the

inner cylinder.

We transform the equations (2.3) to theirs non-dimensional form with use of the following

scales: D ≡ Rout −Rin as the unit of length, ν/D as the unit of velocity, D2/ν as the unit of time

and B0 as the unit of magnetic field. This is done by multiplying (2.3a) by D3/ν2 and (2.3b) by

D2/B0ν.

Let B = B′ + B0, since rotB0 = 0, ∇2B0 = 0 we obtain the dimensionless MHD equations

for the problem of our interest. After omitting the primes:

∂tu + (u · ∇)u = −∇p+ ∇2u +
Ha2

Pm
[(rotB) × B + (rotB) × B0/B0] , (2.5a)

∂tB =
1

Pm
∇2B + rot(u × B) + rot(u × B0/B0), (2.5b)

div u = 0, (2.5c)

div B = 0, (2.5d)

11
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with

Ha ≡ B0

√

D2

µ0ρνη
, Pm ≡ ν

η
, (2.6)

where Ha is the Hartmann number, Pm is the magnetic Prandtl number.

The basic, undisturbed rotational profile for the MHD Taylor-Couette flow between infinitely

long cylinders governed by equations (2.5) is (see e.g. Chandrasekhar, 1961)

Ω0(r) = a+
b

r2
, (2.7)

where

a = Ωin
µ̂− η̂2

1 − η̂2
b =

1 − µ̂

1 − η̂2
R2

inΩin, (2.8)

and ur = uz = 0 everywhere. Sometimes we will refer to field Ω0 ≡ Ω0êφ.

We will introduce another dimensionless parameter associated with the problem, namely the

Reynolds number Re which is defined as

Re ≡ ΩinRinD

ν
. (2.9)

The Reynolds number measures ratio of the inertial to the viscous forces. Notice that Re is

prescribed by the boundary conditions, i.e., the rotational speed of the inner cylinder, and in our

non-dimensional formulation if Rin = D (i.e. η̂ = 0.5) then it is equal to Ωin. Sometimes it

may be convenient to analogously define another Reynolds number related to the rotation of the

outer cylinder.

For laboratory liquids conductivity σ is very small so that the magnetic diffusivity η ≡ 1/µ0σ is

very large (compared to the viscosity) and therefore the corresponding magnetic Prandtl number

Pm is small, see Table 2.1. Consequently the time scale for magnetic diffusion is much shorter

than other time scales. We consider the limit η → ∞, however it must be supposed that Ha tends

to a finite value. Let

B = B0 + b, (2.10)

perturbations b of the externally applied field induced by the motion of the fluid are Pm times

smaller than B0, although theirs effect on the Lorentz force can not be neglected since

Ha2/Pm[(rot b)×B0/B0] is already of order of Ha. Nevertheless the interactions (rot b) × b

are vanishingly small.

Similarly in the induction equation we may apply a quasi-static approximation, so that the

electromagnetic field proceeds along a sequence of steady-state solutions of the Maxwell equa-

tions to conditions described by u. Therefore b in each moment adjusts instantaneously to the

velocity u. Consequently in the small Prandtl limit Pm → 0, the system (2.5) for the perturba-

tions b of the external field B0 (2.4) can be written as
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Table 2.1: Physical properties of liquid metals which are suitable for the MRI experiment. The star ∗

denotes the PROMISE mixture.

ρ [g/cm3] ν [cm2/s] η [cm2/s] Pm

sodium 0.9 7.1 10−3 0.8 103 0.9 10−5

gallium 6.0 3.2 10−3 2.1 103 1.5 10−6

GaInSn∗ 6.4 3.4 10−3 2.4 103 1.4 10−6

∂tu + (u · ∇)u = −∇p+ ∇2u + Ha2(∇× b) × B0/B0, (2.11a)

∇2b = −∇× (u × B0/B0), (2.11b)

div u = 0, (2.11c)

div b = 0. (2.11d)

The MHD Taylor-Couette flow governed by the above system is the main subject of this thesis

and will be numerically solved with method described in Section 2.4. However, solutions of the

equations in theirs more general form (2.5) will be also discussed (for more information about

the small Prandtl number limit the reader can refer to e.g. Roberts, 1967; Zikanov and Thess,

1998; Youd and Barenghi, 2006).

All the numerical calculations are done using the dimensionless equations and consequently

all the figures presented in the thesis reflect non-dimensional quantities, unless the physical

units are explicitly mentioned. If the physical units are present, the equations has been scaled

according to the physical properties of the PROMISE facility, for the length scale, the viscosity,

the magnetic diffusivity, etc.

2.3 Stability of the Taylor-Couette flow

In this section we will shortly discuss stability of the classical and the MHD Taylor-Couette flow

with assumption of infinitely long cylinders. Purely hydrodynamical flow is obtained simply by

neglecting the Lorentz force in the momentum equation, i.e., setting Ha = 0 and omitting the

equations involving the magnetic field.

2.3.1 Hydrodynamics

First we will consider a stability criterion for inviscid flow, i.e., ν = 0 in the momentum equation.

Assume that two rings of fluid at r1 < r2 have velocity u1, u2 and centripetal acceleration u2
1/r1,

u2
2/r2. If the inner ring acquires velocity u′1 it will be pushed back to its position unless u′21 /r2 >

u2
2/r2. From the conservation of angular momentum we have u′1 = u1r1/r2 so the ring will move

outwards if (r1u1)
2/r32 > u2

2/r2. From this the condition for stability of such flow (i.e., case when

the inner ring will be pushed back to the original location) can be written as

∂r

(

Ωr2
)2 ≥ 0 for stability. (2.12)

This criterion, although with use of different arguments, has been first formulated by Rayleigh

(1917). It separates flow with increasing and decreasing angular momentum.

When viscous effects are taken into account and no-slip boundary conditions are applied

at the walls of the cylinders, it can be showed from angular momentum conservation that the

rotational profile of the fluid Ω0(r) is given by (2.7). Generally one should expect that the effect
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of viscosity is to postpone the onset of the instability, therefore from (2.12) follows conclusion

that the flow between cylinders is always hydrodynamically stable for µ̂ > η̂2, i.e., µ̂ > 0.25 for

our geometry, see Fig. 2.3. In the centrifugal instability indeed viscosity plays only stabilizing

role. However, for other types of flows, for example parallel shear flows, it is possible that

viscosity plays the dual roles of stabilizer and destabilizer (Drazin and Reid, 1981).

Nonlinear hydrodynamic instability often occur in linearly stable flows when the correspond-

ing Reynolds number is very large (for example in pipe flows). It is not clear whether linearly

stable Taylor-Couette flow would be eventually destabilized for sufficiently high rotation rates. In

a recent experiments Ji et al. (2006) have claimed that non-magnetic quasi-Keplerian Ω ∝ r−3/2

(and therefore satisfying Rayleigh stability criterion) flows are essentially steady up to Reynolds

number of order of millions (in order to minimize effects induced by endplates covering the

cylinders the lids were divided into four independently rotating rings).

However, accretion disks are characterized by Re of order 107 − 1012, so perhaps the shear

flows become unstable for higher Re? In the absence of magnetic field, turbulent angular mo-

mentum transport is realized by correlated velocity fluctuations, so that the angular momentum

flux in radial direction is ρr
〈

u′φu
′
r

〉

. Let Recturb denote a critical Reynolds number at which lin-

early stable flow becomes turbulent. Results of the experiment Ji et al. (2006) indicate that the

correlations are negligible up to Re . 2 × 106 and even if transition Re > Recturb has occurred,

the angular momentum transport was too small to be detected.

Let νturb be the viscosity associated with the turbulent transport. Empirical observations

of, e.g., pipe flows, show that after transition Re > Recturb the value of this viscosity is approxi-

mately independent of Re, so that ν ≈ LU/Recturb. If, relaying on these results, one assumes that

this is true also for the shear flow, νturb is smaller than molecular viscosity also for Re > Recturb.

Therefore even if the transition has occurred in the experiment, it turns out that purely hydrody-

namical turbulent viscosity can not efficiently drive angular momentum transport in the disks.

It should be noticed that the above discussion concerns only incompressible flows. If a fluid

with stable axial density stratification is studied, the sufficient condition for (non-axisymmetric)

instability can become ∂rΩ
2 < 0, (Molemaker et al., 2001). This is identical to the Velikhov

criterion for magnetorotational instability, Eq. 1.6. Since the astrophysical disks are vertically

stratified it is likely that this type of instability plays role, especially in weakly ionized disks

(Dubrulle et al., 2005). However, when the stratification is too large it can have also stabilizing

effect.

2.3.2 Magnetohydrodynamics

Decades ago Velikhov (1959) and then, more generally, Chandrasekhar (1960) have shown that

even very weak axial magnetic field applied to a Taylor-Couette flow with fluid possessing zero

resistivity can alter the stability criterion dramatically. Firstly the flow is always stable when

µ̂ > 1, moreover it can be destabilized by the magnetic field even if the Rayleigh criterion is

fulfilled. We notice that line µ̂ = 1 distinguishes between flow with increasing and decreasing

angular velocity.

It has been more than thirty years later when, after work by Balbus and Hawley (1991), as-

trophysical community realized that this type of instability can play crucial role in wide range of

astrophysical objects. In particular it can serve as a mechanism of transporting angular momen-

tum in accretion disks. It is worth noting that there is virtually no references in astrophysical

literature to Velikhov (1959) or Chandrasekhar (1960) prior to the work by Balbus & Hawley.

Accretion disks are mostly Keplerian, which means that theirs rotational profile scales like

Ω ∝ r−3/2 so that |Ω| decreases radially outward but specific angular momentum |Ωr2| increases

radially. We will call Taylor-Couette flows quasi-Keplerian if Ω ∝ r−3/2 is fulfilled so, for our
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Figure 2.3: Marginal stability diagram for Taylor-Couette flow for radius ratio Rin/Rout = 1/2 in non-

dimensional formulation according to equations (2.5). (——) viscous flow. (· · · · · · ) Rayleigh line µ̂ = 0.25:

flow is hydrodynamically stable below this line. (·–·–·–) µ̂ = 1.00 below the line the flow is always stable.

(– – –) quasi-Keplerian flow, Ωin/Ωout = (Rout/Rin)3/2 which implies µ̂ = 0.3535. The most interesting

region lies between (· · · · · · ) and (·–·–·–), where magnetic field can destabilize flow. For counter-rotation of

the cylinders the inviscid flow is always unstable.

geometry, µ̂ = 0.3535. We notice that the magnetorotational instability can exist for range 0.25 <

µ̂ < 1, see Fig. 2.3.

The main differences between astrophysical and experimental MRI are physical properties

of the rotating medium – on astrophysical scales it is usually hot, well ionized plasma whereas

down on the Earth the most convenient approach consists of the Taylor-Couette flow with a liquid

metal. Experiments with fast rotation of plasma also have been proposed (Noguchi and Pariev,

2003) but they undergo lots of technical problems and are still in development stage.

One of the most important parameters characterizing laboratory liquid metals is the mag-

netic Prandtl number Pm which is ratio of the kinematic viscosity ν to the magnetic diffusivity

η. For such liquids this ratio is very small, of order of 10−5-10−6. For astrophysical objects ion-

ized plasma can have Pm ranged from 10−8 for protostellar disks, 10−6 for cataclysmic variables

and disks around compact objects such as neutron stars, to 104 for active galactic nuclei (Bran-

denburg and Subramanian, 2005). However, Reynolds numbers for such disks can easily be of

order 107 - 1010. Also density can vary significantly whereas laboratory liquids are essentially

incompressible.

The axial magnetic field

Velikhov (1959) has shown that for the ideal MHD the applied axial field can destabilize hy-

drodynamically stable flow. Later Kurzweg (1963) demonstrated that also for non-ideal MHD,

for small gap approximation and weak fields, the critical Reynolds number Rec can become

even smaller than for the corresponding purely hydrodynamical flow, provided that the mag-

netic Prandtl number is sufficiently large. From Fig. 2.4 we see that for the magnetic flow with

Pm = 1 (the left panel) subcritical excitations exist and it is possible to obtain smaller Rec when

compared to the hydrodynamical flow. Moreover, the flow remains unstable even if the Rayleigh
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Figure 2.4: Critical Reynolds number Rec as a function of the rotation ratio µ̂ for the Taylor-Couette flow

with η̂ = 0.27. Left: Pm = 1, right: Pm = 10−5. (– – –) is for purely hydrodynamical flow Ha = 0,

(——) represents minimal Rec for non-zero magnetic field, Ha > 0. The dotted vertical line denotes

Rayleigh stability criterion.

criterion for stability is fulfilled, i.e., on the right side of the vertical line. This remains true also

for small Pm = 10−5, however the required Rec is much larger, at least of order 106.

Already Velikhov found that a critical vertical wavenumber kc corresponding to such instabil-

ity fulfills

kc ≤ η̂
2Ωin

Va
, (2.13)

where Va is the Alfvén velocity

Va =
B0√
µ0ρ

. (2.14)

However the applied magnetic field can not be too strong, the instability can arise only if

Va < −r2∂rΩ, (2.15)

i.e., when the Alfvén velocity is smaller than the shear. When magnetic field is too strong the

MRI ceases to exists.

For hydrodynamically stable flows there is a significant difference between Pm & 1 and

Pm ≪ 1. In the former case the additional axial field can reduce the critical Reynolds number,

this is more evident for larger Pm, however this effect vanishes if Ha is large enough. In the latter

case, Pm ≪ 1, the magnetic field plays only stabilizing role, i.e., increases Rec. However when

the rotation is sufficiently fast it can bring hydrodynamically stable flow into unstable regime,

Fig. 2.4 (right).

On the Rayleigh line, µ̂ = η̂2 and hence a = 0 in (2.7) from which follows (see e.g. Rüdiger,

2004) that for axisymmetric case the quantities ur, uz, br, bz scale as Pm−1/2 while uφ, bφ, k,Ha

scale as Pm0. Therefore for µ̂ = η̂2, the critical Reynolds number (for axisymmetric modes which

are preferred over non-axisymmetric ones for that instability) scales as

Rec ∝ Pm−1/2. (2.16)

Willis and Barenghi (2002b) have demonstrated, with use of numerical methods, that this scaling

holds independently of the radial magnetic boundary conditions (i.e., conducting or insulating).
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On the other hand, if the Rayleigh line is crossed µ̂ > η̂2, quickly much steeper scaling sets in

(see e.g. Rüdiger et al., 2003):

Rec ∝ Pm−1, (2.17)

and the corresponding strength of the magnetic field

Ha
√

Pm ∝ const. (2.18)

This leads to a conclusion that Rec undergoes a sudden change when µ̂ is very slightly increased

over η̂2 and small Pm is used. Naturally this transition is not so important when Pm ≈ 1. We

shall notice that for µ̂ > η̂2 from the above relations and Eq. (2.13) it follows that the critical

vertical wavenumber is independent of Pm.

From (2.16), (2.17) we conclude that for Pm = 10−6 the critical Rec changes two orders

of magnitude from µ̂ = η̂2 to µ̂ > η̂2. Since it is undoubtedly easier to perform an experiment

with smaller Re, i.e., slower rotation, one would prefer to perform the experiment exactly at the

Rayleigh line. However, even smallest deviation from the line would dramatically alter excitation

conditions and the results would be unclear.

We now introduce the magnetic Reynolds number

Rm ≡ ΩinRinD

η
= RePm, (2.19)

and from (2.17) we conclude that in the region of our interest η̂2 < µ̂ < 1, MRI operates for

Rm ∝ const. The MRI exists if Rm is of order of O(10) so that for Pm = 10−6 the critical

Rec = 105.

Let us now consider an experiment consisting of two cylinders with radii Rin = 5cm, Rout =

10cm (η̂2 = 0.25) filled with gallium, so that Pm = 10−6. For, say, µ̂ = 0.27 the critical Rec is

then 107, this corresponds to rotation of the inner cylinder with frequency 200Hz! Moreover the

required magnetic field is Ha = 1700, i.e. Bz = 7500G and huge currents in a coil surrounding the

cylinders are necessary to generate it. Such vast rotation rates and strong fields are technically

extremely, or even forbiddenly, challenging and this is also the reason why MRI has never been

observed ,,by chance” as it often in physics is.

Besides the purely technical problems there is an additional issue which must be addressed

when so fast rotation is considered. In the linear theory cylinders are assumed to be infinitely

long or periodic, whereas in reality they are enclosed by plates. From Taylor-Proudman theorem,

which states that fluid tends to align itself along axis of rotation, follows that such relatively

rotating plates would significantly alter the background flow. Indeed Hollerbach and Fournier

(2004) have shown that for large Re & 106 the plates can easily dominate the whole flow, and

even if they are divided into differentially rotating rings problems arise.

Axial and azimuthal magnetic field

In order for the MRI to operate when there is only the axial external magnetic field applied,

an azimuthal component of the field must be produced by the rotation. Rüdiger et al. (2005)

have shown that externally imposing the additional azimuthal component dramatically reduces

critical characteristic values, and makes it possible to find that type of MRI experimentally. The

applied field has the form (2.4) and is current-free (except along the axis of rotation) so that

the only source of energy to drive the instability is still the imposed differential rotation. The
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azimuthal component can be easily generated by letting an electric current through a rod placed

in the axis of rotation.

Due to the specific configuration of the imposed field this type of MRI is usually referred as

,,spiral” or ,,helical”, also the acronym HMRI is used, in contrast to SMRI – Standard MRI.

The main finding is that for the spiral MRI critical Reynolds number necessary to excite insta-

bility are dramatically reduced – from O(106) to O(103), for β ≈ 4.

This specific form of the external magnetic field breaks the reflectional symmetry of the prob-

lem and consequently the instability takes the form of a traveling wave. The direction of the

wave propagation is defined by signs of Ωin, β and Bz – for all three being positive the wave

moves downwards. The frequency of the traveling wave and its velocity can be derived from

the linear analysis of the problem and then becomes an important, easy to measure parameter

indicating this type of instability. For more detailed discussion on breaking symmetry in MHD

rotating flows see Knobloch (1996).

Chapters 3 and 4 of this thesis will cover the subject of spiral MRI in more details, especially

focusing on the experimental point of view with geometry of the PROMISE facility.

2.4 Numerical method and the boundary conditions

We now formulate the problem in a way suitable for solving with numerical methods. The system

(2.11) will be solved in its fully nonlinear form with the method described below, however

in Chapter 5 of this work we will also consider linear stability of the Eqs. (2.5). We assume

that Rin, Rout, H are provided here in the non-dimensional form, i.e., Rin/D → Rin, Rout/D →
Rout, H/D → H .

The vorticity is defined as

ω = rotu. (2.20)

Taking curl of (2.11a), (2.11b) and using the Ampère’s law without the displacement current we

obtain equations for the vorticity ω and the perturbation current j. Assuming that the flow is

axisymmetric we neglect all φ derivatives and find a set of equations in a stream function-vorticity

formulation, i.e.,

∂tuφ = (∇2 − r−2)uφ + [u × (rotu)]φ + Ha2∂zbφ, (2.21a)

∂tωφ = (∇2 − r−2)ωφ − [rot(ω × u)]φ + Ha2[rot(j × B0)]φ, (2.21b)

with elliptic equations for the stream function, the perturbed magnetic field and the current:

[

−r−1(∂zz + ∂rr) + r−2∂r

]

ψ = ωφ, (2.22a)

(∇2b)φ = −∂z

(

uφ − uzβB0Rin

r

)

+ ∂r
urβB0Rin

r
, (2.22b)

(∇2j)φ = −∂zz(ur) + ∂rr
−1∂r(rur), (2.22c)

where the stream function ψ is defined as

ur = −1

r
∂zψ, (2.23)

uz =
1

r
∂rψ. (2.24)

The above equations are solved with a finite-difference method in the r-z plane.
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No-slip boundary conditions for the velocity on the walls and the endplates are used, so that

ur = 0 at r = Rin, r = Rout, (2.25)

uz = 0 at z = 0, z = H, (2.26)

hence, after setting the arbitrary constant to zero,

ψ = 0 at r = Rin, r = Rout, (2.27)

ψ = 0 at z = 0, z = H. (2.28)

Boundary conditions for uφ at the walls are determined by Re and µ̂

uφ = Re at r = Rin, (2.29)

uφ =
µ̂

η̂
Re at r = Rout, (2.30)

and at the endplates by their rotation properties

uφ(r) = rΩbot(r) at z = 0, (2.31)

uφ(r) = rΩtop(r) at z = H. (2.32)

For example for the both endplates rigidly rotating with the outer cylinder we have Ωtop =

Ωbot = Ωend = Ωout.

Using (2.22a) we obtain

ωφ = −(1/r)∂rrψ at r = Rin, r = Rout, (2.33)

ωφ = −(1/r)∂zzψ at z = 0, z = H. (2.34)

The magnetic boundary conditions depend on electrical properties of the walls. For perfectly

conducting cylinders we assume infinite conductivity so that with J = σ(E + u × b) and Eφ =

Ez = 0 for the walls we get

r−1bφ + ∂rbφ = 0 at r = Rin, r = Rout, (2.35)

jφ = 0 at r = Rin, r = Rout, (2.36)

and Er = Eφ = 0 for the perfectly conducting end-plates

∂zbφ = 0 at z = 0, z = H, (2.37)

jφ = 0 at z = 0, z = H. (2.38)

For insulating endplates the boundary conditions for magnetic field are obtained by applying the

so-called pseudo-vacuum approximation for which br = bφ = ∂zbz = 0. Then

bφ = 0 at z = 0, z = H, (2.39)

∂zjφ = 0 at z = 0, z = H. (2.40)

We also use magnetic boundary conditions which are intermediate between a perfect conductor

and a perfect insulator. In this case the endplate consists of thin layer with thickness ε and

conductivity σw below which (below for the bottom and above for the top endplate) there is an
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insulator (see e.g. Loper, 1970). Then this layer can be characterized with the parameter κ

κ = ε
σw

σf
, (2.41)

where σf is conductivity of the fluid. The vertical boundary conditions become

bφ = κ∂zbφ at z = 0, (2.42)

bφ = −κ∂zbφ at z = H, (2.43)

∂zjφ = 0 at z = 0, z = H. (2.44)

For κ→ 0 we obtain the pseudo-vacuum boundary conditions, for κ→ ∞ the perfectly conduct-

ing ones.

To get br and bz components we introduce scalar field a such

b = bφêφ + rot(aêφ), (2.45)

since j = rotb we obtain a by solving the elliptic equation:

(

∇2 − 1

r2

)

a = −jφ, (2.46)

and then

br = −∂za bz =
1

r
∂r(ra). (2.47)

The boundary conditions for a follow from these for b and j

a = 0 at r = Rin, r = Rout, (2.48)

and

∂za = 0 at z = 0, z = H for insulating endplates, (2.49)

a = 0 at z = 0, z = H for perfectly conducting endplates. (2.50)

For periodic cylinders the boundary conditions are straightforward: all the quantities are

copied to appropriate cells in the vertical direction. However this leads to different matrices in

the Poisson solvers, so that bands which appear are in larger distance from the diagonals and the

computation time is slowed down when compared to the finite cylinders approach.

We simulate the axisymmetric two-dimensional flow described by Eqs. (2.21), (2.22) in cylin-

drical coordinates (r, φ, z) with a numerical code adapted for our purposes. The original version

of the code was provided by A. Youd (see Youd and Barenghi, 2006; Youd, 2005, for details and

tests). The assumption of axisymmetry is justified in this case since m = 0 modes are preferred

over non-axisymmetric in the type of instability which is under study. The code has been signifi-

cantly modified in order to handle periodic boundary conditions in a way suitable for our needs,

the toroidal field was added and different magnetic and hydrodynamic boundary conditions at

the endplates were applied, also solvers for br, bz were introduced.

Variables from Eqs. (2.21) - (2.22) are approximated on a grid with resolution Nr × Nz =

80×Γ80 with second order finite-differences (resolution 40×Γ40 is also used for comparison, the

difference in obtained results is always less than couple of percent). The dynamic variables uφ, ωφ

from Eq. (2.21) are forwarded in time with the second order implicit Crank-Nicolson scheme for
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linear terms and the third order explicit Adams-Bashforth for the nonlinear terms. The time-step

is constant with dt = 10−5 or dt = 10−4 for comparison. RHS for system (2.21) are obtained by

solving the elliptic Eqs. (2.22) with the appropriate boundary conditions. This is done by solving

an adequate matrix equation with use of SCALAPACK library. This library makes it possible to

use parallel computation facility – Sansoussi and Octopus clusters from AIP have been used to

perform the calculations. The form of the matrix depends on the boundary conditions and takes

the form of a tridiagonal matrix with bands. The code can handle flows with Reynolds numbers

up to ≈ 2500, higher rotation rates require significantly finer resolution and smaller time-steps.

2.4.1 Sample solution I – Hydrodynamics

We now demonstrate some general features of a solution of the MHD Taylor-Couette problem

formulated in the way described above.

Figure 2.5 refers to a non-magnetic case when the cylinders are infinitely long, i.e., the peri-

odic vertical boundary conditions are used. For the given gap ratio η̂ = 0.5, the critical Reynolds

number has well known value Rec = 68.9, and the vertical wavenumber is k = 3.14. Therefore

the vertical wavelength λ = 2D and the Taylor cells, arising when Rec is reached, are almost

square. This is not instantly seen from the figure since the axes r, z are not drawn at scale.

Fluid circulates along contour lines of stream function ψ clockwise where it is positive (solid

lines) and counter-clockwise where ψ is negative. We also notice that the rotational profile uφ

is clearly z-dependent. When scaled to physical properties of viscosity of gallium, the maximum

velocity uz is of order up to 1.0 mm/s for these conditions. This velocity scales linearly with

Reynolds numbers. However, this scaling holds only up to a certain point when next mode of

instability sets in, or eventually turbulent state is reached.

Figure 2.5: Contour lines of dynamical variables uφ, ωφ and corresponding solution of the elliptic

Eqs. (2.22) for ψ for cross section in the r − z plane. Cylinders have height H = 10D and periodic

boundary conditions in the vertical direction are used. Rotation of the inner cylinder (the left edge of each

panel) corresponds to Re = 100 thus Ωin = 100, the outer cylinder (the right edge of each panel) is at rest

Ωout = 0 so that µ̂ = 0. There is no axial magnetic field, Ha = 0. The plot is not at scale.
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A situation where the cylinders are enclosed by rigidly rotating endplates is shown in Fig. 2.6.

In this case the outer cylinder rotates sufficiently fast so that the Rayleigh criterion is fulfilled and

the flow is essentially hydrodynamically stable. Nevertheless we notice two large Ekman vortices

nearby each endplate.

The mechanism generating the vortices is due to the vertical no-slip boundary conditions.

In the bulk of the container the pressure gradient is balanced so that
u2

φ

r ≈ ∇p
ρ , whereas at the

boundaries we have uφ = rΩout. Consequently, the resulting imbalanced pressure gradient drives

a radial flow which, due to the conservation of mass, turns into axial direction close to the radial

boundaries. This secondary flow is usually considered as an analog to the geophysical Ekman

flow. Eventually in our incompressible fluid a global meridional circulation is induced.

Figure 2.6: Contour lines of dynamical variables uφ, ωφ and the stream function ψ for cross section in

r−z plane. Cylinders have height H = 10D and boundary conditions corresponding the endplates rotating

with the outer cylinder were applied Ωend = Ωout. The endplates are represented by the top and the

bottom edge of each panel. The inner cylinder rotates with Ωin = 100, hence Re = 100 and the outer one

rotates with Ωout = µ̂Ωin, where µ̂ = 0.27. Since the Rayleigh criterion for stability is fulfilled, the flow

is hydrodynamically stable. Nevertheless the endplates induce global circulation – the Ekman vortices. No

magnetic field is applied, Ha = 0.
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2.4.2 Sample solution II – Magnetohydrodynamics

Flow for finite cylinders covered with stationary lids but with a weak external axial magnetic

field applied is depicted in Fig. 2.7. Since Re = 100 and µ̂ = 0, the flow is hydrodynamically

unstable and Taylor vortices are clearly visible. Since aspect ratio is Γ = 10 there are 5 pairs of

them. Two, a bit larger, vortices near boundaries correspond to the Ekman vortices.

As it has been mentioned before, when the external axial magnetic field is strong enough it

can suppress the hydrodynamical instability. This situation is presented in Fig. 2.8, the Taylor

vortices disappeared, there exists clear interaction between Ekman circulation and the field in

vicinity of the plates. Two new vortices are generated close to the outer cylinder, strong currents

are localized in the boundary layer. Yet still the rotational profile is somewhat similar to Ω0.

Imposing perfectly conducting boundary conditions on the magnetic fields has drastic influ-

ence for properties of this type of MHD flows. In that case even a weak external magnetic field

alters the flow profoundly, see Fig. 2.9. The induced azimuthal magnetic field is almost order of

magnitude larger than for the insulating plates, Taylor vortices nearly vanished and there exists

counter-rotation uφ < 0. The assumption of a perfectly conducting material is a very strong

one and in reality, even for good conductors like copper, is not fulfilled. Instead intermediate

conditions can be applied, see Eq. (2.41).

A detailed discussion of the complex situation which arise near vertical boundary layer and

associated global effects for MHD Taylor-Couette flow will be subject of Chapter 5.

Figure 2.7: The solution for finite cylinders with a weak axial magnetic field is presented, Re = 100, µ̂ =

0.0,Γ = 10. The plates are at rest, Ωend = Ωout = 0. The applied axial field is very weak, Ha = 3 so its

influence on the flow is small. Pseudo-vacuum, i.e., insulating like, magnetic boundary conditions are used.
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Figure 2.8: Figure is analogous to Fig. 2.7 but here much stronger magnetic field is applied, Ha = 10.

Strong field suppresses Taylor vortices and situations close to vertical boundaries is more complicated –

Ekman vortices are smaller, larger counter rotating vortices in theirs vicinity are generated, azimuthal

currents concentrate very close to the plates.

Figure 2.9: Figure is analogous to Fig. 2.7 but here plates enclosing the cylinders are assumed to be

perfectly conducting, magnetic field is weak, Ha = 3. Those specific magnetic boundary conditions result

in the very strong induced magnetic field. Remnants of Taylor vortices can be seen, rotational profile uφ is

significantly changed and even counter-rotation exists.



Chapter 3

Helical magnetic field

3.1 Introduction

In the Section 2.3 the question of stability of magnetized Taylor-Couette flow has been addressed.

We have seen that for liquids possessing small Prandtl number the rotation rates must be very

large when the externally applied magnetic field consists only of the axial component. Moreover

this instability does not exist to the right of the Rayleigh line in the Pm → 0 limit. Due to the

vast rotation rates technical problems arise when constructing an experiment. There is also a

need for careful treatment of the vertical boundaries since the flow is strongly constrained by

the Taylor-Proudman theorem and as a result it is controlled almost entirely by the endplates,

especially if they are rotating rigidly (Hollerbach and Fournier, 2004).

When an azimuthal component is added to the external magnetic field, the critical Reynolds

numbers Rec associated with the rotation rates is dramatically reduced. This firstly has been

shown by Hollerbach and Rüdiger (2005). The motivation for such field geometry is quite simple:

it is uncomplicated modification to the pure axial field, it is also current-free and it is very easy

to realize it in an experiment – just by running a sufficiently large electric current through the

axis of rotation. It should be stressed that the magnetic field is current-free and itself it does not

exert any forces on the fluid, so the instability ultimately is driven by the rotation.

In Fig. 3.1 we see the dependence of the critical Reynolds number Rec on the rotation ratio

µ̂ for different strengths of the azimuthal magnetic field, i.e., for different β. The dotted line

denotes hydrodynamical stability, it reaches asymptotic value +∞ for µ̂ = 0.25, i.e., where the

flow is stable according to the Rayleigh criterion. The solid and dashed lines are for magnetic

case, Pm = 10−6, Pm = 10−5 respectively. When there is only an axial field applied, i.e., β = 0,

we see that Rec rises very rapidly in vicinity of µ̂ = 0.25 and ends up with very large value,

proportional to Pm−1 and goes to infinity for Pm → 0. In this form MRI sets in when magnetic

Reynolds number Rm is of order O(10) so the resulting Rec = Rm/Pm = 106 − 107.

We now focus on non-zero β, it is evident that Rec is significantly smaller also for µ̂ extending

far beyond the Rayleigh line. Moreover with larger β the scaling becomes less and less like the

previous Pm−1, it becomes independent of Pm and eventually this type of instability exists also

in Pm → 0 limit. The reason for that is that the existing meridional circulation advects the

applied Bφ giving contribution to the induced bφ so that it is possible to maintain the instability.

It has already been mentioned in the previous chapter that the up/down symmetry in the z

direction is broken when the helical magnetic field is applied. Consequently the new modes are

no longer stationary, as is for the classical MRI or primary hydrodynamical instability, but drift

in the z-direction – downwards when product β × B0 × Ω has positive sign, upwards otherwise

(a traveling wave exists in the solution). Naturally this drift must be suppressed at vertical

boundaries when the cylinders are finite and covered with plates.
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Figure 3.1: The critical Reynolds number Rec as function of the rotation ratio µ̂. (· · · · · · ) denotes purely

hydrodynamical marginal stability line. The flow is always hydrodynamically stable if the Rayleigh criterion

for stability is fulfilled, i.e., on the right of µ̂ = 0.25. The lines on the right of µ̂ = 0.25 denote magnetohy-

drodynamic instability, (——) Pm = 10−6, (– – –) Pm = 10−5. The numbers indicate different values of β.

Rec is minimized over a range of values Ha, k.

Generally it is easier to obtain instability when perfectly conducting cylinders are used unlike

the insulating ones. Hereby the treatment of the magnetic boundary conditions for the walls

(i.e., the radial ones) is such that the walls are assumed to be perfectly conducting. On the other

hand, in this chapter the endplates (i.e., the vertical boundaries) are assumed to be insulating in

order to minimize magnetic forces induces in their vicinity.

The aim of this chapter is to investigate nonlinearly saturated state of MHD Taylor-Couette

flow embedded in the external helical magnetic field. We will focus on parameters resembling

PROMISE facility and present results which helped to conduct the experiment. Results of the

computations, with the numerical method outlined in Section 2.4, for periodic and finite cylin-

ders are shown. It is found that the helical MRI exists also when the cylinders are finite.

3.2 Infinite container

First we have performed simulations for periodic vertical boundary conditions in order to com-

pare the critical Reynolds numbers with results obtained from linear analysis. For this instability

axisymmetric modes m = 0 are preferred to non-axisymmetric ones, which is usually the case

both in non-magnetic Taylor-Couette flow as well as in classical β = 0 MRI. Therefore our as-

sumption of axisymmetry in the numerical approach is valid. The method allows us also to obtain

physical values of velocities in the nonlinear saturated state, which can not be found from the

linear stability analysis.

For infinite cylinders and µ̂ = 0.27 the flow is always hydrodynamically stable. With the

external axial magnetic field it looses the stability for large Reynolds number of order O(106),

the additional toroidal current-free field can reduce this number to O(103) – for β = 3, 4 the

critical Recrit is 1160 and 842, respectively. In the simulations the length of the periodic cylinders

was chosen to be three times the wavelength obtained with linear analysis. The agreement

between the previous and presented results is rather good, see Table 3.1.
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Table 3.1: Characteristic values for η̂ = 0.5 and µ̂ = 0.27 taken from Rüdiger et al. (2005) for Pm =

10−5, Rec is minimized over k,Ha for given Pm, β, µ̂, η̂. fcyl represents the rotation frequency of the inner

cylinder. Re
b)
c is the critical Reynolds number found with use of the code for given Ha, β, k (in the Pm → 0

limit). Simulations for different Re were accomplished, the presented values correspond to Re where the

exponential growth rate becomes positive.

β Ha k Rea)
c fcyl [Hz] Reb)

c

0.0 542 1.7 106 338

1.0 38.4 0.6 33833 1.14

2.0 14.6 1.3 2383 0.08

3.0 10.7 1.6 1160 0.04 1248

4.0 9.5 2.0 842 0.028 860

3.2.1 Frequencies

Figure 3.2 shows snapshots of contour lines of the stream function for saturated state for Reynolds

number just above the critical value Rec. Three pairs of drifting vortices can be seen, the drift

direction and its velocity agrees with the previous results – it is slow, for gallium the period of

the traveling wave is about 230 s for β = 4 which corresponds to udrift = 0.5 mm/s (the period

of one rotation of the inner cylinder is about 35 s for Re = 900).

From the experimental point of view it is also convenient to present traveling wave frequen-

cies as function of µ̂ (Fig. 3.3). All the frequencies were obtained by taking the spectrum of the

velocity component uz(t) in the middle of the gap (i.e. at r = Rin + D/2, z = Γ/2) and then

choosing the dominant frequency. Except for very small µ̂ the resulting frequencies are always

smaller than the frequencies of the both cylinders. Beyond the Rayleigh limit (i.e., for µ̂ > 0.25)

the characteristic frequency is about 10% of the frequency of the inner cylinder. This means that

beyond the timescale of rotation, another timescale exists, perhaps also in magnetic astrophysical

Figure 3.2: Snapshots of contour lines of the stream function: dashed lines represent counter-clockwise

rotation, solid lines clockwise rotation. Ha = 9.5,Re = 900, µ̂ = 0.27, β = 4,Γ = 9.4, the time between

snapshots is ∆t = 37s. The fluid was initially at rest and then cylinders were suddenly accelerated to their

final rotation rates. We notice drift of the fully developed Taylor vortices.
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Figure 3.3: Frequency of the traveling wave as a

function of rotation ratio µ̂ for infinite cylinders,

Ha = 9.5,Re = 900, β = 4. The units are scaled

according to the physical properties of liquid used in

the PROMISE experiment. The values were obtained

by performing simulations for several different val-

ues of µ̂.

Figure 3.4: Amplitudes of velocity (averaged

in time) as a function of the Reynolds number.

(——) max|u′

φ| (deviation from the standard Cou-

ette solution Ω0), (– – –) max|ur|, (·–·–·–) max|uz|.

The amplitudes increase from the critical point (ver-

tical line) and continue to increase with Re. Periodic

cylinders, Ha = 9.5, µ̂ = 0.27, β = 4.

systems, which exceeds the rotation period by (say) a factor of ten. For the astrophysical scales

it means that any phenomenon with such frequency would be difficult to observe.

It is worth to be mentioned that in the regime where the hydrodynamical instability operates

the traveling wave also can be observed, so that the spiral nature of the imposed magnetic field

forces the existing Taylor vortices to drift.

3.2.2 Velocity amplitudes

The solution in a nonlinear saturated regime provides information about magnitudes of physical

variables which can me measured in an experiment. In a Taylor-Couette experiment the most

important quantity to be observed is the fluid velocity. The PROMISE facility was equipped with

two independent devices capable of measuring z component of the velocity along z axis at fixed

distance R = 6.4 cm from the axis of rotation of the cylinders. Two such devices are necessary in

order to distinguish between axisymmetric and non-axisymmetric flow (for details on the setup

see Appendix A). The performed nonlinear calculations give information about magnitudes of

the velocity and therefore the required accuracy of the measuring devices.

Figure 3.4 shows how maximum values of different components of the velocity depend on

the Reynolds number Re. The velocities are zero up to critical point Recrit at which they start

to increase with Re. We notice that the values of uz, ur, u
′
φ become larger when increasing the

rotation rates of the container and therefore it is easier to measure uz for higher Re.

Naturally, if the rotation ratio µ̂ is smaller for fixed Ωin (i.e., Ωout is decreased), the magni-

tude of the velocity becomes larger since there are stronger shears in the radial direction. The

dependence of the maximum amplitudes of velocity on µ̂ for constant Re = 9001 and β = 4 is

depicted in Fig. 3.5. For any stable solution all the amplitudes should be zero just beyond the

Rayleigh line, i.e., on the right of µ̂ = 0.25. We see that with the additional toroidal field this is

not the case – the velocities for µ̂ = 0.27 are of order of 0.1 mm/s and drop to zero for µ̂ = 0.28

for these parameters. From Fig. 3.1 it is clear that it is possible to get unstable solution also for

µ̂ = 0.28, β = 4 by increasing the rotation rates.

1We recall that in our notation Re is defined by Eq. 2.9 and depends only on Ωin.
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Figure 3.5: Maximum amplitudes of the veloc-

ity (averaged in time) versus µ̂ for periodic cylin-

ders, Re = 900, β = 4,Ha = 9.5, (——) max|u′

φ|,

(– – –) max|ur |, (·–·–·–) max|uz|. The verti-

cal line denotes hydrodynamical stability threshold,

µ̂ = 0.25.

Figure 3.6: Torque at the walls for two different

β: (——) β = 0, (– – –) β = 4. Note that from the

critical Rec (the vertical line) for β = 4 the torque

is larger than for the stable β = 0 case, Ha = 9.5,

µ̂ = 0.27.

3.2.3 The torque

From the conservation of angular momentum it follows that the change of the angular momen-

tum is equal, in absence of any external forces, to the divergence of the stress tensor. For our

axisymmetric case we can write

∂t(ρl) = div t, (3.1)

where t represents stresses acting on the fluid, l the specific angular momentum. The total torque

T acting on a cylinder with radius r is

T (r) =

∫

V

div(t)dV, (3.2)

the integration is done over the volume enclosing the cylinder. From the divergence theorem

T (r) =

∮

S

t · dS (3.3)

Therefore the total torque acting on the cylinder is equal to the angular momentum flux through

its surface. The stresses which can contribute to the torque are the material, the magnetic and

the viscous stress, hence (see e.g von Rekowski and Brandenburg, 2004; Liu et al., 2006b)

T (r) =

∮

S

[

ρruru
′
φ − rbrbφ

µ0
− rρν∂rΩ(r)

]

· n̂dS, (3.4)

with u′φ = uφ − rΩ0. In a steady state the total torque is independent of r. In any case the only

contribution to T (r) at the walls with the no-slip boundary conditions is due to the viscous stress

since the others vanish. Consequently the total torque at the outer wall Rout (similarly for Rin)

for the cylinders with height H (also for the periodic cylinders with the assumed H) is

T (r = Rout) = −2π

∫ H

0

(Rout)
3ρν∂rΩ(r)|r=Rout

dz. (3.5)
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Usually it is presented as a non-dimensional quantity G

G =
T

ν2H
. (3.6)

For the unstable flow we expect the angular momentum to be transported outwards and therefore

to increase the torque (3.5). From Fig. 3.6 we clearly see that indeed the torque is increased

when the helical field with β = 4 is applied when compared to β = 0. The difference starts

at the critical Reynolds number, i.e., when the Taylor vortices are formed.2 The change of the

torque is rather small and would be difficult to measure in an experiment, nevertheless in the

computations for helical MRI the angular momentum is shown to be transported outwards.

3.3 Finite container

In any real Taylor-Couette experiment finite cylinders must be enclosed by endplates (when the

upper one is missing a free-surface boundary conditions must be applied and the problem is

changed significantly). It has been pointed out that the endplates can have significant impact on

the flow, especially for short cylinders or for fast rotation rates (Hollerbach and Fournier, 2004;

Kageyama et al., 2004). Consequently different methods for reduction of the endplates effect

have been proposed (e.g. Burin et al., 2006). Here we are mainly interested in answering a

question if the endplates, i.e., theirs mechanical and magnetic properties, influence the velocity

amplitudes and frequencies for slow rotating finite cylinders with aspect ratio of Γ = H/D = 10

under the helical external magnetic field. In particular it is important to know whether the

traveling wave solutions is not suppressed by the vertical boundaries.

3.3.1 Influence of the Ekman layer

The existence of the endplates results in developing an Ekman layer close to the vertical bound-

aries since the fluid is forced to match the corresponding boundary conditions. Two localized

vortices, so-called Ekman vortices, arise in the vicinity of the endplates. In the vortices velocity

differs from Ω0 and they drive a global meridional flow: the Ekman circulation. The velocity

in this region (which can dominate the fluid in the whole container) depends on the Reynolds

number and the velocity of the endplates themselves. For non-rotating endplates (or rotating as

a solid body with Ωout) there is a radial inflow close to the boundaries and for solid-body rotation

with Ωin there is a radial outflow.

In the Rayleigh-stable regime the flow is hydrodynamically stable for both the infinite and

finite containers, whereas for the latter two Ekman vortices are always present. We confirmed it

with the numerical method that it is used here.

A simple estimate of the thickness of the Ekman layer for endplates rigidly rotating with Ωout

gives

δ ≈
√

ν

Ω̄
, (3.7)

where Ω̄ =
√

ΩinΩout. For the β = 4 critical transition, Rec ≈ 850 and δ ≈ 0.13 cm, this is

much larger value when compared to other experiments dealing with faster rotation rates (like

2The general scaling of G with Re in Taylor-Couette flow for large Re is a complicated issue. For more information,
especially in turbulent regime, the reader can refer to e.g. Dubrulle and Hersant (2002). For example for moderate Re
as of order up to O(104) G ∝ Re3/2, whereas for faster rotation it switches to different scalings.
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Re ≈ 106; for example for the already mentioned New Mexico experiment δ ≈ 0.1mm). We can

estimate the Reynolds number in the Ekman layer

Reδ ≈ DΩ̄δ

ν
=
D

δ
, (3.8)

for the rotation rates of our interests Reδ is of order O(10). For other experiments with much

larger Re, apart problems concerning domination the whole rotational profile by the plates, Reδ

can easily reach O(103) (e.g. Reδ ≈ 3000 for the New Mexico device). Therefore, since Reδ is in

a region when one can expect transition from a laminar into a turbulent flow, it is likely that the

layer, and consequently the whole flow in the container, will become turbulent. Naturally this is

an undesirable effect and should be avoided.

The typical velocity in the bulk of the fluid due to the Ekman circulation can be approximated

by

ūδ =

√

µ̂Ω̄, (3.9)

which for Re = 900 gives 0.02 cm/s. This is of the same order as velocities for the unstable case

presented for infinite cylinders (see Fig. 3.5). For Re = 900 the maximum value of uz (in the

corners of the container) is above 0.1 cm s−1 which is ten times more than the values computed

for infinite cylinders. Therefore we should conclude that endplates, giving rise to velocities of

that order, can significantly alter the flow.

In the computations it turns out that in the presence of an external axial field, the Ekman flow

induces significant z-gradients and an electric Hartman current is generated. This can result in a

magnetic instability even for small Reynolds number. Such undesirable effects can be significantly

suppressed when insulating plates are used, therefore here we present results only for pseudo-

vacuum boundary conditions. Full discussion concerning impact of the vertical boundaries on

the Taylor-Couette flow in the presence of axial magnetic field is presented in the Chapter 5.

3.3.2 Amplitudes and frequencies

We have considered two different cases in terms of mechanical properties of the endplates: i)

both plates rotate with angular velocity equal to that of the outer cylinder Ωtop = Ωbot = Ωout,

ii) the bottom endplate is fixed Ωbot = 0 while the upper rotates with Ωtop = Ωout. The latter

case is analogous to the PROMISE setup. However, here the both plates were assumed to be

insulating whereas in the real experiment one of the ends was made from copper, the other from

plexiglas. Although copper is considered as a good conductor it is significantly different, in terms

of constrains on the boundary conditions, from a perfect conductor. Still, using plates made of

material with different magnetic characteristic in reality introduced an additional asymmetry in

the problem.

Figure 3.7 displays snapshots of contour line of stream function ψ for parameters which

closely resemble the first run of the PROMISE (Stefani et al., 2006). We notice that the flow is

complicated, the vortices deformed and highly irregular. The asymmetry of the vertical bound-

aries for the velocity is clearly seen – the Ekman pumping mechanism works differently at the

bottom and at the top. Nevertheless one can observe that vortices develop and they move down-

wards as expected for the helical MRI instability.

Although the flow is at the first glance very irregular, still by investigating changes of, say,

uz(r, z) (or any other dynamical variable) in time we can get a spectrum with a clear peak

corresponding to a dominant frequency of the vertical traveling wave. Unlike for the case with

infinite (periodic) cylinders, here the choice of the measurement position (r, z) makes difference
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Figure 3.7: Snapshots of contour lines of the stream function analog to Fig. 3.2 but for finite cylinders.

Re = 1480, β = 6,Ha = 9.5, µ̂ = 0.27, the time between snapshots is ∆t = 47s. Insulating endplates, the

bottom one is fixed, the upper one is rotating with Ωout.

Figure 3.8: Frequency as a function of the rotation

ratio µ̂ for finite cylinders. a) (——) β = 4,Re =

900,Ha = 9.5, insulating endplates both rotating

with Ωbot = Ωtop = Ωout. b) (– – –) β = 6,Re =

1480,Ha = 9.52, insulating endplates, bottom: fixed

Ωbot = 0, upper: rotating Ωtop = Ωout.

Figure 3.9: Amplitudes of the velocity for fi-

nite cylinders, cf. Fig. 3.5, (– – –) max|ur|,

(·–·–·–) max|uz |, Re = 900, β = 4,Ha = 9.5,

Insulating endplates (the pseudo-vacuum bound-

ary conditions) rotating with the outer cylinder

Ωend = Ωout.
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Figure 3.10: Frequencies of the traveling wave in

the middle of the gap for finite cylinders as function

of β. Re = 900, µ̂ = 0.27,Ha = 9.5, insulating end-

plates rotating with Ωout.

Figure 3.11: Torque at the walls for finite cylinders

for different values of β: (——) β = 0, (– – –) β = 4.

Re = 900,Ha = 9.5, µ̂ = 0.27. The upper lines

correspond to the inner cylinder, the lower ones to

the outer. The vertical line denotes critical Reynolds

number Rec.

since the flow is completely suppressed at the boundaries and uz close to them would give wrong

results. Bearing in mind that the flow near the middle of the container is least affected by the

boundaries we chose straightforward uz(r = 6.4 cm, z = H/2), where the value of radius

r = 6.4 cm is used accordingly to placement of the measuring devices in the PROMISE facility.

The dependence of the traveling wave frequency f on the rotation ratio µ̂ is shown in Fig. 3.8.

Two different cases are presented: a) symmetrically rotating plates with parameters analogous

to that from Fig. 3.3, b) faster rotation, higher β and plates rotating with different Ω, similar like

in the PROMISE setup. We notice that the observed frequency in the case a) closely resembles

results for the periodic cylinders so that it is evident that helical MRI produces the traveling wave

also for the enclosed system.

The results for the case b) show that also for the asymmetric mechanical boundary conditions

the traveling wave can be easily identified. The higher frequency is due to different parameters,

especially β. The dependence of the frequency on strength of the imposed azimuthal component

of the magnetic field is presented in Fig. 3.10. We notice that this frequency can also be obtained

when β is small, i.e., in case when the flow is in stable regime for the periodic cylinders. The

reason for such behavior is that for the flow with endplates, there exist some vortices even if

there is only axial field imposed (which is obviously not true for the periodic case). Due to the

spiral nature of the applied magnetic field the vortices are drifting. This matter will be discussed

in more details in Chapter 4.

The velocity amplitudes for finite cylinders just above the critical Reynolds number are shown

in Fig. 3.9. We notice that due to the Ekman circulation those velocities do not drop to zero even

for µ̂ = 0.28, which was true for the periodic cylinders. In the middle of the container, far from

the boundaries the z component of the velocity reaches value up to about 0.7 mm/s, see Fig 3.12.

This is enough to be detected by the devices used in the experiment.

Similarly like for the infinite case one can also observe the increase of the torque in compar-

ison with β = 0 case (Fig. 3.11). When the plates are present the torque is also transferred due

to theirs influence (like the Ekman pumping) and consequently there is the difference in a value

for the inner and outer cylinder. We notice that the torque at the both walls increases from the

critical point Rec computed for the infinite (or periodic) cylinders.
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Figure 3.12: Contour lines of uz corresponding to the state presented in the last snapshot in Fig. 3.7. The

lines are drawn for values of uz: -0.6, -0.2, 0.2, 0.6 mm s−1, only the middle part of the cylinders is shown,

the drawing is not at scale.

3.4 Keplerian rotation

We have shown that the MHD Taylor-Couette flow becomes unstable in the hydrodynamically

stable regime when a helical magnetic field is applied. This instability works for small Reynolds

number and can also be observed for a finite aspect ratio Γ. In particular the traveling wave is

not suppressed for the parameters characterizing the PROMISE experiment, i.e., Γ = 10.

However from astrophysical point of view it is interesting to see if this type of MRI operates for

much flatter rotation profiles, especially for Keplerian (like in accretion disks). In the geometry

of our interest the Keplerian profile corresponds to µ̂ = 0.3535, from Fig. 3.1 we notice that the

critical Reynolds number becomes significantly larger with µ̂, yet the figure does not show what

happens for µ̂ > 0.31.

An important question arise: does the helical MRI exist for the Keplerian rotation? If yes,

does it operate in the small Pm → 0 limit? Former results indicate that for flatter profiles scaling

Re with Pm becomes more alike the scaling for the classical MRI with axial magnetic field only

(recall that this classical MRI does not exist for Pm → 0).

Liu et al. (2006a) argued that from WKB analysis it follows that the helical MRI does not work

for the Keplerian rotation (more precisely they did this for profiles Ω ∝ rn, and concluded that

the necessary conditions is n < −1.66, whereas the Keplerian profile yields n = −1.5). However

the WKB analysis is local so it does not take into account the global problem and associated

boundary conditions. Rüdiger and Hollerbach (2007) have shown that, in the Pm → 0 limit

(which assures that the instability is of the helical type) it is possible to get unstable flow for

Keplerian rotation provided that the radial boundaries are taken into consideration and one of

them is at least somewhat conducting. In particular it is enough that the conductance of the

inner boundary is only half of that of the fluid. Solely when the both boundaries are insulating

the helical instability ceases to exist for quasi-Keplerian Couette flows.

Figure 3.13 displays how the critical Reynolds number depends on µ̂ and β for two cases: the

inner boundary conducting, the outer insulating and the both boundaries insulating. We notice

that in the former case the flow for µ̂ = 0.3535 is unstable when Rec is of order O(104 − 105)

and the imposed azimuthal field is not too strong. Although for both conducting cylinders Rec

is smaller it is still necessary to apply rotation rates corresponding to Rec ≈ 104 to get the

unstable flow. Such high Reynolds numbers are beyond reach of the numerical method used here

due to constrains on time step and grid size (we have reported simulations up to Re ≈ 2500).

Consequently flows with Keplerian rotational profiles can not be here directly studied in the

nonlinear regime.
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Figure 3.13: Contours of log(Rec) as a function of rotation rate µ̂ and β. Rec is minimized over Ha, k,

Pm → 0 is assumed, the cylinders are infinitely long. (——) the inner cylinder is perfectly conducting,

the outer insulating. (· · · · · · ) both the cylinders are insulating. The vertical line indicates quasi-Keplerian

rotation, µ̂ = (Rin/Rout)
3/2.

3.5 Summary

Hollerbach and Rüdiger (2005) have proposed a novel configuration of external magnetic field

that could be applied to the magnetized Taylor-Couette flow. Due to the additional azimuthal

component of the field it is possible to bring rotation rates to much smaller, by three to four

orders of magnitude, values when compared to the classical MRI with axial magnetic field only.

Therefore the helical MRI is suitable for an experiment with liquid metals. Moreover, it operates

also for Pm → 0.

We have shown above that our quasi-static approximation (2.11) for axisymmetric flow yields

very similar critical values for the critical Reynolds number as the linear analysis for finite Pm for

conducting, periodic cylinders. The expected traveling wave is also observed and the Taylor vor-

tices undergo a slow, yet easily measurable, drift. When the cylinders are enclosed by endplates

the drift still can be observed and the helical MRI is not suppressed.

The fluid velocity amplitudes ur, uz, u
′
φ, which were not known until now, are small: 0.1-

1 mm/s, still it is not very difficult to measure them experimentally. We shall also mention

that increasing Reynolds numbers result in linear (at least to some point) increase of velocity

amplitudes therefore it is easier to detect them for higher Re. However, for too high rotation

rates the assumption of axisymmetry may not be valid.

The drift velocity of the vortices can easily be detected by investigating changes of the velocity

field. The drift itself is quite slow. The frequency of the traveling wave is about 10% of the

rotation so and consequently the drift velocity is about 0.5 mm/s.

For finite aspect ratio calculations the velocities induced by Ekman pumping are of similar or-

der as those resulting from the instability. Therefore one should not neglect the influence of the

endplates in such experiments, clearly they alter the flow when compared to the periodic bound-

ary conditions. In the next chapter we propose simple and inexpensive methods of reducing

influence of the plates.

The helical MRI also operates for quasi-Keplerian rotation rates if at least one of the radial

boundaries is somewhat conducting. In our treatment of the boundary conditions the both cylin-
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ders are assumed to be perfectly conducting. However, for flat profiles like µ̂ = 0.35 the rotation

rates are beyond reach of the numerical method which is used to solved the nonlinear equations

(2.11). For example for β = 4 and µ̂ = 0.35, Reynolds number of order 2 × 104 is required for

instability to grow.



Chapter 4

Reduction of boundary effects

4.1 Introduction

In the previous chapter we have shown that an MHD Taylor-Couette flow under an external

magnetic field with both an axial and an azimuthal component becomes unstable for relatively

small Reynolds number. Moreover, vertical boundary conditions associated with plates enclosing

finite container do not destroy such instability.

In reality the idea of the additional azimuthal field was successfully implemented in the

PROMISE experiment by Stefani et al. (2006) where modes corresponding to helical MRI were

observed for the first time (see also Stefani et al., 2007). Results of this experiment also show

that in the basic stable state, without any toroidal field, there exists a non-zero axial velocity

field which arises due to presence of the rigid endplates enclosing the cylinders. These plates,

undoubtedly present in any real experiment, are responsible for additional effects which do not

take place for an idealized infinitely long container.

The boundary layer which exists in the vicinity of the endplates consists of an Ekman layer

which is a result of the rotation of a rigid surface, and a Hartmann layer which develops when

a conducting fluid is used and an external axial magnetic field is applied (see e.g. Ekman, 1905;

Roberts, 1967). Consequently, the global properties of the flow change when compared to the

idealized case of infinitely long cylinders: a secondary flow, i.e. two large Ekman vortices appear,

and the Hartmann current is drawn into the bulk of the fluid. All these effects depend on the

mechanical and magnetic properties of the lids. In the PROMISE experiment one of the lids is

made of copper and is attached to the outer cylinder, the other one is a stationary plexiglass

plate.

In this chapter we review simple improvements which can reduce undesired effects induced

by the lids and provide therefore the possibility to distinguish more clearly between stable and

unstable states of the MRI.

4.2 Periodic cylinders

From the point of view of the MRI experiment we are interested in obtaining a stable rotation

profile which for subcritical characteristic parameters is as close as possible to the idealized basic

state Ω0. On the other hand we expect a clear pattern of traveling vortices for supercritical

conditions. For infinite cylinders with an external axial magnetic field and liquids with Pm of

our interest the basic Couette profile Ω0 is not altered until a critical Reynolds number of order

O(106–107) is reached (corresponding to a rotation frequency f & 100 Hz). For an instability

due to the additional toroidal field with β = 4 we expect Re to be of order O(103) (implying
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Figure 4.1: Profiles of uz(z, t) at r = Rin + 0.6D for periodic cylinders just above the critical characteristic

values: Re = 1000,Ha = 9.5, β = 4. The critical Reynolds number in this case is Rec = 842.

f ≈ 0.1 Hz), Ha of order O(10), and therefore we search for conditions for which the flow is

closest to the Ω0 profile for these parameters.

Figure 4.1 displays values of the velocity component uz measured along the z axis at r =

Rin + 0.6D for supercritical values of rotation and magnetic fields.1 Rin = 4 cm, Rout = 8 cm,

and the physical properties of gallium for the viscosity and the magnetic diffusivity are used in

order to obtain values in physical scales comparable with those of the PROMISE experiment. The

results in this figure are for cylinders with periodic boundary conditions so that the profiles are

not constrained by end-effects and are directly comparable with results from linear theory for

infinite cylinders. We notice clear traces of the drifting Taylor vortices.

4.3 Reducing endplates effects

All undesirable effects induced by the endplates arise as a consequence of vertical shears near

the boundaries. Thus we attempt to reduce the shears by using appropriate boundary conditions.

Some experiments (Noguchi et al., 2002; Ji et al., 2004) must deal with vast rotation rates since

the azimuthal field is not applied (i.e. β = 0) and the rigidly rotating boundaries dominate

the whole flow. In this case it is necessary to split the end-plates into many independently

rotating rings (Kageyama et al., 2004; Burin et al., 2006). When the rotation rates are relatively

slow, so that the corresponding Reynolds number is of order O(103), the desired result can be

achieved either by allowing the endplates to rotate rigidly and independently of the cylinders

(see e.g. Abshagen et al., 2004) or by splitting them into two rings which are attached to the

both cylinders. From technical point of view the latter configuration is easier to implement and

can be considered as a possible extension to the next spiral MRI experiment. An experiment

with the independently rotating plates would require an additional driving systems for the both

plates.

Firstly we consider a criterion according to which we say that the boundary conditions are

more suitable. In the basic state for subcritical parameters for the case of periodic cylinders the

rotational profile of the fluid is Ω0(r) and is independent of z, and the magnetic perturbations

b are zero everywhere. Introducing endplates leads to the development of z and r gradients in

velocity, especially close to the vertical boundaries where Ω(r) from the bulk of the fluid must

1Visualizing data in such a way is straightforward since in the real experiment uz(z) is measured along the z axis at
the distance 0.4D from the inner cylinder and sampled every ≈ sec.
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match the imposed conditions at z = 0, z = H . Consequently two Ekman vortices, new currents

and magnetic fields are generated (here we assume the lids to be insulating unless explicitly

stated otherwise). Any deviation from Ω0 will result in generating an azimuthal component of

the magnetic field, bφ, its z-gradient enters the momentum equation (and in our 2D axisymmetric

formulation it is the only term which gives rise to the Lorentz force).

Vertical profiles of bφ in the middle, i.e. for r = D/2, are shown in Fig. 4.2 for two differ-

ent boundary conditions. If the endplates rotate rigidly with the outer cylinder, Ωend = Ωout,

the Ekman circulation at the bottom lid has a clockwise direction, if they rotate with the inner

cylinder, Ωend = Ωin, counter-clockwise: all the gradients have opposite sign. We conclude that,

not surprisingly, there exists a condition with Ωout < Ωendmin < Ωin for which the shears are

minimized and the generated magnetic field as well.

Figure 4.2: Vertical profiles for the induced bφ in the middle of the gap, r = D/2 for β = 0,Re = 100,Ha =

1 and insulating boundary conditions. (——) Ωend = Ωout, (– – –) Ωend = Ωin.

We are interested in obtaining a rotational profile for which the energy in bφ is minimized,

Eb =

∫∫

bφ(r, z)2drdz, (4.1)

where the integration is done over the total volume. As a measure of the deviation from Ω0

one could also consider, for example, the kinetic energy of the flow. However, since our aim is

to obtain good rotational profiles also for Ha of order 10 (and β = 0) this is not necessarily a

good approach: the axial field can inhibit the flow velocity while the rotational profile will still

be significantly different from Ω0.

Figure 4.3 shows how Eb depends on the rotation rates of the rigid endplates, Ωin < Ωend <

Ωout. We notice that a minimum of Eb occurs for Ωendmin ≈ 0.3(Ωin −Ωout) + Ωout which is even

three orders of magnitude smaller than for Ωend = Ωin.

When considering endplates divided into two rings we assume that the ring attached to the

inner cylinder has a width w1, the other one attached to the outer cylinder has w2 = D − w1.

Because it is not obvious which value for w1 should be chosen we search for the optimal w1,

i.e. for which Eb has a minimum, by performing simulations for several different values (Wendt,

1933, for example, used w1/D = 0.5), From Fig. 4.4 we see that the energy of the induced bφ
has a minimum for w1/D ≈ 0.4 which is roughly independent of the applied axial magnetic field.
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Figure 4.3: The magnetic energy Eb as a function of angular velocity of independently rotating endplates,

Ωend, for β = 0,Re = 100. (——) Ha = 1, (– – –) Ha = 10.

Figure 4.4: The magnetic energy Eb as a function of radius of the inner ring for β = 0,Re = 100.

(——) Ha = 1, (– – –) Ha = 10.

It has also been checked that the minimum holds for larger Reynolds numbers (for the Fig. 4.3

as well). Again we notice the improvement of Eb of two to three orders of magnitude when

compared to one end-ring attached either to the inner (w1 = D) or the outer (w1 = 0) cylinder.

The minimum value is very similar to that for independently rotating endplates.

A qualitative view of the resulting rotational profiles gives Fig. 4.5 which displays deviations

of Ω̄(r) – the angular velocity averaged in the z domain – from Ω0(r) for different rotational

properties of the endplates and for varied Re and magnetic field strength. The case with indepen-

dently rotating endplates refers to boundary conditions where the both lids rotate with angular

velocity Ωend corresponding to the minimum value of Eb. For comparison we also present the

case for two rings attached to the cylinders with equal width w1 = w2 = D/2.
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Figure 4.5: Deviations of the averaged Ω̄(r) from the basic state Ω0(r) for different vertical bound-

ary conditions; rigidly rotating endplates (both with Ωend): (——) Ωend = Ωout, (· · · · · · ) Ωend = Ωin,

(– – –) Ωend = Ωendmin; divided into two rings: (·–·–·–) w1 = 0.5, (· · · — · · · ) w1 = 0.4.

(a) Re = 1000, Ha = 0, (b) Re = 1000, Ha = 10.

We see that applying independently rotating or split endplates produce significantly more

suitable profiles – flatter and closer to 1. We also notice that using w1 = 0.4D gives somewhat

better results than w1 = 0.5D, especially for r > Rin + D/2 where the former profile is almost

flat.

More details about the flow for selected boundaries reveal Figs. 4.6 and 4.7, where the cross

sections in r, z plane are presented for different dynamical variables uφ, ψ, bφ. Fig. 4.6 shows the

situation without any magnetic field for the case when the plates rotate with Ωend = Ωout. We

notice that uφ significantly depends on z so that the rotational profile differs from Ω0, two large

Ekman vortices fill the whole container. If the plates are replaced by two rings, the flow looks

much better: uφ is almost independent of z in major part of the container, the Ekman circulation

is not so dominating.

If the axial magnetic field is applied (Fig. 4.7), the situation changes importantly. For the

endplates rotating rigidly Ωend = Ωout the rotational profile becomes even worst than for non-

magnetic case. Due to interaction of induced currents and the magnetic field vortices develop,

moreover the flow is not steady. The second case, with two rings attached to the cylinders, looks

much better: it is almost unchanged when compared to Ha = 0 (it is even a bit improved in the

sense discussed above, cf. Fig. 4.4). In this case the induced bφ is about five times smaller when

compared to Ωend = Ωout and especially it is small far from the boundaries.
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Figure 4.6: Contour lines of uφ, ψ for two different vertical boundary conditions. Left: both endplates

rotate rigidly with Ωend = Ωout. Right: endplates are divided into two rings attached to the cylinders. Ratio

of width of the inner ring to the gap width is 0.4. There is no magnetic field applied. Re = 1000, µ̂ =

0.27, β = 0.

Figure 4.7: Similar like in Fig. 4.6 but here the quite strong external axial magnetic field is applied,

Ha = 10. Notice significant difference in strength of the induced bφ for the both cases. The vertical

boundaries are insulating.
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4.4 Influence of the helical field

Figure 4.8 shows values of the velocity component uz similarly like Fig. 4.1 but for various

configurations for finite cylinders. The velocity field uz in the basic state, i.e. β = 0 for which

there is no instability, is uz = 0 everywhere when considering infinite or periodic cylinders for

Re ≈ 103,Ha ≈ 10. For the enclosed cylinder this is not the case. In Fig. 4.8a (left) we present

results for symmetrically, rigidly rotating (with Ωout), insulating endplates. We notice that uz

is quite large and, more importantly, time dependent (this is even more evident for uz closer

to the inner cylinder). The right panel in this figure displays the same flow with the toroidal

field applied, uz(z) is averaged in time and subtracted in order to filter out the background. We

clearly see the instability and structure of traveling vortices, the frequency of this motion agrees

with the predictions based on the linear analysis.

As we have shown above, one can obtain a much better basic state for the finite cylinders by

dividing endplates into two rings. The results for such conditions are presented in Fig. 4.8b. We

notice that the background state quickly becomes entirely steady. Naturally the Ekman pumping

mechanism is still present in this case, and traces of two Ekman vortices can be seen. The flow,

however, is laminar. For β = 6 the pattern of the traveling vortices is clearly more regular (cf.

Fig. 4.8b, right).

When one considers two endplates with different rotational properties, additional velocity

and current gradients in the vertical direction arise and disturb further the flow. It is clearly seen

in Fig. 4.8c that disturbances exist in the case where the upper endplate rotates with Ωtop = Ωout,

and the bottom one is fixed, Ωbot = 0. The background flow for β = 0 is highly irregular and time-

dependent, especially in the middle part of the cylinder. The circulation close to the endplates is

roughly steady. Nonetheless, the additional external Bφ produces, again, a clear periodic motion

with a frequency corresponding to that of the helical MRI.

Using conducting boundaries instead of insulating ones leads to an increase of the Ekman

circulation and the Hartmann current, the latter being drawn from the plates. This current is

significantly stronger than the current generated in the Ekman-Hartmann layer and therefore

we expect that an experiment with conducting plates would undergo additional problems due

to magnetic forces acting on the fluid. Let us consider a perfectly conducting endplates with

asymmetric rotation (again at the top Ωtop = Ωout and at the bottom Ωbot = 0), then there exists

an important gradient in the radial current which, acting in concert with the axial magnetic field,

is strong enough to ,,drag” vortices in the direction of decreasing field strength. This situation

is shown in Fig. 4.8d where we see a periodic vertical motion even if β = 0. Moreover, if we

introduce a toroidal field with appropriate sign (i.e. positive in this case) it will act against

the force due to the current gradient and can reduce the periodic vertical motions in the flow

(Fig. 4.8d, right panel). If Bφ would have a different sign both effects would interact resulting

in a highly irregular time-dependent behavior.

We notice that in the real PROMISE experiment the bottom endplate rotating with Ωout

(which, after taking into account the directions of rotation and the applied magnetic field, cor-

responds to the top endplate in our simulations) was made of copper, and the stationary top

endplate (bottom in the simulations) was made of plexiglass. Therefore an additional asymme-

try in the magnetic boundary conditions was present. Although copper is a good conductor it

should not be directly compared with perfectly conducting boundaries used in the simulations

since the latter represent stronger assumptions and induce stronger currents. However it is clear

that using insulating material on both ends would prevent additional currents from disturbing

the flow.
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Figure 4.8: The axial velocity uz(z, t) at r = Rin + 0.6D as a function of time t and z. Left: basic state

β = 0. Right: β = 6, the averaged uz(t) is subtracted in order to eliminate the background from the velocity

field, except in (d). (a): both endplates rotate rigidly with Ωend = Ωout. (b): both endplates are divided

into rings attached to the cylinders; the inner ring has the width 0.4D. (c), (d): the bottom endplate is

stationary Ωbot = 0, the upper one rotates with Ωtop = Ωout. (a), (b), (c): insulating endplates, Re = 1775

(Ωin = 0.377 Hz), Ha = 9.5. (d): perfectly conducting endplates, Re = 1000, Ha = 10. The traveling

wave frequency for (a), (b), (c) is respectively f/Ωin = 0.0294, 0.0253, 0.0292 whereas the linear stability

analysis yields f/Ωin = 0.0258.
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Figure 4.9: Snapshots of contour lines of stream functions for Re = 1775, β = 6,Ha = 9.5 and for the

plates divided into two rings, w1 = 0.4. The time between consecutive drawings is ∆t = 47s. It is evident

that the traveling wave is suppressed close to the boundaries, this can be also seen in Fig. 4.8b. For the

presented parameters λ = 2.5 so that we can expect to see two pairs of vortices in the middle of the

container between the regions dominated by influence of the endplates.

4.4.1 Critical values

Noting that the background state for sufficiently fast rotation and rigidly rotating endplates

Ωend = Ωout is not steady, it is interesting to investigate what happens when a spiral magnetic

field with strength below the critical value is applied. One could expect that a viscid process (like

the Ekman pumping) excites fluctuations which could then be amplified and, due to geometry of

the applied magnetic field, drifting.

Figure 4.10 shows that for endplates causing strong disturbations the traveling wave can

indeed be observed even for subcritical characteristic values. This is also somewhat in agreement

with the experiment – traces of moving vortices were observed for states which are stable in the

limit of infinite cylinders. We see that the amplitudes of the vertical component of the velocity

uz are almost unchanged when compared to the background state (Fig. 4.8a, left). Although

the pattern of the vortices is not very regular, there exists a clear frequency peak for the vertical

traveling wave. The frequency and the drift direction (which is reversed by a sign change of, for

example, β) corresponds to results of the linear analysis for infinite cylinders. This leads to the

conclusion that, although excitations do not grow due to helical MRI, still the same mechanism

is responsible for the drift.

If two rings are used and the basic state is steady the situation changes since the additional

excitations due to the endplates are minimized. Surprisingly, it is possible that even for super-

critical parameters the traveling wave, although excited for a moment, decays (see Fig. 4.11). It

is still possible to get sustained instability by increasing, for example, β (see Fig. 4.8b).

The reason for this damping is the height of the cylinders which does not match an integer

value of the vertical wavenumber k. For Re = 1775, β = 5, Ha = 9.5 the corresponding

wavelength is λ = 2πD/2.1728 and does not suit the assumed aspect ratio Γ = H/D = 10. If the

height was changed to Γ = 4λ = 11.57 the observed decay of the traveling wave was significantly

slower, so slow that after the sudden switching on of the external azimuthal magnetic field the
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Figure 4.10: Profiles of uz(z, t) for Re = 1775, Ha = 9.5, β = 2 and rigidly rotating ends with Ωend =

Ωout. The critical βc for the corresponding Re, Ha in the limit of infinite cylinders is βc = 2.56, and one

would expect that the traveling wave decays. This is not the case for the boundary conditions shown here

where a clear periodic motion is visible. Its frequency f/Ωin = 0.0124 agrees with the prediction of a linear

analysis for marginal stability in the limit of infinite cylinders giving f/Ωin = 0.0120. However, the latter

approach yields negative growth rate.

wave could be observed with the PROMISE facility still several hours later. Bearing in mind

that wavelengths for given Reynolds numbers are longer with decreasing beta (for β = 3, k =

1.45D−1, β = 1, k = 0.6D−1), the constant height of the cylinders (Γ = 10 in the experiment)

can be an issue when looking for critical numbers. It should be noted that due to the boundary

layers the effective region where the traveling wave can exists for configuration with two rings

is smaller than Γ by approximately 0.5D (distances up to about 0.25D from the endplates are

influenced by their presence).

Although the endplates clearly can serve as the source of viscous excitations and the axially

traveling wave develops also for subcritical parameters, we shall notice that there are no peri-

Figure 4.11: The velocity uz(z, t) for Re = 1775, Ha = 9.5, β = 5, Γ = 10 and endplates divided into two

rings with w1 = 0.4. Although in the limit of infinite cylinders the flow is unstable, we clearly see that the

disturbances (which developed after a sudden switch on of the magnetic field) decay. The frequency of the

decaying wave is f/Ωin = 0.0237 which again is in agreement with f from the result of the linear analysis,

f/Ωin = 0.0232.
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odic motions in the background state. In this sense the ,,imperfect” background state serves as

a catalyst for the helical MRI instability. When the endplates are divided into rings the resulting

hydrodynamic flow is laminar, and only after the magnetic field is applied the periodic fluctua-

tions occur, and, moreover, their frequency corresponds exactly to that predicted from the linear

analysis for infinite cylinders.

Liu et al. (2006a) suggested that the observed fluctuations can have theirs origin in the un-

derlying hydrodynamical unsteady flow as reported, for example, by Ji et al. (2004). In the latter

work the purely hydrodynamic flow for Re ≈ 1000 with rigidly rotating ends Ωend = Ωout and

short aspect ratio Γ = 1 was already unsteady. We confirm these results with the method used

here. However, if longer cylinders are used, like Γ = 10, the flow becomes steady for Re = 1000,

and only after imposing strong enough magnetic fields (say Ha = 12, β = 6) a traveling wave

develops with a frequency that matches calculations from the linear analysis.

4.4.2 Differentially rotating ends

We have also performed simulations for differentially rotating plates with ideal Couette profile

for periodic cylinders so that Ωend(r) = Ω0(r). In another recent work (Liu et al., 2007) it has

been shown that for parameters corresponding to Re = 1775, Ha ≈ 10, β ≈ 4 the traveling

wave decays for such boundary conditions. We confirm this result with our method, although

our treatment of the magnetic boundaries is simplified compared to theirs.

The explanation for this fact is again the inappropriate height of the cylinders which is far

from an integer value of the expected vertical wavelength. For these parameters λ = 3.476D

according to the linear theory so that less than three wavelengths can fit in the container. On

the other hand, if β = 6 is used, λ = 2.49D and then Γ = 10 almost exactly corresponds to

4λ. From Fig. 4.12 we see indeed that in this case persistent fluctuations exist with a frequency

corresponding to the helical MRI instability. We have also made calculations for β = 4 with

longer cylinders so that H = 4λ = 13.90D and H = 5λ = 17.38D. In each case a sustained

traveling wave has been observed. It should be mentioned that the vortices do not develop very

close to the upper boundary so that it is convenient to take a bit longer cylinders.

Figure 4.12: The velocity uz(z, t) for Re = 1775, Ha = 9.5, β = 6, Γ = 10 and endplates rotating

differentially so that Ωend = Ω0.
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Table 4.1: General features of some of the discussed flows. λ, if provided, refers to vertical wavelength ob-

tained from linear analysis. f corresponds to highest peak in frequency in spectrum of uz(Rin +D/2, H/2).

Re Ha β Γ λ[D] f/Ωin Vertical BCs Flow characteristics

1000 0 0 1 Ωend = Ωout Unsteady; flapping jet-like

structure in the middle

1000 0 0 10 Ωend = Ωout Steady meridional circulation

1775 9.5 6 ∞ 2.49 0.0258 periodic traveling wave

1775 9.5 0 10 Ωbot = 0,Ωtop = Ωout Unsteady, irregular flow

1775 9.5 6 10 0.0294 Ωbot = 0,Ωtop = Ωout traveling wave can be observed,

however flow is not very regular

1775 9.5 2 10 0.0120 Ωbot = 0,Ωtop = Ωout Subcritical excitations due

to viscous pumping

1775 9.5 0 10 Two rings, w1 = 0.4D Steady

1775 9.5 6 10 0.0253 Two rings, w1 = 0.4D Regular traveling wave

1775 9.5 5 10 0.0237 Two rings, w1 = 0.4D Decay of the traveling wave
due to Γ 6= nλ

1775 9.5 5 ∞ 2.89 0.0237 periodic Sustained traveling wave

1775 9.5 4 10 3.48 Diff. rot. Ωend = Ω0 Decay of the traveling wave
due to Γ 6= nλ

1775 9.5 6 10 0.0255 Diff. rot. Ωend = Ω0 Sustained traveling wave

4.5 Summary

It is easier to perform an experiment showing spiral MRI because much slower rotation of the

cylinders is required for the instability to set in compared with MRI with an axial magnetic field

only. Moreover, there exists an additional quantity, i.e., the drift frequency which is easy to

measure and can serve as an important indicator for the associated phenomena. It is claimed

that in the PROMISE experiment frequencies and amplitudes corresponding to the spiral MRI

were observed and the results agreed with theoretical calculations of both linear and nonlinear

2D simulations. However it is still possible to improve the experiment so that the basic state is a

completely steady flow.

In this chapter we have presented a relatively simple and inexpensive modification which is

suitable for such an improvement. Firstly, the endplates should be both made of insulating ma-

terial and both should rotate in the same way so that the system is symmetric in the z direction.

Secondly, it is convenient to divide the lids into two rings which can be attached to the cylinders

so that no separate driving is needed. The optimal width of the inner ring, in the sense of mini-

mizing the induced azimuthal magnetic field, is 1.6 cm for the current experimental setup. See

Table 4.1 for some general characteristics of the discussed flows.

Our calculations also show that helical MRI modes can be driven by endplate effects even

for subcritical characteristic values (see Fig. 4.10). On the other side when providing a steady

background flow by applying rings one has to pay more attention to the height of the cylinders

and to take into account the vertical wavelengths of the traveling wave which depend on the

magnetic configuration. For the current aspect ratio Γ = 10 and Re = 1775 it is reasonable to

consider Ha = 9.5, β = 6 which almost exactly corresponds to Γ = 4λ.



Chapter 5

The Ekman-Hartmann layer

5.1 Introduction

Bearing in mind that the aspect ratio considered in the previous chapters is Γ = H/D = 10 it may

seem a bit surprising that the vertical boundaries can so profoundly alter the flow. Vast part of

work in study of the Taylor-Couette system is done in a narrow gap limit, i.e., when D/Rout ≪ 1.

The experimental part of the seminal work by Taylor (1923) was performed for the narrow gap

and the aspect ratio exceeded 100 so that the role of ends enclosing the cylinders was completely

negligible (also the rotation was slow). On the other hand there is also plenty of work done for

small aspect ratio Γ ≈ 1, where the plates play crucial role and simply introduce a new class

of problems. When Γ becomes an important parameter it is possible to observe a wide family

of different states (including non-axisymmetric ones) for the same parameters and the observed

result depends on theirs path through the parameters space from an initial state. Therefore this

system is an excellent subject to the bifurcation theory (Pfister et al., 1988; Mullin et al., 2002;

Furukawa et al., 2002; Lopez and Marques, 2003; Kageyama et al., 2004). Peculiar asymmetric

patterns, anomalous modes, also exists (Youd and Barenghi, 2006).

The case for Γ = 10 is an intermediate one between very short and long containers, yet

in purely hydrodynamical contest the influence of the vertical boundaries is small. At least for

Reynolds numbers of our interest i.e., of order O(102 − 103) (see e.g. Watanabe and Furukawa,

1999; Youd and Barenghi, 2005). Naturally, if the rotation rates are large enough so that the

corresponding Reynolds number is of order O(105) and larger, the plates easily dominate the

flow in the entire container. This is due to Taylor-Proudman theorem from which follows that

a distance of influence of these boundaries scales as Re0.5 and for such rotations it is necessary

that Γ would have to be several thousand.

If, for the rotation rates characterized by Re ≈ 103, the vertical boundaries should not play

any important role why such problems as these depicted in the two previous chapters arise? The

answer lies in magnetic forces which develop as a result of strong shears close to the boundaries

in the presence of an external axial magnetic field. This can be seen when looking back to

Figs. 2.7 - 2.9. From Fig. 2.7 we notice that for slow rotation, Re=100, fixed outer cylinder,

µ̂ = 0.0 and a weak axial field, Ha = 3, for the insulating vertical boundaries the flow is very

regular and influence of the endplates is negligible: five pairs of nice Taylor vortices set in. This

is expected since for these parameters and Γ = 10 the vertical wavelength is k = 3.14 so that

λ = 2D. Moreover, the Taylor vortices nicely fit into the two Ekman vortices in this particular

case. When the imposed magnetic field is stronger (Fig. 2.8) or more rigorous magnetic boundary

conditions are applied (i.e., the plates are perfectly conducting, Fig. 2.9) the situation changes

entirely: currents induced inside the fluid interact with the axial magnetic field and alter the

flow.
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It seems that for MHD Taylor-Couette flow impact of the magnetic layer, unlike that of the

classical Ekman layer, has been underestimated. In this chapter we argue that rotating plates

together with the axial field and conducting fluid give rise to similar effects which develop for ro-

tating infinite plate which serves as a boundary for conducting fluid. One of the most important

features of such flow is the existence of an electric Hartmann current which leaves the boundary

layer and then, together with the axial filed, can alter the flow significantly. In particular this

becomes important for conducting plates. That was the case for the PROMISE experiment since

one of the endplates was made from copper. We note that this current is absent in the conven-

tional Hartmann problem: a flow of conducting fluid in a rectangular channel in a presence of

magnetic field perpendicular to the velocity (Roberts, 1967; Krasnov et al., 2003; Andreev et al.,

2006).

In this chapter we discuss properties of the Ekman-Hartmann layer for infinite, horizontally

unbounded, rotating plates and relate it to the endplates enclosing the cylinders in the Taylor-

Couette setup. We show that, for considered horizontal boundary conditions, the induced current

turn eventually in the radial direction and acting in concert with the imposed axial magnetic

field gives rise to a body force. Due to the force, the flow can be viewed as a modification of

the classical Taylor-Couette problem to which a transverse pressure gradient is added. Flows of

this type form a new class: Taylor-Dean flows. We analyze theirs stability and investigate how

the classical MHD Taylor-Couette flow is altered focusing on aspect ratio and radius ratio of that

corresponding to the PROMISE experiment (we consider only Γ = 10, η̂ = 0.5).

5.2 The Ekman-Hartmann layer

At an interface between an incompressible fluid with low viscosity and a rapidly rotating rigid

surface develops an Ekman layer with thickness dE ∝
√

ν/Ω where Ω is rate of uniform rotation

(see e.g Ekman, 1905, also Section 2.4.1). Similarly for a flow of conducting incompressible fluid

in vicinity of a rigid non-rotating boundary and under the influence of an external magnetic field

perpendicular to the surface there exists a Hartmann layer with thickness dH ∝ Ha−1 (see e.g.

Acheson and Hide, 1973; Krasnov et al., 2004). When these two effects are combined the so-

called Ekman-Hartmann layer develops. It can be viewed either as a modification of Ekman layer

by introducing the conducting fluid and imposing the external magnetic field or a modification

of the Hartmann layer by adding the uniform rotation of the bounding surface. The resulting

layer (in its steady form) assures a proper transition for the velocity and the magnetic field from

values inside the bulk of the fluid to the applied boundary conditions.

The linear analysis of the Ekman-Hartmann layer in its idealized case was presented by

Gilman and Benton (1968). They considered an infinite insulating plate rotating with Ωplate

at z = 0 and a conducting fluid filling the space z > 0, the fluid far from the plain rotates with

Ωfluid = Ωplate(1 + ǫ). The most important conclusion of this work was that in addition to the

well known Ekman suction/blowing of mass flux there also exists a Hartmann current which has

the same direction (or opposite when the external Bz is negative) as the velocity of the Ekman

blowing1. This current, which is due to the vertical shears, leaves the Ekman-Hartmann layer

and potentially influences the flow far away from the boundary.

Further extension of this work was performed by Loper (1970) who considered a conducting

boundary was considered, Benton and Chow (1972) where nonlinear extension of Gilman and

Benton (1968) study was presented and a solution for larger values of the parameter ǫ was

possible. Benton and Loper (1969) studied unsteady layer and a spin-up time of the fluid as

1That if fluid is blown away or sucked towards the boundaries depends only on sign of ǫ. From this point on we will
write only about ,,blowing” bearing in mind that ,,suction” is possible just by changing the sign.
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a result of rapid increase of the plate rotation, later Loper and Benton (1970) studied similar

problem but they have also taken into account the existence of a second plate within a finite

distance from the first one. Stability of the layer itself was analyzed by Gilman (1971).

In the next part we will show how those results are related to effects which arise in mag-

netized Taylor-Couette with finite aspect ratio, i.e., the cylinders are covered with rigidly rotat-

ing endplates (insulating or conducting) in which vicinity an Ekman-Hartmann layer develops.

Naturally, the influence of the vertical walls introduces additional, important effects and direct

comparison with the previous work is rather not possible. Nevertheless we will show that the

rotating endplates, also in this case, induce the Hartmann current which can change the global

properties of the flow.

5.2.1 Insulating boundaries

We now attempt to make a general, qualitative comparison between the Ekman-Hartmann layer

for infinite rotating plate and that induced by the endplates covering finite cylinders. First we

restrict ourselves to consideration when the both cylinders rotate with the same angular velocity

Ωin = Ωout, i.e., µ̂ = 1.0 so that the rotational profile Ω is flat. We assume Γ = 10, and the

endplates to rotate independently with velocity only slightly different Ωin = Ωend(1 + ǫ′). The

introduced ǫ′ conceptually plays similar role like ǫ used as the difference between fluid and the

infinite rotating plate angular velocity. In the case for Taylor-Couette flow Ω is a function of r

and even ,,far away” from the boundaries (i.e., at z = Γ/2, in the middle of the container) is not

constant in r. We also must take into account that the fluid which was ejected due to Ekman

blowing mechanism must eventually get back due to the conservation of mass and finiteness of

the container.

The characteristic thickness of the Ekman layer is (see e.g. Acheson and Hide, 1973, also

Section 3.3.1)

dE =
√

ν/Ω̄, (5.1)

where Ω̄ measures the scale of the uniform rotation velocity, as the length scale we use D. It is

clear that Ω̄ = Ωplate when we consider rotating, unbounded, infinite plate but it is not so clear

what to use for general Taylor-Couette flows when cylinders and lids can rotate independently.

For example Czarny et al. (2004) as the angular velocity scale use Ω̄ = Ωin−Ωout which however

is not suitable for our considerations (for example it would give Ω̄ = 0 for any configuration with

µ̂ = 1.0 independently of the endplate rotation). Through this work we use simply Ω̄ = Ωout

which turns out to be a quite good approximation,

dE =
√

ν/Ω̄ =

√

RinD

Reµ̂
= (Reµ̂)−0.5, (5.2)

bearing in mind that the proper thickness of the layer can be different depending especially on

the rotational properties of the endplates as well as on µ̂ (we consider only µ̂ > 0.25).

We now introduce a parameter α which measures overall importance of the magnetic field

α =
dE√
2dH

=

√

Ha2ν

2Ω̄D2
= (2Reµ̂)−0.5Ha, (5.3)

where dH = DHa−1 is the Hartmann depth. The parameter α is essentially the ratio of the

Ekman depth dE to the Hartmann depth dH. The magnetic effects start to play significant role
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Figure 5.1: Structure of the Ekman-Hartmann layer for nonlinear simulations of the enclosed Taylor-

Couette flow. The flow profiles for ur, uφ, uz, jz are shown, different values of the magnetic interaction

parameters correspond to: (——) Ha → 0.0 (α → 0.0), (· · · · · · ) Ha = 3.0 (α = 0.2), (– – –) Ha =

10.0 (α = 0.7), (·–·–·–) Ha = 30.0 (α = 2.1), dE = 0.01 is the Ekman layer thickness. The both cylinders

rotate with Ωin = Ωout = Re = 100, the endplates rotate with Ωend = 90 thus ǫ′ = 0.11. The current jz
for α = 0 is computed in Ha → 0 limit so that the flow is essentially non-magnetic.

when α & 1, in the limit α → 0 we have the classical Ekman layer and for α → ∞ the classical

Hartmann layer. We notice that for parameters of our interest α lies in range 0.3 – 1.5 and

therefore we expect the magnetic fields to be important.

Figure 5.1 shows the structure of the Ekman-Hartmann layer for different values of the mag-

netic interaction parameter for our nonlinear simulations of the MHD Taylor-Couette flow (for

Ωin = Ωout = 100, Ωend = 90). Different quantities as function of the distance z from the

boundary are depicted. The values of ur, uφ and jz are taken from the middle of the gap, at

r = Rin +D/2, whereas uz is taken close to the inner cylinder (where the suppression of uz by

the no-slip boundary conditions at the wall is still small and the blowing velocity is maximum),

therefore the comparison with rotating, horizontally unbounded, infinite plate is more adequate.

We notice that for the latter uz and jz are independent of r. The quantitative agreement with

the previous linear results by Gilman and Benton (1968) for the infinite plate is very good. Also

the dependence on strength of the magnetic field has essentially the same character.

The vertical shears in ur and uz produce currents which together with the axial field generate

forces acting against the shears. Since the radial flow must vanish at the boundaries as well as

it vanishes, for the basic state Ω0, far away from them, the effect is to reduce the ur and, due to

the mass conservation, uz. Therefore, what can be clearly seen in the Fig. 5.1, the external axial

magnetic field inhibits the Ekman blowing (which is completely suppressed when α → ∞) and

makes the boundary layer thinner. The azimuthal flow uφ, on the other hand, is forced to have
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Figure 5.2: Ekman blowing/suction (Eb/Es) and the corresponding Hartmann current for the Taylor-

Couette flow for different Ha numbers. The both cylinders were rotating with the same angular velocity

µ̂ = 1.0. On the left: Ωin = Ωout = 100 and the rotation of lids was varied 0 ≤ Ωend ≤ 100. On the

right” Ωend = 100 and the cylinder rotation was varied 0 ≤ Ωin = Ωout ≤ 100. Eb (,,b” for ,,blowing”), Es

(,,s” for ,,suction”) represents maximum/minimum velocity uz close to the inner cylinder ; Jb, Js reflects

axial electric current in the middle of the gap at approximately 5 times the distance between the plate

and maximum (minimum) of jz (i.e., at z ≈ 10dE). (——) Ha → 0 (α → 0), (· · · · · · ) Ha=3 (α = 0.2),

(– – –) Ha=10 (α = 0.7), (·–·–·–) Ha=30 (α = 2.1).

different values at the boundaries and far away from them, thus the shear can be decreased only

in the region close to the boundary.

We also notice that there exists an induced axial current jz, the Hartmann current, outside the

boundary layer (this is not the case for non-rotating Hartmann boundaries). For unbounded flow

this current quickly converges to an asymptotic constant value, but for the case of flow between

two plates or for finite cylinders it can not be true and currents induced by the both endplates

must eventually interact. When we consider a system symmetric in the z direction, i.e., if the

both plates rotate in the same manner, the induced jz have the same strength but opposite signs

and they eventually meet turning into the radial direction (and consequently jz = 0 in the middle

of the container for the symmetric boundary conditions).

We now turn to a situation when the angular velocity of the plates and the cylinders differs

significantly, i.e., ǫ′ ≫ 0. The Ekman blowing/suction and the corresponding Hartmann current

for the flow between cylinders with independently rotating lids, for wide range of Ωin,Ωend and

different values of α is shown in Fig. 5.2. The shape of the curves is in graphical agreement

with nonlinear computations for far-field values for rotating infinite plate, see Benton and Chow

(1972). However, we should not attempt to make any direct comparison between those results

since the quantities computed for the enclosed Taylor-Couette flow depend importantly on theirs
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position. It is interesting to note that the axial current is a non-monotonic function of α – in

particular the ,,blowing” current Jb increases up to Ha ≈ 10 and then is starts to decrease.

5.2.2 Magnetic diffusion region

Benton and Loper (1969, 1970) have studied a spin-up problem2 for the Ekman-Hartmann layer,

the former work concerns unsteady layer for one infinite rotating plate, the latter concerns fluid

bounded by two such plates. Three essentially different regions are distinguished in the flow:

the Ekman-Hartmann layer, a magnetic diffusion region (MDR) and a current-free region. The

MDR arises between the boundary layer and the region far away from them. Since both the axial

velocity and axial electric current leave the layer, the MDR exists to satisfy the exterior boundary

conditions for the current.

In the MDR the axial Hartmann current must be reduced to zero before it reaches the current-

free region and, by continuity, it is turned into radial direction. This radial perturbation current

interacts with axial magnetic field and results in accelerating (for negative jr and positive Bz) or

decelerating (for positive jr andBz) electromagnetic body force in the magnetic diffusion region.

For the spin-up problem this means that the spin-up time is not lengthened although Ekman

suction is reduced by the magnetic field. In the enclosed Taylor-Couette system the rigidly

rotating endplates can be viewed as planes which constantly increase (or decrease) velocity of

the fluid confined between the walls therefore we expect that similar three regions can be, in

principle, distinguished.

Figure 5.3: Schematic topology of velocity (——) and electric current (· · · — · · · ). On the left: the case

for an infinite plate is presented, after Loper and Benton (1970). On the right: the case for an enclosed

MHD Taylor-Couette flow. (\\) denotes the perfectly conducting boundaries, (//) the insulating ones. The

gray arrows on the left side correspond to additional terms due to conducting plates: 2α2Φ for the velocity

and 2Φ for the current. MDR – the magnetic diffusion region, EHL – the Ekman-Hartmann layer.

2The spin-up problem is defined as follows: consider a rotating plate (or two) and fluid at steady state, then the plate
angular velocity is suddenly changed. How do the dynamical variables characterizing the fluid change in time? What is
the spin-up time, i.e., after what time the flow at given distance becomes again steady?
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The thickness of the magnetic diffusion region depends on the magnetic properties of the

fluid, i.e., on its resistivity. In the two-plate spin-up problem for small magnetic Prandtl number

both MDRs quickly reach the thickness of order of the distance between the plates and the

current-free region disappears. In the small Prandtl number limit the MDR instantly becomes

spatially uniform and infinitely thick even for one bounding plate and the current-free region

does not exists at all. Therefore for our MHD Taylor-Couette system in Pm → 0 we expect that

the magnetic diffusion region will dominate majority of the flow, i.e., everywhere but in the

Ekman-Hartmann layer, see Fig. 5.3.

5.2.3 Conducting boundaries

Up to this point we considered only insulating plates. However, perfectly conducting boundaries

introduce additional currents altering the flow. The Ekman-Hartmann layer itself is not affected

by conductivity of the plates as are the Ekman blowing and Hartmann current within this layer.

However, additional current 2Φ is induced by the conducting boundaries and the radial Ekman

velocity inside MDR is larger by a factor of 2α2Φ (see Loper, 1970), where

Φ =
εσplate

σfluid

√

Ωplate

ν
= κ

√

Ωplate

ν
, (5.4)

ε is the thickness of a plate of constant conductivity σplate and the term εσplate/σfluid corresponds

to κ in our formulation of magnetic boundary conditions (see Section 2.4).

For highly conducting plates the induced Hartmann current drawn into/from the plates is

much stronger than the current induced in the layer for insulating boundaries. Figure 5.4 shows

how the radial current jr in the middle of the container changes with conductivity of the end-

plates. We see that the difference between the perfect insulator and the perfect conductor is

almost an order of magnitude.

Figure 5.4: Radial current jr (——) in the middle of the gap for Ha = 10, Re = 200, Ωend = 202.

The upper line represents pseudo-vacuum boundary conditions, the bottom line perfect conductor and in

between intermediate case for different values of relative conductance parameter κ.
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5.3 Stability of the MHD Taylor-Dean flow

The induced axial Hartmann current turns into the radial direction in the magnetic diffusion

region which fills almost the entire container and then interacts with the externally imposed axial

magnetic field Bz giving rise to a body force. Moreover the radial current is rather homogeneous

in z in the MDR. The force enters the momentum equation, Eq. (2.11), for uφ and, since the

current jr ∝ r−1, the flow can be related to a flow driven by azimuthal pressure gradient: Taylor-

Dean flow. Let us denote the induced radial electric current at the inner cylinder for z = H/2

as jr0 then the force is −êφjr0B0/(rρ), where B0 is the strength of the imposed magnetic field.

This is identical to a case when ∂φp 6= 0, i.e. the term êφ∂φp/(ρr), does not vanish.3

In this section we analyze the idealized Taylor-Dean flow between infinitely long, conducting

cylinders with an explicitly applied pressure gradient. We search for critical values of the gradient

for different strength of the applied magnetic field and different rotation rates. In this way we

obtain, for given Ha, necessary value of the radial current which must be induced in order to

make the flow unstable. Then, in Section 5.4, we show examples of enclosed MHD Taylor-

Couette flows for which indeed such currents are produced by the plates.

5.3.1 The MHD Taylor-Dean flow

Let us now consider infinitely long, conducting cylinders with externally imposed axial magnetic

field and non-zero transverse pressure gradient. Its basic stationary solution is a superposition of

circular Couette flow Ω0 and another steady flow (see Dean, 1928; Chandrasekhar, 1961), i.e.,

Ω0D
= a+

b

r2
+ e

(

c+
d

r2
+ ln(r)

)

, (5.5)

with

e =
1

ρν
K, (5.6)

c =
R2

in ln(Rin) −R2
out ln(Rout)

R2
out −R2

in

, (5.7)

d =
R2

inR
2
out ln(Rout/Rin)

R2
out −R2

in

, (5.8)

K = ∂φp, (5.9)

and a, b defined in Eq. (2.7). The constant pressure gradient K can be realized by the Lorentz

force in an MHD flow or any externally applied pressure, like by a hydrodynamical pump (in

which case, of course, it is impossible that ∂φp is constant for 0 ≤ φ < 2π since the pump must

be physically placed somewhere). Naturally when we assume axisymmetric flow all φ derivatives

are canceled, except that for the pressure p.

We notice that imposing the axial magnetic field and applying an electrostatic potential be-

tween the cylinders produces the Lorentz body force j ×B0 acting on the fluid, j being the sup-

plied radial current density. The value of this current is given by Ohm’s law j = σ(E + u × B0).

Only if currents originating from the term u × B0 are negligible the motion is decoupled from

the electromagnetic variables. In that case the flow can by treated as the Taylor-Dean flow and

its rotational profiles is precisely Eq. (5.5), for explicit derivation of value K for this case see e.g.

Hong and Wilhelm (1976); Digilov (2007).

3Recall that for the cylindrical geometry ∇p = êr∂rp + êφr−1∂φp + êz∂zp.
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If, on the other hand, the applied magnetic field is very strong, Ha ≫ 1, the induced currents

can not be neglected when compared to the imposed radial current and situation looks rather

different. The rotational profile becomes such that Ω ∝ r−2, the solution is not trivial, see

Khalzov and Smolyakov (2006).

Taylor-Dean flows, as extension to the classical Taylor-Couette problem, form a class of very

interesting flows for both hydrodynamical and magnetized liquids. When the two cylinders are at

rest the flow is entirely driven only by the pressure gradient (so that a = b = 0), an unstable state

in such flow is also characterized by Taylor vortices. Stability of the MHD Taylor-Dean flows has

been studied for example by Hong and Wilhelm (1976), also by Kurzweg and Khalfaoui (1981);

Tabeling and Chabrerie (1981) for thin gap approximation, Chen (1993) studied purely hydro-

dynamical flow for arbitrary gap width, Stefani and Gerbeth (2004) even suggested a transverse

pressure gradient driven MRI experiment (another electrically driven MRI experiment, for large

Ha, has been proposed by Khalzov et al., 2006).

Let us now introduce a parameter γ describing Taylor-Dean flows, the ratio of the average

pumping velocity to the rotating velocity4

γ =
6Vm

ΩinRin
, (5.10)

where Vm is the average pumping velocity

Vm =
1

D

∫ Rout

Rin

[

e

(

c+
d

r2
+ ln(r)

)]

dr

= −KRout

2ρν

(1 − η̂2)2 − 4η̂2(ln η̂)2

4(1 − η̂)(1 − η̂2)
. (5.11)

5.3.2 Linear stability analysis

We consider linear stability of the MHD Taylor-Dean flow governed by the classical MHD equa-

tions, Eqs. (1.9). The equations are for general non-axisymmetric case but in this section we

will focus only on axisymmetric solutions, i.e., m = 0.

The regarded MHD Taylor-Dean flow admits the basic solution uφ = rΩ0D
, Eq. (5.5) with

ur = uz = br = bφ = 0 and the imposed axial magnetic field B0. The perturbed state is

u′r, rΩ0D
+ u′φ, u

′
z, b

′
r, b

′
φ, B0 + bz. (5.12)

After developing disturbances into normal modes we seek solutions of the linearized MHD equa-

tions, Eqs. (1.9), in the form

u′r = ur(r)e
i(mφ+kz+ωt), u′φ = uφ(r)ei(mφ+kz+ωt) , u′z = uz(r)e

i(mφ+kz+ωt),

b′r = br(r)e
i(mφ+kz+ωt), b′φ = bφ(r)ei(mφ+kz+ωt), b′z = bz(r)e

i(mφ+kz+ωt).
(5.13)

Non-dimensional equations can be written as a system of ten differential equations (Rüdiger and

Shalybkov, 2004)

∂ru
′
r = −u

′
r

r
− i

mu′φ
r

− iku′z, (5.14a)

∂ru
′
φ = x2 −

u′φ
r
, (5.14b)

4Usually in work related to Taylor-Dean flows this parameter is denoted as ,,β” but here we do not want to confuse it
with the other ,,β”, used in previous chapters which measures the ratio of the azimuthal to the axial magnetic field.
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∂ru
′
z = x3, (5.14c)

∂rb
′
r = −b

′
r

r
− ib′φ

m

r
− ikb′z, (5.14d)

∂rb
′
φ = x4 −

b′φ
r
, (5.14e)

∂rb
′
z = ib′r

(

m2

kr2
+ k

)

− b′r
Pm

k
(ω +mReΩ0D

) + u′r − x4
m

kr
, (5.14f)

∂rx1 = u′r

(

m2

r2
+ k2

)

+ iu′r(ω +mReΩ0D
) +

+2i
m

r2
u′φ − 2ReΩ0D

u′φ − ikHa2b′r, (5.14g)

∂rx2 = u′φ

(

2m2

r2
+ k2 + iω + imReΩ0D

)

+ u′r

(

2aRe− 2i
m

r2

)

+

+u′zk
m

r
− b′φikHa2 − i

m

r
x1, (5.14h)

∂rx3 = u′0

(

m2

r2
+ 2k2 + iω + imReΩ0D

)

+ u′φ
km

r
+ u′zk

2 −

−ikHa2b′z −
x3

r
− ikx1, (5.14i)

∂rx4 = b′φ

(

m2

r2
+ k2 + iPmω + imReΩ0D

)

−

−b′r
(

2i
m

r2
+ 2PmRe

b

r2

)

− iku′φ, (5.14j)

with

x1 = ∂ru
′
r +

u′r
r

− p− Ha2b′z. (5.14k)

An appropriate set of ten boundary conditions is needed in order to solve the above system.

These are the no-slip boundary conditions for the velocity u′r = u′φ = u′z = 0 and perfectly

conducting for the magnetic field ∂rb
′
φ + b′φr

−1 = b′r = 0 at the both cylinders (for details on the

boundary conditions see Section 2.4). We will only consider marginally stable stationary modes.

The homogeneous set of Eqs. (5.14) together with the boundary conditions for the walls

determine an eigenvalue problem of the form L(µ̂, η̂, k,m,Pm,Re,Ha, γ) = 0. The variables are

approximated with finite difference method on a grid typically with 200 points.

5.3.3 Axisymmetric modes

For the current axisymmetric study we set parameters m = 0, η̂ = 0.5, µ̂ = 0.27,Pm = 10−6,

then for given Ha and Re we seek for minimal value of |γ| which gives rise to an instability (i.e.,

the value for which the determinant L is zero). Since γ is directly proportional to the transverse

pressure gradient and therefore to the radial electric current for constant Ha, the resulting critical

γc determines the minimum value of the current for which the flow becomes unstable.
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Figure 5.5: The marginal stability lines for MHD Taylor-Dean flow for infinitely long cylinders for different

Hartmann numbers, (· · · · · · ) Ha = 0, (——) Ha = 3, (– – –) Ha = 10. The case for positive (negative)

γ corresponds to negative (positive) radial currents. In the top (bottom) panel the flow is unstable above

(below) the lines. The points labeled with letters represent states displayed in Figs. 5.6–5.12. See the text

for the detailed explanation.
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Figure 5.6: Contour lines of the variables uφ, ωφ, ψ, br, jr of the nonlinear fully saturated state for MHD

Taylor-Dean flow between cylinders with periodic vertical boundaries. Parameters characterizing this flow

correspond to the letter ,,A” in Fig. 5.5, µ̂ = 0.27, Ha = 3, Re = 300 and γ = −0.4.

Figure 5.7: Similarly like Fig. 5.6 but here the flow corresponds to a state labeled with ,,B” in Fig. 5.5,

µ̂ = 0.27, Ha = 3, Re = 300 and γ = 0.71.
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Figure 5.5 shows marginal stability lines for the MHD Taylor-Dean flow for different values

of the imposed axial magnetic field5 for both positive and negative values of γ. The meaning of

the points labeled ,,A”-,,J” will be discussed later. We notice that larger value of |γ| is needed for

stronger axial magnetic field, the reason is that the stronger field stabilizes the flow (at lest for

small Pm). Although not shown, the computation indicate that the vertical wavenumber k for

the corresponding values of γ changes gradually from k ≈ 4 for Re = 100 to k ≈ 7 for Re = 1400.

The results from Fig. 5.5 can serve as yet another test for the nonlinear code described in the

Section 2.4, as well as a test for validity of the small Pm → 0 approximation. In the nonlinear

code we have added a term responsible for the transverse pressure gradient to the momentum

equation, Eq. (2.21a), so that it became

∂tuφ = (∇2 − r−2)uφ + [u × (rotu)]φ + Ha2∂zbφ − K

r
, (5.15)

and K is related to γ by Eqs. (5.10) and (5.11). To test the nonlinear code we apply periodic

vertical boundary conditions and for given parameters µ̂, η̂,Re,Ha we search for value of K for

which the growing rate becomes positive. The agreement between γc obtained in this way and

γc obtained with the linear analysis is pleasing: the difference is not larger than 0.1%.

It is interesting to see how the nonlinearly saturated flow for supercritical values of γ looks

like in more details. Figures 5.6, 5.7 display states of the flow just above the critical values of γ

corresponding to the points ,,A” and ,,B” in Fig. 5.5. Two cases with different signs of the ratio

average pumping/rotation γ are shown.

We notice significant difference for the both flows. Flow labeled ,,A” has the Taylor vortices

concentrated close to the inner cylinders, whereas in the flow ,,B” the vortices are found close to

the outer cylinder. The azimuthal velocity has significantly different profiles for the both cases.

Let us introduce a non-dimensional vorticity parameter ζ ≡ ωz/Ω

ζ =
1

rΩ
∂r(r

2Ω), (5.16)

which serves as a Rayleigh discriminant for stability. The flow is hydrodynamically stable for

ζ ≥ 0.6 We notice that for the cases ,,A”, ,,B” the criterion is locally violated (see Fig. 5.8).

5.4 The influence of the Hartmann current on the MHD Taylor-

Couette flow

We have shown in the Section 5.2 that rotating endplates which enclose any finite Taylor-Couette

system introduce similar magnetic effects as, well studied, flow of conducting fluid bounded by

an infinite rotating plate (or two such plates). The induced current is turned into radial direction

in the magnetic diffusion region which fills majority of the container. For small Pm → 0 limit it

always fills the whole container except boundaries, regardless of the aspect ratio (we stress that

we consider only perfectly conducting cylinders here).

In Section 5.3 we have presented a stability analysis of MHD Taylor-Dean flow for an idealized

case when the cylinders are infinitely long (or periodic). The azimuthal pressure gradient has

been applied explicitly by assuming ∂φp 6= 0, critical values of γc were calculated.

5Naturally we can also consider case when Ha = 0 in which the transverse pressure gradient K is set a priori and is
not interpreted as a result of the electromagnetic body force. The flow is then purely hydrodynamical and the φ-gradient
in the pressure is due to some pumping mechanism.

6Moreover, the flow is also magnetohydrodynamically stable for ζ ≥ 2. The interesting region is 0 < ζ < 2 where
MRI can operate and the flow can be unstable (see Ji et al., 2001).



62 5. The Ekman-Hartmann layer

Figure 5.8: Rayleigh discriminant for stability ζ for the MHD Taylor-Dean flow between periodic cylinders,

Re = 300, µ̂ = 0.27, Ha = 3. (——) ,,A”, γ = −0.4. (– – –) ,,B”, γ = 0.71. The Rayleigh line is ζ = 0, the

crossed region is centrifugally unstable.

Consequently, for finite cylinders when the induced current is strong enough, i.e., such that

resulting pumping due do the current and the applied axial magnetic field is comparable with

critical values γc, a possibility of instability should not be ignored. This concerns especially

case for conducting endplates for which the current which leaves the Ekman-Hartmann layer is

particularly large.

The structure of the Ekman-Hartmann layer changes itself with parameters such as the rota-

tion rates or the strength of the magnetic field. In this section, however, we will concentrate only

on flow in the bulk of the container so that only currents and velocities which leave the layer are

important.

5.4.1 Endplates rotating with Ωout

First we consider finite cylinders covered with rigid, perfectly conducting endplates rotating with

the angular velocity equal to that of the outer cylinder Ωend = Ωout. We choose conducting lids

so that the induced current is much stronger (see Section 5.2.3) and its influence on the flow is

more evident.

In order to position a specific MHD Taylor-Couette flow on the stability diagram from Fig. 5.5,

we run our nonlinear code until a steady solution is obtained. Then γ is computed using the fact

that the azimuthal gradient of pressure is K = Ha2jr0, as value for the radial current we use jr0

from bulk of the fluid (i.e., far from the boundaries, at z = Γ/2) and close to the inner cylinder.

jr changes with r as jr ∝ r−1 so that close to the inner cylinder |jr| is largest7.

When the plates rotate with Ωend = Ωout the Ekman circulation is clockwise and the corre-

sponding Hartmann current has positive sign, i.e., close to the inner cylinder it leaves the Ekman-

Hartmann layer with jz > 0, cf. Figs. 5.1, 5.3. Consequently the radial current has also positive

sign. Figure 5.9 displays a flow with conducting plates and a weak axial magnetic field applied,

Ha = 3. Rotation ratio is µ̂ = 0.27 so the flow is hydrodynamically stable, however we notice

7We can even say that |jr| is largest at the inner cylinder since the cylinder itself is assumed to be perfectly conducting –
the situation would look rather different if insulating cylinders would be considered, however in this work we concentrate
only on the conducting ones.
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that when the Reynolds number is large enough the flow characteristic changes significantly and

set of Taylor vortices can be observed.

The phenomena can be explained as follows: for constant Ha increasing rotation rate leads

to stronger Hartmann current drawn into the flow, therefore the corresponding absolute value of

γ increases and for certain Re it reaches the critical value γc and instability develops. Naturally

that kind of instability has nothing to do with MRI since Rayleigh criterion for stability is not

fulfilled.

This instability has essentially local character and it is not possible to define any specific

critical Reynolds number whose crossing would lead to some exponential grow in the whole

container. There exists Re between 100 (,,C”) and 200 (,,D”) for which only part of the container

would be filled with the Taylor vortices. However we notice that for small Reynolds number γc

is very steep (for both positive and negative values of γ) so that when it is crossed in this region

the transition between stable flow and flow totally dominated by the vortices is rather sharp.

It is known that stronger axial magnetic field has stabilizing effect even on a hydrodynami-

cally unstable flow. Besides that, the Hartmann current increases with strength of the magnetic

field only until certain point is reached. When the magnetic interaction parameter α reaches

value ≈ 2.5 increasing Ha does not further increase the Hartmann current (see Gilman and Ben-

ton, 1968). For these reasons it is clear that when the imposed magnetic field is strong enough

the instability described above will not occur. Indeed it has been checked that for Re = 200 and

the magnetic field with Ha = 20 there are no Taylor vortices, although the rotational profile is

significantly changed when compared to the non-magnetic situation. This change naturally fol-

lows from the jrêr × B0 term which accelerates or decelerates the fluid, nevertheless the strong

axial magnetic field suppresses instability in that case.

If the perfectly conducting ends are replaced with insulating ones the induced Hartmann

current is much weaker. It is so weak that when the imposed magnetic field has strength such

that Ha = 3, absolute value of γ is always smaller then γc regardless of Re. Therefore such flow

is never unstable in the sense described above.

However when the magnetic field is stronger the situation is different. For sufficiently high

rotation rates the induced radial current is large enough to generate, together with the field, γ

exceeding γc. This can be seen in Fig. 5.10. Naturally also for insulating ends when the applied

field is too strong the pumping due to the electromagnetic force is too weak to bring the flow

into the unstable regime.

5.4.2 Endplates rotating with Ωin

If rigidly conducting endplates are attached to the inner cylinder, Ωend = Ωin, the Ekman cir-

culation is counter-clockwise (Ekman suction) and the corresponding Hartmann current have

negative sign, the parameter γ is positive. From Fig. 5.11 we see that, analogously like in the

case depicted in Fig. 5.9, when the rotation is sufficiently fast the resulting γ reaches critical

value and the flow becomes dominated by the Taylor vortices (the points labeled ,,G” and ,,H”).

Similarly when the insulating plates are used the axial magnetic field with Ha = 3 is too weak

to generate sufficiently large γ. When stronger field is applied, Ha = 10, it is possible to cross γc

and the flow reaches unstable regime.
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Figure 5.9: Contour lines of the azimuthal velocity uφ and the stream function ψ. The cylinders are

enclosed with perfectly conducting plates rotating as a rigid body with angular velocity Ωend = Ωout.

µ̂ = 0.27,Ha = 3. Left: Re = 100, right: Re = 200. On the Fig. 5.5 the both flows are labeled with ,,C” (the

left one) and ,,D” (the right one). We see that for the flow ,,D” the corresponding γ is in the region where

the MHD Taylor-Dean for infinite cylinders is unstable.

Figure 5.10: Contour lines of ψ, uφ. The plates are insulating, rotating rigidly Ωend = Ωout, µ̂ = 0.27,Ha =

10. Left: Re = 650, ,,E”. Right: Re = 850, ,,F”. Compare with Fig. 5.5 and Fig. 5.9.
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Figure 5.11: Contour lines of ψ, uφ. The plates are perfectly conducting and rigidly rotating rigidly Ωend =

Ωin, µ̂ = 0.27,Ha = 3. Left: Re = 100 (,,G”), right: Re = 150 (,,H”). Compare with Fig. 5.5

Figure 5.12: Contour lines of ψ, uφ. The plates are insulating, rotating rigidly Ωend = Ωin, µ̂ = 0.27,Ha =

10. Left: Re = 700 (,,I”), right: Re = 1200 (,,J”). Compare with Fig. 5.5
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Figure 5.13: Rayleigh discriminant for stability ζ for the MHD Taylor-Couette flow with µ̂ = 0.27, Ha =

3. The cylinders are enclosed by perfectly conducting endplates. (——) ,,D”, Re = 200, Ωend = Ωout.

(– – –) ,,H”, Re = 150, Ωend = Ωin. The Rayleigh line is ζ = 0, the crossed region is centrifugally unstable.

We notice that in the both cases the vortices, as expected, concentrate near the outer cylinder,

i.e., in region where ζ < 0 and the Rayleigh criterion is not fulfilled, see Fig. 5.13. Again the

effect is clearly more striking when perfectly conducting plates are used, the radial current is

much stronger when compared to insulating vertical boundary conditions.

It is not to be forgotten that change of sign of the Hartmann current can also be realized by

changing the sign of the applied magnetic field. Obviously in that case the vortices would tend

to concentrate near the inner cylinder even if the plates rotate as Ωend = Ωin.

5.4.3 Dependence on the Hartmann number

It has been discussed that in the MDR the induced jr interacts with B0 and leads to acceleration

or deceleration of the fluid azimuthal motion. If Bz and jr is positive, as is if the plates are

attached to the outer cylinder, the flow should be decelerated. Dependence of the azimuthal

velocity uφ in the middle of the container (r = Rin + D/2, z = Γ/2) on strength of the applied

magnetic field is shown in Fig. 5.14. Values of the velocity are scaled to cm/s using scales

corresponding to the PROMISE setup.

The left panel of the figure refers to a case when the plates are perfectly conducting. Clearly

the magnetic field inhibits the angular velocity by almost 50%. If the plates are insulating, the

right panel of the figure, it is not the case: the change is noticeable, however much smaller.

The profile of angular velocity in the middle of the gap, for z = Γ/2, is shown in Fig. 5.15.

The change when compared to the Couette solution is dramatic even for relatively weak magnetic

field applied. For Ha = 10 the rotation is so much different that relating it to the Couette flow is

pointless. However, if the insulating plates are applied the situation is much better in the sense

that the profile of Ω is not so profoundly altered. Generally it resembles the Couette solution also

for Ha = 10, yet still the Rayleigh criterion for stability is locally violated.
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Figure 5.14: The azimuthal velocity uφ in the middle of the gap for different Hartmann numbers. Left:

perfectly conducting endplates. Right: insulating endplates. The Reynolds number is fixed to Re = 1775,

µ̂ = 0.27, the both plates rotate with the outer cylinder Ωend = Ωout. The velocity is scaled to units of cm/s.

Figure 5.15: The angular velocity Ω(r) [Hz] for z = Γ/2 for different Hartmann numbers. The plates are

perfectly conducting, Ωend = Ωout, Re = 1775, µ̂ = 0.27.

5.4.4 Estimation of γ for wide range of Re and Ha

Let us, very roughly, estimate the value of γ – the ratio of average pumping due to the Hart-

mann current to the rotation velocity, for larger Reynolds and Hartmann numbers. Gilman and

Benton (1968) have derived expressions for currents when difference between angular velocity

of rotating, insulating, infinite plate and angular velocity of the fluid far from the plate is small

(i.e., ǫ ≪ 1). Later Benton and Chow (1972) have derived analogous expressions for nonlinear

boundary layer and obtained formulae quadratic in ǫ, for example for the ,,blowing” Hartmann

current (in the zero Pm limit):

jz(∞)
B0

µ0η

√
νΩ1

= −ǫ 2β′

β′2 + β′−2
+ ǫ2

4(4β′4 − 5 − β′−4)

β′(β′2 + β′−2)8(9β′2 + β′−2)
, (5.17)

where β′ = [α2 + (α4 + 1)1/2]1/2 and α is defined by (5.3). If we take value of this current jz(∞)

and assume that it turns into radial direction jr0 = jz(∞) (as is for the case where there are two
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Figure 5.16: Contour lines of γ′ in (Re,Ha) space. γ′ is derived from values of the Hartmann current for

rotating plate for different Re and Ha.

plates and the fluid is confined between them), since K = jr0Ha2 from (5.10) we can obtain γ′

(we use prime to stress that this is computed for theory of infinite rotating plates, not for the

Taylor-Couette geometry).

Figure 5.16 shows how γ′ derived in such way depends on the rotation rates and the strength

of the applied axial magnetic field. We have chosen ǫ = 0.3 which roughly corresponds to our

situation for the MHD Taylor-Couette problem if the endplates are attached to the outer cylinder.

Naturally this is rather a crude approximation when related to the MHD Taylor-Couette prob-

lem since there are important differences between the idealized case of rotating infinite plates

and the flow enclosed between cylinders. One important contradiction can be immediately no-

ticed: for constant value of Ha, |γ′| slowly decreases with Re, whereas it was not the case for the

Taylor-Couette flow in which increasing rotation led to increasing of |γ| and ultimately the flow

become unstable.

Nevertheless one can get general picture of importance of the radial currents when the mag-

netic field is strong or the rotation much faster. For constant Re increasing the axial magnetic

field leads to a saturation in which Hartmann current virtually does not increase. This saturation

is achieved when α > 2.5 (for example for Re = 100 this means Ha > 20). However further

increasing of Ha lead to increasing of K = jrHa2 and therefore |γ′| (we shall not forget that the

critical |γc| also increases with Ha, in particular it is clear for small Re . 1000).

When the magnetic field is kept constant and rotation rates increased then |γ′| decreases.

This allows us to assume that for reasonable values of Ha ≈ 10 and fast rotation, all the effects

due to electromagnetic forces induced by the Ekman-Hartmann layer become less important in

the sense that |γ′| remains small. Of course this is expected since the rotation starts to play the

dominant role.

5.5 Summary

Gilman and Benton (1968) have shown, by use of the linear theory, that in vicinity of a rotating

plate which serves as a border for rotating conducing fluid there develops an Ekman-Hartmann

layer if Ωplate 6= Ωfluid and the axial magnetic field is applied. The most important feature
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of the Ekman-Hartmann layers is their ability to induce both mass flux and electric current in

the region outside the boundary layer. If Ωplate < Ωfluid these fluxes are directed outwards

the layer (,,blowing”); when Ωplate > Ωfluid towards the layer (,,suction”). Loper (1970) studied

conducting plates, it was shown that in that case the mass flux and the current are much stronger.

When the fluid is bounded by two such rotating plates, the induced current eventually turns

into radial direction. There exists a region, the magnetic diffusion region, in which all the electric

currents have only radial component. They, together with the axial magnetic field, produce

electromagnetic body force acting on the fluid.

In this chapter we have seen that similar effects arise for the MHD Taylor-Couette flow in

the case when the rotating cylinders are bounded by two rigid plates, rotating with angular

velocity of the outer or the inner cylinder. Near the endplates the Ekman-Hartmann layer forms

and consequently there exists the Hartmann current which penetrates bulk of the fluid. In the

presence of the axial magnetic field such problem can be compared with Taylor-Dean flow – a

flow between, possibly rotating, cylinders which is driven by a transverse pressure gradient.

It has been shown that under certain conditions the resulting flow becomes unstable and

Taylor vortices can be observed. In particular, this is undesirable phenomena from the point of

view of the MRI experiment PROMISE. In such MRI experiment it is necessary to obtain state

as close to the standard Couette solution Ω0 as possible in major part of the container. Also

when the axial field is turned on, therefore the instability develops only after switching on the

azimuthal component of the field.

The fluxes induced in the Ekman-Hartmann layer are a direct consequence of shearing close

to the boundaries. The layer arises since magnetohydrodynamical variables characterizing the

fluid far from the boundaries must match boundary conditions. Exemplary methods of reducing

the shearing have been presented in the previous chapter.





Chapter 6

Summary

Magnetorotational instability provides an important and efficient mechanism for transporting

angular momentum in wide class of astrophysical objects. In particular it is crucial for accretion

disks. The matter in such disks rotates as Ω ∝ r−3/2 and, by loosing the angular momentum,

falls onto a central compact body. There exist a viscous process which allows the angular mo-

mentum to be transported outwards. MRI, if angular velocity decreases outwards and there is

a weak magnetic field present, leads to developing of a small scale turbulence which serves as

the viscosity. The required conditions for MRI: rotation and magnetic fields are easily fulfilled

on astrophysical scales. Naturally, the rotating medium must be conducting which is true for hot

ionized plasma but not necessarily true for cold matter like, for example, protostellar disks.

Originally MRI has been discovered for a theoretical flow of ideally conducting liquid be-

tween two rotating cylinders in a presence of an axial magnetic field (Velikhov, 1959). Decades

later it was realized that the same mechanism can explain the puzzles of angular momentum

transport in the disks. Recently the subject became of particular interest for different groups of

MHD theoreticians and experimentalists: proving in a laboratory that MRI exists is a significant

challenge.

The simplest and most convenient experimental setup for MRI consists of two concentric

rotating cylinders with the gap between them filled with a liquid, the Taylor-Couette flow. Usually

a liquid metal like gallium or sodium is used. The ratio of the kinematic viscosity to the magnetic

diffusivity, i.e., the magnetic Prandtl number, of such liquids is very small, of order 10−6. Since,

for the classical MRI with axial magnetic field, the critical Reynolds number associated with the

rotation of cylinders scales as Pm−1 it is necessary that the rotation is very rapid. This leads

to problems of technical nature. Moreover, plates which enclose the cylinders from the top and

bottom drive a secondary flow which disturb the flow and make it difficult to excite, observe and

properly identify the MRI modes.

The external magnetic field can be easily modified by letting an electric current through a rod

placed on the axis of rotation of the cylinders. Therefore an additional azimuthal component of

the magnetic field is created and the field takes a helical form, Eq. (2.4). This modification makes

it much easier to excite MRI in the sense that much slower rotation is required. It is important

to note that the field is steady and current free therefore it does not change the rotational profile

(at least in the limit of infinitely long cylinders or for periodic ones). Consequently the instability

is driven by the rotation.

The flow with the new configuration of the applied magnetic field has a new property, the so-

lution takes a form of a traveling wave. For an idealized case of infinitely long cylinders it means

that the instability manifests itself as moving Taylor vortices in a direction determined by the

rotation and the magnetic field. A question was stated whether presence of the endplates would

profoundly change, or even destroy, that type of instability. Until now only linear stability results
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were known and the question, as well as matter concerning velocity amplitudes of saturated flow,

remained unanswered.

In Chapter 3 it has been shown, by use of our nonlinear axisymmetric code, that even if the

vertical boundary conditions resemble rotating or stationary endplates, the helical MRI can still

be observed (Szklarski and Rüdiger, 2006). The traveling wave, although distracted, could in

principle be identified. Amplitudes of all velocity components were presented, theirs values are of

order 0.1−1.0 mm/s and, for parameters of our interest, depend linearly on the Reynolds number.

It has also been demonstrated that torque at the cylinders is increased when the flow is unstable,

this indicates that the angular momentum is indeed transported outwards. Nevertheless, the

plates introduced clear secondary flow which is undesirable and an effort to reduce it should be

taken.

Reduction of effects driven by the endplates was discussed in Chapter 4. It has been showed

that, for parameters characterizing a stable flow in the limit of infinitely long cylinders, there

exists a peculiar instability induced be the plates in the presence of the axial magnetic field. This

becomes more evident if perfectly conducting vertical boundaries are applied. That, obviously

unwanted, phenomena is a clear result of electric currents induced in a boundary layer close

to the endplates. Simple and inexpensive ways of reducing impact of the lids were proposed.

It can be done either by allowing to rotate the endplates independently of the cylinders with

appropriate angular velocity or by dividing the plates into two rings which can be attached to the

both cylinders (Szklarski, 2007). It is crucial that the both plates are made from an insulating

material.

The question concerning subcritical excitations has also been addressed. It turns out that the

plates can serve as source of viscous perturbations which are then amplified and dragged by the

magnetic field resembling frequencies of the traveling wave even for subcritical characteristic

values. When the end-effects are reduced this is not an issue, however a special care must be

taken concerning vertical wavelengths of the MRI modes. If the cylinders are too short compared

with this wavelength it is possible that the instability will not develop.

The classical Ekman layer which arises near the plates enclosing a purely hydrodynamical

Taylor-Couette flow is well known. However, magnetic effects induced by the lids are not dis-

cussed in details in literature concerning the subject of MHD Taylor-Couette flow. Although the

Ekman-Hartmann layer, which develops for a motion of conducting fluid when rotation and a

perpendicular magnetic field are present, has already been studied in 60’s and 70’s. In Chapter 5

of this thesis we have shown how these results are related to the MHD Taylor-Couette flow at

finite aspect ratio.

The most important conclusion concerning the Ekman-Hartmann layer is its ability to induce

electric current which leave the layer and penetrated the flow. The current turns in radial direc-

tion and, acting in concert with the axial magnetic field, increases or decreases the azimuthal

fluid velocity. In our Taylor-Couette setup this can be viewed as a additional force representing

an azimuthal pressure gradient and it makes possible to relate the flow to a Taylor-Dean flow. If

the induced currents are strong enough, the rotational profile can be significantly changed and

instability can set it (Szklarski and Rüdiger, 2007). This, however, has nothing to do with MRI

since for that case the Rayleigh local criterion for centrifugal stability is not fulfilled. All these

effects can be significantly reduced by minimizing vertical shears with the methods described

earlier.

The existence of the helical MRI has been proved in the PROMISE experiment (Stefani et al.,

2006; Rüdiger et al., 2006; Stefani et al., 2007). The traveling wave has been observed, its

frequency and direction matching theoretical predictions. Also the agreement for velocity am-

plitudes was quite good, see Appendix A. However, the vertical boundaries introduced clear

problems and there is some space for improvement. In the first place the vertical boundaries
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were not symmetric, moreover one of the plates were made from copper which led to induction

of additional undesirable electric currents. Therefore, from the experimental point of view, a

new version of PROMISE would provide more clear and more evident results.

When it comes to the Ekman-Hartmann layer and its influence on the flow there is more work

which can be done. How the flow would behave for much faster rotation and much stronger

magnetic field? How insulating radial boundary conditions would change the presented results?

The helical MRI introduces the traveling wave, how the flow would behave for different height

of the cylinders and different strength of the azimuthal field? What about non-axisymmetric

modes? It is known that these modes in a Taylor-Dean flow can be fairly easy excited. Moreover,

there exists an instability only due to the toroidal magnetic field which operates only for non-

axisymmetric flows.

Theory of Taylor-Couette flow and its MHD version is an extremely reach and exciting field

of science. It is surprising that conceptually so simple system can provide so much interesting

questions still waiting to be answered.





Appendix A

The PROMISE Facility

The PROMISE experiment has been conducted by MHD group at Forschungszentrum Dresden-

Rossendorf. Here we briefly describe this facility, more details about the experiment and its

results can be found in Stefani et al. (2006); Rüdiger et al. (2006); Stefani et al. (2007).

The PROMISE setup consists of a cylindrical copper vessel placed on a precision turntable,

its outer wall has thickness of 15 mm and extends from 80 mm to 95 mm, serving as the outer

cylinder for the MHD Taylor-Couette flow. The inner cylinder is also made of copper and is

attached to an upper turntable, so that it is immersed into the fluid from above. Its thickness is

4 mm and extends in radius from 36 mm to 40 mm. The fluid confined between the cylinders can

be filled up to 410 mm and it corresponds to a Taylor-Couette flow with D = Rout−Rin = 40 mm

and H = 400 mm, Γ = 10 (see Fig. A.1).

The upper endplate, made of plexiglas and hence insulating, was attached to the frame and

therefore stationary, Ωtop = 0. The bottom endplate was part of the rotating copper vessel so it

was conducting and Ωbot = Ωout. This particular setup introduced asymmetry to the problem:

vertical boundary conditions were different for the velocity and the magnetic fields as well.

The fluid itself is an alloy of GaInSn which is liquid at room temperatures. The physical

properties are: the density ρ = 6.36 g cm−3, the kinematic viscosity ν = 3.40 × 10−3 cm2/s, the

electric conductivity σ = 3.27(Ωm)−1 so that the magnetic Prandtl number is Pm = 1.40× 10−6.

The axial magnetic field was created by a coil through which currents up 200 A were delivered,

Fig. A.2. The created field could be up to B0 = 20.35 mT which corresponds to Ha = 31.7. The

azimuthal component of helical field was due to flowing current through a central rod Jrod.

The flowing current was up to 8 kA and it was necessary to cool the rod, since undesirable

temperature gradients could interfere the flow. The relation between the current and β is

β =
Jrod

5B0Rin
(A.1)

where Jrod is in Ampère, B0 in Gauss and Rin in cm.

Naturally it was impossible to measure the velocity with standard optical techniques.1 Instead

two ultrasonic transducers, mounted at the top stationary endplate, were used. The sensors using

high frequency sound waves (4 MHz) were able to deliver information about the vertical com-

ponent of the velocity with resolution 1.84 s in time and 0.685 mm in z direction with accuracy

∼ 0.05 mm/s. Two of such devices were used in order to determine if the observed modes are

symmetric with m = 0 or nonsymmetric m = 1. It should be noted that m = 1 were observed for

certain range of parameters.

1Normally when the rotating fluid is transparent it is possible to eject into it ,,tracers” (for example tiny pieces of some
metal). Then by means of Doppler shift techniques it is possible to measure theirs velocity with a laser beam.
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Figure A.1: The PROMISE setup as for December 2005. Left: The both cylinders mad of copper with radii

Rin = 4 cm, Rout = 8 cm are presented. Electric motor driving the cylinder also can be seen. Right: Later

in the central hole a copper rod was placed through which an electric current of up to 8000 A could flow.

Since such large currents can heat the device it was necessary to cool the rod with water constantly flowing

around it. Photos by R. Arlt.

In Fig. A.3 comparison between experimental and numerical data is presented. The simula-

tion was performed with use of the code described in Section 2.4. Although in the computations

treatment of the magnetic boundary conditions was simplified, the agreement for the velocity

amplitudes and the traveling wave frequency is quite good. Fore more detailed comparison with

the experimental data the reader can refer to Stefani et al. (2007).

Acknowledgments The above information is given on basis of the cited articles. I thank to

Frank Stefani for providing me the experimental data and to Rainer Arlt for the photos.
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Figure A.2: The experiment at work, July 2006. The rotating cylinders were enclosed in the coil which

generated the axial magnetic field. Photo by R. Arlt.

Figure A.3: Comparison of the data collected from the experiment (left) and results of our nonlinear

simulations (right) for Re = 1480, µ̂ = 0.27,Ha = 9.5, β = 6.0. The boundary conditions for the velocity in

the simulation are the same like in the experiment, i.e., Ωbot = Ωout, Ωtop = 0. However, for the magnetic

field in the simulation both endplates are assumed to be insulating, whereas in the experiment the bottom

one is made of copper. In this figure z = 0 corresponds to the lower plate, we notice that the vortices travel

upwards. This is expected since in the experiment product B0 × β × Ωin has negative sign.





Appendix B

MHD parameters

The characteristic scales for our MHD Taylor-Couette flow are: for the magnetic field B it is

the strength of the applied axial magnetic field B0, for the length scale L it is the gap width

D = Rout −Rin. As the time scale we use hydrodynamic diffusion time L2/ν and as the velocity

scale U we have ν/L. Radii of the rotating cylinders are denoted by Rin, Rout, theirs height by

H , theirs angular velocity by Ωin,Ωout.

All the principal parameters used in the thesis can be summarized in the Table B.1.

Table B.1: MHD parameters

Symbol Description General definition MHD Taylor-Couette definition

ν Kinematic viscosity

η Magnetic diffusivity

ρ Fluid density

µ0 Magnetic permeability

σ Conductivity σ = 1/µ0η

Pm Magnetic Prandtl number ν/η

µ̂ Rotation ratio µ̂ = Ωout/Ωin

η̂ Radius ratio η̂ = Rin/Rout

Γ Aspect ratio Γ = H/D

Va Alfvén velocity B/√µ0ρ B0/
√
µ0ρ

Re Reynolds number UL/ν ΩinRinD/ν

Ha Hartmann Number VaL/
√
νη B0

√

RinD/µ0ρνη

Rm Magnetic Reynolds number UL/η ΩinRinD/η ≡ RePm

dE Ekman depth
√

ν/Ω
√

ν/Ω̄

dH Hartmann depth
√
νη/Va D/Ha

β Azimuthal/axial field B0 = êφB0βRinr
−1 + êzB0
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R. Rosner, G. Rüdiger, and A. Bonanno, editors. MHD Couette Flows: Experiments and Models,

2004.
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