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Preface

In thisHabilitationThesisI discussaselectionof my scientificpaperspublishedin the
years1996to 2002(in Astronomy& Astrophysics) exploring thetheoryof astrophysical
jet formation. Thespatialregion underconsiderationis the innermost– observationally
not resolved– region of thejet origin. As thejet phenomenonis anuniversalfeatureob-
servedin avarietyof astronomicalsources,adiscussionshouldconsiderall thesedifferent
astrophysicalobjects– youngstars,microquasarsandactivegalacticnuclei.

The puzzleof (magnetohydrodynamic)jet formationis rathercomplex andany the-
oreticalapproachto it requirescertainsimplifications. My paperson this topic canbe
dividedinto threecategories,' stationarymagnetohydrodynamicrelativistic jets,' time-dependentmagnetohydrodynamicsimulations,' observationallyrelatedtheory, parameterstudies.

Clearly, sucha distinctioncannotnot bea strict one. Stationarymodelsmayusedas
initial conditionfor thesimulations– andsometimesshow up in theendof thelong-term
time-dependentevolution. Parameterestimatesareessentialin thecaseof a modelsetup
which cannot(yet) be treatednumerically. As a link betweentheoryandobservations
this might helpus to definepropermodelconstraintsfor thenumericalcalculations,but
mayalsoprovetheoutcomeof thenumericalresults.In theend,thelong lastingquestion
of astrophysicaljet formationcan only be answeredfrom a combinedeffort in all the
differentapproaches.

Theresearchpresentedin thisthesishasbeencarriedoutatseveralscientificinstitutes,
namelytheLandessternwarteHeidelberg, LundObservatoryandtheAstrophysikalisches
Institut Potsdam. I acknowledgethe hospitality of all theseinstitutionsand the great
friendshipto someof my colleagues.I alsolike to thankall my collaboratorsfor their
helpandsupport– thosewhoappearasco-authorsandalsotheothersremainingprobably
invisible,but having contributedalsoa lot astechnicalandadministrativestaff.
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Formation of astr oph ysical jets

Abstract

Highly collimated,high velocity streamsof hot plasma– the jets– areobservedasa
generalphenomenonbeingfoundin avarietyof astrophysicalobjectsregardingtheirsize
andenergy output.Known asjet sourcesareprotostellarobjects(T Tauristars,embedded
IR sources),galactichigh energy sources(“microquasars”),and active galacticnuclei
(extragalacticradiosourcesandquasars).

Within thelast two decadesour knowledgeregardingtheprocessesinvolvedin astro-
physicaljet formationhascondensedin a kind of standard model. This is the scenario
of a magnetohydrodynamicallyacceleratedandcollimatedjet streamlaunchedfrom the
innermostpartof anaccretiondiskcloseto thecentralobject.

Traditionally, the problemof jet formation is divided in two categories. Oneis the
questionhow to collimateandacceleratean uncollimatedlow velocity disk wind into a
jet. Thesecondis thequestionhow to initiate thatoutflow from a disk, i.e. how to turn
accretionof matterinto anejectionasa diskwind. My own work is mainly relatedto the
first question,thecollimationandaccelerationprocess.

Due to thecomplexity of both, thephysicalprocessesbelieved to be responsiblefor
the jet launchingandalsothespatialconfigurationof thephysicalcomponentsof the jet
source,theenigmaof jet formationis not yet completelyunderstood.On thetheoretical
side,therehasbeenasubstantialadvancementduringthelastdecadefrom purelystation-
ary modelsto time-dependentsimulationsleadby the vastincreaseof computerpower.
Observers,on theotherhand,donotyethavetheinstrumentsathandin orderto spatially
resolveobserve thevery jet origin.

It canbe expectedthat also the next yearswill yield a substantialimprovementon
both tracksof astrophysicalresearch.Three-dimensionalmagnetohydrodynamicsimu-
lationswill improve our understandingregardingthe jet-disk interrelationandthe time-
dependentcharacterof jet formation,thegenerationof themagneticfield in thejet source,
andtheinteractionof thejet with theambientmedium.Anotherstepwill bethecombina-
tion of radiationtransfercomputationsandmagnetohydrodynamicsimulationsproviding
a direct link to theobservations.At thesametime,a new generationof telescopes(VLT,
NGST)in combinationwith new instrumentaltechniques(IR-interferometry)will leadto
a “quantumleap” in jet observation,asthe resolutionwill thenbe sufficient in orderto
zoominto theinnermostregionof jet formation.
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Chapter 1
Intr oduction

Astrophysicaljetsaredefinedashighly collimatedplasmastreamsof highvelocity. These
characteristicsare observationally detectedas elongatedimage of the outflow feature
togetherwith Doppler shiftedemissionlines or the proper motionof resolved jet sub-
structures1. Jetsareobserved asa commonphenomenonto be found amongin rather
differentastronomicalobjectsconcerningtheirsizeandenergy output– protostars,galac-
tic high energy sources,active galacticnuclei andprobablyalso in gammaray bursts.
Dependingon the jet source,the observed jet velocity rangesfrom several 100km/s to
apparentlysuperluminalspeed.

Yearsof observationsand theoreticalinvestigationshave leadto a kind of standard
modelfor jet formation.Besidestheconventionalcharacteristicsof collimationandhigh
velocity, thecrucialjet propertiescanbesummarizedasfollows.' Astrophysicaljetsemanatefrom accretiondisksources.' Astrophysicaljetsaremagnetized.' Astrophysicaljetsarehuge – with jet radii up to 1000timesthesizeof thecentral

object.

Thefactthatjetsareobservedin differentclassesof astrophysicalobjectsis animportant
constraintfor any jet formationmodel.Certainly, onecansupposethat thejet launching
mechanismis the samein all thesesources.Indeed,mostof the theoreticalmodelsso
far allow for a “scaling” of theparametersin orderto applythemodelto thedifferentjet
sources.Generallyspeaking,jetsoriginatefrom theinnermostpartof acomplex scenario
consistingof the centralbody (the “star”) and the surroundingaccretiondisk, coupled
by magneticfields. I like to point out thehypothesisthat jetscanonly be formedwhen
that star-disk-jet systemis highly axisymmetric. This might explain why other highly
magnetizedstarssurroundedby accretiondisksascataclysmicvariablesor someneutron
starsdo not have jets. Theessentialaspectsinvolvedin thejet formationmechanismcan
besummarizedasfollows.

1I suggestthatbothcharacteristicfeatures– collimationandvelocity – mustbeobservationally indicatedin order
to announcea certainobjectasa jet

1



2 Chapter1. Introduction

' A sufficiently strongmagnetic field is provided by the “star”-disk system(either
generatedby adynamoprocessor advectedby theaccretiondisk).' The“star”-disksystemalsodrivesanelectriccurrent.' Thematerialaccretedwithin thedisk is lifted from thedisk surface,couplesto the
magneticfield andbecomesejectedasawind.' Thedisk wind is initially acceleratedmagneto-centrifugally. acceleratedmagneti-
cally, i.e. by conversionof Poynting flux to kineticenergy.' Inertial forcesin thewind flow will “bend” thepoloidalmagneticfield (i.e. thefield
alongthemeridionalplaneincludingthejet axis)in toroidaldirection.' Theexistenceof a toroidalmagneticfield componentleadsto Lorentzforceswhich
furtheracceleratethewind andeventuallycollimatetheflow into thenarrow beam
of a jet.' Theplasmavelocitysubsequentlyexceedsthespeedof themagnetosonicwaves.In
the fastmagnetosonicregime the flow is causallydecoupledfrom outerboundary
conditions.' Wherethe jet meetsthe interstellarmedium(ISM), a shock develops,thermalizing
thejet energy. Also, theelectriccurrentis closedvia thebow shock,andthejet net
currentreturnsto thesourceof thecurrentvia theISM.

Although this scenariois acceptednowadaysasthe generalpictureof astrophysicaljet
formation, thereare still many openquestionswhich have not yet beenable to proof
theoreticallyaswell asobservationally.

Themaindifficulty concerninga theoreticalapproachis the fact that thepresenceof
magneticforcesdoesnot allow for a simpleone-dimensionaltreatmentof theequations
(ase.g. for the casewhenonly gravity andgaspressurewould be important). Further,
thecomplex geometryof thejet sourceconsistsof threeratherdifferentcomponents– the
(small)centralbody, thesurroundingaccretiondiskandthejet itself –all connectedby the
magneticfield. Thehugesizeof thejetscomparedto thecentralsourcedoesnotallow for
numericalsimulationsontheglobalscaletogetherwith, atthesametime,consideringalso
theinnerregionof jet formationwith therequirednumericalresolution.With astationary
approachsucha global treatmentbecomesfeasible.However, othertechnicaldifficulties
ariseandall stationarysolutionspublishedso far rely on far-reachingsimplificationsas
e.g. self-similarity, force-freenessor other. Obviously, they cannotexplain any time-
variablebehavior.

As it is the accretiondisk which is mostprobablythe ultimatesourceof the jet, it
would bedesirableto consideralsothedisk evolution for thetreatmentof jet formation.
However, sincethetime scalesandphysicalpropertiesin disk andjet aretoo different,a
combinednumericaltreatmentis not yet possibleto do.

In this thesisI will summarizewhatI believearethemostimportantstepstowardsthe
currentunderstandingof astrophysicaljets. In particular, I will only discussthe issueof
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jet formation– theaccelerationof matterandthecollimation of the massflow. It is, of
course,notpossibleto coverall topicswhichcomealongwith thesubjectof astrophysical
jets. Evenfor thespecificsubjectof jet formationitself, a wealthof literatureis waiting.
Thereareobservationalandtheoreticalpapersfor variousclassesof objectsandalsofor
certainspecificsourcesthemself. I will not discussthe issueof radiationmechanisms
in jets – shockmodels,forbiddenline emission,radiationtransport,synchrotronemis-
sion,Comptonscattering,etc. Theseprocessesareexpectedto be not importantfor the
jet dynamicsin region closeto thesource(althoughthereareprobablyimportantfor the
interpretationof theobserveddata).Nor will I discusstheproblemof jet stability which
is relatedto thealreadyevolved,“asymptotic”region of thejet, i.e. for thealreadycolli-
matedandacceleratedflow far away from its source.Thepresenceof anaccretiondisk
seemsto bethefundamentalingredientfor jet formation.However, thissubjectis aneven
moreextensive topic in the literatureandI will only discusssuchwork which is closely
relatedto thejet formation.Not muchis known abouttheinteractionbetweenthejet and
thedisk – the launchingmechanismof thetime-dependentjet ejection. It might well be
thatthefinal answerto thequestionof jet formationwill comefrom accretiondisk theory.
Thetopic of this thesis,however, is thestructureandevolution of theinitial, collimating
jet flow itself.
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Chapter 2
Jet histor y – the early years

2.1 M87 – the fir st jet sour ce detected

Thefirst hint everonanastrophysicaljet hasbeenreportedin 1918.Observingthegalaxy
M871 among“762NebulaeandClusters,photographedwith theCrossley reflector”, H.D.
Curtis(1918)recordedthata

“a curiousstraight ray lies in a gap in the nebulosity in p.a. 20deg, apparently
connectedwith thenucleusby a thin line of matter. Theray is brightestat its inner
end,which is 11( ( fromthenucleus....”.

Thisdiscoveryremainedsomewhatun-noticeduntil themid-1950swhenBaade& Minkowski
(1954a,b)identifiedM87 astheopticalcounterpartof astrongradiosource. In theirpa-
perthey mention“several strongcondensationsin theouterpart of thejet” (seeFig.2.1).
Takinginto accountalsothespectraobservedby Humason,BaadeandMinkowski deliv-
eredthecorrectinterpretationof thatjet feature:

1M87 = NGC 4486= Vir A

Figure2.1. Thejet of M87 in earlyphotographs(Baade& Minkowski 1954).left Thefull galaxyobserved
in the )*) 3600-5000band. The sizeof the saturatedregion is about +-,/. + . right The centerof the galaxy
observedin theUV ( )1032546454 ). Thesizeof thesaturatedregion is about 798-, , . Thejet extendsabout +-45, ,
from thecenterandhasa width of about +6, , ( :<;64 pc). Thescaleof this pictureis 3 timeslowercompared
to theleft picture.

5



6 Chapter2. Jethistory– theearlyyears

Figure2.2. Opticalpolarizationof theM87 jet. Two exposureswith maximumtransmissionof theelectric
vectorin +-4545= (left) and +->545= (right) clearly indicatingthepolarization.Threestrongcondensationsat the
endof thejet canbeidentified(Baade1956).

“Theinterpretationwhich suggestsitself is that thejet wasformedby ejectionfrom
thenucleusandthat the[O II] line is emittedby a part of thematerialwhich forms
thejet andis still verycloseto, if not still insidethenucleus.”

Basedonad-hocassumptionsaboutthejet inclinationandvelocity they estimatedperiod
of jet formationof about ?A@CB years.Although they give a correctinterpretationof their
data,at thesametime they admitthat

“no possibility exists at this time of forming any hypothesison the formation of
the jet, the physicalstateof its material, and the mechanismwhich connectsthe
existenceof thejet with theobservedradioemission.”

BaadeandMinkowski werealso the first who called this “uniquepeculiarity” a jet, a
termwhichhasbeenadoptedfor thiskind of phenomenoneversince.

Besidesthe interpretationof theM87 featureasa jet, theBaadeandMinkowski dis-
coveryof opticalcounterpartsof radiosourcescanalsobeconsideredasabig steptowards
whatis nowadaysknown asthe“unified model” for active galacticnuclei(Sanderset al.
1989). In fact, theidentificationmadeclearthatmostof theobserved“radio stars”were
actually radio galaxieswith radio luminosities ?A@ to ?A@CB timesgreaterthan that of the
Milk y Way (seeMoffet 1966).

Thenext importantobservationaldiscoverycamewith polarizationmeasurements.It
wasBaade(1956)who detectedoptical polarizationin the M87 jet resolvingthe inner
jet in threeseparatecondensationsdiffering partly in the polarizationangle(Fig.2.2).
The degreeof polarizationwasestimatedto about D�@FE . The interpretationof the po-
larizedemissionwassynchrotron radiation (correctly, aswe know today),assuggested
by observationsof theCrabNebula togetherwith a new theoreticalunderstandingof the
origin of theradioemissionassynchrotronradiationfrom energeticelectrons(Shklovskii
1953a,b). Presumably, Baade’s detectionof polarizationwas the very first hint on the
magneticcharacterof astrophysicaljets. Laterobservationsby Hiltner (1959)presenting



2.1. M87 – thefirst jet sourcedetected 7

Figure 2.3. Optical polarizationof the M87 jet. Map of optical polarizationvectorsobtainedby photo
electricobservations.TheM87 nucleusis locatedat thesmallopencircle in thelower left corner(Hiltner
1959).

detailedpolarizationvectormapsof theM87 jet (Fig.2.3)confirmedtheseresults.Hiltner
concludedthat“no significantpolarizationwasobservedin M87exceptin thejet”.

A first detailedtheoreticaltreatmentof theobservedsynchrotronradiationwasmade
by Burbidge(1956)basedon Baade’s observations. He estimateda total jet energy in
particlesand magneticfield of about ?A@CGIH erg for a field strengthof about ?J@�K�L G. To
explainsucha“ tremendousamountof energy” (Burbidge)involvedin thejet motionwas
not a simpletask. Burbidgearguedthat thepotentialenergy of a galacticmassis about?A@CGNM erg. Otherpreliminaryideasweresupernova outbursts(a numberof ?J@�H required),
collisionsbetweenglobularclustersor evenprocessesinvolving antimatter.

Themodelof Piddington(1964)discussedthepresenceof radiogalaxiesin theframe-
work of aunifiedgalaxyformationscenario.Thebasicideais thattheinclinationbetween
thegalaxyrotationaxisandthemagneticfield axisis thekey parameterfor theevolution
of thegalaxiesin differentclasses.Nowadays,suchamodelhypothesiscanberuledout.
On the otherhand,the sketchof the Piddingtonmodel looks remarkablysimilar to the
modernscenarioof jet formation(Blandford& Payne1982).

X-ray emissionfrom M87 jet wasdiscoveredby Byramet. al (1966)andBradtet al.
(1967). The latteralsoreporta non-detectionof X-ray emissionfrom 3C273,which is
now known asanotherfamousjet source.

Feltenand co-workers (Felten1968, Feltenet al. 1970) investigatedthe physical
propertiesin the M87 jet giving estimateson the jet densityand magneticfield. The
conclusionwasthat if theelectronsresponsiblefor theopticalemissionareproducedat
thenucleusandescapeout to theendof thejet, theambientplasmamustalsomovewith
aboutthe speedof light. However, local re-accelerationof electronsremainedpossible
but thenecessarytheorieswerelacking,asFermiaccelerationseemedto beunlikely. If
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Figure2.4. Theradiodoublesource3C405(CygnusA) observedby Mitton & Ryle (1969)at 2.696GHz.
The‘L’ shapesymbolindicatesthecompressionof thescalein declination,andmeasures7O45, , for botharms.

heatingby cosmicray protonsconfinedto theoptical knotsis consideredasalternative,
theseknots,which have a time scaleof about ?J@CG years,shouldcontaina large massofP DRQS?A@ HUT3V wnd a particledensityof about W�@�@YX[Z K�L to maintainthemselvesagainst
disruptionby thecosmicraypressure.A first analysisof thejet stabilityandconfinement
wasgivenby e.g.Okoye(1973).Theavailableobservationaldata,however, did notallow
for an uniquedesriptionof the M87 stability conditions. Thus, the optical knots may
beeitherstabilizedby their inertiaor by anexternalmedium,dependingon thephysical
parametersof thejet.

2.2 Radio galaxies and radio lobes

In that time the M87 jet was still a uniqueastrophysicalfeaturewith no other “jets”
observedandinvestigatedto thatextend.

A big steptowardsamoregeneralpictureof astrophysicaljetscamefrom observations
of radiogalaxies,beingroutinelyobservedsincethebeginningof the50ies. In general,
many of the observedsourcesshoweda typical doublelobe structurelike 3C452 (Ryle
et al. 1965b)or thebeautifulexampleof CygA (Fig.2.4,Mitton & Ryle 1969).Thefirst
detectionof radioemissionfrom a jet hasbeenreportedby Schmidt(1963)whoidentified

“a star of aboutthirteenthmagnitudeanda faint wispor jet ”
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nearthe positionof the radio source3C273 (Hazardet al. 1963). Hogg et al.(1969)
showed that a compactradio sourceat somedistancefrom 3C274 coincideswith the
brightestknot in theoptical jet of M87 indicatingthat theradioemissioncomesdirectly
from the optical feature. The first direct evidencefor a radio jet in a powerful double
radiosourcecameby theobservationof an“abbreviatedjet” in theradiogalaxy3C219
(Turland1975).

Along with the discovery of radio galaxiesand radio lobescamethe detectionof
apparentsuperluminalmotionin thesesources.Cohenetal. (1971)find thattheexpansion
rateof thebrightnessdistributionin 3C273and3C279is 2 and3 timesthespeedof light,
respectively. They calledsucha behavior a “super-light expansion”, actuallyconfirming
confirmedearliermeasurementsby Gubbayet al. (1969),Moffet et al. (1971),Knight et
al. (1971)andWhitney et al. (1971). Theseresultsfit alsofits into thepictureof a rapid
radio variability of 3C273 (Dent 1965)andthe subsequenttheoreticalinterpretationas
a relativistic (superluminal)expansion(Rees1966,1967). Anothersuperluminalsource
discoveredin theseyearsis 3C120with \^]*_a`cbedfD (Shaffer et al. 1972).

Finally, onemust at leastmentionthe very first ideastowardsthe modern“unified
model” for active galacticnuclei by Gold (1967)who speculatedthat the extragalactic
radiosourcesobservedsofar might bebasicallyof onetype,wherequasi-stellarobjects
(QSO)just representan“activephase“(Gold) in thelife of radiogalaxies.

2.3 A theoretical breakthr ough – the model of Blandf ord &
Rees

Motivatedby theobservationalfindingthatthepowerfulextragalacticdoubleradiosources
aremostprobablyfed continuouslyfrom thenuclearregion of hugegalaxies,Blandford
& Rees(1974)suggestedascenariowherethe

“energy is suppliedby a light fluid – composedof fast (possiblyrelativistic)parti-
cles,perhapspervadedbyelectromagneticfields– which is generatedin thenuclear
region andcollimatesinto twooppositelydirectedbeams..”.

This model– the so-called“twin-exhaust’model– describeshow (i) the streamof par-
ticles, which flows within a channelboredinto the interstellarmediumsurroundingthe
galacticnucleus,becomesacceleratedto supersonicspeedandcollimatedinto a narrow
beamby the actionof a de Laval nozzle,andhow (ii) the bulk energy of the beamis
convertedinto radiationwhenit hits theinterstellarmedium.

Thebasicideacanbesummarizedasfollows. In thecenterof thegalacticnucleusa
hotoutflow is initiated.Thisprocessis not furtherspecifiedandits detailsarenotof great
importancefor themodel.Theonly requirementis thatthecentralactiveregion is ableto
providethepower for at least ?A@CBgdh?J@�H yearsandis smallerthanabout10pc. Thestream
of particlesis embeddedin a cool gascloudwith decreasinggaspressure(with distance
from thecenter).Thestreamis in pressureequilibriumwith thesurroundinggasandcolli-
matedby theexternalpressure.Therefore,thecross-sectionof theinitially un-collimated
flow decreases.At thesametime theflow becomesaccelerated.At thesonicpoint, the
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locationwheretheflow velocityequalsthesoundspeed,ahydrodynamic“nozzle” forms2

(seeFig.2.5).After leaving thenozzle(i.e. afterpassingthesonicpoint) thestreamprop-
agatesin a ballistic mannerwith supersonicspeedandwith a radiuscomparableto the
minimumradiusof thenozzle,i[j9k . The“jet radius”is abouti�`�@^lnmpoqi[jrks`�@^lnmutwvyx-]Cv{zU|w}�~Ui5j9k
with thebulk flow Lorentzfactor o , andthegaspressurev of theambientcloudnormal-
izedto its valueat thenozzle.This is indicatingaweakopeningof theflow channeleven
if theexternalpressuremaydecreasedrastically.

Theheadof thebeamadvancesinto theintergalacticmediumanda shockwill occur.
At this “working surface” thekinetic energy of theflow is “randomized”,i.e. converted
into randomenergy with no tracesleft of the original energy distribution in the flow.
Theprocessesinvolvedcouldbemanifold. Adiabaticor radiative losseswill randomize
the flow energy giving rise to synchrotronemissionin radio wavelength. A “strong”
shockmayacceleraterelativistic particlesto ultra-relativistic velocities.Somestochastic
accelerationmechanism(e.g.Fermiacceleration)maychangetheenergy distributioninto
apower law.

For the observed radio luminosity of CygA, Blandford & Reesestimatedthat the
centralenginemust have maintaineda power output of ` ��Q�?J@ ~ G��[�r���6K | for about?A@ H years. Collimation would have beenoccurredif the gasaroundthe nucleushasa
temperatureof D�Qf?A@*� K, a centraldensityof D�@�@YX[Z K�L . Thecollimationdistancewould
be `$b�b*@ pcwith aminimumradiusof thenozzleof about10pc. Thebeamdiameterclose
to theworkingsurfaceis about1 - 3 kpc. TheestimatedLorentzfactorof theparticlesin
theCygA jetsis about3.

Sofar, the “twin-exhaust”modelis still up-to-date.Modificationswereaddedin or-
derto establishacompleteself-consistentscenarioof extragalacticjets. I justmentionthe
ideasto generatetheinitial jet flow asa leptonicplasmadrivenelectrodynamicallyby the
blackholerotation(Blandford& Znajek1977),or asa self-collimatingmagnetizeddisk
wind (Blandford& Payne1982,seebelow). Themodernunifiedmodelof activegalactic
nuclei explains the observationalappearanceof “dif ferent” kinds of active galacticnu-
clei (AGN) asincarnationsof just the sameintrinsic setupwhich mainly dependon the
viewing angleandtheageof theobject(seeBlandford1990).

2.4 A relativistic stellar jet – SS 433

Till the late70iestheonly jet sourcesknown so far weretheextragalacticjetsobserved
in radiogalaxiesor otheractivegalaxies,amongthemM87 and3C273.

Then,a new areastartedwhenMilgrom (1979)andMargonet al. (1979a,b)detected
time-dependentshifts of emissionlines in the emissionline starSS4333. The “bizarre
spectral features” of this“unusualobject” (Margonetal. 1979a)weresooninterpretedas

2Sucha scenariois similar to the physicsof jet enginesin an aircraft exceptthe fact that in that casethe sizeof
thenozzleis fixed,while in theBlandford&Reesexhaustmodeltheinterfacebetweenoutflow andambientmediumis
adjustedby thepressureequilibrium.

3SS � Stephenson-Sanduleak
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Figure 2.5.Themodelof Blandford& Rees(1974)– a “twin-exhaust”engine.

Dopplershiftedlines andrelatedto a physicalconfigurationconsistingof “ two regions,
symmetricallysituatedabouta central objectwith velocitiesequalin absolutevalueand
oppositein sign (Milgrom 1979). Threebroademissionline featuresseenin green,red
and infraredcolorsvary strongly in intensity, profile and frequency in an – apparently
– aperiodicmanner. In the beginning, thesepeculiarlines werenot immediatelyidenti-
fied and,at the very early stageof observation, thenatureof the objectwascompletely
unknown.

Later, Margon et al. (1979b)identified theselines with two setsof Dopplershifted
BalmerandHeI emission.Thederivedvelocitieswerefoundto varycyclically repeating
in both the blue shifted and the red shifted systemswith a period of 164 days. The
velocitiesreachmaximumvaluesof about ���C@s@�@�@ km/sand dqD��s@C@�@ km/s,respectively
(seealsoLiebertetal. 1979).

Fabian& Rees(1979)proposedadouble-jetscenariofor SS433.Themodelexplains
theorigin of theemissionlinesin coolknotsacceleratedin thejet andcounter-jet. Thejet
beamitself wasconsideredto besteadyin time or variablein velocity. Both possibilities
couldhavebeenverifiedwith betterspectra.Theauthorsfurthermentionthepointthatthe
derived velocitiesarehigh enoughto renderthe transverseDopplereffect significantly.
Martin & Rees(1979)furtherdevelopedthejet modelfor SS433. Thejet sourceshould
now be locatedin a binarysystem,giving rise to precessionof the jetswith a periodof
160 days. Although they proposeda centralblack hole as jet source(which is not the
case),theideaof precessionis thekey point to whatnowadaysis acceptedasthestandard
kinematicmodelof SS433.

Many other publicationsfollowed andalreadytwo yearsafter the discovery of the
“bizarrefeatures”,theSS433jetswereverywell investigated,now beingevenconsidered
“asa prototypeof astrophysicaljets” (Davidson& McCray1980). Indeed,the fact that
this sourceis muchcloserto theobserver comparedto extragalacticjetsandthat,dueto
the scaleddown sizeandenergy output, the time-scalesof the systemis muchshorter,
madeSS433 the favorite sourcein orderto investigatethe processof astrophysicaljet
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formation.For amoredetaileddiscussion,I referto thereview papersby Margon(1984)
andEikenberryet al. (2001).

SomeotherinterestingpointsconcerningSS433shouldbementioned.Thatis (i) the
fact that,aswe know today, the jets of SS433originatein anaccretiondisk, similar to
thejetsfrom AGN andprotostars,(ii) that,on theotherhand,SS433seemsto beunique
amongthe jet sourcesasit is part of a binary system,and(iii) it is yet the only known
jet sourcewherethecentralobjectis a neutronstar. All theseaspectsimposeimportant
constraintsfor thetheoryof jet formation.

2.5 Protostellar jets and Herbig-Har o objects

After SS433 hasbeenestablishedasa jet source,this uniqueexampleof a stellar jet,
togetherwith thenumerousclassof jets from thenucleiof active galaxiesremainedthe
only known sampleof astrophysicaljet sourcesfor a coupleof years. Jetswere then
known asrelativistic highenergy phenomena,mostprobablycausedby thepresenceof a
collapsedobjectandanaccretiondisk. A new point of view cameup with thediscovery
of jetsoriginatingin youngstellarobjects(YSOs)observedin ourGalaxy.

Thefirst examplesof protostellarjetshavebeendiscoveredby Mundt & Fried(1983)
whenobservingthe closeenvironmentof T Tauri starsin the forbiddenline emission.
They resolved an elongatedfeatureextending from the young star DGTau and other
T Tauri stars(seeFig.2.6). With otherobservationsfollowing this discovery, the num-
ber of jet sourcesdrasticallyincreased.Moreover, a new classof jet sourceshasbeen
establishedon acompletelydifferentenergy scale.

The essentialpoint recognizedespeciallyfrom stellar jet detectionsis the fact that
stellarjetsareobservedonly from accretiondisksources.If thejet sourceitself is visible
(which is not the casefro e.g. embeddedinfrared sources),it always shows also the
signatureof anaccretiondisk. In particular, jetsareobservedonly from classicalT Tauri
stars,not from theirdisk-lessbrothers,theweakline T Tauri stars.

Forbiddenline emission(eg. the lines [SII], [OII], [OIII] or [NII]) hasbeenknown
alreadyassignatureof stellarwinds. In particular, Appenzelleret al. (1983)appliedthis
techniqueto investigatethe geometryof winds in T Tauri stars. What they found were
only blue shiftedemissionline componentsandno red shiftedemission.This could be
explainedby thepresenceof anaccretiondiskaroundthesestars,absorbingtheredshifted
linesemittedby thewind “behind” thestar.

Substantialinsight in the protostellarjets camefrom observationsof Herbig Haro
(HH) objects.It wasfoundthatmany HerbigHaroobjectsareactuallypartsof jets.Some
of theHH objectsarealignedover someparsecstracingthe jet motion,othersrepresent
just theheadof the jet. The ideais thata HH objectmaybea signatureof shockedgas
resultingfrom interactionof a jet with its ambientmediumor from internalshockswithin
thejet. In bothcases,theshocksgiveriseto forbiddenemissionlines.Today, many of the
extendedjet sourcesarejust namedasHH objects– amongthemthe mostwell known
beingHH 30,HH 34,HH 212(seeFig.2.6).

The presenceof magneticsfield in youngstellarobjectsis indicatedonly indirectly.
EarlyZeemanmeasurementsgaveonly upperlimits for magneticfield strengthsin T Tauri
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stars(Brown & Landstreet1983,Johnstone& Penston1986,1987). On theotherhand,
thestrongX-ray luminosity(relatedto thecoronalmagneticfield) of T Tauristarstogether
with their relatively slow rotation(in comparisonwith themagneticfield via thedynamo
mechanism)impliesanenhancedmagneticactivity (Bouvier1990).In thesamedirection
goesthe detectionof flare activity in the radio bandof someyoungstarswhich canbe
fitted by a �A�������C�C��� G dipolarfield structurewith anradioemittingsizeof ��� stellar
radii (Andréet al. 1988,1991,Bieging& Cohen1989).

Also, the presenceof cold stellarspotson T Tauri starsandtheir derived large size
indicateaenhancedmagneticactivity (Bouvieretal. 1993).RecentZeemanobservations
(Güntheret al. 1999)supportthis scenarioof a magnetizedT Tauri star. Direct indica-
tion for a protostellarjet magneticfield comesfrom circularly polarizedradio emission
observedaselongatedstructureextendingfrom thejet sourceT TauriS (Rayetal. 1997).
Thederivedfield strengthof about1G is muchhigherthana dipolarstellarfield at this
distance( ���$����� ). However, thederivedfield strengthis alsomuchabove thetheoreti-
cally expectedvaluefor a jet magneticfield of about� G to mGfields.On theotherhand,
the observationsclearly show that large-scalemagneticfields with substantialstrength
mustbepresentaroundthatobject.

The observationalcharacteristicsof protostellarjets canbe summarizedasfollows.
Jetsfrom YSOstypically show a “knotty” structurewith knotsof emissionalignedalong
the jet axis. Theseknots are interpretedasshocks – internal shocksin the jet flow or
shocksarising from the interactionwith the ambientmedium. The emissionfrom the
knots is found predominantlyin forbiddenemissionlines or H � . Many jet knots are
spatiallyresolvedindicatinga jet diameterof about100AU. Many jetsshow perfectcol-
limation, evento a distanceof about2pc from thecentralsource.Typically, the jet flow
terminatesin a bow shock, often connectedto the Herbig-Haroobjects. In many cases,
only onejet canbeseenwhile thesignatureof a counterjet is missing.The jet velocity
derived from the Dopplershiftedemissionlines propermotion measurementsis about
300-500km/s. Protostellarjets areheavy enoughto drive massive molecularoutflows.
The region of jet formationin YSOsis magnetized.A direct indicationfor a protostel-
lar jet magneticfield is shown only for oneexampleso far. Protostellarjetsoriginatein
youngstellarobjectswhich alsohavea surroundingaccretiondisk. They areobservedin
classicalT Tauri starsandnot in weakline T Tauri stars.

If it is correctthat all astrophysicaljets aregeneratedby the sameprocess,thenthe
presenceof protostellarjetstellsusthatrelativity cannotbetheessentialingredientfor jet
formation(asmaybethoughtpreviously whenonly relativistic jet sourceswereknown).
Indeed,the presentjet formationtheoryassumesthe sameprincipal scenariofor all as-
trophysicaljet sourcesand the resultsof the numericalcalculationmay just be scaled
accordingto themassof thecentralobject.

Dueto theirproximity, protostellarjetsareanidealtargetto investigateinnermostpart
the jet formationregion. With the availability of optical andIR interferometricdevices
theresolutionrequiredto zoominto thejet formationregionwill becomefeasible.
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Figure 2.6. Thediscovery of protostellarjets. Above: Two T Tauri starsasjet sources.DGTauri with its
“micro jet” andDGTauB showing anextendedjet feature(Mundt & Fried1983).Middle andbelow: The
jet HH30,extendingperfectlycollimatedovermorethan2pc. Notetheslightbendingof thejet in theupper
picture.Thelowerpictureshows theinnerpartof thejet with higherresolution(Mundt et al. 1990).
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2.6 Micr oquasar s

I concludethis introductionto the “history” of astrophysicaljets with only briefly men-
tioning theclassof microquasars.Essentially, thesearesourcesof superluminalmotion
locatedwithin our Galaxy(Mirabel & Rodriguez1994,1999;Tingayet al. 1995). The
currentunderstandingis thatGalacticrelativistic jetsemanatefrom high energy sources
likehighmassX-ray binarieswith ablackholeasacentralobject.

As for theotherjet sources,thereexistsclearobservationalevidencefor theexistence
of anaccretiondisk. Sofar, theobservedsuperluminalradioblobsindicatethatamagnetic
field is alsopresent.

Thus, the astrophysicalscenariois similar to other jets, in particularto the (semi-
)relativistic caseof SS433. Consequently, SS433,oncerepresentingtheuniqueclassof
a stellarjet, is now consideredto be a small-scaleversionof a microquasar. As typical
jet velocity oneobserves0.9c - 0.95c (Mirabel & Rodriguez1999). A recentmeasure-
ment of the centralmassin GRS1915+105gives �J����� solar masses(Greineret al.
2001). Interestingly, if oneassumessymmetrybetweenjet andcounterjet, the derived
Dopplerboostingenablesusto determinethedistanceto thesource.For theexampleof
GRS1915+105Mirabel& Rodriguez(1994)obtainadistanceof about12kpc.

Microquasarsare of particularimportanceas they are supposedto undergo similar
physicalprocessesasquasars(AGN),but,dueto thelowercentralmass,onamuchshorter
time scale.This providesa greatadvantageconcerningtheobservationalaccessto these
processes.
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Chapter 3

The model of magneticall y driven
jets

Observationsof astrophysicaljet sourceshaveestablishedthegeneralideathattheforma-
tion of jets is connectedto thepresenceof anaccretiondisk andstrongmagneticfields.
This holdsfor variousscalesof energy output,jet velocity andspatialscaleof the jet –
jets areejectedfrom AGN, Galactichigh energy sources,andprotostars(seeZensuset
al. 1995;Mirabel & Rodriguez1995;Mundt et al. 1990;Rayet al. 1996). Astrophysi-
cal jetsarebelievedto originatevery closeto thecentralobjectin the interactionregion
with the accretiondisk. Besideobservationalargumentsalsotheoreticalconsiderations
have shown thatmagneticfieldsmustplay animportantrole in jet formationandpropa-
gation(Blandford& Payne1982;Pudritz& Norman1983,1986;Shibata& Uchida1985;
Sakurai1985;Camenzind1986,1987;Lovelaceet al. 1991).

In caseof extragalacticjets thepresenceof magneticfields is ratherobvious. Polar-
izedsynchrotronemissionat radiowavelengths(in radiogalaxies)but alsoin theoptical
band(seetheexampleof M87) give directevidencefor magneticfields. Many observa-
tions dealwith the asymptoticjet, the alreadyacceleratedandcollimatedplasmabeam
on kpc-scaleandits interactionwith the ambientinterstellar(or intergalactic)medium.
Yet, the region of the very jet origin can hardly be resolved observationally, although
radio interferometrymay resolve the masscaleequivalent to somepc (CygA, Krich-
baumet al. 1998) dependingon the distanceof the source. An exceptionalcaseis
(again...)M 87 wheretheresolutionachievedis fractionsof mascorrespondingto about
30Schwarzschildradii of a �����A�C -¡3¢ centralblackhole(Junoretal. 1999).Anotherin-
teresting(andagainexceptional)exampleis theaccretiondisk in NGC4258whereVLBI
watermaserobservationsfind (i) direct evidencefor a cool andthin Kepleriandisk be-
tween0.13and0.26pc (Miyoshi et al. 1995)and(ii) alsoa disk magneticfield strength
in the toroidalcomponentof lessthen300mG (Herrnsteinet al. 1998). Besidesthis in-
formation,any furthercluesaboutmagneticfield structureandfield strengthin this area
is in generalprovidedby theoreticalestimatesandmodels.

Indication for a magneticcharacterof stellar jets is ratherindirect. The “standard
model”of protostellarjet formationis thescenarioof acentralprotostarcarryingadipolar
magneticfield of kG strengthsurroundedby an accretiondisk launchingthe jet. How-
ever, asa fact, theobservationalproof for sucha field distribution is not very strongand
convincing argumentsarerisenagainstsucha scenario(Safier1998,1999). Theoretical
investigationsbasedon this standardmodelfor youngstellarobjectshasbeenperformed
by Camenzind(1990)andco-workers(Fendtet al. 1995,Paatz& Camenzind1996)and

17
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Figure3.1. Model of amagnetohydrodynamicjet. Thejet is launchedfrom theaccretiondisksurrounding
acentralobject– whichcanbeayoungstarfor protostellarjets,astellarmassor asupermassiveblackhole
for relativistic jetsin theGalaxyor AGN, respectively. Thejet flow consistsof axisymmetricmagneticflux
surfacesdefinedby layersof helicalmagneticfield lines.Thematterflowsalongthesesurfaces.Theinitial
disk wind is launchedfrom by magnetohydrodynamic effectsandthenacceleratedmagneto-centrifugally
in almostradial direction. Magnetictensionof the toroidal magneticfield componentwhich is induced
by inertial forcesof thematterleadsto a collimationof thestream.TheLorentzforcemayacceleratethe
matterevenfurther.

Shuandco-workers(1994,1995).
However, despitetheuncertaintieswith thestructureof thecentralregionin protostars

andAGN it canbeshown thatneitherradiative nor thermalforcesareableto power the
jets. So far, only magneticforcesremainasa driver for astrophysicaljets, a scenario
which is comparableto the well understoodsolarwind. Theoreticalinvestigationshave
also shown that strongmagneticfields may easily acceleratethe matter to relativistic
velocities(Michel 1969,Fendt& Camenzind1996),with theflow magnetizationasthe
chiefparameterdeterminingthejet velocity.

Therefore,the main task for the theoreticalmodelingis “just” to solve the magne-
tohydrodynamic(MHD) equationswith appropriateastrophysicalboundaryconditions–
i.e. for a modelscenarioof the threecomponentscentralobject,accretiondisk andjet,
interactingwith eachotherandbeingconnectedby a magneticfield. Traditionally, the
approachto theproblemof jet formationandpropagationis disentangledin thefollowing
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sub-problemswhereeachof thesesubjectsaretreatedseparately.· The questionhow to collimate andacceleratean uncollimatedlow velocity disk
wind into a jet (which is thetopicof this thesis).· Thequestionhow to launchthatoutflow from a disk, i.e. how to turn accretion of
matterejection into thediskwind.· Thequestionhow to generatethemagneticfield responsiblefor jet formation. Is
it that magneticfield a disk field or the field of the centralobject? Is it dynamo-
generatedwithin thediskor advectedfrom theambientmedium?· Thequestionof stability of theasymptoticjet andradiation processes.

It seemsto be obvious that theseprocesses,which play their role at differentspatiallo-
cationsin thejet system,areinterrelatedandnot independent.However, dueto thecom-
plexity of both thegoverningmagnetohydrodynamicequationsandthe geometryof the
jet source,a generalsolutiontaking into accountsuchan interactionis not yet feasible.
Themainreasonfor theseparateapproachis just thenecessityof simplification(coming
alongwith a furthersimplifiedtreatmentof thesingleproblems...).

As discussedabove,thecurrentunderstandingof astrophysicaljetsis thatof astream
of plasmawhich is acceleratedandcollimatedby magneticforcesandwhich is launched
within the innermostregion arounda central object surroundedby an accretiondisk
(Fig.3.1). The generalbelieve is that the basicmechanismof jet formationis the same
in all jet sources,i.e. it is thesamefor relativistic andnon-relativistic jets. Theseideas–
whichI will call thestandardmodelof jet formation– resultfrom decadesof observations
andtheoreticalinvestigations.

BeforeI summarizetherelevantequationsandthepresentstatusof the jet formation
theoryin thenext chapters,I will now discusstheprincipal featuresof magneticjet for-
mationwith elementaryexamples.While themathematicalandnumericalformalismof
MHD is quitecomplex, and,yet, impossibleto solve in general,thebasicprocessescan
be explainedsimply. For example,somecharacteristicpropertiesof MHD jets canbe
derivedjust by manipulatingtheexpressionfor theLorentzforce ¸¹»º .
3.1 Ideal MHD and magnetic flux surfaces

Theveryfirst point to stressis thefactthatwearedealingwith aMHD model. Thatmeans
thatthematteris treatedasasinglefluid (or gas)with averagedpropertiesof theparticles
species(e.g. ionsandelectrons)1. As for a two-componentplasma,alsotheMHD fluid
is neutral with the Coulombforcescancelingon small scale.Thus,in MHD we do not
dealwith thebehavior of singleparticles,but treattheinteractionof ionized,neutral“gas
clouds”with themagneticfield.

1For example,themassvelocity is themeanvalueof theion velocity timestheion particledensityandtheelectron
velocity timesthe ion particledensity, andsimilar for themassdensity, forces,electriccurrentsetc. Certainapproxi-
mationscanbemadefor theaveragingproceduresuchastheelectronmassis muchlessthentheion mass
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Figure3.2. Themodelof idealMHD. For a infinite conductivity, themagneticfield is “frozen-in” into the
plasma.Motion of thefluid will advectthemagneticfield andviceversa.

The classicalway to understandhow jet formationworks, is to studythe stationary
axisymmetricideal MHD equationsin cylindrical coordinates( ÄÆÅUÇyÅ-È ). In this case,a
de-compositionof vectorfields in poloidal andtoroidal componentssimply givesto the
field componentsin the meridional( ÄÆÅUÈ ) plane(subscriptp) anda “ring” component
(subscriptÇ ) in Ç -direction.With that,thetotalmagneticfield ¸�ÊÉ ¸�ÌËgÍ ¸�qÎ hasahelical
structurewith a pitchangleof thefield definedby theratio �qÎCÏC�ÌË . Thehelicalmagnetic
field linesfollow (anddefine)magneticfluxsurfacesÐ , axisymmetricsurfacesof constant
magneticflux, ÐÒÑwÄÆÅ-È�ÓYÔ ��ÖÕØ× ¸�ÌÙÒÚAÛ�¸Ü Å (3.1)

where Û ¸Ü is theareaelementof a circularareaperpendicularto thesymmetryaxis. The
idealMHD assumption,i.e. the assumptionof a very high plasmaconductivity implies
theconceptof frozen-inmagneticfield lines.Thefield linesareconsideredto be“locked”
into the plasmafluid andthe advectionof matterwill automaticallytransportmagnetic
flux (Fig3.2). If we would allow for a resistivity or for a certainamountof non-ionized
materialin thefluid, diffusive effectswill play a role (magneticdiffusivity or ambipolar
diffusion)leadingto adrift motionbetweenfield andmatter.

Undertheassumptionsprescribedaboveit followsthatthepoloidalplasmavelocity is
alwaysparallel(or anti-parallel)to thepoloidalmagneticfield, ¸Ý5Þàß/ß ¸� Þ . However, thetotal
velocityvector ¸Ý is notparallelto thetotalmagneticfield vector– theplasmamovesalong
thefieldbut notparallel to thefield. This is possibledueto thepresenceof atoroidalfield
componentallowing theplasmato slidealongthefield in toroidaldirection,

¸Ý É�á Ñ�Ð�Óâ ¸�ãÍäÄæåèçéÑ�Ð�Ó ¸ê ÎFÅ (3.2)

where á is themassflow ratealongtheflux surfaces,â the(restframe)massdensityandåèç theiso-rotationparameter(Ferraro1937).For illustrativepurposes,thelatterquantity
canbe interpretedasthe“angularvelocity of themagneticfield lines”. For a stationary
flow onecanshow that á É á ÑwÐ�Ó and åèçRÉÊåèçéÑwÐ�Ó areconservedalongthefield line or
flux surface.Thesameis valid for thetotal specificenergy ëRÑwÐ�Ó andangularmomentumì Ñ�Ð�Ó .
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Figure 3.3. TheLorentzforcecomponentsprojectedwith respectto themagneticflux surfacesùèú/ûýüNþyÿ .
Theparallelcomponent ����������
	 ��
��� ���� is theaccelerating(ordecelerating)component.Theperpendicular
component �� ��� � 	 �� ��� � �� is thecollimating(or de-collimating)component.

3.2 The Lorentz force

The magnetic characterof astrophysicaljets is taken into accountby consideringthe
Lorentz force ¸¹�� � ¸� � ¸� in the equationof motion2 . A simple decompositionof
the Lorentz force vector visualizesthe role of magneticforcesfor the jet collimation
andacceleration.For example,we can rewrite the Lorentz force usingAmpére’s law,¸¹�� ��Ñ���� ¸�1Ó ��¸� , andthewell known vectoridentities,

¸¹�� É�� �� ß ¸� ß �� Õ �� Í ��CÕ � ¸�cÚ!�#"ä¸�%$ (3.3)

2Note that in MHD theelectriccurrentdensity &' definestheLorentzforce. This is differentfrom theequationof
motionof singleparticleswherewehave &(*),+.-0/ &132 &465 &7�8 . In MHD, electricfieldsarenegligible small in therest
frameof thefluid. Theelectriccurrentdensityfollows from theaveragevalueof thechargedparticlesin theplasma,&':9 -<; &4 ;>=0;?2@-<A &4 A�=0A , with the ion velocity &4 A andelectronvelocity &4 ; and the charges

-
of the particles. Also, &4

representstheaveragedvelocityof theparticles.(seealsofootnote B ).
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Thefirst termontheright handsideis thegradientof the“magneticpressure”, thesecond
onerepresentsthemagnetictensiondueto thefield curvature.

Thedecompositionshowsseveralpropertiesof themagneticforces.First,adiverging
field distribution likea monopole-typepoloidalfield with a gradientin field strengthwill
generallyacceleratetheplasmaoutwards. In sucha field with straightfield lines point-
ing radially outwards,magnetictensionplaysno role. A gradientin the magneticfield
strengthacrossthe cylindrically collimated,asymptoticjet will alsodecollimatethe jet.
Magnetictensionof the collimatingpoloidal field lines mayalsoacceleratethe plasma.
Essentialfor a jet, it is thetensionforceof thetoroidalmagneticfield which is responsi-
ble for thejet collimation. In theend,thejet collimationis determinedby thetotal force
balancebetweenthegaspressureplusmagneticpressureplus thetensionof thetoroidal
magneticfield of thejet andthepressurefrom thesurroundingmedium.

Another way to illustrate the Lorentz force is a decompositionin the components
parallelandperpendicularto themagneticflux surfaces, ¸¹C� Ô ¸¹ �ED�F�F Í ¸¹��GD H with

¸¹ �ED�F�F Ô ¸� H � ¸�qÎ IKJML ¸¹��GD H Ô ¸� F�F � ¸�%$ (3.4)

This impliesthatacertainconfigurationof electriccurrentandmagneticfield distribution
canacceleratethematteralongthefield (parallelforcecomponent)andcollimatetheflow
acrossthe poloidal field (perpendicularforce component).Of course,alsothe opposite
mightbetrue,adecollimationor deceleration.In thecylindrical poloidalfield distribution
of a fully collimatedjet acceleratingLorentzforceswill bepresent.Themagneticfield
structureof thewind closeto thedisk/starwill alwayshave a kind of monopole-likedis-
tributionwith thefield linesin radialdirection.Thejet collimationregion is thetransition
regionbetweenthesetwo caseswherethepoloidalfield linesturn from theradialoutflow
into a collimatedstream.

In a fundamentalpaperHeyvearts& Norman(1989)have demonstratedthataxisym-
metricMHD flowshaveanintrinsicself-collimatingproperty. A jet carryinganetpoloidal
electric currentwill always collimate into a cylinder. However, recentlya discussion
aboutthe validity of suchmodelshasstarted(Okamoto1999). In the literature,the jet
self-collimationmechanismis oftentakenfor granted.however, an“experimentalproof”
by MHD simulationsaboutthe questionwhethersucha processreally works on astro-
physicalscalesis yet missing.Time-dependentMHD simulations(e.g.Ouyed& Pudritz
1997)seemto demonstratesucha behavior, but the influenceof numericalconstraints
like the shapeof the numericalgrid (Ustyugova et al. 1999)or astrophysicalboundary
conditionsastheaccretiondisk magneticfield distribution (Fendt& Elstner2000)is not
yetclear.

Finally, it shouldbe noted that alreadya simple experimentusually shown in the
high schoolphysicscoursedemonstratesthebasicideaof thejet collimation. Two wires
carryinganelectriccurrentin thesomedirectiondoattracteachother.
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3.3 The force-free limit

For someastrophysicalapplicationsthe force-free limit is a suitableapproximationof
MHD. Therearetwo waysto illustratethe force-freecharacterof a magneticfield. The
first is to imaginea magneticfield configurationsuchthat thetermsof magnetictension
andmagneticpressuregradientexactly cancel.In this case,thereis no netLorentzforce
disturbingthe hydrodynamicequilibrium. Sincein the equationof motion the Lorentz
forcevanishes,only thehydrodynamicpart is left. Thesecondway is to imaginea very
strongmagneticfield, or, respectively, a very small plasmadensity. In this case,the
inertial termsin theequationof motioncanbeneglected.Thisequationis thenequivalent
to theconditionthatthetotal Lorentzforcemustvanishtoo.

The first viewpoint is appropriatein the caseof dipolar accretion. If, the accretion
streamfollowsapuredipolarmagneticfield geometry, theflow dynamicsis equivalentto
thecaseof free-fall. Of course,theforce-freedipolargeometrywill only besustainedif
thefield is strong,i.e. theplasmainertial forces(asthematterfollowsacurvedtrajectory)
too weakin orderto distort the field structure.The otherviewpoint maybe appliedfor
highly relativistic jets. A high jet velocity can be obtainedonly in the caseof a high
plasmamagnetizationTherefore,for calculatingthemagneticfield structure,the inertial
termsmaybeneglected.Clearly, a force-freefield cannotacceleratetheplasma.In order
to answerthequestionof theplasmadynamicsor for afully self-consistentMHD solution,
inertial termsmust be included. However, sincethe low plasmadensity, only a small
deviation from theforce-freefield structurecanacceleratethematterto highvelocities.

3.4 Magneto-sonic surfaces

Onecharacteristicpropertyof astrophysicaljets is their high velocity. The asymptotic
velocity of MHD jets is indeedhigherthanthe speedof the magneto-sonicwaves. Jets
arethereforereally dynamicbodiesperturbedby magneto-sonicwavesandshockwaves.

In the region of jet formation,matteris lifted from the accretiondisk with compar-
atively low velocity. The material is then acceleratedby magneto-centrifugalor mag-
netic forces(seebelow). With increasingvelocity of the matter, the speedof the slow
magneto-sonicwaves,theAlfv énwavesandthe fastmagneto-sonicwavesaresucceed-
ingly exceeded.Thepositionswherethishappensdefinetheslow magneto-sonicsurface,
theAlfv énsurfaceandthefastmagneto-sonicsurfaceof thejet flow. Thesupermagneto-
soniccharacterof thejet impliessomeinterestingaspects.

Thefirst pointconcernsthecausalinteractionof differentpartsof thejet. In MHD the
fastestmodeto exchangeinformationis by fastmagneto-sonicwaves.Therefore,if some
partof thejet becomessuperfastmagneto-sonic,thispartjet causallydecouplesfrom the
subfastmagneto-sonicpart.This impliesfor examplethatany disturbanceresultingfrom
the interactionprocessof the asymptoticjet with the ambientmediumcannotinfluence
theregionwherethejet hasbeenlaunched.Ontheotherhand,thesubfastmagneto-sonic
jet region is determinedby by theconditionsat thejet foot point.

The Alfv én surfaceis interestingbecausethis is the region wherethe jet kinetic en-
ergy becomecomparableto themagneticenergy. Therefore,until thematterreachesthe
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Figure3.4. Theideaof magneto-centrifugalacceleration.Thegasfluid elementscanbetaughtto represent
beadson a wire anchoredto a rotatingbody(left). For a magneticfield (wire) inclinationof morethen Z\[\]
to therotationalaxis,thefluid elements(beads)arecentrifugallyunstable.Theeffectivepotential(Eq.3.5)
alongsucha field line (wire) with a foot point radius ^`_ is shown in the right (from Blandford& Payne
1982).Disturbanceof theunstableequilibriumleadsto ejectionof matter(beads)alongthemagneticfield
lines(wire). After substantialaccelerationtheinertiaof themassflow (beads)bendsthefield line (wire) in
toroidaldirection.

Alfv énsurfaceit is basicallyguidedby thepoloidalmagneticfield andis co-rotatingwith
thefoot pointsof thefield lines. BeyondtheAlfv énsurface,thefield cannotcontrol the
plasmaanymore. Instead,the plasmamotion affects the magneticfield structure. The
matteris moving radiallyoutwardswith constantkineticangularmomentumanddecreas-
ing toroidal velocity. A toroidalmagneticfield is inducedandwill finally dominatethe
poloidalfield componentfor largeradii.

In the stationaryMHD approach,the magneto-sonicsurfacesrepresentsingularsur-
facesin theequations(Grad-Shafranov equationandwind equation,seebelow). Certain
boundaryconditionsmustbedefinedalongthesesurfaces,however, their locationis not
known from the beginning. This is the mostimportantdifficulty for the solutionof the
stationaryMHD equationsandlimits this approach.

This problemis overcomewith time-dependentMHD simulations.However, in this
casecarehasto be taken in the definition of the numericaltime stepin order to allow
for appropriatepropagationof magneto-sonicwavesacrossthegrid. As a realdifficulty,
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currentMHD codescannotproperlyhandleopenboundaryconditionsin thesub-Alfvénic
or sub-slow magneto-sonicregimeof theflow andtendto reflectsuchwaves.

3.5 The light cylinder of the magnetosphere

A termwhich is sometimecauseof confusionis the light cylinderof a rotatingmagneto-
sphere.Thelight cylinderis acharacteristicfeatureof relativistic MHD. Althougharapid
rotation is theessentialfactorfor theexistenceof a closelight cylinder, suchrotationis
alsonecessaryin orderto launcha powerful jet. Therefore,jetsmoving with relativistic
speedalwaysencloseanarrow light cylinder.

Whatis thelight cylinder?Imaginea rapidly rotatingobjectwith magneticfield lines
anchoredin thesurface.Thiscouldbeastellarbodyor thesurroundingaccretiondisk. As
themagneticfield linesareconsideredto rotaterigidly3 (like every partof a wire rotates
with thesameangularvelocity),at a certainradiustherotationalvelocityof thefield line
reachesthespeedof light. This locationis calledthelight cylinderof thatfield line. If the
angularvelocity of all field lines åba in a magnetosphereis thesame,they will have the
light cylinder radius Ä � Édc5ÏCåba If thefield line foot pointsrotatewith differentspeed,
thelight cylinderdeformsto asurface. An exampleof suchaconfigurationwould bethe
jet magnetosphereaboveadifferentiallyrotatingdisk.

The light cylinder hasno direct physicalconsequencesfor the flow (provided that,
a relativistic treatmentof suchproblemshasbeenmade).The foremostquestionwhich
comesto mind is surely how, outsidethe light cylinder, the flow of mattercan adjust
to stayat velocitiesbelow the speedof light, while, seemingly, beingfrozen-into field
lines “rotating” fasterthan that. From a phenomenologicalpoint of view, in order to
keepthemattervelocity ¸Ý ÉfegÆ¸��Í�Ä�åbaih�c themagneticfield structurehasto change
to a toroidally dominatedfield configuration.This will allow the plasmato slide along
the magneticfield in toroidal directionwhile moving outwards. Therefore,the correct
physical interpretationof the iso-rotationparameteråba is the angularvelocity of the
plasmasubtractedtheslidemotionalongthefield. As we know from analyticalmodels
in simplecases(Michel 1969)andalsofrom numericallycalculationsfor morecomplex
geometries(Fendt& Camenzind1996), the mattercrossesthe light cylinder smoothly
without any particularincidents.

For Newtonianobjectsthelight cylinder is far away from thefoot pointsof themag-
netosphere.For example,theSunhasa light cylinder of about700AU. It canbeonly of
interestif therearefield lineswhich in fact reachthatradius.In rapidly rotatingneutron
starsthelight cylindermaybelocatedascloseas10stellarradii to thestellarsurface.For
jetsAGN a typical estimateof thelight cylinder radius(derivedfrom therotationrateat
themarginally stableorbit) is aboutsometensof gravitationalradii.

It must be notedthat in relativistic magnetohydrodynamicspoloidal electric fields
areinducedwhich arenot presentin NewtonianMHD. The electricfield (which is per-
pendicularto the poloidal magneticfield) scaleswith the light cylinder radius, ë H É

3It shouldprobablybeemphasizedthat in thepictureusedherefor illustrative purposeswe dealwith therotational
velocityof field linesandnotwith avelocityof thefield itself. Theessentialpoint is thatfield linesareno realphysical
objectsand,therefore,any velocity maybeattributedto thesefiducial objects.
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ÑwÄ�Ï*Ä � Ó �kj . Thus,the relativistic characterof MHD manifestsitself in the presenceof
poloidalelectricfields.

3.6 The model of Blandf ord & Payne (1982)

The basicideawhich is still behindmostof the work on jet formationtheoryhasbeen
introducedsome20yearsagoin apaperby BlandfordandPayne(1982).It is perhapsthe
mostinfluentialpublicationon thetopicof jet formation.

Themainachievementof this paperis thefinding that theobservationallymotivated
ingredientsof astrophysicaljet sources– the accretiondisk anda magneticfield – can
be combinedinto a self-consistentmodel in which the interactionof thesecomponents
is responsiblefor theformationof collimatedhigh velocity streams.Thephysicalmech-
anismsintroducedwith thenew model– accelerationandcollimationof theMHD jet –
hasbeeninvestigatedby detailednumericalcalculations.

Theconceptof Blandford& Paynehadits precursorsin theliterature.Theacceleration
of matterandtransportof angularmomentumby themagneticfield hasbeencalculatedby
Weber& Davis (1967)for thesolar wind. Piddington(1970)proposeda modelfor dou-
bleradiosourcesandquasarsin whichthetwisting-upof magneticfield linesin arotating
galacticgascloudis responsiblefor theejectionof jet knots.Lovelace(1976)andBland-
ford (1976)cameupwith apurelyelectro-magneticmodelof jet formationfromaccretion
disks. In bothmodels,energy extractionfrom thedisk into the jet is establishedcontin-
uouslyby theelectro-magnetictorque.In theLovelacemodel,themagnetizedaccretion
disk arounda massive black hole actsasan electricdynamo. The electricfield created
by the rotatingdisk acceleratescollimatedbeamsof protonsto ultra-relativistic veloci-
ties. Blandford(1976)proposestheexistenceof a magnetosphereabove themagnetized
accretiondisk in whichtheelectro-magneticmomentumis focusedtowardstherotational
axis asa mechanismfor a continuousandalignedjet flow from parsecto megaparsec
scale.An exactsolutionfor aforce-freediskmagnetosphereis presentedconsideringalso
the effectsof an electro-magneticwind, the electro-magnetictorqueandinertial forces.
Blandford& Payne(1982) extend this picture to a self-consistentMHD model taking
fully into accountthe inertia forcesof the jet massflow. I will now briefly discussthe
mainresultsof this work.

3.6.1 Magneto-centrifugal acceleration

The first point to mentionis the possibility to acceleratemattermagneto-centrifugally
alongthemagneticfield. Blandford& Paynewerefirst to recognizethatmatter, attached
to magneticfield lines with an inclination towardsthe equatorialplane, is in unstable
gravito-centrifugalequilibrium.In thecaseof idealMHD thefield linesarefrozeninto the
plasma(Ferraro’s law of iso-rotation).Thejet magneticfield is anchoredin theaccretion
disk andthereforefollows thedisk rotation.Theplasmamoving alongthepoloidalfield
canbecomparedto beadsonthewire. Thisanalogybetweenahydrodynamicdescription
of a fluid anda kinematictoy-modelhasbeensuggestedfirst by Henriksen& Rayburn
(1971).Notethatthemattermovesalongthefield but not necessarilyparallelto thefield
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(seeEq.3.2). The effective equipotentialsurfacesfor sucha configurationfollow from
gravity andthe centrifugalforcesboth actingon the ‘beads’ (plasma)rotatingwith the
‘wire’ (magneticfield lines).For aKepleriandiskoneobtainslnmporqts*u6vxwzy|{o~} �*�����.� oo~}������ o
}� o � � s ��� q (3.5)

wherethesubscript� indicatestheradiusat thefoot point of thefield line. For anangle
anglebetweenthe equatorialplaneandthe poloidal magneticfield lessthanthe critical
angle4 of ����� the centrifugalequilibrium becomesunstable(Fig.3.4 right). If the field
lines areinclined away from the rotationalaxis, any small disturbanceleadsto a sling-
shoteffect,flinging thematteroutwardsby centrifugalforcesandinitiating thediskwind
(Fig.3.4 left).

Whatis alsointerestingbut sometimesdisregarded,is thefactthatasimilar instability
workswhenthefield linesareinclinedtowardstherotationalaxis(seealsoFig.3.4right).
In this casegravity wins andthegasis acceleratedtowardstheorigin.

3.6.2 The large-scale structure of a collimating self-similar MHD jet

The major achievementof Blandford& Payne(1982) is the self-consistentsolutionof
themagnetohydrodynamicequationsdemonstratingtheself-collimatingcharacterof the
MHD diskwind.

In theirapproach,theessentialassumptionfor thesolutionof therelevantMHD equa-
tions is self-similarity in the sphericalradius. This meansthatall variablesscalewith a
power law in thesphericalradius. Radialself-similarity ignoresboundaryconditionsat
the jet axisandthe jet radius(which is movedto infinity). Also theasymptoticjet colli-
matedinto cylindrical shape,is not self-similarin sphericalradius.Nevertheless,for the
region closeto thedisk,wherethemajorjet accelerationandcollimationtakesplace,the
Blandford& Payneapproachis valid in orderto overcomethemany difficultiesinvolved
in thesolutionof theMHD equations.

The poloidal field configurationderivedby Blandford& Payneclearly indicatesthe
collimation of the jet flow. Figure3.5 shows the distribution of the poloidal field lines
for differentfield line foot point radii. If we go alongthe jet, thetoroidalmagneticfield
becomesstrongerandthepitch angle �����K���0�t�K�.� �k�!�K���M� becomeslarger. At largedis-
tancefrom thedisk (beyond theAlfv énsurface),themagneticfield structureis increas-
ingly dominatedby its toroidal component(seethe �k���K�,� -curve in Fig.3.5). This can
beunderstoodfrom thefrozen-inconceptandthefactthattheplasmainertiadisturbsthe
initial magneticfield structure.BeyondtheAlfv énpoint thekinetic energy of thematter
dominatesthemagneticenergy. Themassflow, which tendsto conserve its momentum
andthusits directionof propagationradiallyoutwards,“bends“themagneticfield frozen
into thematter.

4This anglehasbeenderived for theassumptionof a “cold” wind neglectingthermalpressurecorrespondingto a
superslow-magneto-sonicflow. If thermalpressureis taken into account,thecritical angleincreasesto ����� (Pelletier
& Pudritz1992)
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Figure 3.5. Stationary, self-similar MHD solution of jet formation (Blandford & Payne1982). (Left)
Magneticfield structure.Shown arepoloidalmagneticfield lines(solid), thepitch angleof thefield lines
(dotted), andthe locationof the Alfv én surfacein normalizedcoordinates(  ¢¡�£ ). (Right) Dynamicalpa-
rametersof the plasmaflow. Poloidal ( ¤ ) and toroidal ( ¥ ) velocity, Alfv én Mach number( ¦ ) and fast
magneto-sonicMachnumber( § ) andtherationof toroidalto poloidalmagneticfield.

As theflow of matterbecomesacceleratedalongthefield lines,it passesthemagneto-
sonicpointssubsequently(seeSect.3.4).Figure3.5show thevelocitiesasfunctionof the
sphericaldistancefrom thefoot point radius

o
}
. Thepoloidalvelocity (heredenotedwith� ¨ª©

) reachesthe speedof the magneto-sonicwaveswherethe Alfv én Mach number
(denotedwith

� «
) andthefastmagneto-sonicMachnumber(denotedwith

� ¬
) become

unity.

The toroidal velocity (denotedwith ­ ) of the jet matterdecreaseswith radiuswhile
themattermovesradially outwardswith constantkinematicangularmomentum.Conse-
quently, for the mostpart of the jet, the super-Alfv énic part, the jet mustbe considered
asnon-rotating. In theBlandford& Paynesolution,the ratio of poloidal to toroidal ve-
locity is about20 for large distances.The toroidal speedin this region is alsolower by
a factorof 2.5 comparedto the rotationat the foot point of the field line. The Alfv én
surfacein theseself-similarsolutionfollows thecurve

s®v�o
(Fig.3.5 left), whereasthe

fastmagneto-sonicpoint is reachedat
m�s � o�u6¯±° ��� (Fig.3.5 right).

The Blandford& Paynesolutionhasthe propertythatmostof the power is concen-
tratedin the centralcoreregion alongthe jet axis, whereasthe angularmomentumand
magneticflux is transportedin theouterjet layers.Thecore-envelopestructureof mag-
neticjetsis a intrinsic featureof many jet models(e.g.Appl & Camenzind1993a,b).
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3.7 From accretion to ejection

The“holy grail” of jet formationtheoryisstill thefundamentalquestionof how thematter,
which accreteswithin thedisk towardsthecentralobject,is divertedin verticaldirection
andfinally becomesinjectedin thejet.

To answerthis questionis againa difficult task(too difficult in somerespects... ).
As wehave largegradientsin thephysicalparametersin thejet forming regionabove the
disk, we have even larger gradientsin the transitionregion betweendisk and jet. The
densityvariesdrasticallyover several ordersof magnitudeon very short lengthscales.
Also the(effective)electricresistivity changesby similarmagnitudes.Sincetheaccretion
disk is turbulent, themagneticdiffusivity is high. In contrary, for the jet, idealMHD is
quitea goodassumption.

Sofar, time-dependentnumericalsimulationshave failedin investigatingthejet-disk
interactionfor a reasonableperiodof time. Typical simulationsrun for not more then
severalorbital periodsof theinnerpartof thedisk.

A thoroughinvestigationof this region hasbeenmadeby Ferreiraandcollaborators
(seeFerreira1997)usingastationary, self-similarapproach.They find thattheimportant
termsresponsiblefor lifting the plasmaoff the disk in vertical direction,are(i) the tur-
bulentmagneticdiffusivity ²¢³ whichallows thematterto crossthefield linesand(ii) the
magnetictorque ´�� vxµ
¶ �¸· w¹µ ·º� ¶ establishingthehydrostaticequilibriumwith in the
disk. Essentially, thelifting mechanismis completelymagnetohydrodynamicandcanbe
understoodby examiningtheLorentzforcecomponents.If we denotethe total poloidal
electric currentby » mporqts*u¼v w¾½� o �k� , we can write the Lorentz force componentsas
follows. TheLorentzforcein toroidaldirectionis´C� v ���¿!À oÂÁÄÃ�Ã » q
thepoloidalforcealongthemagneticflux surfacesis´,Ã�Ã vxw �¸�¿!À o Á Ã�Ã » q
andthepoloidalforceperpendicularto themagneticflux surfacesis´�Å v ��� µ � wÆ�k�¿rÀ oÇÁ ÅÂ»È�
Ejectionof matterfrom thedisk into the jet occursnaturally, if thepoloidalelectriccur-
rentdensityin radialdirection,

µ · , decreasesvertically. Two processesmaylift theplasma
from the disk. (i) The gaspressure gradient, if the ´�Å decreases,or (ii) the radial cen-
trifugal accelerationof plasma,if ´�� increases.Figure3.6 shows the stationaryMHD
calculationof theself-consistentdisk-jetconnection(Ferreira1997).In thediffusivedisk
thematteraccretesacrossthepoloidalmagneticfield lines,but thencouplesto thefield
andbecomesejectedasa diskwind similar to theBlandford& Paynemechanism.

Numericalsimulationsof the accretiondisk structurewith a boundaryconditional-
lowing for a jet outflow areessentialin orderto understandthe jet launching.They will
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Figure3.6. Magneticfield andplasmavelocity in aaccretion-ejectionstructure(Ferreira1997).Shown are
poloidalmagneticfield lines(solid) andpoloidalstreamlinesof theflow (dashed). Resistivity allows the
accretingmatterto crossthemagneticfield lines. If theelectriccurrentdecreaseswith disk height,matter
is lifted from the disk surfaceinto the corona. At larger heightsthe mattercouplesto the field line and
becomesacceleratedto highervelocities.

finally giveananswerto thequestionswhatkind of diskscangeneratejetsandwhich do
cannotandwhatthetimescaleof thejet ejectingmechanismis. They will alsohelpto un-
derstandthemagneticfield generatingdynamoprocessin thediskproviding therequired
field strengthandfield distribution for the jet launching(seev. Rekowski et al. 2000,
Bardouet al. 2001).



Chapter 4
Magnetoh ydr odynamics of jet
formation

In this chapterI will summarizethe theoreticalbackgroundof magnetohydrodynamic
(MHD) jet formation.After abrief introductionto MHD itself andjustpresentingthewell
known MHD equations,I will goin moredetailanddiscusstheseequationsin thelimiting
caseof ideal,stationaryandaxisymmetricMHD. This is anessentialstepconcerningthe
understandingof thephysicsof MHD jet formation. Thediscussionis furtherextended
to thespecificequationsgoverningtheforce-balancein theMHD jet, thejet collimation
andacceleration– theGrad-Shafranov equationandthewind equation.

4.1 The model of magnetoh ydr odynamics

Beforea discussionof thebasicMHD equations,it is maybehelpful to introducein brief
the essentialsof magnetohydrodynamicsitself. For somebody, who is not working in
the field of MHD, someconfusionmay ariseaboutthe differentwayshow to describe
the interactionbetweenmatterandthe electro-magneticfield andaboutwhat the MHD
conceptactuallyimpliesin this respect.

Themicroscopicpointof view is thatasinglechargedparticleis moving in theelectro-
magneticfield underthe action of Lorentz and Coulombforces. A statisticalaverage
over many particlesof several speciesleadsto the view point of plasmaphysics. Now
thereis a “fluid” (or “gas”) of (partly) ionizedmatterwith averagedproperties(density,
velocity, ...) for all species.For lengthscalesabove a certainlimit (the Debyelength),
however, thechargescancelandthefluid in total is neutral.Theplasmaparticlescollide,
exchangeenergy and charge. The collision frequency dependsmainly on densityand
temperature.Also theelectricconductivity is determinedby thecollision frequency. Due
to thecollisions,alsotheneutralcomponentof apartly ionizedfluid couplesto theionized
components.Thus,it mightbeaffectedalsoby a largescaleelectro-magneticfield.

In plasmaphysicsthedifferentspecies(ions/electronsorelectrons/positrons)aretreated
asseparatecomponents.Thefluid equationsareexaminedfor eachspeciesseparately, i.e.
onehasaequationof motionfor electronsandfor ions,andsimilar for theothermoments
of theFokker-Planckequation.The modelof magnetohydrodynamicsaveragesover the
propertiesof thedifferentplasmaspeciesresultingin a singlefluid model. For example,
themomentumdensityof thesinglefluid is thesumof thevelocitiesof theelectronsand
ionsweightenedwith theparticlemassandparticledensity, ÉËÊÌ v ¬ÂÍ`«ÎÍ ÊÌ Í � ¬ÐÏÑ«¾Ï ÊÌ Ï (with
the particlenumberdensities

¬ÂÍÓÒ Ï
andthe massdensity É ). Certainapproximationsare

31
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takeninto account,e.g.themuchlargermassof theionscomparedto theelectrons.In the
end,insteadof describingcharges( Ô Ï q Ô Í ) moving with velocities( Ì Ï q Ì Í ), onedealswith
theelectriccurrentdensityasthenetmotionof charges Êµ �xÕ¸Ö ¬ÐÏ ÊÌ Ï w Ö ¬ÂÍ ÊÌ Í , andsimilar
for massdensity, velocity, temperatureetc.

The MHD conceptis valid only for certainapproximations.Velocities in the rest
frameof the fluid mustbe small, charge neutralitymustbe conserved on global scales
andfriction betweenthe componentsmustbe strongenoughso that acceleratingforces
canactonbothspeciessimultaneously.

If theidealMHD condition Ê×±v±w ÊÌ �KØnÙ Ê� is appliedto therelativistically covariant
equationof motion,theconceptof relativistic MHD canbedeveloped.

4.2 The MHD equations

Theconceptof magnetohydrodynamicsdeliversasetof equationswhichdescribethestate
of anionizedfluid (or gas)undertheinfluenceof a magneticfield. With thatthegeneral
task in order to model the magnetohydrodynamicjet formation is to solve thesetime-
dependent,(resistive)MHD equationsconsideringconservationof mass,momentum,and
energy, theinductionof magneticfield, andthenon-existenceof magneticmonopolesfor
astrophysicalboundaryconditions. In their non-relativistic versiontheseequationsare
thefollowing, Ú ÉÚMÛ � Á±Ü m ÉËÊÌ u6v � q (4.1)ÉÄÝ Ú ÊÌÚMÛ � m ÊÌ Ü!Á u ÊÌKÞ � Á#ß �iÉ Á liw Êµ Ù Ê� v � q (4.2)ÉÎà ÖÚMÛ � m ÊÌ ÜrÁ u Ö\áb� ß m Á±Ü ÊÌ u�wãâ�ä � Êµ � �Ø � v � (4.3)Ú Ê�ÚMÛ w Á ÙxÝºÊÌ Ù Ê� wåâKä ÊµØ Þ v � q (4.4)Á±Ü Ê� v �æ� (4.5)

Here, Ê� is themagneticfield, ÊÌ thevelocity, É themassdensity, ß thegaspressure,Ö the
internalenergy, and

l
thegravitationalpotential.Theelectriccurrentdensity Êµ is given

by Ampere’s law, Á Ù Ê� v�m>ç À �KØ u Êµ . Themagneticdiffusivity â�ä measurestheefficiency
of magneticdiffusion andis determinedby the physicalprocessesleadingto diffusion.
In theastrophysicalcontext themicroscopicdiffusivity (dueto collisionsand/orelectric
resistivity) is toosmallby ordersof magnitudein orderto haveany influenceandusually
theeffect of a turbulentmotionis takeninto account.Additional to theabove equations,
anequationof stateis necessaryto closethesystemof equations.Thiscanbeapolytropic
gaslaw, asoftenusedin jet models,or any otherspecificationof thegaspressure.

The solutionof the time-dependentMHD equationsrequestsa lot of computational
power andbecamefeasibleonly during the last decade.Still, time-dependentsimula-
tionsof thejet formationmaycover only aboutsomepercentof theregion wherethejet
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collimationis actuallyachieved.

4.3 Stationar y, axisymmetric, ideal MHD

The limit of stationarity, axisymmetricandideal MHD may give somefundamentalin-
sight into the jet physics. In this case,the time derivative andthe derivative in toroidal
( è -) direction is neglectedandthe conductivity of the matteris assumedto be infinite.
This is theclassicalapproach to the jet problem,but still providesthebestintroduction
to theideasbehindthemodelof jetsasmagnetohydrodynamicengines.

Here,I will briefly summarizetheessentialpointsimplied by theassumptionsintro-
ducedabove. An early derivation hasbeenpresentedby Chandrasekhar(1956). In the
axisymmetriccaseit is appropriateto usecylindrical coordinates( é q è q Õ ) andto distin-
guishbetweenthe poloidal componentsof a vector (the componentsin the meridional
plane,i.e. the é and Õ -components)and the toroidal component(the è -component)1.
FromstationaryFaraday’s law, Á Ù Ê×±v � , it followsthattheelectricfield is thegradient
of a potential, Ê×�v Á ¨ . Becauseof axisymmetrythe è -derivativevanishesand

× � v � .
For infinite conductivityOhm’s law impliestheMHD condition,Ê×xvêw °Ø ÊÌ Ù Ê�%� (4.6)

Since
× � v � , it follows thatÊÌ �:Ù Ê��� v � q ë � ÊÌ �ì�Ñ� Ê�,� í ÊÌ � v�îËm é q Õ u Ê�,�*� (4.7)

Thus, the poloidal plasmavelocity is parallel to the poloidal magneticfield. Because
of massconservation andstationaritywe have Á m ÉËÊÌ � u#v � andfor the scalarfunctionîËm é q Õ u it follows that � v Á m É î Ê��� ukv Ê��� ÜKÁ m É îïu . Therefore,â �ðÉ î is a conserved
quantityalongthefield line. With theassumptionof axisymmetry, a magneticflux func-
tion canbedefined, ñ m é q Õ uòv °¿!Àôó Ê��� Ürõ Êö v °¿!À÷ó � ¶ é õ è õ é q (4.8)

which measuresthe magneticflux througha circle with radius é aroundthe symmetry
axis.Similar, thetotalpoloidalelectriccurrentis » m é q Õ uòvùøúµ¢û é õ è õ é vxwüm Ø\� ¿ u én�k� .
Theaxisymmetricmagneticfield lines Ê� v Ê���Ð� Ê�k� enclosecorrespondingflux surfaces.
Thus, â m ñ u �ãÉ î is conservedalongthemagneticflux surface.FromEq.(4.7) it follows
that ÊÌ Ù Ê� v ÊÌ �3Ù Ê���,�±ÊÌ �ýÙ Ê�k� v °é � Ì � wãâÉ �k� � Á

ñ q
(4.9)

1Thepoloidalandtoroidalcomponentsof a vectorfield canbedefinedin a moregeneralway for othercoordinate
systems.SeeLüst& Schl”uter(1954)or Chandrasekhar(1956,1961)for ageneralintroduction
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and,usingtheMHD conditionandFaraday’s law, weobtain� v Á Ù Ê×êv Á ñ Ù Á � °é � Ì � wãâÉ �k� �ò� � (4.10)

This implies that the quantity þbÿê� � Ì � w��� �k������é is conserved along the field line,þbÿ v þbÿ m ñ u (Ferraro’s law of iso-rotation).
FromEq.(4.9)andtheMHD conditionit canbederivedthattheelectricfield is always

perpendicularto the the flux surfaces, Ê× v w3m ° �KØ u þbÿ Á ñ , or
× Å v m é �Ké�� u ��� whereé�� v Ø~�Kþbÿ is the light cylinder radius. Thus,the poloidal electricfield componentis

importantonly if the light cylinder is closeto thecentralobject. In fact, thepresenceof
strongpoloidalelectricfieldsis thesignatureof relativistic MHD. For NewtonianMHD,
electricfieldscanbeneglected.

4.4 Conser vation laws of stationar y MHD

Theassumptionof stationarityimpliesconservation laws for certainphysicalquantities.
With a more extendedderivation onecanproof that in stationary, axisymmetricMHD
thereare four physicalquantitieswhich areconserved alongthe magneticflux surface.
Here,I briefly discussthe expressionsfor thesequantitiesin the Newtonianlimit. The
first conservedquantity, whichhasbeenalreadyintroducedabove, isâ m ñ u ��É Ì ����	��
 � m ÊÌ � Ü Ê��� u (4.11)

It hashasthemeaningof amassflow rate �{ perflux surface,�{ m ñ ��
 ñ u�w �{ m ñ u6v ó��	������ ÉCÊÌ � Ürõ Êö v ó��	������ â Ê��� Ü¢õ Êö � (4.12)

Theiso-rotationparameter þbÿ m ñ u � °é � Ì � w â m
ñ uÉ �¸� � (4.13)

is the secondconserved quantity. In the MHD jet theory, þbÿ is sometimesconsidered
as“angularvelocity of thefield line”, a notationwhich is somewhatcomprehensive but
alsomisleading(seealsodiscussionabove). In thefollowing, þbÿ will bedenotedasiso-
rotation parameterof a flux surface. The third quantityis the total angularmomentum
perunit density, � m ñ uúv é � þbÿ m ñ u�w én�k�ç À â m ñ u (4.14)

consistingof two contributions,thekinetic andthemagneticpart. At theAlfv én radiusé�� , this expressionreducesto

� m ñ u3v þbÿ m ñ u é �� which guaranteesthat the stationary
MHD flow remainsregular at this point. Thus,only a certaincombinationof angular
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momentumandiso-rotationparameteris possible.TheAlfv énradiuscorrespondsto the
lever arm for the torqueactingat the foot point of the jet (usuallyonefinds an Alfv én
radius10 timeslargerthanthefoot point radiusof thefield line). It canbeimportantfor
theevolution of theaccretiondisk thatjetsor windsmaycarryaway angularmomentum
very efficiently dueto the large lever arm. Beyond the Alfv énpoint, the plasmamoves
moreor lesswith constantkinetic angularmomentumandtheangularvelocitydecreases
with radiusas þ��åé�� � .

Thefourthconservedquantityis thetotalenergy. If we,for simplicity, neglectthermal
pressureandgravity, alsothetotal energy perunit densityconsistsof two contributions–
kineticenergy andmagneticenergy (Poynting flux),×¾m ñ uòv Ì �¿ w én�¸��þbÿ m ñ uç À â m ñ u � (4.15)

Theessentialpointof consideringamagnetohydrodynamicjetsis theconversionof mag-
neticenergy into kinetic energy of thebulk flow. This conversionprocesscanbeunder-
stoodasdriven by Lorentzforces(seeabove). The contribution of gravity andthermal
pressurewill modify theexpression(4.15)(seeSect.4.6). Usually, anadiabaticor poly-
tropicgaslaw is assumedfor thejet andtheadditionaltermin theenergy equation(4.15)
is � ���� �	� É � �	� � . However, it hasbeenshown that jets aretypically cold, and,conse-
quently, gaspressurecanbeneglectedin theregionof collimationandacceleration.This
is not true for the transitionregion betweendisk and jet wherethe the flow is acceler-
atedfrom subto superslow magneto-sonicvelocity. In stationaryMHD the regularity
conditionat theslow magneto-sonicpoint determinesthemassflow rate â m ñ u .

In thecaseof relativistic jets theNewtonianexpressionsdiscussedabove have to be
generalized.For specialrelativity, themainadditionis to considerthe fact that the jet’s
kinetic energy might be comparableto the rest massenergy of the jet flow while the
role of gravity is usuallyneglected. In general,jetsmove with velocitiesfasterthanthe
escapevelocityandtherefore,for mostthecases,thespecialrelativistic approximationis
sufficient. Only if processescloseto the centralblack hole areinvestigated,maybethe
jet formationprocessin theinnermostaccretiondisk itself, thegeneralrelativistic effects
maybecomeimportant.Thecurvatureof spacetime andthe’rotationof space’arounda
rotatingblackholemight influencetheenergy balanceof suchjets.

4.5 The Grad-Shafrano v equation – the force-balance across
the field

Under the assumptionsof stationarity, axisymmetry, and high conductivity, the local
force-balanceof MHD can be split in two governing equations(seee.g. Camenzind
1987; Okamoto1992). The Grad-Shafranov equation(GSE) describesthe local two-
dimensionalforce-balanceacrossthefield. Thewindequationdescribestheforce-balance
alongthefield lines.Bothequationsarecoupleddueto inertialbackreactionof theplasma
on the structureof the magneticfield. A clever iterative procedurewould be neededin
orderto solve this systemof equationsself-consistently. As a matterof fact,theproblem
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of a self-consistentsolutionis socomplicatedthatis hasnot yet beensolvedwithout any
further simplifying assumptions.If inertial forcescanbe neglected,the magneticfield
structurefollowssolelyfrom theelectromagneticforce-balance(force-freefield).

With themagneticflux function(4.8) thetoroidalcomponentof Ampère’s law canbe
re-writtenas é Á±Ü � °é � Á

ñ � vêw ç ÀØ µ ��� (4.16)

This is thegeneralversionof theGrad-Shafranov equation. Thesourcetermof theGSE,
the r.h.s. of Eq.(4.16),mustbe derived from the componentof the equationof motion
which is perpendicularto theflux surface.

Maxwell’s equationsand thus Eq.(4.16) are covariant concerningspecialrelativity
(andaretherefore’relativistic’ by definition).Specialrelativistic effectsfor thematterare
takeninto account,if therelativistic equationof motion is consideredfor a derivationof
theGSEsourceterm. Generalrelativity requiresto considerthered-shiftandtime-lapse
in the vicinity of a black hole andalsothe rotationof space(frame-dragging)arounda
rotatingblack hole. Thus,dependingon the astrophysicaljet source,differentversions
of the GSE may apply. For most casesof relativistic jets the specialrelativistic GSE
(Camenzind1987) is sufficient, whereascloseto the black hole the generalrelativistic
GSE(Nitta et al. 1991; Beskin& Pariev 1993)mustbe considered.Here, I show the
specialrelativistic sourcetermof theGSE,µ � v �! É�ØÂé°ìw { �" w é � ��é �� m ñ u.� °� m Ú � ×%m

ñ u�w þ Ú � � m ñ u�u�w$# �% Ú �'& � â m
ñ uÉ ��nØÇé � ��ç À Ú �(& � â m ñ u�w Øç À ØÇé � éé�� m ñ u m Á ñ Ü!Á u � é � þ*) m ñ u � q (4.17)

with the Lorentzfactor  , the poloidal componentof the 4-velocity # % , andthe Alfv én
Mach numbersquared{ �" v ç À  É # �% �K� �% . The GSE is a partial differentialequation
of secondorder. It canbeconsideredas“highly” non-linearasthesourcetermshows a
very complicated(anda priori unknown) dependency on theflux function

ñ
. TheGSE

sourcetermalsoincludessingularsurfaceswhere
mÓ°òw { �" w é � �Ké �� u6v � . Thesearethe

magneto-sonicsurfaceswheretheplasmavelocityequalsthespeedof themagneto-sonic
waves.As alreadymentioned,dueto thecomplexity of this equation,it hasnot yet been
possibleto find two-dimensionalfully self-consistentsolutionsin general. The single
exampleof a rotatingmonopole-typefield configuration(Sakurai1985)is obtainedin the
limit of slow rotation(andthusdoesnotshow substantialcollimation).

A specialcaseis the force-free (relativistic) GSEwhereinertial termsin the source
term areneglected. This is equivalentto the assumptionthat magneticforcesdominate
over inertial forces.This versionof theGSEequationis alsoknown aspulsarequation.
It considerstheprojectionof theforce-freeequationof motion, � v É,+ Ê× � �½ ÊGÙ Ê� (with
thechargedensity É,+ ), perpendicularto themagneticflux surfaces.

The trans-fieldforce-balancecan eventually be written as the modifiedrelativistic
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GSE,in theforce-freecasewehave- Á�Ü � °ìw - � þ �) m ñ u- � Á ñ � vxw ­/. °- °¿ õõ ñ » � m
ñ u�w - � Á ñ � � °¿ õõ ñ þ �) m ñ u (4.18)

(seee.g. Camenzind1987), wherewe have normalizedwith
m é q Õ u í m - é10 qts é10 u ;þ*)±í þ*) m Ø~�Ké20 u ; ñ í ñ¹ñ 3'4 ; »xí »ú» 3'4 . The radius é10 is the location of the

asymptoticlight cylinder, i.e. theasymptoticbranchof thelight surfaceé�� m ñ u for
s�565°

. At thelight surface,where é v é17 m ñ u �±Ø\�Kþ*) m ñ u , thesourcetermof theforce-free
GSEbecomessingular. The term“modified” refersto the fact the thesingularityof the
sourcetermhasbeenincorporatedinto thel.h.s. of Eq.(4.18). For differentiallyrotating
magnetospheresthe shapeof this surfaceis not known a priori while for constantfield
rotationthe light surfaceis of cylindrical shape.The normalizationis chosensuchthatþ*) vê° at - vx° . Notethatin theforce-freecasealsothetotal poloidalelectriccurrentis
conservedalongthefield line, » m é q Õ ubv » m ñ u . Both thecurrentdistribution, » m ñ u , and
therotationlaw of thefield, þ*) m ñ u , determinethesourcetermof theGSEandgovernthe
structureof themagnetosphere.Theconstant­8. describesthestrengthof thefirst source
termin theGSE.A usualestimatefor activegalacticnucleiis­8. v ç » �3'4 é �0Ø � ñ �3'4 ¯åç � » 3'4° � �:9�; � � � é10° � �:< �>= � � �

ñ 3'4° �/?@?BAn�>= � � � � �
Closeto a rotatingblackhole,generalrelativistic effectsmustbetakeninto account.

Usingthe3+1split of space-time(Thorneetal. 1986),thegeneralrelativistic expressions
becomesimilar to thespecialrelativistic equations.Themodificationsconcernared-shift
factor � in orderto transformthelocal field andvelocitiesto theglobalreferenceframe,
andthe differentialrotationof spaceC (framedraggingof a rotatingblack hole). With
that, Ampère’s law is modified to Á Ù � Ê� v mpç À ��Ø u � Êµ%w±mÓ° ��Ø u\m Ê× ÜMÁ C u Ê« q with the
Killing vector Ê« vEDC � Á è . Theforce-freeGSEin KerrmetricisDC Á ÜE� � °ìw mFDCú� DCG7 u �DC � Á ñ � vxw ­8. °� DC õõ ñ » � m

ñ u�wHDC þ*) w C� � Á ñ � � °¿ õõ ñ þ �) m ñ uºq (4.19)

in Boyer-Lindquistcoordinates(Blandford& Znajek1977;Thorneetal. 1986;Okamoto
1992)andwith anormalizationsimilar to Eq.(4.18).Here,

DC correspondsto thecylindri-
cal radiusand

DCG7 denotethepositionof the two light surfaces,
DC �7 v mJI ��� m þ*) w C u�u � .The � � w signsholdfor theouter( þ*) 5 C ) andinner( þ*)LKMC ) light surface,respectively.

Finally, I discussthe GSE in anotherform which is probablymore transparentin
showing themechanismsdeterminingthejet structurein thecollimationregion,Dî � °ìw { �" w - � þ �) � v� °ìw - � þ �) � Á ÅÇ� �%N�À � Á ÅÇ� ��N�À � Á Å ß � � � ��ç ÀPO É # �� � Á Å -- O � �% þ*)ç À Á ÅRQ - � þ*)TSVU
Here, Á Å indicatesthegradientperpendicularto

ñ
,
Dî � î �XW% � ç ÀMY Ê¬ Ü Q Ê��� Ü*Á S Ê���!� ç À
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thepoloidal field curvature, É the massdensityand #[Z the toroidal speed(Chiuehet al.
1991; Appl & Camenzind1993a). With this representationof the GSEonecaneasily
identify theforcescontributing to thestationaryjet equilibrium. Thefirst termconsiders
the curvatureof the poloidal field (

Dî
) leadingto a tensionforce, but takesinto account

alsothede-collimatingcentrifugalforcedueto themotionof thematteralongthecurved
poloidalfield line O Dî QJ\PW"^] - Wºþ_W) S . Thefirst termon ther.h.s. is thepoloidalmagnetic
fieldpressuregradientreducedby thepressuregradientof theelectricfield � - Wºþ_W)a`�b'c W% .
Thenext termis thetoroidalmagneticfield pressuregradient.Thetermsin theparenthesis
afterthegaspressuregradientconsiderthecollimatingforceof thetoroidalfield tension
and the de-collimationdue to centrifugalforcesof the rotatingplasma. The last term
combinesthetensionof thecurvedpoloidalfield andthe(relativistic) effect of thespace
chargedensity.

4.6 The wind equation – the force-balance along the field

Thewind equationconsiderstheforce-balancealongthefield line or flux surface,govern-
ing thedynamicsof theMHD flow. Also known asBernoulliequation,thewind equation
representstheintegratedstationaryMHD energy equation.Basically, thewind equation/
energy equationcanbeobtainedby combiningtheexpressionsfor theconservedquanti-
ties. In theNewtonianlimit andfor apolytropicgaslaw theenergy equationisdfehgjikl ]nm iol p \ iq'r iqtsHr irvu \ iqtsxwzy|{ i ] } i~��� s�w p \ iq �\ iqt{��/�	� s � \� r i ]�� i s m io r iq�s�r i\ iq�s�w��

(4.20)
where \ is thecentralmass,} ~ thesoundspeed,

�
thepolytropic index in thegaslaw,

and \ q the Alfv én Mach number. The asterixdenotesa valueat the foot point of the
field line. Notethatin Eq.(4.20)thereareconservedquantitiesalongtheconsideredflux
surface,

d u��6y , m o u��6y , r iq u��6y e�� uJ��y�� m o u��6y , andotherquantities,which vary along
the field line, e.g. c uJr6y , � uJr6y , g u:r6y . The typical approachis that oneprescribesthe
shapeof thepoloidalmagneticfield surfacesgivenby � e � uJr6y , andthepoloidalfield
strengthdefinedby theflow magnetization(seebelow) andthensolvesthewind equation
ateachradiusandfor thecertainboundaryconditions.In general,thecombinationof the
solutionsfor eachradiusgivesseveralsolutionbranchesfor g�� uJr6y . Fromtheseonehave
to find out thephysicalsolutionbranchof thewind solution.

Thelocationwheretheplasmavelocity equalsthespeedof themagneto-sonicwaves
arecalledthemagneto-sonicpoint(seealsoSect.3.4).At theslow andfastmagneto-sonic
point thewind equationmaybecomesingular. At theAlfv énpoint thewind equationis
regular, i.e. for all solutionsthe Alfv én Mach numberis \ q e w at the Alfv én radiusr e r q (seelast term of Eq.4.20). Thereforethe angularmomentum

��e m o r iq is
determined.Therequirementof regularityof thesolutionat theothertwo magneto-sonic
pointsdeterminestheothertwo parametersof theflow. Themassflow rate � u:�X�F��y (or the
flow magnetization� u��6y ) is fixedby theregularity conditionat theslow magneto-sonic
pointwhile theenergy

d uJ��y is fixedby thefastmagneto-sonicpoint.
Themostgeneralversionof thestationarywind equationis thatof ageneralrelativistic
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MHD flow. In thiscasethewind equationfor therelativistically definedpoloidalvelocity� ���P�[gz� � } is � i� ] w e s ��  p d ¡ { i*¢,£V¢ i ] ��  l ¢ i \ iq s ¢/¤ \ ¤qu ¢,£ ] �� �\ iq y i � (4.21)

where¢¥£ e§¦8¨@¨ m io ] l ¦ £ ¨ m o ] ¦ £@£ � ¢ i e w©s m o �d � ¢/¤ e s ¦8¨@¨ ] l ¦ £ ¨B� � d ] ¦ £@£ � i � d i¦ i£ ¨ s ¦ £@£ ¦/¨@¨ ª
(Camenzind1986, Takahashiet al. 1990). Here, the Alfv én Mach numberis defined
by \ iq eE« ¡(¬ � i� �!­c i� , with the properparticledensity

¬
, the specificenthalpy

¡
, anda

poloidalmagneticfield ­c � e c � ��u ¦ £@£¯® ] ¦ £ ¨ m o y , rescaledfor mathematicalconvenience.
The ��  standsfor thesignof themetricdefinedby thecomponentsof themetric tensor¦8°²±

In general,for a polytropicgaslaw (polytropic index
� � ¬ �8³ ), thewind equation

(for exampleEq.4.21)canbeconvertedinto apolynomialequation,i�´Fµ�i�¶·°�¸ £º¹ ° u¼»¾½V� �V¿ ½ m o ½ d � � � � � y � °�À ¶Á ePÂ � (4.22)

wherethecoefficients ¹ ° arenow functionsof thenormalizedcylindrical radius » . The
shapeof theaxisymmetricmagneticflux surface��uÃ» �ÅÄ y is prescribedasfunction Ä uÃ»¾½V�6y .
Theflux function ¿ e c � » i describestheopeningof theflux tube.Thefaster¿ decreases
themorerapidly themagneticenergy is beconvertedinto kinetic energy. This behavior
is similar to ahydrodynamicdeLaval nozzle.

Theessentialparameterfor the magneticjet is the magnetizationparameter(Michel
1967). We definethedimensionlessmagnetizationparameterat the “injection” point of
thematterinto thejet » � , � � e ¿ i�«8Æ ³ �ÈÇÉ� � ª (4.23)

Themagnetizationparametermeasuresor thePoyntingflux in termsof particleflux ÇÊ���¬ � � » i where ³ � is theparticlemass(heretheprotonmass).Equivalently, it determines
the strengthof themagneticforcesin termsof inertial forcesor the magneticenergy in
termsof kineticenergy, Themagnetizationdeterminesthemaximumenergy availablefor
plasmaaccelerationandthusdeterminesalsotheasymptoticpoloidalvelocity.

In the caseof a hot relativistic proton-electronplasmathe polytropic index is
�ËeÌ �/Í (a hot electron-positronplasmawould imply

�Îe�« �8Í ). Then,at eachradius » the
polynomialequation(4.22)has

l ¬ ] l ³ e wÈÏ solutions. Someof thesemathematical
solutionbrancheshave no physicalmeaning,e.g. because� i� is negative. Theremaining
physicalsolutionsform a bunch(typically 2-3) of differentcurvesin the � � uÃ»By -diagram
representingdifferentsolutionbranches2. Theuniquebranchof thewind solutionstarts

2This is similar to the caseof a stationaryhydrodynamicaccretionor wind flow (Parker wind), wherethe wind
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at small radiuswith smallvelocity continuingoutwardswith increasingvelocity. For an
otherparameterchoicealso’accretion’branchescanbefound,startingfrom alargeradius
with smallvelocityandcontinuinginwardswith increasingvelocity.

As alreadydiscussed,not for all parameters
d � � � � thereexist physicalsolutions

whicharecontinuousfor all radii » . Thecritical parametersarejust fixedby theregular-
ity conditionof having a smoothtransitionof theflow acrossthemagneto-sonicpoints.
In orderto matchastrophysicalboundaryconditionsonecanthususethe following free
parameters,Ð

the ’injection’ radius, » � , the location wherethe mattercouplesto the magnetic
field. This radiusalsodeterminestheiso-rotationparameterm o .Ð
the’injection’ velocity � � � e � � u¼» � y , definingtheinitial kineticenergy.Ð
theAlfvénradius » q , which fixesthetotal angularmomentumof theflow.

Thecritical wind solutionfor a givenflux surfacecanthenbefoundby varyingtheflow
parameters

d
and � � in Eq.(4.22).Dueto numericalconvenience,onemayinsteadvaryÐ

thesoundspeed} ~Ñ� at the injectionradius,definingthe initial density(or gaspres-
sureandtemperature),Ð
themagnetizationparameterat theinjectionpoint � � u��6y e ¿ i� ��u «/Æ ³ �FÇÊ� � y .

In turn, theconditionof a regularflow at themagneto-sonicpointsfixesthesoundspeed
andmagnetizationand,thus,jet massflow rateandtemperature.

equationgivestwo solutionbranchesdependingon themassflow rate.Only oneof thosebranches,i.e. thesolutionfor
thecritical massflow rate,is the‘true’ stationarywind solution



Chapter 5
Formation of magnetic jets – the
present state of theoretical studies

Themajority of theoreticalwork on magnetohydrodynamicjetswereinitiatedby theau-
thoritative paperby Blandford& Payne(1982). Many of thesefirst paperswereconsid-
eringstationaryMHD modelswith only few exceptionsof MHD simulationspresented.
In the mid 90iesthe computationalpower becamesufficient enoughto carry out also
time-dependentMHD simulationsof thejet formationprocesswith reasonablenumerical
resolution.

In the following the recentdevelopmentin the theoreticalunderstandingof the for-
mationof magneticjets– accelerationandcollimation– will besummarized.Thereare
goodreasonsto follow thetraditionalwayandseparatethetopic in two parts– stationary
MHD andMHD simulations.With theexceptionof justa few exampleswhereanalytical
solutionsto theMHD jet equationsarefeasible,all MHD solutionssofararetheresultof
anumericalcomputation.

It is of coursenotpossibleto discussor evenmentioneverysinglepaperpublishedon
this topic. I will try to give a fair referenceto themostinfluentialwork doneso far and
discussthis in respectto my own work duringthelastyears.

5.1 Stationar y MHD models

If time-dependentprocessesare neglectedfor the solution of the MHD equations,the
computationaltask is considerablyreduced. The main advantageof the stationaryap-
proachis the possibility to obtaina global solutionfor the magneticfield structure,i.e.
the field distribution from the inner boundaryof a staror disk up to the asymptoticjet
at distancesof several thousandtimes the radiusof the centralobject. Sucha spatial
resolutioncannotyet be achieved by time-dependentMHD simulations. It shouldalso
be mentionedthat the calculatedstationarysolutionis exactly definedby the regularity
conditionat themagneto-sonicsurfaces1. In thecaseof time-dependentcomputations,it
is sometimesdifficult to decidewhethercertainfeaturesof thesimulationarenumerical
artifactsor indeedrepresentphysicaleffects.

Dueto thefactthatextragalacticjetshavebeendiscoveredearlierthenprotostellarjets,
theearlytheoreticalmodelsweremostlyconcernedwith theformationof relativistic jets

1However, in thestationaryapproachthemagneto-sonicsurfacesbecomesingularsurfacesof thegoverningequa-
tions. and,asa matterof fact, it is just thesesingularities,which causesthemostseriousdifficultiesfor thestationary
treatment

41
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(however, not alwaystreatingtherelativistic equations).In fact, in thecaseof stationary
MHD, relativity is not the major difficulty in solving the MHD equations.The difficult
part is the inter-action betweenmatterand field, in particularthe back-reactionof the
plasmainertial forceson themagneticfield structure.Relativistic jetscanbeconsidered
asalmostforce-free,andconsiderableunderstandingconcerningthe jet magneticfield
structurecouldderivedfrom solutionsof the force-freeMHD equations.Protostellarjets
haveamuchhighermassloadandtheforce-freeapproachcanhardlybeapplied.

5.1.1 The self-similar ansatz and related appr oaches

The beforementionedmathematicalcomplicationsof MHD have led many authorsto
look for specialtypesof separablesolutionswhichavoid theproblemsof thegeneraltwo-
dimensionalintegration.It wasoneof thebasicideasof Blandford& Payneto assumea
self-similargeometryfor theMHD jet structure.Self-similarityprovidesquiteapowerful
simplification for the MHD equations. In particular, this approachreducesthe partial
differentialequationof secondorder(theGrad-Shafranov equation)to a setof ordinary
differentialequations.Self-similarity canbemotivatedby thepower law distribution of
certainphysicalquantitieswithin theaccretiondisk which is (in thesemodels)theorigin
of the jet. For a standardaccretiondisk modelwith Keplerianrotation, the power law
distribution holdse.g. for thedensity, pressure,andmagneticfield distribution. While a
self-similarjet geometrycanbeexpectedcloseto thedisk, it is clearthat thefar-disk jet
structurecannotbeself-similar. Someimportantfeatures2 whichactuallydoconstrainthe
solutionbut arenot be includedin a self-similarmodel,arethe jet axisandtheouterjet
radiusbeingalmostof cylindrical shapeandat finite distancefrom theaxis(self-similar
modelsextendto infinity). Also thelight cylinderof relativistic jetsis not self-similar.

The major outcomeof the BP82paperis the self-consistentcalculationof the self-
similar force-balanceof collimating, cold (pressure-less)wind flows from a Keplerian
accretiondisk. Somelimitations in this modelweretakencareof by otherauthors.For
example,Li et al. (1992)generalizedtheBlandford-Payneself-similarityansatzto rela-
tivistic jet solutions.Pelletier& Pudritz(1992)extendedtheBP82approachtaking into
accountgaspressureanda moregeneralansatzfor thefield structure.This is especially
interestingcloseto theaccretiondisk wherethe jet is launchedbecausein thestationary
wind theorythe slow magneto-sonicpoint (which is definedonly whengaspressureis
takeninto account)definesthemassflow rate in thejet. As theverticalgaspressuregra-
dient supportsthe launchingof a jet, the critical launchinganglefor the disk magnetic
field is decreasedfrom Í Â,Ò (Blandford& Payne)to about wÈÓ Ò . The ansatzby Pelletier
& Pudritz(1992)alsodropstheassumptionof self-similarity. Theflux geometryis fully
two-dimensional,however, theauthorsconsidertheseparateMHD domains(subslow to
superfastmagneto-sonic)separately. Undertheassumptionof apowerlaw diskmagnetic
field distribution they reducetheGSequationin theasymptoticdomainto a linear partial
differentialequationobtainingacylindrical flow structurethere,but with are-collimating
propertyin thecaseof high fastmagneto-sonicMachnumbers.

2We discussheretheassumptionof Ô -self-similarity, i.e. self-similarityin thecylindrical or sphericalradius.Some
othermodelsusea Õ -self-similarityandcanbeappliedto stellarmagnetospheres(Sauty& Tsinganos1994).
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TherearealsootherMHD jet solutionsavailablewhichapplyanonself-similaransatz.
However, not all of thesemodelscannotbe consideredas a fully self-consistenttwo-
dimensionalapproach.Oneexampleis theself-consistentrelativistic solutionof theGS
equationpresentedby Li (1993). In this casethe self-similar assumptionis not used.
However, the authorprescribesthe positionof the “first” magneticflux surfacecloseto
the jet axis andthencalculatesthe force-balanceoutsideof this flux surfacetill a finite
jet radius(Fig.5.1). The otherexampleis Lovelaceet al. (1991,1993)who proposed
a generaltheoryof MHD jets not underlyingtheself-similarscaling. Instead,a param-
eterizationof the cylindrical radiusin termsof the jet radiuswaschosentogetherwith
a separationof variables. The jet solutionwasthanobtainedby solving the conserva-
tion laws of ideal,stationary, axisymmetricMHD. This is a uniqueandclever approach
asthestationaryMHD conservation laws areconservedby definition. However, it does
not considerthe(moredifficult) problemof the local force-balancedescribedby theGS
equation.In Contopoulos& Lovelace(1994)theauthorsreturnto theself-similaransatz
presenting“exact” (numerical)solutions.The term“exact” indicatesthatnow the local
force-balanceis takeninto account.This approachhasbeenextendedlaterto thespecial
relativistic case(Contopoulos1994,1995a).

Contopoulos(1995b)proposedanalternative modelfor jet formationin theabsence
of large poloidalmagneticfields. In this casetheBlandford-Paynemagneto-centrifugal
sling-shotmechanismcannotwork andthematteris insteadacceleratedby thepressure
gradientof strongtoroidalfieldsprovidedby theaccretiondisk. In particularContopoulos
appliedthis modelto explain thetime-dependentejectionof knotsin thejet.

I will discussthe work on self-similarjet modelsby Tsinganosandcollaboratorsin
Sect.5.1.6.

5.1.2 Asymptotic jet collimation

Anotherway to simplify thejet MHD equationsis theapproachto obtainasymptoticso-
lutions at large distanceaway from the origin of the jet flow. In a fundamentalpaper,
Heyvaerts& Norman(1989)analyticallyderive that axisymmetricMHD flows enclos-
ing a netpoloidalcurrentwill alwayscollimateto a cylindrical shapeasymptotically. A
vanishingelectriccurrentwill leadto anun-collimatedconicaljet structure.This impor-
tant result,obtainedfor theNewtoniancase,hasbeenextendedlateralsofor thecaseof
relativistic jets(Chiuehet al. 1991)

The force-balancewithin suchan asymptoticallycylindrical jet canbe describedby
theone-dimensionalGSequation(with theradiusasonly variable).For this limit andfor
thecaseof relativistic jetsAppl & Camenzind(1993a,b)obtainedananalyticalsolutions
of thelocal force-balance.In theirsolutionsthejet equilibriumis characterizedby theex-
istenceof acore radius. Magneticflux andelectriccurrentis concentratedpredominantly
within thecoreradius.If thejet radiuschanges,for exampleby a changein theexternal
pressure,the coreof the jet remainsmoreor lessthe sameandonly the outerregion of
the jet – theenvelope– areaffected.Theseanalyticalsolutionsof theasymptoticforce-
free jet equilibrium canbe usede.g. asa boundarycondition for the two-dimensional
approach.Theseasymptoticsolutionswasalsoextendedfor differentialrotation(Fendt
1997b).
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Figure 5.1. Solutionof the relativistic GS equation(Li 1993). Left Shapeof magneticflux surfaces(di-
mensionlessflux Ö spacedby 0.5). RightFlow accelerationcurveson theseflux surfaces.

Figure 5.2. Self-consistenttwo-dimensionalsolution of the GS equation(Sakurai1985). Structureof
poloidalfield linesat largedistanceplottedin logarithmicscalein sphericalradius × . TheAlfv énradiusis
locatedfrom about×�ØÚÙ (equator)to ×RØ�Û (pole).
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5.1.3 A self-consistent trul y two-dimensional solution

This subsectionis to givea referenceto theuniquecaseof a truly two-dimensional,self-
consistentsolutionto theGSequation.Sakuraipresentednon-relativistic solutionsof the
GS equationfor a stellarwind (an initially radial outflow, Sakurai1985)andfor a disk
wind (a so-calledsplit-monopolesetupasinitial configuration,Sakurai1987). The re-
markablefact is that theseresultsfrom almosttwo decadesagoarestill the only fully
two-dimensional,non force-freestationaryMHD solutionsavailable in the literature.
However, dueto theslow rotation,Sakurai’s solutionsessentiallyshow a low degreeof
collimation, with the flow collimating only on a logarithmicscale(Fig.5.2). This is in
contrastto the observationsindicatinga rapid collimation of the protostellarjet within
100AU.

5.1.4 Special relativistic MHD jets in the two-dimensional appr oach

Camenzind(1986,1987)developeda fully two-dimensional,relativistic formalismfor
stationarymagnetohydrodynamicjets.Themethodof finiteelementshasbeenintroduced
in order to solve the GS equationnumericallyfor any choiceof boundaryconditions.
Someexamplesolutionsfor the relativistic jet magnetosphereand the wind dynamics
in thesejets werepresented.Thesesolutionswerefully two-dimensional,however, not
reallyglobalsolutionssincetheinnerandoutersolutions(separatedby thelight cylinder)
wereobtainedseparatelyanddid notsatisfythesameregularity conditionalongthelight
cylinder. However, asanessentialpoint in theunderstandingof MHD jets,it becameclear
thatthedivergingmagneticfield structureactsjust in thesameway asthehydrodynamic
de-Naval nozzle.

The relativistic wind equationasappliedfor MHD jetshasalsoits progenitorin the
stellarwind theoryin particularin thesubjectof pulsarwinds. Therelativistic GSequa-
tion in its force-freeversionis alsoknown aspulsarequationandhasbeenexaminedby a
numberof authors.In orderjust to mentionthemostwell known of thesepulsarmodels,
we cite Michel (1969,1973a,b),Goldreich& Julian (1969,1970),Okamoto(1974a,b;
1975a,b,1978),Ghoshetal. (1977),Ghosh& Lamb(1978,1979a,b).TheMichel (1969)
referenceis of particularimportance,as it introducesthe Michel magnetizationparam-
eter � andclarifiesits role as theessentialparameterconcerningtheaccelerationof the
MHD flow. The � -parametercouplesthethreeimportantingredientsfor thelaunchingof
a MHD wind – the magneticflux, the massflux andthe rotationof the wind launching
object(astaror adisk).

As anextensionof theclassicalpulsarmagnetospheremodelsSulkanen& Lovelace
(1990)presentedtwo-dimensionalforce-freesolutionsof theGSequationwherethepul-
sarmagnetosphereasymptoticallycollimatesinto a jet. However, alsofor thesesolutions
thelight cylinder regularity conditionhasnot beentreatedproperlyandthederivedfield
structurecannotbeconsideredasaglobal two-dimensionalsolution.

Globalnumericalsolutionsto thetwo-dimensionalrelativistic force-freeforce-balance
werepresentedfor collimatingjet magnetospheresfrom highly magnetizedstars(Fendtet
al. 1995),andfor rotatingblackholestakinginto accountKerrmetric(Fendt1997a).Es-
sentially, thesesolutionstakeadvantagefrom theanalyticalasymptotic(one-dimensional)
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solutionof Appl & Camenzind(1993b). Using asymptoticsolutionincluding alsodif-
ferential rotation(Fendt1997b),Fendt& Memola(2001)derived the structureof two-
dimensionalrelativistic magnetosphereswith differentiallyrotatingfoot pointsof thefield
lines(e.g. anaccretiondisk). This allows actuallyfor a scalingof thespecialrelativistic
magnetosphere(normalizedto the light cylinder radius)in termsof thesize/massof the
centralsource,astheKeplerianrotationof thedisk is relatedto thecentralmass.

Thefield distributionscalculatedbyFendtandcollaboratorsrepresentglobalsolutions
to the local cross-fieldforce-balanceequation.Essentially, thesepapersalsopresenteda
methodto solve the matching problemof relativistic force-freemagnetospheres,a well
known featurein thecontext of pulsarmagnetospheres.It becameclearthata mismatch
at the light cylinder couldberemovedby a properadjustmentof thecurrentdistribution
andtheouterboundarycondition. Sucha procedurecanbeinterpretedasanadjustment
of the “magneticpressureequilibrium” betweenthe regionsinsideandoutsidethe light
cylinder.

Another approachto the problemof relativistic MHD outflows was undertaken by
Bogovalov (1997),who, obtainingstationaryrelativistic MHD solutionsby solving the
time-dependentproblem,foundindicationfor instabilitiesin thecaseof high magnetiza-
tion. However, it is not clear(to me),whetherthecauseof theseinstabilitiesis numerical
or really physical. Interestingly, Bogovalov finds solutionsonly with a weakdegreeof
collimation.

Sofar, theforce-freesolutionspresentedby Fendtet al. areyet theonly truly global,
two dimensionalstationaryMHD solutionsfor relativistic jetsavailablein the literature.
The drawback of the force-freeapproachis the point that inertial forcesin the jet are
neglected.These,however, mightespeciallybeimportantin thecollimationregionof the
jet, althoughconvincing argumentsweregiventhat for highly relativistic jets theplasma
inertial back reactionmay indeedbe neglected(Contopoulos& Lovelace1994, Fendt
1997a,Fendt& Memola2001).

5.1.5 Jet magnetospheres around black holes

Stationaryaxisymmetricvacuumelectro-magneticfields arounda Kerr black hole have
beeninvestigatedfirst by Petterson(1975)andKing et al. (1975). Blandford& Znajek
(1977) andZnajek (1977, 1978a,b)recognizedthe possibility that force-freemagnetic
fieldscoupledto a fastrotatingblackholemayleadto theextractionof rotationalenergy
andangularmomentumfrom the hole by a pure electro-magneticprocess– a process
which is now calledBlandford-Znajekmechanism.In a simplifiedpicturethis mayhap-
penif therotationalvelocity of theblackhole m_Ü differs from thatof themagneticfield
lines m o (the iso-rotationparameter).Consideringthesefield lines as rigid wires they
may just breakthe black hole rotation. The field lines may eitherbe anchoredin the
surroundingaccretiondisk or in a Poynting flux dominatedjet from theblackhole. The
massflux in thejet is sustainedby Ý µ s Ý � pairproductionin theclosemagnetosphereand
alsoprovidestheparticlesto drive electriccurrents.Interestingly, theBlandford-Znajek
mechanismof energy extractioncanberelatedto Ohmicdissipationcorrespondingto an
internaleffective resistanceof theblackholeof 30Ohm(Znajek1978b).

With thedevelopmentof the3+1split of Kerrspace-time(Thorne& Macdonald1984,
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Macdonald& Thorne1982,Thorneetal. 1986)theinterpretationof electrodynamicpro-
cessesaroundrotatingblackholesbecomesmoretransparent.For a chosenglobal time,
the tensordescriptionmaybesplit up in theusualfieldsvectors Þß , Þd , theusualcurrent
density Þà , anda scalarchargedensity. With that, theMHD equationscanbeformulated
very similar to their versionin flat Minkowski space. Using this powerful tool, Mac-
donald(1984)calculatednumericalsolutionsfor themagneticfield force-balancearound
rotatingblack holes. Threemodels(magneticfield distribution roughly radial,uniform,
or paraboidal)of differentially rotatingmagnetosphereswereinvestigated,however, the
integrationregionwaslimited to áâ w Â horizonradii.

Okamoto(1992)investigatestheevolution of a force-freeblackholemagnetosphere
and the possibility of energy and angularmomentumextraction due to a wind. Also,
by examiningthe fastmagneto-sonicpoint for the outgoingwind and for the wind di-
rectedtowardstheblackhole,hederivedananalyticalexpressionfor thepoloidalcurrentÇ u:ã*y andthefield rotationlaw m o uJ��y alonga singlemagneticfield line. This work has
beenfurtherextendedto non-degeneratemagnetospheresundertheassumptionof asplit-
monopolefield structure(Horiuchiet al. 1995).

The generalrelativistic expressionfor the stationarytrans-fieldequationincluding
inertial effectsis derivedby Nitta et al. (1991)andBeskin& Pariev (1993). This is the
mostgeneral versionof theGrad-Shafranov equation.

In Fendt(1997a)thegeneralrelativistic Grad-Shafranov equationis solvedin thelimit
of force-freeMHD (seeFig.5.3). Truly two-dimensionalsolutionswere obtainedfor
collimating jet magnetospheresfrom disks aroundrotation black holes. The solutions
extendfrom theinnerlight surfacecloseto theblackholehorizonthroughtheouterlight
surfaceto theasymptoticallycylindrical jet. For theasymptoticjet theone-dimensional
analytical jet solution of Appl & Camenzind(1993b)could be used,as in this region
generalrelativistic effectsareunimportant.Again,takinginto accountapropertreatment
of the regularity conditionalongthe light cylinder, the resultingfield structureis a truly
globalsolutionof axisymmetricMHD.

Solutionsof theso-calledwind equationin Kerr geometryconsideringthestationary
plasmamotionalongthemagneticfield wereobtainedby Takahashiet al. (1990),how-
ever, mainly discussingtheaccretionflow onto theblackhole. Fendt& Greiner(2001)
extendedthis work to the outflow regime discussingvariousspecificationsfor the field
line shapeandmagneticfield distribution. In particular, the influenceof the leadingpa-
rametersof Kerrmetric ä eåÂ

and æ eåÂ
on theflow accelerationhasbeeninvestigated.

In general,the wind flow for a smallerangularmomentumparametersæ is faster. The
interpretationis thattheeffective potentialof a blackholeweakensfor increasingvalues
of æ . Therefore,lessmagneticenergy is necessaryto overcomethe effective potential.
The resultshave beenbe appliedto the caseof microquasarswith moderateasymptotic
Lorentzfactorsof about2.5(e.g.GRS1915+105).Takingin to accountthesemagnetohy-
drodynamicwind solutions,Memolaetal. (2002)wereableto derivea thermal,optically
thin X-ray spectrumof thejet flow verycloseto its origin (Fig.5.4).
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Figure 5.3. Two-dimensionalmagneticfield structureof a jet from a rotating black hole. Solution of
the GS equationin Kerr metric (Fendt1997a)Shown is the distribution of poloidal magneticfield lines
(flux surfaces)on theglobalscale(left) andcloseto theblackhole(right). Thelengthscaleis normalized
to the asymptoticlight cylinder radius(upper/ right boundary)or to the gravitational radius(lower / left
boundary),respectively. The ellipsoidalspherecloseto the origin indicatesthe inner light surfaceandis
alsotheinnerboundaryfor thecalculation.

5.1.6 Protostellar jets – high mass load and comple x internal geometr y

Most of thetheoreticalwork discussedabovewasoriginally relatedto theissueof extra-
galactic jets. Pudritz& Norman(1983,1986)werefirst to suggestthatbipolaroutflows
from youngstellarobjectsarecentrifugallydriven hydromagneticwinds from rotating
disks. Here,the importantpoint is that in jets from youngstarsthesamemechanismas
in therelativistic jets– themagneticforces– is alsoresponsiblefor theflow collimation.
Thatmagneticfieldsplay anessentialrole in acceleratingplasmafrom rotatingstarsand
affectingtheirangularmomentumevolutionhasalreadybeenasubjectfor many yearsin
thecontext of stellarwinds (e.g. Parker 1958,Weber& Davis 1967,Mestel1968,Gol-
dreich& Julian1970,Pneuman& Kopp 1971,Belcher& MacGregor 1976,Hartmann
& MacGregor 1982). However, it now becameclearthat astrophysicaljets from differ-
ent kind of sourcesaregeneratedby a similar process.Thesemodelsof protostellarjet
formationapplyingstationaryMHD wereaccompaniedby the first modelsof the time-
dependentprotostellarjet formation(Shibata& Uchida1985,1986; Uchida& Shibata
1985,seebelow).

Theearlymodelsof protostellarjet formationwereessentiallydiskjet models– with
thejet beinglaunchedfrom theaccretiondisksurroundingthecentralstar. However, from
theobservationsit becameclearthatalsotheprotostarmaycarryamagnetosphere.Such
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Figure5.4. ThermalX-ray emissionfrom highly relativistic MHD jets(Memolaetal. 2002).LeftSolution
of theMHD wind equationin Kerrmetric.Shown is thepoloidalvelocity ç8è�Øté/êÅèÉëVì andthedensityalong
aslowly collimatingmagneticflux surface(seeFendt& Greiner2001).Thelengthscale(cylindrical radiusí ) is normalizedto thegravitational radius ×ïî , the densityto thedensityat the jet injection radius ðzñ Û	×ïî .
RightOptically thin thermalX-ray spectrumfrom theinnermosthot regionsof theexpandingjet. Thetotal
spectrumis calculatedfrom the emissionof eachfluid elementof the jet consideringits actualvelocity,
densityandtemperature.Shown arethe total spectracombinedof the restframespectra(thin line) of the
flow elements,the Dopplerboostedandshiftedspectraof the jet elementsmoving towards(upper thick
line) andaway from (lower thick line) theobserver, andthecombinedspectrumof thesetwo components
(middlethick line). Thejet inclinationis òVó>ô .
a star-disk-jetmagnetospherehasa complex structurewherethesimplifying assumption
of self-similaritycannotbeappliedanymore.

At the sametime it hasbeenrecognizedthat the massflow ratesof stellar jets are
relativelyhigh. Thesecanactuallybemeasuredby applyingshockmodelsto theobserved
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knotsin forbiddenemissionlines.Thisis in differenceto thecaseof relativistic jetswhere
thedebateaboutthemattercontentin thesejets(hadronicor leptonic)still continues.The
task,therefore,in solvingtheMHD equationsfor protostellarjet formationis to find the
most generalsolutionsto the GS equation– non self-similar, becauseof the complex
geometryof the YSO, andalsonon force-free,sincestellar jets have a high massflow
rate.Sofar, this problemhasnotbeensolvedin general.

It wasthe modelsetupof Camenzind(1990)which first combinedthesefeaturesof
protostellarjet formationin a self-consistentway. However, while giving estimatesfor
importantjet parameters,a solutionto theMHD equationswasnot yet presented.As an
interestingaspect,Camenzind(1990)raisedthequestionwhetherprotostellarjetsmaybe
explainedalsoin arelativistic context. Dueto thefastrotationof theprotostar(periodsof
theorderof days),the(hypothetical)light cylinderof thestellarmagnetospherewouldbe
locatedinsidetheobserved jet radius. Note thata relativistic treatmentof MHD cannot
bewrongalsofor non-relativistic objects,aslong astheparametersarechosenproperly.
Following the approachof Camenzind,global solutionsof the GS equation(Fendtet
al. 1995) aswell as for the wind equation(Fendt& Camenzind1996) were obtained.
Thesearestill they only global, fully two-dimensionalsolutionstreatingthescenarioof
a star-disk-jetmagnetosphere.Thedrawback,however, is theforce-freecharacterof the
magneticfield.

In a seriesof papersShuandcollaboratorspresentedanalternativemodelof a proto-
stellarjet drivenby themassoutflow from theX-pointbetweenthestellarmagnetosphere
and the accretiondisk (Shu et al.1994a,1994b). The model solutionsso far are not
global, i.e. the authorspresentseparatesolutionsfor thesub-Alfvénic region (Najita &
Shu1994),theaccretionfunnelandthe“deadzone”(Ostriker & Shu1995)andalsofor
theasymptoticregion of collimation(Shuet al.1995,Ostriker 1997). Themainpoint of
theirapproach,theproposedexistenceof anX-point andits ability to launcha jet is under
debate(seeFerreiraetal. 2000),however thederivedmodelsolutionsarecompletein the
sensethat they cover thewholespatialrangefrom thecentralstarto theasymptoticjet.
They arealsoself-consistentin thesensethatthey donotassumein generalaself-similar
or force-freejet structure.

Yet anotherself-similarapproachwasundertakenby TsinganosandSautysearching
for analyticalMHD solutionsto the jet problem(Tsinganos& Sauty1992a,b,Sauty&
Tsinganos1994,Sautyetal. 1999).Theapproachis thatof aso-calledmeridionallyself-
similarity, i.e. a self-similarity not in the sphericalradius õ but in the angle ö . Another
new issuehereis to consideralsoa nonpolytropic gaslaw for theoutflow. Somebasic
assumptionwhichhasbeenmadehereis to prescribeasphericalshapeof theAlfv énsur-
face.Theseautomaticallyimpliesthatthegasdensityshouldbetakenasaseparableform
(Sauty& Tsinganos1994).Further, only thefirst ordertermsof amultipoleexpansionfor
themagneticflux functionaretakeninto account.In theend,thecalculationsgivea(spa-
tially) oscillatingasymptoticjet structure.As a conditionfor jet collimationthey require
anexcessof theBernoulli energy alongnon-polarstreamlines. A similar approachwas
undertakenby Trussoniandco-authors(Trussoniet al. 1997),however, usingan ansatz
whichprescribesthegeneralstructureof thefield lines.

In thesamedirectiongoestheapproachby Lery andco-authorswholookedfor MHD
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jet solutionprescribingtheshapeof themagneticsurfaceswithin thefastmagneto-sonic
surface(Lery et al. 1998,1999a).With thatassumption,thesolutioncouldbe integrated
alsoin thesupermagneto-sonicregime.

Kudohandco-authorsinvestigatedin particularthe region of the jet launchingclose
to thediskapplyingone-dimensionalstationaryMHD models(Kudoh& Shibata(1997a),
1D time-dependent(Kudoh& Shibata(1997b)andtwo-dimensionaltime-dependentmod-
els (Kudohet al. 1998)to derive themassloadingfrom thedisk into the jet and,e.g. its
dependencefrom the actualiso-rotationparameterwhich could be sub-Keplerian. The
time-dependentresultsconfirmthestationarysolutionsin onedimensionaswell in two-
dimensional.

The modelof Lovelaceet al. (1995,1999)discussesan essentialalternative to the
classicalBlandford-Paynecentrifugalslingshotlaunchingmechanismfor jets. They in-
vestigatetheevolutionof astellardipolarmagnetospheresurroundedby anaccretiondisk
andtheassociatedspin-up/down of thecentralstar. Dif ferentialrotationbetweenthestar
andthedisk leadsto winding-upthepoloidalmagneticfield. Themagneticpressuregra-
dientin theinducedtoroidalfield componentfinally inflatesthemagneticfield in vertical
direction, leaving the possibility of magneticallydriven outflows in the region of open
field lines. Thus,in differenceto theBlandford-Paynemagneto-centrifugalacceleration,
theseoutflowsaredrivenby themagneticpressuregradientin thetoroidalmagneticfield.
Theseideaswerelaterconfirmedby theMHD simulations(Hayashietal. 1996,Miller &
Stone1997,Goodsonet al. 1997,Fendt& Elstner2000).

A recentadditionto the theoryof stationaryMHD flows hasbeenpresentedby Be-
skin & Kuznetsova (2000)deriving the mostgeneralform of the non-relativistic Grad-
Shafranov equationwhereanisotropicpressureeffectsareformulatedwithin thedouble
adiabaticapproximation.

In summary, onemuststatethatthetheoreticalproblemof protostellarjet formationis
not yet solved.Thereis ageneralagreementaboutthebasicprocesses.However, thereis
sofar no self-consistent,two-dimensionalsolutionof thestationaryMHD equationpub-
lishedwhich coversall the importantfeaturesknown from the observations– the high
massflux (theplasmainertia),thehighdegreeof collimation,andthecomplex magneto-
sphericstructureof thestar-disk-jetsystem.

5.1.7 Is there reall y a MHD self-collimation ?

Recently, therehave beena numberof papersarguingagainsttheexistenceof a general
self-collimatingpropertyof MHD flows. In fact,althoughsucha propertyhasbeensug-
gestedby Heyvaerts& Norman(1989)andChiuehet al. (1991)by analyticalmeans,
a direct numericalproof following the time-dependentevolution of the MHD flow was
missingfor a long time.

Self-similarmodelsdo not includethe jet axis andalsoextendto infinity. They can
thereforehardly describethe global structureof the flow. Someof thesemodelsshow
actuallyasuperefficientcollimationleadingto are-collimationto theflow towardsthejet
axis. This, however, hasbeenprovento beindeedanartifact introducedjust by theself-
similar assumption(Ferreira1997). The two-dimensionalsolutionby Sakuraidoesnot
substantiallycollimate(notethelogarithmicscalein Fig.5.2).Thetruly two-dimensional
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global force-freerelativistic solutions(Fendtet al. 1995,Fendt1997,Fendt& Memola
2001)donotconsiderinertialforceswhichmaypossiblyde-collimatethejet. Further, asa
generalcharacteristic,thestationaryapproachcannevertell whetherthederivedsolutions
arestableandreally stationaryin time. Onemight find thata certainsolutionexists,but
doesnot know whetherit canevolve from someinitial state,nor whetherit will staylike
thatif it couldevolve furtherfrom thestationarystate.

In particular, Okamotoandco-workershaveraisedobjectionsagainsttheself-collimation
mechanismasanaturalpropertyof any rotatingMHD flow (Okamoto1997,2000,2001;
Beskin& Okamoto2000).Okamotoarguesthatalmostall previously developedmodels
of MHD jet collimation or processesclaiming magneticcollimation are unsatisfactory
with respectto causalityand the current-closurecondition. He concludesthat magne-
tizedwindsasa wholewill not collimateto the rotationaxiswithout any externalhelp,
suchaschannelingeffectsof a thick accretiondisk and/orconfinementby the ambient
medium(Okamoto1997,1999). Taking into accounttheseconstraints,the MHD flows
discussedsofar in theliteraturearelikely to beasymptoticallyof “quasi-conically”struc-
ture(Okamoto2000,Beskin& Okamoto2000,Okamoto2001).

Sofar, thequestionof a self-collimationof MHD jetshasnot yet beenanswereddef-
initely. I think thatwith thenumericalsimulations,we now have a rathergoodargument
for theexistenceof theMHD jet self-collimationasagenericproperty. Though,onemust
notethatevenif thetime-dependentsimulations(e.g. Ouyed& Pudritz1997a)show the
flow self-collimationfor particularcases,thespatialscalesinvestigatedwith thatsimula-
tionsis farbelow theobservedglobaljet structure(seealsonext section).

5.2 MHD sim ulations of jet formation

As it is mostclearlyvisible in themoving jet knots,a jet is not a steadystatefeature.On
theotherhand,weknow thatthelarge-scalejetstructureof thejet remainsstablefor along
time aswe seetheknotsmoving in thesamedirection. Therefore,we might distinguish
betweenthe“almoststationary”jet “back-bone”,probablyconsistingof analignedlarge-
scalemagneticfield, andthe time-dependent,yet unknown “knot generator”.Thus,the
formationof knotsasa short-timephenomenonmight not be directly connectedto the
large-scalejet structureitself. Indeed,the observed, highly symmetricstructureof the
protostellarjet HH 212 (Zinnecker et al. 1998)stronglysuggestthat the generationof
knotsmusttriggeredby someprocessintrinsic to theaccretiondisk.

Thus,one major issueof the simulationof jet formation is to prove the feasibility
of the MHD self-collimation. With axisymmetricsimulationsone may prove whether
sucha mechanismexistsat all. Additional three-dimensionalsimulationscanprove the
stability of the two-dimensionalresults. In order to investigatethe time-dependentjet
launching, theaccretiondiskstructuremustbeincludedin thetreatment.As wewill see,
this approachis yet limited eitherby thecomputationalresourcesor by thechoiceof the
accretiondiskmodel.

Thefirst numericalMHD simulationsof jet formationwereperformedby Shibata&
Uchida(1985,1986)andUchida& Shibata(1985).Theirmodelconsistsof arotationgas
diskpenetratedby themagneticfield. In general,therotationof theaccretiondisk winds



5.2. MHD simulationsof jet formation 53

Figure 5.5. MHD simulationof thejet formationfrom anaccretiondisk (Ouyed& Pudritz1997).Shown
arethe densityandpoloidalmagneticfield distribution at ÷ùø�ú�ûïü�úÊúzûJýÉúÉú rotationsof the inneraccretion
disk. Thesimulationsstartswith a force-freepotentialmagneticfield in a hydrostaticdensitydistribution.
Theaccretiondiskboundaryconditionis locatedalongthe þ -axis.TheAlfv énsurfaceandthefastmagneto-
sonicsurfaceis indicatedby theasterix.

uptheinitial poloidalmagneticfield. Theresultinghelicallytwistedfield pushesthegasin
polardirectionby theLorentzforce. This modelis, however, differentfrom theclassical
approachof Blandford&Payneasit worksmainlywith themagneticpressuregradientand
not with themagneto-centrifugalacceleration.The removal of disk angularmomentum
by the magneticfield, also leadsto an enhancedaccretion. As the disk contracts,the
magneticfield becomesadvectedbothin radialandazimuthaldirection.

After this earlyapproachtowardsthenumericaljet launching,mostof thenumerical
jet simulationswereconcentratingonthe“simpler” caseinvestigatingtheevolutionof the
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asymptotic,collimatedjet andits interactionwith the interstellarmatter. Thesesimula-
tionsdemonstratehow the jet propagatesthroughthe ambientinterstellarmedium,how
thebow shockformsandhow thejet canmaintainthecollimationalongtheits trajectory
(Kössl& Müller 1988;Kösslet al. 1990a,b;Lind et al. 1989;Wiita et al. 1990;Blondin
etal. 1990;deGouveiadal Pino& Benz1993).Suchsimulationsassumeasan“inflow”
boundaryconditionan alreadycollimatedflow of high velocity. They do not treat the
question,how sucha jet canactuallybelaunched.

The topic of modelingthe jet formationprocesswasagainintroducedby Ustyugova
et al. (1995).Thebasicideaof this paperis thatfor a jet formationMHD simulationone
mayconsidertheaccretiondisk “only” asa boundaryconditionfor themassinflow into
thecoronaandthe magneticflux distribution. The evolution of thedisk structureis not
considered,which allows for a numericalsimulationfor hundredsof Keplerianperiods.
With thesameansatz,Romanovaetal. (1997)find steadystatesolutionsasafinal stateof
a time-dependentsimulationof aninitially split-monopoletypedisk magneticfield. The
stationarystatehasbeenreachedafterabout100Keplerianperiodswith aclearindication
of a flow collimation.

Ouyed & Pudritz (1997a)presentedtime-dependentsimulationsof the jet forma-
tion from a Kepleriandisk. This paperwasfirst to demonstratednumericallythe self-
collimating propertyof rotatingMHD flows predictedby Heyvaerts& Norman(1989).
Essentially, OuyedandPudritzstarttheir simulationfrom astablehydrostaticinitial con-
dition, namelya force-freepotentialfield anda hydrostaticdensitydistribution. During
thefirst evolutionarystagesa disk wind evolvesandthepoloidalmagneticfield becomes
wound-updue to the differential rotation betweenthe disk and the corona. The disk
wind becomessuper-Alf énicandsupermagneto-sonicandcollimatesto almostcylindri-
cal shape. The jet streamsweepsout the initial coronaandafter 400 disk rotationsa
stationarystateof a collimateddisk wind evolves(Fig.5.5). The existenceof suchsta-
tionarystates,however, dependsontheinflow boundaryconditionalongthedisksurface.
In a follow-up paperOuyed& Pudritz(1997b)investigatedan initially cylindrical mag-
neticflux distribution. What is interestinghereis thefact thatanoutflow developsat all.
Thedisk wind inertia turnsthe initially cylindrical poloidalfield into a field distribution
with aninclinationanglesatisfyingtheBlandford&Payne(1982)conditionfor magneto-
centrifugallydrivenoutflows. In thelongtermevolution,however, thesekind of boundary
conditionsdonot leadto astationaryequilibriumstate.Instead,thissetupworksasaknot
generator emittingtheknotsfrom aregionalongthejet axis(on aspatialscale,however,
which is not comparableto thesizeof theobserved jet knots). Ouyed& Pudritz(1999)
further investigatedtheinfluenceof themassflow rateson thejet collimation. For small
massloadsin the jet, they observe the onsetof an episodicbehavior (instabilitiesand
shocks)of thejet, independentfrom theinitial magneticconfiguration.

Thepaperof Ustyugova et al. (1999)givesa detailedanalysisof thestationarystate
MHD jet solutionsobtainedfrom thetime-dependentsimulations.They claimthethatthe
shapeof thecomputationalboxmayinfluencethecollimationof theflow. In particular, an
elongatednumericalgrid mayleadto anartificial collimationof theflow, aneffectwhich
doesnotoccurin thecaseof agrid of sphericalor squareshape.

Theansatzof a fixeddisk boundaryconditiondevelopedby Ustyugova et al. (1995)
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andOuyed& Pudritz (1997a)hasbeengeneralizedby Krasnopolsky et al. (1999). In
this approach,only the disk magneticflux is conserved during the simulation,but not
the magneticfield direction. The results,however, look quite similar, as they obtaina
stationarysuperfastmagneto-sonicjet after some100periods.Oneshouldnotethat in
differenceto Ouyed& Pudritza smoothedgravitationalpotentialhasbeenused.

Fendt& Elstner(1999,2000)havealsousedtheapproachof a time-independentdisk
boundarycondition,however applyinga centralstellardipolar magneticfield as initial
condition. Themaindifferenceis that sucha field decreasesrapidly alongthedisk. As
the disk magneticfield distribution is preserved during thesimulation,this is an impor-
tantconstraintfor the jet formationformation– it is basicallyconnectedto thequestion
whetherthejet originatesasastellaror adiskwind. Fendt& Elstner(2000)alsofind that
theoutflow canevolve into a final stationarystate,in this casea two componentoutflow
from thestellarsurfaceandfrom thedisk. However, theoutflow remainun-collimatedon
thespatialscalesconsidered.Two potentiallyimportantconclusionsmightbedrawn from
thisresults.First,thestellardipolarfield mightnotbestrongenoughto driveacollimated
jet from thedisk surface. Or, alternatively, thecollimationof the jet will just happenat
largerradii, out of thecomputationalbox considered.Thiswould bealsoconsistentwith
theobservationsshowing a rapidcollimation in directionof the jet axis,but, at thesame
time, a jet radiusmany time larger thanthe computationalbox. If the latter interpreta-
tion is correct,the questionarises,what actuallycollimatesthe jet in the outerregions.
Externalpressureseemsto betheonly answer.

Sofar, thejet formationsimulationsconsideringthediskasafixedboundarycondition
haveshown thataMHD self-collimationprocessseemsfeasible,althoughtheoutcomeof
thesimulationseemsto besensitive to thechoiceof thediskmagneticflux distribution.

Theotherclassof jet formationsimulationsconsidersthedisknotonly asaboundary
condition,but alsotreatsthedisk structuretogetherwith thelaunchingof thedisk wind.
Suchsimulationshave beenperformedfor youngstellarobjectsaswell asfor systems
containingacentralblackhole.Thegeneralproblemhere,andthishasnotchangedsince
theearlywork by UchidaandShibata,is thatsuchsimulationscanbeperformedonly for
a few rotationsof the innerdisk. Thereasonseemsto bethe lack of anappropriatedisk
model.I will discussthis modelsin thenext section.

5.3 Disk-jet interaction

Theultimategoalfor thejet formationtheoreticianis thesimulationof jet formationout
of theaccretiondisk. However, so far no generaltheoreticalmodelexistsexplaining the
onsetof jet formationfrom theaccretiondisk. Themainreasonfor this “f ailure” is that
severalsimplifying assumptionsusuallymadewhenconsideringthedisk or thejet alone
arenot valid in thecaseof a combinedtreatmentof bothcomponents.Thewidely used
assumptionof idealMHD, for example,is in clearcontradictionwith a highly turbulent
accretiondisk. On theotherhand,turbulenceseemsto beanimportantingredientin disk
physicsproviding theangularmomentumtransportaswell asthesourcefor a magnetic
field generatingdynamo.Then,thelargecontrastbetweendisk in jet in severalphysical
properties,in particularthedensity, requirea veryhighgrid andtime resolution.
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Here,I will notgo into adetaileddiscussionof this topicsincethemainsubjectof this
thesisis thequestionof how to collimateandaccelerateamagnetohydrodynamicoutflow.
However, it is interestingandalsonecessary, to discussat leasta few modelsconsidering
thedisk-jetconnection.In theend,the jet is launchedfrom theaccretiondisk and,thus,
thejet formationbeinggovernedby thepropertiesandtheevolutionof theaccretiondisk.
Thebasictaskis to connecta low velocity, low temperature,magnetizedstreamof matter
of highdensity(thedisk)with anotheronewith “opposite”properties(thejet) moving in
perpendiculardirection.

5.3.1 Stationar y MHD

In thestationarycasea numberof suchmodelshave beenworkedout. All of themtake
advantagefrom theassumptionof aself-similarstructureof theKeplerianaccretiondisk.
In thesemodels,thediskphysicsis notalwaysconsideredin fully self-consistentway. The
numericaldifficultieswhich arealreadypresentwhendealingwith thejet formationonly
(accelerationandcollimation)becomeevenworseif oneincludestheaccretiondiskin the
treatment.As aconsequence,somemodelsneglect“essential”featuresof accretiondisks
whenconsidersthedisk-jetconnection.Someneglect,for example,radiationtransportas
animportantaspectfor theenergy balanceof accretiondisk. Others,ignorethepresence
of aturbulentpatternwhichareessentialbothfor theangularmomentumtransportandfor
theexcitationof a magneticfield generatingdynamo.Ambipolardiffusion is prominent
in the weakly ionized,cool regionsof a disk, a point which is especiallyimportantfor
protostellardisks.

Stationarymodelsof thedisk-jetinteractionhavebeenpresentede.g.by Lovelaceand
collaboratorsdiscussingthe the global electrodynamicsof a viscousresistive accretion
disk arounda Schwarzschildblackhole(Lovelaceet al. 1987,Wanget al. 1990). Their
solutionsof thedisk fluid dynamicsincludea self-collimatedelectromagneticrelativistic
jet.

The most comprehensive study of the stationaryjet launchinghasbeenperformed
by Ferreiraandco-authorsin thenon-relativistic limit (seeSect.3.7;Ferreira& Pelletier
1993a,b,1995;Ferreira1997,Casse& Ferreira2000a,b).Thestrengthof thisapproachis
thatthedisk-jetconnectionitself is calculatedin a self-consistentway with a continuous
transitionfrom thediskaccretionto thejet ejection.In particular, themechanismof how
to launchthe jet perpendicularto the accretionflow becomestransparentaspurely due
to magneticforces.Theseforceseitheracceleratethematterin toroidaldirectionleading
to a centrifugalforce alongthe disk coronalmagneticfield or, dueto a decreaseof the
verticalLorentzforce in thedisk, resultin lifting-up thedisk materialinto the jet dueto
gaspressure.The jets canbe mostly describedby the parameterof the ejectionindex,
which is a local measureof how efficient the accretionstreamis convertedinto the jet
ejection. The injection index is found to lie in a very narrow rangeand is constrained
by the disk vertical structureandalsothe angularmomentumtransfer. Ferreira(1997)
further pointedout the following importantresults. First, the investigationof the disk
verticalequilibriumimpliesa minimummassfor the jet ejected.Second,theasymptotic
behavior of thejet flow dependscritically on theratioof theiso-rotationparameterto the
poloidal Alfv én speedat the Alfv én surface. This ratio mustbe larger than,but of the
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orderof, unity. Anothergeneralresultis thatself-similarjetsfrom Kepleriandisks,after
wideningup to a maximumjet radius,alwaysre-collimatetowardsthe jet axis,until the
fastmagneto-soniccritical point is reached.Ferreiradoubtsthatsuchsolutionscancross
this critical point maintainingstationarity, the jet eitherendingthereor re-bouncing(a
similar effect hasbeenobservedby Fendt& Camenzind1996for two-dimensionalsolu-
tions). The re-collimationhappensdueto the increasingeffect of magneticconstriction
andmostprobablycausedby thelargeopeningof themagneticsurfaceswhich is a result
of assuminga constantejectionefficiency acrossall surfaces.

In othermodels,the structureof the turbulent, magnetizedaccretiondisk is derived
togetherwith the disk magneticfield distribution. In Shalybkov & Rüdiger (2000) it
is shown that in the caseof a strongvertical field the disk rotation can departfrom a
Keplerianlaw. Thepoloidalmagneticfield inclinationangleabove thedisk satisfiesthe
Blandford& Payneconditionfor jet launchingfor awide rangeof theturbulentmagnetic
Prantlnumber. Thesestudieswereextendedincludingaself-consistentnonlineardynamo
model(v. Rekowski et al. 2000),assumingeitherapositiveor negativesignof thealpha-
effect. Besideschangingcertaindiskpropertiesastemperatureor densitydistribution,the
differentsignessentiallyleadsto a differenttopologyof theglobaldisk magneticfield –
a quadrupolarfield geometry(positive alpha-effect) andan opendipolar field geometry
(negativealpha-effect). Only thelatteris well suitedfor jet launching.

5.3.2 MHD sim ulations

In the recentyears,moreandmore time-dependentsimulationsof accretiondiskshave
beenperformed,whichalsoincludeapossibleoutflow from their corona.

Thereareseveralpapersconsideringtheevolution of a stellarmagneticdipole in in-
teractionwith adiffusiveaccretiondisk takinginto accountalsotheevolutionof thatdisk
(Hayashiet al. 1996,Miller & Stone1997),Goodsonet al. 1997,1999a,b). In these
papersa collapseof the innerdisk is indicateddependingon themagneticfield strength
anddistribution. The resultsof Goodsonet al. (1997,1999)andGoodson& Winglee
(1999)areespeciallyinterestingsincecombininga hugespatialscale(2AU) with a high
spatialresolutionnearthestar( ÿ�� ����� ).

Themainproblemis that in generalthesetime-dependentsimulationslastonly for a
shorttimescaleof severalto tensof innerdiskrotations.However, it is essentialto follow
theevolutionof suchamagnetosphereovermanyrotationalperiods3. This is of particular
importanceif theinitial conditionof thesimulationis not in asteadyequilibrium.

Koideet al. (1998)werefirst to performgeneralrelativistic MHD simulationsof jet
formationcloseto theblackhole. In theirmodel,theinteractionof aninitially cylindrical
magneticfield with a Keplerianaccretiondisk resultsfirst in aninflow of mattertowards
the black hole. This accretionstreaminteractswith the hydrostaticcoronaaroundthe
blackholegiving riseto arelativisticgaspressuredrivenjet. At largerradii amagnetically

3At this point, we emphasizethat the observed kinematictime scaleof protostellarjets canbe aslarge as �	��

�
�	��� yrs,correspondingto ��������������������� stellarrotationalperiods(andinnerdisk rotations)!For example,proper
motionmeasurementsfor theHH30 jet (Burrows et al. 1996)give a knot velocity of about �	���������������! �"$# anda
knot productionrateof about0.4 knot peryear. Assuminga similar jet velocity alongthe whole jet extendingalong
0.25pc (Lopezet al. 1995),thekinematicageis about1000yrs.
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drivenwind is initiatedfrom theaccretiondisk. Thesimulationswereperformedfor less
thantwo rotationsof theinnerdisk (correspondingto lessthan0.02rotationsof thedisk
at theouteredgeof thegrid). Althoughtheseresultsof thefirst fully generalrelativistic
MHD simulationslook indeedvery exciting, someobjectionscan be raisedaboutthe
underlyingmodel. The initial conditionappliedis that of a hydrostaticcoronaaround
a black hole,an assumptionwhich is not compatiblewith the boundaryof a black hole
horizon.Suchaconfigurationis not stableandwill immediatelycollapse.

Recently, the authorsextendedtheir work applying an initial coronal structurein
steadyin-fall surroundinga non-rotatingblackhole(Koideet al. 1999)andalsoconsid-
eredthequasi-steadyin-fall of thecoronaarounda Kerr blackhole(Koideet al. 2000).
Again, the computationswere lasting over a few inner disk orbits. Therefore,the ob-
servedeventsof massejectioncouldstill bea relict of the initial conditionandmaynot
bepresentin thelong-termevolution.

So far, all numericalsimulationsof jet formationincluding the treatmentof thedisk
structurecould be performedonly for a few Keplerianperiodsof the inner disk (anda
fraction of that for the outerdisk). The main point is herethat in all casesthe disk-jet
interactionhasnotbeentreatedin a fully self-consistentway. For example,someauthors
treatthediskphysicsin theidealMHD approach.Othersassumeastandard% -diskmodel
asinitial condition,but thenneglectingtheviscoustermsfor thetime evolution. Or they
prescribesharpedgesbetweenthedisk andjet andnot a smoothtransition. Clearly, the
simulationof thelong-termevolutionof thedisk-jetinteractionrequiresto combinefully
self-consistentmodelsof diskandjet physics.

In summary, a future,completeunderstandingof theMHD jet launchingcanbeonly
expectedfrom suchkind of modelsimulations.The formationof a jet outflow perpen-
dicular the accretingstreamof matterwill remainthe basictask for the jet formation
theoreticianover thenext decades.



Chapter 6

Summar y of the pub lications
appended belo w

In the following, I summarizespecificaspectsof my publicationsin connectionwith
the topic of this habilitation thesis. I will distinguishthe publicationsbetweenpapers
following theapproachof stationaryMHD, thepapersdealingwith time-dependentMHD
simulationsandthepaperswhicharemoreconnectedto observationallyrelatedissues.

6.1 Stationar y models of relativistic MHD jets

As explainedin Sect.4.5, 4.6 the stationaryrelativistic MHD equationscanbe reduced
to the two issuesof collimation and acceleration, thus, to the problem(i) dealingthe
structureof thejet magneticfield (theGSsolution)and(ii) theproblemconsideringwith
thedynamicsof theflow of matteralongthemagneticjet (thewind equation).

In a first step,thefinite elementcodefor relativistic MHD developedpreviously has
beenextendedto relativistic jet sourceswherethe jet sourceenclosesa rotatingblack
hole.

Thereis commonbelievethatsuperluminaljet motionfrom activegalacticnucleiand
from galactichigh energy sourcesoriginatesin themagnetizedenvironmentof a rotating
black hole surroundedby an accretiondisk. The structureof thesejet magnetospheres
follows from solutionsof the Grad-Shafranov equationfor the force-balancebetween
axisymmetricmagneticsurfaces.In Fendt(1997a)two-dimensionalforce-freesolutions
of the streamequationare numericallyobtainedin a generalrelativistic context (3+1
formalism on Kerr geometry). In order to solve the GS equation(also called stream
equation),thenumericalmethodof finite elementshasbeenapplied.In thisapproach,the
regularity conditionsalongthelight surfacesareautomaticallysatisfied.After iteratively
adjustingthe poloidal currentdistribution and the shapeof the jet boundary, onefinds
a magneticfield configuration(the field configuration)without kinks at the outer light
surface.Thesolutionsobtainedareglobalsolutionsextendingfrom theinnerlight surface
of the Kerr black hole to the asymptoticregime of a cylindrically collimatedjet with a
finite radius. Dependingon theaccretiondisk magneticfield boundarycondition,some
of thesolutionsstronglyindicateonahollow jet structure.Themagneticfield distribution
of thejet showsafastcollimationbeyondadistanceof aboutonelight cylinderawayfrom
the centralsource.The asymptoticjet radiusis about3-5 light cylinder radii with a jet
expansionfactor(asymptoticjet radiusto jet foot point radius)of about10-100.
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In thenext papersthedifferentialrotationof the jet launchingaccretiondisk is con-
sidered.

As first steptowardsa two-dimensionalsolutionof the GS equationthe asymptotic
regimeof a cylindrically collimatedjet is investigated.This is necessaryin orderto pro-
vide theproperboundaryconditionsfor thetwo-dimensionalsolution.In Fendt(1997b),
theasymptoticfieldstructureof differentiallyrotatingmagneticjetsis investigated,widen-
ing thestudyby Appl & Camenzind(1993a,b).In general,theresultsshow that,with the
samecurrentdistribution, differentially rotating jets are collimatedto smallerjet radii
as comparedwith jets with rigidly rotating field. In turn, differentially rotating jets
needa strongernetpoloidalcurrentin orderto collimateto thesameasymptoticradius.
Current-freesolutionsarenot possiblefor differentiallyrotatingdisk-jet magnetospheres
with cylindrical asymptotic.Thepaperpresentsa simpleanalyticalrelationbetweenthe
poloidal currentdistribution andmagneticfield rotation law. Also a generalrelationis
derivedfor thecurrentstrengthfor jetswith maximumdifferentialrotationandminimum
differentialrotation.Analyticalsolutionsarealsogivenin thecaseof afield rotationlead-
ing to a degenerationof thelight cylinder. Becausefield rotationandelectriccurrentare
conservedquantitiesalongtheforce-freefield lines,oneis enabledto connecttheasymp-
totic solutionto a Keplerianaccretiondisk. This allows to derive thetotal expansionrate
for thejet, andalsotheflux distributionat thefoot pointsof theflux surfacesarederived.
Large poloidal currentsimply a strongopeningof flux surfaces,a strongergradientof
field rotation leadsto smallerexpansionrates. Thereis indicationthat extragalacticjet
expansionratesarelessthanin thecaseof protostellarjets.High massAGN seemto have
largerjet expansionratesthanlow massAGN.

Having now at handthe properasymptoticboundarycondition (Fendt1997b), the
full two-dimensionalfield structureof thesesourcecanbeobtained.In Fendt& Memola
(2001)theaxisymmetricstructureof collimating,relativistic, stronglymagnetized(force-
free) jetshasbeeninvestigated.Essentially, thedifferentialrotationof thefoot pointsof
thefield linesis includedin thetreatment.Themagneticflux distributionis determinedby
thesolutionof theGrad-Shafranov equationandtheregularity conditionalongthe light
surface. As the main difficulty, with differential rotation the shapeof the light surface
is not known a priori andmustbe calculatedin an iterative way. For the first time, the
force-freemagneticstructureof truly two-dimensional,relativistic jets,anchoredin adif-
ferentiallyrotatingdiskhasbeencalculated.Thisapproachallowsfor adirectconnection
betweenparametersof thecentralsource(mass,rotation)andtheextensionof the radio
jet. In particular, thiscanprovideadirectscalingof thelocationof theasymptoticjet light
cylinderin termsof thecentralmassandtheaccretiondiskmagneticflux distribution. The
paperdemonstratesthatdifferentiallyrotatingjetsmustbecollimatedto a smallerradius
in termsof the light cylinder if comparedto jets with rigid rotation. Also, the opening
angleis smaller. In general,differential rotationof the iso-rotationparameterleadsto
anincreaseof the jet openingangle.Theseresultsareapplicablefor highly magnetized,
highly collimated,relativistic jets from active galacticnuclei andGalacticsuperluminal
jet sources.Comparisonto theM87 jet shows agreementin thecollimationdistance.A
light cylinder radiusof theM87 jet of 50Schwarzschildradii canbederived.

Sofar, thepapersconsidertheforce-freemagneticfield structureof acollimatingrel-



6.2. MHD simulationsof jet formation 61

ativistic jet. What is also interesting,andhaseven moreobservational implications,is
theflow dynamicsalongthejet magneticfield. In Fendt& Greiner(2001)thedynamics
of magneticallydriven superluminaljets originatingfrom rotatingblack holeshasbeen
investigated. For this, the stationary, generalrelativistic, magnetohydrodynamicwind
equationalongcollimating magneticflux surfaceshasbeensolvednumerically. The jet
solutionsarecalculatedon a global scaleof spatialrangefrom several to several 1000
gravitational radii andfor differentmagneticfield geometries.For a givenmagneticflux
surfaceweobtainthecompletesetof physicalparametersfor thejet flow. Thenumerical
resultsareappliedto theGalacticsuperluminalsourcesGRS1915+105andGRO1655-
40. Theobservedspeedof morethan0.9c canbeachievedin generalby magnetohydro-
dynamicacceleration.Thevelocity distribution alongthemagneticfield hasa saturating
profile. The asymptoticjet velocity dependseitheron the plasmamagnetization(for a
fixedfield structure)or on themagneticflux distribution (for fixedmagnetization).The
distancewheretheasymptoticvelocity is reached,is below theobservationalresolution
for GRS1915+105by severalordersof magnitude.Theplasmatemperaturerapidly de-
creasesfrom about

� ÿ�&(' K at thefoot point of the jet to about
� ÿ$) K at a distanceof */ÿ/ÿ,ÿ

gravitationalradii from thesource.Temperatureandthemassdensityfollow apower law
distribution with theradius. The jet magneticfield is dominatedby the toroidalcompo-
nent,whereasthevelocityfield is dominatedby thepoloidalcomponent.

Motivatedby thehigh temperaturesfound in thewind solutioncloseto theorigin of
thejet, thepossibilityof X-ray emissionfrom thispartof thejetsbeendiscussed.Indeed,
applyingtheMHD wind solutionof Fendt& Greiner(2001),Memolaet al. (2002)were
ableto derive theoptically thin thermalX-ray spectrumincluding iron emissionlines in
thejet (seebelow).

6.2 MHD sim ulations of jet formation

The self-collimationpropertyof MHD jets hasbeendemonstratedby Ouyed& Pudritz
(1997).However, thesesimulationswerecarriedout for a certaininitial field distribution
of apotentialfield of “paraboidal”shapeanchoredin thedisk. However, weknow thatin
thecaseof protostellarjetsthecentralstarmayalsocarryamagnetosphere,mostprobably
muchstrongerthanthedisk magneticfield. It is thereforeessentialto investigatethe jet
formationprocessalsofor suchamodelsetup.

In Fendt& Elstner(1999)theevolutionof astellardipolar-typemagnetosphereinter-
actingwith a Kepleriandisk is investigatednumericallyusingtheidealMHD ZEUS-3D
codein theaxisymmetryoption.Theevolutionof theinnermostregionaroundthestellar
objecthasbeencomputedusinganon-smoothedgravitationalpotential.Thedisk is taken
asa boundaryconditionprescribingthemassinflow into thecorona.Dependingmainly
on themagneticfield strength,our simulationslastseveralhundredKeplerianperiodsof
the innerdisk. Themain result is that thedipolarstructureof themagneticfield almost
completelydisappears.An expandingbubbleof hot gasof low densityformsdisrupting
theinitial dipolarfield structure.A diskwind accelerateswithin thetime limit of thesim-
ulationto velocitiesof about0.5 theKeplerianspeedandpotentiallymaydevelopinto a
stationarycollimatedjet. Simulationswith arotatingandanon-rotatingstarshow signifi-
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cantdifferences.In thecaseof a rotatingstarduringtheveryfirst timestepsahighspeed
outflow alongtheaxisis initiatedwhichdoesnotexist in thecaseof anon-rotatingstar.

This modelsetupwasfurtherinvestigatedin Fendt& Elstner(2000).Indeed,thesta-
tionarystatesolutionssuggestedby theearlierresultswerefound. Dependingmainly on
the magneticfield strength,the simulationswere lasting for several thousandsof Kep-
lerian periodsof the inner disk. As before,a Kepleriandisk is assumedasa boundary
conditionprescribinga massinflow into thecorona.Additionally, a stellarwind from a
rotatingcentralstar is prescribed.The major result is that the initially dipole type field
developsinto asphericallyradialoutflow patternwith two maincomponents,adiskwind
and a stellar wind component. Thesecomponentsevolve into a quasi-stationaryfinal
state. The poloidal field lines follow a conical distribution. As a consequenceof the
initial dipole, the field directionin the stellarwind is oppositeto that in the disk wind.
Thehalf openingangleof thestellarwind conevariesfrom +,ÿ-, to *-*$, dependingon the
ratio of the massflow ratesof disk wind andstellarwind. The maximumspeedof the
outflow is abouttheKeplerianspeedat theinnerdiskradius.An expandingbubbleof hot,
low densitygastogetherwith thewinding-upprocessdueto differentialrotationbetween
staranddisk disruptstheinitial dipoletypefield structure.An axial jet formsduringthe
first tensof disk/starrotations,however, this featuredoesnot survive on the very long
time scale.A neutralfield line dividesthe stellarwind from the disk wind. Depending
on thenumericalresolution,smallplasmoidsareejectedin irregulartime intervalsalong
this field line. Within a coneof

� *., alongthe axis the formationof small knotscanbe
observed if only a weakstellarwind is present.Essentially, with the chosenmassflow
ratesandfield strengthno indicationfor a flow self-collimationhasbeenfound. This is
dueto thesmallnetpoloidalelectriccurrentin the(reversedfield) magnetospherewhich
is in differenceto typical jet models.

Protostellarjetsmostprobablyoriginatein turbulentaccretiondiskssurroundingthe
youngstellarobjects. In Fendt& Cemeljic (2002) the evolution of a disk wind into a
collimatedjet is investigatedundertheinfluenceof magneticdiffusivity assumingthatthe
turbulentpatternin thediskwill alsoenterthediskcoronaandthejet. TheZEUS-3Dcode
hasbeenextendedfor magneticdiffusivity andusedin theaxisymmetryoption to solve
thetime-dependentresistiveMHD equationsfor amodelsetupof acentralstarsurrounded
by anaccretiondisk. Thedisk is takenasa time-independentboundaryconditionfor the
massflow rateandthe magneticflux distribution. In the paper, analyticalestimatesfor
themagnitudeof magneticdiffusionin aprotostellarjet arederivedconnectingourresults
to earlierwork in thelimit of idealMHD. It is foundthatdiffusive jetspropagateslower
into theambientmedium,mostprobablydueto thelowermassflow ratein axialdirection.
Closeto thestaraquasistationarystateevolvesafterseveralhundreds(weakdiffusion)or
thousands(strongdiffusion)of diskrotations.Magneticdiffusivity affectstheprotostellar
jet structureasfollows. (i) The jet poloidal magneticfield becomesde-collimated.(ii)
Thejet velocity increaseswith increasingdiffusivity, while thedegreeof collimationfor
thehydrodynamicflow remainsmoreor lessthesame.(iii) Theresultssuggestthemass
flux asa propertracerfor the degreeof jet collimation andfind indicationfor a critical
valuefor themagneticdiffusivity abovewhich thejet collimationis only weak.
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6.3 A link to obser vations – parameter studies and spectra

In thissectionI collecttwo jet paperswhichdonotdealdirectlywith thetheoryof MHD
jet formation,but simply describepossibleconsequencesfor theobservationaldetection
of jetsaswell asfor theinterpretationof theobservations.

In Fendt& Zinnecker (1998) a first exampleof this kind of researchinvestigated
protostellarjetswith anobservedslightmisalignmentbetweenthejet andcounterjet axis.
Basically, a theoreticalmodelexplaining the formationof the suchjets would requirea
fully three-dimensionalMHD approach. Sincethis is hardly feasible,a first stepis a
parameterstudyof energiesandforcesinvolved.

Observationsof several bipolar jet flows from young stellar objectsreveal a slight
differencein the apparentdirection of propagationfor jet and counterjet. The paper
investigatespossiblemechanismsleadingto sucha jet deflection.Severalreasons,which
may be responsiblefor sucha jet structure,arediscussed.Thesearethe motion of the
jet sourcewithin a binarysystem,gravitationalpull dueto anasymmetricexternalmass
distribution, dynamicalpressureof the external medium,inertial effects due to proper
motionof thejet source,aninclinedinterstellarmagneticfield, andthecouplingbetween
amagneticjet andanexternalmagneticfield. Whatis found,is thatfor typicalprotostellar
jet parametersthemostlikelymechanismsleadingto abentjet structureareLorentzforces
onthemagneticjet and/ormotionof thejet sourcein abinarysystem. Dynamicalpressure
of a denseexternalmediumor a stellarwind from a companionstarcannotbeexcluded
assourceof jet bending.

The next paperconsidersthe X-ray emissionemitted from highly relativistic jets
from microquasars.Having calculatedthe magneticfield structure(Fendt1997a)and
the plasmadynamicsalong the collimating relativistic magneticjets (Fendt& Greiner
2001), the logical next stepis to usetheseresultsto derive somespectralpropertiesof
thesejet flows. Applying thejet dynamicparameters(velocity, density, temperature)cal-
culatedfrom themagnetohydrodynamic(MHD) equations,in Memolaet al. (2002)the
thermalX-ray luminosityalongtheinnerjet flow in theenergy rangeÿ��0/21 � ÿ�� � keV has
beenobtained. Note that the emittedradiationis consideredasa tracer of the jet flow
only. However, it canbeshown afterwardsthattheemittedflux is weakcomparedto the
kinetic energy flux of the jet andthat, therefore,the polytropic MHD modelappliedis
consistentwith thecalculatedluminosity. Thepapermainly concentrateson thecaseof
Galacticmicroquasarsemittinghighly relativistic jets.For a *43 �

centralobjectanda jet
massflow rateof

5687:9 � ÿ�;�<=3 �=>�? ;@& weobtainajet X-ray luminosity ACBED � ÿ$F	F�G ?�HJI ;@& .
Emissionlinesof FeXXV andFeXXVI areclearlyvisible. Relativistic effectssuchas
Dopplershift andboostingwereconsideredfor differentinclinationsof thejet axis. Due
to thechosengeometryof theMHD jet theinnerX-ray emittingpartis notyetcollimated.
Therefore,dependingon theviewing angle,theDopplerboostingdoesnot play a major
role in thetotal spectra.
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Chapter 7

Future prospects – self-consistent
disk-jet MHD sim ulations

Sofar, thebasicmechanismbehindthemagnetohydrodynamicjet formationseemsto be
fairly understood.However, therearestill someopenpoints.Thegeneralproblemof jet
launchingfrom anaccretiondiskhasnotyetbeensolvedin afully self-consistentway. In
thefollowing I will summarizesomeof theseopenquestions.This list alsorepresentsa
what-to-dolist for thenext yearsof jet theory. Only whenthesepointswill beclarified,
onemaycontinueto actuallymodelcertainjet sourcescalculatingtheemittedradiation
from jetsof differentsources.Thiswouldallow to learnmoreaboutthedetailedstructure
of the jet source,aboutintrinsic differencesbetweenindividual jet sourcesandpossibly
abouttheir differenthistory.

7.1 The MHD model of jet formation – open questions

Magnetohydrodynamic self-collimation

At afirst look, thereseemsto beclearindicationfrom analyticalstudiesof theasymptotic
jet aswell asfrom MHD simulationsof the jet formationregion that magnetohydrody-
namicself-collimationshouldwork (Heyvaerts& Norman1989,Li etal. 1991,Ouyed&
Pudritz1997,Krasnopolsky et al. 1999).

However, a final theoreticalconfirmationof sucha processis missingwhich, in par-
ticular, alsoconsidersthe scalesof astrophysicaljets is still missing. The MHD simu-
lationswhich actuallysupportthe ideaof self-collimationclearlysuffer from numerical
constraints.The spatialnumericalresolutionavailableon currentcomputersis too low
resolvingthe jet formationregion only of the orderof just a few percentof the real jet
dimensions.Thecollimationseenin thesimulationsthereforeis on scaleswhich arenot
comparablewith theobservedfeatures.Thejet radiusderivedfrom thesimulationsis far
toosmallwith therealjetsbeing100timeswider.

Concerningthestationarymodels,someprincipalarguments,mainlyconcernedabout
thecurrentclosurein jets,have beenraisedwhich doubttheself-collimationpropertyof
MHD flows.

65



66 Chapter7. Futureprospects– self-consistentdisk-jetMHD simulations

A self-consistent astrophysical model scenario

So far, all time-dependentsimulationsaswell asstationarysolutionsof the theoretical
equationshavebeenobtainedundersimplifying assumptionsconcerningthegeometryof
thejet source.However, it seemsto beclearthatanastrophysicaljet sourceis acomplex
systemconsistingof several components– a staror a black hole, the disk and the jet.
Besidetheirdifferentshape(whichactuallyconstraintsthenumericalgrid), thesecompo-
nentsdiffer substantiallyin theirphysicalproperties.As aconsequence,anumericalcode
would have to dealwith stronggradientsin thedynamicalparametersandquitedifferent
local time steppingtime. Thesedifficultiesyet hindera combinedtreatmentof all these
modelconstituents.Most important,the time-dependentejectionmechanismis not yet
understood.

A consistent accretion disk model

While the physicsof thestar(or the blackhole) andthe jet is fairly understood,a fully
consistentmodelof theaccretiondiskis yetmissing.Thedifficulty hereis thatfor thedisk
thecompletesetof physicalequationsmustbesolvedandthree-dimensionaleffectsmight
be important. In particular, thedisk structureis governedby themagnetohydrodynamic
equationsincluding radiation transfer. Needlessto say that closeto a black hole also
relativistic effectswill playanessentialrole. For theweaklyionizedpartsof aprotostellar
disk ambipolardiffusion might be consideredaswell asthe influenceof dustparticles.
Again, stronggradientsare presentin vertical and horizontaldirection. Thereforethe
timesscalesvary not only alongthedisk radiusbut alsoin verticaldirectionlimiting the
numericalMHD simulation.

The intrinsic setup – the origin of magnetic field and jet

Two fundamentalquestionsremainopenpartlyasaconsequenceof theabovementioned
difficulties.

The first one is whethersomeprotostellarjets originatesas a stellar jet, i.e. as a
stellarwind from thestellarsurfaceor whetherjetsaregenerallylaunchedasadiskwind.
Observationsdo not give a definitive answer(yet) andtheoreticalmodelsaretoo simple
(yet). Theobservedscaleof thejet radius100- 1000timeslargerthanthecentralsource
indicateson jets being launchedas disk winds. Also the time scaleindicatedfor the
emissionof jet knots is in favor of being triggeredby someprocessin the disk. For
relativistic jets, the yet unknown mattercontent(baryonicor leptonic)may decidethe
questionaboutthejet origin (Blandford& Payneor Blandford& Znajek).

The secondis the questionof the origin of the magneticfields. So far, the models
of jet formationassumethatthemagneticfield “is there”,hassometopologicalstructure
(dipolar, quadrupole...). However, the jet magneticfield canbegeneratedby a dynamo
processin thedisk or thestar(or both) or it canbe advectedwith theaccretionprocess
from the surroundinginterstellarmedium. The resultingfield structuremight be quite
different– a stellardipole, possiblyinclined, a disk magnetospherewith open(dipole)
or closed(quadrupole)field lines or maybesometwisted,hour-glassshapedflux tubes
anchoredin thedisk andtheambientmedium.Thetime-scaleof thedynamoprocessof
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theadvectionwill alsoinfluencethe jet formation. In turn, thepresenceof the jet itself
mayhavesomeimpacton themagneticfield generatingprocesses.

7.2 The future goal – model fits to obser ved jet sour ces

Due to the above mentionedincompletenessof the presentMHD models– physicstoo
simple, time scalestoo short, spatialscaletoo small – thesecannotyet be appliedto
actuallyfit theobserveddata. Thesedata,on theotherhand,do not yet provide a look
into theinnermostregionsof jet formation.

However, suchcomparativestudiesof jet formationareessentialfor theunderstanding
of individual sources.Computersandinstrumentionmight bereadyfor sucha taskin a
coupleof years.

From the theoreticalpoint of view this would requirefirst to answeror clarify all
theopenpointssummarizedabove. Time-dependentsimulationstaking into accountthe
complex structureof thejet sourceconsistingof threeinteractingcomponents– thecen-
tral object,its surroundingaccretiondisk,andthejet – all coupledby themagneticfield,
but alsothehugesizeof jet in respectto its origin will finally clarify theroleof magneto-
hydrodynamicself-collimationandthequestionof thejet origin.

Numericalsimulationsof theaccretiondiskevolutionwill tell uswhyjetsarelaunched
andhow themagneticfield is established.It seemsto beessentialfor suchkind of simu-
lationsalsoto includea disk wind or a magnetizeddisk coronain thetreatment,in order
to allow for jetsto beformedfrom thedisk.

Having succeededso far, thenext stepmight be to calculatethe radiative signatures
emittedfrom the jet andits source.A first stepin this directionhasalreadybeenmade
(Goodsonet al. 1997)who presentedemissionmapsof forbiddenemissionlines in pro-
tostellarjets.Radioemissionmapsfor relativistic extragalacticjetshavebeenmodeledin
thehydrodynamiccase(e.g. Aloy et al. 2000).Also theX-ray emissionlinescalculated
from a relativistic MHD jet modelof a microquasar(Memolaet al. 2002)is alongthese
lines.

By comparingindividualsourcesof jetswewill finally learnwhetherthepresentpic-
ture of jet formationis corrector whethersomekey processhasbeenoverlooked. We
thenalsoexpectananswerto thequestionswhy somediskshave jetsandsomedo not,
andhow thepresenceof a jet affectstheevolutionof thejet source.
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Abstract. There is common belief that superluminal jet mo-
tion from active galactic nuclei and from galactic high energy
sources originates in the magnetized environment of a rotating
black hole surrounded by an accretion disk.

The structure of these jet magnetospheres follows from so-
lutions of the so called stream equation for the force-balance
between axisymmetric magnetic surfaces. In this paper, two-
dimensional force-free solutions of the stream equation are nu-
merically obtained in a general relativistic context (3+1 formal-
ism on Kerr geometry).

We apply the numerical method of finite elements. In this
approach, the regularity conditions along the light surfaces
are automatically satisfied. After an iterative adjustment of the
poloidal current distribution and the shape of the jet boundary,
we find magnetic field configurations without kinks at the outer
light surface.

The solutions extend from the inner light surface of the Kerr
black hole to the asymptotic regime of a cylindrically collimated
jet with a finite radius. Different magnetic flux distributions
along the disk surface were investigated. There is strong evi-
dence for a hollow jet structure.

Key words: MHD – ISM: jets and outflows – galaxies: jets –
black hole physics

1. Jet formation around black holes

Jet motion originating in the close environment of a rotating
black hole is observationally indicated for two classes of sources
concerning mass and energy output.

The first class are the active galactic nuclei (hereafter AGN).
Following the standard model, AGN jet formation develops
in the magnetized environment around rotating, super massive
black holes with a mass of the order of 108−1010 M� (Sanders

? Present address: Landessternwarte, Königstuhl, D-69117 Heidel-
berg, Germany (cfendt@lsw.uni-heidelberg.de)

et al. 1989, Blandford & Payne 1982, cf. Blandford et al. 1990,
Kollgaard 1994). From evolutionary arguments (accretion of
angular momentum) these black holes are believed to be very
rapid rotators.

In some quasars and BL Lacertae objects, the jet knots are
observed to follow helical trajectories on parsec-scale with a de-
projected highly relativistic speed. The high jet velocity together
with a small angle between the line of sight and the propagation
vector involves a time shift from knot time to observer time, and
thus the projected jet motion appears as superluminal motion.
Examples are 3C 273 (Schilizzi 1992, Abrahan et al. 1994) and
3C 345 (Zensus et al. 1995).

Radio observations have also detected superluminal motion
in the Galaxy. Examples are the high energy source 1915+105
(Mirabel & Rodriguez 1994) and the X-ray source GRO J1655-
40 (Tingay et al. 1995). The de-projected jet speed of both
sources is surprisingly similar (0.92 c). This velocity may cor-
respond to the escape velocity from a point near the black hole
(Mirabel & Rodriguez 1995). However, there are not many de-
tails known about the intrinsic sources.

In both cases, the jets are detected in non-thermal radio emis-
sion, clearly indicating a magnetic character of the jet formation
and propagation.

From the introductionary remarks above, it is clear that a
quantitative analysis of the jet structure in these sources must
take into account both magnetohydrodynamic (hereafter MHD)
effects and general relativity.

In this paper we will numerically investigate the structure
of a jet magnetosphere in Kerr geometry. The calculated field
distributions represent global solutions to the local cross-field
force-balance equation.

The first theoretical formulation of the electromagnetic
force-equilibrium in Kerr space-time around fast rotating black
holes was given by Blandford & Znajek (1977) and Znajek
(1977). They presented the first solutions of the problem and
discovered the possibility of extracting rotational energy and an-
gular momentum from the black hole electromagnetically (the
so called Blandford-Znajek process). Okamoto (1992) investi-
gated the black hole magnetic field structure and the black hole
evolution under influence of the Blandford-Znajek process. Ex-
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amining the fast magnetosonic points of the wind and the ac-
cretion, he found analytical expressions for the poloidal current
and the field rotation law.

With the development of the 3+1 split of Kerr space-
time (Thorne & Macdonald 1982, Macdonald & Thorne 1982,
Thorne et al. 1986) the understanding of the electrodynamics
of rotating black holes became more transparent. For a chosen
global time, the tensor description splits up in the usual fields
B, E, current density j, and charge density ρ . The formula-
tion of the MHD equations becomes very similar to that of flat
Minkowski space, which are used in pulsar electrodynamics.

Using this powerful tool, Macdonald (1984) calculated first
the numerical solutions for the magnetic field force-balance
around rotating black holes. Three models (magnetic field dis-
tribution roughly radial, uniform, or paraboidal) of differentially
rotating magnetospheres were investigated, however, the inte-
gration region was limited to <∼ 10 horizon radii.

Camenzind (1986, 1987) formulated a fully relativistic de-
scription of hydromagnetic flows, basically applicable to any
field topology. The so-called wind equation considers the sta-
tionary force-balance of the plasma motion along the magnetic
field. The (flat space) transfield equation was solved by using
the method of finite elements.

Haehnelt (1990) extended this procedure for Kerr space-
time in the 3+1 description. The solutions explicitly show the
interrelation between the poloidal current strength and the col-
limation of the flux surfaces. They were calculated on separate
integration domains inside and outside the light cylinder (see
Camenzind 1990). However, there was a mismatch between the
inner and outer solution at the light cylinder, which is a singu-
lar surface of the relativistic transfield equation. This matching
problem is well known from in the literature of pulsar magne-
tospheres (Michel 1991).

So far, no global magnetic field solutions could yet be found
originating in the accretion disk close to the rotating black hole
and, passing through the outer light surface, eventually reaching
the asymptotic regime of a collimated jet.

The matching problem of relativistic force-free magneto-
spheres was investigated in the context of stellar jets (Fendt
1994, Fendt et al. 1995). It then became clear that a mismatch at
the light cylinder could be removed by a proper adjustment of
the current distribution and the outer boundary condition, which
could be interpreted as an adjustment of the ”magnetic pressure
equilibrium” between the regions inside and outside the light
cylinder.

In this paper, we like to extend the results from Fendt et
al. (1995) to the general relativistic context. The solutions pre-
sented here are global solutions for the stationary black hole
force-free electrodynamics in the sense that they smoothly pass
the singular surface of the outer light surface. The field lines
originate near the inner light surface close to a rotating black
hole and collimate to an asymptotic jet of finite radius of several
(asymptotic) light cylinder radii.

The structure of this paper is as follows. In Sect. 2, basic
equations of the theory of relativistic magnetospheres in the
context of Kerr metric are reviewed. In Sect. 3, the model un-

derlying the numerical calculations is discussed. We present our
numerical results in Sect. 4 and discuss solutions with different
topologies and jet parameters.

2. MHD description of black hole magnetospheres

The basic equations describing a magnetohydrodynamic
(MHD) configuration under the assumptions of axisymmetric,
stationary and ideal MHD in the context of Kerr metric were
first derived by Blandford & Znajek (1977) and Znajek (1977).
In this paper, we apply the MHD formulation in the 3+1 formal-
ism introduced by Thorne & Macdonald (1982), Macdonald &
Thorne (1982), or Thorne et al. (1986) (hereafter TPM). In the
notation, we follow TPM and Okamoto (1992).

2.1. Space-time around rotating black holes

In the 3+1 split the space-time around rotating black holes with
a mass M and angular momentum per unit mass, a = J/Mc
is described using Boyer-Lindquist coordinates with the line
element

ds2 = α2c2dt2 − ω̃2 (dφ− ωdt)2 − (ρ2/∆) dr2 − ρ2 dθ2 . (1)

t denotes a global time in which the system is stationary, φ is the
angle around the axis of symmetry, and r, θ are similar to their
flat space counterpart spherical coordinates. The parameters of
the metric tensor are defined as usual,

ρ2 ≡ r2 + a2 cos2 θ ∆ ≡ r2 − 2GM r/c2 + a2

Σ2 ≡ (r2 + a2)2 − a2∆ sin2 θ ω̃ ≡ (Σ/ρ) sin θ

ω ≡ 2 aGM r/cΣ2 α ≡ ρ
√

∆/Σ

ω is the angular velocity of the differentially rotating space, or
the angular velocity of an observer moving with zero angular
momentum (ZAMO), ω = (dφ/dt)ZAMO, respectively. α is the
red shift function, or lapse function, describing the lapse of
the proper time τ in the ZAMO system to the global time t,
α = (dτ/dt)ZAMO.

The electromagnetic field B,E, the current density j, and
the electric charge density ρc are measured by the ZAMOs ac-
cording to the local flat Minkowski space. These local exper-
iments then have to be put together by a global observer for
a certain global time using the lapse and shift function for the
transformation from the local to the global frame. In spite of this
transformation, Maxwell’s equations in the 3+1 split look very
similar to those in Minkowski space. There is just an additional
source term from the differential rotation of space (see below).

2.2. The cross–field force–balance

The magnetospheric structure follows from the force-balance
across the flux surfaces. The projection of the equation of motion
perpendicular to the field lines provides the stream equation.
Here, in the force-free case, only Lorentz forces (perpendicular
to the flux surfaces) are considered.
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Under the assumption of axisymmetry a magnetic flux func-
tion (or stream function) can be defined measuring the magnetic
flux through a loop of the Killing vector m = ω̃2∇φ,

Ψ(r, θ) =
1

2π

∫
BP · dA , BP =

1
ω̃2
∇Ψ ∧m. (2)

Equivalently, the poloidal current is defined by integration of
the poloidal current density through the same loop

I = −
∫

αjP · dA = − c

2
αω̃BT . (3)

The indices P and T denote the poloidal and toroidal components
of a vector. The force-free assumption,

ρcE +
1
c
j ∧B = 0 , (4)

implies that the poloidal current flows parallel to the poloidal
magnetic field BP ‖ jP. Thus, I = I(Ψ).

With the assumption of a degenerated magnetosphere, i.e.

|B2 − E2| >> |E ·B| ' 0 (5)

an angular velocity of field lines can be derived from the deriva-
tive of the time component of the vector potential

ΩF = ΩF(Ψ) = −c(dA0/dΨ) (6)

With the additional assumption of stationarity, Ampère’s
law can be expressed as

∇∧ αB =
4π
c
αj − 1

c
(E · ∇ω)m , (7)

(TPM). The differential rotation of space provides an additional
source term with the dimension of a current density. The toroidal
current density follows from a projection of Eq. (4), the equation
of motion in the force-free limit, perpendicular to Ψ,

4π
c
α jT = − α (ΩF − ω)

c ω̃
∇Ψ · ∇

(
ω̃2(ΩF − ω)

α2 c

)
−
(
ω̃

ω̃L

)2

ω̃∇ ·
( α

ω̃2
∇Ψ

)
+

1
αω̃

4
c2

I I ′ . (8)

The toroidal component of Ampère’s law (7) eventually leads
to the stream equation, a non linear partial differential equation
of second order for the flux function Ψ,

ω̃∇ ·
(
α
D

ω̃2
∇Ψ

)
= ω̃

ω − ΩF

αc2
Ω′F |∇Ψ|2 − 1

αω̃

4
c2

I I ′ . (9)

Here,

D = 1−
(
ω̃

ω̃L

)2

, (10)

and ω̃L denotes the positions of the two light surfaces,

ω̃2
L =

(
± α c

ΩF − ω

)2

. (11)

The ′ indicates the derivative d/dΨ. The + sign holds for the
outer light surface with ΩF > ω, while the − sign stands for
the inner light surface, where ΩF < ω. Throughout this pa-
per we will assume a constant angular velocity of the field
lines, ΩF(Ψ) =const. This assumption will be discussed below
(Sect. 3.5).

The stream equation was first derived by Blandford & Zna-
jek (1977) and further evaluated in the 3+1 formalism by TPM.
A general version of the stream equation including inertial terms
and entropy was obtained by Beskin & Pariev (1993).

In the special relativistic limit, α → 1, ω → 0, and the
stream eq. (9) becomes identical to the pulsar equation (Scharle-
mann & Wagoner 1973).

2.3. Normalization

For large r, ω → 0 and the metric reduces to Minkowski. We
define an asymptotic light cylinder,RL ≡ c/ΩF (here and in the
following (R,Z) denote the cylindrical coordinates). Using the
normalization

r ⇔ RL r,

ω̃ ⇔ RL ω̃,

∇ ⇔ (1/RL)∇ ,

Ψ ⇔ Ψmax Ψ , and

I ⇔ Imax I ,

the stream equation can be written dimensionless

ω̃∇ ·
(
α
D

ω̃2
∇Ψ

)
= −gI

1
αω̃

I I ′ . (12)

The coupling constant gI measures the strength of the (poloidal
current) source term,

gI =
4I2

maxR
2
L

c2Ψ2
max

= 4 (
Imax

1018A
)2(

RL

1016cm
)2(

Ψmax

1033Gcm2
)−2. (13)

(A similar normalization for the ΩF term in Eq. (9) would reveal
a coupling constant gΩ = 1.)

Two typical length scales enter the problem. (1) The scale
of the horizon radius rH determines the influence of gravitation
on the metric. (2) The asymptotic light cylinder RL describes
the influence of rotational effects on the electrodynamics. The
interrelation between these two scaling parameters follows from
the definition of the rotation law for the field, ΩF(Ψ), in terms
of the rotation of the black hole, ΩH.

2.4. The regularity condition

At the light surfaces, the stream equation becomes singular and
reduces to a non-linear, partial differential equation of first order,

∇D · ∇Ψ = −gI
1
α2

I I ′ . (14)



1028 C. Fendt: Collimated jet magnetospheres around rotating black holes

ω

BH

ωL
~

Ψ(R,Z)

~
L

R jet

DISK

LR

Rjet(Z)

Fig. 1. Applied model topology for the jet formation around rotating
black holes. The sketch shows the asymptotic region in the upper part
and the inner region around the black hole (BH) in the lower part. The
two regions are drawn in different scales.

This regularity condition for Ψ is equivalent to an inhomoge-
neous Neumann-type boundary condition on the poloidal mag-
netic field component parallel to the surface D = 0 (the light
surface),

∂Ψ
∂n

= gI
1

|∇D|
1
α2

I I ′ , n = − ∇D
|∇D| , (15)

where n denotes the unit vector normal to the light surface.
Note that the regularity condition depends on the strength

of the poloidal current as well as the current distribution. This
has far reaching consequences for the global field topology. For
the special relativistic case, we have shown that the shape of the
jet boundary is determined by the regularity requirement (Fendt
1994, Fendt et al. 1995). As it will discussed below, the same
applies in the general relativistic case.

3. The model assumptions

We now describe the model assumptions underlying the nu-
merical calculations. The model topology basically follows the
standard model for AGN (cf. Blandford 1990).

There is not very much known about the central sources
of galactic superluminal jets. Since observationally the jet phe-
nomenon of AGN and of young stellar objects as well is always
connected to the signatures of an accretion disk, we assume a
similar disk-jet scenario for the jet formation in galactic super-
luminal jet sources.

In the following, we discuss the three main components of
the applied model - a central black hole, a surrounding accretion
disk, and the asymptotic jet. A schematic overview of the model
is shown in Fig. 1.

3.1. The central black hole

In the standard model for AGN the driving engine responsible
for the activity is a rotating super massive black hole with a
mass of about 108 − 1010M� (Sanders et al 1989).

In the case of galactic superluminal sources, there is evi-
dence that the central object is a black hole as well (Mirabel &
Rodriguez 1995).

For the calculation of the field structure from the force-free
stream equation, gravitational effects of the collapsed object
play a non-obvious role. They appear in the stream equation in
the description of the gravitogeometric background and in the
two light surfaces.

The differential rotation of the space around Kerr black holes
leads to the formation of two light surfaces (hereafter LS). Here,
the rotational velocity of the field lines relative to the ZAMO
equals the speed of light (see Blandford & Znajek 1977). This
could be understood from the following. The concept of field
lines implies the rigid rotation of each field line. Far from the
hole, where ω is small, the outer LS describes the point where
the field line velocity equals the speed of light seen from a static
observer in the non-rotating space. Close to the hole, the space
and the co-moving ZAMO is forced to (differentially) rotate.
Since the field line is rigidly rotating, at a certain position (the
inner LS) it will reach the speed of light in opposite direction
seen from a ZAMO. Here, ω > ΩF, and the ’field velocity’
equals −c.

In terms of the global jet solution, the inner LS is very close
to the horizon. With the numerical method applied, there is no
fundamental hindrance for a solution between the inner LS and
the horizon. However, since our main interest is the jet solution,
we take the inner LS as inner boundary for the integration region.
The black hole horizon itself remains hidden behind the inner
LS.

The Schwarzschild radius RS = 2M defines the typical
length scale for general relativistic effects,

RS =

{
1.5 106

(
M/5 M�

)
cm

3.0 1015
(
M/1010 M�

)
cm .

For rotating black holes the event horizon is changed to
rH = M + (M 2 − a2)1/2. The angular velocity of the hole in
terms of the Kerr parameter a and mass M is

ΩH = lim
r→rH

ω =
a

2M
1
rH

. (16)

Here, we choose a = 0.8.
Mirabel & Rodriguez (1995) mentioned that the de-

projected jet speed of 0.9 c for the galactic superluminal jets
could be related to the escape velocity from a region close to a
black hole. Further, in contrast to other mildly relativistic jets
(∼ 0.3 c) this is indicating both a black hole as central source
and, also, that the jet origin is very close to the hole at a distance
of several horizon radii (Mirabel & Rodriguez 1995).
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3.2. The accretion disk

An accretion disk surrounding the central black hole seems to
be the essential component concerning magnetic jet formation.
It is considered to be responsible for the following necessary
ingredients for jet formation, propagation, and collimation.

– Generation of magnetic field. In contrast to pulsar or proto-
stellar jets the magnetic field of jets from black holes, the
magnetic field cannot be supplied by the central object but
has to be supplied by the surrounding accretion disk.
Khanna & Camenzind (1994, 1996a) were first to formu-
late the axisymmetric dynamo equations in Kerr space time.
They indicated the possibility of an ωΩ dynamo, since dif-
ferential rotation of space ω provides a new source term for
the dynamo action. This general relativistic dynamo effect
might work very close to the black hole, at distances of about
several horizon radii (Khanna & Camenzind 1996a,1996b;
Brandenburg 1996).
In our model we assume that the jet is formed by a finite
flux distribution of the disk. The maximum flux originates
from the disk at radii less than the LS radius, and Ψmax '
1033 G cm2.

– Mass injection into the jet. The accretion disk supplies the
mass for injection into the jet, since there is no mass outflow
possible from the black hole itself.
Certain disk parameters like accretion rate, magnetization
and others determine the mass accretion process together
with the mass ejection rate (Ferreira & Pelletier 1995). In this
paper, we assume that the mass flow is not charge separated
and that the plasma is highly conductive in order to justify
the assumption of degeneracy (5). Further, the mass flow
has to be weak enough (or highly magnetized) in order to
assume a force-free source term of the stream equation.

– The current system. Differential rotation of the disk is re-
sponsible for the poloidal current system in the jet magneto-
sphere. These currents extract angular momentum from the
disk and eventually allow for mass accretion into the central
object.
The poloidal current correspond to toroidal magnetic fields
and its hoop stress may be responsible for a collimation of
the jet.

The accretion disk physics would further determine the rotation
law of the jet magnetic field, ΩF(Ψ) (see Sect. 3.5).

The disk evolution is definitely influenced by the evolution
of the jet and vice versa (cf. Ferreira & Pelletier 1995). However,
since this global problem is literally unresolved, in this paper
we take into account the accretion disk only as source for the
magnetic flux, i.e. as a boundary condition for the flux function
Ψ.

3.3. The asymptotic jet

We assume that the asymptotic jet is collimated to a cylindrical
shape. This is in agreement with VLBI observations of the knot
motion in e.g. 3C 345 (Zensus et al. 1995), and also with kine-
matic models explaining the short period optical variations by

a geometrical lighthouse effect (Camenzind & Krockenberger
1992).

In the case of the parsec-scale jet in the quasar 3C 345,
the best model fits give a very small intrinsic opening angle
of ' 0.5◦ (Zensus et al. 1995). The innermost region of the
jet is not resolved observationally. In the radio VLBI mea-
surements mentioned above, the angular beam resolution is
∼ 0.3 mas corresponding to ∼ 1 pc. This is comparable to
1000RS (M/1010 M�).

The lighthouse model of Camenzind & Krockenberger
(1992) reveals a jet radius of 10RL for both 3C 273 and
BL Lacertae objects under the assumption that the field rotates
with the angular speed of the marginally stable orbit. Further,
the black hole parameters were assumed to be a = 0.9 (a = 0.8)
and M = 7 109 M� (M = 5 107 M�) for 3C 273 (BL Lacertae
objects). The degree of jet collimation is very high and initial
opening angles of 0.1◦ (0.05◦) are found.

In the asymptotic regime, the metric simplifies to that
of flat Minkowski space. Here, the special relativistic, one-
dimensional jet equilibrium of Appl & Camenzind (1993) can
be applied. They were first to find a non-linear analytical solu-
tion for a cylindrically collimated, asymptotic flux distribution,

Ψ(x) =
1
b

ln

(
1 +
(x
d

)2
)
, (17)

where x = R/RL is defined as the cylindrical radius normalized
by the asymptotic light cylinder radius. The flux distribution (17)
corresponds to a core-envelope structure with core radius d. The
poloidal current is concentrated within the jet core (see below).
With Eq. (17) the asymptotic jet radius is defined by Ψ(xjet) = 1.

Using the method of finite elements for a numerical solution
implies that we solve the boundary value problem. It is hence
suitable to prescribe the asymptotic jet boundary xjet and adjust
later for the current profile parameter b (see Fendt et al. 1995
for details). This adjustment is the essential procedure in order
to satisfy the regularity condition at the light surface.

In conclusion, the poloidal current distribution and the
strength of the current are determined by the asymptotic jet.
We choose the asymptotic jet radius in terms of asymptotic LC
radii Rjet ' 3RL and RL = 10M .

3.4. The current distribution

The poloidal current distribution may be considered as a free
function for the force-free stream function (although it is con-
strained by the regularity condition). In particular, since I =
I(Ψ) in the 3+1 description too, it is possible to apply the same
current distribution for the region near the black hole as for the
asymptotic, special relativistic region.

Here, we choose the analytical, non-linear solution for spe-
cial relativistic (asymptotically cylindrical) pinches given by
Appl & Camenzind (1993),

I(Ψ) =
1− e−bΨ

1− e−b
. (18)
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The parameter b describes the shape of the current profile. To-
gether with the flux distribution (17) this current distribution si-
multaneously satisfies the asymptotic transfield equation (Appl
& Camenzind 1993). The current flow is concentrated within
the core radius d (see Eq. (17)). The strength of the current, gI,
and the shape of the profile (b � 1 diffuse pinch, b � 1 sharp
pinch ) control the magnetic structure and the kinematics of the
jet. In particular, they determine the asymptotic jet radius and
velocities.

As discussed above, in our approach we choose the jet radius
as parameter and adjust the parameters gI and b in such a way that
we obtain smooth solutions across the LS with an asymptotic
jet radius of a few LC radii.

Eq. (18) represents a monotonous current distribution with
no return current within the jet. A closure of the poloidal current
flow would be achieved via the jet hot spots terminating the
jet and the interstellar/intergalactic medium. In this picture the
current is generated in the disk, flows along the jet to the hot
spots, and returns back to the accretion disk in the surrounding
medium outside of the jet. A return current within the jet might
be a more realistic concept. However, serious difficulties for
a two dimensional solution are involved with such a current
distribution. These are e.g. a proper satisfaction of the regularity
condition, as well as the need for a proper boundary condition
for the asymptotic jet. We will address this topic to our future
work. The solutions presented in this paper may be interpreted
as the inner part of such a return current jet.

3.5. The rotation law

As was the case with the current distribution, the rotation law
for the flux surfaces is a free function of the force-free stream
equation.

In general, this rotation law follows from a detailed exam-
ination of the accretion process and the dynamo action in the
disk. This is far beyond the scope of this paper and the complex
physics of magnetized accretion disks is not yet fully under-
stood. Although there are several models available for the dif-
ferent physical processes involved, such as (magnetic) viscosity,
convection, advection, diffusion, kinematics, dynamo action, or
relativistic effects, for a combined treatment of all the effects
the problem is far from being resolved (not to mention that the
jet itself provides an important boundary condition for the disk
dynamo).

Having such a solution available, the calculated rotation law,
Ω(r), and flux generation, Ψ(r), would determine the rotation
of the magnetic field ΩF(Ψ) = Ω(r(Ψ)).

As an example we discuss an approximate steady state so-
lution for the flux distribution of a thin accretion disk around a
black hole, Ψ(r) ∼ exp(−k2

∫ rout

r
D(r̃)dr̃), where D(r) is the

diffusion parameter of the diffusion equation (Khanna & Ca-
menzind 1992). For radii larger than the marginally stable orbit,
D(r) ∼ r−2, and the integration gives Ψ(r) ∼ exp(−A√rH/r).
Here, rout is the outer disk radius and the constant A is of the
order of unity. Assuming a Kepler law for the disk rotation and
additionally that the foot points of the flux surfaces rotate with

Kepler speed, a possible rotation law for the field lines can be
derived. Inverting the above disk flux distribution then leads to
the rotation law ΩF(Ψ) ∼ | ln(Ψ)|3.

As a consequence of differential rotation, the shape and
position of the light surface would become a priori unknown
quantities. Since these are singular surfaces and have to be con-
sidered numerically like boundaries, this would involve serious
numerical complications. For this reason, for the time being, we
consider ΩF(Ψ) = const. For the rotational velocity of the field,
a fraction of the black hole rotation is assumed,

ΩF(Ψ) = ΩF = εΩH , ε < 1 (19)

For a = 0.8, ε = 0.4, the position of the asymptotic light cylinder
is at RL = 10M .

There is strong indication that the superluminal jets originate
very close to a central black hole at distances of a few horizon
radii. For galactic sources, the argument is that the jet speed
is close to the escape velocity near the horizon (see Mirabel &
Rodriguez 1995). Standard models for BL Lacertae objects also
put the jet formation close to the central source (see Kollgaard
(1994) and references therein).

Thus, for these highly relativistic jet sources, the assumption
of a constant rotation of the flux surfaces may well be applied.
A problem might exist for only mildly relativistic jet motion.

4. Results and discussion

We now present numerical solutions for the jet magnetosphere.
The field distribution is calculated under the assumption of a
small plasma loading, or in other words, in the force-free limit.
Although the calculations are not entirely self-consistent, these
are the first calculations of a collimated global jet magneto-
sphere in the context of Kerr metric.

Similar to the special relativistic, or even the Newtonian
case, in a general relativistic treatment, the singularity of the
stream equation at the Alfvén radius (or light surface) leads to
a ”kinky” structure of the magnetic field at this position, unless
the regularity condition is properly satisfied.

In our previous work (Fendt 1994, Fendt et al. 1995) we in-
vestigated this problem for fast rotating, stellar magnetospheres.
We found that a field matching could be achieved by adjusting
both the shape of the jet boundary (rjet, θjet) and the poloidal cur-
rent distribution (via the parameter b). This procedure may be
interpreted as an adjustment of ”magnetic pressure equilibrium”
between the regions inside and outside the light cylinder.

In order to obtain smooth solutions at the outer light surface
for the Kerr metric jet solutions presented here, we applied the
same technique derived earlier (Fendt 1994, Fendt et al. 1995).
Again, we emphasize that in the presented solutions the regu-
larity condition at the outer LS determines the shape and the
location of the jet boundary in the collimation region.
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Fig. 2a and b. Magnetic flux surfaces Ψ of global Kerr jet solutions (a = 0.8, (ΩF/ΩH) = 0.4). The asymptotic jet radius is 3 asymptotic LC

radii RL. Current distribution parameter a b = 1.0, gI = 1.90, d = 2.29; b b = 0.8, gI = 2.14, d = 2.71. Units: Ψ in Ψmax, contour levels 10−n
2
,

n = 0, 1.8, 0.1; (R,Z) in RL (upper and right axis), or in M (lower and left axis)

Fig. 3a–c. Magnetic flux surfaces of Kerr jet solutions. Subsets of the inner most regions with different choices of disk distribution. Disk flux
distribution parameters a n = 4, ro = 1.76, E = 0.05; b n = 3, ro = 1.76, E = 0.03: c n = 2, ro = 1.16, E = 0.05. The disk flux distribution is
Ψdisk(r, π/2) = E Ψmax(r − ro)n (see Appendix A.2). Units as in Fig. 2

4.1. The global jet solution

Fig. 2 shows two examples of global jet solutions extending
from the inner LS to an asymptotic jet collimated to a cylindrical
shape. The flux surfaces pass the outer LS smoothly.

The asymptotic jet radius is 3RL corresponding to 30M for
the parameters a = 0.8 and (ΩF/ΩH) = 0.4, or

Rjet =

{
1.5 107

(
M/5 M�

)
cm

3.0 1016
(
M/1010 M�

)
cm .

The asymptotic jet radius is basically parameterized in terms
of the outer LS, i.e. in terms of the rotational velocity of the
field. We chose ΩF = 0.4ΩH under the assumption that the jet
is launched within a distance of some rH from the black hole.

If the field was rotating slower, when the flux surfaces orig-
inate further out in the disk, the asymptotic jet radius would
be larger. With e.g. a = 0.8 and (ΩF/ΩH) = 0.1, we obtain an
asymptotic jet radius 4 times larger. Note that the linear scaling
in terms of RL remains the same. It changes, however, in terms
of rH.
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We report that we were not able to obtain jet solutions with
Rjet > 4RL. The numerical procedure converges in the asymp-
totic region for asymptotic 1D solutions with any jet radius.
However, it does not for a lower boundary condition, which is
even slightly different from the asymptotic solution, and thus
implying a field curvature. This negative result is not caused by
numerical problems. It does not depend on numerical parame-
ters like element size.

Instead, we take this as an indication for an upper limit for
the jet radius,

Rjet < 4RL , (20)

of a cylindrically collimated, rigidly rotating, force-free mag-
netic jet.

On the other hand, differential rotation or plasma inertia
may open up the jet structure. Both effects lead to an increase
of poloidal current. The question is whether the corresponding
de-collimating toroidal field pressure will supersede the effect
by collimating tension. We suppose that the differential rotation
plays a minor role as long as all the flux originates within a
small region in the disk.

The jet solutions presented here are not ’self-collimated’.
The prescription of an asymptotic jet boundary may be inter-
preted as an external pressure from the surrounding material.
However, the shape of the collimating jet radiusRjet(Z) is deter-
mined by the regularity condition and/or the current distribution
in the jet, and hence, is determined by the internal force-balance.

How the internal force-equilibrium affects the shape of the
collimating jet can be seen in Fig. 2. In both solutions, the ad-
justment procedure (shape of jet boundary ↔ distribution pa-
rameter b) was performed until the regularity condition is prop-
erly fulfilled. The two solutions have different poloidal current
distributions, I(Ψ). In comparison to the flux distribution with
the broader current distribution (b = 0.8), the solution with the
more concentrated current distribution (b = 1.0) involves an
enhanced expansion (a slight de-collimation) beyond the outer
light surface in order to obtain matching between the outer and
inner solution.

4.2. The central domain and possible mass flow distribution

Fig. 3 shows subsets of the innermost part around the black hole
from global solutions for different disk boundary conditions.
These near-disk solutions might be interpreted as a disk corona.
The overall picture could be summarized as follows.

– There is magnetic flux outgoing towards the jet.
– There is magnetic flux ingoing towards the black hole

(which is hidden behind the inner LS).
– The flux surfaces near the jet axis are not directly connected

with the accretion disk.
– Depending on the disk magnetic flux distribution, the cur-

vature of the field lines close to the disk is rather different.

If for the following we imagine a possible mass flow associ-
ated with the flux surfaces, we find three different flow regimes

within the field distribution – an accretion region, an outflow
region, and a region empty of a plasma flow.

The ingoing flux tubes would allow for magnetic accretion
from outer parts directly into the black hole. It is however ques-
tionable, whether the field strength will be so strong that plasma
is accreted along field lines or whether, on the contrary, accre-
tion will be dominated by gravitation and will thereby determine
the field topology. This question cannot be answered with the
present, force-free approach and depends on parameters like
field strength, mass flux, or magnetization.

Under the assumption of a finite flux distribution originat-
ing very close to the black hole, the inward-outward bending
flux surfaces provide evidence for a hollow jet structure. Al-
though we have to investigate the wind equation along the flux
surfaces in order to gain detailed knowledge about the plasma
flow behaviour, we believe that the following thoughts and con-
siderations might be reasonable.

First, the slope of the flux surfaces is too small to allow for
a ’centrifugal’ acceleration of the plasma. Blandford & Payne
(1982) obtained a minimum angle enclosed by the disk and flux
surface of 60◦ for the onset of plasma acceleration. Although this
result was specifically calculated for a self-similar differentially
rotating field structure and a cold wind, we believe that we can
use it as an estimate for our case. It seems to be obvious that
along a flux surface perpendicular to the disk, a wind driven by
centrifugal instability is not possible.

If we therefore consider a hot plasma, the thermal pressure
in a hot disk corona has to accelerate the plasma from the disk
to heights of about 4 horizon radii above the disk. Here, the
slope of the flux surfaces becomes eventually less than the crit-
ical value, allowing for ’centrifugal’ acceleration. Such strong
thermal pressures would require a very hot corona. However,
our own experience as well as results published in the literature,
show that the slow magnetosonic point of a wind flow is always
located very close to the injection point. Thus, thermal pressure
is unlikely to be a driving force up to high altitudes above the
disk.

Secondly, from our work on the cold relativistic wind equa-
tion (Fendt & Camenzind 1996), we know that the stationary
character of the flow is very sensitive on the curvature of the
poloidal field in the case of a high plasma magnetization. In re-
gions where the slope of the field line changes, it is very likely
that no stationary solutions of the wind equation are possible,
indicating that here shocks and instabilities may arise. These
shock waves could eventually be observed in the asymptotic
AGN jet as the helically moving knots seen with the VLBI ra-
dio observations (e.g. Zensus et al 1995).

Thirdly, the flux surfaces near the axis are not connected with
the disk boundary but with the inner LS. Blandford & Znajek
(1977) argued that all particles moving along field lines passing
the inner LS must travel inwards. Along these field lines no mass
outflow from the disk is possible. We found no solutions with
flux surfaces extending from the disk boundary towards the jet
axis.

Being aware of the crudeness of the the preceding consid-
erations, we conclude that in the solutions presented here the
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plasma will only flow within a thin layer of about 0.1Rjet near
the jet boundary, basically forming a hollow jet structure. The
inner 90% of the jet cross-section will be empty of plasma flow
from the disk. This picture is in good agreement with radio ob-
servations of AGN jets revealing moving knots along helical
trajectories (Steffen et al. 1995, Zensus et al. 1995). It also fits
within recent kinematic radiation models explaining the parsec
scale motion of the jet knots by the lighthouse effect (Camen-
zind & Krockenberger 1992).

4.3. Angular momentum loss and Poynting flux from the black
hole

The magnetosphere - poloidal current system is associated with
an angular momentum flow and Poynting flux (or luminosity).
The total Poynting flux in the jet P ∼ ∫ ΩF(Ψ)I(Ψ)dΨ can be
calculated, using the known current distribution,

P =
ImaxΨmax

RL

(
1

1− e−b
− 1

b

)
(21)

(see Appl & Camenzind 1993), revealing a similar value for
both field distributions in Fig. 2, P = 0.6

(
ImaxΨmax/RL

)
.

The angular momentum loss (dJh/dt) from the black hole
into the jet follows from the integration of the current distribu-
tion for all flux surfaces leaving the horizon to the asymptotic
jet,

dJh
dt

= −ImaxΨmax
1
c

∮
I(Ψ)dΨ , (22)

and similarly for the Poynting flux (see Okamoto 1992). The
outermost flux surface Ψh leaving the black hole (or the inner
light surface) to the asymptotic jet could be estimated from Fig. 2
and Eq. (18). The integration gives

dJh
dt

= −1
c
ImaxΨmax

(
Ψh + 1

b

(
e−bΨh − 1

)
1− e−b

)
(23)

For the parameters of the solutions in Fig. 2, this gives an
angular momentum loss from the black hole (dJh/dt) '
5.6 10−14ImaxΨmax for the solution with a concentrated current
distribution (Fig. 2a), and (dJh/dt) ' 1.8 10−14ImaxΨmax for
the other one (Fig. 2b). Since the coupling g is similar for both
solutions, their (dJh/dt) differ by a factor of 3.

What might be surprising with this result is that for two jet
solutions with the same asymptotic jet radius, the same total
magnetic flux and current flow, and also the same disk flux dis-
tribution, the angular momentum extraction from the black hole
differs by a non-negligible value, which is determined by the in-
ternal structure of the jet magnetosphere. A similar calculation
for the Poynting flux leads to Ph ' 1.7 10−3(ImaxΨmax/RL)
for the solution in Fig. 2a, and by the same factor 3 less for the
other field distribution. The total angular momentum loss and
Poynting flux in the jet differ only very few for both solutions.

We conclude this section with mentioning that the above
estimates do not necessarely allow for an interpretation in terms

of the dynamical evolution of the black hole. In our approach
the flux surfaces emanating from the black hole/inner LS to
the asymptotic jet also connect from the accretion disk to the
black hole (with the same I(Ψ)). Thus, the same energy/angular
momentum flow leaving the black hole also goes into the hole.
What is important for the black hole evolution, are the total
energy and angular momentum losses from the disk and the
hole by the jet. However, the locally different structure of the
current-magnetosphere system might affect the evolution of the
accretion process and also radiative processes involved with the
accretion.

5. Conclusion

In this work, we presented numerical solutions of the 2D force
balance equation for strongly magnetized jets originating from
the inner part of an accretion disk surrounding a black hole.
The calculations were performed on the background of Kerr
geometry.

The model topology underlying the calculations basically
follows the standard model for AGN. The jet magnetosphere
originates very close to the black hole from an accretion disk.
In the solutions presented here, the field rotates rigidly with
a fraction of the rotational velocity of the hole. The solutions
are global solutions extending from the black hole’s inner light
surface to an asymptotic jet at a distance of 50 horizon radii.

The asymptotic jet is collimated to a cylindrical shape in
agreement with the high degree of collimation observed for ex-
tragalactic jets. With the chosen parameters for the rotation, the
asymptotic jet radius is 3 light cylinder radii or 30 horizon radii.
For a black hole mass of 1010 M�, this corresponds to a jet
radius of 3.0 1016cm. We found indications for an upper limit
for the asymptotic jet radius for a force-free, cylindrical jet of
about 4 light cylinder radii.

The solutions satisfy the regularity condition at the light
surfaces and cross the outer light surface smoothly, i.e. without
unphysical kinks in the field lines. The matching across this
critical surface is achieved by a proper iterative adjustment of the
current distribution and the shape of the jet boundary. It therefore
determines the shape of the jet in the collimation region.

The field distribution near the disk (the ’corona’) is directly
influenced by the disk flux boundary condition. In general, the
field solutions allow for mass in-fall towards the black hole as
well as for mass outflow towards the asymptotic jet. There is
strong evidence for a hollow jet structure, i.e. for a mass flow
only in the outermost layers of the jet. In the asymptotic regime
only the outermost 10% of the jet (in terms of radius) are likely
to contain a mass flow.

The angular momentum flow and Poynting flux from the
black hole into the jet could be estimated since the current dis-
tribution is known. For the field distributions investigated the
solution with a concentrated jet current distribution gives angu-
lar momentum and energy losses from the hole a factor 3 higher
than the other one. However, the total losses by the jet differ
only slightly.
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Appendix A: numerical details

A.1. Finite element solver

The GSS equation is solved by means of the method of fi-
nite elements. The original code was introduced by Camen-
zind (1987) for relativistic astrophysical MHD applications.
Haehnelt (1990) extended the procedure for Kerr metrics. The
further evolution (however in special relativity) by Fendt (1994)
and Fendt et al. (1995), now enables the code for an integration
throughout the singular surface of the light cylinder and the cal-
culation of smooth, global solutions. For the present investiga-
tion the latest version of the code (Fendt 1994) was re-arranged
for the application in Kerr geometry.

In the finite element approach the integration region G is
discretized in a set of isoparametric curvilinear 8-node elements
of the serendipity class (Schwarz 1984). Within each element
the flux function Ψ is expanded as

Ψ(r, θ) =
∑8

i=1
Ψ(e)
i Ni(ζ, η). (A1)

Ψ(e)
i denote the magnetic flux at the nodal point i of the element

(e) and (ζ, η) are rectilinear coordinates on the normalized ele-
ment.

For a solution, the stream equation is multiplied by a test
functionN (Galerkin ansatz) and integrated over the 2D plasma
domain G applying Green’s identity. We end up with the weak
form of the GSS equation,∫
G

αD

ω̃
∇N · ∇Ψ dA =

∫
G

J N dA +
∫
∂G

αD

ω̃
N
∂Ψ
∂n

ds, (A2)

wheren now denotes the unit vector perpendicular to the bound-
ary ∂G, dA and ds the area and boundary elements, and J the
source term of the R.H.S. of Eq. (12). With Eq. (A1) the integral
equation corresponds to a matrix equation

A(Ψ) Ψ = b(Ψ), (A3)

with the integrals on each grid element

A(e)
ij =

∫
Ge

αD

ω̃

(
∆∂rNi ∂rNj + ∂θNi ∂θNj

) dr dθ√
∆

, (A4)

and

b(e)
i =

∫
Ge

Ni J
(e) ρ2

√
∆

dr dθ +
∫
∂D

D

ω̃
Ni ∂nΨ ds (A5)

Fig. 4. Example of a numerical grid applied for the finite element code.
The element boundaries must follow the shape of the two light surfaces

(Haehnelt 1990). Each component of Eq. (A3) corresponds to
the force equilibrium between neighbouring nodal points of
each element. Inversion of matrix equation (A3) eventually
gives the solution Ψ(e)

i for each nodal point. The expansion (A1)
provides the solution in any point Ψ(r, θ).

A.2. Boundary conditions

With the model assumptions discussed above, the computations
have to satisfy the following boundary conditions.

– Rotational axis: Ψ(r, 0) = 0.
– Light surfaces: Here, the regularity condition, Eq. (15), has

to be satisfied. In the finite element approach this regular-
ity condition is automatically satisfied. Like the homoge-
neous Neumann condition the regularity condition is a nat-
ural boundary condition on D = 0 in the sense that the
surface integral (s. Eq. (A5)) does not contribute (see Fendt
et al. 1995).

– Disk surface: Here, Ψ satisfies a Dirichlet condition, corre-
sponding to a finite flux distribution,

Ψdisk(r, π/2) = E Ψmax(r − ro)n . (A6)

For r > (1/E)1/n+ro, Ψdisk(r, π/2) = 1. The parameters ro,
E, n are chosen such that the foot points of the flux surfaces
are concentrated to the innermost region. This is required
by the assumption of a rigid rotation of the magnetosphere.

– Jet boundary: Along the jet boundary asymptotically colli-
mating to a cylindrical shape we fix

Ψmax = Ψ(rjet, θjet) = 1 (A7)

by definition. As mentioned before, the shape of the jet
boundary (rjet, θjet) has to be well adjusted (and has to be
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found in an iterative way) in order to satisfy the regularity
requirement.

– Asymptotic boundary (x, zout): We assume that the jet has
been collimated into a cylindrical shape. In this region with
a distance of about z >∼ 50 M from the black hole, the geom-
etry is very close to Minkowski space. We use either homo-
geneous Neumann conditions or the non-linear analytic so-
lution of the special relativistic, asymptotic jet equilibrium
Eq. (17) as Dirichlet condition. When the outer and inner
domain are calculated separately, then Dirichlet conditions
are required at the upper boundary. Otherwise it would not
be possible to fix the flux in this domain.
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Abstract. Highly collimated jets are observed in various astro-
nomical objects, as active galactic nuclei, galactic high energy
sources, and also young stellar objects. There is observational
indication that these jets originate in accretion disks, and that
magnetic fields play an important role for the jet collimation and
plasma acceleration. The rapid disk rotation close to the central
object leads to relativistic rotational velocities of the magnetic
field lines.

The structure of these axisymmetric magnetic flux surfaces
follows from the trans-field force-balance described by the
Grad-Schlüter-Shafranov equation. In this paper, we investigate
the asymptotic field structure of differentially rotating magnetic
jets, widening the study by Appl & Camenzind (1993a,b).

In general, our results show that, with the same current dis-
tribution, differentially rotating jets are collimated to smaller
jet radii as compared with jets with rigidly rotating field. Dif-
ferentially rotating jets need a stronger net poloidal current in
order to collimate to the same asymptotic radius. Current-free
solutions are not possible for differentially rotating disk-jet mag-
netospheres with cylindrical asymptotics.

We present a simple analytical relation between the poloidal
current distribution and magnetic field rotation law. A general
relation is derived for the current strength for jets with max-
imum differential rotation and minimum differential rotation.
Analytical solutions are also given in the case of a field rotation
leading to a degeneration of the light cylinder.

By linking the asymptotic solution to a Keplerian accre-
tion disk, ’total expansion rates’ for the jets, and also the flux
distribution at the foot points of the flux surfaces are derived.
Large poloidal currents imply a strong opening of flux surfaces,
a stronger gradient of field rotation leads to smaller expansion
rates. There is indication that AGN jet expansion rates are less
than in the case of protostellar jets. High mass AGN seem to
have larger jet expansion rates than low mass AGN.

Send offprint requests to: German address

Key words: MHD – ISM: jets and outflows – galaxies: jets
– stars: magnetic field – stars: mass loss – stars: pre-main se-
quence

1. Jet formation from disk magnetic fields

Observations of different kinds of jet sources give convincing
evidence that jet formation is always connected to the presence
of an accretion disk. This holds for various scales of energy
output, jet velocity and nature of the jet emitting objects as
there are active galactic nuclei (AGN), galactic superluminal
jet sources, mildly relativistic jets from neutron stars (e.g. SS
433), and the numerous class of protostellar jets (e.g. Zensus et
al. 1995; Mirabel & Rodriguez 1995; Mundt et al. 1990, Ray et
al. 1996).

It is now generally accepted that magnetic fields play an
important role in jet formation and propagation for all different
kinds of jet sources. These jets are believed to originate very
close to the central objects in the interaction region with the
accretion disk or in the disk itself.

If the central object is a black hole as it is likely for AGN
and galactic superluminal jet sources, the disk is the only pos-
sible location for a field generation (by dynamo action or/and
advection of magnetic flux).

In the case of protostars and neutron stars the central object
also carries a relatively strong magnetic field, and it is not yet
clear, whether the jet magnetic field originates in the disk or
in the star. However, there must clearly be a strong interaction
between the stellar field and the accretion flow in a region, where
the stellar field couples to the disk.

Plasma is ejected from the disk into the magnetosphere
and becomes magnetically accelerated (see Ferreira & Pelletier
1995). Electric currents and inertia associated with the plasma
flow collimate the jet. The observed degree of collimation is
very high. The extragalactic jets, the galactic superluminal jets
as well as protostellar jets are collimated almost to a cylindrical
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shape (Camenzind & Krockenberger 1992, Zensus et al. 1995;
Ray et al. 1996).

While for extragalactic and galactic superluminal jets a fully
relativistic description is obviously necessary, the case of pro-
tostellar jets is more complicated. The protostellar jet velocities
of about ' 400 km s−1 (Mundt et al. 1990) are clearly non-
relativistic. However, if the field is anchored in the accretion
disk, the rapid rotation of the inner disk may lead to field rota-
tional velocities of the order of the speed of light (Camenzind
1990; see also Fendt et al 1995). In this case a relativistic treat-
ment of the MHD would be required. We emphasise that there
are no relativistic effects in the dynamics of the jet motion itself
(since the Alfvén surface would be well inside the light surface,
where the field rotational velocity equals the speed of light).

Appl & Camenzind (1993a,b; hereafter ACa, ACb) investi-
gated the asymptotic trans-field equation in the case of constant
field rotation. They were first to find a non-linear analytical solu-
tion for a cylindrically collimated asymptotic field distribution
(ACb). They also derived relations between the interesting jet
parameters jet radius, current strength, and the field and current
distribution.

In previous papers these results where used as a boundary
condition for the calculation of global two-dimensional jet mag-
netospheres (Fendt et al. 1995; Fendt 1996). As it was shown,
the critical solution of the wind equation along the calculated
field structure asymptotically approaches the analytical force-
free result (Fendt & Camenzind 1996).

However, since jet motion is connected to an accretion disk,
and since the accretion disk rotates differentially, the jet mag-
netosphere, if it is anchored in the disk, essentially obeys dif-
ferential rotation. This feature should therefore be a natural in-
gredient for any magnetic jet structure. How differential ro-
tation effects the asymptotic jet equilibrium, is not obvious,
since it involves collimating and de-collimating terms in the
force-balance equation. Ferreira (1997) showed that differen-
tial rotation plays a major role in recollimation of jets and their
asymptotic behaviour.

As a principal problem for differentially rotating relativistic
jet magnetospheres, the position and shape of the singular light
surface is not known a priori, but have to be calculated iteratively
in a non-trivial way together with the flux distribution.

A differentially rotating field distribution is further interest-
ing near the jet boundary. Here, models with a rigid field rotation
imply a sharp cut off of the field rotation in the jet and in the
surrounding interstellar medium, while with a differentially ro-
tating field a smoother transition is possible.

The structure of the paper is as follows. In Sect. 2 we re-
call some basic equations of the theory of relativistic magneto-
spheres and discuss several difficulties with the solution of the
Grad-Schlüter-Shafranov (hereafter GSS) equation. We evalu-
ate the GSS equation for asymptotic cylindrical jets, including
differential rotation. In Sect. 3 we discuss our results. We in-
vestigate, whether current free cylindrical jets are possible. We
solve the asymptotic GSS equation for different assumptions for
the field rotation and finally present a general analytic relation
between the current distribution and the rotation law.

2. Structure of magnetic jets

Throughout the paper we apply the following basic assumptions:
axisymmetry, stationarity, and ideal MHD. We use cylindrical
coordinates (R, φ, Z) or, if normalised, (x, φ, z). The notation
is similar to that of Fendt et al (1995) and ACa,b.

We emphasise that the term ’asymptotic’ always denotes the
limit R << Z and that jets with finite radius, Z →1, R <1
are considered.

2.1. The force-free cross–field force–balance

With the assumption of axisymmetry, a magnetic flux function
Ψ can be defined,

Ψ =
1

2π

∫
BP · dA, RBP = ∇Ψ ∧ e�, (1)

measuring the magnetic flux through a surface element with
radius R, threaded by the poloidal component (index ’P’) of
the magnetic field B. With Eq. (1) the toroidal component of
Ampère’s law leads to the GSS equation

R∇ ·
(

1
R2
∇Ψ

)
= −4π

c
j� , (2)

with the toroidal component (index φ) of the current density
j. The poloidal current, defined similarly to the magnetic flux
function,

I =
∫
jP · dA = − c

2
RB�, (3)

flows within the flux surfaces, I = I(Ψ). The projection of the
force-free, relativistic equation of motion (where inertial effects
of the plasma are neglected),

0 = ρeE +
1
c
j ∧B , (4)

(with the electric field E and the charge density ρe) perpendic-
ular to the magnetic flux surface provides the toroidal current
density,

1
c
j�

Ã
1−

(
RΩF

c

)2
)

=
1

4πR
4
c2

1
2
dI2

dΨ

− ΩF

4πc2R
(∇Ψ · ∇)(R2ΩF) . (5)

ΩF is the angular velocity of the field lines and is conserved along
the flux surfaces, ΩF = ΩF(Ψ). Both the current distribution
I(Ψ) and the rotation law of the field, ΩF(Ψ), determine the
source term for the GSS equation and govern the structure of
the magnetosphere. Combining Eqs. (5) and (2) the cross-field
force-balance can eventually be written as

R∇ ·
(

1− (RΩF(Ψ)/c)2

R2
∇Ψ

)
= − 4

c2

1
R

1
2
d

dΨ
I2(Ψ) (6)

− R |∇Ψ|2 1
2

d

dΨ
Ω2

F(Ψ),
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which is called the modified relativistic GSS equation.
At the light surface with R = RL ≡ (c/ΩF(Ψ)) the rota-

tional velocity of the field lines equals the speed of light. Here,
the GSS equation becomes singular. For differentially rotating
magnetospheres the shape of this surface is not known a priori
and has to be calculated in an iterative way together with the
2D solution of the GSS equation. For constant field rotation the
light surface is of cylindrical shape. We choose the following
normalisation,

R,Z ⇔ xR0, z R0,

ΩF ⇔ ΩF (c/R0) ,

Ψ ⇔ Ψ Ψmax ,

I ⇔ I Imax ,

B2
P ⇔ y (8πΨ2

max/R
4
0) .

For the length scale R0 the radius of the asymptotic light
cylinder (see below) is selected. In order to allow for an imme-
diate comparison to rigidly rotating magnetospheres, the nor-
malisation is chosen such that ΩF = 1 at x = 1.

With the normalisation applied, Eq. (6) can be written di-
mensionless,

x∇ ·
(

1− x2Ω2
F(Ψ)

x2
∇Ψ

)
= − g

1
x

1
2
d

dΨ
I2(Ψ)

− x|∇Ψ|2 1
2
d

dΨ
Ω2

F(Ψ). (7)

g is a coupling constant describing the strength of the current
term in the GSS equation,

g =
4I2

maxR
2
0

c2Ψ2
max

= 4

(
Imax

1018A

)2(
R0

1016cm

)2( Ψmax

1033 Gcm2

)−2

in the case of AGN, and

g = 4

(
Imax

1012A

)2(
R0

1014cm

)2( Ψmax

1025 Gcm2

)−2

for protostellar parameters. Note that g in this paper is in ac-
cordance with the definitions in Fendt et al. (1995) and differs
from the definition in ACa,b by a factor of two, gFendt = 2 gAC.
A coupling constant, defined in a similar way for the differen-
tial rotation term, would be equal to unity, indicating on the
important role of this effect.

2.2. Where is the asymptotic light cylinder located?

We define the asymptotic light cylinder, R0, as the asymptotic
branch of the light surfaceRL(Ψ). Asymptotically, this quantity
plays the same role for the GSS equation as the light cylinder
does in the case of a rigid rotation of the magnetosphere.

All asymptotic flux surfaces within R0 rotate slower than
the speed of light andR(Ψ) < RL(Ψ). Flux surfaces outsideR0

may rotate faster than the speed of light, here R(Ψ) > RL(Ψ).
Despite a possible degeneration of the GSS equation for a spe-
cial rotation law (see below), there is only a single physical

asymptotic light cylinder possible. Therefore, R0 ≡ R(Ψo) ≡
RL(Ψo).

It should be noted that the introduction of a light cylinder
RL(Ψ) = c/ΩF(Ψ) also relies on the Ideal MHD assumption. For
a non-infinite plasma conductivity a conserved angular veloc-
ity of the field lines ΩF(Ψ) cannot be defined. However, even in
this case, the field may move with relativistic speed. The math-
ematical formalism, of course, becomes more complicated and
its solution is beyond the scope of this paper. An estimate of
diffusion and dynamical times scales for protostellar jets, re-
spectively, leads to the conclusion that the Ideal MHD assump-
tion may be appropriate (Fendt 1994). For AGN this assumption
would be even more valid.

2.2.1. Stellar magnetosphere

In the case of a constant field rotation the light cylinder radius
just follows from the rotational velocity of the field (and does not
depend on the flux distribution Ψ(R,Z)). Under the assumption
that the field is anchored in the stellar surface, the field rotation
follows from the stellar rotational period P?. The rotational pe-
riod of many protostellar jet sources is not known, but in the
case of T Tauri stars it is of the order of days. Thus, we estimate
the light cylinder radius

RL = 2 1015cm

(
P?
5d

)
= 1.4 104R?

(
R?

2R�

)−1(
P?
5d

)
.

This radius is of the order of the observationally resolved asymp-
totic jet radius of about 1015 cm (Mundt et al. 1990; Ray et al.
1996). HST observations indicate on slightly smaller jet radii
of 20 AU (Kepner et al 1993).

For neutron stars the light cylinder is at

RL = 5 109cm

(
P?
1s

)
= 4630R?

(
R?

106cm

)−1(
P?
1s

)
.

2.2.2. Disk magnetosphere

For disk magnetospheres the rotation law is determined by the
flux distribution along the disk surface together with the disk
rotation. If the foot point of a flux surface on the disk (here the
term foot point denotes the position along the field line, where
ideal MHD sets in) at a radius RD(Ψ) rotates with Keplerian
speed, the flux surfaces intersect the light surface at the radius

RL(Ψ) = 570R?

(
RD(Ψ)
R?

)3
2
(

M

3 M�

)− 1
2
(

R?

2R�

)5
2

(here for protostellar parameters) with the mass of the central
object M . The ratio between the position radius of the light
surface and the light cylinder for rigid rotation is then

RL(Ψ)
RL

= 0.05

(
RD(Ψ)
R?

)3
2
(

R?

2R�

)3
2
(

M

3 M�

)− 1
2
(
P?
5d

)−1
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(again for a protostellar disk magnetosphere). Is the central ob-
ject a neutron star, this ratio decreases by a factor of about 100.
For AGN we can estimate

RL(Ψ) = 4 1015cm

(
RD(Ψ)
RS

)3
2
(

M

1010 M�

)
,

and in general

RL(Ψ)
RS

=
√

2

(
RD(Ψ)
RS

)3
2

, (8)

where RS is the Schwarzschild radius of the black hole.
The question, whether or not a relativistic description is

required for the jet magnetosphere, depends on the asymp-
totic radius of the flux surface, R1. If for any flux surface
RL(Ψ) <∼ R1(Ψ), a relativistic description of the magne-
tosphere is required. In the contrary, if for all flux surfaces
RL(Ψ) > R1(Ψ), the Newtonian description is appropriate.
Note that even then, for two arbitrary flux surfaces Ψ1 and Ψ2

with R1(Ψ1) < R1(Ψ2), RL(Ψ1) < R1(Ψ2) is possible.
In principal, the asymptotic field distribution is a result of the

two-dimensional force-balance of the jet, and therefore should
follow from the solution of the two-dimensional GSS equa-
tion. We hypothesise that the asymptotic force-free solution will
uniquely be determined by the disk flux and current distribution
(and vice versa).

Our results for differentially rotating jets can hardly deliver
a statement about the absolute value of the asymptotic jet radius,
but only in terms of the asymptotic light cylinder jet radius R0.

2.3. The asymptotic force-balance

In the asymptotic regime of a highly collimated jet structure we
reduce Eq. (7) to a one-dimensional equation, equivalent to the
assumption ∂x >> ∂z .

Then, Ψ(x, z) → Ψ(x), and the conserved quantities I(Ψ)
and ΩF(Ψ) can be expressed as functions of x. If we further
assume a monotonous flux distribution Ψ(x), the derivatives
(∂/∂Ψ) → (dΨ/dx)−1(d/dx). Note that this excludes hypo-
thetical solutions with a return current from our treatment (see
also Sect. 3.4.1).

With the assumptions made above, the GSS Eq. (7) reduces
to an ordinary differential equation of first order in the derivative
(dΨ/dx)2,

(
1− x2Ω2

F

) d

dx
(
dΨ
dx

)2 +

(
4
x
− 2xΩ2

F − x2 dΩ
2
F

dx

)
(
dΨ
dx

)2

+ g
dI2

dx
= 0 (9)

Since (x−2dΨ/dx)2 is related to the magnetic pressure of the
poloidal field, Eq. (9) can be rewritten as

(
1− x2Ω2

F

) dy
dx
− 4xy

(
Ω2

F +
x

4
dΩ2

F

dx

)
= − g

8πx2

dI2

dx
. (10)

The magnetic flux function then follows from integration of

dΨ(x)
dx

= x
√

8πy(x) (11)

with Ψ(x = 0) = 0. At the singular point x = 1 the solution y(x)
must satisfy the regularity condition

y(1) =
g

8π
dI2(1)
dx

(
4 +

dΩ2
F(1)
dx

)−1

. (12)

We mention that Eq. (10) can also be derived from the equation
for the asymptotic force-equilibrium perpendicular to the flux
surfaces,(

1− R2

R2
L

)
∇?B

2
P

8π
− RB2

P

2πR2
L

∇?R − B2
PΩF

4πc2
∇?(R2ΩF) (13)

+
1

8πR2
∇?(RB�)2 = 0 ,

where ∇? indicates the gradient perpendicular to the flux sur-
faces, and where poloidal field curvature and the centrifugal
force are neglected (Chiueh, Li & Begelman, 1991; ACa).

2.4. Discussion of the force-free assumption

One may question the assumption of a force-free asymptotic jet.
Indeed, in a self-consistent picture of jet formation, the asymp-
totic jet is located beyond the collimating, non force-free wind
region and beyond the fast magnetosonic surface. The asymp-
totic jet parameters are determined by the critical wind motion
and thus, the poloidal current and the angular velocity of the
field are not functions free of choice.

The essential point here is the assumption of a cylindrical
shape of the asymptotic jet, an assumption, however, which is
clearly indicated by the observations. The general, non force-
free expression for the poloidal current is

RB� = −4π
η(Ψ)E(Ψ)

ΩF(Ψ)
x2
A − x2

1−M 2 − x2
,

where η(Ψ) is the particle flow rate per flux surface, E(Ψ) is
the conserved total energy, M the Alfvén Mach number, and
xA(Ψ) the Alfvén radius of the flux surface. For cylindrical flux
surfaces, all quantities on the r.h.s. are functions of Ψ, and thus,
also RB� is a function of Ψ. Although RB� is not equal to the
force-free current, it enters Eqs. (10) and (13) in a similar way.

The centrifugal term, which was neglected in Eq. (13), is
−γ2ρRΩ2eR, with the plasma density ρ and plasma angular
velocity Ω (see ACa). This term may be important for small
plasma densities ρ, where RΩ might be large, as well as for
high densities, where the toroidal plasma velocity is supposed
to be small. We can estimate the importance of this term by
normalising and introducing a coupling constant

gM =
ṀjetcR

2
0

πΨ2
max

,
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Fig. 1. a,c Magnetic pressure dis-
tribution y(x) and b,d flux dis-
tribution Ψ(x) for a field rota-
tion law ΩF(x) = (1/x) (solid,
long-dashed) and ΩF(x) ≡ 1
(dotted, short-dashed). a,b Cur-
rent distribution I(x) = xn,
n = 0.5, 2, c,d current distribu-
tion (22), a = 1, 10, n = 2.

which is of the order of one tenth for a jet mass loss rate Ṁjet '
10−2M�yr−1 and other parameters typical for AGN.

For protostellar jet parameters and a mass loss rate Ṁjet '
10−10M�yr−1, gM increases by a factor of 1000. However, in
this case we may expect that the Alfvén surface of the plasma
motion is located well inside the light cylinder. Thus, the plasma,
rotating with constant angular momentum beyond the Alfvén
surface, has a decreasing and low angular velocity Ω (which is
normalised to the ΩF). The centrifugal term∼ Ω2 may become
comparatively small. We emphasise that the latter arguments are
rather (simplifying) assumptions than keen conclusions, as long
as the true non force-free jet equilibrium is not investigated.

Contopoulos & Lovelace (1994) and Ferreira (1997) con-
structed self-similar solutions including centrifugal forces
showing that the magnetic terms indeed may dominate the cen-
trifugal term for large radii leading to a recollimation of the
outflow.

2.5. Solution of the asymptotic GSS equation

Eq. (10) can be solved by the method of the variation of con-
stants. The integrating factor of the differential equation is

M (x) = exp

Ã∫
−4x

Ω2
F(x)− x

4
d
dxΩ2

F(x)

1− x2Ω2
F(x)

dx

)
, (14)

with the formal solution

y(x) =
1

M (x)

Ã
C −

∫
M (x)

1− x2Ω2
F(x)

g d
dxI

2(x)

8πx2
dx

)
(15)

Using Eq. (12), the general solution can be evaluated,

y(x) =
1

M (x)
g

8π

∫ 1

x

1
x̃2

M (x̃)
1− x̃2Ω2

F(x̃)
d

dx̃
I2(x̃)dx̃ . (16)

As already mentioned by ACa, the solution y(x) is determined
by the regularity condition (12). The magnetic flux function is

Ψ(x) =
∫ x

0
x̃
√

8πy(x̃)dx̃ . (17)

In the case of a constant field rotation, ACb found an ana-
lytical, non-linear solution to the asymptotic GSS equation, the
flux distribution

Ψ(x) =
1
b

ln

(
1 +
(x
a

)2
)
, (18)

together with the current distribution

I(Ψ) =
1− e−bΨ

1− e−b
, (19)
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leading to a certain relationship between the current distribution
parameter b, the core radius a, the coupling constant g, and the
asymptotic jet radius xjet ≡ x(Ψ = 1).

3. Results and discussion

We now discuss different solutions of the asymptotic GSS equa-
tion including differential rotation. We first consider the case of
vanishing poloidal current. We give an analytical solution for a
special rotation law leading to a ’degeneration’ of the asymptotic
light cylinder. Then, Eq. (10) is solved numerically for differ-
ent assumptions for the asymptotic field rotation ΩF(x). Finally,
using a general ansatz for the asymptotic field distribution we
derive a relation between I(Ψ) and ΩF(Ψ).

In general, the differential equation for the field pressure
(10) can be rewritten as a differential equation for the angular
velocity of the field lines,

dΩ2
F

dx
+

(
4
x

+
d(ln y)
dx

)
Ω2

F =
g

8π
1
x4y

dI2

dx
+

1
x2

d(ln y)
dx

, (20)

with the formal solution

Ω2
F(x) =

1
x4y

(
C +

g

8π
I2(x) +

∫
x2 dy

dx

)
. (21)

For physical reasons, Ω2
F(x) should be monotonous (since cou-

pled to the disk rotation), and positive for all x. In order to
be consistent with the chosen normalisation, we further require
Ω2

F(1) = 1, and x2Ω2
F < 1 for x < 1. From the latter condition,

it follows that the integration constant must vanish,C = 0. Oth-
erwise the rotational velocity xΩF of the field would diverge for
x → 0. Note that, although the angular velocity may diverge
with ΩF ∼ 1/xm, 0 < m � 1, the rotational velocity remains
finite for x→ 0.

We can further see that for particular choice, a bounded
current distribution with the core radius a,

I(x) =
(x/a)n

1 + (x/a)n
, (22)

and for n � 2 the current term in Eq. (21) does not diverge in
the limit x → 0, leading to finite angular field rotation (since
y(0) must be finite), while for n >∼ 1/2 the angular velocity
diverges but not the rotational velocity, xΩF → finite value.

3.1. The case of constant or vanishing current

Now we take a look at the case of a vanishing poloidal current.
A constant current, I(x) = const, would imply a divergence in
the field rotation.

If I(x) = 0, from the regularity condition (12) it follows that
y(1) = 0. From Eq. (21) we conclude that a physical rotation law
(which does not diverge at x = 1) requires that the numerator∫
x2(dy/dx)dx vanishes together with the denominator x4y.

This, however, is in contradiction with the requirement of a
decreasing, monotonous rotation law, as it can be derived from
the following. A vanishing integral

∫
x2(dy/dx)dx requires that

the integrand changes sign at a certain position. Thus, y(x) has
to have a maximum (a minimum is ruled out, since y(1) = 0),
and also the term x4y. On the other hand, the integral has a
maximum too, but not necessarily at the same position. This
implies that the ratio of numerator and denominator passes a
point of inflection, where both terms equal, and therefore Ω2

F =
1. Since also ΩF(x = 1) = 1 by definition, this is in contradiction
with a monotonous rotation law.

We conclude only from asymptotic considerations that
cylindrically collimated differentially rotating jets always carry
a non-constant, net poloidal current. This is in agreement with
previous results (Heyvaerts & Norman 1989, Chiueh et al.
1991).

3.2. A solution with degenerate light cylinder

The next case we will investigate is for a rotation law

ΩF(x) =
1
x
. (23)

Now all asymptotic field lines rotate with the speed of light, and
the light cylinder degenerates. Note that this does not contradict
with our choice of normalisation. The length scale is measured
in units of R0, which is the light cylinder of a rigidly rotating
magnetosphere. Here, ΩF(1) ≡ (ΩF)rigid = 1.

The rotation law (23) and the corresponding field distribu-
tion may be considered as a somehow ’limiting case’ for a phys-
ical field rotation. For a rotation law with a steeper slope (e.g. for
Ω2

F ∼ x−3) the rotational velocity will diverge if x → 0. Also,
the surface x = 1 then plays the role of a somehow ’inverted’
light cylinder since all field lines within (outside) the light cylin-
der rotate faster (slower) than the speed of light. Whether this
behaviour could be considered as appropriate for astrophysical
application also depends on the 2D field distribution.

Since for assumption (23) the derivative term of y disappears
in Eq. (10), we can immediately write down the solution

y(x) =
g

16πx
d

dx
I2(x) , Ψ(x) =

∫ x

0

(
gx̃

2
d

dx̃
I2(x̃)

)1
2

dx̃. (24)

With a current distribution I(x) = xn the field distribution is

y(x) =
g

16π
2nx2n−2 , Ψ(x) =

√
ng

n + 1
xn+1 . (25)

This gives a rotation law for the flux surfaces

ΩF(Ψ) =

(√
ng

n + 1
1
Ψ

)1/(n+1)

(26)

We show the solution with bounded current distribution (22)
and n = 2 in the Appendix. Fig. 1 displays both results in com-
parison with a field distribution resulting from a rigid rotation
law, ΩF ≡ 1.

We note that Contopoulos (1994) applied a similar rota-
tion law for self-similar solutions of the 2D GSS equation,
which take self-consistently into account also plasma inertia ef-
fects. With a current distribution I(x) ∼ xn−1, Eq. (24) reveals
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Fig. 2a–d. The rotation laws applied
for the asymptotic jet magnetosphere
(29) (a), (c), and (30) (b), (d). Square
of the a, b angular velocity Ω2

F, and
c, d the rotational velocity x2Ω2

F. Pa-
rameters: h = 0 (solid), h = 0.1
(dotted), h = 0.2 (short-dashed),
h = 0.5 (long-dashed), h = 1.0 (dot-
ted-dashed).

Ψ(x) ∼ xn, which is identical to the results of Contopoulos
(1994). In the force free limit, his function H(Ψ) is identical to
our poloidal current (2/c)I(Ψ).

As a simple application of this differentially rotating field
distribution, the asymptotic solutions (25) and (26) are con-
nected to an accretion disk with Keplerian rotation, ΩK(x) =√
GM/c2R0 x

−3/2 (we assume here that the flux surfaces orig-
inating in the disk rotate with this velocity).

Since the field rotation near the disk ΩF((Ψ(x))disk) ≡
ΩK(x) must be the same as in the asymptotic regime, ΩF(Ψ),
the flux distribution near the disk can be calculated,

(Ψ(x))disk =
√
ng

n + 1

Ãr
c2R0

GM

)n+1

x3(n+1)/2 . (27)

From the comparison of the disk flux distribution with the
asymptotic flux distribution, it follows that for a certain flux
surface the ratio between it’s asymptotic radius, x1;Ψ and the
radius near the disk xD;Ψ is

x1;Ψ

xD;Ψ
=

r
c2R0

GM
xD;Ψ . (28)

We can further calculate the foot point of the outermost flux
surface, Ψ = 1, from Eq. (27), and with that and Eq. (28) the
’total expansion rate’ of the jet

xjet

xD;Ψ=1
=

(
(n + 1)√

ng

)1/3(n+1)(
c2R0

GM

)1/3

.

The first term in this equation varies rather weakly with g, and
is of the order of unity (unless g is not much larger or much
less than unity). For the second term we calculate for AGN
(M = 1010 M�, R0 = 1016 cm) a number value of about 2,
which is surprisingly small, and for protostars (M = 3 M�,
R0 = 1015 cm) a value of ∼ 1200, respectively. This result
may indicate on an intrinsic difference between the two jet
sources. However, we should keep in mind that inertial forces
may change the protostellar jet expansion rate and that the as-
sumed current distribution might not be appropriate.

Comparing the field distribution near the disk (27) and in
the asymptotic region (25) at small radii x < 1,

Ψ(x)disk

Ψ(x)1
=

(
c2R0

GM
x

)(n+1)

,

we may principally expect a recollimation of certain flux sur-
faces, depending on the source parameters M,R0 and the ra-
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Fig. 3a–e. a Magnetic pressure dis-
tribution y(x) and b flux distribution
Ψ(x). c Coupling constant as a func-
tion of the jet radius. The field rotation
law is (29) with different steepness
parameters, h = 0 (solid), h = 0.1
(dotted), h = 0.2 (short-dashed),
h = 0.5 (long-dashed), h = 1.0 (dot-
ted-dashed). The solid curves coin-
cide with the analytical result from
ACb. Note that the solid curves corre-
spond to the dotted curves in Fig. 1c
and 1d.

dius x. However, we believe that such kind of conclusions (e.g.
’recollimation predominantly for low mass AGN’) might be ex-
aggerated, since not very much is known about the disk field
distribution and rotation, especially for small radii near the star,
black hole, or disk boundary layer.

3.3. Numerical solutions of the asymptotic GSS including dif-
ferential rotation

In this section numerical solutions to the asymptotic GSS equa-
tion with differential rotation are presented. Here, the current
distribution is prescribed, and Eq. (10) is solved for different
assumptions for the rotation law, ΩF(x) = ΩF(Ψ(x)).

In order to allow a comparison with rigid rotation solutions
we chose a bounded current distribution (22) (with n = 2) in
parallel to the work of ACa,b. For the rotation law we require that
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(i) it is finite at x = 0, (ii) ΩF(x = 1) = 1, in accordance with the
normalisation, and (iii) Ω2

F > 0 8 Ψ < 1. These requirements
are satisfied by e.g. the following functions,

Ω2
F(x) = eh−hx (29)

Ω2
F(x) =

exp
(

1
x+f

)
hx + 1

, f ≡ 1
ln(h + 1)

− 1 , (30)

where h plays the role of a steepness parameters (see Fig. 2).
There is a further condition (iv) for a rotation law. Rota-

tion laws remaining valid for x → 1, have to be flatter than
ΩF ∼ 1/x. Otherwise the rotational velocity of the field lines
will pass a maximum and finally decreases to values x2Ω2

F � 1
(Fig. 2c). Note that ansatz (29) cannot be applied for arbitrarily
large radii in the case of a high steepness parameter h. Since ro-
tation law (29) is applied for a finite flux distribution, there is no
serious problem as long as the turn-over of the rotational veloc-
ity is located beyond the jet radius. Ansatz (30) is more general,
however, the analytical expressions look more complicated.

In Fig. 3 we display the numerical solutions of the asymp-
totic force balance for ansatz (29). A solution with ansatz (30)
looks very similar, we therefore omitted the plot. The solid
curves show the field distribution with constant field rotation
coinciding with the result of ACb, the other curves the result
with increasing steepness of the rotation law, respectively.

The small peak in the field pressure (Fig. 3a) along the so-
lution with the very steep rotation law results from numerical
difficulties with the above mentioned decrease of rotational ve-
locity for large radii and does not appear for the other ansatz.

From the solutions Ψ(x) and I(x) or ΩF(x), we can derive
the distribution of the conserved quantities I(Ψ) and ΩF(Ψ)
(Fig. 3d, 3e), which could be applied for force-free 2D calcula-
tions.

Fig. 3c shows the relation between the coupling constant
(measuring the strength of the poloidal current) and the jet ra-
dius. In order to obtain jets with the same radius, the current
strength has to be increased with increasing steepness of ΩF.
The same behaviour is mirrored in Fig. 3e, if we compare the
poloidal current at the jet boundary, I(Ψ = 1), for different h.

The force-equilibrium is affected by differential rotation
predominantly in the outer part of the jet. The field distribu-
tion within the core radius a of the asymptotic jet is not con-
cerned very much by differential rotation, although a slight de-
collimating effect can be observed. The behaviour changes be-
yond of x = a, where the collimating effect is stronger than the
de-collimation effect in the inner part.

Our results clearly show that differential rotation has a col-
limating influence. Depending on the steepness parameter, the
asymptotic jet radius (defined by Ψ = 1) varies by a factor up to
2, which could be even larger for a lower coupling g. Note that
the spatial scaling is in terms of the asymptotic jet radius R0.
This parameter, however, and thus the absolute scaling can only
be inferred from a 2D solution. In Sect. 2.2 we gave arguments
that, due to the rapid rotation of the accretion disk, R0 could
be closer to the jet axis compared to solutions with constant
rotation ΩF = Ω?.

3.4. A non-linear analytical solution

In this section we derive a general analytical solution for the
rotation law ΩF(Ψ). We assume a form of flux distribution pa-
rameterised as in Eq. (18). However, in contrary to the case of
rigid rotation, the parameter b = ln(1 + (xjet/a)2) is not a pri-
ori coupled to the current distribution (e.g. Eq. 19). Then, the
asymptotic GSS can be transformed into an ordinary differential
equation for Ω2

F,

d

dΨ
Ω2

F(Ψ) +
2b

ebΨ − 1
Ω2

F(Ψ) =
g b2

4
(ebΨ)2

(ebΨ − 1)2

d

dΨ
I2(Ψ)

− 1
a2

2 b
ebΨ − 1

(31)

Now we investigate, whether a combination of current distribu-
tion and rotation law can be found, which is consistent with the
chosen flux distribution. The general solution of Eq. (31) is

Ω2
F(Ψ) =

C + 1
4g b

2I2(Ψ)− a−2e−bΨ(e−bΨ − 2)

(1− e−bΨ)2
, (32)

with the integration constantC. This solution diverges for Ψ →
0 unless C = −1/a2. Thus, we obtain

Ω2
F(Ψ) =

1
4
g b2 I2(Ψ)

(1− e−bΨ)2
− 1
a2

, (33)

and vice versa a relation for the current distribution in terms of
ΩF(Ψ). In the limit Ψ → 0 the solution approaches

lim
Ψ→0

Ω2
F(Ψ) =

1
a2

+
g

8
lim
Ψ→0

d2

dΨ2
I2(Ψ) . (34)

For a current distribution (19) we end up with the result of ACb
with constant angular velocity of the field, ΩF = 1.

Since by definition I(Ψ = 1) = 1, xjet = a
√
eb − 1, we can

derive an expression for the coupling constant

g =
4
b2

(1− e−b)2

Ã
Ω2

F(1) +
eb − 1
x2

jet

)
. (35)

Eq. (35) is visualised in Fig. 4. We see that differential rotation
plays a dominant role only for low-g / low-b jets, i.e. jets with
low poloidal current and a broad field distribution (i.e. large
core radius). Note that although a is shifted to lower values for
steeper differential rotation, the magnetic flux Ψ(x = a) remains
unchanged. In the limiting case of rigid rotation the parameter
b describes steepness of the poloidal current distribution. We
can rewrite Eq.(35) in terms of the core radius a of the field
distribution

g = 4
Ω2

F(1) +
(
1/a
)2

ln(1 + (xjet/a)2)

Ã (
xjet/a

)2

1 +
(
xjet/a

)2

)2

(36)

This shows that in order to obtain the same asymptotic mag-
netic jet structure (with the same parameters a, b, or xjet in
Eq. (18)), the current has to be larger (parameterised by the cou-
pling constant g) in the case of larger gradients of the rotation
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law. Similarly, for a fixed ratio (xjet/a) and g, but decreasing
ΩF(1), also the core radius a (and thus xjet) is decreasing.

The thick line in Fig. 4 is the limiting value for the coupling
constant g for rigid rotation, where the core radius a diverges
(ACb). It corresponds to a minimum current required for rigid
rotating magnetic jets, g1 = 4 (1 − e−b)2/b2. In the case of
differential rotation, this value is decreased by a factor ΩF(1)2.

Eqs. (35) and (36) are a general result resting only on the
assumption of the field distribution (18). No assumption was yet
made about the function ΩF(Ψ). Any solution I(Ψ), ΩF(Ψ) has
to lie within the limiting curves of ΩF(1) = 1 and ΩF(1) = 0 in
Fig. 4. The ratio of the coupling constants for constant rotation
(ΩF(1) = 1) and for maximum differential rotation (ΩF(1) = 0)
is

gmax

gmin
= 1 +

x2
jet

eb − 1
. (37)

Again we derive the ’total expansion rate’ similar to Sect. 3.2
by comparison of the asymptotic solution with Keplerian disk
rotation,

x3
jet

x3
D;Ψ=1

(
GM

c2R0

)
=

1
4
gb2

x3
jet(

1− e−b
)2 − (eb − 1)xjet, (38)

where no assumption was made about a specific field rotation.
Strong currents and large asymptotic jet radii imply a strong
opening of the flux surfaces. If we rewrite Eq. (38) in terms of
the field rotation,

xjet

xD;Ψ=1
=

(
c2R0

GM

)1
3

xjet Ω
2
3
F (1) =

(
2
R0

RS

)1
3

xjet Ω
2
3
F (1) , (39)

we see that a stronger gradient in the field rotation (a lower value
of ΩF(Ψ = 1)) leads to a lower expansion rate. A vanishing
field rotation of the outermost flux surface leads to a vanishing,
unphysical, expansion rate.

With reasonable numerical parameters the different central
objects (see Sect. 2.2), the numerical values for the expansion
rate are

xjet

xD;Ψ=1
= 2xjet Ω

2
3
F (1)

(
M

1010 M�

)(
R0

1016cm

)−1

in the case of AGN, and

xjet

xD;Ψ=1
= 600 xjet Ω

2
3
F (1)

(
M

3 M�

)(
R0

1015cm

)−1

for protostellar objects.
We may assume that AGN jets are highly relativistic with

1 << xjet ∼ 100, and therefore are strong differential rotators,
1 >> ΩF(1) ∼ 0.1. Their expansion rate would then be of
the order of 50. In the case of protostars xjet ∼ 1, and thus
ΩF(1) ∼ 1. The expansion rate would then be of the order of
600. The applied number values for xjet and ΩF(1) are only raw
estimates, indicating ’steep’ or ’flat’ rotation laws and ’highly’
or ’weakly’ relativistic field rotation, respectively.

Fig. 4. Interrelation between the jet parameters g, b = ln(1 + (xjet/a)2),
xjet and the angular field velocity at the jet boundary, Ω2

F(Ψ = 1).
Ω2

F(1) = 1 (solid), Ω2
F(1) = 0.5 (dotted), Ω2

F(1) = 0.1 (short-dashed),
Ω2

F(1) = 0 (long-dashed). The thick solid curve is the boundary of the
forbidden regime, where no rigid rotating jet solutions are possible.
The solid curves coincide with the result from ACb.

Keeping all the uncertainties in mind, we may generally
expect lower expansion rates for the AGN. Especially the ex-
pansion rates for protostars have to be taken with care (see also
discussion end of Sect.3.2). However, a rather general conclu-
sion might be that high mass, fast rotating AGN have higher
jet expansion rates than their low mass slower rotating counter-
parts.

If we rewrite Eq. (35) we find an expression for the ratio of
the jet radii in terms of the field rotation of the outermost flux
surface.

3.4.1. The question of non-monotonous flux distribution

We note a general difficulty with non-monotonous flux distri-
butions. In this case the jet magnetosphere would consist of
flux surfaces with different foot points, but with the same ab-
solute flux, e.g. Ψ1 = Ψ2. These flux surfaces are not directly
connected within the integration domain.

There is no physical reason, why they should not carry a
different poloidal current, as long it is conserved along Ψ1 and
Ψ2, respectively. However, in this case the description of the
poloidal current as a function I(Ψ), seems to fail. Instead it is
supposed, that always I(Ψ1) = I(Ψ2), and one has to assume
such kind of current distribution.

The problem is more serious for the other ’free’ function,
the field rotation ΩF(Ψ). Here, if we suppose an accretion disk
as source for the magnetic flux, all foot points of the flux sur-
faces must rotate with monotonously decreasing angular ve-
locity. Again, the description does not support a different field
rotation for Ψ1 and Ψ2. This statement is also valid for a non
force-free description.
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We conclude that the monotonous disk rotation could only
support monotonous flux distributions. Therefore, assumption
(18) for the analytical solution seems to be rather general.

3.4.2. A special analytical rotation law

As an example for a current distribution appropriate for differ-
ential rotation we may chose

I(Ψ) = B
(
1− e−bΨ

)
e−dΨ; B ≡ (1− e−b

)−1
ed. (40)

The steepness parameter d describes the variation from constant
rotation. This leads to a field rotation

Ω2
F(Ψ) =

1
4
g b2B2e−2dΨ − 1

a2
, (41)

The jet radius is by definition at Ψ = 1, and from Eq. (18) it
follows xjet = a

√
eb − 1. Since ΩF(Ψ(x = 1)) = 1, we calculate

for the flux distribution parameter

a2 =

Ã(
1
4
gb2B2

)1/(1+2d/b)

− 1

)−1

. (42)

Again, d = 0 gives the result derived by ACb. Otherwise, a and
also xjet is decreased for fixed g and b.

The expression for the coupling constant is

g =
4
b2

(1− e−b)2e−2d

Ã
1 +

eb − 1
x2

jet

)1+(2d/b)

. (43)

The angular velocity of the outermost flux surface is

Ω2
F(Ψ = 1) = 1 +

1
4
gb2B2e−2d −

(
1
4
gb2B2

)1/(1+2d/b)

. (44)

The interrelation of the parameters g, b, d and xjet is similar
to Fig. 4. However, the parameter d has to be chosen such that
Ω2

F(xjet) >∼ 0, and g(b; d, xjet) lies within the limiting curves of
ΩF(1) = 1 and ΩF(1) = 0 in Fig. 4.

4. Conclusions

In this paper the asymptotic force-balance across collimated
magnetic flux surfaces was investigated. Relativistic effects due
to rapid rotation of the field as well as differential rotation was
included in the treatment.

The related astrophysical scenario is that of a highly colli-
mated magnetic jet originating in an accretion disk, as observed
in active galactic nuclei, galactic high energy sources with su-
perluminal jets, and also protostellar jets with non-relativistic
jet motion.

We presented numerical solutions of the asymptotic jet equi-
librium for different assumptions of the field rotation. For a
general assumption for the asymptotic field distribution we also
derived an analytical solution.

The main results are the following

– Differential rotation always leads to a decrease of the jet
radius in terms of the asymptotic light cylinder radius.

– This effect can be balanced by an increase of the poloidal
current.

– The inner structure of the jets remains more or less un-
changed, the outer part becomes ’compressed’ by differen-
tial rotation.

– Jet expansion rates could be estimated under the assumption
of a certain rotation law for the foot points of the field (e.g.
Keplerian).

– A general analytical solution was derived for the asymptotic
flux distribution together with the rotation law of the field
lines and the current distribution.

Depending on the steepness of the rotation law, the ratio in
the jet radius between jets with and without differential rotation
can be of the order of two. We also showed that differential
rotation plays a role only for jets with low poloidal current and
a broad field distribution.

In order to maintain jets with the same jet radius, but with a
different gradient of field rotation, the strength of the poloidal
current must be increased. In this sense, differential rotation may
be considered as collimating effect and poloidal currents as de-
collimating effect. However, compared to the rigid rotating field
distribution, the minimum poloidal current required is decreased
by a factor, which depends on the rotation rate of the outermost
flux surface.

While within the asymptotic one-dimensional limit jets with
arbitrary radius could be obtained, there are indications that 2D
solutions of the relativistic GSS equation (but without differ-
ential rotation) only exist for asymptotic jet radii of the order
of several light cylinder radii (Fendt et al 1995, Fendt 1996).
It was impossible to obtain numerical solutions with jet radii
larger than ∼ 5 light cylinder radii. This result was not caused
by numerical effects. The results of the present paper indicate
that the jet radii are even smaller.

A central question is therefore the scaling of light cylinder
radius in terms of stellar (or black hole) radii. This, however,
could only be inferred from a two-dimensional solution of the
trans-field equation. We believe that inclusion of inertial effects
would possibly widen the jet. However, one should keep in mind
that in the case of self-similar jets Contopoulos & Lovelace
(1994) and Ferreira (1997) have shown that centrifugal forces
could be balanced by magnetic tension leading to a recollimation
of the jet.

A critical point of the present investigation is that the in-
teraction between the jet boundary and the ambient medium is
not included in the force-balance. Hence, the question whether
the jet is self-collimated or pressure collimated by the ambient
medium cannot be answered. However, if we take a certain jet
radius as given (by e.g. observational arguments), the results of
this paper give examples of the local force-free force-balance of
a jet with such a radius. In this picture the field pressure at the
jet boundary must be balanced by the external pressure. Smaller
or larger jet radii would change the jet parameters accordingly.

By comparing the field rotation near the foot points of the
field lines (near a ’disk’) and in the asymptotic regime, we were
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able to give some estimates on the expansion rate of the jets.
Protostellar jets seem to have high expansion rates of the order
of 1000, but these values are biased by the force-free assumption
for the force-balance. Expansion rates of AGN jets are lower,
a typical value might be 10. It can be said that high-mass fast-
rotating AGN jet expansion rates are expected to be higher than
those from low-mass slow rotating ones.
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Appendix A: another analytical solution with degenerate
light cylinder

Here we give the analytical expression for the field pressure
and flux distribution for a solution with ΩF(x) = (1/x) and a
bounded current distribution (22) with n = 2,

y(x) =
g

16π
4
a2

(x/a)2(
1 + (x/a)2

)3 ,

Ψ(x) =
√

2ga2

Ã
ln
(x
a

+
√

1 + (x/a)2
)
−
s

(x/a)2

1 + (x/a)2

)
.

The field rotation law can be expressed by an implicit equation

Ψ(ΩF)√
2ga2

=

Ã
ln

Ã
1 +
√

1 + (aΩF)2

aΩF

)
−
r

1
1 + (aΩF)2

)

Suppose that we have Keplerian rotation of the foot points along
the disk, ΩF = ΩK =

√
GM/c2R0x

−3/2, it follows for the disk
flux distribution

(Ψ(x))disk =
√

2ga2

Ã
ln

Ã
x3/2

a
√
ã

Ã
1 +

r
1 +

a2ã

x3

))

−
r

x3

x3 + a2ã

)
, (A1)

where ã ≡ (RS/2R0). For the ’total expansion rate’
(x1;Ψ=1/xD;Ψ=1) of the jet we derive an implicit equation

ln

0@√ãx1;Ψ=1

x
3/2
D;Ψ=1

1 +
q

1 + a2/x2
1;Ψ=1

1 +
q

1 + a2ã/x3
D;Ψ=1

1A =

=

Ã
1 +

a2

x2
1;Ψ=1

)− 1
2

−
Ã

1 +
a2ã

x2
D;Ψ=1

)− 1
2
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Mundt, R., Ray, T.P., Bührke, T., Raga, A.C., Solf, J., 1990, A&A, 232,
37

Ray, T.P., Mundt, R., Dyson, J.E., Falle, S.A.E.G., Raga, A., 1996, ApJ,
468, L103

Zensus, J.A., Cohen, M.H., Unwin, S.C., 1995, ApJ, 443, 35

This article was processed by the author using Springer-Verlag LaTEX
A&A style file L-AA version 3.



A&A 365, 631–641 (2001)
DOI: 10.1051/0004-6361:20000057
c© ESO 2001

Astronomy
&

Astrophysics

Collimating, relativistic, magnetic jets from rotating disks

The axisymmetric field structure of relativistic jets
and the example of the M 87 jet

C. Fendt and E. Memola

Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
e-mail: cfendt@aip.de; ememola@aip.de

Received 25 April 2000 / Accepted 19 October 2000

Abstract. We investigate the axisymmetric structure of collimating, relativistic, strongly magnetized (force-free)
jets. In particular, we include the differential rotation of the foot points of the field lines in our treatment.
The magnetic flux distribution is determined by the solution of the Grad-Shafranov equation and the regularity
condition along the light surface. With differential rotation, i.e. the variation of the iso-rotation parameter ΩF, the
shape of the light surface is not known a priori and must be calculated in an iterative way. For the first time, we have
calculated the force-free magnetic structure of truly two-dimensional, relativistic jets, anchored in a differentially
rotating disk. Such an approach allows for a direct connection between parameters of the central source (mass,
rotation) and the extension of the radio jet. In particular, this can provide a direct scaling of the location of the
asymptotic jet light cylinder in terms of the central mass and the accretion disk magnetic flux distribution. We
demonstrate that differentially rotating jets must be collimated to a smaller radius in terms of the light cylinder if
compared to jets with rigid rotation. Also, the opening angle is smaller. Further we present an analytical estimate
for the jet opening angle along the asymptotic branches of the light surface. In general, differential rotation of
the iso-rotation parameter leads to an increase of the jet opening angle. Our results are applicable for highly
magnetized, highly collimated, relativistic jets from active galactic nuclei and Galactic superluminal jet sources.
Comparison to the M 87 jet shows agreement in the collimation distance. We derive a light cylinder radius of the
M 87 jet of 50 Schwarzschild radii.

Key words. accretion, accretion disks – MHD – methods: numerical – ISM: jets and outflows – galaxies: individual:
M 87 – galaxies: jets

1. Formation of magnetic jets

Observations of astrophysical jet sources have now estab-
lished the idea that jet formation is always connected
to the presence of an accretion disk and strong mag-
netic fields. This holds for various scales of energy out-
put, jet velocity and nature of the jet emitting objects.
Examples are jets from active galactic nuclei (AGN),
Galactic superluminal jet sources, the example of a mildly
relativistic jet from a neutron star (SS 433) and the nu-
merous class of protostellar jets (see Zensus et al. 1995;
Mirabel & Rodriguez 1995; Mundt et al. 1990; Ray et al.
1996). Magnetic jets are believed to originate very close
to the central object in the interaction region with the
accretion disk. Beside observational arguments also the-
oretical considerations have shown that magnetic fields
play an important role in jet formation and propaga-
tion (Blandford & Payne 1982; Pudritz & Norman 1983;

Send offprint requests to: C. Fendt

Shibata & Uchida 1985; Sakurai 1985; Camenzind 1987;
Lovelace et al. 1991).

If the central object is a black hole as it is the case
for AGN and Galactic superluminal jet sources, the sur-
rounding accretion disk is the only possible location for
a field generation (by dynamo action or/and advection
of flux). In the case of stellar objects (protostars, white
dwarfs or neutron stars), the central star also carries a
relatively strong magnetic field and it is not yet clear,
whether the jet magnetosphere originates in the disk or
in the star. However, a strong interaction between stel-
lar field and accretion flow is evident. The jet formation
process itself is not yet fully understood theoretically. In
particular, for the mass transfer from the disk into the jet
and the process of magnetic field generation a complete
physical model is missing.

However, over the last decades the basic ideas of
Blandford & Payne (1982) have been extended by vari-
ous authors. The general picture is the following. Matter
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is lifted from the disk into the magnetosphere and be-
comes magnetically accelerated (Ferreira 1997). Toroidal
magnetic fields, generated by inertial back-reaction of the
plasma on the poloidal field, may collimate the disk mag-
netosphere into a highly collimated jet flow (Camenzind
1987; Chiueh et al. 1991; Lovelace et al. 1991). In general,
due to the complexity of the MHD equations, stationary
relativistic models of magnetic jets has to rely on sim-
plifying assumptions such as self-similarity (Contopoulos
1994, 1995), some other prescription of the field structure
(Li 1993; Beskin 1997) or the restriction to asymptotic
regimes (Chiueh et al. 1991; Appl & Camenzind 1993;
Nitta 1994, 1995). For highly magnetized jets the force-
free limit applies. This allows for a truly two-dimensional
calculation of the magnetic field structure (Fendt et al.
1995; Fendt 1997a). Relativistic magnetohydrodynamics
implies that poloidal electric fields, which are not present
in Newtonian MHD, cannot be neglected anymore.

From the observations we know that extragalactic jets
as well as Galactic superluminal jets and protostellar
jets are collimated almost to a cylindrical shape (Zensus
et al. 1995; Ray et al. 1996; Mirabel & Rodriguez 1995).
Theoretically, it has been shown that current carrying rel-
ativistic jets must collimate to a cylinder (Chiueh et al.
1991). For the asymptotic limit of a cylindrically colli-
mated magnetic relativistic jet, Appl & Camenzind (1993)
found a non-linear analytical solution for the trans-field
force-balance in the case of a constant iso-rotation param-
eter. These results were further generalized for jets with
differential rotation (Fendt 1997b). Such an asymptotic
field distribution is especially interesting for jets emerging
from (differentially rotating) accretion disks.

In previous papers, we applied the asymptotic jet
model of Appl & Camenzind (1993) as a boundary condi-
tion for the calculation of global, two-dimensional, force-
free jet magnetospheres for rapidly rotating stars (Fendt
et al. 1995) or rapidly rotating black holes (Fendt 1997a).
In this paper, we continue our work on 2D force-free jet
magnetospheres applying an asymptotic jet with differen-
tial rotation of the iso-rotation parameter ΩF as boundary
condition for the global jet structure. Such an approach
allows for a connection between the differentially rotat-
ing jet source – the accretion disk – and the asymptotic
collimated jet. Since jet motion seems intrinsically con-
nected to the accretion disk, differential rotation of the
field lines should be a natural ingredient for any magnetic
jet structure. As a principal problem for differentially ro-
tating relativistic jet magnetospheres, position and shape
of the singular light surface are not known a priori, but
have to be calculated in an iterative way together with the
magnetic flux distribution.

In Sect. 2 we recall some basic equations of the theory
of relativistic magnetospheres and discuss several difficul-
ties with the solution of the Grad–Shafranov (hereafter
GS) equation. After some comments on the numerical ap-
proach in Sect. 3, we discuss our results in Sect. 4. A
summary is given in Sect. 5.

2. Structure of magnetic jets

Throughout the paper we apply the following basic as-
sumptions: axisymmetry, stationarity and ideal MHD. We
use cylindrical coordinates (R,φ, Z) or (x, φ, z) if normal-
ized. The term “asymptotic” always denotes the limit of
Z � R unless explicitly stated otherwise. We consider jets
with a finite radius, R <∞ for Z →∞.

2.1. The force–free, cross–field force–balance

With the assumption of axisymmetry, a magnetic flux
function can be defined

Ψ =
1

2π

∫
BP · dA, RBP = ∇Ψ ∧ eφ, (1)

measuring the magnetic flux through a surface element
with radius R and, in a similar way, the poloidal current
through the same area

I =
∫
jP · dA = − c

2
RBφ, (2)

which, in the force-free case, flows parallel to the flux sur-
faces, I = I(Ψ).

The structure of the magnetic flux surfaces is de-
termined by the toroidal component of Ampère’s law,
∇ × BP = 4πjφ/c, where the toroidal electric current
density has to be calculated from the equation of motion
projected perpendicular to the flux surfaces (Camenzind
1987; Fendt et al. 1995). For strong magnetic fields, in-
ertial forces of the matter can be neglected. This is the
force-free limit and the equation of motion reduces to
0 = cρcE + j ×B with the charge density ρc.

Combining Ampère’s law and the force-free equation
of motion the cross-field force-balance can be written as
the modified relativistic GS equation,

R∇ ·
(

1− (RΩF(Ψ)/c)2

R2
∇Ψ

)
= − 4

c2
1
R

1
2
(
I2(Ψ)

)′
(3)

− R |∇Ψ |2 1
2
(
Ω2

F(Ψ)
)′
,

where the primes denote the derivative d
dΨ (see

Camenzind 1987; Okamoto 1992).
ΩF is conserved along the flux surfaces, ΩF = ΩF(Ψ).

We will call it the iso-rotation parameter, defined by
Ferraro’s law of iso-rotation. It can be understood as the
angular velocity of the plasma, reduced by the slide along
the field lines. Sometimes, it is called the angular veloc-
ity of the field lines. Both, the current distribution I(Ψ)
and the rotation law ΩF(Ψ) determine the source term for
the GS equation and govern the structure of the magne-
tosphere. We apply the following normalization,

R,Z ⇔ xR0, z R0,

ΩF ⇔ ΩF (c/R0) ,
Ψ ⇔ Ψ Ψmax ,

I ⇔ I Imax .
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As the length scale for the GS Eq. (3) the asymptotic
radius R0 of the light surface is selected (see below). In
order to allow for a direct comparison to rigidly rotating
magnetospheres, the normalization was chosen such that
ΩF = 1 at x = 1. With the chosen normalization, Eq. (3)
can be written dimensionless,

x∇ ·
(

1− x2Ω2
F(Ψ)

x2
∇Ψ

)
= − 1

x

g

2
(
I2(Ψ)

)′
− x|∇Ψ |2 1

2
(
Ω2

F(Ψ)
)′
. (4)

g is a coupling constant describing the strength of the
current term in the GS equation,

g =
4I2

maxR
2
0

c2Ψ2
max

= 4
(
Imax

1018A

)2(
R0

1016cm

)2( Ψmax

1033 Gcm2

)−2

where the parameters are chosen for extragalactic jets.
In this paper, g is in accordance with the definition in
Fendt et al. (1995) and differs from the definition in Appl
& Camenzind (1993) by a factor of two, gFendt = 2 gAC

1.
Interestingly, a coupling constant, defined in a similar way
also for the differential rotation term, would be equal to
unity. The GS equation is numerically solved applying the
method of finite elements (see Appendix).

Along the light surface, where D ≡ 1− x2Ω2
F(Ψ) = 0,

the GS equation reduces to the regularity condition,

∇Ψ · ∇D = −g 1
2
(
I(Ψ)2

)′ − 1
2
|∇Ψ |2

(
ln
(
ΩF(Ψ)2

))′
, (5)

which is equivalent to a Neumann boundary condition.
However, for differentially rotating magnetospheres with
ΩF = ΩF(Ψ) the shape of this surface is not known a pri-
ori and has to be calculated in an iterative way together
with the two-dimensional solution of the GS equation. For
constant ΩF the light surface is of cylindrical shape. As we
have shown in a previous publication (Fendt et al. 1995),
our finite element code satisfies the regularity condition
automatically, since the surface integral along the light
surface vanishes.

2.2. Discussion of the force-free assumption

It is clear that relativistic jets must be highly magne-
tized. Only a high plasma magnetization gives jet ve-
locities close to the speed of light (Fendt & Camenzind
1996). Therefore, for the calculation of field structure the
force-free limit seems to be reasonable. However, one may
question the assumption of a force-free asymptotic jet. In
a fully self-consistent picture of magnetic jet formation,
the asymptotic jet is located beyond the collimating, non
force-free wind region and beyond the fast magnetosonic

1 Due to the fact that the jet radius (where Ψ = 1) is not
known before the asymptotic GS equation has been solved
(Fendt 1997b), the normalization with g leads to a current
distribution I(Ψ) which is not normalized to unity. This dif-
ference in normalization is “hidden” in the coupling constant
g, which could, in principal, be re-scaled appropriately.

surface. The asymptotic jet parameters are determined by
the wind motion. Thus, poloidal current and iso-rotation
parameter of the field are not functions free of choice. The
force-free region of a jet is located close to its origin, where
the speed is low. Beyond the Alfvén surface plasma kinetic
energy dominates the magnetic energy, which is just the
contrary to force-freeness.

For small plasma density, the Alfvén surface of the
wind flow approaches the light surface. In this case the
fast magnetosonic surface moves to infinity for a conical
flow. Okamoto (1999) argues that a force-free field dis-
tribution extending to infinity in both x and z direction
will asymptotically be of conical shape, i.e. un-collimated.
However, his approach differs from ours in the sense that
he assumes that all field lines will cross the light cylinder.
Such an assumption per se prohibits any collimation. On
the other hand, perfect jet collimation is an observational
fact. Astrophysical jets (of very different energy scales)
appear collimated to cylinders of finite radius.

In general, the non force-free relativistic GS equation
shows three inertial contributions,

0 = −κ̃
(
1−M2 − x2Ω2

F

)
+
(
1− x2Ω2

F

) ∇⊥B2
P

8π
+
∇⊥B2

φ

8π

+∇⊥P +

(
B2
φ

4π
− ρu2

φ

)
∇⊥x
x
− B2

PΩF

4π
∇⊥(x2ΩF),

where ∇⊥ indicates the gradient perpendicular to Ψ , κ̃ ≡
κB2

P/4π = n ·(BP ·∇)BP/4π the poloidal field curvature,
ρ the mass density, uφ the toroidal velocity, P the gas
pressure and M the Alfvén Mach number (Chiueh et al.
1991). One can show that in the asymptotic, cylindrical
jet the contribution of inertial terms in the force-balance
across the field is weak. The contribution of gas pressure
is usually negligible in astrophysical jets. Also, the cen-
trifugal force does not play a role for radii larger than
the Alfvén radius, since outside the Alfvén surface (where
M2 = 1 − x2Ω2

F) the plasma moves with constant angu-
lar momentum. The curvature term vanishes in cylindrical
geometry. Therefore, since for cylindrical jets the contribu-
tion from inertial terms is weak, the configuration is com-
parable to the force-free case. The source term of the GS
equation may be reduced to a form similar to the common
force-free limit. We suggest the phrase “quasi force-free”
for such a configuration because the GS equation looks
force-free even if the physical system is not magnetically
dominated.

In the force-free limit of a highly magnetized plasma
the previous arguments also apply. However, in difference
to the asymptotic regime considered above, the low plasma
density implies that inertial terms are weak over the whole
two-dimensional jet region. The centrifugal term ρuφ is
weak even if the Alfvén surface now comes close to the
light surface. Numerical calculations of the plasma motion
along the field have shown that, for a high magnetization,
the Alfvén Mach number M grows almost linearly with
radius but remains relatively low (Fendt & Camenzind
1996). Thus, the inertial curvature term should not play a
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dominant role. Contopoulos & Lovelace (1994) find from
self-similar solutions that centrifugal forces are dominated
by magnetic forces leading to a re-collimation of the out-
flow.

In summary, our discussion of the inertial terms in the
force-balance equation has shown that these terms are
generally weak in the case of a high magnetization. We
therefore think that for the calculation of the magnetic
field structure in relativistic jets the force-free assump-
tion is acceptable. The main motivation of the force-free
assumption is clearly the reason of simplification. There is
yet no other way to calculate a truly two-dimensional field
distribution for relativistic jets. Naturally, with a force-
free solution, nothing can be said about the flow acceler-
ation itself.

2.3. Location of the asymptotic light cylinder

The radius of the asymptotic light cylinder R0 is the nat-
ural length-scale for the GS solution. A scaling of the GS
solution in terms of the properties of the central object
(e.g. its mass) relies on the proper connection between
the asymptotic jet and the accretion disk. This is feasi-
ble only if differential rotation ΩF(Ψ) is included in the
treatment (see Sect. 3).

In the following we consider the location of the light
surface and its relation to the relativistic character of the
magnetosphere from a general point of view. The light
cylinder of a flux surface Ψ is defined as a cylinder with
radius R = RL(Ψ) ≡ c/ΩF(Ψ). At this position the GS
equation becomes singular. However, this light cylinder is
only important for the field line if the field line actually
intersects it as for Ψout in Fig. 1. Only then, relativistic ef-
fects become dominant. For example, the poloidal electric
field scales with the radius in units of the light cylinder
radius, EP = (R/RL)BP. On the other hand, in the case
of Ψin in Fig. 1, the asymptotic radius of the flux surface is
smaller than its light cylinder radius RL(Ψin) (located be-
tween Ψin and Ψ0), therefore relativistic effects are small.
For jet solutions with rigid rotation ΩF all flux surfaces
have the same light cylinder radius. Thus, the singular
light surface of the magnetosphere is a cylinder. For jet
solutions with differential rotation ΩF the flux surfaces
have different light cylinder radii. The singular surface of
the magnetosphere is not a cylinder anymore.

It is now interesting to note that the case of differential
rotation ΩF(Ψ) allows for a hypothetical field distribution
where (i) the light radius of most of the flux surfaces is lo-
cated within the jet radius, but where also (ii) the asymp-
totic radius of the flux surfaces is always smaller than
their light radius. Such a field distribution would not have
a singular light surface and could be considered as “non
relativistic”, even if the hypothetical light radii of many
field lines are inside the jet radius. Such a situation is not
possible if the magnetosphere is constrained by a constant
rotation ΩF. This underlines the importance of the treat-
ment of differential rotation for jets from accretion disks.
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Fig. 1. Sketch of the jet model. Axisymmetric jet magnetic
flux surfaces Ψ projected into the meridional plane. The cen-
tral object, located within the inner boundary (solid disk), is
surrounded by an accretion disk. Helical magnetic field lines
(laying on the flux surfaces) are anchored in the differentially
rotating disk at the foot points RD(Ψ). The jet boundary is de-
fined by the flux surface Ψ = 1. The upper boundary condition
is a cylindrically collimated jet solution (Fendt 1997b). The ar-
row indicates the numerical deformation of the initially vertical
boundary of the inner solution (at x = 1) into the curved light
surface. The flux surfaces Ψin (Ψout) have an asymptotic ra-
dius smaller (larger) than the asymptotic light cylinder R0,
which is the asymptotic branch of the light surface RL(Ψ) for
large z. The flux surface Ψ0 coincides with the light surface
asymptotically. The jet half opening angle is α (see Sect. 2.4,
Fig. 2)

A relativistic description for the jet magnetosphere is
always required if the jet contains a flux surface for which
the light radius is smaller than the asymptotic radius.

2.4. The regularity condition and the jet opening angle

The regularity condition (5) is the natural boundary con-
dition along the light surface. Although it is impossible to
solve Eq. (5) explicitly, a general relation concerning the
jet opening angle can be derived. First, we rewrite Eq. (5)
as

Bz =
1
4
g(I2)′ − 1

4
B2

P

(
1

Ω2
F

)′
, (6)

where ΩF(Ψ) = 1/xL(Ψ) ≡ R0/RL(Ψ) has been applied.
From Eq. (6) it follows for the radial field componentB2

x =
−g(I2(Ψ))′/(1/Ω2

F(Ψ))′, if Ψ intersects the light surface
with vanishing Bz . On the other hand, considering a field
line perpendicular to the light surface, ∇Ψ ⊥ ∇D, this
provides a condition for the axial field component,

Bz =
g

2
(I2)′ =

B2
P

2

(
1

Ω2
F

)′
. (7)
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Fig. 2. Jet half opening angle α(Ψ = 1) for the analytical
asymptotic jet solution and along the asymptotic branch of
the light surface in x-direction (see Eq. (8)). Coupling constant
g = 0.1 a) and g = 2 b). Asymptotic magnetic flux distribution
parameter (Eq. (9)) b = 0.5 (solid), b = 1 (dotted), b = 2
(short-dashed), b = 5 (long-dashed)

Interestingly, this is either only a function of the current
distribution I(Ψ) or depends only from the specification of
the rotation law ΩF(Ψ). Further, in this case it is always
Bz > 0, since (1/Ω2

F)′ = (x2
L)′ > 0. In particular, for

the asymptotic (z → ∞) part of the magnetosphere, this
implies that only collimating field lines can cross the light
surface.

Now we consider the asymptotic branches of the light
surface. For the asymptotic branch in z-direction it holds
(∇D)x � (∇D)z ' 0. Further, it is Bx(ln Ω2

F)′ = 0, im-
plying either a collimated field structure, Bx ≡ 0 or rigid
rotation, (ΩF(Ψ))′ ≡ 0. From this we conclude that in the
asymptotic regime of a cylindrical light surface, also the
flux surfaces along this light cylinder must be of cylindri-
cal shape. Collimation must occur in the non-asymptotic
region of the jet.

If we now assume that there exists an asymptotic part
of the light surface in x-direction (where x� z) and that
(∇D)z � (∇D)x ' 0, we derive an equation for the half
jet opening angle,

α(Ψ) = tan−1

(√
1 +

1
4
g

(I2(Ψ))′(Ω2
F(Ψ))′

Ω4
F(Ψ)

)
, (8)

for the flux surfaces in this region. As a general example we
apply the analytical solution obtained for the asymptotic
jet (Fendt 1997b),

Ψ(x) ≡ 1
b

ln
(

1 +
(x
a

)2
)
, b ≡ ln

(
1 +

(xjet

a

)2
)
,

Ω2
F(Ψ) =

g b2

4

(
I2(Ψ)

(1− e−bΨ)2
− 1

(1− e−b)2

)
+ Ω2

F(1) (9)

for Eq. (9). Here, b is a measure for the ratio of jet radius
to jet core radius a. Finally, we obtain the half opening
angle for the outermost flux surface Ψ = 1,

α = tan−1


√√√√1 +RΩ

(
4RΩ

(
eb − 1
beb

)2

+
g/2

eb − 1

),(10)

where RΩ is defined as (ΩF(1))′/ΩF(1). Note, that Eq. (10)
is only valid in the limit of (∇D)x ' 0. Figure 2 shows
the variation of the opening angle α with the parameters a
and b for two choices of the strength of the poloidal electric
current. In general, jets with a strong differential rotation
ΩF(Ψ) (i.e. large RΩ) have a larger opening angle. Also,
jets with a large ratio of jet to core radius have a smaller
opening angle. Therefore, jets originating in a small part
of the accretion disk, equivalent to small value of RΩ, will
be collimated to a smaller opening angle. It is interesting
to note that, in the case of a rigid rotation, the limiting
half opening angle is 45◦, independently of g and b.

3. The jet-disk connection, providing the true
length scale of the GS solution

The natural length scale of the relativistic GS Eq. (3) is
the asymptotic light cylinder R0 (see Sect. 2.3). Its size is
related to the iso-rotation parameter ΩF(Ψ), which itself
is connected to the angular rotation of the foot points of
the field lines. Concerning the GS equation, the size of
R0 follows purely from electro-magnetic quantities, if the
coupling constant g is chosen. The GS solution can be
scaled to any central object from stars to galactic nuclei
as long as the interrelation of the parameters Ψmax, Imax

and R0 provides the same g. So far, no connection has
been made to the type of central object. Here, we treat
the question where the asymptotic light cylinder is located
in physical units.

In the case of rigid rotation, the light cylinder radius
is usually estimated by choosing a distinct radial distance
from the central object and defining ΩF under the assump-
tion that the jet magnetosphere is anchored in that point.
If the central object is a black hole, the marginally stable
orbit implies an upper limit for ΩF. For jets in AGN this
estimate leads to the common conclusion that the light
cylinder radius is at about 10RS and the typical jet ra-
dius at about 100RL. Clearly, such arguments relies on the
assumption that the field line emerging at this very spe-
cial radius defining ΩF also extends to the light cylinder
radius RL (see Sect. 2.3).
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This picture changes, if differential rotation ΩF(Ψ)
is considered. Different flux surfaces anchor at different
foot point radii and have different light radii (Sect. 2.3).
Assuming a Keplerian rotation, the light surface radius
RL(Ψ) is located at

RL(Ψ) = 4 1015 cm
(
RD(Ψ)
RS

)3/2(
M

1010M�

)
, (11)

where RS is the Schwarzschild radius of a point mass and
RD(Ψ) the foot point of the flux surface Ψ on a Keplerian
disk. A more general equation is

RL(Ψ)
RS

=
√

2
(
RD(Ψ)
RS

)3/2

· (12)

RD(Ψ) is determined from the magnetic flux distribution
along the disk and is defined by a certain disk model.
Figure 3 shows the location of the light radius RL for a
field line anchored at a foot point radius RD in a Keplerian
disk around a central object of mass M (see Eq. (11)).
Note that the unit of the field line footpoint radius in
Eq. (12) and Fig. 3 is the Schwarzschild radius. Therefore,
Fig. 3 is appropriate only for relativistic jets. The foot-
point radii for protostellar jets are several stellar radii, cor-
responding to about 106 Schwarzschild radii (which would
be located far above the box in Fig. 3).

So far, nothing can be said about the location of the
asymptotic radius of the field lines in general. The es-
sential question is where the asymptotic radius of a flux
surface is located in respect to its light cylinder. This ques-
tion can only be answered by a detailed model considering
the two-dimensional field distribution including differen-
tial rotation ΩF(Ψ). Only in such a model, the flux dis-
tribution of the asymptotic jet can be connected to the
flux distribution of the “star”-disk system. Certainly, both
boundary conditions – asymptotic jet and accretion disk –
rely on model assumptions. However, in a self-consistent
model these boundary conditions have to follow certain
constraints (see Sects. 4.1, 4.3).

4. The two-dimensional jet solution

4.1. Disk and jet boundary condition

Three important boundary conditions determine the
two-dimensional flux distribution. The first boundary con-
dition is in the asymptotic region. Here we assume a
cylindrically collimated jet. We apply the magnetic flux
distribution derived by Fendt (1997b), where the rigidly
rotating jet model of Appl & Camenzind (1993) is ex-
tended for differential rotation ΩF(Ψ). In particular, our
asymptotic jet shows the typical jet core-envelope struc-
ture of magnetic flux and electric current, i.e. a configu-
ration where most of the magnetic flux and poloidal elec-
tric current is concentrated within a “core” radius. The
asymptotic model provides not only the asymptotic mag-
netic flux boundary condition but also the ΩF(Ψ) and
I(Ψ) distribution for the whole two-dimensional jet mag-
netosphere. In the model of Fendt (1997b) these functions

Fig. 3. Location of the light cylinder radius of a flux surface
RL(Ψ), anchored at a certain foot point radius RD(Ψ) in units
of the Schwarzschild radius RS in a Keplerian disk around a
point mass M . Note that for non collapsed stellar objects the
footpoint radii of the jet field lines are located at about 106RS

follow from the solution of the one-dimensional (asymp-
totic) GS equation across the cylindrical jet and the pre-
scription of I(x) = (x/a)2/(1 + (x/a)2) together with
Ω2

F(x) = eh−hx, where a is the core radius of the elec-
tric current distribution and h governs the steepness of
the ΩF-profile2.

The second boundary condition is the magnetic flux
distribution along the disk. This distribution is in general
not known as a solution of the full MHD disk equations.
Typical models rely on various simplifying assumptions,
as e.g. stationarity, the distribution of magnetic resistiv-
ity or the disk turbulence governing a dynamo process. We
apply an analytic flux distribution similar to the model of
Khanna & Camenzind (1992), who calculated the station-
ary accretion disk magnetic field structure around a super
massive black hole. The typical behavior of the magnetic
flux distribution is (i) a slight increase of magnetic flux
along the innermost disk, (ii) a small or vanishing flux at
the inner disk radius, (iii) a strong increase of magnetic
flux at intermediate radius (the core radius) and (iv) a sat-
urating behavior for large radii. Using the normalization
introduced above, we choose the following disk boundary
magnetic flux distribution,

Ψdisk(x) =
1
b̃

ln

(
1 +

(
x− xin

ã

)2
)

(13)

with b̃ = ln(1+(xdisk−xin)2/ã2)) (see Fig. 4). The param-
eters are: the core radius ã, the disk outer radius, xdisk and
the disk inner radius, xin. For simplicity, we choose xin ' 0
without loss of generality. Such a choice will definitely not
influence the global jet solution which is normalized to the
asymptotic light cylinder radius.

2 For figures of these functions and the related Ψ(x), ΩF(Ψ)
and I(Ψ) distribution, we refer to Fendt (1997).
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Fig. 4. Magnetic flux distribution along the disk Ψdisk(x) as
defined in Eq. (13). Parameters: xin = 0, xdisk/ã = 100,
40, 15, 7, 4, 2, 1, 0.01

The third boundary condition is the jet boundary
xjet(z). Along this boundary the flux distribution is Ψ = 1
by definition. However, the shape of this boundary is not
known a priori. It must be determined by the regularity of
the solution across the light surface (see also Fendt et al.
1995). A slightly different shape may give the same solu-
tion. However, the main features of the solution as opening
angle or locus of the collimation are fixed by the internal
equilibrium. Therefore, the regularity condition governs
the shape of the jet boundary. For a given I(Ψ), ΩF(Ψ),
disk and jet boundary condition, the jet radius xjet(z) is
uniquely determined.

The inner spherical grid boundary with radius x? close
to the origin, indicates the regime of the central source,
possibly enclosing a collapsed object. Neutron stars or
magnetic white dwarfs may carry their own magnetic field,
a black hole can only be threaded by the disk magnetic
field. In any case, the magnetic flux distribution is a com-
bination of “central” magnetic flux and disk magnetic flux
Ψ = Ψ? + Ψdisk. For simplicity we assume that the mag-
netic flux increases monotonically from the axis to the disk
edge and Ψ(x?) = Ψ?(x?) and Ψdisk(x?) = 0.

4.2. The two-dimensional collimating magnetic field
structure

Results of numerical solutions of the GS equation are pre-
sented in Fig. 5. Shown is the two-dimensional structure of
the magnetic flux surfaces as projection of the helical field
lines onto the meridional plane. In general, for a choice
of the “free functions” I(Ψ) and ΩF(Ψ), here taken from
the asymptotic cylindrical jet solution, the field structure
is determined by the boundary conditions and the regu-
larity condition along the light surface.

We calculated two solutions with a different choice for
the steepness parameter in the iso-rotation ΩF. The first
solution is for h = 0.2 (Fig. 5, left). This is more close
to the case of rigid rotation. Indeed the solution look
rather similar to the solutions presented in Fendt et al.
(1995). The second solution is for h = 0.5 (Fig. 5, right).
The steeper profile for the rotation law implies a smaller
asymptotic jet radius (Fendt 1997b). This can be seen

in comparison with the rigid rotation solutions (Fendt
et al. 1995). However, a larger poloidal electric current
can balance the effect of differential rotation. Therefore,
the h = 0.2 solution (with g = 2.5) collimates to a smaller
asymptotic jet radius than the h = 0.5 solution (with
g = 2.0). A h = 0.2 solution with g = 2.0 would have
a jet radius of 2.4. The second solution with the steeper
profile of the rotation law ΩF(Ψ) would better fit to a
Keplerian disk rotation. A perfect match would require
an even steeper ΩF(Ψ)-profile (see below).

The mean half opening angle of the jet magnetospheres
is about 60◦. As discussed above, the shape of the outer-
most flux surface (Ψ = 1) is not prescribed but is a result
of our calculation eventually determined by the regularity
condition. After crossing the light surface the jets colli-
mate to their asymptotic radius within a distance from
the source of about 1–2R0 along the jet axis. The open-
ing angle of the second solution is smaller, however, the jet
collimation is achieved only at a larger distance from the
central source. In our examples, the “jet expansion rate”,
which we define as the ratio of the asymptotic jet radius
to the foot point jet radius (the “disk radius”), is about
10. The true scaling of the jet magnetosphere in terms of
the size of the central object can be determined by con-
necting the jet iso-rotation parameter ΩF(Ψ) to the disk
rotation (see next section).

We note that, although in our computations the jet
boundary xjet(z) is determined by the force-balance within
the jet, and therefore subject to the regularity condition,
with our results we do not prove the magnetohydrody-
namic self-collimation process of the jet flow. Clearly, the
calculated jet magnetosphere is self-collimated in the sense
that its structure has been determined only by the inter-
nal properties. However, the actual collimation process of
the jet flow from an un-collimated conical outflow into
a cylinder could only be investigated by time-dependent
simulations taking into account the interaction with the
ambient medium.

On the other hand, we can assume that our jet solution
is embedded in an ambient medium. If we further assume
an equilibrium between the internal pressure (magneti-
cally dominated) and external (gas) pressure along the jet
boundary, we may derive the gas pressure distribution in
the ambient medium, since we know the magnetic pres-
sure distribution along the collimating jet radius. In this
case, the jet solution may be considered as collimated by
ambient pressure.

To our understanding one may claim a self-collimation
only, if the jet flow collimates independently from exter-
nal forces. Since in our treatment we do not consider the
interrelation with the medium outside the jet, we cannot
decide whether the flow is self-collimated or pressure col-
limated.

The field structure is governed by the choice of the
functions I(Ψ) and ΩF(Ψ), here taken from an asymp-
totic jet solution. In combination with the disk magnetic
flux distribution (13) we can determine two parameters
interesting for the jet-disk interaction. These are (i) the
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Fig. 5. Two-dimensional magnetic flux distribution Ψ(x, z) for two different asymptotic rotation laws. Left: h = 0.2, g = 2.5
Right: h = 0.5, g = 2.0. Shown are iso-contours of the magnetic flux (equivalent to poloidal magnetic field lines) with contour

levels Ψn = 10−(0.1 n)2 , n = 0, ..., 25. Note that due to the choice of contour levels the iso-contour density does not mirror the
field strength

magnetic angular momentum loss per unit time and unit
radius from disk into the jet and (ii) the toroidal mag-
netic field distribution along the disk. With I(Ψ) as the
angular momentum flux per unit time per unit flux tube,
the (normalized) angular momentum flux per unit time
per unit radius is dJ̇/dx = −xBzI(x) along the disk.
Figure 6 shows the behavior of both quantities for our
jet model with the steeper profile of the rotation law,
h = 0.5. As we see, most of the magnetic angular momen-
tum is lost in the outer parts of the disk. This may have
interesting applications for accretion disk models taking
into account a magnetized wind as a boundary condition.
The total magnetic angular momentum loss is determined
by the normalization, J̇ = −(ImaxΨmax/c)

∫
I(Ψ)dΨ or

J̇ = −(
√
gΨmax/2R0)

∫
I(Ψ)dΨ . The magnetic toroidal

field distribution along the disk has a maximum at about
half the disk radius.

Clearly, these parameters are biased by the magnetic
flux disk boundary condition (13) of our model. However,
we believe that the main features are rather general and
valid for any poloidal current and magnetic flux distribu-
tion with the typical core-envelope structure.

4.3. Scaling relations of disk and jet

As discussed above, the two-dimensional magnetic field
distribution connecting the asymptotic jet region with the
lower disk boundary allows for a direct scaling of the jet
in terms of the size of the central object. This is simply
based on the assumption that the foot points of the field
lines are rotating with Keplerian speed, ΩF = ΩK and to
the fact that in ideal MHD the iso-rotation parameter ΩF
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Fig. 6. Magnetic angular momentum loss per time unit per
unit radius dJ̇/dx at radius x (above) and disk toroidal field
distribution Bφ(x) (below) for the jet solution with h = 0.5
shown in Fig. 5

is conserved along the field lines. It is therefore possible
to construct a self-consistent model of the whole “star”-
disk-jet system with only a small set of free parameters.
In the following we will motivate such a model.
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The first example demonstrates how the connection
between the asymptotic jet and the disk, applied for our
very special model assumption, provides a specific esti-
mate for the asymptotic light cylinder R0. Normalizing the
Keplerian velocity ΩK in the same way as ΩF (Sect. 2.1),
we obtain the expression

R0 =
GM

c2Ω2
K

1
x3

=
GM/c2

Ω2
F(Ψ = 1)x3

disk

=
0.5RS

Ω2
F(Ψ = 1)x3

disk

·(14)

Iso-rotation parameter ΩF(Ψ) and disk radius xdisk are
fixed by our model. Therefore, the asymptotic light cylin-
der is proportional to the mass of the central object. For
Ω2

F(1) = 0.54 (which refers to the h = 0.5 model) and
xdisk = 0.2 the asymptotic light cylinder is R0 = 116 RS,
which is about 2 times larger compared to the jet solu-
tion with a rigid rotation ΩF ≡ 1 and will increase for
larger values of h. With the choice of g, the value of R0

constraints the maximum poloidal magnetic flux and elec-
tric current. Here, no assumption is made about the flux
distribution along the disk.

In the second example we determine the disk mag-
netic flux distribution Ψ(x) combining the asymptotic
jet rotation law ΩF(Ψ) with a Keplerian disk rota-
tion ΩK(x). From Eq. (14) follows that ΩF(Ψ)/ΩF(1) =
ΩK(x)/ΩF(Ψ = 1) = (x/xdisk)−3/2. In combination with
the numerically derived ΩF(Ψ) this gives the Ψ(x) along
the disk (Fig. 7). The figure shows that the disk flux distri-
bution derived from the asymptotic jet is distributed only
over the outer part of the disk. This can be interpreted in
two ways. First it may imply a relatively large inner disk
radius and, hence, an asymptotic jet radius small in terms
of radii of the central object. Secondly, it just underlines
the fact that in our model the distribution of the asymp-
totic jet iso-rotation parameter is too flat in order to be
truly connected to a disk magnetic flux with an extended
radial distribution. For a model taking into account the
disk Keplerian rotation in a fully self-consistent way, the
magnetic flux distribution which has to be used as disk
boundary condition for the GS solution is the one derived
in Fig. 7.

On the other hand, the assumption of a Keplerian
disk rotation together with a certain disk mag-
netic flux distribution provides an expression for
the iso-rotation parameter ΩF(Ψ) = ΩK(x(Ψ)) =

(GM/R0c
2)
(
ã2
(

eb̃Ψ − 1
))−3/2

. Here, the disk magnetic
flux distribution (13) has been used. Eventually, one finds

ΩK(Ψ)
ΩF(1)

=
(xdisk

ã

)3/2
((

1 +
(xdisk

ã

)2
)Ψ

− 1

)−3/4

. (15)

This function is definitely steeper compared to the ΩF(Ψ)-
distributions which have been derived in Fendt (1997b)
and are used in the present paper. Here, we see the limi-
tation of our ansatz. A steeper profile for rotation law is
not yet possible to treat with our code due to the lack of
numerical resolution. The non-linear character of the GS
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Fig. 7. Magnetic flux distribution Ψ(x) along the disk sur-
face as determined from the asymptotic jet properties and the
Keplerian rotation of the disk

equation becomes more problematic due to the gradients
in the ΩF-source term.

In summary, only a model including differential rota-
tion ΩF(Ψ) may provide a connection between the asymp-
totic jet, the disk magnetic flux distribution and also the
size of the central object. With our model we have pre-
sented a reasonable first solution for a self-consistent treat-
ment.

4.4. Application to the M 87 jet

The jet of M 87 shows superluminal motion clearly indicat-
ing a highly relativistic jet velocity (Biretta et al. 1999).
Recent radio observations have been able to resolve the
innermost region of the M 87 jet formation region with
0.33× 0.12 mas beam resolution (Junor et al. 1999), cor-
responding to 2.5−7.0 1016 cm. Assuming a central su-
permassive black hole of 3 109 M� (Ford et al. 1994), this
is equivalent to about 30RS! The derived jet full opening
angle is 60◦ up to a distance of 0.04 pc from the source
with a “strong collimation” occurring afterwards (Junor
et al. 1999).

We now apply our two-dimensional jet model to these
observations and compare the geometrical scales. Such
a comparison is not possible for e.g. self-similar models.
From the observed radio profile resolving the inner M 87
jet (see Fig. 1 in Junor et al. 1999), we deduce a jet radius
of about 120 Schwarzschild radii. With this, the first im-
portant conclusion is that the ratio of jet radius to light
cylinder radius must be definitely less than the value of 100
which is usually assumed in the literature. A number value
of 3−10 seems to be much more likely. Numerical mod-
els of two-dimensional general relativistic magnetic jets
fitting in this picture were calculated by Fendt (1997a).
These solutions, however, do not take into account the
differential rotation ΩF(Ψ).

Junor et al. (1999) claim that the M 87 jet radius
in the region “where the jet is first formed cannot be
larger than” their resolution of 30RS. Our conclusion
is that the expansion rate is limited in both directions.
The new radio observations give a minimum value of 3.
Theoretical arguments limit the expansion rate to the
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value of about 20, since the jet mass flow must originate
outside the marginally stable orbit which is located at
3−6 RS. Clearly, if the jet radius is really as small as ob-
served in M 87, general relativistic effects may vary the
field structure in the jet formation region.

From our model solutions, we derive a light cylinder
radius of the M 87 jet of about 50RS. The value derived
from Eq. (14) differs from that by a factor of two, but is
biased by the unknown size of the disk radius xdisk. This
parameter, however, does not affect the global solution.
Considering the standard relativistic MHD theory, noth-
ing special is happening at the light cylinder. For a highly
magnetized plasma wind the light surface corresponds to
the usual Alfvén surface which itself does not affect the
flow of matter. Hence, the light cylinder is un-observable.

Also the opening angle in our numerical solution is
larger than the observed value by a factor of two. This
cannot be due to projection effects since any inclination
between jet axis and the line of sight will increase the ob-
served opening angle. We hypothesize that a numerical
model with a steeper profile for the iso-rotation parame-
ter will give a smaller jet opening angle comparable to the
observed data. This is not surprising, since the jet foot-
point anchored in a Keplerian disk rotates faster than in
our model. Nevertheless, comparing the collimation dis-
tance observed in the M 87 jet and assuming a similar
ratio of jet radius to light cylinder radius as in our model
with h = 0.5, we find good agreement. The collimation
distance is 2 R0.

In summary, we conclude that the example of the M 87
jet gives clear indication that the light cylinder of AGN
jets might not be as large as previously thought. Although
our model does not fit the observed geometrical properties
of the inner M 87 jet perfectly, we find in general a close
compatibility.

5. Conclusions

We have investigated the two-dimensional magnetic field
distribution in collimating, relativistic jets. The structure
of the axisymmetric magnetic flux surfaces is calculated by
solving the relativistic force-free Grad-Shafranov equation
numerically. In relativistic MHD, electric fields become
important in difference to Newtonian MHD. The simpli-
fying assumption of the force-free limit has been applied
as relativistic jets must be highly magnetized.

The central point of our paper is the consideration of
differential rotation of the foot points of the field lines,
i.e. a variation of the iso-rotation parameter ΩF(Ψ). The
underlying model is that of a magnetic jet anchored in an
accretion disk. Two main problems had to be solved in or-
der to calculate a two-dimensional field distribution: a) to
determine the a priori unknown location of the light sur-
face, b) the proper treatment of the regularity condition
along that light surface. The light surface is the force-free
equivalent of the Alfvén surface and provides a singular-
ity in the Grad-Shafranov equation. We summarize our
results as follows.

(1) We find numerical solutions for the two-
dimensional magnetic flux distribution connecting the
asymptotic cylindrical jet with a differentially rotating
disk. In our example solutions the asymptotic jet radius is
about 2.5 times the asymptotic light cylinder radii. This
is the first truly two-dimensional relativistic solution for
a jet magnetosphere including differential rotation of the
iso-rotation parameter ΩF(Ψ). The physical solution, be-
ing characterized by a smooth transition across the light
surface, is unique for a certain parameter choice for the
rotation law ΩF.

(2) The half opening angle of the numerical jet solution
is about 60 degrees. Cylindrical collimation is achieved
already after a distance of 1–2 asymptotic light cylinder
radii along the jet axis. Differential rotation decreases the
jet opening angle, but increases the distance from the jet
origin where collimation is achieved. The “jet expansion
rate”, defined as the ratio of the asymptotic jet radius to
the jet radius at the jet origin, is about 10.

(3) From the analytical treatment of the regularity
condition along the asymptotic branches of the light sur-
face we derive a general estimate for the jet opening angle.
We find that the jet half opening angle is larger than 45◦

and increases for a steeper profile of the differential rota-
tion ΩF.

(4) Our two-dimensional ansatz, in combination with
the treatment of differential rotation, allows for a connec-
tion of the asymptotic jet solution with the accretion disk.
Certain disk properties can be deduced from the asymp-
totic jet parameters. Examples are the disk toroidal mag-
netic field distribution, with a maximum at half of the disk
radius and the angular momentum flux per unit time and
unit radius. This is interesting as a boundary condition for
accretion disk models. We find that most of the angular
momentum is lost in the outer part of the disk.

(5) Application of our model to the M 87 jet gives good
agreement qualitatively. From our numerical solution we
derive an asymptotic light cylinder of the M 87 jet of about
50 Schwarzschild radii. Collimation of the jet would be
achieved after a distance of two asymptotic light cylinder
radii from the source. This value is comparable with the
observations, however, the opening angle in our model is
larger by a factor of two.

In summary, we have presented the first global two-
dimensional solutions for a relativistic jet magnetosphere
taking into account differential rotation of the jet foot-
points. From our jet model we may determine certain
physical quantities in the disk that are not possible to ob-
serve, as e.g. the angular momentum flux distribution at
the disk-jet interface. Comparison with the M 87 jet shows
that our model seems to be consistent with the observa-
tions, therefore allowing for a derivation of the collimation
distance, the light cylinder radius and the jet expansion
rate for that example. Clearly, such features as the time-
dependent ejection of knots and the interaction process
between disk, jet and central source cannot be answered
by our approach. Time-dependent relativistic MHD
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simulations of the whole “star”-disk-jet system would be
necessary, however, such codes are not yet fully developed.
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Appendix A: Numerical methods

For the solution of the two-dimensional GS equation we
apply the method of finite elements as developed by
Camenzind (1987) and Fendt et al. (1995). Differential
rotation ΩF(Ψ) implies two major complications for the
numerical computation. The first one is the fact that po-
sition and shape of the light surface D = 0 is not known
a priori. Along the light surface the boundary condition is
the regularity condition, which, however, itself depends on
the two-dimensional solution Ψ(x, z). The second problem
is the GS source term for the differential rotation, contain-
ing the gradient of the magnetic flux, |∇Ψ |2. Compared
to the case of rigid rotation, this introduces another (and
stronger) non-linearity in the GS equation. Therefore, a
fragile numerical convergence process can be expected.

An additional complication is that our grid of finite
elements of second order may be inadequate for a calcu-
lation of monotonous gradients between the elements if
the numerical resolution is too low. However, for appro-
priate numerical parameters as grid size, element size and
iteration step size, we were finally able to overcome these
difficulties.

A.1. Determination of the light surface

Here we discuss the iteration procedure we use to deter-
mine the location of the light surface. Because the rotation
law ΩF(Ψ) is prescribed, the radius where the light sur-
face, D = 0, intersects the jet boundary, Ψ = 1, is known,

xL(Ψ = 1) = 1/ΩF(Ψ = 1). (A.1)

However, the corresponding position in z-direction is not
known. Some estimates can be made about shape and in-
clination of the light surface in the limit of large radii (see
Sect. 2.4), but a general solution is not yet known.

We start the iteration procedure calculating the inner
solution (defined as the field distribution inside the light
surface) with an outer grid boundary at x = 1 (for compar-
ison see Fig. 1). This choice is equivalent to the light cylin-
der in the case of rigid rotation. For differential rotation
the radius x = 1 is defined as asymptotic light cylinder (for
large z). For low z-values the boundary x = 1 is located in-
side the light surface xL(Ψ) = 1/ΩF(Ψ). Along this outer
boundary (of the inner solution), we apply a homogeneous
Neumann boundary condition. Usually, this implies that
the field lines will cross that boundary perpendicularly.
However, in our case the homogeneous Neumann bound-
ary condition transforms into the regularity condition if

the boundary becomes equivalent to the singular light sur-
face. As shown in Fendt et al. (1995), this transformation
applies “automatically” in our finite element code. This is
due to the facts that (i) finite element code solves the inte-
grated GS equation and (ii) the boundary integral, which
is proportional to D = 1− x2Ω2

F, vanishes along the light
surface.

With the GS solution of the first iteration step we es-
timate the deviation of the chosen outer boundary from
the true light surface by calculating D = 1 − x2Ω2

F(Ψ).
For the lowest z-value prescribed, we know that D =
1 − x2Ω2

F(Ψ = 1). Then, the outer grid boundary (x, z)
is slowly moved to a larger radius with ∆x ∼ D(x, z)2.
As a consequence of the different numerical grid, the field
distribution will change. The value of D will, however,
decrease. This procedure is repeated until D is below a
certain limit, D ' 0. Having obtained the solution inside
the light surface, that field distribution is taken as inner
boundary condition for the outer solution.
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Abstract. We have investigated magnetically driven superluminal jets originating from rotating black holes. The
stationary, general relativistic, magnetohydrodynamic wind equation along collimating magnetic flux surfaces has
been solved numerically. Our jet solutions are calculated on a global scale of a spatial range from several to several
1000 gravitational radii. Different magnetic field geometries were investigated, parameterized by the shape of the
magnetic flux surface and the magnetic flux distribution. For a given magnetic flux surface we obtain the complete
set of physical parameters for the jet flow. In particular, we apply our results to the Galactic superluminal sources
GRS 1915+105 and GRO 1655−40. Motivated by the huge size indicated for the Galactic superluminal knots of
about 109 Schwarzschild radii, we point out the possibility that the jet collimation process in these sources may
be less efficient and therefore intrinsically different to the AGN. Our results show that the observed speed of more
than 0.9 c can be achieved in general by magnetohydrodynamic acceleration. The velocity distribution along the
magnetic field has a saturating profile. The asymptotic jet velocity depends either on the plasma magnetization
(for a fixed field structure) or on the magnetic flux distribution (for fixed magnetization). The distance where
the asymptotic velocity is reached, is below the observational resolution for GRS 1915+105 by several orders of
magnitude. Further, we find that highly relativistic speeds can be reached also for jets not emerging from a region
close to the black hole, if the flow magnetization is sufficiently large. The plasma temperature rapidly decreases
from about 1010 K at the foot point of the jet to about 106 K at a distance of 5000 gravitational radii from the
source. Temperature and the mass density follow a power law distribution with the radius. The jet magnetic field
is dominated by the toroidal component, whereas the velocity field is dominated by the poloidal component.

Key words. accretion, accretion disks-Black hole physics – MHD – stars: mass loss – ISM: jets and outflows –
galaxies: jets

1. Introduction

1.1. Relativistic jets and galactic superluminal motion

Apparent superluminal jet motion originating in the close
environment of a rotating black hole is observationally in-
dicated for two classes of sources concerning mass and
energy output. One class is the family of radio loud ac-
tive galactic nuclei (hereafter AGN). In the AGN standard
model highly relativistic jet motion is explained by mag-
netohydrodynamic processes in a black hole – accretion
disk environment (for a review see Blandford 1990). Jets
are magnetically accelerated and possibly also collimated
by magnetic forces. However, the detailed interaction pro-
cess of the magnetized black hole – accretion disk system
which is believed to lead to the ejection of high velocity
blobs is not yet fully understood.

Send offprint requests to: C. Fendt, e-mail: cfendt@aip.de

The other class are galactic binary systems for which
radio observations have also detected superluminal mo-
tion (see reviews of Fender 2000 or Greiner 2000).
The two most prominent examples are the high energy
sources GRS 1915+105 (Mirabel & Rodriguez 1994) and
GRO 1655−40 (Hjellming & Rupen 1995; Tingay et al.
1995). The de-projected jet speed of both sources is>∼0.9 c
and surprisingly similar, although for GRS 1915+105 also
a higher velocity component has been observed recently
(Fender et al. 1999). GRO 1655−40 is a binary consist-
ing of a 7.02 ± 0.22M� black hole and a 2.3M� F-
subgiant (Orosz & Bailyn 1997) at a distance of 3 kpc.
GRS 1915+105 is at 10–12 kpc distance (Fender et al.
1999), but the component masses of the presumed binary
are not known. Order of magnitude estimates based on
X-ray variability and QPO properties range from
10–80 M� (Morgan et al. 1997; Greiner et al. 1998). As
for the AGN jet sources, observational evidence for a black
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hole – accretion disk system is found also for the Galactic
superluminal sources. Observations have also indicated
that accretion disk instabilities may be related to jet ejec-
tion (Greiner et al. 1996; Belloni et al. 1997; Mirabel et al.
1998). Therefore, the jet formation process for extragalac-
tic jets and their Galactic counterparts may be the same,
although the mechanism that accelerates and collimates
the GRS 1915+105 ejecta is yet unclear (Rodriguez &
Mirabel 1999).

Optical polarization measurements have been obtained
for the microquasar GRO J1655–40 (Scaltriti et al. 1997;
Gliozzi et al. 1998). The polarization angle is approxi-
mately parallel to the accretion disk plane. The amount of
polarization has been found to vary smoothly with the or-
bital phase, being smallest at binary phase 0.7–0.8. It has
been noted that the occasionally observed X-ray dips oc-
cur at the same phase interval (Ueda et al. 1998; Kuulkers
et al. 1998) suggesting that it may be related to either
a thickening of the disk rim at the impact site of the
accretion stream from the companion or the overflow of
this stream above/below the disk. The orbital polarization
modulation rules out a synchrotron origin in the jet, and
implies the presence of electron scattering plasma above
the accretion disk which is asymmetrically distributed or
asymmetrically illuminated. The existence of such scatter-
ing plasma is consistent with the interpretation of the iron
features as observed with ASCA as absorption lines and
edges in a thick, cool torus of column NH > 1023 cm−2

(Ueda et al. 1998).
The relativistic speed observed for the Galactic super-

luminal sources (∼0.9–0.98 c de-projected) corresponds to
a bulk Lorentz factor of γ = 2–5 although this number
is not very accurate (e.g. Fender et al. 1999). Therefore,
for any theoretical investigation of these objects at least
special relativity has to be taken into account. If the su-
perluminal motion originates close to a black hole, also
general relativistic effects may become important.

The ejection of matter itself is not a stationary pro-
cess. In GRS 1915+105 also repeated emission of knots is
observed (Rodriguez & Mirabel 1999). X-ray and radio ob-
servations suggest that a wide range of ejected mass and
ejection frequency is possible.

Though the galactic jet sources are nearby, they are
not better resolved spatially because the distance ratio
between AGN and microquasars is smaller than their
mass ratios. Nevertheless, an important implication may
also come from the observed size of the superluminal
knots which are observationally resolved. In the case of
GRS 1915+105 the characteristic dimension of the “jet”
is 35 mas, equivalent to 7 1015 cm at a distance of 12.5 kpc
(Rodriguez & Mirabel 1999). We emphasize that such
a knot size corresponds to ∼109 Schwarzschild radii for
RS = 1.5 106 (M/5M�)cm! This is a huge factor and may
be in distinctive difference to the AGN jets. Similarly,
the VLBA data show the core as a collimated jet down
to a distance of 10 AU from the central source with an
opening angle of <10◦ (see Mirabel & Rodriguez 1999)

corresponding to 107 (M/5 M�) Schwarzschild radii. The
length of the radio jet is about 100 AU.

However, when interpreting the observed emission re-
gion, one has to keep in mind that this region may not rep-
resent the jet flow itself, but some part of another, larger,
structure. For example, in some extragalactic jet sources
there is indication that the knots travel along helical tra-
jectories, believed to be prescribed by a large-scale heli-
cal magnetic field of an almost cylindrically collimated jet
(Zensus et al. 1995; Camenzind & Krockenberger 1992).

In GRO 1655−40 the motion of the radio knots is com-
plicated and requires (at least) precession between differ-
ent ejections (Hjellming & Rupen 1995). The knot struc-
tures in GRS 1915+105 remained fixed implying that the
whole knot moves with the same speed without spatial
diffusion and with an axial velocity profile more or less
constant.

Based on minimum energy arguments and only rel-
ativistic electrons responsible for the synchrotron radia-
tion in the knots of GRS 1915+105, Rodriguez & Mirabel
(1999) derive a magnetic field strength of about 50 mG
to 7 mG, the decrease resulting from the expansion of
the knot. They also estimate the rest mass of a knot of
≥1023 g, and together with (steady) photon luminosity of
'3 1038 erg s−1, exclude radiation as driving mechanism
for the knots.

1.2. Theory of magnetic jets

From the introductory remarks it is clear that a quanti-
tative analysis of superluminal motion must take into ac-
count both magnetohydrodynamics (hereafter MHD) and
(general) relativity.

The first theoretical formulation of the electromagnetic
force-equilibrium in Kerr space-time around rotating black
holes was given by Blandford & Znajek (1977) and Znajek
(1977), who discovered the possibility of extracting rota-
tional energy and angular momentum from the black hole
electromagnetically.

Camenzind (1986, 1987) formulated a fully relativistic
stationary description of MHD flows, basically applicable
to any field geometry. The structure of such collimating jet
magnetospheres in the case of Kerr space time was pre-
sented by Fendt (1997). Solutions of the so-called wind
equation in Kerr geometry (see below) considering the
stationary plasma motion along the magnetic field were
obtained by Takahashi et al. (1990), however, mainly dis-
cussing the accretion flow onto the black hole.

While the asymptotic structure of the propagating jets
becomes more and more understood with the help of time-
dependent magnetohydrodynamical, also relativistic, sim-
ulations (e.g. Nishikawa et al. 1997; Mioduszewski et al.
1997; Hardee et al. 1998), the process of jet formation itself
and the collimation of the outflow region is a task still too
complex for numerical simulations. The involved length
scales and gradients require a high resolution in grid size
and time stepping. Koide et al. (1998) were first to perform
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general relativistic MHD simulations of jet formation close
to the black hole. In their model, the interaction of an ini-
tially cylindrical magnetic field with a Keplerian accretion
disk results first in an inflow of matter towards the black
hole. This accretion stream interacts with the hydrostatic
corona around the black hole giving rise to a relativis-
tic gas pressure driven jet. At larger radii a magnetically
driven wind is initiated from the accretion disk. The sim-
ulations were performed for less than two rotations of the
inner disk (corresponding to less than 0.02 rotations of
the disk at the outer edge of the grid). Although these re-
sults of the first fully general relativistic MHD simulations
look indeed very exciting, some objections can be raised
about the underlying model. The initial condition applied
is that of a hydrostatic corona around a black hole, an as-
sumption which is not compatible with the boundary of a
black hole horizon. Such a configuration is not stable and
will immediately collapse. Recently, the authors extended
their work applying an initial coronal structure in steady
infall surrounding a non-rotating black hole (Koide et al.
1999). They find a two-layered jet consisting of a magnet-
ically driven jet around a gas-pressure driven jet. In addi-
tion, Koide et al. (2000) considered the quasi-steady infall
of the corona around a Kerr black hole. They find that
jet formation seems to differ for co-rotating and counter-
rotating disks. The jet ejection tends to be easier in the
latter case with a jet origin much closer to the hole. Also,
a new feature of another magnetically driven (though sub-
relativistic) jet appears within the gas-pressure driven jet.
The computations were lasting over a few inner disk or-
bits. Therefore, the observed events of mass ejection could
still be a relict of the initial condition and may not be
present in the long-term evolution. Clearly, it would be
interesting to perform the Koide et al. simulations for a
longer time and look whether the mass ejection contin-
ues over many disk orbits, whether the simulation evolves
into a final stationary state (as e.g. in Ouyed & Pudritz
1997; Fendt & Elstner 2000), or whether the jet forma-
tion retains its unsteady behavior which could explain the
emission of superluminal knots observed in the relativistic
jets.

1.3. Aim of the present study

In this paper, a stationary magnetic jet flow along a given
magnetic flux surface is investigated in the context of gen-
eral relativity. Due to the stationary approach, we cannot
treat any time-dependent phenomena. Our emphasis is to
trace the large scale behavior of the flow from it’s origin
close to the black hole to large distances. This is an es-
sential point in particular for the Galactic superluminal
sources because of the possible huge spatial extension of
the jets compared to the central black hole. The station-
ary model allows for a global treatment of the jet flow, i.e.
an investigation over a large range of magnitudes for den-
sity and magnetic field strength. This is not yet feasible

with time-dependent MHD codes presently available. In
particular, we address the following topics.

– For a given geometry of the magnetic field, which are
the resulting jet dynamical parameters as velocity, den-
sity or temperature?

– How important are the effects of general relativity?
Does the superluminal flow indeed originate very close
to a black hole?

– From the investigation of different field geometries we
expect some hints to the jet opening angle and the
length scale of the collimation process.

The structure of this paper is as follows. In Sect. 2, basic
equations for relativistic magnetospheres are reviewed in
the context of Kerr metrics. In Sect. 3, the model under-
lying our numerical calculations is discussed. We present
our numerical results in Sect. 4 and discuss solutions with
different geometry and jet parameters. We summarize our
paper in Sect. 5.

2. Description of a MHD flow in Kerr metric

Under the assumptions of axisymmetry, stationarity and
infinite conductivity, the MHD equations reduce to a set
of two basic equations describing the local force-balance
across the field and along the field (for references, see, e.g.,
Blandford & Znajek 1977; Thorne et al. 1986; Camenzind
1986, 1987; Okamoto 1992; Beskin & Pariev 1993; Beskin
1997).

The trans-field or Grad-Shafranov equation determines
the field structure, whereas the wind equation describes
the flow dynamics along the field. Due to the stationar-
ity assumption, certain conservation laws apply. The total
energy density, the total angular momentum density, the
mass flow rate per flux surface and the iso-rotation param-
eter are conserved quantities along the surfaces of constant
magnetic flux (Camenzind 1986).

In this paper the motion of a magnetized plasma is cal-
culated from the wind equation. The plasma moves along a
prescribed axisymmetric magnetic flux surface which orig-
inates in a region close to a rotating black hole.

2.1. Space-time around rotating black holes

The space-time around a rotating black hole with a mass
M and angular momentum per unit mass a is described
using Boyer-Lindquist coordinates with the line element

ds2 = α2dt2 − ω̃2 (dφ− ωdt)2 − (ρ2/∆) dr2 − ρ2 dθ2, (1)

where t denotes the global time, φ the angle around the
axis of symmetry, r, θ similar to there flat space counter-
part spherical coordinates, and where geometrical units
c = G = 1 have been applied (see Appendix A for further
definitions). The horizon of the Kerr black hole is located
at rH = M +

√
M2 − a2. We will normalize all radii to

gravitational radii rg = rH(a = M) = M . The angular
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velocity of an observer moving with zero angular momen-
tum (ZAMO) is ω = (dφ/dt)ZAMO, corresponding to the
angular velocity of the differentially rotating space. The
lapse function is α = (dτ/dt)ZAMO describing the lapse
of the proper time τ in the ZAMO system to the global
time t.

2.2. Description of the electromagnetic field

In the 3+1 split of Kerr space time (Thorne et al. 1986)
the electromagnetic field B,E, the current density j, and
the electric charge density ρc can be described very simi-
lar to the usual expressions, if measured by the ZAMO’s
according to the locally flat Minkowski space. These local
experiments then have to be put together by a global ob-
server for a certain global time using the lapse and shift
function for the transformation from the local to the global
frame.

With the assumption of axisymmetry a magnetic
flux surface can be defined measuring the magnetic flux
through a loop of the Killing vector m = ω̃2∇φ,

Ψ(r, θ) =
1

2π

∫
Bp · dA , Bp =

1
ω̃2
∇Ψ ∧m, (2)

corresponding to the magnetic flux through an area
π(r sin θ)2 around the symmetry axis (in the limit of
Minkowski space).

With the assumption of a degenerated magnetosphere,
| |B|2 − |E|2| >> |E · B| ' 0 an “angular velocity of
field lines” can be derived from the derivative of the
time component of the vector potential ΩF = ΩF(Ψ) =
−2πc(dA0/dΨ). We will denote this quantity with the
term “iso-rotation parameter”.

2.3. The wind equation

It has been shown that a stationary, polytropic, general
relativistic MHD flow along an axisymmetric flux surface
Ψ(r, θ) can be described by the following wind equation
for the poloidal velocity up ≡ γvp/c,

u2
p + 1 = −σm

(
E

µ

)2
k0k2 + σm2k2M

2 − k4M
4

(k0 + σmM2)2
, (3)

where

k0 = g33Ω2
F + 2g03ΩF + g00,

k2 = 1− ΩF
L

E
,

k4 = −
(
g33 + 2g03

L

E
+ g00

L2

E2

)
/
(
g2

03 − g00g33

)
(Camenzind 1986; Takahashi et al. 1990). The Alfvén
Mach number M is defined as M2 = 4µnu2

p/B̃
2
p, with the

proper particle density n, the specific enthalpy µ, and a
poloidal magnetic field B̃p = Bp/(g00) + g03ΩF), rescaled
for mathematical convenience. The quantity σm stands for
the sign of the metric (we have chosen σm = −1, see
Appendix A). For a polytropic gas law with the index

Γ ≡ n/m, the wind Eq. (3) can be converted into a poly-
nomial equation,

2n+2m∑
i=0

Ai(x; Ψ,Φ; ΩF;E,L, σ?)u
i/m
P = 0 , (4)

(Camenzind 1987; Englmaier 1993; Jensen 1997), where
the coefficients Ai are now defined as functions of the nor-
malized cylindrical radius x = R/rg (see Appendix B).
The shape of the axisymmetric magnetic flux surface
Ψ is prescribed as function z(x; Ψ). The flux function
Φ =

√−gB̃p describes the opening of the flux tube. The
faster Φ decreases the faster magnetic energy is converted
into kinetic energy. We define the dimensionless magne-
tization parameter1 at the “injection” point x? following
Takahashi et al. (1990),

σ? =
Φ2
?

4πmpIp?
, (5)

measuring the Poynting flux in terms of particle flux
Ip ≡

√−g nup, where mp is the particle mass (here the
proton mass). The magnetization determines the maxi-
mum energy available for plasma acceleration and thus de-
termines also the asymptotic poloidal velocity. The other
wind parameters are total energy density E, total angular
momentum L, and the iso-rotation parameter ΩF. The non
relativistic limit of Eq. (4) has been solved numerically by
Kudoh & Shibata (1995, 1997).

We choose the polytropic index Γ = 5/3 for a hot rel-
ativistic proton-electron plasma (a hot electron-positron
plasma would imply Γ = 4/3). Then, at each radius x
the polynomial Eq. (4) has 2n+ 2m = 16 solutions. Some
of these mathematical solutions have no physical mean-
ing, e.g. because u2

p is negative. The remaining physical
solutions form a bunch of different curves in the up(x)-
diagram representing different solution branches (see our
solution S1 in Appendix C, Fig. C.1). The unique branch
of the “wind” solution starts at a small radius with small
velocity continuing outwards with increasing velocity. For
an other parameter choice also “accretion” branches can
be found, starting from a large radius with small veloc-
ity and continuing inwards with increasing velocity (not
shown in Fig. C.1).

However, not for all parameters E,L, σ there exist
physical solutions which are continuous functions of x and
therefore defined along the whole flux surface. It is well
known that at the magnetosonic points the wind Eq. (3)
becomes singular (see Camenzind 1986; Takahashi et al.
1990). Regularity of the solution requires a flow velocity
equal to the speed of the MHD waves in order to obtain
a smooth (self-consistent) transition at the magnetosonic

1 Note that this definition for the magnetization varies
from the original Michel magnetization parameter σM =
Φ2

M/4πfMcR
2
L, where ΦM is the magnetic flux, fM the mass

flux and RL the light cylinder. Usually, the general relativistic
equations are normalized to the gravitational radius, whereas
the special relativistic equations are normalized to the light
cylinder.
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points. In order to match astrophysical boundary condi-
tions we fix the following parameters,

– the “injection” radius, x?, the location where the mat-
ter couples to the magnetic field. This radius also de-
termines the iso-rotation parameter ΩF;

– the “injection” velocity up? = up(x?), defining the ini-
tial kinetic energy;

– the Alfvén radius xA, which fixes the total angular mo-
mentum of the flow.

The critical wind solution for a given flux surface can then
be found by varying the flow parameters in Eq. (4). Due
to numerical convenience, we vary

– the sound speed cs? at the injection radius, defining the
initial density (or gas pressure and temperature);

– the magnetization parameter at the injection point
σ?(Ψ) = Φ2

?/(4πmpIp?).

In turn, the condition of a regular flow at the magne-
tosonic points fixes the sound speed and magnetization
and, thus, jet mass flow rate and temperature.

3. The model assumptions

3.1. The model in general

Observationally the jet phenomenon of AGN, young stel-
lar objects and microquasars is always connected to the
signatures of an accretion disk. We therefore assume a
similar disk-jet scenario for the jet formation in Galactic
superluminal jet sources. In general our model geometry
follows the standard model for jet formation in AGN (cf.
Blandford 1990).

Two typical length scales enter the problem. (i) The
gravitational radius rg measures the influence of gravity on
the metric. (ii) The asymptotic light cylinder RL describes
the influence of rotation on the electrodynamics.

3.2. The central black hole

The black hole mass and angular momentum determine
the geometry of space. Since we use dimensionless equa-
tions normalized to the gravitational radius, our results
scale with the mass of the black hole. For parameter es-
timates we assume a black hole mass of 5M� which is
about the value inferred for the galactic superluminal
sources. The angular momentum a as the other black
hole parameter is not known for any of the relativistic
jet sources. Interpretation of the high effective temper-
atures of the accretion disk as well as the stable QPO
frequency (as Thirring-Lense effect) suggests that a >∼ 0.9
for GRS 1915+105 and GRO 1655−40 (Zhang et al. 1997).
Theoretically, one may expect a rapidly rotating black
hole because of angular momentum conservation during
the collapse and also accretion of angular momentum from
the accretion disk (King & Kolb 2000). Here, we choose
a = 0.8, a value which is not extreme, but clearly dif-
ferent to Schwarzschild metric. The rotation rate of the
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Fig. 1. Model geometry applied for our numerical calculations.
The poloidal field structure is prescribed as magnetic flux sur-
faces with different opening angle. The flux surfaces have dif-
ferent foot point radii along the accretion disk (not visible).
The central source is a black hole implying that general rela-
tivistic effects have to be taken into account. The toroidal field
follows from the solution of the wind equation

black hole is defined as ΩH ≡ ω(rH) = a/(2MrH). The
Kerr parameter a does not influence the solution of the
wind equation directly. However, for rotating black holes
the marginally stable orbit rms is closer to the horizon,
rms = 6rg for a = 0 and rms ' rg for a ' 1 (This is the
case for a co-rotating disk. For a retrograde disk rotation
rms ' 9rg for a ' 1). Therefore, assuming that the jet
magnetic field is anchored just at the marginally stable
orbit, for a rapidly rotating black hole the maximum an-
gular velocity of the jet foot points increases by a factor
of 63/2/2 = 7.4. Correspondingly, the light cylinder radius
of the jet moves inward by the same factor.

In addition to the well-known special relativistic light
cylinder, the differential rotation of the space ω leads to
the formation of a second light surface. At this position
the “rotational velocity” of the field lines relative to the
ZAMO equals the speed of light (see Blandford & Znajek
1977). The position of the two light surfaces ω̃L is defined
by ω̃2

L = (±α c/(ΩF − ω))2, where the + (−) sign holds
for the outer (inner) light surface with ΩF > ω (ΩF < ω).
However, these light surfaces have no direct implication for
the MHD flow. In the limit of a strong magnetization, the
MHD Alfvén surfaces (for inflow and outflow) approach
the corresponding light surfaces.

3.3. The accretion disk

X-ray observations of GRS 1915+105 detected strong in-
tensity variations indicating major instabilities of an ac-
cretion disk (Greiner et al. 1996). Belloni et al. (1997) find
that the highly variable X-ray spectra could be explained
if the inner disk is alternatively removed and replenished
due to a thermal-viscous instability. Simultaneous X-ray
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and infrared observations of GRS 1915+105 revealed evi-
dence for a disk–jet interrelation (Eikenberry et al. 1998;
Mirabel et al. 1998). The observed flares in the X-ray and
IR bands have a consistent offset delay of ∼30 min indi-
cating an origin from the same event.

The accretion rate in GRS 1915+105 and
GRO J1655−40 can be determined from the observed
X-ray luminosities (e.g. Greiner et al. 1998). Depending
on the chosen efficiency (5% in non-rotating versus 42%
in maximally rotating black holes) the accretion rate
ranges between 1–9 10−7 M� yr−1 (GRS 1915+105) and
0.8–7 10−8 M� yr−1 (GRO J1655−40), respectively.

From the theoretical point of view an accretion disk
surrounding the black hole is the essential component con-
cerning magnetic jet formation. It is considered to be re-
sponsible for the following necessary ingredients for jet
formation, propagation, and collimation.

– The generation of the magnetic field. In contrast to
stellar jets the magnetic field of jets from black holes
cannot be supplied by the central object but has to be
generated by the surrounding accretion disk. Dynamo
action in general relativistic accretion disks were dis-
cussed by Khanna & Camenzind (1996a, 1996b) and
Brandenburg (1996);

– The mass loading of the jet. The accreting material be-
comes partly diverted into the jet. Evidently, no mass
outflow is possible from the black hole itself, in dif-
ference to a stellar wind. The (non-relativistic) self-
similar accretion-ejection mechanism was investigated
by Ferreira (1997);

– The electric current system. Differential rotation of the
disk is also responsible for driving the poloidal electric
current system in the jet magnetosphere. Such a cur-
rent extracts angular momentum from the disk and
eventually allows for mass accretion into the central
object.

3.4. Model parameters for the wind motion

3.4.1. The magnetization parameter

The leading parameter for the wind solution along a fixed
poloidal field is the magnetization parameter (5). Re-
normalization to astrophysical units gives

σ?(Ψ) =
Φ2
?

4πmpIp?
→

B2
p?R

4
?

cṀjet(Ψ)r2
g

=
B2

p?r
2
g

cṀjet(Ψ)

(
R?
rg

)4
(6)

where Ṁjet(Ψ) ' 4πmpn?cup?R
2
? is the jet mass flux en-

closed by an area of radius R?. A first order estimate of the
magnetization can be derived from the disk equipartition
field strength. Then, with a reasonable assumption on the
jet mass flow rate related to the disk accretion rate, this
gives the jet magnetization. Although the equipartition
field strength is model-dependent, the different models
(e.g. either advection dominated disk or standard disk, ei-
ther Kramer’s opacity or Thomson scattering) give rather

similar results. A self-similar advection dominated disk
model with the accretion rate Ṁacc gives

Beq ' 2.5 109 G α
− 1

2
vis

(
M

5 M�

)− 1
2
(
Ṁacc

ṀE

)1
2(

R

rg

)− 5
4

, (7)

where ṀE = 1.1 10−7(M/5 M�)M� yr−1 is the
Eddington luminosity and αvis is the viscosity pa-
rameter (see e.g. Narayan et al. 1998). In compar-
ison, an optically thin standard accretion disk with
Thomson opacity gives Beq '

√
8πP =

√
8πaT 4/3 '

1.8 108 Gα
−1/2
vis (M/5 M�)−1/2(R/rg)−3/4 (see Blandford

1990). Note that these estimates are only valid within cer-
tain limits of the accretion rate and the disk radius. Using
the advection dominated disk model equipartition field
strength, we obtain the following estimate for the mag-
netization at the injection radius,

σ?(Ψ) = 16
1
αvis

(
M

5 M�

)(
Ṁjet

Ṁacc

)−1(
R?
rg

)3/2

· (8)

A comparison with the original Michel magnetization pa-
rameter σM must take into account a factor (rg/RL)2. The
magnetization parameter derived from the field distribu-
tion in a standard accretion disk model (see above) will
give a similar result. We emphasize that we do not “ap-
ply” a certain disk model (e.g. the ADAF model) in our
computations. However, a comparison in the context of
accretion disk theory just puts our wind parameters on a
safer ground. Note, that neither the ADAF model nor the
standard disk model takes into account the influence of
magnetic fields. Moreover, the ADAF estimates as cited
in Eq. (7) rely on the self-similar assumption. Compared to
the standard disk, by definition, the matter in the ADAF
disk would be rapidly advected possibly influencing also
the wind ejection. However, such a detailed treatment is
beyond the scope of this paper and may only be considered
in numerical simulations investigating the disk-jet interac-
tion itself (Koide et al. 1998, 1999, 2000)

3.4.2. The magnetic field distribution

The normalized magnetic field distribution is pre-
scribed by

– the shape of the field line, z(x);
– the magnetic flux distribution, Φ(x)=Φ̃(x)

√
−g/(ρ2∆).

We apply different functions for z(x) and Φ̃(x) in order to
investigate the influence of collimation, rotation and mag-
netic flux distribution on the acceleration of matter. One
example is z(x) = 0.1(x−x0)6/5 describing an almost coni-
cal surface with only a slight collimation (see Fig. 2). Here,
x0 defines the intersection of the field line with the equa-
torial plane, with x0 somewhat smaller than x?. The idea
behind this choice is that the matter is expected to couple
to the jet magnetic field above the accretion disk (with
z(x?) > 0). An example for the magnetic flux distribution
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Table 1. Comparison of leading parameters for the wind solution. Magnetic flux distribution Φ̃/Φ̃?, shape of the poloidal
field line z(x), iso-rotation parameter ΩF, sound speed at the injection radius cs?, magnetization at the injection radius σ?,
cylindrical Alfvén radius xA, cylindrical injection radius x?, total energy E, normalized to mpc

2 normalized total angular
momentum L̃ = L/E, asymptotic velocity up∞, and angular momentum parameter of the black hole a. Other Parameters are:
Γ = 5/3, up? = 0.006 (S3–S9), up? = 0.17 (S3q, S3u2), up? = 0.21 (S3u3)

prescribed calculated

Φ̃/Φ̃? z(x) ΩF cs? σ? xA x? E L̃ up∞ a

S3 ∼1 0.1(x − x0)6/5 0.035 0.05165 979.4 22.931 8.3 2.7887 20.04 2.531 0.8

S3c2 ∼1 0.1(x − x0)3/2 0.035 0.0529 1356 22.931 8.3 2.764 19.95 2.58 0.8

S4 ∼x−1/2 0.1(x − x0)6/5 0.035 0.049 2380 22.931 8.3 2.7879 20.04 2.60 0.8

S4b ∼x−1/2 0.1(x − x0)6/5 0.014 0.0390 14 680 57.0 15.3 2.6730 47.07 2.48 0.8

S9 ∼x−1/2 0.1(x − x0)3/2 0.035 0.05165 2777 22.92 8.3 2.7572 19.93 2.57 0.8

S3q ∼1 0.1(x − x0)6/5 0.14 0.31 480 5.83 3.3 8.917 6.616 8.48 0.8

S3u ∼1 0.1(x − x0)6/5 0.14 0.27 100 5.33 3.3 3.16 5.69 2.96 0.8

S3u2 ∼1 0.1(x − x0)6/5 0.14 0.27 82.5 5.33 3.3 4.66 6.35 4.55 10−8

S3u3 ∼1 0.1(x − x0)6/5 0.14 0.27 205.7 5.33 3.3 4.65 6.35 4.48 10−8

Fig. 2. Projected magnetic flux surface. Shape of the poloidal
field line/flux surface as function z(x) for the solutions S4 (and
S4b, S3, S1) and S9 (and S3c2)

is Φ̃(x) = (x/x?)−1/2, resulting in magnetic flux function
Φ(x) decreasing with radius faster than a monopole where
Φ(x) = 1.

Prescribing both the flux distribution and the shape
of the flux surface does not over-determine the problem.
The magnetic flux function Φ describes the opening of the
magnetic flux tubes. With z(x), the shape of the flux sur-
face chosen, the choice of the flux function just defines
the position of the “other” flux surfaces. In a fully self-
consistent approach, the field structure is determined by
the solution of the Grad-Shafranov equation. Such solu-
tions are not yet available.

3.4.3. The plasma temperature

The temperature distribution along the field line follows
a polytropic gas law, T = T? (n/n?)

Γ−1. In our approach
the temperature at the injection radius x? is determined
by choosing the sound speed at this point, cs?,

T? =
Γ− 1

Γ

(
c2s?

Γ− 1− c2s?

)
mpc

2

kB
· (9)

For typical parameters applied in our calculations, cs? =
0.05, Γ = 5/3 this gives a gas temperature of the disk
corona of about 1.5 1010 K at a jet injection radius x? =
8.3. This temperature is in rough agreement with the disk
temperature of the advection dominated accretion disk
models at small radii (Narayan et al. 1998). A smaller x?
requires a higher sound speed parameter implying a higher
temperature T?.

3.4.4. The iso-rotation parameter ΩF

The iso-rotation parameter ΩF(Ψ) of the field line is de-
termined from the position of the injection radius x?. This
choice corresponds to the interpretation often applied for
ΩF as the “angular rotation of the field lines”. Here, we
assume that the field lines are anchored in a Keplerian
disk, ΩF ' ΩDisk ' ΩK(x?). The angular velocity of
the last stable circular orbit around a Kerr black hole is
ΩF(x?) ∼ ±(x3/2

? ± a)−1 (the ± stands for co-rotation
or retrograde rotation, respectively). For a radial position
not too close to the black hole, the angular velocity in
the accretion disk follows its Newtonian value. Close to a
black hole ΩF is limited due to the “rotation of space” ω.
An injection radius x? = 8.3 gives ΩF = 0.04 which is
about 0.1 ΩH for a = 0.8.
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Fig. 3. Solution S3. Properties of the critical wind solution
along a given flux surface (see parameters in Table 1). The
small window shows the solution branches around the slow
magnetosonic point enlarged. The wind branch is the one with
increasing velocity. The critical (magnetosonic) points are lo-
cated at the intersections of the two solution branches (see
Appendix C for details). Top: poloidal velocity αup (in c).
The asymptotic jet velocity of up = 2.5 is reached after about
x = 108. Middle: normalized proper particle density n (thick
line) and temperature T in K (thin line). Below: normalized
poloidal (thick line) and toroidal (thin lines) field strength,
Bp, Bφ. Note that the injection radius is x? = 8.3

4. Results and discussion

We now discuss our numerical solutions of the general rel-
ativistic magnetic wind equation for different field geome-
tries and input parameters. With the prescribed poloidal
field our solution is uniquely defined by the conditions
along the jet foot point and the condition of regularity
across the magnetosonic points. Due to the stationarity
assumption and the prescription of the field distribution,
the spatial range of the computation is in principle not
limited in radius. This is essential if one considers the
huge size of Galactic superluminal jets in terms of the size
of the central object.

In general, we show that the acceleration of plasma
from regions close to a black hole to the speed of 0.92 c
observed for Galactic superluminal motion is possible to
achieve. Depending on the poloidal magnetic field distri-
bution, the asymptotic speed of the jet is reached at a
radius of about 100 gravitational radii.

For comparison the leading parameters for our astro-
physical solutions are summarized in Table 1. For illus-
tration, we show the example solution S1 demonstrat-
ing the typical features of the wind solution branches in
the case of super- or sub-critical parameters (Fig. C.1,
Appendix C). The meaning of our figures is explained in
detail in Appendix C.

4.1. The wind solution – a collimating relativistic jet

The time scale for the superluminal GRS 1915+105 jet is
at least one month until the blobs become invisible in ra-
dio light. Mirabel & Rodriguez (1994) estimated that the
ejection event for a blob lasts about 3 days. This time
period would correspond to a value of ΩF = 0.016 (for
M = 5 M�) and an injection radius of about x? ' 15. The
orbital period of the foot points rotating at the marginally
stable orbit (for a = 0.8) is an order of magnitude less. The
time scale derived for the intervals between the emission of
jet knots is much larger as the period of the marginally sta-
ble orbit. The true location of the jet origin not yet known.
Therefore, we suggest that the jet foot point should be lo-
cated outside the marginally stable orbit in order to main-
tain a jet flow for some time. For the first set of solutions
we chose a foot point radius of x? = 8.3 or x? = 15.3.

The fact that the kinematic time scale of the blobs is at
least 10 times larger than the time scale for the generation
of the blobs supports the assumption of stationarity in our
calculations. Clearly, on the long-term time evolution the
presence of the blobs them self tells us that the jet flow is
time-dependent.

Compared to the other solutions in this sample with
x? = 8.3, solution S3 is weakly magnetized (Fig. 3). The
initial opening angle of the magnetic flux surface is large
(Fig. 2). The magnetic flux function Φ̃(x) is constant along
the field line. The asymptotic poloidal velocity of up = 2.5
is reached beyond a radius x ' 108 (corresponding to a
distance from the black hole of z(x) ' 4 108).
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Figure 3 also shows the distribution of other dynam-
ical variables. The poloidal field strength Bp decreases
with the opening of the magnetic flux surfaces. While the
poloidal field distribution is prescribed in our approach,
the toroidal magnetic field profile is a result of compu-
tation and therefore determined by the critical wind so-
lution. At the injection point the toroidal field strength
is about two times smaller than the poloidal component.
Outside the Alfvén radius the toroidal field becomes much
larger than the poloidal component. For large radii the
magnetic field helix is dominated by the toroidal compo-
nent. In this region we find the toroidal field component
following a power law distribution d(logBφ) ' d(logx).
Therefore, in the asymptotic part the poloidal electric cur-
rent is almost constant I ∼ xBφ ∼ const. In relativistic
MHD electric –fields cannot be neglected. The electric field
orientation is perpendicular to the magnetic flux surfaces
and the field strength is |E⊥| = (R/RL)BP. Therefore,
the electric field is dominating the poloidal magnetic field
outside the light cylinder.

Density and temperature are interrelated by the poly-
tropic gas law. At the injection point the gas tempera-
ture T ' 1010 K (Fig. 3). The proper particle density
at the injection point n? depends from the choice of the
mass flux (in units of the magnetic flux). Therefore, the
calculated density profile n(x) may be applied to dif-
ferent mass flow rates (as long as the magnetization σ?
is the same). Density and temperature decrease rapidly
along the field line following the polytropic expansion.
For x >∼ 30 the proper particle density follows a power
law n/n? = 4 10−5x−1.8. At x ' 1000 the gas tempera-
ture is about 106 K. Therefore we can estimate the size of
a X-ray emitting region of about several 1000 rg in diam-
eter. For the example of GRS 1915+105 this corresponds
to 3.5 10−9 arcsec. It would be interesting to calculate the
X-ray spectra of such an relativistically expanding high
temperature gas distribution.

Solution S3c2 has the same distribution of the mag-
netic flux function Φ as solution S3. The magnetic flux
surfaces, however, are collimating more rapidly. The de-
rived critical wind solution has a higher magnetization,
although the terminal speed and the total energy density
E(Ψ) of the S3c2 solution is similar to S3. Because of the
higher magnetization type S3c2 jet solutions have a cor-
respondingly lower mass flow rate. The asymptotic speed
is reached already at about x = 1000 equivalent to a dis-
tance from the central black hole of about z = 3200.

Solution S9 relies on the same magnetic flux surface
as S3c2. As a difference to S3c2, the magnetic flux func-
tion decreases with radius implying a (spatially) faster
magnetic field decay. As a consequence, the jet reaches its
asymptotic velocity of up = 2.57 even at about x = 100.
The derived flow magnetization is higher compared to
S3c2 and S3 balancing the fast decay of the magnetic field
distribution and we obtain the same asymptotic speed.
This is interesting because it proves that not only the mag-
netization, but also the distribution of the magnetic flux
along the field line determines the asymptotic speed.

Note that solution S9 reaches the same asymptotic
speed as S3c2 only because of its higher magnetization.
Indeed, a solution similar to S9, but having the same mag-
netization σ? = 1356 as for S3c2, only reaches an asymp-
totic speed of up = 1.81 (not shown). Also, such a solution
would be only very weakly magnetized in the asymptotic
regime as the normalized flow magnetization changes as
σ ∼ 1/

√
x for the Φ ∼ 1 solutions or σ ∼ 1/x for the

Φ ∼ 1
√
x solutions2, respectively. Similarly, in compari-

son, the asymptotical toroidal magnetic field is weaker by
some orders of magnitude (a factor ten at x = 1000). In
all the solutions presented in this paper the asymptotic jet
is dominated by the kinetic energy. For the solutions with
the large injection radius x? = 8.3, the magnetic energy
is being converted into kinetic energy almost completely
already at a radius of about several 100 gravitational radii.

Solution S4 has the same magnetic flux distribution as
S9, however, the field line is only weakly collimating. The
asymptotic jet speed and the magnetization parameter is
about the same. Only, the initial acceleration is weaker
because the magneto-centrifugal mechanism works less ef-
ficient in the field with a smaller opening angle.

Solution S4b has essentially the same field distribution
as S4, but the injection radius is chosen larger. Therefore,
the iso-rotation parameter ΩF is decreased by a factor of
(8.3/15.3)3/2. As a result, a critical wind solution with
a comparable asymptotic speed could be obtained only
for a very high plasma magnetization. This proves that
highly relativistic jets can be expected even if the jet is
not emerging from a region close to the black hole. Such a
solution is feasible if the mass flow rate in the jet decreases
with radius faster than the field strength (or flux distribu-
tion). The question remains whether such field strengths
can be found at this position.

We summarize the results of this section. The asymp-
totic speed is determined by the plasma magnetization
and the distribution of the magnetic flux along the field
line. The shape of the magnetic flux surface determines the
velocity profile along the field, thus, the position where the
asymptotic velocity is reached. Highly relativistic outflows
can be obtained even if the jet foot point is not very close
to the black hole. However, in this case a high plasma
magnetization is necessary. But this seems to be in con-
tradiction to the accretion disk theory (see below).

4.2. The role of the magnetization

The magnetic acceleration of jets and winds can be un-
derstood either as a consequence of converting Poynting
flux (magnetic energy) to kinetic energy or due to Lorentz
forces along the poloidal field line. In general, the higher

2 However, in the hot wind equation it is not possible to
change only one single parameter in order to obtain a new set
of critical wind solutions. In the case discussed above, with
the decreased magnetization (i.e. an increased mass flow rate),
the Alfvén radius is correspondingly smaller (here, xA = 21.11
compared to xA = 22.93 for S9).
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Fig. 4. Wind solutions S9 (upper left), S3c2 (lower left), S4 (upper right), S4b (lower right). Branches of poloidal velocity αup

along the field line in units of the speed of light. For the solution parameters see Table 1. See caption of Fig. 3 for further
explanation

the plasma magnetization the more energy can be trans-
formed into kinetic energy of the wind. It has been shown
theoretically for a cold wind that the relation between
magnetization and asymptotic velocity is that of a power
law, uP∞ ∼ σM

1/3, for conical outflows (Michel 1969) and
for collimating flows (Fendt & Camenzind 1996), if the
flux distribution is the same, respectively. However, both
papers do not consider gravity (and no general relativistic
effects). The new solutions presented in this paper are in
general agreement with those results in the sense that a
higher magnetization leads to a higher velocity. However,
we are dealing with the hot wind equation and cannot de-
rive a power law distribution from Table 1, since the other
wind parameters may vary between the different solutions.
In difference to the cold wind solutions the magnetization
is not a free parameter. Instead, it is fixed by the regular-
ity condition at the magnetosonic points.

The wind magnetization is determined by the disk
properties at the jet injection points along the disk sur-
face. For a standard thin disk model that the ratio of
the mass flow rate in the jet to the disk accretion rate
is about 1% (Ferreira 1997). The observational data for
various jet-disk systems are consistent with this theo-
retical value. The accretion disk magnetic flux can be

estimated assuming equipartition between magnetic field
pressure (energy) and gas pressure (thermal energy) in the
disk (see Sect. 3.4.1). From Eq. (7) we find an equiparti-
tion field strength of about Beq ' 5 108 G, if αvis ' 0.1
and R? = 10rg. Equation (8) then defines an upper
limit for the plasma magnetization at the injection ra-
dius, σ? = 5 104, for Ṁjet ' 0.1 Ṁacc. Such a value is in
general agreement with our solutions (Table 1). The maxi-
mum equipartition field strength estimated with the above
given formulae can be much larger for Galactic black hole
jet sources as for AGN (see Eq. (7)). For a low black hole
mass (with a smaller horizon) the disk comes closer to the
singularity and therefore becomes hotter.

Again, we note that our estimate for the magneti-
zation comes from comparison of different disk models
(Sect. 3.4.1). However, this does not mean that we apply
a certain disk model for our computations.

Finally, we come back to the wind solutions S4 and
S4b. As already mentioned, these solutions demonstrate
that the jet origin must not be necessarily close to the
black hole. One may think that a strong magnetization
at larger disk radii would do the job. On the other hand,
the equipartition field strength in the disk decreases with
radius implying that the highest magnetization and, thus,
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jet velocities must be expected from the inner part of the
disk. Only, if the mass transfer rate from the disk into
the jet decreases more rapidly with radius than the field
strength, the magnetization increases.

4.3. The influence of the rotating black hole

As the main issue of our paper is the search for MHD wind
solutions in Kerr metric, it is necessary to clarify the role
of general relativity for the jet acceleration itself. Clearly,
at an injection radius of R? = 8.3 general relativistic ef-
fects are not very dominant.

For comparison we have calculated wind solutions for
a smaller injection radius x? = 3.3 (solution S3q, S3u,
Figs. D.1, D.2). The main effect is a much higher asymp-
totic velocity resulting from the rapid rotation, ΩF, at
the smaller radius x?. With our choice ΩF = 0.14 the
asymptotic velocity drastically increases from up = 2.503
(S3) to up = 8.4792 (S3q). In order to obtain the critical
solution for the higher rotation rate, the wind parame-
ters have to be changed accordingly. σ? is decreased by a
factor of two, while cs? and up? must be increased sub-
stantially. The large sound speed is in agreement with the
smaller injection radius, since a higher disk temperature
and pressure is expected close to the hole. The Alfvén ra-
dius is decreased by a factor of four, however, its location
relative to the outer light cylinder remains the same.

The limiting case of Minkowski metric can be achieved
by setting M = 0 and a = 0 in the Boyer-Lindquist
parameters (see Appendix A). For such a wind solution
(S3u2) the magnetization is lower, although the asymp-
totic wind speed is the same as in the Schwarzschild case
(see Fig. D.2). This becomes clear if we take into account
that for S3u2 the wind flow does not have to overcome
the gravitational potential. Thus, less magnetic energy is
needed to obtain the same asymptotic speed by magnetic
acceleration. Further, we find from solutions for different
angular momentum parameters a that in general the wind
flow originating from a black hole with a smaller a is faster.
As an extreme example we show the solution S3u3 calcu-
lated with a ' 0 but otherwise the same parameter set
(see Fig. D.2). This solution is magnetized stronger com-
pared to the case of a = 0.8, thus, resulting in a higher
asymptotic wind velocity. We believe that the reason for
such a behavior is the fact that the effective potential of
a black hole weakens (at this location) for increasing val-
ues of a. Therefore, less magnetic energy is necessary to
overcome the effective potential.

In the end, the results of this section are not surprising.
They demonstrate that the wind/jet is basically magneti-
cally driven. As a consequence, the acceleration takes place
predominantly across the Alfvén point as expected from
MHD theory. Therefore, the scenario is similar to the case
of classical pulsar theory in Minkowski metric. For rela-
tivistic jets with a high magnetization the Alfvén point is
always very close to the light surface, which is defined by
the angular velocity of the field line foot point. Usually,

the Alfvén point is located at a radius large compared to
the gravitational radius. Thus, the influence of the general
relativistic metric is marginal. Only, if the Alfvén radius
comes close to the hole, the choice of the metric will de-
termine the jet acceleration.

4.4. The question of collimation

The huge size observed for the knots of the Galactic su-
perluminal sources leaves the possibility that the jet is
basically un-collimated.

Our numerical solutions have shown that the asymp-
totic speed of the jet does not depend very much on the
degree of collimation in the flow. That speed is reached
within a distance of about 108rg. However, the observed
upper limit for the knot size is still a factor 10 larger.
Therefore, from our solutions, the observed knots are con-
sistent with both a collimated and an un-collimated jet
flow. In particular, solution S9 which is more collimated,
has the same asymptotic speed as solution S4.

In the case of extragalactic jets a high degree of
collimation is indicated. The “lighthouse model” by
Camenzind & Krockenberger (1992) gives opening angles
of only 0.◦1 for the quasar 2C 273 or 0.◦05 for typical
BL Lac objects. The question arises whether there could
be an intrinsic difference between the jets of AGN and
Galactic high energy sources. Why should Galactic su-
perluminal jets be un-collimated? A difference in the jet
magnetization seems to be unlikely since the jet velocities
are comparable. We hypothesize that if the jets of these
sources are systematically different, this should rather be
caused by the conditions in the jet environment. If the
jets are collimated by external pressure, a different ex-
ternal/internal pressure ratio will affect the degree of jet
collimation. Extragalactic jets are believed to be confined
by an external medium (see Fabian & Rees 1995; Ferrari
et al. 1996). It is likely that Galactic superluminal sources
provide an example where the jet pressure exceeds the
pressure of the ambient medium. While AGN jets bore a
funnel through the galactic bulge, Galactic superluminal
jets freely expand into the empty space. Such a picture
seems to be supported by the fact that the Galactic su-
perluminal jet knots move with constant velocity over a
long distance.

5. Summary

We have investigated magnetically driven superluminal
jets originating from a region close to a rotating black
hole. The stationary, general relativistic, magnetohydro-
dynamic wind equation along collimating magnetic flux
surfaces was solved numerically. The wind solutions were
normalized to parameters typical for Galactic superlumi-
nal sources.

The assumption of stationarity allows us to calculate
the jet velocity on a global scale over a huge radial range in
terms of radius of the central source. The wind is launched
close to the rotating black hole at several gravitational
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radii. The calculation was performed up to a radius of 104

gravitational radii, but is in general not limited in radius.
In some cases the asymptotic speed may be reached only
at a distance of several 108 gravitational radii. Different
magnetic field geometries were investigated. The model
allows for a choice of the shape of the magnetic flux surface
and the flux distribution of that field.

The physical wind solution is defined by the regular-
ity condition at the magnetosonic points. As the poloidal
field is prescribed, the choice of the following input pa-
rameters determines the wind solution completely, (i) the
injection radius of the matter into the jet, (ii) the injection
velocity and (iii) the plasma magnetization (the ratio of
magnetic flux to mass flux). The results of our numerical
computation are the following.

– In general, the observed speed for Galactic superlumi-
nal sources of more than 0.9 c can be achieved;

– The flow acceleration is magnetohydrodynamic and
takes place predominantly around the Alfvén point.
General relativistic effects are important only if the
wind originates very close to the black hole. In order to
overcome the gravitational potential, the critical wind
solution must be higher magnetized in order to reach
a similar asymptotic speed. This has been proven by
calculating the Schwarzschild and Minkowski limit of
the wind equation;

– For a fixed magnetic field distribution the asymptotic
jet velocity depends mainly on the plasma magnetiza-
tion, in agreement with earlier papers (Michel 1969;
Fendt & Camenzind 1996). The higher the plasma
magnetization, the higher the final speed. The velocity
distribution along the magnetic field shows a saturat-
ing profile depending on the distribution of the mag-
netic flux;

– The magnetic flux distribution along the field line also
influences the plasma acceleration. Since the real field
distribution is not known, we have considered two cases
which show the typical behavior and which are proba-
bly close to the reality. We find that the jet velocity in
a (spatially) faster decaying field can be the same as
long as the magnetization at the injection point is high
enough in order to balance the effect of the decrease
in field strength;

– For jet solutions not emerging from a region close to
the black hole, a highly relativistic velocity can be ob-
tained if the flow magnetization is sufficiently large.
However, one we hypothesize that the field strength
required for such a magnetization can be generated
only close to the black hole;

– Investigation of flux surfaces with a different degree
of collimation has shown that both field distributions
allow for a relativistic velocity. The asymptotic jet ve-
locity is reached considerably earlier in the case of
the faster collimating flux surface. The jet reaches
its asymptotic speed at a distance from the injection
point of 3000rg or 105rg, depending on the degree of
collimation. The latter we measure with the opening

angle of the collimating flux surface at this point and
is about 15◦ or 45◦, respectively. This distance is below
the observational resolution by several orders of mag-
nitude. Therefore, the question of the degree of colli-
mation for the superluminal jets of GRS 1915+105 and
GRO 1655−40 could not be answered;

– Motivated by the huge size of the observed knots in the
Galactic superluminal jets, we point out the possibility
that the jet collimation process in these sources may
be intrinsically different in comparison to the AGN.
For example, the upper limit for the knot diameter in
GRS 1915+105 is about 109 Schwarzschild radii, which
is distinct from typical estimates for AGN jets with
diameters of about 100–1000 Schwarzschild radii;

– The gas temperature at the injection point is about
1010 K which is one order larger than the disk tem-
perature at this point. With the polytropic expansion
the temperature decreases rapidly to about 106 K at a
distance of 5000 Schwarzschild radii from the source.
Both the temperature and the mass density follow a
power law distribution with the radius;

– The calculations show that the jet magnetic field is
dominated by the toroidal component. Similarly, the
velocity field is dominated by the poloidal component.

In summary, our numerical calculations have shown that
the highly relativistic speed observed for galactic superlu-
minal sources can be achieved by magnetic acceleration.
For a given magnetic flux surface we obtain the complete
set of physical parameters for the jet flow. The calcu-
lated temperature, density and velocity profile along the
jet would provide a interesting set of input parameters for
computing the spectral energy distribution.
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Appendix A: Parameters of Kerr metric

For the reason of completeness, here we list the parame-
ters applied in the equations of Kerr geometry. In Boyer-
Lindquist coordinates with the parameters

ρ2 ≡ r2 + a2 cos2 θ, ∆ ≡ r2 + a2 − 2M r,

Σ2 ≡ (r2 + a2)2 − a2∆ sin2 θ, ω̃ ≡ (Σ/ρ) sin θ,

ω ≡ 2 aM r/cΣ2, α ≡ ρ
√

∆/Σ,

the components of the metric tensor are defined as

g00 = σm(2r/ρ(r, θ)2 − 1)
g03 = −σm2ra sin(θ)2/ρ(r, θ)2

g11 = σmρ(r, θ)2/∆(r, θ)
g22 = σmρ(r, θ)2

g33 = σmΣ(r, θ)2 sin(θ)2/ρ(r, θ)2

g ≡ Det(gµν) = −g11g22(g2
30 − g00g33).
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In our paper we have chosen a negative sign of the metric,
σm = −1.

Appendix B: Wind polynomial

Here we provide the polynomial coefficients of the gen-
eral relativistic magnetohydrodynamic wind Eq. (4). For a
derivation, see Camenzind (1986), Takahashi et al. (1990),
or Jensen (1997). The specific angular momentum, prop-
erly normalized, is

L̃ = −(g03 + ΩFg33)/(g00 + ΩFg03). (B.1)

For convenience we define the following parameters,

C1 =
c2s?

Γ− 1− c2s?

(
up?

√
g?
g

Φ
Φ?

)Γ−1

, C2 =
√
−g Φ?

Φσ?
D1 = g00 + 2ΩFg03 + Ω2

Fg33, D2 = (1− ΩFL̃)2

D3 = −(g33 + 2L̃g03 + L̃2g00)/(g2
03 − g00g33).

With the corresponding values at the injection radius x?
the total specific energy density of the flow E is defined
as

E2 =
−σmµ

2
?(u

2
p? + 1)(D1? + σmM

2
? )2

(D1? + 2σmM2
? )D2? +D3?M4

?

, (B.2)

where M? denotes the Alfvén Mach number at the injec-
tion radius. The polynomial coefficients of the wind Eq. (4)
are

ã1,2n+2m = C2
2

ã2,2n+m = 2σmC2D1

ã3,2n = D2
1 + C2

2 + σmE
2C2

2D3

ã4,2n−m = 2σmC2D1 + 2E2C2D2

ã5,2n−2m = D2
1 + σmE

2D1D2

ã6,n+3m = 4C1C
2
2

ã7,n+2m = 6σmC1C2D1

ã8,n+m = 2C1D
2
1 + 4C1C

2
2 + σm2E2C1C

2
2D3

ã9,n = σm6C1C2D1 + 2E2C1C2D2

ã10,n−m = 2C1D
2
1

ã11,4m = 6C2
1C

2
2

ã12,3m = 6σmC
2
1C2D1

ã13,2m = C2
1D

2
1 + 6C2

1C
2
2 + σmE

2C2
1C

2
2D3

ã14,m = 6σmC
2
1C2D1

ã15,0 = C2
1D

2
1

ã16,5m−n = 4C3
1C

2
2

ã17,4m−n = 2σmC
3
1C2D1

ã18,3m−n = 4C3
1C

2
2

ã19,2m−n = 2σmC
3
1C2D1

ã20,6m−2n = C4
1C

2
2

ã21,4m−2n = C4
1C

2
2 .

All coefficients with the same second index have to be
summed up, Ai =

∑
j ãj,i. The polytropic indices n = 5,

m = 3 give a polynomial of 16th order.

Fig. C.1. Example solution S1. Overlay of solutions up(x) for
three different parameter sets. σ? = 49830, cs? = 0.4585 gives
the critical solution which is regular across the magnetosonic
points. The critical wind solution is the continuous branch
starting with low velocity and accelerating to high speed. The
magnetization σ? is the critical parameter for the FM point,
whereas cs? is the critical parameter for the SM point. Sub- or
super-critical solutions are obtained by variation of the param-
eters σ?, cs?. The choice of σ? = 51 830, cs? = 0.4485 results in
gaps in x(up), the choice of σ? = 48 830, cs? = 0.4685 in gaps
in up(x). The other parameters are xA = 31.2, up? = 0.01,
x? = 3.0, ΩF = 0.1 ΩH = 0.025, a = 0.8

Appendix C: Example wind solution in Kerr metric

Here we show an example solution of the wind Eq. (4).
The parameters are chosen such that a variation of σ?
and cs? clearly demonstrates the criticality of the wind
solution. They do not necessarily match astrophysical con-
straints. However, the asymptotic poloidal velocity is com-
parable to the speed of the Galactic superluminal sources.
The solution (solution S1) considers a highly magnetized
plasma flow with σ? ' 5 104. The flux geometry is that of
a slightly collimating cone with an opening angle decreas-
ing with distance from the source.

Figure C.1 shows the solution branches with a posi-
tive u2

p. An overlay of solutions for three parameter sets is
displayed in order to show the typical behavior of wind so-
lution. There is only one unique solution, the critical solu-
tion, with one branch continuing from small to large radii
without any gaps in up or x. The magnetosonic points are
located at the intersections of the solution branches of the
critical solution. The critical wind solution is regular at
all three magnetosonic points. It is defined by a unique
set of the parameters E,L and σ (for ΩF prescribed). In
the critical solution the slow magnetosonic point is passed
close to the foot point of the jet. The Alfvén point is lo-
cated at x = 31 and the fast magnetosonic point not far
beyond. The asymptotic speed of the flow is up = 2.28,
equivalent to vp '= 0.9 c (not shown in the figure).

Sub- or super-critical wind parameters lead to solution
branches which are not defined for all radii or all velocities.
Even for a slight variation of these parameters the solu-
tion will be not continuous anymore, implying “jumps”



C. Fendt and J. Greiner: General relativistic magnetic jets 321

Fig. D.1. Example solutions with a small injection radius x? =
3.3. Rotation rate ΩF = 0.14. Solution S3q with a = 0.8, xA =
5.83, σ? = 480 has a high asymptotic velocity up = 8.48

or “shocks” across the gaps in the solution branches. At
these locations the stationary character of the solution
most probably breaks down. Such solution branches are
inconsistent with the assumptions and are therefore re-
ferred to as unphysical.

Appendix D: The wind solution for a small
injection radius

For comparison, we show solutions of the wind equation
with a small injection radius x? = 3.3 as well as solutions
in the limit of Minkowski and Schwarzschild metric (for
a discussion see Sect. 4.3). Solution S3q corresponds to
solution S3, however, with a magnetization smaller by a
factor of two. The asymptotic speed is up = 8.48 and
much larger than for S3. Also solutions S3u, S3u2, S3u3
correspond to S3 and S3q. However, in this case the Alfvén
radius and the derived magnetization parameter are lower
resulting in a lower asymptotic speed. Solution S3u is the
Kerr solution for a = 0.8, S3u3 the Schwarzschild solution
(a = 10−8), and S3u2 the Minkowski solution where we set
a = 10−8 and M = 0 in the Boyer-Lindquist parameters
(see Appendix A). For a comparison of all solutions see
Table 1.
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Abstract. The evolution of a stellar dipolar-type magneto-
sphere interacting with a Keplerian disk is investigated numer-
ically using the ideal MHD ZEUS-3D code in the axisymmetry
option. We compute the innermost region around the stellar ob-
ject using a non-smoothed gravitational potential. The disk is
taken as a boundary condition prescribing the mass inflow into
the corona. Depending mainly on the magnetic field strength,
our simulations last several hundred Keplerian periods of the in-
ner disk. The main result is that the dipolar structure of the mag-
netic field almost completely disappears. An expanding bubble
of hot gas of low density forms disrupting the initial dipolar
field structure. A disk wind accelerates within the time limit of
the simulation to velocities of about 0.5 the Keplerian speed
and potentially may develop into a stationary collimated jet.
We argue that non-stationary jet phenomena should probably
caused by a time-dependent disk. Simulations with a rotating
and a non-rotating star show significant differences. In the case
of a rotating star during the very first time steps a high speed
outflow along the axis is initiated which does not exist in the
case of a non-rotating star.

Key words: Magnetohydrodynamics (MHD) – accretion, ac-
cretion disks – ISM: jets and outflows – stars: magnetic fields –
stars: mass-loss – stars: pre-main sequence

1. Introduction

A stellar dipolar-type magnetic field surrounded by an accretion
disk is a common model scenario for various astrophysical ob-
jects. Examples are the classical T Tauri stars, magnetic white
dwarfs (cataclysmic variables) and neutron stars (high mass
X-ray binaries). Some of these sources show Doppler shifted
emission lines and highly collimated jets are observed in young
stellar objects. Magnetic fields are thought to play the lead-
ing role for the jet acceleration and collimation (Blandford &
Payne 1982; Pudritz & Norman 1983; Camenzind 1990; Shu et
al. 1994a,b; Fendt et al. 1995; Fendt & Camenzind 1996).

In general, two classes of papers concerning magnetohydro-
dynamic simulations of jet formation from accretion disks have
been published recently. In one class, the evolution of dipolar-
type magnetic fields in interaction with a disk is investigated

including also a treatment of the disk (Hayashi et al. 1996; Good-
son et al. 1997 (GWB97); Miller & Stone 1997; Kudoh et al.
1999). In these papers a collapse of the inner disk is indicated
giving rise to episodic ejections of plasmoids. A two-component
structure of the flow develops – a collimated axial jet and a disk
wind flow. Using an adaptive grid GWB97 were able to com-
bine a huge spatial scale (2 AU) with a high spatial resolution
near the star (0.1R�)!

However, all these simulations could be performed only for
a few Keplerian periods of the inner disk! Further, the applied
disk initial condition is not compatible with a magnetized disk.
It is not surprising that the disk immediately becomes unstable
giving rise to ejections. Clearly, it is not yet numerically feasible
to include the disk structure self-consistently. The second class
of papers deals with the evolution of a magnetized disk wind
taking the disk only as a boundary condition for the inflow, an
idea first proposed by Ustyugova et al. (1995) (see also Ouyed
& Pudritz 1997 (OP97); Romanova et al. 1997, Ustyugova et
al. 1999 (U99)). A monotonous flux distribution across the field
is assumed. For a certain initial magnetic field a final stationary
collimating jet flow could be found (OP97; U99).

We are essentially interested in the evolution of the ideal
MHD magnetosphere and the formation of winds and jets and
not in the evolution of the disk itself. Therefore, we do not
include magnetic diffusivity into our simulations. The disk acts
only as a boundary condition for the corona/jet region. In this
sense we will follow the ideas developed by OP97. The winding-
up process of magnetic field due to differential rotation between
the star and the disk would be present even if diffusivity in a disk
is taken into account. A treatment of the long-term evolution of
such systems is essential for their interpretation, since it is then
when they are being observed.

Here, we present first results of our simulations. We give a
more detailed discussion in a forthcoming publication. A movie
will be provided underhttp://kosmos.aip.de/∼cfendt.

2. Basic equations

Using the ZEUS-3D MHD code (Stone & Norman 1992a,b;
Hawley & Stone 1995) in the axisymmetry option we solve the
system of time-dependent ideal MHD equations,
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∂ρ

∂t
+ ∇ · (ρv) = 0,

∂B

∂t
− ∇ × (v × B) = 0, ∇ · B = 0, (1)

ρ

[
∂v

∂t
+ (v · ∇)v

]
+ ∇(P + PA) + ρ∇Φ − j × B = 0, (2)

ρ
[ e

∂t
+ (v · ∇) e

]
+ P (∇ · v) = 0, (3)

with the magnetic fieldB, velocityv, gas densityρ, gas pressure
P , internal energye, electric current densityj = ∇ × B/4π,
and gravitational potentialΦ. We assume a polytropic gas,P =
Kρ5/3 and do not solve the energy equation (3). Additionally,
we have introduced a turbulent magnetic pressure due to Alfvén
waves,PA ≡ P/βT , with a constantβT (OP97)

Using dimensionless variables,r′ ≡ r/ri, z′ ≡ z/zi, v′ ≡
v/vK,i, t′ ≡ tri/vK,i, ρ′ ≡ ρ/ρi, P ′ ≡ P/Pi, B′ ≡ B/Bi,
Φ′ = −1/

√
(r′2 + z′2’, where the indexi refers to parameter

values at the inner disk radiusri, the normalized equation of
motion eventually being solved with the code is

∂v′

∂t′
+ (v′ · ∇′)v′ =

2 j′ × B′

δi βi ρ′ − ∇′(P ′ + P ′
A)

δi ρ′ − ∇′Φ′ . (4)

Here isβi ≡ 8πPi/B2
i andδi ≡ ρiv

2
K,i/Pi with the Keplerian

speedv2
K,i ≡ √

GM/ri. For a ‘cold’ corona (P ′
A > 0) it fol-

lowsβT = 1/(δi(γ − 1)/γ − 1). In the following we will omit
the primes and will discuss only normalized variables.

3. The model, initial and boundary conditions

We apply the same boundary and initial conditions as developed
by OP97 with the exception of a initialdipolar-typemagnetic
field from a stellar surface. Due to our choice of cylindrical
coordinates we cannot treat the star as a sphere. The field distri-
bution along ourstraight lower boundary,z = 0, corresponds
to that along a surface withz = zD across a dipolar-type field
with a point-like star. This boundary is divided into a ‘star’,
r = 0, ...r?, a gap fromr? to ri = 1.0, and the disk fromri to
rout. Hydrodynamic inflow boundary conditions (b.c.) are set
along this axis. Matter is injected from the disk into the corona
with vP = vinjvKBP/BP, andρinj(r) = ηi ρ(r, 0). The stellar
rotational period can be chosen arbitrarily.

The initial density distribution is in hydrostatic equilibrium,
ρ = (r2 + z2)−3/4. The initial magnetic field structure is that
of a force-free deformed dipole calculated with a finite element
code described elsewhere (Fendt et al. 1995). There, the vector
potentialAφ is computed using the double grid resolution. Then,
the initial field distribution for the ZEUS code is derived with
respect to the staggered mesh. In the undisturbed regions the
initial field remains force-free on a level of0.01 %. A force-free
initial field is essential in order to apply a hydrostaticcorona as
initial condition. The maximum|∇ · B| is 10−15.

We have chosen an initial field distribution of a current-
free magnetic dipole, artificially deformed by ‘dragging’ of an
accretion disk, and an ‘opening’ of the field close to the outflow
boundaries. This implies a poloidal field inclined to the disk
surface supporting the launching of a disk wind. The amount of

‘dragging’ can be chosen by the b.c. in the finite element code.
The stability of our initial condition is demonstrated in Fig. 1:
density and field in the yet undisturbed regions perfectly match
during the first decades of evolution (t < 75).

The b.c. for the poloidal magnetic field is set by the ini-
tial field distribution and the divergence-free condition (2).
The b.c. for the toroidal component of the magnetic field is
Bφ = µi/r for r ≥ ri, consistent with a Keplerian disk with-
out any magnetic force. The emf b.c. along the r-axis is calcu-
lated directly from the velocity and field distribution prescribed,
E(r) = v(r) × B(r). For a rotating starE /= 0.

We have carefully tested the application of the ZEUS-3D
code to our model assumptions by recalculating the results
of OP97 (obtained with the ZEUS-2D code) and found very
good agreement (Fendt & Elstner 1999, in preparation). An-
other signature of the quality of our simulations is the stability
of the hydrostatic initial condition and force-freeness over sev-
eral decades of the computation.

4. Results and discussion

We have investigated numerically the evolution of a stellar
dipolar-type magnetosphere in interaction with a Keplerian ac-
cretion disk using the ideal MHD ZEUS-3D code in the axisym-
metry option. We are able to follow the evolution over more
than 200 Keplerian periods of the inner disk (or 2.2 periods at
the outer disk at20 ri)! The stellar radius isr? = 0.5 ri The
other parameters applied areδi = 100, βi = 0.2, µi = −1.0,
ηi = 100, vinj = 0.001, similar to OP97. For a typical protostar
this corresponds to a disk density atri of

ρD = 10−11ηiβiδi

(
Bi

10 G

)2(
ri

10 R�

)(
M

M�

)−1

g cm−3. (5)

Our main result is that the initial dipolar-type field structure
disappears on spatial scales larger than the inner disk radius and
a slowly collimating disk wind evolves (Fig. 1). An expanding
low density ‘bubble’ forms disrupting the field and moving with
an axial speed ofvz ' 0.4vK,i (at t = 100). A weak back-flow
of material exists close to the axis.

The general behavior of the system is independent from a
variation of the field strength. For strong fields, the bubble is
moving faster, however, the numerical life time of the simula-
tion is accordingly shorter. This is a major difference to OP97,
resulting from the inner ‘stellar’ b.c. and differential rotation
between star and disk. Aftert = 75, torsional Alfv́en waves
reach the outer region and the whole initial field distribution is
distorted. A flow along the field develops close to the disk. Its
inclination angleslowlyincreases with time. We interpret this as
indication for a possible stationary final state. We hypothesize
that such a solution will look similar to the jet solutions of OP97,
since the disk inflow condition is the same. OP97 have shown
that for a certain initial magnetic field distribution the evolving
jet flow becomes stationary after about 400 Keplerian periods.
Also, Romanova et al. (1997) find a stationary collimating disk
wind, however, applying a monopole-type initial field structure.
Further extending this approach, U99 have generally proven the
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Fig. 1.Evolution of a dipolar-type magnetosphere in interaction with a Keplerian disk. Shown is (fromleft to right) the densityρ, magnetic field
distribution (BP-lines andBφ contours) and velocity vectors (on scale only within each frame) fort = 0, 25, 50, 100, 150, 200 (from top to
bottom). The inflow from the disk along the r-axis is parallel to the initial poloidal field. The innermost density contour (ρ = 1.0) indicates the
inner disk radiusri = 1.0. The stellar radius along the r-axis isr? = 0.5 ri. The numerical resolution is250 × 250 grid elements.
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Fig. 2. Example solution of the magnetosphere for stellar rotation for
the time stept = 25, corresponding also to 25 stellar rotational periods.
Density distribution (left) and poloidal magnetic field lines (right).
Same contour levels as in Fig. 1.

existence of stationary disk jets in agreement with predictions
of the stationary MHD theory. In our simulations the disk wind
accelerates to poloidal velocities ofvp > 0.5vK,i. The wind
is launched predominantly from the inner disk, due to the fact
that the poloidal field strength drops very fast! In difference to
OP97 the magnetic field (with the initial dipole) does not evolve
into a monotonousflux distribution across the field, but into a
reversedfield structure with a neutral line of vanishing field
strength! The dipole survives close to the star with a density
distribution similar to the initial one.

Simulations with a rotating and a non-rotating star show
significant differences (Fig. 2), although differential rotation be-
tween star and disk is present in both scenarios. For a rotating
star a collimated high-speed outflow is generated close to the
axis during the first periods, in agreement with the GWB97 re-
sults. However, this axial jet does not survive very long, if not
an additional inflow of astellar windis prescribed.

Hayashi et al. (1996) and GWB97 already demonstrated that
a stellar magnetic dipole connected to a disk is deformed within
some Keplerian periods. However, the fate of such a field geom-
etry over many rotational periods has not been investigated. One
may suppose that the X-ray flares found by Hayashi et al. might
be a phenomenon occurring only during the very first decades
of rotation until the star-field-disk system has substantially de-
veloped from its initial state. Although we find the same general
structure of the flow evolution – jet and disk wind – our study
gives strong indication that episodic outbursts do not appear
on longer time-scales. However, as GWB97 discuss, outbursts
are initiated from the time-dependent behavior of the accretion
disk, the structure of which we donot treat. Our conclusion is
that astationarydisk most probably will produce a stationary
outflow on large scales!

We now compare our results with stationary jet models in
the literature. (Note that protostellar jet formation observed on
dimensions of<∼ 1000 ri cannot yet be studied on aglobalspa-
tial scale with the numerical codes presently available due to
the lack of numerical resolution). Camenzind (1990) developed
a basic model of jet formation from a magnetized young star -
accretion disk system. Stationary model calculations based on
such a scenario did not find jet solutions if a large-scale dipolar

stellar field is applied as b.c., whereas a dipole concentrated only
to the star permitted an asymptotic jet with monotonous field
distribution across the jet (Fendt et al. 1995, Fendt & Camenzind
1996). Our simulations shows that this innermost dipole is not
destroyed. In the Shu et al. (1994a,b) model the jet flow emerges
centrifugally accelerated from a so-called X-point at the inner
disk radius. A critical field line divides the closed dipolar loops
from the open wind/jet field. At a quick look our simulations
seem to favor the hypothesis of Shu et al., their critical surface
corresponding to our dominant flow channel emanating from the
inner disk radius. However, in our simulation, the strong accel-
eration at this location is due to the strong differential rotation
at this point and the subsequent induction of toroidal magnetic
fields, while in Shu et al.’s theory centrifugal forces play the
dominant role.

In summary, our long-term simulations show that (1) short-
term simulations should be interpreted with care, being probably
biased by the initial condition. Further, (2) the long-term evolu-
tion indicates on a possible finalstationarystate of a collimating
high speed disk wind, in difference to papers on this topic pub-
lished previously. Direct comparison of the simulations with a
rotating and a non-rotating star shows that (3) the first steps of
the evolution differ greatly. In the long-term evolution, however,
both systems may evolve quite similar. This would imply that
(4) jet formation depends mainly on the disk and not on the
stellar rotation. Such a ‘prediction’ may be tested by observing
jet sources with different rotational periods.

Further studies are needed to understand the complex be-
havior of the flow and field evolution. We will present a more
detailed analysis of our results in a subsequent paper.
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Abstract. The evolution of an initially stellar dipole type mag-
netosphere interacting with an accretion disk is investigated
numerically using the ideal MHD ZEUS-3D code in the 2D-
axisymmetry option. Depending mainly on the magnetic field
strength, our simulations may last several thousands of Keple-
rian periods of the inner disk. A Keplerian disk is assumed as a
boundary condition prescribing a mass inflow into the corona.
Additionally, a stellar wind from a rotating central star is pre-
scribed. We compute the innermost region around the stellar
object applying a non-smoothed gravitational potential.

Our major result is that the initially dipole type field develops
into a spherically radial outflow pattern with two main compo-
nents, a disk wind and a stellar wind component. These com-
ponents evolve into a quasi-stationary final state. The poloidal
field lines follow a conical distribution. As a consequence of the
initial dipole, the field direction in the stellar wind is opposite
to that in the disk wind. The half opening angle of the stellar
wind cone varies from30◦ to 55◦ depending on the ratio of the
mass flow rates of disk wind and stellar wind. The maximum
speed of the outflow is about the Keplerian speed at the inner
disk radius.

An expanding bubble of hot, low density gas together with
the winding-up process due to differential rotation between star
and disk disrupts the initial dipole type field structure. An axial
jet forms during the first tens of disk/star rotations, however,
this feature does not survive on the very long time scale. A
neutral field line divides the stellar wind from the disk wind.
Depending on the numerical resolution, small plasmoids are
ejected in irregular time intervals along this field line. Within a
cone of15◦ along the axis the formation of small knots can be
observed if only a weak stellar wind is present.

With the chosen mass flow rates and field strength we see
almost no indication for a flow self-collimation. This is due
to the small net poloidal electric current in the (reversed field)
magnetosphere which is in difference to typical jet models.

Key words: Magnetohydrodynamics (MHD) – accretion, ac-
cretion disks – ISM: jets and outflows – stars: magnetic fields –
stars: mass-loss – stars: pre-main sequence
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1. Introduction

A stellar dipole type magnetic field surrounded by an accretion
disk is the common model scenario for a variety of astrophysical
objects. Examples are the classical T Tauri stars, magnetic white
dwarfs (in cataclysmic variables) and neutron stars (in high mass
X-ray binaries). Part of these sources exhibit Doppler shifted
emission lines indicating wind motion. Highly collimated jets
have been observed from young stellar objects and X-ray bina-
ries, where also quasi-periodic oscillations (QPO) are observed.
In general, magnetic fields are thought to play the leading role
for the jet acceleration and collimation (Blandford & Payne
1982; Pudritz & Norman 1983; Camenzind 1990; Shu et al.
1994; Fendt et al. 1995).

Recently, several papers were considering the evolution of a
stellar magnetic dipole in interaction with a diffusive accretion
disk. Hayashi et al. (1996) observed magnetic reconnection and
the evolution of X-ray flares during the first rotational periods.
Miller & Stone (1997) Goodson et al. (1997) included the evo-
lution of the (diffusive) disk structure in their calculation. In
these papers a collapse of the inner disk is indicated depending
on the magnetic field strength and distribution. The inward ac-
cretion flow develops a shock near the star. The stream becomes
deflected resulting in a high-speed flow in axial direction.

The results of Goodson et al. (1997, 1999) and Goodson
& Winglee (1999) are especially interesting since combining a
huge spatial scale (2 AU) with a high spatial resolution near the
star (0.1R�). However, to our understanding it is not clear, how
the initial condition (a standardα-viscosity disk) is really de-
veloping in their code without any physical viscosity. Secondly,
not very much is said about the amount of magnetic diffusivity.
The assumption of constant diffusivity cannot really reflect the
two component model of disk and coronal out flow.

Time-dependent simulations lasting only a short time scale
depend strongly on the initial condition and the calculation of
the evolution of such a magnetosphere overmany rotational
periods is an essential step. In particular, this is an important
point if the initial condition is not in equilibrium. In summary,
we note that all calculations including the treatment of the disk
structure could be performed only for a few Keplerian periods
of the inner disk (and a fraction of that for the outer disk).
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At this point, we emphasize that the observed kinematic
time scale of protostellar jets can be as large as103–104 yrs,
corresponding to5×104–5×105 stellar rotational periods (and
inner disk rotations)! For example, proper motion measurements
for the HH30 jet (Burrows et al. 1996) give a knot velocity of
about100–300 km s−1 and a knot production rate of about 0.4
knot per year. Assuming a similar jet velocity along the whole
jet extending along 0.25 pc (Lopez et al. 1995), the kinematic
age is about 1000 yrs.

A different approach for the simulation of magnetized winds
from accretion disks considers the accretion disk ‘only’ as a
boundary conditionfor the mass inflow into the corona. Since
the disk structure itself is not treated, such simulations may last
over hundreds of Keplerian periods. This idea was first applied
by Ustyugova et al. (1995). Extending this work, Romanova et
al. (1997) found a stationary final state of a slowly collimating
disk wind in the case of a split-monopole initial field structure
after 100 Keplerian periods. Ouyed & Pudritz (1997, hereafter
OP97) presented time-dependent simulations of the jet forma-
tion from a Keplerian disk. For a certain (already collimating)
initial magnetic field distribution, a stationary state of the jet
flow was obtained after about 400 Keplerian periods of the in-
ner disk with an increased degree of collimation. In a recent
extension of their work both groups were considering the influ-
ence of the grid’s shape on the degree of collimation (Ustyugova
et al. 1999) and the effect of the mass flow rate (Ouyed & Pudritz
1999). Ouyed & Pudritz (2000) investigate the problem of jet
stability and magnetic collimation extending the axisymmetric
simulations to 3D.

In this paper, we are essentially interested in the evolution of
the ideal MHD magnetosphere and the formation of winds and
jets and not in the evolution of the disk structure itself. Therefore,
we do not include magnetic diffusivity into our simulations. The
disk acts only as a boundary condition for the corona/jet region.
The winding-up process of poloidal magnetic field due to strong
differential rotation between the star and the disk would always
be present even if a disk diffusivity would have been taken into
account. The disk diffusivity will never be so large that a rigid
rotation of the magnetosphere in connection with the disk can
be maintained.

In that sense our simulations represent an extension of the
OP97 model, taking additionally into account the central star
as a boundary condition and a stellar dipole type field as initial
condition. First results of our simulations were presented in
Fendt & Elstner (1999, hereafter FE99). Here we give a more
detailed discussion together with new results. Movies of our
simulations will be provided underhttp://www.aip.de/∼cfendt.

2. Basic equations

Using the ZEUS-3D MHD code (Stone & Norman 1992a,b;
Hawley & Stone 1995) in the 2D-axisymmetry option we
solve the system of time-dependent ideal magnetohydrody-
namic equations,

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1)

∂B

∂t
− ∇ × (v × B) = 0 , (2)

∇ · B = 0 , (3)

ρ

[
∂v

∂t
+ (v · ∇)v

]
+ ∇(P + PA) + ρ∇Φ − j × B = 0 , (4)

whereB is the magnetic field,v the velocity,ρ the gas density,
P the gas pressure,j = ∇×B/4π the electric current density.
andΦ the gravitational potential. We assume a polytropic ideal
gas,P = Kργ with a polytropic indexγ = 5/3. Similar to
OP97, we have introduced a turbulent magnetic pressure due
to Alfv én waves,PA ≡ P/βT , whereβT is assumed to be
constant. OP97 considered the turbulent magnetic pressure in
order to support the cold corona of e.g. young stellar accretion
disks for a given gas pressure. Clearly, the assumption of a
constantβT is motivated by the reason of simplification. Using
dimensionless variables,r′ ≡ r/ri, z′ ≡ z/zi, v′ ≡ v/vK,i,
t′ ≡ tri/vK,i, ρ′ ≡ ρ/ρi, P ′ ≡ P/Pi, B′ ≡ B/Bi, Φ′ =
−1/

√
r′2 + z′2’, where the indexi refers to parameter values

at the inner disk radiusri, the normalized equation of motion
eventually being solved with the code is

∂v′

∂t′
+ (v′ · ∇′)v′ =

2 j′ × B′

δi βi ρ′ − ∇′(P ′ + P ′
A)

δi ρ′ − ∇′Φ′ . (5)

The coefficientsβi ≡ 8πPi/B2
i andδi ≡ ρiv

2
K,i/Pi with the

Keplerian speedvK,i ≡ √
GM/ri, correspond to the plasma

beta and the Mach number of the rotating gas. For a ‘cold’
corona withP ′

A > 0, it follows βT = 1/(δi(γ − 1)/γ − 1).
In the following we will omit the primes and will discuss only
normalized variables if not explicitly declared otherwise.

Note that in our figures the horizontal axis is always the
z-axis and the vertical axis is ther-axis.

3. The model – numerical realization

In general, our model represents a system consisting of a central
star and an accretion disk separated by a gap. Star and disk are
initially connected by an dipole type magnetosphere. Axisym-
metry is assumed. The stellar rotational period can be chosen
arbitrarily. The disk is in Keplerian rotation. Disk and star are
taken into account as an inflow boundary condition. It has the
advantage that the behavior of the wind flow can be studied
independently from the evolution of the accretion disk.

This is an essential point, since the numerical simulation of
the magnetized disk structure represents itself one of the most
complicated and yet unresolved problems of astrophysics. It is
therefore unlikely to find a proper disk initial condition which
is in equilibrium. Yet, all MHD disk simulations could be per-
formed only for a few Keplerian periods (e.g. Hayashi et al.
1996, Miller & Stone 1997; Kudoh et al. 1998). A global solu-
tion of the disk-jet evolution does not yet seem to be numerically
feasible.

The general disadvantage involved with such a fixed disk
(plus star) boundary condition is that the fundamental question
of the wind/jet formation evolving out of the accretion disk
cannot be investigated.
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3.1. Numerical grid and initial condition

Prescribing a stable force-equilibrium as initial condition is es-
sential for any numerical simulation. Otherwise the simulation
will just reflect the relaxation process of such an unstable (and
therefore arbitrary) initial condition to a state of stability. In
particular this would be important if only few time steps are
computed.

In our model, we assume an initially force-free (and also
current-free) magnetic field together with a density stratifica-
tion in hydrostatic equilibrium. Such a configuration will re-
main in its initial state if not disturbed by a boundary condition.
The initial density distribution isρ(r, z) = (r2 + z2)−3/4. The
gravitational point mass is located half a grid element below the
origin. Due to our choice of cylindrical coordinates we cannot
treat the stellar surface as a sphere. Along thestraight lowerr-
boundary we define the ‘stellar surface’ fromr = 0 to r = r?,
a gap fromr = r? to r = ri = 1.0, and the disk fromr = 1.0
to r = rout (see Fig. 1).

We have chosen an initial field distribution of a force-free,
current-free magnetic dipole, artificially deformed by (i) the ef-
fect of ‘dragging’ of an accretion disk, and (ii) an ‘opening’ of
the field lines close to the outflow boundaries. The initial field
distribution is calculated using a stationary finite element code
described in Fendt et al. (1995). In this approach, the axisym-
metricφ-component of the vector potentialAφ is computed (as
solution of the well-known Grad-Shafranov equation) using a
numerical grid with twice the resolution of the grid applied in
the ZEUS code. Our finite element code allows for a solution of
the stationary boundary value problem forany boundary con-
dition. Thus, we are able to define any force-free solution as
initial condition for the simulation.

With that, from the vector potential the initial field distribu-
tion for the time-dependent simulation is derived with respect
to the ZEUS-3D staggered mesh,

Bz(i, j) = 2 (Aφ;i,j+1 − Aφ;i,j)/(r2
i,j+1 − r2

i,j) ,

Br(i, j) = − (Aφ;i+1,j − Aφ;i,j) / (ri,j (ri+1,j − ri,j)) . (6)

Here, the first and second indexi andj denote thez- andr-
direction, respectively. A suitable normalization factor is mul-
tiplied in order to match the field strength defined by the coeffi-
cientsβi andδi. With this approach the maximum normalized
|∇ · B| is 10−15 and|j × B| = 0.01|B|.

The boundary conditions for the initial magnetic field dis-
tribution calculated with the finite element code are the follow-
ing. (i) A dipolar field along the stellar surfacer < r? given
as Dirichlet condition; (ii) a homogeneous Neumann condition
along the gap between star and disk; (iii) a detached dipolar field
along the disk (as Dirichlet condition),

Aφ(r) =
(

1
r

r2

(r2 + z2
D)3/2

)
Ã(r); with Ã(r) = r−3/2, (7)

and (iv) a homogeneous Neumann condition along the outer
boundaries. This implies a poloidal field inclined to the disk
surface which would support magneto-centrifugal launching of
a disk wind. The amount of ‘dragging’ can be defined by choos-
ing a different functionÃ(r). The initial field is calculated with
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Fig. 1. Numerical model. Active region (white) and boundary region
(pattern). Star, gap and Keplerian disk are prescribed along ther-inflow
boundary with the stellar radiusr?, inner disk radiusri ≡ 1.0, and
maximum radiusrout. The numerical grid size is250×250. For clari-
fication, the poloidal field lines of the initial dipole type magnetic field
are shown as a sketch. The field smoothly continues into the ghost
zones.

az-offset,z2
D

>∼ r?/
√

2. This offset avoids un-physically strong
field strengths close to the stellar surface, but leaves the field
in a force-free configuration. Again, we emphasize that such a
force-freeinitial field is essential in order to apply a hydrostatic
corona as initial condition.

3.2. The boundary conditions

The boundary condition for the poloidal magnetic field along
the inflow boundary is fixed to the initial field. The magnetic
flux from the star and disk is conserved. The field along the
lower boundaryz = 0 corresponds to that given by Eq. (7). The
boundary condition for the toroidal magnetic field component
is Bφ = µi/r for r ≥ ri with the parameterµi = Bφ,i/Bi. No
toroidal field is prescribed at the stellar surface.

Hydrodynamic boundary conditions are ‘inflow’ along the
r-axis, ‘reflecting’ along the symmetry axis and ‘outflow’ along
the outer boundaries. The inflow parameters into the corona are
defined with respect to the three different boundary regions –
star, gap and disk. The matter is ‘injected’ into the corona par-
allel to the poloidal field lines,vinj(r, 0) = κivK(r)BP/BP
with a densityρinj(r, 0) = ηi ρ(r, 0). This defines the normal-
ized mass flow rate in the disk wind,

ṀD = 2π

∫ rout

ri

ρinj,D vinj,D dr = 2πηi,Dκi,D

(
1
ri

− 1
rout

)
. (8)

Additionally to the disk wind boundary condition, we assume
a wind component also from the stellar surfacer < r?. The
density profile of the stellar wind injection is the same as for the
diskρinj,?(r, 0) = ηi? ρ(r, 0). In the examples discussed in this
paper, the injection velocity is chosen as constantvinj,?(r, 0) =
κi,?vK,iBP/BP. This gives a mass loss rate of the stellar wind
component of

Ṁ? = 2π

∫ r?

r0

ρinj,? vinj,? dr = 2πηi,?κi,?

(
1√
r0

− 1√
r?

)
. (9)
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In this case,r0 is the radius of the center of the innermost grid
element (thex2b(3) value in the ZEUS code staggered mesh)
and is therefore biased by the numerical resolution.

This is motivated partly by numerical reasons and partly by
the fact thatstellar windsare indeed observed. Concerning the
first point, the initial setup of a force-free magnetosphere will
be distorted within the very first evolutionary steps giving rise
to Lorentz forces. These forces disturb the initialhydrostatic
equilibrium resulting in a mass outflow from the regions above
the star. As a consequence, this part of the magnetosphere will
be depleted of matter, if no additional mass inflow from the star
is present. The small density implies a strong decrease in the
numerical time step discontinuing the simulation.

On the other hand, an additional mass flow from the stellar
surface is not unlikely. Stellar winds are common among active
stars, most probably being present also in the systems inves-
tigated in this paper. Yet, it is not known whether stellar jets
originate as disk winds (Pudritz & Norman 1983) or as a stellar
wind (Fendt et al. 1995). Variations of the ‘standard’ protostel-
lar MHD jet model usually deal with a two-component outflow
(Camenzind 1990; Shu et al. 1994). Model calculations of the
observed emission line regions also indicate a two-component
structure (Kwan & Tademaru 1995). Therefore, the stellar wind
boundary condition seems to be reasonable.

The ratio of the mass flow rates in the two outflow compo-
nents will definitely influence the jet structure. Therefore, we
have chosen different values for that ratio in our simulations
(Table 1). Long-term evolution runs over several hundreds of
rotational periods we have only obtained considering a rather
strong stellar wind flow which stabilizes the region close to the
rotational axis. Since the velocity and density profiles decrease
rather fast along the disk, the contribution tȯMdisk from radii
larger thanrout is negligible.

The electro-motive force boundary condition along the in-
flow axis is calculated directly from the prescribed velocity and
magnetic field distribution,E(r) = v(r) × B(r). Note that
magnetic field and velocity have to be taken properly from the
staggered mesh points in order to giveE(r) as anedge-centered
property. In the case of a stellar rotation,E /= 0 for r < r?.

3.3. Numerical tests

Before applying the ZEUS-3D code to our model we performed
various test simulations, in particular a recalculation the OP97
2D jet simulations (see Appendix). Our choice of initial density
distribution is stable with very good accuracy. Following OP97
this was tested by a run without the inflow boundary condi-
tions and magnetic field. Another signature of our proper initial
magnetohydrostatic condition is the stability of the hydrostatic
initial condition during the simulation itself.

Force-freeness of the magnetic field distribution can be
tested by calculating thej(r, z) ∼ ∇ × B current distribu-
tion which ideally should vanish as a consequence of the initial
condition applied. Force-freeness can not fully be satisfied when
transforming the finite element solution to the ZEUS code initial
condition, however, an error of0.01 % is acceptable in order to

Table 1. The table shows the parameter set varying for the four sim-
ulation runs S2, S4, L3, L5. Simulation L1 is from FE99. All the
other parameters remain the same (βi = 1.0, βT = 0.03, δi = 100,
µi = −1.0, r? = 0.5).

κi,? κi,D ηi,? ηi,D Ω? ṀD/Ṁ?

L1 – 10−3 – 100 – –

S2 10−6 10−3 103 1 1 0.5

S4 10−4 10−3 103 103 1 2.8
L3 10−4 10−3 200 200 1 1.8
L5∗ 10−4 10−3 103 100 1 0.2
∗ Disk injection velocity profile is∼ v2

K(r)

avoid artificial effects during the first time steps until the field
distribution has evolved from its initial state.

The stability of our initial condition is demonstrated in
Fig. A.1 showing an overlay of several initial time steps of an
example simulation without a stellar rotation presented in FE99.
The density and field distribution in the yet undisturbed regions
perfectly match during the first decades of evolution (t < 75).

4. Results and discussion

In the following we discuss the results of four example simula-
tions denoted by S2, S4, L3, L5 (see Table 1). All the simulations
presented in this paper consider a rotating star at the center. The
stellar rotational period is chosen asΩ? = (vK,i/Ri) = 1, with
a magnetospheric co-rotation radius located at the inner disk
radius. The evolution of a non-rotating central star is discussed
in FE99, although it was not possible to perform the simulation
as long as the examples presented here.

As a general behavior, the initial dipole type structure of
the magnetic field disappears on spatial scales larger than the
inner disk radius and a two component wind structure – a disk
wind and a stellar wind – evolves. Our main result is the finding
of a quasi-stationaryfinal state of a spherically radial mass
outflow evolving from the initial dipole type magnetic field on
the very extended time evolution. For the boundary conditions
applied the calculated flow structure show only few indication
for collimation.

The general features in the evolution of the system are inde-
pendent from a variation of the field strength. For strong fields,
the evolution is faster. Thus, for simulations which are limited in
time due to numerical problems, a decrease in the field strength
would not help. Although the numerical life time of the simu-
lation would be accordingly longer, the result for the final time
step will be the same.

4.1. Four simulations of the long-term magnetospheric
evolution – an overview

The four example simulations basically differ in the mass flow
rates from disk and star and the size of the physical domain in-
vestigated (Table 1). All other parameters,βi = 1.0, δi = 100,
µ = −1.0, r? = 0.5, γ = 5/3, and the numerical mesh of
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Fig. 2. Simulation S2 in a box of20 × 20 ri. Shown are density (grey scale) and poloidal field lines (contour lines) fort =
0, 10, 20, 30, 50, 100, 200, 300, 500, 1000, 2500 (from left to right and top to bottom). The density at the inner disk radius isρi = 1.0.
The legend shows the density limits used for the color coding (which itself uses the inverse density profile). The stellar radius isr? = 0.5 ri.

Fig. 3.Simulation S4 in a box of10× 10 ri. Density and poloidal field lines. Notation equivalent to Fig. 2. Time stepst = 0, 10, 40, 400, 600ti.

250 × 250 grid elements remain the same. The first simulation
(solution S2) considers a rectangular box of physical size of
20x20 inner disk radii (Fig. 2, Fig. 5, Fig. 7). The stellar wind
mass flow rate is comparatively large,Ṁ?/ṀD = 2. The stel-
lar wind injection velocity is very low in order to not disturb

a possible weak wind solution already by the boundary con-
dition. The disk wind boundary condition is the same as in
OP97 and FE99. Due to the relatively large physical size of
the computational domain the stability of the initial condition
can be observed for several decades of rotational periods. The
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Fig. 4. High resolution simulation L3 in a box of5 × 5 ri. AboveDensity and poloidal field lines. Notation equivalent to Fig. 2.Below
Contour plots of the toroidal magnetic field strength. The toroidal field is positive (negative) outside (inside) the neutral line. Time steps are
t = 0, 10, 20, 80, 160 (from left to right).

torsional Alfvén waves leave the grid after aboutt = 40. The
second simulation (solutionS4) considers a rectangular box of
physical size of 10x10 inner disk radii (Fig. 3, Fig. 5, Fig. 7).
Now the total mass flow is dominated by the disk wind. This
choice of parameters can be directly seen from the simulation
by comparing the size of axial flow and the ‘bubble’ evolving
from the disk flow. Clearly, the disk flow is more prominent. The
third (solutionL3) considers a rectangular box of physical size
of only 5x5 inner disk radii (Fig. 4, Fig. 6). Similar to solution
S4, the total mass flow is dominated by the disk wind. This high
resolution simulation zooms into the innermost region around
the star. In particular, the neutral line is clearly resolved. We
finally discuss another example (L5) in which the stellar wind
is dominating the disk wind. This simulation perfectly evolves
into final stationary state. For L5 the velocity injection profile
is chosen differently from the examples discussed above in or-
der to increase the disk flow magnetization. All parameter runs
show a similar gross behavior indicating that our run S2 with
lowest resolution is sufficient in order to investigate the main
features of the flow evolution. In general, a high stellar wind
mass loss rate will stabilize the outflow.

4.2. The first evolutionary stages

During the first stages of the long-term evolution the magneto-
spheric structure is characterized by the following main features:
Thewinding-upof the dipolar poloidal field, the formation of a
neutral field line, a transient axial jetfeature, a two component
outflow consisting of astellar windand adisk wind.

4.2.1. Winding-up of the poloidal field

The winding-up process of poloidal magnetic field due to differ-
ential rotation between star and disk and the static initial corona
induces a toroidal field (Fig. 4) with a positive sign along field
lines located outside the slowly emerging neutral field line. In-
side the neutral field lineBφ has negative sign. This is in differ-
ence to OP97 and other simulations assuming a monotoniccally
distributed initial field.

Torsional Alfvén waves propagate outwards distorting the
initial field structure. After aboutt = 40 these waves reach the
outer boundary (Fig. 2). The region beyond the wave front re-
mains completely undisturbed. The region between the Alfvén
wave front and the flow bow shock is adjusted to a new equi-
librium and also remains in equilibrium until it is reached by
the generated outflow ( See the density contour lines close to
the disk in Fig. A2. The grey scale density plots cannot show
this feature). Within this Alfv́en wave front the magnetic field
becomes distorted from its initial force-free state (compare the
field line structure of the closed loops in Fig. 2 fort ≤ 30).
The distortion of the force-free field due to propagating Alfvén
waves results in Lorentz forces initiating an axial ‘jet’ feature
close to the axis. As we will see later, this axial jet, however, is
a transient feature.

The winding-up of poloidal magnetic field seems to be sim-
ilar to the effect proposed by Lovelace et al. (1995). However,
in our case, this process is initiated by the differential rotation
between star and hydrostatic corona. Only later, the wound-up
toroidal field is maintained by both, differential rotation between
star and disk and the inertia of the outflow.
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4.2.2. A neutral field line dividing stellar and disk field

The wound-up magnetic field lines stretch forming a neutral
field line of vanishing field strength. The matter around this
field line is distributed in a layer of low density (Fig. 4). Around
this layer an expanding ‘bubble’ is formed due to the additional
magnetic pressure due to toroidal fields which disrupts the initial
dipolar field structure (Fig. 3). When the bubble has left the grid,
the field lines which are separated by the the neutral line remain
disconnected. This is due to the differential rotation between
star and disk. The actual appearance of the axial jet and the low
density bubble depends mainly on the mass flow rates from disk
and star. The bubble is most prominent in simulation S4 where
the disk mass flow rate is largest.

4.2.3. A transient axial jet feature

In the beginning of the simulations a jet feature evolves along
the rotational axis. Its pattern velocity is about0.2 vK,i (S2)
or 0.3 vK,i (L3). Such an axial jet is known as a characteristic
result of MHD simulations performed in the recent literature
(Hayashi et al. 1996; Goodson et al. 1997, 1999; Goodson &
Winglee 1999; Kudoh et al. 1998). It is often claimed that this
feature is connected to the real (protostellar) jets observed on
the AU-scale. Apart from the fact that the spatial dimension and
velocity do not fit with the observations, we will see that the
formation of this feature is a result of the adjustment process of
the initially hydrostatic state to a new dynamic equilibrium and
will disappear on the long-term evolution.

Winding-up of the initially force-free magnetic field by dif-
ferential rotation during the first time steps immediately leads
to a not force-free field configuration. The resulting magnetic
forces accelerate the material of the initially hydrostatic corona
forming an axial jet. This process works as long as initially dis-
tributed coronal matter is present at this location. As time devel-
ops the jet feature becomes weaker and weaker. Disk wind and
the stellar wind become the dominant flow pattern and the axial
jet dies out after aboutt > 100 (Fig. 2). In comparison, in sim-
ulation L1 (FE99), where a stellar wind is absent, the coronal
density along the axis decreases until it is below the numerically
critical value and the simulation stops.

The intermittent character of the axial jet flow is best seen
in the velocity structure (Fig. 5). The velocity vectors of the
axial flow are largest during the first time steps. However, after
sweeping-out the initial corona, a weak wind flow from the
stellar surface succeeds the jet.

4.2.4. The disk wind

The disk wind accelerates within tens of grid elements from
its low injection speed to fractions of the Keplerian speed. The
acceleration mechanism is mainly due to the centrifugal force
on the disk matter reaching the non-rotating corona, where the
gravitational force is balanced by the pressure and not by a cen-
trifugal force as in the disk. The flow is already super Alfvénic
due to the weak dipolar field strength in the disk. Thus, magneto-

centrifugal acceleration along the inclined dipole type field lines
of the initial magnetic field isnot the acceleration mechanism.
More above the disk also the Lorentz force along the field con-
tributes to the acceleration (see Sect. 4.4.3.). The inclination
angle between field lines (equivalent to the outflow direction)
and the disk depends on the mass flow rate. For the parameter
range investigated we see no indication for a disk wind collima-
tion because the Lorentz force points away from the axis (see
below).

4.2.5. The stellar wind

The rotating stellar magnetosphere generates a stellar wind. Due
to the strong magnetic field close to the star the flow starts
sub-Alfvénic. It is initially magneto-centrifugally driven with a
roughly spherical Alfv́en surface located at1.5ri (L3) or closer
(S2, S4, L5) to the stellar surface. The most dominant flow
pattern of the stellar wind is in the part with the widest open-
ing angle (Fig. 5). Although the Lorentz force points radially
inwards no collimation is observed because of a strong pres-
sure gradient. Depending on the mass loss rates the stellar wind
evolves faster or slower than the disk wind (Fig. 5).

4.3. The long-term evolution

The long-term evolution of the flows depends critically on the
choice of inflow boundary conditions into the corona. The to-
tal mass flow rate into the corona determines how fast the flow
will establish a (quasi-)stationary state. The stellar wind - disk
wind mass flow ratio determines (i) the opening angle of the
outflow, (ii) the opening angle of the cone of the neutral line
which is the boundary layer between the stellar wind and the
disk wind, and (iii) the stationarity of the axial flow (see Ta-
ble 2). In general the outflow undergoes a highly time-variable
and turbulent evolution. However, after relaxation of the MHD
system from the initial magneto hydrostatic state into the new
dynamicalequilibrium, we observe an outflow from disk and
star distributed smoothly over the whole hemisphere and mov-
ing predominantly in spherically radial direction.

In simulation S2 the flow structure is highly time-variable
over many hundreds of periods. The intermediate region be-
tween the two components – stellar wind and disk wind – is
characterized by turbulent motions of very low velocity. But
also the disk wind seems to be unstable. During the intermedi-
ate time evolution only the flow pattern along thez-axis relaxes.
Compared to the evolution of the stellar wind, the disk wind
needs definitely more time to establish a stationary structure.
However, after all these turbulent evolutionary steps, with few
changes in the general appearance of the flow pattern over hun-
dreds of rotational periods,after about 2000–2500 rotations a
quasi-stationary outflow has been establishedover the whole
grid (Fig. 2). Only the region around the neutral line dividing
stellar and disk wind and the region along thez-axis is sub-
ject to small scale instabilities. Interestingly, the flow along the
symmetry axis which shows a stable behavior during the in-
termediate time evolution, finally becomes unstable. A conical
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Fig. 5.Evolution of the poloidal velocity in the simulations S2 (left) and
S4 (right). Time steps (fromtoptobottom). t = 10, 20, 100, 500, 2500
(S2) andt = 5, 10, 20, 100, 600 (S4). Vectors scale only within each
frame.

flow consistent of a knotty structure evolves with a full opening
angle of30◦. At this time the opening angle of the neutral layer

Fig. 6. Highly time-resolved evolution of simulation L3. Poloidal
magnetic field lines (left) and density contours (right). Time steps
t = 200, 201, 202, 203, 204 (from top to bottom).

cone dividing stellar wind from disk wind has been increased
compared to the intermediate time steps. This de-collimation of
the outer flow causes a de-stabilization of the axial flow. In this
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sense, the stellar wind flow is stabilized by the ambient (disk
wind) pressure. The formation of knots and instabilities along
the symmetry axis depends on the stellar wind mass flow rate
(see below). The full opening angle of ‘knot flow‘ is about 30◦to
50◦. We emphasize that due to the knot size and knot spacing,
these features are not correlated to the observed knots of proto-
stellar jets. It seems more related to QPO’s observed in X-ray
binaries. The knot velocity is about 10% of the Keplerian speed
at the disk inner radius.

In simulation S4 the quasi-stationary state is reached earlier
after about 200 inner disk rotations according to the smaller box
size (Fig. 3). The region around the neutral field line is resolved
better. We observe the formation of a wavy structure with an
amplitude of0.5 ri and a wavelength ofri. These ‘waves’ travel
outwards and leave the grid. The wave generation is somewhat
arbitrary in time. Whereas the region enclosing the neutral layer
first seems to have reached a steady state at aboutt = 100, at
t = 600 the wave structure evolves again. This is related to
the evolution along the symmetry axis. Here, in the contrary, at
t = 100 the simulation still showed a wavy pattern, whereas at
t = 600 a smooth steady state has evolved. The flow structure
at t = 400 seems to be completely smooth and stable. The
long-term evolution shows that this stability is in fact a transient
feature as far as the neutral layer region is concerned (see below).

Simulation L3 shows that the neutral line has a complex
structure. Two current sheaths emerge, one from the stellar ra-
dius, the other from the inner disk radius (Fig. 4). These are
indicated by the density and poloidal magnetic field ‘islands’
emitted along this field line (Fig. 4, time step 80 and 160). Fig. 6
shows the evolution of the solution L3 with a high time reso-
lution ∆t = 1 after t = 200. At this time the simulation has
not yet evolved into a quasi-stationary state. It can be seen how
plasmoids are formed and move outwards along the neutral line.
Most probably, this would be a region of on-going reconnection
processes. A similar behavior was found first by Hayashi et
al. (1996) including also magnetic diffusion in their treatment.
However, the simulation lasted only for one inner disk rota-
tional period (with a star at rest). Our long-term simulations
show that the formation of such plasmoids will continue. We do
not believe that the lack of diffusion in our treatment is a serious
problem concerning this point because the time scale given by
the plasmoid velocity is smaller than the time scale given by
magnetic diffusion.

Fig. 5 shows the poloidal velocity vectors of the simulations
S2 and S4 at selected time steps (compare to Figs. 3 and 4).
The general feature is that the axial jet feature seen in the first
time steps disappears. The outflow exhibits a two-component
structure. Depending on the inflow density profile the ‘asymp-
totic’ (i.e. close to the grid boundaries) velocity profile changes
slightly. High velocities (larger thanvK,i) are only observed far
from the axis. For solution S2 we obtain an asymptotic speed of
1.5 vK,i for both components with a velocity profile decreasing
across the neutral field line. The flow velocity along the axis is
0.2 vK,i. For solution S4 the asymptotic speed of1.5 vK,i for the
stellar wind component and with a velocity profile increasing
across the neutral field line2 vK,i. The latter is due to the low

density at this point. The disk wind has not yet accelerated to
high velocities. This is due to the wide opening angle of the stel-
lar wind cone and the small physical grid size. The flow velocity
along the axis about0.5 vK,i. For solution L5 the ‘asymptotic’
speed of the stellar wind is low and≤ vK,i. The velocity profile
is in general similar to that of solution S4.

The duration of our simulation runs (L3, L5, S2, S4) is not
limited by numerical reasons. They have been terminated when
the flow evolution has reached aquasistationary state. For sim-
ulation S2 this means that after about 2500 rotations the main
pattern in the flow evolution does not change anymore. In partic-
ular, the outer part of the wind flow does not vary in time, while
knots are still generated along the axis. For simulation S4, after
400 time steps most of the flow region is in a stationary state.
Only the wavy structure along the neutral field line, which is
also connected to the formation of knots, continuously evolves
and disappears. This structure isnot a dangerous instability for
the outflow (see also Fig. 7). For solution L3, the simulation has
been terminated when parts of the flow (the outer disk wind
flow) had reached a stationary state. The inner solution close
to the axis does not reach such a stationary state. In this case,
our intention is to investigate the neutral line with better spatial
resolution. Simulation L5 was terminated some time after the
stationary state has been reached for the whole outflow.

4.4. A stationary final state: a radial outflow evolved
from an initially dipolar magnetosphere

The main result of our simulations is that the initial dipolar
magnetosphere evolves into a spherically radial outflow con-
sisting of two components. Depending on the inflow parameters
(mass flow rates, magnetic field strength) our simulations reach
a quasi-stationary state. A weak non-stationarity may be present
along the neutral field line, which is dividing the stellar wind
from the disk wind. Also, for a weak stellar wind flow a turbu-
lent flow pattern may evolve along the axis. Such outflows we
call quasi-stationary, if the main flow pattern does not change
in time. The disk wind and the outer cone of the stellar wind
reach a kind of stationary state, where the density profile and
field line structure remain almost constant in time.

For the S2 solution the half opening angle of stellar wind
cone is about55◦. This angle remarkably changes during the
flow evolution. During the initial evolutionary decades the tur-
bulent region between the stellar wind and the disk wind colli-
mated the stellar wind to a narrower cone. Clearly, such a neutral
line is a rather unstable situation. Reconnection will most prob-
ably occur which we cannot properly treat with our ideal MHD
approach. Increasing the numerical resolution (simulation L3)
shows the emission of plasmoids along the neutral line (see be-
low). Fig. 7 shows an overlay of three time steps of solution S2 at
t = 2600, 2650, 2700 clearly indicating the stationary charac-
ter of disk wind and most parts of the stellar wind together with
the non-stationary axial flow and the small-scale wave pattern
along the neutral field line.

In the case of solution S4 the quasi-stationary state is reached
earlier after aboutt = 400 (Fig. 3). The comparatively large
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Fig. 7. Evolution of simulation S2 (up-
per) and S4 (lower) on the very long
time scale. Shown are overlays of the
poloidal field lines (left) and density con-
tours (right). Three time steps are super-
posed,τ = 2600, 2650, 2700 (S2) and
τ = 575, 600, 625 (S4).

Table 2.Terminal poloidal velocity of the wind components from the
disk vmax

p,disk, from the starvmax
p,star, along the axisvp,axial, and from

the gapvmax
p,gap, time when stationary state has been reachedts, and

the inclination angle between disk and neutral layerα for the different
simulations.

vmax
p,disk vmax

p,star vp,axial vmax
p,gap ts α

L1 1.0 ? ? ? ? ?

S2 1.0 1.5 0.2 1.5 2500 35◦

S4 1.5 2.1 0.6 1.5 400 60◦

L3 1.0 1.3 0.2 1.7 ? 50◦

L5 0.9 1.0 0.2 3.0 150 35◦

stellar wind mass flow rate stabilizes the flow along the axis
and no turbulent pattern evolves. On the other hand, due to
the low disk wind mass flow rate the half opening angle of
the neutral line cone is smaller. It is35◦ compared to55◦ for
solution S2. Again, Fig. 7 demonstrates the stationarity of the
simulation with an overlay of three time stepst = 575, 600, 625.
In comparison with solution S2 now the whole flow pattern is
stationary. In particular the region along the axis remains stable.
The only time-dependent feature is the neutral line exhibiting a
slowly variable wave structure.

Increasing (i) the total mass flow rate and (ii) also the stel-
lar wind to disk wind mass flow ratio will result in an almost
perfectly stationary flow (solution L5; see below). Having a sim-
ilar mass flow ratio, also the opening angle is similar to solution

S2. The stationarity of solution L5 will be investigated in more
detail below.

The blobs (or rather tori) generated in simulation S2 move
with pattern speed of about 0.1 the Keplerian speed atri. Their
size is about the inner disk radius but depends from the mass
flow ratio and the numerical resolution. We emphasize that due
to the knot size and time scale of knot formation in our simula-
tion, their connection with the jet knots observed in protostellar
jets on the large scale distance of tens of AU is questionable.
This statement also holds for comparable structures observed in
similar simulations presented in the literature (Ouyed & Pudritz
1997, Goodson et al. 1997, 1999; Goodson & Winglee 1999).

On the other hand, from the unstable character of the axial
flow together with the lack of collimation we may conclude that
the model configuration investigated in our paper is unlikely to
produce collimated jets. Furthermore, we hypothesize that this
behavior may be the one of the reasons why highly magnetized
star-disk systems – containing magnetic white dwarfs or neutron
stars – do not have jets.

In general, the maximum terminal poloidal velocity is of
the order of the Keplerian speed at the disk inner radius (see
Table 2). The speed is highest along the field lines from the gap
due to the low flow density. The axial flow speed is low. Its
mass density depends on the injection parameters and could be
relatively large (S4, L5) or low (L3, S2), but is generally less than
10% of the density at the inner disk radius. The maximum stellar
wind speed is reached along field lines with the largest opening
angle and is above the Keplerian speed at the disk inner radius
(Fig. 5). The same holds for the maximum disk wind speed.
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However, in this case the maximum speed is reached along the
field lines with a foot point at small radius. This is partly due
to length of the acceleration distance, partly due to the rapid
rotation of the disk material at small radii.

4.4.1. The question of dipolar accretion

In all our different simulation runs we never observe a signa-
ture of dipolar accretion as it is would be expected from models
of young stellar jet formation (e.g. Camenzind 1990, Shu et al.
1994). Instead, a magnetically driven wind develops from the
stellar surface. Note that this strong stellar outflow ispermitted
but not prescribedby the inflow boundary condition along the
star, since the inflow velocity is very low. We emphasize that
even in our simulation L1 for a non rotating star (Fendt & Elstner
1999), where no stellar wind can develop, no dipolar accretion
occurred. Therefore, we believe that it is not the boundary con-
dition which prevails the matter from falling from the disk to
the star. In fact, dipolar accretion has never been observed in
the literature of numerical MHD simulations considering the
star-disk interaction (e.g. Hayashi et al. 1996, Goodson et al.
1997, Miller & Stone 1997), but this might also be caused by
the comparatively short time evolution in those simulations.

We think that the main reason that hinders the dipolar ac-
cretion is the choice of the co-rotation radius equal to the inner
disk radius. Only disk material orbiting inside the co-rotation
radius could be accreted along the field lines.

It is clear that such an accretion process along converging
field lines is difficult to treat numerically. Certainly, this impor-
tant topic has to be investigated more deeply. We defer this to a
future paper.

4.4.2. The question of collimation

The quasi-stationary two-component outflow obtained in our
simulations shows almostno indication for collimation. This
seems to be in contradiction to the literature (OP97, Romanova
et al. 1997). However, the non-collimation of the flows can
be explained following the analysis of Heyvaerts & Norman
(1989). They have shown that only jets carrying a net poloidal
current will collimate to a cylindrical shape. However, in our
case we have an initially dipole type magnetosphere and the
final state of a spherically radial outflow enclosing a neutral
line with a poloidal magnetic field reversal. The toroidal field
reversal also implies a reversal of the poloidal current density
with only a weaknetpoloidal current. In such a configuration, a
self-collimation of the flow as obtained by OP97 or Romanova
et al. (1997) cannot be achieved. In both of these publications a
net poloidal current flows along themonotoniccallydistributed
field lines.

One might expect to obtain the OP97 results of a collimat-
ing jet as a limiting case in the present simulations, just due to
the fact that the inflow boundary condition along the disk is the
same as in their setup. However, we think that this is not possible
since the initial field structure and, thus, the flux distribution in
the lower boundary is completely different. A combination of

the OP97 field distribution together with a central dipole might
do the job. Still, the problem would be the very different field
strength of both components, since the dipolar field will de-
crease by a factor of 10–50 towards the inner disk radius. Thus,
the stellar field is always dominating the numerical simulation.
We defer the treatment of such a completely new numerical
setup to a future paper.

Apart from this argument concerning a flow self-collimation
we mention the hypothesis raised by Spruit et al. (1997) claiming
that a “poloidal collimation” is responsible for the jet structure.
Such a poloidal collimation would rely on the magnetic pressure
onto the jet flow from the disk magnetic fieldoutsidethe jet.
Their condition for poloidal collimation, a disk magnetic field
distributionBP ∼ r−q with q ≤ 1.3, is clearly not satisfied
in our case of a dipole type field distribution along the disk
(which is conserved from the initial condition because of flux
conservation). For a dynamo generated field in the disk this
condition is satisfied (R̈udiger et al. 1995). This holds also for
the disk field distribution of OP97. In this sense, our simulations
are consistent with Spruit et al. (1997), although we do not
argue that our results support their hypothesis that “poloidal
collimation” is the main process to produce jets.

We further note the results of Ustyugova et al. (1999) who
claim that the shape of the numerical box influences the degree
of collimation. A rectangular box extended along the symme-
try axis would lead to an artificial flow collimation, whereas
a quadratic box simulation (as used in our simulation) did not
result in a collimated structure. A recent study by Okamoto
(1999) also has raised strong arguments against a MHD self-
collimation. In particular, he claims thatelectric current-closure
will inhibit a self-collimation, a point which is not always con-
sidered in MHD jet models. Current-closure, however, is satis-
fied in our model due to the reversed dipole type initial field.

Nevertheless, strongly collimated astrophysical jet flows are
observed. For the moment we speculate that an increase of the
disk field strengthwould probably enhance the degree of col-
limation. So far we doubt whether an increase of the size of
the computational box will be sufficient, because in our model
the field distribution and mass flow rate decrease strongly with
radius.

4.4.3. The final steady state - application of stationary MHD

It is well known from standard MHD theory that an axisymmet-
ric stationary MHD flow is defined by five integrals of motion
along the magnetic flux functionΨ(r, z) ≡ 2π

∫
BP · dA. Sta-

tionarity implies the following conserved quantities along the
flux surfaceΨ: The mass flow rate per flux surface,η(Ψ) ≡
sign(vP · BP) ρvP/BP, the iso-rotation parameterΩF(Ψ) ≡
(vφ − ηBφ/ρ)/r, the total angular momentum density per flux
surface,L(Ψ) ≡ r(vφ − Bφ/η), and the total energy density
E(Ψ). Therefore, for a time-dependent axisymmetric simula-
tion evolving into a stationary state, these functions must be
constant along the field lines. Fig. 8 demonstrates such a behav-
ior for the example solution L5 for the quantitiesη(Ψ),ΩF(Ψ)
andL(Ψ). An overlay of each of these functions with the con-
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Fig. 8. Properties of the stationary final state for the example solution
L5. The time step ist = 200 when a stationary state has been reached.
Conserved quantities of stationary MHD: magnetic flux functionΨ
(poloidal field lines), mass flux per flux surfaceη(r, z) ≡ η(Ψ), the iso-
rotation parameterΩF (r, z) ≡ ΩF (Ψ), the total angular momentum
L(r, z) ≡ L(Ψ). Density distributionρ(r, z), poloidal electric current
jp(r, z), angular velocityΩ(r, z), toroidal magnetic field strengthBφ

(positive (negative) values outside (inside) the neutral layer), vectors of
poloidal Lorentz forceFL,p(r, z)and Lorentz force component parallel
to the poloidal field linesFL,||(r, z). (Vectors are normalized to unity).

tour plot of the field linesΨ(r, z) would show that the contours
are perfectly ‘parallel’. This clearly proves the stationary char-
acter of the final state of simulation L5. For comparison, Fig. 8
shows the distribution of the poloidal electric current density, the
toroidal magnetic field, and the angular velocity of the plasma.

For a stationary solution it is interesting to investigate the
Lorentz force projected parallel and perpendicular to the field
lines. The poloidal Lorentz force vectors (Fig. 8) show that in
the region of the highest poloidal velocities, the Lorentz force
is more or less aligned with the field lines. In the region of low
poloidal velocity the main component of the Lorentz force is per-
pendicular to the field lines. As discussed above (Sect. 4.4.2.)
the perpendicular component of the Lorentz force acts colli-
mating inside the neutral layer and de-collimating outside the
neutral layer.

Another interesting feature is thedirection of the parallel
component of the Lorentz force (see Fig. 8). Close to the disk
boundary there is a region where this component changes sign
and the Lorentz force is thereforedeceleratingthe matter1. This

1 In Fig. 8, this region is only one vector element wide. However, a
better resolution shows that this region extends to aboutz = 1 along
the outer disk

demonstrates that in the stationary final state the Lorentz force
is not the main driving mechanism of the disk material from the
disk into the corona. It is only at a larger height above the disk
that the parallel component of the Lorentz force accelerates the
plasma.

As a summary of this section we show in Fig. 9 the final
stationary state of the example solution L5 plotted for all four
hemispheres. This figure (and only this one) isrotated by90◦

with the z-axis in vertical direction. This gives a comparative
look how the simulation has evolved from the initial dipolar
structure to the spherically radial outflow final state.

5. Summary

We have performed numerical simulations of the evolution of a
stellar dipole type magnetosphere in interaction with a Keple-
rian accretion disk using the ideal MHD ZEUS-3D code in the
axisymmetry option. The simulations are lasting over hundreds
(or even thousands) of rotational periods of the inner disk. The
central star is rotating with a co-rotation radius chosen as the
disk inner radius. A smooth mass inflow is prescribed into the
corona which is initially in hydrostatic equilibrium. The initial
dipole type magnetic field distribution is force-free. The density
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Fig. 9. Density distribution and poloidal
magnetic field lines of simulation L5 for
initial time step (left) and for the final sta-
tionary state (right) plotted for all four
hemispheres.

and velocity profile as well as the magnetic field profile along the
inflow boundary has not been changed during the computation.

Our main results are summarized as follows.

(1) The initial dipolar field breaks up by a combined action of
the winding-up process due to differential rotation between
the star and disk and the wind mass loss from star and disk.
‘Stellar’ and ‘disk’ field lines remain disconnected after the
disrupting ‘bubble’ has left the computational grid.

(2) A two-component MHD wind leaves both the disk and the
rotating star moving away in radial direction. The two com-
ponents are divided by a neutral field line. The magnetic
field direction (both, poloidal and toroidal) is positive out-
side the neutral line and negative inside. This field reversal
is a characteristic difference from jet simulations of OP97
and Romanova et al. 1997.

(3) Mainly dependent on the wind mass flow rates a stationary
or quasi-stationary state evolves after hundreds or thousands
of inner disk rotations. The disk wind always evolves into a
stationary state. A high stellar wind mass loss rate supports
‘complete stationarity’, i.e. stationarity also for the stellar
wind component.

(4) The initial driving mechanism of the disk wind are centrifu-
gal forces of the rotation matter leaving the disk in vertical
direction. At larger heights above the disk, this matter be-
comes magnetically accelerated. The maximum flow speed
is about the Keplerian velocity at the inner disk radius. The
hight speed is observed in the outer layers of the stellar wind
and in the upper layers of the disk wind.

(5) Depending on the stellar wind mass flow rate, knots may
form along the symmetry axis. The size of these knots is
about the inner disk radius, but also depends weakly on the
grid resolution. The knot pattern velocity is about 10% of the
Keplerian speed at the disk inner radius. The full opening
angle of ‘knot flow‘ is about 30◦to 50◦. Concerning the
knot’s size and spacing, it is unlikely that these features are
correlated to the observed knots in protostellar jets, but may
be connected to QPO’s in X-ray binaries.

(6) There is almost no indication for a flow self-collimation.
The flow structure remains more or less conical. We believe
that the main reason for the lack of collimation is the field
reversal between stellar and disk wind also implying a re-
versal in the poloidal current density. Thus, the net poloidal
current will be weak. This is a major difference to OP97 and
Romanova et al. 1997. However, this result could also inter-
preted in terms of a missing poloidal collimation mechanism
proposed by Spruit et al. (1997).

(7) No signature of an accretion stream along a dipolar field
channel towards stellar surface is observed. This may be due
to the fact that the dipolar field has completely disappeared
or due to our choice of the co-rotation radius.

Our results are in general applicable to any star-disk system
which is coupled by magnetic fields. One critical aspect may be
that we assume a fixed boundary condition for the magnetic field
in the disk. However, if the field structure in the corona changes
as drastically as we have shown, this might influence also the
magnetic flux distribution in the disk. But then, for a proper time-
dependent disk boundary condition, the disk structure should
be treated in a more detailed manner. This however, is beyond
the scope of the present paper. From our results we like to put
forward the following main hypotheses.

(8) Star-disk systems are supposed to have a two component
wind/jet structure.

(9) A strong stellar field (equivalent to a low stellar mass loss
rate) leads to instabilities along the rotational axis. A strong
and stable jet is unlikely in such objects. This may be one
reason why highly magnetized stars with disks like neutron
stars or magnetic white dwarfs donothave jets. A disk field
generated by a turbulent dynamo could be a better candidate
for driving the jet.

(10) The current model of magnetized accretion in young stars
along dipolar field lines from disk to star have to be re-
considered. The magnetospheric structure often inferred
from stationary models (Camenzind 1990; Shu et al. 1994)
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Fig. A.1..Numerical test example. Re-calculation of the OP97 jet model. Fromleft to right: Poloidal magnetic field lines, density contours, and
poloidal velocity vectors att = 100, calculated withβi = 0.28. The location of the shock front is the same for all three plots (in difference to
OP97).

may completely change if the time-dependent evolution is
considered.
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Appendix A: numerical tests

Here, we will discuss numerical test solutions. The first test
example is the recalculation of the OP97 solution of an axisym-
metric jet propagating from a rotating Keplerian disk. Such a
scenario is similar to the one treated in the present paper, how-
ever, with a parabolic-type initial potential field configuration
and without a central rotating star. Fig. A.1 shows the result of
our simulation att = 100. At this time the jet bow shock has
traveled 52 units along the z-axis. In the long-term evolution,
the location of the magneto-sonic surfaces agrees with the re-
sults of OP97. However, as a (minor) difference we note that
for our test simulations fitting to the OP97 results the value
for the plasma-beta is smaller by about a factor of

√
4π com-

pared to OP97. We use the original ZEUS code normalized with
Pgas ∼ B2/2 (instead of the usualPgas ∼ B2/8π) (user man-
ual). Therefore, in order to match the definition of the plasma
beta asβi = 8πPi/B2

i , one must define the field strength prop-
erly (this gives a factor of

√
4π in the field strength). Thus, the

difference in theβi may be due to a different normalization ap-
plied in OP97 (Ouyed 2000, private communication). We have
deduced this factor bycomparing both simulations. Addition-
ally, it becomes understandable with the normalization of the
ZEUS code magnetic field. Forβi = 1.0 in our simulations the
jet solution is appropriate slower, reaching onlyz = 42 after
100 time steps2. Concluding that our recalculation of the OP97

2 This is, by the way, remarkably similar to the location of the shock
front in the velocity plot (Fig. 6) in OP97, which is different from the
one in their density plot (Fig. 3). However, we note that a ‘wrong’
plasma-beta must be visible in the location of the magneto-sonic sur-
faces. This is not the case. Therefore, we conclude the differences in
βi are just due to a different field normalization in the actual codes

Fig. A.2. Numerical test example. Solution L1 without stellar rotation.
Overlay of a couple of initial time steps (att = 0, 10, 20, 30, 40, 50).
Poloidal magnetic field lines (top) and density contours (bottom). Thick
lines indicate the initial distributions. The solutions perfectly match in
the regions not yet disturbed by the inflow boundary condition. The
long term evolution of this solution is shown in FE99.

model was successful, we note however the tiny ‘wave’ pattern
of our density contours (Fig. A.1). This wave pattern is present
only in the hydrodynamic variables, but not in the magnetic
field. These density variations are less then 10%.
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As a second example for a numerical test, we show an over-
lay of the density contours and poloidal field lines of six initial
time steps of the simulation L1,before the torsional Alfv́en
wave has passed the outer (upper) grid boundary. It can be seen
that upstream of the bow shock front the magneto-hydrostatic
initial condition remains in perfect equilibrium. Thus, force-
freeness of the initial magnetic field as well as the hydrostatic
equilibrium is satisfied with good accuracy. Without the inflow
boundary condition atz = 0 the initial equilibrium will remain
unchanged.
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1 Universität Potsdam, Institut für Physik, Am Neuen Palais 10, 14469 Potsdam, Germany
2 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany

e-mail: cfendt@aip.de;cemeljic@aip.de

Received 24 May 2002 / Accepted 24 September 2002

Abstract. Protostellar jets most probably originate in turbulent accretion disks surrounding young stellar objects. We investigate
the evolution of a disk wind into a collimated jet under the influence of magnetic diffusivity, assuming that the turbulent pattern
in the disk will also enter the disk corona and the jet. Using the ZEUS-3D code in the axisymmetry option we solve the time-
dependent resistive MHD equations for a model setup of a central star surrounded by an accretion disk. The disk is taken as a
time-independent boundary condition for the mass flow rate and the magnetic flux distribution. We derive analytical estimates
for the magnitude of magnetic diffusion in a protostellar jet connecting our results to earlier work in the limit of ideal MHD.
We find that the diffusive jets propagate slower into the ambient medium, most probably due to the lower mass flow rate in
the axial direction. Close to the star we find that a quasi stationary state evolves after several hundred (weak diffusion) or
thousand (strong diffusion) disk rotations. Magnetic diffusivity affects the protostellar jet structure as follows. The jet poloidal
magnetic field becomes de-collimated. The jet velocity increases with increasing diffusivity, while the degree of collimation
for the hydrodynamic flow remains more or less the same. We suggest that the mass flux is a proper tracer for the degree of jet
collimation and find indications of a critical value for the magnetic diffusivity above which the jet collimation is only weak. We
finally develop a self-consistent picture in which all these effects can be explained in the framework of the Lorentz force.

Key words. accretion, accretion disks – MHD – ISM: jets and outflows – stars: mass loss – stars: pre-main sequence –
galaxies: jets

1. Introduction

Observations of young stellar objects (YSOs) have revealed
two main features during the phase of star formation – the
presence of accretion disks and energetic outflows, often ob-
served as bipolar jets (Mundt et al. 1984; Lada 1985; Ray
et al. 1996). Images and spectra show that these flows are of
high-velocity ('300 km s−1) and well collimated (opening an-
gle <10◦ on scales of 1000 AU). The data also suggest that
the jet collimation must be achieved already close to the cen-
tral source, at distances ≤100 AU. The jet mass outflow rates
are ∼10−10−10−8 M�/yr and typically a factor 10–100 smaller
than the disk accretion rates.

Besides the special case of protostellar jets, all astrophysi-
cal jets detected so far seem to be attached to objects where an
accretion disk is indicated to be present. In particular, this holds
for jets observed in radio loud active galactic nuclei and quasars
(Bridle & Perley 1982), highly energetic galactic objects as Sco
X–1 (Padman et al. 1991), and microquasars (Mirabel et al.
1992).

Send offprint requests to: C. Fendt,
e-mail: cfendt@aip.de

Therefore, the similarities between jets from the differ-
ent sources imply that the basic mechanism for jet formation
should be the same. For protostellar jets, the observed mass
and momentum fluxes exclude the possibility of a thermally
or radiation pressure driven wind. The observed fluxes are
much higher than the protostar could provide (DeCampli 1981;
Königl 1986). The conclusion is that it is the magnetic field
which is responsible for protostellar jet formation – accelera-
tion and collimation of the initial stellar or disk wind (Pudritz
& Norman 1983; Camenzind 1990). This magnetic field can be
generated by some dynamo process either in the central young
star itself, or the surrounding accretion disk, or it could be pro-
vided by the interstellar medium as a “fossil” field. What kind
of mechanism turns the in-flowing matter of the accretion disk
into an outflow from the disk (or the star) is still not really
known, although it seems to be clear that magnetic fields play
a major role (Ferreira 1997).

Examples of time–dependent MHD simulations of the jet
formation include models of collimating disk winds, where this
disk is taken as a boundary condition for the outflow (Ouyed
& Pudritz 1997, hereafter OP97), models that consider the in-
teraction of a stellar dipolar magnetosphere with the accretion
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disk as well as the disk structure itself (Miller & Stone 1997), or
some combination of both approaches (Fendt & Elstner 1999,
2000, hereafter FE00).

In this paper, we are interested in a time–dependent simu-
lation of the resistive MHD equations for the corona above the
accretion disk around a young star. The underlying disk pro-
vides a fixed boundary. The presence of a large scale poloidal
magnetic field provided by the disk is assumed. After a brief
theoretical introduction in Sect. 2, we describe our model and
the numerical approach in Sect. 3, with emphasis on the effect
of magnetic diffusion. For the numerical approach, we intro-
duced magnetic diffusion in the ZEUS-3D MHD code. Tests of
our code are included in Appendix. The results for protostellar
jets are discussed in Sect. 4. We compare our diffusive MHD
simulations of jet formation with the non–diffusive case.

2. Magnetic jets from accretion disks

Despite a tremendous amount of work concerning the forma-
tion of magnetic jets (e.g. Blandford & Payne 1982; Pudritz
& Norman 1983; Lovelace et al.1987; Heyvaerts & Norman
1989; Pelletier & Pudritz 1992; Li et al. 1992; Contopoulos
1994; Fendt et al. 1995; Kudoh & Shibata 1997a, 1997b; Fendt
& Memola 2001) the mechanism which actually launches the
jet from the disk remains unclear. Most of the papers dealing
with the theory of magnetized accretion disks driving jets have
been following the principal approach of Blandford & Payne
assuming stationarity, axisymmetry and self-similarity (Königl
1989; Wardle & Königl 1993; Li 1995; Ferreira 1997). After
all, it is clear now that the launching of a jet from the accreting
disk can be described as a purely magnetic process. Ferreira
(1997) has derived trans–Alfvénic, stationary self-similar jet
solutions with a smooth transition from a resistive disk, where
the Lorentz forces are actually responsible for lifting the
accreting gas in vertical direction.

Progress has been achieved, too, in the simulation of the
time-dependent MHD jet formation from accretion disks. Two
major, distinct approaches in order to deal with the complex-
ity of the jet formation process have been undertaken so far.
One approach is to take the rotating disk as a fixed bound-
ary condition for the simulation of the jet. Depending on the
choice of the initial setup (magnetic field, density and pres-
sure) and the choice of the gravitational potential, the numer-
ical results differ in the degree of collimation and the veloc-
ity of the resulting jet flow. From an initially split-monopole
magnetic field configuration, collimated, non-stationary out-
flows were obtained (Ustyugova et al. 1995). In this simula-
tion non-equilibrium initial conditions and a softened gravita-
tional potential were used. For the same configuration, but for a
stronger magnetic field, Romanova et al. (1997) again obtained
stationary but only weakly collimated flows. Ouyed & Pudritz
(1997) studied the jet formation embedded in a disk corona ini-
tially in hydrostatic equilibrium and in pressure balance with
the disk surface. Essentially, after 400 disk rotations, a station-
ary collimated jet flow emerges. Similar results were obtained
by another recent study taking into account also the time-
dependent behavior of the disk boundary condition (namely
the field inclination) due to the evolution of the disk wind

(Krasnopolsky et al. 1999). The main advantage of the ap-
proach of a fixed disk boundary condition is the numerical sta-
bility of simulation over a long time scale. The jet launching
itself – the process of diverting accreting matter in the disk into
an outflow – cannot be treated this way.

The other approach was therefore to include the simulation
of the disk structure in the simulation. The first step in this di-
rection was made by Uchida & Shibata (1985) and Shibata &
Uchida (1985, 1986) in their pioneering work considering time-
dependent jet formation. Essentially, the authors show that the
magnetic twist of the magnetic field induced by the rotation
of the disk gives rise to Lorentz forces pushing the disk ma-
terial upwards. The back-reaction of the magnetic field on the
disk (magnetic braking) may lead to a sub-Keplerian disk ro-
tation. These results have been confirmed by Stone & Norman
(1994). MHD simulations considering the diffusive accretion
disk in interaction with a stellar dipolar magnetosphere reveal
the collapse of the inner disk after a few rotations (Hayashi
et al. 1996; Goodson et al. 1997; Miller & Stone 1997). At
the same time, episodic ejection of plasmoids are generated
in outer parts of the disk wind. A collimated axial jet feature
is observed. However, probably because of numerical reasons,
these simulations could be performed only for a few or tens of
Keplerian periods of the inner disk. Therefore, the results may
depend strongly on the initial setup. The assumption of con-
stant diffusivity in the disk and the corona is probably not very
realistic.

The long-term evolution of such models has been inves-
tigated by FE00, however without treating the disk structure
in the simulation. They find that the axial jet feature observed
by Goodson et al. (1997) disappears on longer time-scales. A
two-component quasi-stationary outflow (from disk and star)
evolves after thousands of rotational periods. This flow is un-
collimated on the spatial scales investigated, in agreement with
the observations indicating a jet radius 100 times larger then
the grid size of the numerical simulations discussed above.

Recent MHD simulations of the jet formation from accre-
tion disks by Matsumoto et al. (1996), Kudoh et al. (1998,
2002b, 2002a), and Kato et al. (2002) investigate the disk-jet in-
terrelation and may probably explain the time-dependent ejec-
tion mechanism in the jets. However, as we have pointed out
above for the model setup of a magnetic dipole surrounded by a
disk, these simulations also were carried out for several rotation
periods only. The question remains as to how the system under
consideration behaves on a long time scale. Further, the sim-
ulations apply the approach of ideal MHD, an approximation,
which is most probably not strictly valid for accretion disks,
especially for protostellar accretion disks. In this respect, the
work by Kuwabara et al. (2000) is of particular interest as the
authors extend the ideal MHD approach and include resistiv-
ity in the jet formation process. Comparing their simulations to
the close environment of a supermassive black hole, Kuwabara
et al. derive a critical value for the strength of magnetic dif-
fusion. A normalized magnetic diffusivity below 0.05 may ex-
plain the observed activity in active galactic nuclei. In this case,
the mass accretion and jet launching takes place intermittently.
The paper also demonstrates the difficulty of carrying out such
simulations, as gravity has been treated applying a softened
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potential. On the other hand, this simplification allows for a
simulation lasting up to 5 rotations of the accretion torus.

Again, we note that it is just the limitation in the time evo-
lution which lead us to the decision to take into account the
accretion disk only as a boundary condition. In this paper, we
are mainly interested in the jet formation process (acceleration
and collimation) and not in the jet launching mechanism from
the accretion disk. In particular, we think it is essential to inves-
tigate whether a jet actually survives also on long time scales.

3. Model setup and equations

The paradigm accepted in this paper is the jet launched from a
diffusive, turbulent accretion disk around a young stellar object.
We may expect that the turbulence pattern in the disk may also
enter the disk corona and the jet, and that the jet flow itself is
subject to turbulent diffusion. We will discuss this idea of a dif-
fusive protostellar jet below. Despite the fact that we take into
account the effect of magnetic diffusion for the jet formation,
our model setup is similar to the models in OP97 and FE00.

3.1. Resistive MHD equations

In order to model the time-dependent evolution of jet forma-
tion, the set of resistive MHD equations to be solved is

∂ρ

∂t
+ ∇ · (ρu) = 0 (1)

ρ

[
∂u
∂t
+ (u · ∇) u

]
+ ∇(p + pA) + ρ∇Φ − j × B

c
= 0 (2)

∂B
∂t
− ∇ ×

(
u × B − 4π

c
η j

)
= 0 (3)

ρ

[
∂e
∂t
+ (u · ∇) e

]
+ (p + pA)(∇ · u) − 4π

c2
η j2 = 0 (4)

∇ · B = 0 (5)

4π
c

j = ∇ × B. (6)

For the gas law we apply a polytropic equation of state,
p = Kργ with a polytropic index γ = 5/3. Hence, we do not
solve the energy Eq. (4). Instead, the internal energy of the sys-
tem is defined with e = p/(γ − 1). Such a simplification is
not expected to affect the result of our simulations much, as
the resistive dissipation term in the energy equation is negli-
gible compared to the other terms because of the factor 1/c2

(see also Miller & Stone 1997). The magnetic diffusivity is de-
noted by the variable η (see Sect. 3.3). Additional to the hy-
drostatic pressure p, an Alfvénic turbulent pressure pA ≡ p/βT

with βT = const. (see OP97, FE00) is included. Alfvén waves
from the highly turbulent accretion disk are expected to propa-
gate into the disk corona, providing the perturbations for some
degree of turbulent motion also in the jet. As shown by OP97
the additional Alfvénic turbulent pressure is able to support a
cold corona above a protostellar accretion disk as suggested by
the observations.

Fig. 1. Initial setup for the jet simulation. Shown is the part of the
computational box close to the origin (the part of the “inner jet”). The
initial hydrostatic density distribution is indicated by the thin concen-
tric isocontours. Thick lines denote the initial poloidal field lines of a
force-free potential field.

We solve the equations above using the ZEUS-3D code
(Stone & Norman 1992, 1992) in the 2D-axisymmetry op-
tion for cylindrical coordinates (r, φ, z). We apply a point mass
gravitational potential Φ = −1/

√
r2 + z2 located in the origin.

A finite physical magnetic resistivity is added to the original
ZEUS-3D ideal MHD code. Tests of our now diffusive ZEUS
code are presented in the Appendix.

For our computations we normalize the variables to their
value measured at the inner disk radius ri (see OP97, FE00),
e.g. ρ → ρ/ρi. The subscript “i” assigns that the variables
are taken at this radius. The time is measured in units of a
Keplerian rotation at the inner disk radius. The normalized
equation of motion eventually being solved with the code is

∂u′

∂t′
+

(
u′ · ∇′) u′ = 2 j′ × B′

δi βi ρ′
− ∇

′(p′ + p′A)

δi ρ′
− ∇′Φ′. (7)

The coefficients βi ≡ 8πpi/B2
i and δi ≡ ρiv

2
K,i/pi with the

Keplerian speed vK,i ≡
√

GM/ri, correspond to the plasma beta
and the Mach number of the gas at the inner disk radius. For a
“cold” corona with p′A > 0, it follows βT = 1/(δi(γ − 1)/γ− 1).
In the following we will omit the primes and will discuss only
normalized variables if not explicitly declared otherwise.

3.2. Initial and boundary conditions

As the numerical simulation of a magnetized disk is still a diffi-
cult task and is not yet fully resolved, we chose to study the for-
mation of the jet flow independent of the evolution of the accre-
tion disk. A precise disk-wind theory would predict the amount
of angular momentum and energy carried away from the disk.
Here, we prescribe the disk as a fixed, time-independent bound-
ary condition for the jet.

One may question the combination of a magnetically dif-
fusive disk corona and a steady-state disk magnetic field dis-
tribution. Naturally, the time scales of the disk evolution are
definitely longer than those for the jet flow (except for the
unknown mechanism responsible for the jet knots). Also, for
a disk jet, the disk is acting as a source for magnetic flux.
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This can be achieved either by a dynamo process working in
the disk generating the magnetic field or just by advection of
the interstellar magnetic field by the disk towards the central
star. The time scale for both processes is longer than the jet
time scale and, thus, we may safely assume a fixed magnetic
flux as accretion disk boundary condition.

As initial condition we choose the same setup as OP97. The
initial poloidal magnetic field is defined by the current-free po-
tential field configuration of the φ-component of the vector po-
tential, Aφ =

(√
r2 + (zd + z)2 − (zd + z)

)
/r. The dimensionless

disk thickness zd satisfying (zd + z) > 0 for z < 0 is introduced
in order to avoid any kinks in the field distribution. The ini-
tial coronal density distribution is in hydrostatic equilibrium,
ρ = (r2 + z2)−3/4. The initial corona is defined by two free pa-
rameters δi and βi.

The disk itself as a boundary condition for the jet flow is
in centrifugal balance and penetrated by a force-free magnetic
field. As the disk boundary condition is time-independent, the
initial potential field magnetic flux from the disk is concerned.
The toroidal component of the magnetic field in the ghost zones
(z < 0) is chosen as Bφ(z < 0) = µi/r, where µi is another free
parameter. The mass flow rate from the disk surface into the
corona is defined by the injection velocity and the density of the
injected material. With the launching angle Θ0(r, z = 0) (mea-
sured from the jet axis), the velocity field in the ghost zone is
u = (vr, vφ, vz) = vinj(vp sinΘ0, vK, vp cosΘ0) for r ≥ 1 with vinj

as a free parameter. For r ≤ 1 the inflow velocity is set to zero,
which actually defines the inner edge of the disk. The inflow
density is given as ρd = κir−3/2, with κi as a free parameter.

Besides the disk “inflow” boundary condition, the bound-
ary condition along the symmetry axis is set as “reflecting”,
and along the two remaining boundaries as “outflow” (see also
Stone & Norman 1992, 1992; OP97; FE00). Figure 1 shows the
initial setup of a hydrostatic density distribution together with
the potential magnetic field for the part of the computational
box close to the origin (the region of the “inner jet”).

Our choice for the free parameters is the following. We
have δi = 100, κi = 100, µi = −1.0, and vinj = 0.001, sim-
ilar to OP97 and FE00 in order to allow for a comparison of
the results. For the plasma-β we choose βi = 0.282 (which
is equivalent to OP97, but is based on the original ZEUS-3D
normalization) or a lower value βi = 0.141 which has some nu-
merical advantages1. The lower βi does not change the general
behavior of the jet. The jet evolution is faster (in physical time,
not in CPU time) and the Alfvén surface is slightly shifted in
z-direction, but the jet internal structure remains very similar.

3.3. Magnetic diffusion in jets

Most of the models of MHD jet formation deal with the colli-
mation and acceleration of a plasma flow in the case of ideal
MHD. However, it seems to us quite possible that magnetic
diffusivity may play an important role in protostellar jet forma-
tion. There are (at least) two reasons which may account for
that.

1 See also Appendix A in FE00 for the different choice of βi in
OP97 (equal to unity) and here and in FE00.

The first reason may be the fact that the jet material of
young stellar objects is not fully ionized, in difference from the
case of relativistic jets in AGN or microquasars. The fraction
of ionization (the ratio of ion to neutral particle density) de-
rived from optical observations is about 0.5−0.01 with the ten-
dency to decrease along the jet (Hartigan et al. 1994; Bacciotti
& Eislöffel 1999). From this it can be expected that diffusive
effects may indeed affect the MHD configuration. Theoretical
studies on this topic have just started recently. We refer to Frank
et al. (1999) who investigated the asymptotic MHD jet equilib-
ria under the influence of ambipolar diffusion, showing that the
initial MHD configuration of the jet changes due to ambipo-
lar diffusion at least on the parsec scale. Another reference is
Ferreira (1997) who showed the essential role magnetic dif-
fusion plays for the launching mechanism of the jet from the
accretion disk.

The other reason for the existence of turbulence in the jet
formation region is the fact that the jet launching object itself
– the accretion disk – is highly turbulent. While turbulence is
an intrinsic property of accretion disks (and necessary for the
accretion process itself), turbulence can further be driven in
the disk corona by the differential rotation of the disk, which
winds-up the coronal magnetic loops leading to powerful re-
connection processes (see Miller & Stone 2000).

It seems to be natural to expect that the turbulent pattern
being definitely present in the disk-jet interaction region be-
comes also advected with the jet/wind flow into the domains
at greater height above the disk. We just note that additionally
the interaction of the jet with the ambient medium leading to
various kinds of instabilities increase the turbulent pattern in
the jet (however, we do not expect that the latter process does
affect the jet collimation region).

In Faraday’s law (3), the ratio of the first to the second
terms in the brackets is the magnetic Reynolds number. It can
be represented by Rm = v L/η, where L is a typical length scale
and v is a typical velocity. Due to the large length scales in
the astrophysical context, Rm based on the microscopic diffu-
sivity is very large compared to unity. For a fully ionized hy-
drogen plasma the microscopic diffusivity is ηµ ∼ rec(vth/c)−3,
where re = e2/(mec2) is the classical electron radius, and vth =√

kBT/me is the electron thermal speed. For T = 104 K, v =
100 km s−1, and L = 100 AU we obtain Rm = v L/ηµ ≈ 1015.

It is clear that the relevant diffusivity in the protostellar disk
and jet is most probably “anomalous” determined by macro-
scopic MHD instability phenomena (see above), with the re-
sulting magnetic Reynolds number being much smaller. This
magnetic turbulence we may parameterize the same way as
in a Shakura-Sunyaev model for the hydrodynamical viscos-
ity. We can define a turbulent magnetic diffusivity ηT = αmvL,
where αm ≤ 1. As a characteristic velocity for the dynami-
cal change of the system we might choose the poloidal Alfvén
speed, vA = Bp/

√
4πρ. If we choose the size of our computa-

tional box rmax as a typical length scale andαm ≈ 0.1, we obtain
Rm = vArmax/ηT ≈ 10 as the typical magnetic Reynolds num-
ber for the global jet evolution. In difference, typical length and
time scales are different if we are interested in the evolution of
the local jet structure (as needed for example for the definition
of the numerical time stepping in the code).
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Fig. 2. Global evolution of the jet on a grid of (z × r) = (280 × 40)ri with a resolution of 900 × 200 elements. Shown is the state of evolution
after t = 400 rotations of the disk inner radius for different magnetic diffusivity, η = 0 (top), η = 0.01 (middle), and η = 0.1 (bottom). Thin lines
denote 30 logarithmically spaced isocontours of density. Thick lines denote 20 and twenty linearly spaced magnetic flux surfaces (or poloidal
field lines). The parameters are δi = 100, κi = 100, µi = −1.0, βi = 0.282, and vinj = 0.001. Note the preserved initial hydrostatic density and
force-free field distribution in front of the bow shocks. The figure demonstrates that the bow shock advances slower with increasing diffusivity.

It might be expected that the diffusivity throughout the jet
and the disk corona differ considerably. However, it seems nat-
ural to expect the diffusivity in a corona close to the disk sur-
face not to differ much from the value in the outer part of the
disk. For simplicity, and since we are first interested in the gen-
eral effect, our simulations are performed with a constant dif-
fusivity parameter. To introduce a non-constant diffusivity is
straight forward.

The local magnetic Reynolds number is also described by
the ratio of the dynamic to the diffusive time scale Rm =

τdiff/τdyn. Here we may define τdiff = min(l2/η) and τdyn =

min(l/vA), where l is the size of the numerical grid cell.
Because of the internal structure of the jet, these minimum val-
ues can sometimes be well below the actual global magnetic

Reynolds number described above, which is determined by the
characteristic length scale of our simulation L = rmax.

It is interesting to note that in the model of OP97 a turbu-
lent Alfvén pressure, pA, has been introduced in order to estab-
lish a pressure equilibrium of a cold corona (or jet) above the
(hot) accretion disk. Although this turbulence effect was taken
into account for the pressure balance, OP97 did not consider it
as a reason for a turbulent magnetic diffusivity. However, it is
straight forward to relate the Alfvénic turbulent pressure pA to
a turbulent magnetic diffusivity ηT. In order to derive such a re-
lation, we now choose the turbulent velocity field vT instead of
the local Alfvén speed as the typical velocity for the turbulent
diffusivity,

ηT = αmvTL. (8)
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Fig. 3. The evolution of the inner jet approaches the quasi-stationary
state. Shown are poloidal magnetic field lines in the case of η = 0.1
for different time steps, t = 250, 300, 350, 400 (thick solid, thin solid,
dashed and dotted lines). Same parameter setup as in Fig. 2, except
βi = 0.141. Grid size 280 × 80 elements for a physical size of (140 ×
40)ri . The picture shows how the poloidal magnetic field lines diffuse
outwards but approach a (quasi)-stationary state after 400 rotations
(see the dashed and dotted lines almost coinciding).

Fig. 4. Magnetic diffusivity and global time scales. Left Global mag-
netic Reynolds number as defined from the scale of the computational
box of the inner jet L = 20, v = vA. Shown is the Rm-profile along
slices in z-direction at r = 7, 13, 20 (solid, dotted, dashed line, respec-
tively), for the simulation run with η = 0.1, βi = 0.141. The plot shows
the variation of the typical velocity v, for which we have chosen the
local Alfvén speed. Right Time of stationarity. This plot shows for dif-
ferent magnetic diffusivity the time period when the inner jet reaches
a quasi-stationary state. This time is estimated from the evolution of
the poloidal magnetic field lines (see Fig. 3) and the error bars indicate
our uncertainty.

With the definition βT ≡ (cs/vT)2 and taking into account the
fact that c2

s = γp/ρ for an adiabatic or polytropic gas law, we
obtain

v2T =
γ

βT

p
ρ
· (9)

The normalization gives

v′2T =
p′

ρ′
c2

s,i

v2K,i

1
βT
, or v′2T = ρ

′γ−1 γ

δiβT
· (10)

With the condition of sub-Alfvénic turbulence OP97 derived
βT = 0.03. With a typical value for δi ' 100 and a “mean”

value for the normalized density ρ′ ' 10−2 we obtain for the
normalized magnetic diffusivity

η′ ' 0.015
(
αm

0.1

) ( L′

1.0

)
· (11)

Since the diffusivity changes only weakly with the density,
η ∼ ρ1/3, this provides a good estimate on the strength of mag-
netic diffusion. A self-consistent simulation would take into ac-
count the relation between diffusion and density as in Eq. (10).
For comparison, we run a few of simulations with such a setup.
So far, we find no significant difference to the computations
with η = const.

4. Results and discussion

We now discuss the results of our numerical simulations con-
sidering the MHD jet formation under the influence of mag-
netic diffusion. For this, we have run simulations with a dif-
ferent parameter setup. The simulations were performed (i) in
domains of different physical size in order to investigate the
influence of boundaries and to obtain information about the
large-scale flow, and also (ii) with different numerical resolu-
tion.

We detected numerical artifacts (a spurious velocity pat-
tern) in the corners of the grid where outflow boundary condi-
tions meets the other (inflow, reflecting) boundary conditions.
In general, this artifacts remain localized close to the corners
of the grid over many hundred of disk rotations. All the re-
sults discussed in this paper are not affected by these effects
as we mainly concentrate on the inner part of the jet flow. We
performed one reference set of global simulations with high
resolution (numerical mesh of 900 × 200 grid points, physical
grid of (z × r) = (280 × 40)ri). In order to investigate effects
which concern only the gross behavior the jet flow and not its
structure in detail, we run another set of simulations with lower
resolution (numerical mesh of 280 × 80 grid points, physical
grid of (z × r) = (140 × 40)ri). The much faster computation
of the low resolution simulations allowed us to follow the jet
evolution for a very long time even in the case of a high mag-
netic diffusivity (up to 4000 disk rotations). The computational
domain was a factor 2 shorter in direction of propagation. All
other parameters were the same as for the high resolution runs.

4.1. Formation of the global jet

The first point to be noted when comparing the large-scale evo-
lution of the diffusive with the non-diffusive flow, is the differ-
ent speed of the bow shock. With increasing magnetic diffusiv-
ity, the bow shock propagates slower. The bow shock pattern
velocity is about 0.38, 0.35, 0.28 for η = 0, 0.01, 0.1, respec-
tively (Fig. 2). We will later see that, in apparent contrast, the
jet velocity increases with η.

As in the case of ideal MHD simulations, before the bow
shock front builds up, torsional Alfvén waves propagate from
the disk surface into the corona slightly modifying the initial
hydrostatic equilibrium. The super-Alfvénic flow catches up
with and passes this wave front.
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As the bow shock propagates through the corona it leaves
behind a cavity of matter with dilute density and high velocity.
The initially purely poloidal magnetic field becomes more and
more helical. The toroidal magnetic field component is first
generated by winding-up the initial poloidal field due to differ-
ential rotation between the disk and the static corona but later
comes out as a natural result of the MHD flow due to the iner-
tial forces of the matter.

The internal structure of the jet behind bow shock layer is
smoother in the case of a non-vanishing magnetic diffusion (see
Fig. 2). We note that also the “wiggly” structure in the density
distribution close to the disk in the case of η = 0 is less promi-
nent in the case of diffusive simulations. These “wiggles” seem
to be a numerical artifact probably due to the density jump be-
tween the disk and the jet, however, the density variations are
only of the order of some percent.

Here, we note another important point. In this paper we
were interested in the cases of a typical MHD jet flow starting
as a sub-Alfvénic (but super-slow magnetosonic) flow from the
disk surface, being accelerated to super Alfvénic and super-
fast magnetosonic speed, as e.g. described in the paper by
Blandford & Payne (1982). This case often described as a
magneto-centrifugally driven disk wind/jet differs from the
case where matter is injected into the disk corona already with
super Alfvénic speed. The latter case applies in the case of a
relatively weak disk poloidal magnetic field as for example in
the case of a central dipolar field with a strong gradient in ra-
dial direction. These winds are initially driven by the (toroidal)
magnetic field pressure gradient in vertical direction (Lovelace
et al. 1987; Contopoulos 1994; Fendt & Elstner 2000).

In this paper we are interested only in the classical case
of MHD jet formation. However, in our simulations we note
that the Alfvén surface moves as a function of time until the
quasi-stationary state (see below) is reached. For a smaller than
moderate magnetic diffusivity (η = 0, ..., 0.5), the location of
the Alfvén surface is always within the active zones well above
the accretion disk boundary. For higher diffusivity the Alfvén
surface may advance into the disk for small radii and the char-
acter of the MHD flow is changed. We do not consider these
cases in our discussion.

4.2. Inner jet

In the following we discuss the evolution of the inner substruc-
ture of the global jet close to the jet axis and the accretion disk.
The size of this region is 60 × 20ri and is comparable e.g. to
the full grid in OP97. This part of the jet is not influenced
from any outflow boundary condition or the jet evolution on the
global scale. Note that the major part of the global jet is super
fast magnetosonic, hence, there is no (physical) way to trans-
port information from this part in upstream direction into the
inner jet.

4.3. Quasi-stationary nature of the (inner) jet

As a major outcome of OP97 and FE00 it has been found that
under a certain choice of boundary conditions the disk outflow

Fig. 5. The de-collimation of the stationary state poloidal magnetic
field due to magnetic diffusivity. Same parameter setup as in Fig. 3.
Shown is the poloidal magnetic field line distribution of the inner jet
in the state of quasi-stationarity (t = 400) for vanishing diffusivity
η = 0 (thick) and for η = 0.1 (thin).

Fig. 6. Comparison of poloidal velocity vectors. Shown are the
poloidal velocity vectors at the time of quasi-stationarity. Over-plot of
the velocity field for the η = 0 simulation at t = 350 with the η = 0.1
simulation at t = 400. The de-collimation visible in the poloidal mag-
netic field lines (see Fig. 5) is not present here. The thick line indicates
the Alfvén surface for η = 0.1, the thin line the fast magnetosonic
surface.

may evolve into a stationary state after several hundreds of disk
rotations. Such a stationary state solution provides an ideal test
bed for investigation of the internal forces acting in the jet,
since the well known equations of axisymmetric ideal MHD
and its conservation laws may be used for interpretation of the
jet flow.

In our present simulations considering the MHD jet for-
mation under the influence of magnetic diffusion, we also find
such stationary states. We denote them as quasi-stationary
since – due to the large computational domain – such a be-
havior can be seen only in the inner region within reasonable
computational time. The outer regions surrounding the (inner)
stationary jet flow will further evolve in time. For the area of
the inner jet the stationary state is reached after approximately
t = 350 disk rotations in the case of ideal MHD. This time scale
can be quite different in the case of a non-vanishing magnetic
diffusion and also depends on the plasma-beta parameter βi.
Note that in spite of considering magnetic diffusivity, we use
the same parameter setup as OP97 and FE00.



1052 C. Fendt and M. Čemeljić: Diffusive protostellar jet formation

Figure 3 shows an over-plot of poloidal magnetic field
lines resulting from our simulations at the time steps of
t = 250, 300, 350, 400 disk rotations, respectively, in the case
of relatively large magnetic diffusion η = 0.1. It can clearly
be seen how the poloidal magnetic field lines first diffuse out-
wards from their position at t = 250 (which is close to the non-
diffusive field distribution, see also Fig. 5). After some hun-
dred of rotations more, the field distribution approaches the
quasi-stationary state (note the dotted lines almost matching
the dashed ones).

First, we note that the existence of such a quasi-stationary
state might not necessarily be expected in the case of magnetic
diffusion and instead one might think that the magnetic field
will just decay forever. The reason, why a stationary state is
possible in the case of a jet flow, is that with such a setup a loss
of magnetic energy in the jet caused by diffusion can be replen-
ished by the constant Poynting flux rising from the disk. This
energy reservoir can be thought of as established constantly by
the disk rotation and accretion and eventually by the gravita-
tional potential of the central star. Note that also in the ideal
MHD case the jet flow carries energy out of the computational
box. Also this energy loss is balanced by the same way. The
additional effect due to magnetic diffusivity is small compared
to the total energy flow in the jet.

In general, our simulations show that with increasing η the
flow reaches the quasi-stationary state at a later time. For a
smaller than moderate magnetic diffusivity (η = 0, ..., 0.5), we
find an approximately linear relation between this time and the
diffusivity (Fig. 4, right panel). This is also the range where the
jet flow is a classical MHD jet like the Blandford-Payne solu-
tion, starting as a sub-Alfvénic flow from the disk surface and
crossing the Alfvén surface at some height above the disk. For
higher diffusivity the Alfvén surface has been advanced into
the disk for small radii and the character of the MHD flow is
changed. We do not consider these cases in particular, however,
we show the time of quasi-stationary state for completeness.

For comparison, the local time step accounting for mag-
netic diffusion and the Alfvén time step, together with the
global magnetic Reynolds number Rm (defined by the jet size
and a mean value for the jet Alfvén speed, see Sect. 3.3) and
the related αm are given in the Appendix in Table B.1 for the
time when the quasi-stationary state is reached. In Table B.1
we have chosen a “typical” value for the Alfvén speed within
the grid of the inner jet. That this is feasible, is shown in Fig. 4
(left) where we plot the variation of Rm along the jet in the case
η = 0.1. As Rm does not change along the jet by more than
a factor of two (this is similar for other diffusivity), this value
provides a good estimate for the global jet dynamical behavior.

4.4. Jet velocity and collimation

The most interesting, since directly observable, quantities of a
jet are its velocity and degree of collimation. In Fig. 6 we show
the poloidal velocity vectors in the inner jet for a simulation
without and with considering magnetic diffusion (η = 0 and
η = 0.1), taken at that time step, when the flow has reached the
quasi-stationary state.

The general point to mention is that the figures clearly show
the self-collimating property of the MHD flow as the velocity
vectors become more and more aligned with the jet axis as we
go along the flow. However, there exists also a region of low
collimation close to the disk where the velocity vectors point
in radial direction (with '45◦ half opening angle).

For the low magnetic diffusivity (η < 0.05) simulations
we have observed an interesting feature. The apparent de-
collimation of the poloidal magnetic field structure (Fig. 5),
which is already present for a weak magnetic diffusivity
(η = 0.01), is, however, not visible in the poloidal velocity
(Fig. 6). In both cases, the flow evolution has reached a quasi-
stationary state (t = 400). In contrast to ideal MHD, in the
case of diffusive MHD, a miss-alignment between vp and Bp

is possible. Up to η = 0.5 the mismatch between the poloidal
velocity and magnetic field vector is relatively weak for large z
and about 5◦−10◦ at intermediate heights above the disk. That
means that we generally get a collimated stream along the axis,
however, the mass load distribution varies implying a variation
of the mass flow rate through the r and z-boundaries with η. If
a larger magnetic diffusivity (η > 0.1) is applied, we observe
also a de-collimation of the mass flow (see below).

In general, both the poloidal and toroidal velocity increase
with increasing diffusivity. At the same time, the magnetic field
components decrease with the increasing diffusivity. This is
shown in Fig. 7 where we plot the velocity and field compo-
nents along jet at a distance of 15 ri from the jet axis. Thus, as
a conclusion, the diffusive jet becomes faster. We discuss that
point below in the context of the Lorentz forces acting in the jet.

However, two points should be mentioned concerning
Fig. 7. The first is the decrease of toroidal velocity just above
the disk surface. As the field line foot points rotate with
Keplerian speed and the matter is corotating with the field lines,
one would actually expect an increase of toroidal velocity, if
the magnetic field is dominated by the poloidal component. In
our case, we find at a certain radius along the disk surface that
Bφ = Bp. Thus, the matter may substantially slide along the
field. Just above the disk, the toroidal field strength first in-
creases with height2, and the slide along the field line becomes
larger.

The second point is the fact that – unlike the poloidal veloc-
ity – the magnetic field strength and the toroidal velocity do not
seem to match the given boundary condition along the disk sur-
face for the case of non-vanishing diffusivity. The reason is the
jump in diffusivity between the disk (boundary condition) and
the disk corona (active zones of the grid). The magnetic field
lines are frozen-in the accretion disk, but when leaving the disk
surface, they are immediately affected by magnetic diffusion.
Thus, the magnetic field strength in the active zones of the grid
(which are shown in Fig. 7) deviates from the boundary value
in the case of a non vanishing diffusivity. In the stationary state
solutions shown in Fig. 7 an equilibrium state has been reached
between magnetic field diffusion and advection. We see that
at this radius (r = 15) the field strength has increased for the
region immediately above the disk.

2 This feature can be also observed in the simulations of OP97 (see
their Fig. 4).
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Fig. 7. Variation of the jet velocity and magnetic field with different magnetic diffusivity, η = 0 (solid), η = 0.1 (dashed), η = 0.5 (dotted).
Shown is the profile of the poloidal (left) and toroidal (right) components of the velocity (top) and the magnetic field (bottom) in z-direction at
r = 15 at the time of quasi-stationarity. The velocity components increase, while the magnetic field strength decreases with increasing η. Note
the different scales for vp and vφ. The boundary value for the toroidal velocity is the Keplerian value vφ = 0.258 at r = 15.

The observed de-collimation of the matter flow with in-
creasing diffusivity is most evident if we plot the mass and
momentum fluxes across the boundaries of the inner jet region.
We define the fluxes across surfaces parallel to the accretion
disk boundary by

Ṁ =
∫ rmax

0
2πrρvzdr , Ṁvz =

∫ rmax

0
2πrρv2z dr. (12)

These are the mass flux and the kinetic z-momentum (i.e. mo-
mentum in z-direction) flux along the jet axis. For the inner jet
rmax = 20 and the integration is along zmax = 60. The flux away
from the jet axis (thus, in r-direction3) is defined correspond-
ingly by the integration along the rmax-boundary from z = 0 to
z = zmax. The corresponding flux into the jet (thus, prescribed
by the disk boundary condition) has to be integrated along the
z = 0 axis. Signature of a good degree of collimation would be
the fact that most of the mass and/or momentum flux is directed
along the jet axis.

Figure 8 shows how the mass and momentum fluxes for dif-
ferent diffusivity evolve in time. We show the mass flux across

3 Note that we define the momentum flux in z-direction across the
rmax-boundary as Ṁvz =

∫ rmax

0
2πrρvzvrdr.

the r and the z-boundary and the kinetic momentum flux in r
and the z-direction integrated along both outflow boundaries.

The large mass and momentum fluxes for the outflow dur-
ing the first 100−200 rotations result from the fact that at these
stages the initial hydrostatic corona is being pushed out of the
grid of the inner jet. After the the bow-shock has left the inner
grid, this initial coronal mass reservoir has been swept out and
the remaining mass flow in the jet is given purely by the mass
injection rate from the disk boundary condition.

In the stationary state the mass inflow from the disk bound-
ary into the jet must be equal to the mass loss across the bound-
aries in r- and z-direction. That this is true in our simulations
can be seen in Fig. 8 on the long time scale if we compare the
solid line (inflow condition) to the sum of the dotted (radial out-
flow) and the dashed lines (axial outflow). The analytical value
for the mass rate as integrated from the given inflow bound-
ary condition is Ṁ = 1.41 which is in good agreement with
the numerical result. Note that for the momentum flux a simi-
lar analytical integration gives a momentum flux from the disk
into the jet of Ṁvz = 1.8 × 10−4, which is much below the nu-
merical value at the first active zone. As the momentum flux is
not conserved as the matter becomes accelerated in the jet, this
shows the tremendous gain of kinetic energy of the MHD flow.
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As a good estimate, the kinetic momentum flux in z-direction
across the z = zmax boundary is just the integrated mass flow
rate Ṁ times the mean vz-velocity at this position. In the case
of vanishing diffusivity we have Ṁvz ' 1.5 × 0.6 = 0.9 which
is similar to our numerically integrated momentum flux4.

Now we compare the fluxes for simulations with differ-
ent magnetic diffusivity. For the simulation run with η = 0.5
(Fig. 8, bottom panel) we have a mass inflow rate of 1.5
(in dimensionless units). The mass loss rate across the grid
boundaries is about 0.45 in z-direction and 1.05 in r-direction.
Compared to the corresponding values in the case of η = 0,
where about 70% of the mass flow leaves the box in z-direction,
this clearly shows that the mass flow for η = 0.5 is less colli-
mated. This situation is even more evident for the simulations
with higher diffusivity η = 1.0, where, however, the mass in-
jection from the disk boundary is partly super-Alfvénic (not
shown). Thus, even if the velocity vectors have more or less
the same direction for diffusivity up to η = 0.5, the mass load
along the stream lines is different due to the fact the matter,
driven by centrifugal forces, may diffuse outwards across the
magnetic field lines enhancing the mass flow rate in radial di-
rection.

At this point it might be interesting to discuss the results
of recent diffusive MHD simulations of the jet formation out
of the accretion disk (Kuwabara et al. 2000). These authors
find that the jet launching from the disk critically depends on
the strength of the magnetic diffusivity. For small diffusivity,
mass accretion in the disk and jet formation take place occa-
sionally. For intermediate diffusivity the disk-jet system may
reach a steady state. For high diffusivity the accretion rate and
outflow rate decrease with diffusivity and may even vanish. In
respect to our results, these results imply that the only way to
launch a stationary MHD jet is indeed to allow for a reasonable
amount of magnetic diffusion. Further, as we find less collima-
tion for higher diffusivity or, equivalently, a weaker jet, such a
state of stationary jet formation may become less important as
the mass flow rates in the disk and the outflow decrease sub-
stantially. It would therefore be of great importance to follow
the simulations of Kuwabara et al. (2000) for longer time scales
comparable to our runs.

If we eventually define the degree of jet collimation by the
mass flux across the jet boundaries, our simulations reveal the
existence of a critical value of the magnetic diffusivity in this
respect. In Fig. 9 the ratio of the mass flux leaving the grid in
z-direction to that in r-direction is shown for different magnetic
diffusivity for the time when the bow shock has left the inner
box. This figure shows directly that for a high diffusivity mass
flux ratio exceeds unity, indicating a weakly collimated mass
flow. Figures 8 and 9 clearly show that for our model setup
there exists a critical value of the magnetic diffusivity, ηcr. In
the simulations with η ≤ ηcr the MHD flow evolves into a col-
limated stream. In contrary, for η ≥ ηcr the flow remains only
weakly collimated. The actual value for the critical η depends
on the plasma beta βi. In our standard setup chosen for Figs. 8
and 9, we find ηcr ' 0.3,

4 Almost no kinetic momentum flux in r-direction leaves the inner
box across the z-outflow boundary.

We note that the momentum flux gives somewhat different
picture. The momentum flux in z-direction is always larger than
that in r-direction. For our setup we obtain a ratio of about 5–8
when we compare the momentum fluxes in each direction. This
demonstrates first the very high efficiency of rotating MHD
flow in converting rotational kinetic energy into poloidal ki-
netic flux. In this respect, if we would define the degree of col-
limation by the momentum fluxes, our jets would perfectly col-
limated also for higher diffusivity. This leaves the question of
how the degree of jet collimation is properly defined. Clearly,
for diffusive MHD jets the field structure is not an accurate
measure of propagation. What concerns the observational ap-
pearance, the mass flow distribution (or actually the density dis-
tribution) would be the theoretical equivalent to the observed
intensity (as long as no emission maps can be provided by the
simulations).

In summary, we propose that the mass flux gives the best
measure of the degree of collimation. In our simulations we see
a strong indication for the existence of a critical value of the
magnetic diffusivity beyond which such a collimation cannot
really be obtained.

4.5. Lorentz forces in the jet

Here, we deal with the question how the jet internal structure
is modified by the effect of magnetic diffusivity as a result of
our numerical simulations. Compared to the ideal MHD simu-
lation (OP97) our results of (i) a de-collimation of the poloidal
magnetic field structure for any value of magnetic diffusivity,
(ii) a de-collimation of the hydrodynamic flow for strong dif-
fusion and (iii) an increase of the jet velocity with increasing
diffusivity are obtained purely by adding a physical magnetic
diffusivity to the originally ideal MHD code.

As the flow evolution in the MHD simulation results from
a combination of various physical effects – magnetic and iner-
tial forces, pressure and gravity – it is not straight forward to
distinguish between these contributions.

However, it seems to be clear that magnetic fields are the
main driver for the flow acceleration and self-collimation and
that, consequently, the addition of magnetic diffusion will mod-
ify the MHD structure of the jet. Therefore, investigating the
Lorentz forces in the quasi-stationary state may provide some
insight into the physical mechanisms at work.

At this point it might be instructive to recall in brief the
basic mechanisms of MHD jet formation. Following the stan-
dard model (e.g. Blandford & Payne 1982; Ferreira 1997), a
jet is launched as a sub-Alfvénic disk wind (by some unspeci-
fied – but also unknown – process) and becomes accelerated
by magneto-centrifugal forces in a strong poloidal magnetic
field at first hand. As the flow approaches the Alfvén surface,
a toroidal magnetic field component is induced (“wound-up”)
due to the inertial back-reaction of the matter on the field.
The toroidal field may lead to (de-) accelerating Lorentz forces
FL,|| ∼ j⊥×Bφ and (de-) collimating forces FL,⊥ ∼ j||×B where,
here, the perpendicular and parallel projection is made with re-
spect to the poloidal magnetic field (which, only in the case
of ideal stationary MHD is parallel to the poloidal velocity).
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Fig. 8. Time evolution of the mass flux and kinetic momentum flux for different magnetic diffusivity, η = 0, 0.1, 0.5 (top, middle and bottom
figures, respectively), in the inner part of the jet, (z × r) = (60 × 20)ri . The final point of each line corresponds to the end of the simulation
when the (quasi-) stationary state has been reached. Shown is the mass flux (left) across the different boundaries. The mass inflow across the
first active grid cells along the (z = 0)-boundary (solid), across the outer (z = zmax) axial boundary (dashed), and across the outer (r = rmax)
radial boundary (dotted). Also shown is the kinetic momentum flux across the boundaries (right). Poloidal kinetic momentum flux across the
first active grid cells along the (z = 0)-boundary (solid). Note that this is already evolved from the value of the boundary condition. Momentum
flux in z-direction integrated along the outflow boundaries (dashed). Momentum flux in r-direction integrated along the outflow boundaries
(dotted).



1056 C. Fendt and M. Čemeljić: Diffusive protostellar jet formation

Fig. 9. Time evolution of the mass flow ratio between the radial
outflow boundary (mass flow in r-direction) and the axial outflow
boundary (mass flow in z-direction) for different magnetic diffusiv-
ity, η = 0, 0.1, 0.5 (solid, dashed and dotted line, respectively), in the
inner part of the jet, (z × r) = (60 × 20)ri . The final point of each line
correspond to the end of the simulation when the (quasi-) stationary
state has been reached. For higher diffusivity, the mass flux ratio in
the quasi-stationary state increases indicating a decrease in degree of
collimation.

The toroidal Lorentz force FL,φ ∼ jp × Bp affects the angular
velocity of the matter, disturbing the centrifugal balance and,
thus, give rise also to a poloidal motion.

Therefore, a change in the jet acceleration and collimation
might be explained by the interplay of two mechanisms. First,
the winding-up of the poloidal magnetic fields is less efficient
since magnetic diffusion leads to a slip of matter across the
field. As a consequence, the induced toroidal magnetic field is
weaker leading to a less efficient acceleration by Lorentz forces
but also to a de-collimation. This effect applies predominantly
in the super-Alfvénic regime. Second, as a de-collimation of
the poloidal magnetic structure also implies a smaller launch-
ing angle for the sub-Alfvénic flow, the magneto-centrifugal
acceleration mechanism may work more effective. As a conse-
quence, the resulting fluid velocities in the jet should be larger,
as indeed suggested by our simulations (Fig. 7).

In Fig. 10 we show for different magnetic diffusivity the
Lorentz force components along a field line (or, respectively,
along the corresponding magnetic flux surface) leaving the nu-
merical grid of the inner jet at (r = 20, z = 60). Note that due
to the magnetic field de-collimation with η, we compare differ-
ent magnetic flux surfaces. These flux surfaces have their foot
point between r = 5 and r = 8 along the disk surface and the
Alfvén point at about z = 25, 15, 5 (η = 0, 0.1, 0.5). The figure
shows the Lorentz force components FL,⊥, FL,‖, FL,φ and the
corresponding acceleration of the fluid FL/ρ.

The first point to mention is that the magnitude of the
Lorentz force generally increases with increasing magnetic
diffusivity. This is interesting insofar as the magnetic field

strength decreases with increasing diffusion (Fig. 7). The
Lorentz force has its maximum in that region before the Alfvén
point where the curvature of the poloidal field is largest. Thus,
magnetic acceleration mainly works in this regime.

This picture of an acceleration purely by magnetic forces
is complementary to the above mentioned picture of an en-
hanced magneto-centrifugal effect. For the parallel compo-
nent this may directly lead to the observed increase in the
poloidal velocity with increasing magnetic diffusivity (see
Fig. 7). Additionally, the higher velocity also leads to stronger
inertial forces and, for moderate heights above the disk, the
diffusive plasma flow will tend to maintain its (radial) direction
even if the field lines bend in direction of the jet axis. This will
re-distribute the mass flow distribution along the field line. The
parallel component decreases rapidly with increasing z as it can
be expected when the jet flow becomes more and more colli-
mated. The same holds for the toroidal Lorentz force compo-
nent. This component accelerates the plasma in toroidal direc-
tion leading to an additional centrifugal effect which drives the
matter in radial direction diffusing across the magnetic field.
This is the reason for the increase of the mass flow rate along
the outer stream lines with increasing diffusivity.

While the curves for the three Lorentz force components
look quite similar at a first glimpse, we see that the correspond-
ing components for the acceleration are somewhat different.
The perpendicular (collimating) component5 of the accelera-
tion remains on a rather high level throughout the (inner) box.
That means that also in the asymptotic regime of the collimated
jet these forces continue to collimate the jet flow.

On the other hand, compared to the perpendicular compo-
nent, the parallel and the φ components of the corresponding
acceleration have a steeper maximum and decrease to an only
marginal strength beyond the Alfvén point. This is what one
would expect also from the standard MHD jet model.

For η = 0 and η = 0.1, we see only a slight difference for
the strength of the perpendicular components of force and ac-
celeration at the large distances. Therefore, the degree of local
flow collimation should be similar, as it is indeed visible in the
poloidal velocity vectors, which are well aligned for the diffu-
sivity considered (Fig. 6). However, we note the larger devia-
tion of the perpendicular components for η = 0.5, which mir-
rors the fact that in this case we are above the critical value ηcr

concerning the mass flow collimation (Fig. 8).

In summary, our discussion of the Lorentz forces and its as-
sociated acceleration gives a self-consistent picture of what we
have observed in our numerical simulation. The perpendicular
Lorentz force is essential for the collimation throughout the en-
tire (inner) flow. The increase of the parallel Lorentz force for
higher magnetic diffusivity gives rise to the higher velocities in
the jet flow. The toroidal Lorentz force leads to an additional
centrifugal effect enhancing the mass flow rate in the outer (yet
un-collimated) parts of the jet flow.

5 We note that the sign for FL,⊥ is defined positive for the force
vector pointing radially outwards. Thus, the increase of |FL,⊥| indicates
an increase of the collimating Lorentz force on the matter.
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Fig. 10. Lorentz forces in the jet for different magnetic diffusivity η = 0, 0.1, 0.5 (solid, dashed, dotted lines). Left (Normalized) values of the
force component perpendicular (top) and parallel (middle) to the field line and the toroidal component (bottom), FL,⊥ , FL,‖ , FL,φ , along a flux
surface leaving the box of the inner jet close to (R = 20, Z = 60)-corner (see Fig. 3 or Fig. 5). For FL,⊥ the positive sign denotes the r-direction
(de-collimating force). For FL,‖ the positive sign denotes the z-direction (accelerating force). For FL,φ the positive sign denotes the φ-direction.
Right Corresponding values of the magnetic acceleration (FL,⊥/ρ), (FL,‖/ρ), (FL,φ/ρ).

5. Summary

In this paper we presented time–dependent simulations of the
formation of axisymmetric protostellar MHD jets. In partic-
ular, we were considering the effects of resistive MHD on
the collimation and acceleration of the jet flow. Similar to re-
cent simulations considering the ideal MHD case (Ouyed &
Pudritz 1997; Fendt & Elstner 2000), the accretion disk has
been taken as a fixed boundary condition during the simulation,
prescribing the mass flow rate and the magnetic flux distribu-
tion. Our initial condition is a force-free magnetic field in a
hydrostatic corona. Our simulations were performed on a grid
of (z× r) = (280× 40) inner disk radii with 900× 200 grid ele-
ments or on a grid of 140×40 inner disk radii with 280×80 grid

elements. We find that in general the low resolution simula-
tions were sufficient to cover all physical effects observed in
the higher resolution runs. In our discussion we mostly con-
centrate on the structure of the inner jet which is the region of
60 × 20 inner disk radii close to the star. We summarize our
results as follows.

(1) We have successfully implemented the physical magnetic
diffusivity into the ZEUS-3D code.

(2) We have discussed some analytical estimates about the
strength of magnetic diffusivity in protostellar jets. We de-
rive the distribution of magnetic diffusivity self-consistent
to the turbulent Alfvénic pressure which is underlying our
simulations and also present in the simulations of other
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authors. Our simulations, however, are performed with a
constant diffusivity. Our main results do not depend on the
actual distribution of magnetic diffusivity.

(3) In the global scale of our simulation, the jet bow shock ad-
vances slower through the initial hydrostatic corona for the
diffusive jets. The reason is the lower mass flux in the direc-
tion along the jet axis in these jets. As expected, the internal
structure of the jet is less disturbed in the case of diffusion.
The Alfvén surface comes closer to the disk surface.

(3) For our model setup we find that, similar to the case of ideal
MHD jets (Ouyed & Pudritz 1997; Fendt & Elstner 2000),
also resistive MHD jets can reach a quasi-stationary state.
With increasing magnetic diffusivity, the quasi-stationary
state of the jet is reached later.

(4) With increasing diffusivity the jet velocity increases. The
direction of the velocity vectors does, however, only change
weakly. At the same time the poloidal magnetic field distri-
bution becomes increasingly de-collimated.

(5) As a proper measure of the degree of collimation we sug-
gest the mass flux. If we compare the mass flow rates
through the grid boundaries for different diffusivity we find
strong indication for the existence of a critical value for
the magnetic diffusivity ηcr concerning the jet collimation.
Beyond this value we still find an almost cylindrically col-
limated stream along the jet axis, however, the bulk mass
flow is in radial direction. For our setup, the critical (nor-
malized) diffusivity is about ηcr ≈ 0.3.

(6) We discuss a self-consistent picture where these effects of
jet de-collimation and acceleration are explained in the con-
text of Lorentz forces. The perpendicular Lorentz force
is essential for the collimation throughout the entire flow
along the jet axis. The parallel Lorentz force increases for
increasing magnetic diffusivity and gives rise to the higher
velocities in the jet flow. The toroidal Lorentz force accel-
erates the plasma in toroidal direction. This leads to addi-
tional centrifugal forces re-distributing the mass flow rates
across the magnetic flux surfaces towards the outer (yet un-
collimated) parts of the flow. The latter two components
play no role for larger distances along the flow.

With our results we have shown that magnetic diffusivity plays
indeed a role for the jet formation process. Turbulence as a nat-
ural (and necessary) property of accretion disks will naturally
enter the disk wind and will be further advected into the jet. As
we see in our simulations only a weak collimation for a high
magnetic diffusivity, a hypothetical, and for sure exaggerated,
conclusion might therefore be that highly turbulent disks can-
not drive a collimated jet mass flow. Such a claim may even-
tually be tested by the astronomical observation and may also
give some hint to answer the question why some disks have jets
and some do not.

Our present study should be understood as a first step in
the right direction. Future work may improve the numerical
resolution and the grid size but may also consider e.g. an ad-
ditional central stellar magnetosphere as a boundary condition.
The most interesting (but also most difficult) prospect would be
to include the evolution of the disk structure in the simulation.

Fig. A.1. Numerical test of magnetic diffusion. Grid size 50 × 50 ele-
ments for a normalized physical grid 2.0×2.0. Left: Isocontours of the
magnetic field strength Bz(x, y) (normalized units) for different time
steps t = t0 + ∆t, ∆t = 0.0 (solid line), ∆t = 0.1 (dashed line). Right:
Normalized intensity profile of the magnetic field strength across the
two-dimensional box along x = 1 for different time steps t = t0 + ∆t
with ∆t = 0.0, 0.1, 0.2, 0.3 (top to bottom curve). Comparison be-
tween the analytical solution solid lines and the numerical simulation
(dashed lines).
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Appendix A: Numerical tests

As we have introduced the effect of physical magnetic diffusiv-
ity into the ideal MHD ZEUS–3D code, careful tests were nec-
essary to prove our implementation. In particular we checked
the time scales introduced by magnetic diffusion and the behav-
ior along the boundaries. The boundary conditions for an ax-
isymmetric jet (“outflow”, “inflow ”and “reflecting”) are quite
different from what is e.g. needed in box simulations used for
other scientific questions.

We defined two numerical tests for our diffusive code. In
both cases the code basically solves the diffusion equation. We
obtained this limit by setting the initial density in the simulation
to arbitrarily large values (here the normalized ρ ' 109) effec-
tively reducing any fluid motions in our simulations. The first
test example is the analytical solution of the diffusion equation
in Cartesian coordinates, the second example an axisymmetric
torus of purely toroidal magnetic field in cylindrical coordi-
nates.

A.1. Analytical solution to the diffusion equation

In Cartesian coordinates (x, y, z) the solution of the one dimen-
sional diffusion equation for infinite space is

Bz(y, t) =
1√

t
exp

(
− (y − y0)2

4ηt

)
, (A.1)

with the magnetic diffusivity η = c2/(4πσ).
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Fig. A.2. Numerical test of magnetic diffusion in cylindrical coordi-
nates. Grid size 100 × 50 elements for a normalized physical grid
10.0 × 5.0. Left: Isocontours of the toroidal magnetic field strength
for different time steps t = t0 + ∆t, ∆t = 0.0 (solid line), ∆t = 0.1
(dashed line). Right: Normalized intensity profile of the magnetic field
strength across the two-dimensional box along z = 5 for different time
steps t = t0 + ∆t with ∆t = 0.0, 0.1, 0.2, 0.3 (top to bottom curve).

As a test for our code, we choose as initial condition the
magnetic field Bz(x, y) = Bz(y) for a certain time t = t0 from
Eq. (A.1). For the two-dimensional numerical grid we prescribe
“free” (i.e. outflow) boundary conditions in x-direction and a
time-varying field for the boundaries in y-direction.

Figure A.1 show the result of our simulations for the time
steps t = t0∆t (∆t = 0.1, 0.2, 0.3, 0.4) for a magnetic diffusivity
η = 1.0 in comparison with the analytical results. As result, we
obtain a perfect agreement between the numerical simulation
and the analytical solution.

A.2. Toroidal field torus

Here, our aim is to check how our code treats magnetic diffu-
sion in cylindrical coordinates, along the outflow boundary in
r-direction and along the symmetry axis. As initial condition,
we define a torus of toroidal magnetic field

Bϕ(r, z, t0 = 0.1) =
1
t0

exp
(
− (r − r0)2 + (z − z0)2

4ηt0

)
. (A.2)

Figure A.2 show the result of our simulations for the time
steps t = t0∆t (∆t = 0.1, 0.2, 0.3, 0.4) for a magnetic diffu-
sivity η = 1.0 in comparison with the analytical results. The
simulation shows how the peak of the field distribution moves
slightly inwards from its initial central position as the field dif-
fuses. Note that as the field diffuses outwards the volume over
which the toroidal field is distributed increases. Therefore the
decrease in field strength in outward direction. Along the sym-
metry axis the field strength remains zero, whereas the field
strength along the outflow boundaries increases. No boundary
condition is prescribed here.

Although there is no analytical solution to compare with,
this simulation gives again convincing evidence that we prop-
erly incorporated the magnetic diffusion in the ZEUS-3D code.

Table B.1. Typical numbers for our simulations for different magnetic
diffusivity η. Diffusive time step τη, Alfvén time step τA, the global
magnetic Reynolds number Rm and the magnetic turbulence parame-
ter αm.

η τη τA Rm αm

0 ∞ 0.258 ∞ 0
0.1 0.625 0.293 40 0.025

0.15 0.417 0.084 30 0.033
0.25 0.25 0.136 20 0.05
0.5 0.125 0.080 10 0.1
1 0.063 0.183 8 0.125

2.5 0.025 1.394 4 0.25

Appendix B: Time scales in the simulation

Table B.1 shows the time scales and typical number values ap-
plied in our jet simulations for different magnetic diffusivity η.
As an example we refer to the simulation runs with relatively
low numerical resolution. The diffusive time step (i.e. the local
time scale for magnetic diffusion) is τη = (∆x/η2) with the size
of the grid element ∆x. For comparison we show the Alfvén
time step τA = (∆x/vA). The other two numbers consider the
global evolution of the jet flow. For the magnetic Reynolds
number Rm = (vArmax/η) we have considered the global size of
the jet and similar for the magnetic turbulence parameter αm.
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Abstract. Observations of several bipolar jet flows from young
stellar objects reveal a slight difference in the apparent direction
of propagation for jet and counter jet.

In this paper, possible mechanisms leading to such a jet de-
flection are investigated. We discuss various effects, such as the
motion of the jet source within a binary system, gravitational
pull due to an asymmetric external mass distribution, dynamical
pressure of the external medium, inertial effects due to proper
motion of the jet source, an inclined interstellar magnetic field,
and the coupling between a magnetic jet and an external mag-
netic field.

We find that for typical protostellar jet parameters the most
likely mechanisms leading to a bent jet structure areLorentz
forceson the magnetic jet and/or motion of the jet source in a
binary system. Dynamical pressureof a dense external medium
or a stellar wind from a companion star cannot be excluded as
source of jet bending.

Key words: MHD – ISM: jets and outflows – galaxies: jets
– stars: magnetic field – stars: mass loss – stars: pre-main se-
quence

1. Protostellar jets with counter jets

There is now quite a number of cases for protostellar jets/counter
jets, where the observed direction of propagation for jet and
counter jet is not exactly180◦.

Zinnecker et al. (1996, 1997) find that in the otherwise per-
fectly collimated, symmetric jet/counter jet system HH 212 the
direction of propagation for jet and counter jet deviates by an
angle of about 2◦ from 180◦. In the case of HH 111, Gredel &
Reipurth (1993) find a difference of 1◦between the two lobes;
however, the other bipolar jet originating in the same source
region, HH 121, shows a rather large angle difference between
its lobes of 15◦- 20◦. Another case is HH 24, where the flow
directions are misaligned by 6◦for jet and counter jet (Mundt et
al. 1991).

In addition, many of the observed jets do not propagate in a
straight motion, but form a curved or bent jet structure. Eislöffel

Send offprint requests to: C. Fendt, (cfendt@aip.de)

& Mundt (1997) observed Herbig-Haro flows on a parsec-scale,
and report changes in the flow direction (up to∼ 10◦). They
point out possible mechanisms for such changes, in particular
precession and Lorentz forces. Mundt et al. (1990) observed
several cases, i.e. the HH 30 jet and the HL Tau jet/counter jet,
where they derived curvature radii from0.6 to 3 1018 cm. They
were first to point out that the jet transverse displacement from a
straight motion of a protostellar jet may be due to Lorentz forces.
There are several examples known, where the jet/counter and
jet form an S-shape structure (Eislöffel & Mundt 1997).

For HH 30 Ĺopez et al. (1995) derive a P.A. for the jet prop-
agation of 30◦and 217◦for the outer jet and counter jet, respec-
tively. They point out a ’mirror symmetry’ of jet and counter jet,
ruling out Lorentz forces as the driving force of the jet deflec-
tion, unless a complex structure of the ambient magnetic field
is supposed (see below).

Bent jets are observed also for extragalactic jet sources.
Eilek et al. (1984) investigated several bending models for
3C 465, which exhibits a drastic bending of about 30◦-
50◦despite being a very well collimated jet/counter jet system
initially. They conclude that either Lorentz forces or interaction
with cool clouds may account for the bending.

In this paper we compare and discuss several physical mech-
anisms possibly responsible for a change of propagation direc-
tion for protostellar jets. Their effectiveness is estimated for
typical protostellar jet parameters.

2. Formation and propagation of magnetic jets

We briefly outline the general aspects and conditions of proto-
stellar jet formation. It is now almost accepted that protostellar
jets aremagneticallydriven jets (Pudritz & Norman 1986; Ca-
menzind 1990, 1997; Shu et al. 1994). Recently, these theoret-
ical ideas received direct support by radio observations, which,
for the first time, detected large-scale magnetic fields in the out-
flow from a young stellar object (Ray et al. 1997).

Following current jet models the jet originates in the inner-
most part of a magnetized star-disk system (Camenzind 1990;
Shu et al. 1994; Fendt et al. 1995; Fendt & Camenzind 1996).
Whether the jet field is basically anchored in the accretion disk
or in the stellar surface, is, however, not yet clear.
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The principal mechanisms of jet formation can be summa-
rized as follows. The underlying hypothesis is that jets can only
be formed in a system with ahigh degree of axi-symmetry.

– Magnetic fieldis generated by the star-disk system.
– The star-disk system also drives anelectric current.
– Accretingmatter is ejected as a plasma wind (either from

the stellar or disk surface) and couples to the magnetic field.
– The plasma becomesaccelerated magnetically, i.e. by con-

version of Poynting flux to kinetic energy.
– Plasma inertia leads to bending of the poloidal field (i.e. the

field along the meridional plane including the jet axis). The
pinching forces of the generated toroidal component (i.e.
the field component winding around the jet axis) eventually
collimate the wind flow, forming a collimated jet structure.

– The plasma velocity subsequently exceeds the speed of the
magnetosonic waves. In the fast magnetosonic regime the
flow is causally decoupled from outer boundary conditions.

– Where the jet front meets the interstellar medium (ISM), a
bow shockdevelops, thermalizing the jet energy. Also, the
electric current is closed via the bow shock, and the jet net
current returns to the source of the current via the ISM.

3. Possible mechanisms leading to a jet deflection

A general point concerning the deflection of a jet from its orig-
inal path of motion is that it can only be caused by someac-
celeration/decelerationmechanism. It cannot be caused by e.g.
a steady, proper motion of the jet together with the jet source,
since in this case the jet will have the same tangential velocity
as its source. Thus,forcesmust be involved, either acting on the
jet itself or on the jet source.

In the following we basically suppose the general model of
jet formation outlined in Sect. 2. The jets are ejected as straight
axisymmetric magnetosonic flows. The possible mechanisms
leading to a change in the direction of jet propagation could be
generally classified in three groups:

– Internal effectson small scales such as acceleration of the
jet source (by e.g. a binary component), or precession of an
accretion disk in a binary system.

– Mixed effectssuch as the interaction between intrinsic and
external properties, such as a Lorentz force due to a jet net
current and an external magnetic field.

– External effectson large scales such as a gravitational po-
tential of a source outside the star-jet structure or a pressure
/magnetic field of the ambient medium.

In general, we assume that the jet/counter jet with a length
scaleLjet follows a curvedtrajectory with the corresponding
curvature radiusRκ. This assumption is consistent with the
observations, although a straight jet trajectory in the case of
a small angle of deflection can not be excluded. Usually, the
deflection angleα is small and of the order of some degrees,
α ' tan(α) = 0.5 Ljet/Rκ, (see Fig. 1).

90−α

α

Counter jet

Jet

Jet
source

α

Κ

Curvature radius  R
90

Fig. 1.Model geometry in a deflected jet/counter jet system (solid line)
with an angle of deflectionα. The corresponding curvature radius is
Rκ. The direction of deflected jet propagation is approximated by the
chord (thick dashed line). The jet source is represented as a star-disk-
system.

3.1. Binary (multiple) system

Could an orbital motion of the jet source in a binary system
account for the jet deflection? Binary systems are very common
among main-sequence stars, and there is evidence that the binary
frequency among protostars and PMS stars is at least as high
as among main-sequence stars (see Mathieu 1994; Zinnecker &
Brandner 1997).

To date, there are only few examples known of a jet source
being member of a multiple systems. Among them is T Tau
(Herbst et al. 1996) and RW Aur (Hirth et al. 1997). However,
the separation of the components in T Tau and RW Aur is rather
large. In turn, this may be the reason why jet motion occurs at
all, since the formation of a jet requires a system with a high
degree of axisymmetry, which would be disturbed by a close
companion.

Here we assume a scenario of a young stellar binary system
with one component emitting jets (see Fig. 2). The jet source
moves a distance∆x while ejecting a series of different portions
of the jet. The observed jet appears deflected, as the velocity
components of the jet are different for different timest1 andt2.

We estimate a kinematic time scaleτkin ' 100 yrs for an
observed jet lengthLjet ' 1017cm and for a typical jet speed
of 300 km s−1. This time scale might be larger, if the jet axis is
inclined against the orbital axis.

In the case of a small ratio∆x/Ljet, we defineα as the angle
between a straight jet propagation and the observed orientation,
which for analytical reasons is approximated as straight line,
sinα = ∆x/Ljet. With the assumption that this motion is due to
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Fig. 2. Model geometries in deflected
jet/counter jet systems.Left: Binary star - jet
system. Shown is the jet source at different
timest1 andt2. The observed jet is ejected
betweent1 and t2. The dynamical time of
the jet motion isτdyn = t2 − t1. The angle
of deflectionα is approximated by a straight
line (thick dashed line).Right: A poloidal
current densityjp in the jet and an exter-
nal magnetic fieldBext perpendicular to the
jet axis give rise to Lorentz forces. The S-
shape (solid line) and C-shape (dashed line)
of the jet system depend on the direction of
the current flow, as indicated.

acceleration by a companion star, the derivedminimumbinary
separation is∆x. It might be larger because of two reasons.
First, the binary system may not have completed half of its
orbit. Second, the jet axis might be inclined against the orbital
axis (different from Fig. 2).

In the case of HH 212 the angle ofα = 2◦ corresponds to
∆x = 120 AU, if we assume a length scaleLjet ' 1017cm for
the inner jet as observed (i.e. the series of the inner jet knots).
∆x is a lower limit for the binary separation with regard to a
detection of a jet bending within the kinematic time scale. In
turn, the binary separation gives the maximum value for∆x.

Thus, there are two constraints on the binary period with
regard to a detection of a jet bending: (i) If the period is too
large, the low orbital speed of the jet source,v?, leads to an angle
of deflectionα ' tanα ' (v?/vjet) too small for a detection,
within the kinematic timescale. (ii) Similarly, a small period,
equivalent to a small binary separationD, the jet deflection is
too small, since∆x <∼ D.

For the example of HH 212 from Kepler’s Third Law follows
an orbital period of the binary system ofP >∼ 500 yrs, assuming
a total mass of the systemMtot = 1 M� and a minimum binary
separation ofD = 0.5 · 120 AU.

This period is several times larger than the jet propagation
time scale for1017cm, in other words, the jet bending time scale
is shorter than the period of the orbit of the jet source. Therefore,
jet bending would be observable within the kinematic time scale.

(Note that, on the other hand, this implies that the formation the
jets is just a short event along the path of the binary).

From the constraints (i) and (ii) it can be derived that the
condition for an observation of the bending isP >∼ πτkin. The
upper limit for P is given by the observational resolution for
∆x. The ratio

P

τkin
>∼ 25

(
Ljet

1017cm

)1
2
(

sinα

sin 2◦

)3
2( vjet

300km s−1

)(Mtot

M�

)− 1
2

(1)

does not strongly depend on the jet length and the total mass of
the system.

The most likely main-sequence binary separation in the so-
lar neighborhood is abouta ' 30 AU (Duquennoy & Mayor
1991). For pre-main-sequence binaries the semi-major axis fol-
lows roughly a1/a distribution between 120 AU and 1800 AU
(Reipurth & Zinnecker 1993; K̈ohler & Leinert 1997). These
values are in agreement with the∆x estimated above for HH 212
as a requirement for a minimum binary separation in order to
influence the shape of the jet.

Note that, although the binarity of the young stellar system
breaks the axisymmetry on the large scale, the jet source itself
must provide an axisymmetric geometry in order to produce a
jet in the first place. The scenario of a ‘stellar’ jet formation
might be preferred in close binary systems compared to a ‘disk’
jet formation. This is because tidal interaction between disk
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and companion star may disturb the axisymmetry needed for jet
formation and thus prohibit the jet formation.

Jet wiggling is observed for a number of protostellar jets.
Examples are HH 30 (Burrows et al. 1996) and HH 83 (Reipurth
1989). It is, however, not yet clear whether this type of motion
is due to precession or other effects. One should keep in mind
that HH 30 is a very elongated, and thus presumably very stable
jet structure, with a full length of about 2′(Mundt et al. 1990)
or even 5′(López et al. 1995). For HH 83, Reipurth (1989) give
a physical amplitude of the wiggling helical motion of 400 AU.
This length scale would be identical to the binary separation, if
we suppose that the wiggling arises not from tidal interaction,
but from kinematic motion of the jet source in a binary system.

Evidence for tidal interaction and a precessing jet is found
in the case of the famous SS 433 system (Margon & Anderson
1989). The precession amplitude is5◦ with a period of 160
days. This jet is, however, relativistic and presumably highly
magnetized, which is in difference to protostellar jets.

3.2. Gravitational/inertial effects

Could an external gravitational potential due to a mass asym-
metry in the ISM account for a deflection of the jet? From com-
parison of gravitational to centrifugal forces on the jet,

G
ρjet∆Mext

R2
κ

=
ρjetv

2
jet

Rκ
(2)

where∆Mext is the external mass asymmetry (corresponding
to an external attractor with mass∆Mext at a distanceRκ), one
calculates a deflection angle for typical jet parameters,

α ' tan(α) =
Ljet v2

jet

2 G ∆Mext
= (3)

= 0.03
(

Ljet

1017 cm

) (
vjet

300 km s−1

)2 (
∆Mext

107 M�

)−1

Thus, the deflection of the jet by a gravitational potential re-
quires an unreasonably high mass asymmetry in the ISM. There-
fore, these large scale gravitational/inertial effects can hardly
account for the observed jet deflection.

Another possibility is that the star, or rather the jet source,
becomes accelerated itself, while the jet remains in a steady mo-
tion. Since a large scale external gravitational potential attracts
both star and jet, only internal, i.e. small scale, potential differ-
ences may account for a specific acceleration of the star. The
most reasonable source for such a potential would be a binary
companion (see Sect. 3.1)

3.3. Dynamical pressure of external medium

Suppose that the star-disk-jet system as a whole performs a
steady motion. If it then penetrates a large cloud in the ISM, the
‘light’ jet flow will be deflected due to the dynamical pressure
of the cloud, while the ‘heavy’ star will continue on its path.
(Note that this scenario is different from that of a jet source at
rest, where the jet bores a funnel through the ISM.)

For a system tangential velocityv? and an external medium
of constant densitynism, the stationary dynamic pressure ex-
erted by the ISM isPD = nismv2

?. The force density is∇PD.
If we assume thatPD drops on length scales of some jet radii
Rjet, comparison of centrifugal force with dynamical pressure
force gives

njetv
2
jet

Rκ
=

nismv2
?

Rjet
. (4)

If we again defineα ' tan(α) = 0.5 Ljet/Rκ as the angle of
deflection, we find

α ' tan(α) =
1
2

Ljet

Rjet

nism

njet

(
v?

vjet

)2

= (5)

= 10−3
(

Ljet/Rjet

20

) (
nism/njet

1

) (
v?/vjet

0.01

)2

.

This value forα is below the observed angles. The maximum
deflection angle is observed if we look perpendicular to the
motion of the star (but depends on the inclination of the jet
axis). The observed deflection angle becomes larger if the jet
axis is inclined.

The energy density involved in this stationary process is
mpnismv2

?, being released in heating the jet and the ambient
medium. The resulting jet luminosity due to this ‘braking’ pro-
cess is of the order of

Lrad ' 2mpnismv3
?LjetRjet = (6)

= 8 10−8L�
( nism

103cm−3

)( Rjet

1015cm

)(
Ljet

1017cm

)( v?

km s−1

)3
.

In terms of the jet kinematic luminosity we calculate

Lrad

Lkin
' nism

njet

Ljet

Rjet

(
v?

vjet

)3

' 1
2

α

(
v?

vjet

)
, (7)

which is very small for typical protostellar jet parameters, and
therefore hardly observable.

Dynamical pressure of an external medium might however
be important if the jet is propagating under the influence of
a stellar wind from young stars in its vicinity (Mundt, 1997,
private communication). This scenario of the protostellar jet
environment is likely, since star formation produces groups of
young stars.

In order to estimate this effect we have to rewrite Eq. (5),
with the wind densitynism → nwind and velocity of the wind
v? → vwind. With the estimatesvwind ' 0.1vjet and the density
contrastnwind/njet ' 0.1 we find α ' 0.01, which is of the
order of the observed angles.

3.4. Inclined strong external magnetic field

Without a detailed consideration, we mention another possibil-
ity of deflection of jets from their propagation direction. That
is by strong external (poloidal) magnetic fields inclined against
the jet axis. In a simple picture, this field acts like a wall for the
conducting jet plasma (ideal magnetohydrodynamics, frozen in
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magnetic field), and, depending on the field strength and on the
inclination angle, the jet will tend to flow along this wall. Jet
and counter jet are deflected in opposite direction, forming a
S-shaped structure (see Fig. 2).

Currents are not considered here (but see Sect. 3.5). Esti-
mation of the involved field and jet kinetic energy shows that a
typical protostellar jet will clearly dominate the external field,

ρjetv
2
jet

B2
ext/4π

= 4 103
( njet

100cm−3

)( vjet

100km s−1

)2
(

Bext

10 µG

)−2

.(8)

This process is therefore unlikely for protostellar jet deflection.
The ’magnetic wall’ consisting of the interstellar magnetic field
of typical field strength is too soft in order to deflect the jet
motion.

3.5. Lorentz forces

Here we estimate the Lorentz forces between the current car-
rying jets and an external (interstellar) magnetic field. A net
poloidal current along the jet is necessary in order to achieve a
high degree of collimation (Heyvaerts & Norman 1989).

Comparison of the centrifugal force due to the curved jet
motion and the Lorentz force due to jet current and external
magnetic field gives

1
c
jP × Bext =

ρjetv
2
jet

Rκ
, (9)

wherejP is the poloidal current density andBext the poloidal
component of the external magnetic field (see Fig. 2). Inte-
grating over the jet diameter, only thepoloidal external mag-
netic field component which isperpendicularto the jet axis,
Bext sin δ, gives a net Lorentz force perpendicular to the jet
axis (with the angleδ between the jet and the poloidal field).
The toroidal part of the external field does not contribute to the
bending of the jet as a whole, it rather pinches and collimates
the jet structure itself. The jet magnetic fieldBjet is responsible
for the internal jet structure, i.e. the collimation and acceleration
of the jet, and cannot bend the jet.

In Eq. (9), it was assumed that the external field ishomo-
geneouson a large scale, at least on the scale of the jet length.
Otherwise the bending effect will vary along the jet axis.

In particular, it was assumed that the external field is present
alsowithin the jet, after all in Eq. (9)jP andBext have to be
measured at the same physical position. This is a critical point
if we consider highly conductive jets, where the jet plasma, as
it flows along the jet, may potentially sweep any external field
out of the jet funnel. In this case the Lorentz force in Eq. (9)
would vanish and the problem is similar to that of Sect. 3.4.

From Eq. (9), it is straightforward to find an expression for
small deflection angles,

α ' tan(α) =
IjetBext sin δ

c

Ljet

2πmnjetR2
jetv

2
jet

(10)

with the jet particle densitynjet, the jet radiusRjet, the jet
velocity vjet, and the particle massm (in the following m ∼

10−24 g). With typical jet parameters (see Camenzind 1990;
Fendt et al. 1995) we find

α ' 0.018 sin δ

(
Ijet

1011 A

) (
Bext
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) (
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1017 cm

)
(11)

(
Rjet

1015 cm

)−2 ( njet

100 cm−3

)−1
(

vjet

300 km s−1

)−2

,

which is of the order of the observed values (1 − 2◦),
We see from Eq. (10) that the deflection angle is rather sen-

sitive to the jet parameters. The question arises, why only small
deviations from the intrinsic direction of propagation have been
observed? We suspect that a hypothetical larger deflection will
just destroy the jet as such. Furthermore, it is not that plausi-
ble to change all the protostellar jet parameters in the brackets
with a positive exponent in Eq. (11) by, say, an order of mag-
nitude. Thus, Lorentz bending may change the direction of jet
propagation only slightly.

However, considering the possibility of sweeping the exter-
nal magnetic field out of the jet funnel (see above), the magnetic
field in Eq. (11) may be strongly over-estimated concerning its
strengthinsidethe jet. In this case the deflection due to Lorentz
forces would be much weaker. In turn, one may conclude that
only jets with finite conductivity could be deflected.

The direction of the jet deflection is determined by the di-
rection of the poloidal current, if we assume that the external
field remains constant along the whole jet/counter jet structure
(see Fig. 2). We expect an S-shape structure of the jets, if the
poloidal current flows in opposite direction in the jet and counter
jet. Similar shapes were observed (see discussion in Eislöffel &
Mundt 1997). Alternatively, in a C-shaped jet/counter jet topol-
ogy the poloidal current would flow in the same direction in
both the jet and counter jet (see below). This scenario would be
appropriate for e.g. the HH 212 jets, where jet and counter jet
are deflected in the same (western) direction (Zinnecker et al.
1996).

In order to explain both types of jet bending, one may hy-
pothesize that the physical parameters of the accretion disk play
a role for the closure of the current system. In the case of the S-
shaped topology the jet current system closes via the bow shock
and the ISM to ahighly conductiveaccretion disk (and possi-
bly continues to the star), and the same holds for the counter-jet
current. In the case of a C-shaped topology the jet current closes
from the bow shock via the ISM to the counter jet, and does not
penetrate theweakly conductiveaccretion disk. The difference
in the disk conductivity could be caused by a different temper-
ature, accretion rate, different composition of the disk material.
These differences may develop at various stages during the life-
time of the accretion disk.

4. Conclusions

In this paper we have discussed several possible mechanisms
providing a deflection of protostellar jets from their original
direction of propagation.

Among these physical mechanisms,gravitationalattraction
of a mass external to the star-jet system,inertial effects of the jet
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source and jet in an ambient medium, and aninclined magnetic
field are probably irrelevant for the observed jet deflection of
several degrees.

Dynamical pressureof the ambient medium on the jet cannot
be ruled out, but requires lower jet velocities and a higher density
contrast between jet and ambient medium than observed.

We find two physical processes, which are possible reasons
for jet deflection. These are (1) the action of Lorentz forces
between the jet and interstellar magnetic field, and (2) orbital
motion of the jet source in a binary (or multiple) system. Mech-
anism (1) requires a net electric current flow in the jet, a realistic
possibility in the case of a highly collimated jet. The conduc-
tivity of the accretion disk might play a role concerning the
closure of the current system and the shape of jet / counter jet
systems (S-shape vs. C-shaped). However, depending on how
the interstellar magnetic field is distributedwithin the jet, the
magnitude of jet bending due to Lorentz forces remains uncer-
tain. Mechanism (2) requires a certain interrelation between the
kinematic parameters of the jet and binary components. Other-
wise the bending is too small (for high jet speeds or large binary
separation). For typical jet speeds of300 km s−1 the binary sep-
aration must be of the order of' 100AU in order to obtain a
jet deflection angle of several degrees. This is, indeed, what is
observed as a typical separation in pre-main sequence binaries.

Although all processes discussed above imply non-
axisymmetry of the jet source - jet system on large scale,
we emphasize that the jet formation itself always requires an
intrinsically axisymmetric topology. A high degree of non-
axisymmetry would disrupt the jet. This might be the reason
why protostellar jets show only small deflection angles.
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Abstract. Highly relativistic jets are most probably driven by strong magnetic fields and launched from the
accretion disk surrounding a central black hole. Applying the jet flow parameters (velocity, density, temperature)
calculated from the magnetohydrodynamic (MHD) equations, we derive the thermal X-ray luminosity along the
inner jet flow in the energy range 0.2−10.1 keV. Here, we concentrate on the case of Galactic microquasars emitting
highly relativistic jets. For a 5M� central object and a jet mass flow rate of Ṁj = 10−8 M� yr−1 we obtain a
jet X-ray luminosity LX ≈ 1033 erg s−1. Emission lines of Fe XXV and Fe XXVI are clearly visible. Relativistic
effects such as Doppler shift and boosting were considered for different inclinations of the jet axis. Due to the
chosen geometry of the MHD jet the inner X-ray emitting part is not yet collimated. Therefore, depending on the
viewing angle, the Doppler boosting does not play a major role in the total spectra.

Key words. MHD – radiation mechanisms: thermal – X-rays: binaries – ISM: jets and outflows

1. Introduction

Microquasars (Mirabel & Rodŕıguez 1999) are Galactic X-
ray binaries where the three basic ingredients of quasars
are found – a central black hole, an accretion disk
and relativistic jets. Jets are thought to be driven by
magnetohydrodynamic (MHD) mechanisms (Blandford &
Payne 1982; Camenzind 1986) triggered by the interac-
tion of those three components, although the jet for-
mation process is not yet fully understood (e.g. Fendt
1997). Some microquasars are superluminal sources,
e.g. GRS 1915+105 at a distance of 7−12 kpc (Fender
et al. 1999) with a central mass of about 14M� (Greiner
et al. 2001).

Fendt & Greiner (2001, FG01) presented solutions of
the MHD wind equation in Kerr metric with particular ap-
plication to microquasars. These solutions provide the flow
dynamics along a prescribed poloidal magnetic field line.
FG01 found temperatures up to more than 1010 K in the
innermost part of the jet proposing that thermal X-rays
might be emitted from this region. Here, we calculate the
thermal spectrum of such an optically thin jet flow taking
into account one of the solutions of FG01 and considering

Send offprint requests to: E. Memola,
e-mail: memola@asdc.asi.it
? Current address: Italian Space Agency - Science Data

Center, c/o ESA-ESRIN, via Galileo Galilei, 00044 Frascati,
Italy.

relativistic Doppler shifting and boosting as well as differ-
ent inclinations of the jet axis to the line-of-sight (l.o.s.). A
similar approach was undertaken by Brinkmann & Kawai
(2000, BK00) who have been modeling the two dimen-
sional hydrodynamic outflow of SS 433 applying various
initial conditions. However, they do not consider relativis-
tic effects such as Doppler boosting in their spectra.

2. The model

The axisymmetric, stationary and ideal MHD wind so-
lution provides the density, velocity and temperature for
each volume element along the field. Prescribing the jet
mass flow rate Ṁj together with the shape of the field
line, these solutions give a unique set of parameters of the
flow defined by the regularity condition across the magne-
tosonic points (see FG01 for details).

The calculated dynamical parameters are our start-
ing point to obtain the X-ray spectra of the jet. Here, we
refer to the solution S3 of FG01 obtained for a collimat-
ing field line z(x) = 0.1(x − x0)6/5, x being the normal-
ized cylindrical radius, x0 the foot point of the field line
at the equatorial plane, and z the height above the disk.
Length scales are normalized to the gravitational radius
rg = 7.4× 105 cm (M/5M�). For completeness, we show
the radial profiles of poloidal velocity, density, tempera-
ture, and emitting volume along the field line in Fig. 1.
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Fig. 1. Dynamical parameters of the MHD jet (see FG01). Shown is the radial dependence of the properly normalized poloidal
velocities up(x) = γvp/c, particle densities ρ(x), temperatures T (x) (in K), and size of the emitting volumes V (x) (from left to
right) along the chosen magnetic field line. For the calculations in this paper we apply a central mass of 5M� and a jet mass
flow rate of Ṁjet = 10−10 M� yr−1. The units are therefore rg = 7.4 × 105 cm for all length scales, r3

g = 4.1 × 1017 cm3 for the
volumes, and 4.31 × 1016 cm−3 for the particle densities. Note that the jet injection point is located at Ri = 8.3 rg with a gas
temperature of Ti = 1010.2 K. In this solution for the MHD wind equation, the poloidal velocity saturates to a value of up = 2.5
beyond x ' 108. The flow is weakly collimated reaching a half opening angle of 70◦ at about x = 250.

The jet geometry consists of nested collimating conical
magnetic surfaces with sheets of matter accelerating along
each surface. The sheet cross section becomes larger for
larger distances from the origin. The distribution of the
5000 volume elements along the jet is such that velocity
and density gradients are small within the volume. We
have 63 volumes in φ direction defining an axisymmetric
torus (i.e. 5000 tori along the magnetic surface).

We distinguish two parts of the inner jet flow. One is
for a temperature range T = 106.6−109 K, where we cal-
culate the optically thin continuum (bremsstrahlung) and
the emission lines. The other is for T = 109−1012 K, where
only bremsstrahlung is important. Any pair processes are
neglected and no (e−e−)-bremsstrahlung will be consid-
ered, although that might be dominant at the highest
temperatures. Such unphysically high temperatures are to
a certain degree caused by the use of a non-relativistic
equation of state. Employing a relativistically correct
equation of state (Synge 1957) one would expect gas
temperatures an order of magnitude lower (Brinkmann
1980). These temperatures belong to the intermediate re-
gion between disk and jet. The injection radius,which is, in
fact, the boundary condition for the jet flow, is located at
Ri = 8.3 rg and at a height above the disk (and the foot
point of the field line) of 0.74 rg. For the chosen MHD
solution the temperature at this point is Ti = 1010.2 K.
With Ri ' 6× 106 cm (M/5M�) we investigate a region
of about 2.5× 10−5 (M/5M�) AU.

Having determined the emissivities of single volume el-
ements, these can be put together obtaining a rest-frame
spectrum where any motion is neglected. However, the
knowledge of the MHD wind velocities allows us to de-
termine the Doppler shift of the spectral energies and the
boosting of the luminosity for each volume. We finally ob-
tain a total spectrum of the inner jet considering these
effects in a differential way for each volume element. The
final spectra of course depend also from the jet inclination.

We emphasize that our approach is not (yet) a fit to
certain observed spectra. In contrary, for the first time,

for a jet flow with characteristics defined by the solution
of the MHD wind equation, we derive its X-ray spectrum.
Our free parameters are the mass of the central object M
defining the length scales, the jet mass flow rate Ṁj and
the shape of the poloidal field lines. In the end, from the
comparison of the theoretical spectra with observations,
we expect to get information about the internal magnetic
structure of the jet close to the black hole and the jet mass
flow rate.

3. X-ray spectra in the rest frame of the volumes

The computation of the continuum spectrum and the
emission lines of an optically thin plasma takes into
account free-free, free-bound and two-photon processes
(Mewe et al. 1985; Kotani et al. 1996; BK00). Cosmic
abundances given by Allen (1973) are used for a plasma
in equilibrium at the local temperature.

3.1. Luminosities of the fast flow (T = 106 .2−109 K)

Considering the size, density and temperature of each vol-
ume, the luminosities (erg s−1(0.1 keV)−1) of the jet-tori
have been calculated in the energy range 0.2−10.1 keV
(bin size 0.1 keV). Examples are shown for four tempera-
tures in Fig. 2 (see also Table 1). With the increase of the
temperature the luminosity range is compressed, therefore
those spectra are flatter and the strong cutoff seen for
lower temperatures disappears. The luminosity of hot gas
volume elements (T ' 109 K), located above the injection
point, is higher (factor 100) than the one of the cooler,
but faster volume elements. Note that the luminosities
shown in Fig. 2 are calculated for Ṁj = 10−10M� yr−1.
This quantity is hardly known from observations and, in
turn, the calculated luminosities may constrain its value.
A mass flow rate 100 times higher increases the luminosity
by a factor of 104, for the same magnetic field geometry.

For temperatures T = 106−109 K many emission
lines are present in the energy range 0.2−10.1 keV (Mewe
et al. 1985). The 0.5−0.9 keV band contains O, N, Fe, Ne,
S, Ca lines whereas lines of Ne, Fe, Mg, Ni, Si, S, Ar, Ca
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Fig. 2. X-ray luminosities of jet-tori of 63 volume elements with different temperatures: T = 106.64 K, T = 107 K, T = 108 K,
T = 109 K (from left to right). The jet mass flow rate considered here is Ṁj = 10−10 M� yr−1 for a 5M� central object.

are found between 1.0−4.0 keV. From 6.6−7.0 keV mostly
FeXXV (He-like) and FeXXVI (H-like) emission lines are
present (BK00). For fully ionized plasma of T ≥ 109 K the
bremsstrahlung continuum emission is dominant.

The total rest-frame spectrum (neglecting the velocity
of the volumes) of a conical sheet of the jet is the inte-
grated luminosity of the single volumes along the field,
taking into account also the number of volumes along the
jet-tori (Fig. 3c). The emission lines at 6.6 and 6.9 keV
can be identified as Kα lines from He-like and H-like iron,
while the one at 8.2 keV could be the Kβ from the He-like
iron.

3.2. The hot flow close to the disk (T ≥ 109 K)

The thermal continuum of an optically thin fully ionized
plasma follows from the formula of bremsstrahlung emis-
sion (Rybicki & Lightman 1979),

εν ≡
dW

dV dt dν
= 6.8× 10−38Z2neniT

−1/2e−hν/kT ḡ, (1)

(in erg s−1 cm−3 Hz−1), with the velocity averaged Gaunt
factor ḡ(T, ν)1, the atomic number Z, the electron and
ion number densities ne and ni, the Planck constant h
and the Boltzmann constant k. Considering the calcu-
lated volume parameters for temperatures below 109 K,
we obtain a bremsstrahlung luminosity Lbr compara-
ble to the results in Fig. 2 as expected, in fact, since
bremsstrahlung is included in that calculation. Still con-
sidering Ṁj = 10−10M� yr−1, for T ' 1010 K we obtain
Lbr ≈ 1025 erg s−1(0.1 keV)−1, for T ' 1011 K we obtain
Lbr ≈ 1027 erg s−1(0.1 keV)−1, and when T ' 1012 K the
luminosity is Lbr ≈ 1030 erg s−1(0.1 keV)−1. Therefore, we
expect an increase of the X-ray luminosity due to the
bremsstrahlung contribution of the hottest regions in the
jet-disk system, if the optically thin condition is still sat-
isfied there.

1 For simplicity, the estimates in this subsection are obtained
for a Gaunt factor set to unity. For the spectra shown in our
paper this factor differs slightly from volume to volume.

4. Relativistic effects – Doppler shift and boosting

We now consider relativistic Doppler effects due to the
motion of the jet volumes toward the observer. The rela-
tivistic Doppler factor is D = (γ(1− β cos θ))−1, where γ
is the Lorentz factor, β the plasma velocity in units of the
speed of light and θ the angle between the trajectory of
the volume and the l.o.s. The observed energies Eo and
luminosities Lo of each volume element are shifted and
boosted to the rest frame values (index e),

Eo = DEe and Lo(Eo) = D3 Le(Ee). (2)

Note that the Doppler factor depends on both γ and θ
(see also Urry & Padovani 1995) and is unity for θ =
arccos

(√
(γ − 1)/(γ + 1)

)
. For larger angles, relativistic

de-amplification takes place due to the time lapse in the
moving frame of reference. This is the reason for D < 1
in our jet (Table 1). Also known as second order Doppler
effect, this was first observed in SS 433 (Margon 1984).
De-boosting is also present in the asymptotic radio jets
(different from the collimation region investigated here) of
GRS 1915+105 inclined by 70◦ to the l.o.s., actually pro-
viding a distance indicator (Mirabel & Rodŕıguez 1994).

4.1. Shifted and boosted spectra

Figures 3a,b show the effect of boosting and shifting of the
rest frame spectra. For an angle between the l.o.s. and the
jet axis of 40◦, the maximum boosting D3 = D3

−40 = 6.7
is obtained for the volume with T = 106.64 K (see also
Table 1). The maximum de-boosting is for the volume at
the opposite side of the cone, D3

+40 = 0.15. As in the rest
frame, the “hot” spectra are flatter.

To obtain a total shifted and boosted spectrum we
need to interpolate the single volume luminosity values
since they are shifted to different energies. Considering the
case where the jet axis is along the l.o.s. (θ‖, see Fig. 3c),
we have only a weak effect of shifting, in fact, we are look-
ing almost perpendicular to an uncollimated flow. For a
larger jet inclination the Doppler effects become larger. In
this case, one should take into account the fact that the
angle between the velocity and the l.o.s. (θ‖) varies along
the jet-torus. However, we have considered it reasonable
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Fig. 3. Doppler shifted and boosted spectra. Spectra for a volume element with T = 107 K a) and T = 109 K b) for different
jet inclinations. Doppler factor D−40 (triple dotted-dashed line, top), D−20 (dotted-dashed line, top), rest-frame (solid line),
D‖ (dotted line), D+20 (dotted-dashed line, bottom), D+40 (triple dotted-dashed line, bottom). c) Comparison of the total
shifted/boosted spectrum D‖ (thick dotted line) of a conical sheet with the rest-frame spectrum (thin solid line). d) Inclined
jet, comparison of the boosted spectra D−20 (thick line top) and D+20 (thick line bottom) with the total spectrum (thick line
middle) and the rest-frame spectrum (thin line middle).

to divide the jet-tori in two regions, one third containing
volume elements for which the Doppler effect has been
calculated using the minimum angle between the plasma
velocity and the l.o.s., and two thirds containing volume
elements for which the Doppler effect has been calculated
using the maximum angle between the plasma velocity
and the l.o.s.

The total spectra have been calculated by first conside-
ring the blue-shifted and red-shifted parts of the flow and
then summing up all the luminosities in each energy bin,
where blue and red shifted luminosities are available. The
result is shown in Fig. 3d with the luminosity rescaled in
order to compare the total spectrum with its components.

Note that the iron line features are considerably shifted
also after the interpolation. The change in the line shape

is due to the fact that for each of the 5000 volumes along
the jet a different Doppler factor must be considered. For
a larger jet inclination (D−40 , D+40) the lines are spread
out widely because of the larger Doppler shift (not shown).
The de-boosting contribution of the receding counter-jet
has not been taken into account.

5. Discussion

5.1. X-ray luminosities

We find a total rest-frame X-ray luminosity of the jet
LX = 3.8 × 1031 (Ṁj/10−8M� yr−1) erg s−1. The total
kinematic luminosity for this jet mass flow rate is Lk =
γṀjc

2 ≈ 1039 erg s−1 � LX. This proves a posteriori that
the assumption of a polytropic gas law used to obtain the



E. Memola et al.: Thermal X-ray spectra 1093

Table 1. Dynamical parameters for four example volume el-
ements. Quoted are temperature T , mass M , particle density
ρ and the Lorentz factor γ. The angle θ‖ is the angle between
the plasma velocity and the l.o.s., if the l.o.s. is parallel to
the jet axis. The corresponding Doppler factor is D‖. If the
l.o.s. is inclined 20◦ to the jet axis, the minimum (maximum)
angle between the plasma velocity and the l.o.s. is θ‖ − 20◦

(θ‖ + 20◦) with a corresponding Doppler factor D−20 (D+20)
and similarly for an inclination of 40◦.

T (K) 109 108 107 106.64

M (gr) 7× 107 2× 107 1.1× 107 0.97× 107

ρ (cm−3) 6× 1013 2× 1012 6× 1011 2× 1011

γ 1.014 1.179 1.428 1.494

θ‖ (◦) 82 77 72 70

D‖ 1.010 0.960 0.898 0.899

D−20 1.07 1.19 1.25 1.28

D+20 0.96 0.79 0.68 0.67

D−40 1.12 1.47 1.77 1.88

D+40 0.91 0.68 0.55 0.53

MHD wind solution is consistent with the amount of ra-
diation losses.

Considering the Doppler factor D‖, the total
X-ray luminosity of the jet is LX = 6.4 ×
1032 (Ṁj/10−8M� yr−1) erg s−1. In the case of an in-
clined jet axis (D−20, D+20) we have LX = 1.4 ×
1033 (Ṁj/10−8M� yr−1) erg s−1. For D−40 and D+40

we obtain LX = 1.1 × 1033 (Ṁj/10−8M� yr−1) erg s−1.
These values can be increased by the contribution of
bremsstrahlung from the high temperature (T ≥ 109 K)
volumes till about LX ≈ 1034 erg s−1.

In comparison, the X-ray luminosity of GRS 1915+105
is 1038 erg s−1 in low-state and 1039 erg s−1 in high-state
(Greiner et al. 1996), and larger than the one we obtain.
Such a luminosity might be obtained from the jet for an in-
creased mass flow rate. The jet inclination of 70◦ implies a
maximum boosting of about 20 for some volumes. Further,
also the accretion disk contributes to the X-ray flux. In
SS433 we have LX > 1035 erg s−1 (Brinkmann et al. 1996)
but no broad Fe-lines are observed. This might be either
due to a very low mass flow rate (low jet luminosity) or to
a very high mass flow rate (self-absorption of the emission
lines).

Higher jet velocities (γ > 2) may increase the Doppler
boosting. Such velocities can be easily obtained for a
higher flow magnetization, i.e. for a stronger magnetic
field strength or a lower jet mass flow rate (see FG01;
Fendt & Camenzind 1996). However, for the same mass
flow rate, a higher velocity implies a lower gas density,
which may lead, instead, to a decrease of the lumino-
sity. The interplay of these effects is rather complex. The
rest frame emissivity depends on the density as ∼ρ2 and
is also proportional to the emitting volume. The maxi-
mum Doppler boosting increases with the Lorentz factor,
D3(cos θ = 1) ' (2γ2 (1 +

√
1− γ−2))3/2, whereas the

real boosting parameter also depends on the inclination
of the velocity vector to the l.o.s. Answering the question

how these effects determine the observed X-ray luminosity,
would require a detailed study of various MHD wind solu-
tions and their derived spectra investigating different mag-
netic field geometries (degree of collimation), jet mass flow
rates (the flow magnetization), and also possible masses
of the central black hole. We will return to this important
point in a future paper.

Markoff et al. (2001) have recently shown (for
XTE J1118+480) that synchrotron emission from the jet
may play a role also in the X-ray band. Their model dif-
fers from ours in some respects, especially the initial jet
acceleration is not treated and the jet nozzle geometry
is more concentrated along the axis with a jet radius of
only 10 Schwarzschild radii (in our model the jet is much
wider and collimates later). As a consequence, the densi-
ties become higher and it is questionable whether a more
reasonable jet geometry will deliver the same amount of
X-ray flux.

5.2. Jet plasma composition

At this point we should note that the fundamental ques-
tion of the plasma composition in relativistic jets has not
yet been answered. In the case of microquasars we do not
really know whether the jet consists of a e−p+ or a e−e+

plasma (see e.g. Fender et al. 2000). It could be possible
that these jets are “light” jets, i.e. made of a pair plasma
only, and we would not expect to observe an iron line emis-
sion from such jets. Instead, the iron line emission would
then arise from processes connected to the accretion disk
or an accretion column. Such models were discussed for ex-
ample in the case of XTE J1748−288 (Kotani et al. 2000;
Miller et al. 2001).

On the other hand, the theoretical spectra derived in
our paper provide an additional information needed in
order to interpret the observed emission lines. A deeper
understanding will, however, require a more detailed in-
vestigation of different jet geometries, viewing angles and
mass flow rates. In the end, this might answer the ques-
tion whether the line emission, or at least part of it, comes
from the highly relativistic jet motion or from a rapidly
rotating (i.e. also relativistic) accretion disk. For exam-
ple, we expect the emission lines of a collimated jet being
narrower, and probably shifted by a larger Doppler factor,
due to the strong beaming. One should also keep in mind
that the direction of motion of the jet material is inclined
(if not perpendicular) to the disk rotation.

Evidently, if the observations would tell us that the
Doppler shifted Fe lines which are visible in our theoretical
spectra arise in the jet material, this would also prove the
existence of a baryonic component in these jets.

Nevertheless, observations in the radio and shorter
wavelengths give clear indication for synchrotron emis-
sion from highly relativistic electrons. Whether this non
thermal particle population contributes to all of the ob-
served emission is not clear, a hot thermal plasma may
also exist besides the non thermal electrons.
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A similar discussion concerning the plasma compo-
sition is present in the context of extragalactic jets
(e.g. Mukherjee et al. 1997). The non thermal emission
from blazars can be explained by inverse Compton scat-
tering of low-energy photons by the relativistic electrons
in the jet. However, two main issues remain unsolved: the
source of the soft photons that are inverse Compton scat-
tered, and the structure of the inner jet, which cannot be
imaged directly. The soft photons can originate as syn-
chrotron emission either within the jet (see e.g. Bloom &
Marscher 1996) or nearby the accretion disk, or they can
be disk radiation reprocessed in broad emission line clouds
(see e.g. Ghisellini & Madau 1996). In contrast to these
leptonic jet models, the proton-initiated cascade model
(see e.g. Mannheim & Biermann 1989) predicts that the
high-energy emission comes from knots in jets as a conse-
quence of diffusive shock acceleration of protons to ener-
gies so high that the threshold of secondary particle pro-
duction is exceeded.

Comparison of our calculated Fe emission lines to the
observed ones potentially give some hints on the plasma
composition (e−p+ or e−e+) in relativistic jets.

6. Summary

For the first time, theoretical thermal X-ray spectra were
obtained for the dynamical parameters of a relativistic jet
calculated from the MHD wind equation. The total spec-
tra were derived as composition of the spectral contribu-
tions of the single volume elements accelerating along the
jet with relativistic speed. Our results are the following.

1. We find X-ray emission from the hot inner part of the
jet originating in a region of 2.5 × 10−5 AU diameter
close to the center of a 5M� jet source. The jet X-ray
luminosity is LX ∼ 1033 (Ṁj/10−8M� yr−1) erg s−1.

2. Emission lines of Fe XXV and Fe XXVI are clearly
visible in our spectra. Interestingly, the Kα iron emis-
sion line has been probably observed in GRS 1915+105
(Ebisawa et al. 1998) and XTE J1748–288 (Kotani
et al. 2000). The absence of broad Fe-lines in the spec-
trum of SS433 might tell us something on the “in-
visibility” of the acceleration region above the disk.
Comparison of our calculated emission lines to ob-
served ones may give some hints on the plasma com-
position in relativistic jets.

3. From the MHD jet underlying the spectra we find
a maximum Doppler boosting of about 7. Minimum
boosting is present along the opposite side of the jet
cone (Doppler factor 0.53). The shift of the emission
lines is always visible. The boosting, however, does not
play a major role in the total spectra, because of the
uncollimated geometry of the innermost part of the jet
emitting the X-rays and the combined effect of boost-
ing and de-boosting around the jet cone.

If jets from X-ray binaries indeed contain matter of bary-
onic composition, our model will have a broad application.
Indication of that is probably given by the observation of

iron emisson lines in some sources (see above). However,
it is not yet clear, whether the line emission originates in
the jet or in the accretion disk. Our calculated Fe emis-
sion lines may help to interpret the observed spectra and
potentially give some clue on the plasma composition in
relativistic jets.

This study will be extended in a future work investi-
gating spectra of jets with different magnetic geometry,
mass flow rates and central masses. In the end, this might
also allow to constrain the intrinsic parameters of jet for-
mation itself (such as mass loading or opening angle) from
the observation of the large-scale, asymptotic jet.
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