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Foreword

Synchronization is a fundamental nonlinear phenomenon, discovered at the be-
ginning of the modern age of science by Christiaan Huygens [36]. In the classical
sense, synchronization means adjustment of frequencies of periodic oscillators
due to a weak interaction. This effect, observed in various physical and biologi-
cal systems, is well studied and finds a lot of practical applications in electrical
and mechanical engineering.

The first aim of this thesis is to extend the classical theory to cover the
case of weakly coupled chaotic oscillators. This is achieved by introducing the
notion of phase and mean frequency for autonomous time-continuous chaotic
systems. It is demonstrated that for this class of objects one can observe such
synchronization phenomena as entrainment by an external force, mutual syn-
chronization of two systems, synchronization in spatially ordered and globally
coupled oscillators. It is shown that synchronization of periodic, noisy and
chaotic self-sustained oscillators can be considered within a unified framework,
i.e., in terms of phase and frequency locking.

The second aim of the thesis is the development of data analysis tools, based
on the ideas from the synchronization theory. In particular, two problems are
considered: detection of weak interaction and determination of the direction of
coupling from data. The techniques are exploited in analysis of experiments on
cardiorespiratory interaction and pathological brain activity.

The first Chapter presents brief introduction to the classical synchronization
theory; next, the notion of phase and phase dynamics of chaotic oscillators are
discussed there; the Chapter is concluded by the description of synchronization
of a chaotic oscillator by a periodic force. The second Chapter presents the
effects of mutual synchronization of two systems, self-synchronization in ensem-
bles of globally coupled oscillators and synchronization in lattices, as well as
the discussion of synchronization transitions. Chapter 3 treats the case of oscil-
lators which do not admit unambiguous definition of the phase (systems with
ill-defined case). Chapter 4 is devoted to data analysis. It contains formulation
of the synchronization approach to data analysis, discussion of the data analysis
tools and experimental examples.

Presentation of results is mainly based on the papers [85, 86, 76, 88], the
book chapter [91], and the book [70].
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Chapter 1

Phase synchronization of a
periodically forced chaotic
oscillator

1.1 Introduction

Synchronization, a basic nonlinear phenomenon, discovered at the beginning of
the modern age of science by Huygens [36], is widely encountered in various fields
of science, often observed in living nature [29, 28] and finds a lot of engineering
applications [8, 9]. In the classical sense, synchronization means adjustment of
frequencies of self-sustained oscillators due to a weak interaction. The phase of
an oscillator may be locked by periodic external force; another situation is the
locking of the phases of two interacting oscillators. Synchronization of periodic
systems is pretty well understood [8, 2, 35, 45, 32], as well as the effects of noise
on phase and frequency locking [106].

In the context of interacting chaotic oscillators, several effects are usually
referred to as “synchronization”. Due to a strong interaction of two (or a large
number) of identical chaotic systems, their states can coincide, while the dy-
namics in time remains chaotic [25, 73]. This effect is called “complete synchro-
nization” of chaotic oscillators. It can be generalized to the case of non-identical
systems (“generalized synchronization”) [93, 41, 63] or interacting subsystems
(“master-slave synchronization”) [64, 41, 63]. Another effect is the “chaos–
destroying” synchronization, when a periodic external force acting on a chaotic
system destroys chaos and a periodic regime appears [46], or, in the case of an
irregular forcing, the driven system follows the behavior of the force [42]. This
effect occurs for a relatively strong forcing as well. A characteristic feature of
these phenomena is the existence of a threshold coupling value depending on
the Lyapunov exponents of individual systems [25, 73, 7, 18].

The goal of the present work is to describe weak interaction of chaotic
systems. In other words, we try to extend the classical synchronization theory to
cover the case of chaotic systems. We denote the corresponding effects as ”phase
synchronization“, to distinguish them from other forms of synchronization in
chaotic systems. The phenomenon has been theoretically studied in [85, 74,
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8 Forced chaotic oscillator

105, 69, 56, 71, 72, 87, 68, 86, 83, Appendices 1 and 2]. It has been observed
in laboratory experiments with electronic generators, gas discharge, lasers, and
electrodissolution of metals [62, 109, 113, 1, 38].

We mention also another direction in development of the classical synchro-
nization theory, namely its extension to stochastic systems, see [54, 99, 3] and
references therein.

We start with brief review of classical results on synchronization of periodic
self-sustained oscillators in Section 1.1.1 and effects of noise in Section 1.1.2.
The notion of phase and amplitude of chaotic systems is introduced and dis-
cussed in Section 1.2; We illustrate it taking as examples the famous Rössler
and Lorenz models. We show that the dynamics of the phase in chaotic systems
are similar to those in noisy periodic ones. Section 1.3 is devoted to effects of
phase synchronization by periodic external force.

1.1.1 Periodic oscillations: locking of phases and frequen-
cies

We remind basic facts on the synchronization of periodic oscillations (see, e.g.,
[58]). Stable periodic self-sustained oscillations are represented by a stable limit
cycle in the phase space, and the dynamics of a phase point on this cycle can
be described as

dφ

dt
= ω0 , (1.1)

where ω0 = 2π/T0, and T0 is the period of the oscillation. It is important that
starting from any monotonically growing variable θ on the limit cycle, one can
introduce the phase satisfying Eq. (1.1). Indeed, an arbitrary θ obeys θ̇ = ν(θ)
with a periodic ν(θ + 2π) = ν(θ). A change of variables

φ = ω0

∫ θ

0

[ν(θ)]−1dθ

gives the correct phase, where the frequency ω0 is defined from the condition
2π = ω0

∫ 2π

0
[ν(θ)]−1dθ. A similar approach leads to correct angle-action vari-

ables in Hamiltonian mechanics. From (1.1) it is evident that the phase corre-
sponds to the zero Lyapunov exponent, while negative exponents correspond to
the amplitude variables (not written in (1.1)).

If two oscillators are weakly coupled, then in the first approximation one can
neglect variations of the amplitudes to obtain equations describing the phase
dynamics. In general, these equations have the form

dφ1

dt
= ω1 + εg1(φ1, φ2) ,

dφ2

dt
= ω2 + εg2(φ2, φ1) , (1.2)

where the coupling terms g1,2 are 2π-periodic in both arguments, and ε is the
coupling coefficient.

The phase space of Eqs. (1.2) is a 2-torus, and with the usual construction
of the Poincaré map this system can be made equivalent to a circle map, with
a well-known structure of phase-locking intervals (Arnold’s tongues) [58]; each
of the intervals corresponds to a n : m synchronization region. This picture
is universal and its qualitative features do not depend on the characteristics of
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the oscillations and of the external force (e.g. nearly sinusoidal or relaxational),
and on the relation between amplitudes.

Analytically, one can proceed as follows. The interaction between the oscil-
lators essentially effects the evolution of their phases if the frequencies ω1,2 are
in resonance, i.e., if for some integers n,m we have

nω1 ≈ mω2 .

Then, in the first approximation, the Fourier expansion of the functions g1,2

contains slowly varying terms ∼ nφ1 − mφ2. This suggests to introduce the
generalized phase difference,

ϕn,m(t) = nφ1(t)−mφ2(t) . (1.3)

Subtracting the equations (1.2) and keeping only the resonance terms, we get

dϕn,m

dt
= nω1 −mω2 + εG(ϕn,m) , (1.4)

where G(·) is 2π-periodic. This is a one-dimensional ODE that admits solutions
of two kinds: fixed points or periodic rotations of ϕn,m. The stable fixed point
corresponds to perfect phase locking ϕn,m = const; periodic rotations describe
quasiperiodic motion with two incommensurate frequencies in the system (1.2).

In the analytical treatment of the Eqs. (1.2) we have neglected nonresonant
terms, what is justified for small coupling. With nonresonant terms, the condi-
tion of synchronization for periodic oscillators should be generally written as a
phase locking condition

|nφ1(t)−mφ2(t)− δ| < const , (1.5)

where δ is some (average) phase shift, or as a frequency entrainment condition

nΩ1 = mΩ2 , (1.6)

where Ω1,2 = 〈φ̇1,2〉 are observed frequencies. We emphasize, that in the syn-
chronized state the phase difference is generally not constant but oscillates
around δ. These oscillations vanish in the limit of very small coupling (cor-
respondingly, the frequency mismatch nω1 −mω2 must be also small), or if the
coupling depends only on the relative phase: g1,2 = g1,2(nφ1 −mφ2).

1.1.2 Synchronization in the presence of noise

In general, both properties of phase and frequency locking (Eqs. (1.5,1.6)) are
destroyed in the presence of noise ξ(t) when instead of (1.4) one has

dϕn,m

dt
= nω1 −mω2 + εG(ϕn,m) + ξ(t) . (1.7)

For small noise the stable phase dynamics is only slightly perturbed. Thus
the relative phase ϕn,m mainly fluctuates around some constant level (former
fixed point). These nearly stationary fluctuations may be interrupted by phase
slips, where the relative phase changes relatively rapidly by ±2π. Thus, strictly



10 Forced chaotic oscillator

speaking, the phase difference is unbounded and condition (1.5) is not valid
anymore. Nevertheless, the distribution of the cyclic relative phase

Ψn,m = ϕn,m mod 2π (1.8)

has a dominating peak around the value corresponding to the stable fixed point
[106]. Presence of this peak can be understood as the phase locking in a statis-
tical sense.

If the noise is weak and bounded, then there exists a range of frequency
mismatch nω1 − mω2, where the phase slips are impossible and the averaged
condition of frequency locking (1.6) is fulfilled. Near the boundaries of the
Arnold tongue the noise causes phase slips and the transition out of the syn-
chronous regime is now smeared. If the noise is unbounded, e.g., Gaussian, the
probability of a slip to occur is nonzero even for nω1−mω2 = 0, so that strictly
speaking the region of frequency locking shrinks to a point. As this probability
is (exponentially) small for weak noise, practically the synchronization region
appears as an interval of nω1−mω2, where nΩ1 ≈ mΩ2. Within this region, the
distribution of the cyclic relative phase is not uniform, so that one can speak of
phase locking.

In the case of strong noise, the phase slips in both directions occur very
frequently, so that the segments of nearly constant relative phase are very short
and time course of ϕn,m(t) looks like a random walk, that is unbiased in the very
center of the synchronization region and biased otherwise. The synchronization
transition is now completely smeared and, hence, synchronization appears only
as a weakly seen tendency.

1.2 Phase of a chaotic oscillator

1.2.1 Definition and estimation of the phase

The first problem in extending the basic notions from periodic to chaotic oscilla-
tions is to introduce the notion of phase. There seems to be no unambiguous and
general definition of phase applicable to an arbitrary chaotic process. Roughly
speaking, we want to define phase as a variable which is related to the zero Lya-
punov exponent of a continuous-time dynamical system with chaotic behavior.
Moreover, we want this phase to correspond to the phase of periodic oscillations
satisfying (1.1).

Suppose we can define a Poincaré map for our autonomous continuous-time
system. Then, for each piece of a trajectory between two cross-sections with
the Poincaré surface we define the phase just proportional to time, so that the
phase increment is 2π at each rotation:

φ(t) = 2π
t− tn

tn+1 − tn
+ 2πn, tn ≤ t < tn+1. (1.9)

Here tn is the time of the n-th crossing of the secant surface. Note that for
periodic oscillations corresponding to a fixed point of the Poincaré map, this
definition gives the correct phase satisfying Eq. (1.1). For periodic orbits having
many rotations (i.e., corresponding to periodic points of the map) we get a
piecewise-linear function of time, moreover, the phase grows by a multiple of
2π during the period. The second property is in fact useful, as it represents
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the organization of periodic orbits inside the chaos in a proper way. The first
property demonstrates that the phase of a chaotic system cannot be defined as
unambiguously as for periodic oscillations. In particular, the phase crucially
depends on the choice of the Poincaré surface.

Nevertheless, defined in this way, the phase has a physically important prop-
erty: its perturbations neither grow nor decay in time, so it does correspond
to the direction with the zero Lyapunov exponent in the phase space. We
note also, that this definition of the phase directly corresponds to the special
flow construction which is used in the ergodic theory to describe autonomous
continuous-time systems [15].

To be not too abstract, we illustrate a general approach on the well-known
Rössler system [92]

ẋ = −y − z ,
ẏ = x + 0.15y ,
ż = 0.4 + z(x− 8.5) .

(1.10)

This attractor has a sharp peak in the power spectrum and a rather simple form
(Fig. 1.1). Here the Poincaré map can be easily constructed, a proper choice of
the Poincaré surface may be the half-plane y = 0, x < 0. The phase computed
according to Eq. 1.9 is also shown in Fig. 1.1. The phase grows nearly uniformly:
the phase diffusion constant is extremely small (Dp < 10−4), what corresponds
to an extremely sharp peak in the power spectrum; due to the this reason the
attractor is called phase-coherent.

For the Rössler attractor, as well as for many other systems a specially
chosen projection of the phase portrait (x–y for this case) looks like rotations
around a point that can be taken as the origin. Hence, we can also introduce
a phase variable as the angle between the projection of the phase point on the
plane and a given direction on the plane (see also [69, 30, Appendix 2]):

φP = arctan(y/x) . (1.11)

We can consider the variable φP as an easily computable estimate of the phase
φ (for simplicity we often call φP simply phase). Note that although the two
phases φ and φP do not coincide microscopically, i.e., on a time scale less than
the average period of oscillation, they have equal average growth rates. In other
words, the mean frequency defined as the average of φ̇P over large period of
time coincides with a straightforward definition of the mean frequency via the
average number of crossings of the Poincaré surface per unit time.

Finally, we mention one more approach to phase estimation, that is particu-
larly useful in experimental applications. It exploits a well-known tool in signal
processing, the analytic signal concept [60]. This general approach, based on
the Hilbert transform and originally introduced by Gabor [27], unambiguously
gives the instantaneous phase and amplitude for an arbitrary scalar signal s(t).
The analytic signal ζ(t) is a complex function of time defined as

ζ(t) = s(t) + is̃(t) = A(t)eiφH(t) , (1.12)

where the function s̃(t) is the Hilbert transform of s(t)

s̃(t) = π−1P.V.
∫ ∞

−∞

s(τ)
t− τ

dτ (1.13)
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Figure 1.1: The phase portrait in the coordinates (x, y), the power spectrum
of x(t), and the time evolution of the phases for the phase-coherent Rössler
oscillator. Dot-dashed line: the phase φ (see Eq. 1.9); solid line: the phase
variable φP (Eq. 1.11); dashed line: the Hilbert-transform phase φH (Eq. 1.12).
Three phase estimates practically coincide.

(where P.V. means that the integral is taken in the sense of the Cauchy principal
value). The instantaneous amplitude A(t) and the instantaneous phase φH(t)
of the signal s(t) are thus uniquely defined from (1.12).

For the example considered all three phase estimates give similar results
(Fig. 1.1). In fact, we have found that the difference between φ, φP and φH is
negligible.

1.2.2 A nontrivial example: the Lorenz system

Strange attractor of the Lorenz system

ẋ = 10(y − x) ,
ẏ = 28x− y − xz ,
ż = −8/3 · z + xy ,

(1.14)

is topologically different from the Rössler one. The variable z(t) demonstrates
characteristic chaotically modulated oscillations, but the processes x(t), y(t)
show additionally switchings due to evident symmetry (x, y) → (−x,−y) of
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the Lorenz equations. While the oscillations of z are rather regular, the switch-
ings are not. To overcome the complications due to this mixture of oscilla-
tions and switchings, we introduce a symmetrized observable u(t) =

√
x2 + y2

and project the phase portrait on the plane (u, z), see Fig. 1.2. In this pro-
jection the phase portrait resembles that of the Rössler attractor, and the
phase can be introduced in a similar way. A possible Poincaré section is, e.g.,
z = 27, u > 12. Alternatively, one can define an angle variable φP (t) choosing
the point u0 = 12, z0 = 27 as the origin and calculating

φP = arctan((z − z0)/(u− u0)) . (1.15)

Again, this angle variable gives the same mean frequency as the phase based on
the Poincaré map.

0 10 20 30
u

0

20

40

z

0 2 4 6 8 10
time

0

5

10

15

φ/
2π

,φ
P
/2

π

φP

φ

(a) (b)

Figure 1.2: (a) The dynamics of the Lorenz system in the variables u, z looks
like a smeared limit cycle with rotations around the unstable fixed point of the
system. The dashed line shows the surface of section z = 27, u > 12. (b) The
evolution of the phase φ based on the Poincaré map (Eq. 1.9), dashed line) and
the angle variable φP (Eq. (1.15), solid line). They coincide at the points (filled
circles) where the Poincaré surface is crossed, and differ slightly on the time
scale smaller than a characteristic return time (see inlet in (b)).

1.2.3 Phase dynamics of a chaotic oscillator

In contrast to the dynamics of the phase of periodic oscillations, the growth
of the phase in the chaotic case cannot generally be expected to be uniform.
Instead, the instantaneous frequency depends in general on the amplitude. Let
us hold to the phase definition based on the Poincaré map, so that one can
represent the dynamics as (cf. [74])

An+1 = M(An) , (1.16)
dφ

dt
= ω(An) ≡ ω0 + F (An) . (1.17)

As the amplitude A we take the set of coordinates for the point on the secant
surface; it does not change during the growth of the phase from 0 to 2π and can
be considered as a discrete variable; the transformation M defines the Poincaré
map. The phase evolves according to (1.17), where the “instantaneous” fre-
quency ω = 2π/(tn+1− tn) depends in general on the amplitude. Assuming the
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chaotic behavior of the amplitudes, we can consider the term ω(An) as a sum
of the averaged frequency ω0 and of some effective noise F (A); in exceptional
cases F (A) may vanish. For the Rössler attractor the “period” of the rotations
(i.e., the function 2π/ω(An)) is shown in Fig. 1.3a. This period is not constant,
so that the function F (A) does not vanish, but the variations of the period are
relatively small.

Equation (1.17) is similar to the equation describing the evolution of phase
of periodic oscillator in the presence of external noise. Thus, the dynamics of
the phase is generally diffusive: for large t one expects

< (φ(t)− φ(0)− ω0t)2 >∝ Dpt ,

where the diffusion constant Dp determines the phase coherence of the chaotic
oscillations. Roughly speaking, the diffusion constant is proportional to the
width of the spectral peak calculated for the chaotic observable [22].

Generalizing Eq. (1.17) in the spirit of the theory of periodic oscillations to
the case of periodic external force, we can write for the phase

dφ

dt
= ω0 + εG(φ, ψ) + F (An) ,

dψ

dt
= ν , (1.18)

where ψ, ν are the phase and frequency of the forcing. Here we assume that
the force is small (of order of ε) so that it affects only the phase, and the am-
plitude obeys therefore the unperturbed mapping M . This equation is similar
to Eq. (1.7), with the amplitude-depending part of the instantaneous frequency
playing the role of noise. Thus, we expect that in general the synchronization
phenomena for periodically forced chaotic system are similar to those in noisy
driven periodic oscillations. One should be aware, however, that the “noisy”
term F (A) can be hardly explicitly calculated, and for sure cannot be consid-
ered as a Gaussian δ-correlated noise as is commonly assumed in the statistical
approaches [106, 82].

We illustrate the coherence properties of the Rössler and Lorenz attractors
in Fig. 1.3, where we show the return times Tn, or the “periods” of rotation.
For the Rössler oscillator, the variation of Tn is comparatively small, while for
the Lorenz oscillator the return time Tn can be arbitrary large (this corresponds
to the slow motion in the vicinity of the saddle at x = y = z = 0). As we show
below, this feature determines essentially different synchronization properties of
these two systems.

In conclusion, we expect that the synchronization phenomena for chaotic
systems are similar to those in noisy periodic oscillations. We support this
conclusion by simulation results presented in the next Section.

1.3 Phase synchronization by external force

In this Section we consider periodically forced chaotic oscillators with well-
defined phase. It means that here we restrict ourselves to the cases when the
attractors have ”good“ topological structure, like attractors of the Lorenz and
the Rössler systems. The case of ill-defined phase will be treated separately.
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Figure 1.3: The return times and the Poincaré maps for the attractors of the
Rössler (a) and the Lorenz (b) systems. The return time of the Lorenz system
has a logarithmic singularity at u ≈ 23.

1.3.1 Synchronization region

We add periodic forcing to two prototypic models of nonlinear dynamics: the
Lorenz

ẋ = 10(y − x),
ẏ = 28x− y − xz,
ż = −8/3 · z + xy + E cos νt.

(1.19)

and the Rössler
ẋ = −y − z + E cos νt ,
ẏ = x + 0.15y ,
ż = 0.4 + z(x− 8.5) .

(1.20)

oscillators. In the absence of forcing, both are 3-dimensional dissipative systems
which admit a straightforward construction of the Poincaré maps. The mean
rotation frequency can be thus directly calculated as

Ω = lim
t→∞

2π
Nt

t
, (1.21)

where Nt is the number of crossings of the Poincaré section during observation
time t. This method can be straightforwardly applied to the observed time
series, in the simplest case one can, e.g., take for Nt the number of maxima (of
x(t) for the Rössler system and of z(t) for the Lorenz one). Alternatively, we
can compute the phase of the driven systems according to (1.11) or (1.15) and
compute the observed frequencies as Ω = 〈φ̇P 〉.

Dependence of the frequency Ω on the amplitude and frequency of the exter-
nal force is shown in Fig. 1.4. Synchronization here corresponds to the plateau
Ω = ν. One can see that the synchronization properties of these two systems
differ essentially. For the Rössler system there exists a well-expressed region
where the systems are perfectly locked. Moreover, it is seen that the amplitude
threshold of synchronization is very small, almost negligible. Thus, the phase
locking properties of the Rössler system are practically the same as for a periodic
oscillator; in particular, one can also observe high order (n : m) locking [71]. On
the contrary, for the Lorenz system we observe the frequency locking only as a
tendency seen at relatively large forcing amplitudes, as this should be expected
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Figure 1.4: The phase synchronization regions for the Rössler (a) and the Lorenz
(b) systems.

for oscillators subject to a rather strong noise. In this respect, the difference
between Rössler and Lorenz systems can be described in terms of phase diffu-
sion properties. Indeed, the phase diffusion coefficient for autonomous Rössler
system is extremely small Dp < 10−4, whereas for the Lorenz system it is sev-
eral oder of magnitude larger, Dp ≈ 0.2. This difference in the coherence of the
phase of autonomous oscillations implies different response to periodic forcing.

1.3.2 Statistical approach

We characterize now phase synchronization considering the distribution of phases.
The invariant measure of an autonomous chaotic system gives a nearly uniform
distribution of the phases.1 With a periodic external force, the measure is ex-
plicitly time-dependent. Phase synchronization means that for each time the
distribution density of the phases is non-uniform (there is a time-dependent
preferable value of the phase), where the sharpness of the peak characterizes
the level of synchronization. This peak in the phase distribution rotates with
the phase of the external force. The distribution of the amplitudes remains,
however, broad. Due to ergodicity, the probability distribution can be obtained
also from one chaotic trajectory, if it is observed stroboscopically in the proper
phase of external force.

As an example we consider again the Rössler system. Let us observe the
oscillator stroboscopically, at the moments corresponding to some phase ψ0 of
the external force. In the synchronous state the probability distribution of the
oscillator phase is localized near some preferable value (which of course depends
on the choice of ψ0). In the non-synchronous state the phase is spread along
the attractor (Fig. 1.5). One can say that synchronization means localization
of the probability density near some preferable time-periodic state. In other
words, this means appearance of the long-range correlation in time and of the
significant discrete component in the power spectrum of oscillations.

The main advantage of the statistical approach is that it provides character-
ization of synchronization without explicit computation of phase. This becomes
especially important in case of attractors with ”bad“ topology, i.e., when the
phase is not well-defined (see Chapter 3).

1Phases here are taken modulo 2π.
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(a) (b)

Figure 1.5: Distribution inside (a) and outside (b) the synchronization region for
the Rössler system, shown with black dots. The autonomous Rössler attractor
is shown with gray.

1.3.3 Interpretation through embedded periodic orbits

In order to understand structural metamorphoses of attracting chaotic sets un-
der the action of the synchronizing force, it is convenient to look at the properties
of individual periodic orbits embedded into the strange attractors. Unstable pe-
riodic orbits (UPOs) are known to build a kind of “skeletons” for chaotic sets
[58]; in particular, each of the systems (1.19) and (1.20) in the absence of forcing
possesses infinite number of periodic solutions with two-dimensional unstable
manifolds. Let us pick up one of these solutions and consider the influence of a
small periodic force on it. With the exception that the cycle is now unstable,
we come to a standard problem of periodically forced periodic oscillator. Hence,
for a particular orbit one can determine the corresponding Arnold tongue.

ω

ε

Figure 1.6: A schematic view of the Arnold tongues for an unstable periodic
orbits in a chaotic system. Generally, the autonomous orbits have different
frequencies ω

(i)
0 ; therefore the tongues tip the ω-axis in different points. The

rightmost and the leftmost tongues corresponding to the orbits with the minimal
and maximal ω

(i)
0 are shown by solid lines. In the shadowed region all the cycles

are synchronized and the mean frequency of oscillations virtually coincides with
the forcing frequency.

If we plot the Arnold tongues for the set of UPOs (Fig. 1.6), then generally
the tongues touch the ω-axis in different points ωi, where ω

(i)
0 is the mean
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frequency of the i-th autonomous orbit. The frequencies ω
(i)
0 can be close to

each other or widespread, depending on the properties of the return times. If
the frequencies ω

(i)
0 are not very different, the Arnold tongues overlap and one

can find a parameter region where the motion along all periodic orbits is locked
by the external force. If the forcing remains moderate, this is the overlapping
region for the leftmost and the rightmost Arnold tongues, which correspond to
the periodic orbits of the autonomous system with the smallest and the largest
values of ω

(i)
0 , respectively. Inside this region, the chaotic trajectories repeatedly

visit the neighborhoods of different UPOs; but, as all UPOs are locked, the
overall motion remains locked to the external force as well. Outside the region
where all the tongues overlap, synchronization cannot be perfect: for some time
intervals a trajectory follows the locked cycles and the phase follows the external
force, but for other time epochs the trajectory comes close to non-locked cycles
what results in a phase slip (see details in [118, 61]).



Chapter 2

Phase synchronization in
coupled systems

In this Chapter we demonstrate the effects of phase synchronization in coupled
chaotic oscillators. We start with the simplest case of two interacting systems,
and then briefly discuss globally coupled systems and oscillator lattices.

2.1 Synchronization of two interacting oscilla-
tors

We consider here two non-identical coupled Rössler systems

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε(x2,1 − x1,2),
ẏ1,2 = ω1,2x1,2 + 0.15y1,2,
ż1,2 = 0.2 + z1,2(x1,2 − 10).

(2.1)

The parameters ω1,2 = 1±ν and ε determine the mismatch of natural frequencies
and the coupling, respectively.

Again, like in the case of periodic forcing, we can define the mean frequencies
Ω1,2 of oscillations of each system, and study the dependence of the frequency
mismatch Ω2−Ω1 on the parameters ν and ε. This dependence shown in Fig. 2.1
gives a typical picture of the synchronization region. The phase diagram of
different regimes (in dependence on the coupling ε and the frequency mismatch
ω2 − ω1) exhibits three regions of qualitatively different behavior:

(I) The synchronization region, where the frequencies are locked, Ω1 = Ω2. It
is important to note that there is almost no threshold of synchronization;
this is a particular feature of the phase-coherent Rössler attractor.

(II) The region of non-synchronized oscillations, where |Ω1 − Ω2| = |Ωb| > 0.
In analogy to the case of periodic oscillators, this frequency Ωb can be
considered as the “beat frequency”.

(III) In this region oscillations in both systems disappear, due to diffusive cou-
pling. This effect is known for periodic systems as oscillation death, or
quenching.

19
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Figure 2.1: (a) The synchronization region for two coupled Rössler oscillators
(2.1): the plot of the difference in observed frequencies ∆Ω = 〈φ̇1 − φ̇2〉 in
dependence on the coupling ε and mismatch ν exhibits a domain where ∆Ω
vanishes. (b) A schematic diagram showing the regions of non-synchronous (II)
and synchronous (I) motion, and of the oscillations death (III). The diagram
is approximate, the windows of periodic behavior in regions I and II are not
shown.
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Figure 2.2: The 4 largest Lyapunov exponents and the frequency difference vs.
coupling ε in the coupled Rössler oscillators (2.1); ν = 0.015. For small couplings
there are two positive and two nearly zero Lyapunov exponents. Transition to
the phase synchronization occurs at ε ≈ 0.028, at this value of the coupling one
of zero Lyapunov exponents becomes negative.

It is instructive to characterize the synchronization transition by means of
the Lyapunov exponents (LE). The 6-order dynamical system (2.1) has 6 LEs
(see Fig. 2.2). For zero coupling we have a degenerate situation of two inde-
pendent systems, each of them has one positive, one zero, and one negative
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exponent. The two zero exponents correspond to the two independent phases.
With coupling, the phases become dependent and the degeneracy must be re-
moved: only one LE should remain exactly zero. We observe, however, that for
small coupling also the second zero Lyapunov exponent remains extremely small
(in fact, numerically indistinguishable from zero). Only at relatively stronger
coupling, when the synchronization sets on, the second LE becomes negative:
now the phases are dependent and a relation between them is stable. Note that
the two positive exponents remain positive which means that the amplitudes
remain chaotic and independent: the coupled system remains in the state of
hyperchaos.

2.2 Population of globally coupled chaotic oscil-
lators

A number of physical, chemical and biological systems can be viewed at as
large populations of weakly interacting non-identical oscillators [45]. One of
the most popular models here is an ensemble of globally coupled nonlinear
oscillators (often called “mean-field coupling”). A nontrivial transition to self-
synchronization in a population of periodic oscillators with different natural
frequencies coupled through a mean field has been described by Kuramoto [45,
44]. In this system, as the coupling parameter increases, a sharp transition is
observed for which the mean field intensity serves as an order parameter [32].
This transition owes to a mutual synchronization of the periodic oscillators, so
that their fields become coherent (i.e. their phases are locked), thus producing a
macroscopic mean field. In its turn, this field acts on the individual oscillators,
locking their phases, so that the synchronous state is self-sustained. Different
aspects of this transition have been studied in [94, 16, 17], where also an analogy
with the second–order phase transition has been exploited.

A similar effect can be observed in a population of non-identical chaotic
systems, e.g., the Rössler oscillators [69, Appendix 2]

ẋi = −ωiyi − zi + εX,
ẏi = ωixi + ayi,
żi = 0.4 + zi(xi − 8.5),

(2.2)

coupled via the mean field X = N−1
∑N

1 xi. Here N is the number of elements
in the ensemble, ε is the coupling constant, a and ωi are parameters of the
Rössler oscillators. The parameter ωi governs the natural frequency of an indi-
vidual system. We take a set of frequencies ωi which are Gaussian-distributed
around the mean value ω0 with variance (∆ω)2. The Rössler system typically
shows windows of periodic behavior as the parameter ω is changed; therefore
we usually choose a mean frequency ω0 in a way that we avoid large periodic
windows. In our computer simulations we solve numerically Eqs. (2.2) for rather
large ensembles N = 3000÷ 5000.

With an increase of the coupling strength ε, the appearance of a non-zero
macroscopic mean field X is observed [69, Appendix 2]. This indicates the phase
synchronization of the Rössler oscillators that arises due to their interaction via
mean field. This mean field is large, if the attractors of individual systems are
phase-coherent (parameter a = 0.15) and the phase is well-defined. On the
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contrary, in the case of the funnel attractor, a = 0.25, when the oscillations
look wild, and the imaging point makes large and small loops around the origin,
the field is rather small, and there seems to be no way to choose the Poincaré
section unambiguously. Nevertheless, in both cases synchronization transition
is clearly indicated by the onset of the mean field, without computation of the
phases themselves.

Our numerical results are confirmed by recent experiments with globally
coupled chaotic chemical oscillators [39, 40].

2.3 Lattice of chaotic oscillators

Here we consider the case when chaotic oscillators are ordered in space and
form a lattice with nearest neighbor interaction. Such a situation is relevant,
e.g., for modeling chemical systems, where homogeneous oscillations are chaotic,
and the diffusive interaction can be model-led with dissipative nearest neigh-
bors coupling [12, 30]. One can expect to observe complex spatio-temporal
synchronization in such a lattice.

Our model is a 1-dimensional lattice of Rössler oscillators with local dissi-
pative coupling:

ẋj = −ωjyj − zj ,
ẏj = ωjxj + ayj + ε(yj+1 − 2yj + yj−1),
żj = 0.4 + (xj − 8.5)zj .

(2.3)

Here the index j = 1, . . . , N counts the oscillators in the lattice and ε is the
coupling coefficient. To study synchronization in a lattice of non-identical os-
cillators, we introduce a linear distribution of natural frequencies ωj

ωj = ω1 + δ(j − 1), (2.4)

where δ is the frequency mismatch between neighboring sites. Depending on
the values of δ we observed two scenarios of transition to synchronization [56].
For small δ, the transition occurs smoothly, i.e., all the elements along the chain
gradually adjust their frequencies. If the frequency mismatch is larger, clustering
is observed: the oscillators build phase-synchronized groups having different
mean frequencies. At the borders between clusters phase slips occur; this can
be considered as appearance of defects in the spatio-temporal representation.
Both regular and irregular patterns of defects can be found. Synchronization
was observed not only for the systems with simple attractor (a = 0.15), but also
for the systems with the funnel attractor (a = 0.25) [56].

2.4 Synchronization transitions

In this Section we describe synchronization transitions. First, we discuss in-
termittency at the threshold of phase synchronization. Next, we follow what
happens if the coupling strength is increased further, and describe the effect of
lag synchronization [87, Appendix 3].
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2.4.1 Intermittency at the synchronization transition

An interesting feature is the appearance of intermittency at the onset of phase
synchronization. Consider again two coupled Rössler oscillators (Eqs. (2.1)).
As one can see from Fig. 2.3a, at the border of the region of complete phase
locking, the phases are almost locked. It means that from time to time phase
slips occur, where during a rather small interval of time the phase difference
changes by 2π. The time intervals between these slips are irregular, as one can
see from their distribution (Fig. 2.4a). The slips are exponentially rare, and the
dependence of the number of phase slips per constant time Ns on the coupling
strength obeys a relation Ns ∼ exp(−|ε− εc|−1/2) [86] (Fig. 2.4b).
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Figure 2.3: Phase difference of two coupled Rössler systems (Eq. (2.1)) vs. time
for non–synchronous, (ε = 0.01), nearly synchronous, or intermittent, (ε =
0.027) and synchronous (ε = 0.035) states. In the last case the amplitudes A1,2

remain chaotic, their cross-correlation is less than 0.2. The frequency mismatch
is ν = 0.015.
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Figure 2.4: (a): The distribution of the number of phase slips Ns with the
interval between slips Ts for ε = 0.027; it demonstrates that the slips occur
irregularly. (b) The number of phase slips per constant time Ns vs. the coupling
strength in the vicinity of the transition point. The slips are exponentially rare.
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2.4.2 Lag synchronization

If the coupling between two chaotic oscillators is sufficiently strong, then one
can observe the onset of phase synchronization. We discuss what happens in the
system of two symmetrically coupled non–identical oscillators with the further
increase of coupling. We demonstrate that for larger couplings a new regime
which we call lag synchronization (LS) sets in. LS appears as almost perfect
coincidence of shifted in time states of two systems, x1(t + τ0) ≈ x2(t). Finally,
with further increase of coupling, the time shift decreases and this regime tends
to complete synchronization. We show that these transitions are related to the
changes in the spectrum of Lyapunov exponents (LE). For this purpose, we take
our basic model, two coupled Rössler systems

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε(x2,1 − x1,2),
ẏ1,2 = ω1,2x1,2 + ay1,2,
ż1,2 = f + z1,2(x1,2 − c),

(2.5)

where a = 0.165, f = 0.2, c = 10. The parameters ω1,2 = 0.97 ± 0.02 and ε
determine the mismatch of natural frequencies and the coupling, respectively.
The parameters are chosen by trial in such a way that appearance of large
windows of periodic behavior is avoided.

To characterize LS, we introduce a similarity function S as a time averaged
difference between the variables x1 and x2 (with mean values being subtracted)
taken with the time shift τ

S2(τ) =

〈
(x2(t + τ)− x1(t))2

〉

(< x2
1(t) >< x2

2(t) >)1/2
, (2.6)

and search for its minimum σ = minτ S(τ). If the signals x1 and x2 are indepen-
dent, the difference between them is of the same order as the signals themselves;
respectively S(τ) ∼ 1 for all τ . If x1(t) = x2(t), as in the case of complete syn-
chronization, S(τ) reaches its minimum σ = 0 for τ = 0. Here we demonstrate
a nontrivial case, when the similarity function S(τ) has a minimum for non-zero
time shift τ , meaning the existence of a time lag between the two processes.

Computation of the observed frequencies Ω1,2 allows us to follow the transi-
tion to the frequency entrainment Ω1 = Ω2 = Ω; it takes place at ε = εp ≈ 0.036
(see Fig. 2.5). For stronger coupling ε = εl ≈ 0.14 we observe a new transition
to lag synchronization (see the σ vs ε curve in Fig. 2.5). In Fig. 2.6 we show
numerically obtained similarity functions in system (2.5) for relatively weak,
intermediate and strong coupling. For weak coupling ε < εp (curves 1,2), S ∼ 1
and practically does not depend on τ , as can be expected for independent sig-
nals. For intermediate coupling strength εp < ε < εl, a minimum of S(τ)
appears (curves 3,4) indicating the existence of some characteristic time shift τ0

between x1 and x2. This shift is related to the phase difference as τ0 = δφ/Ω.
Note that in this regime the amplitudes are uncorrelated, so the value of S(τ0)
is relatively large. Further increase of coupling makes at ε ≈ εl this minimum
very sharp (curves 5,6) and practically equal to zero. It means that the states
of the systems become identical, but shifted in time with respect to each other.
The regime of LS can be easily demonstrated by plotting x1(t + τ0) vs x2(t). It
is important that calculations of S(0), i.e., the comparison of x1 and x2 without
time shift, reveal no transition at ε = εl. For larger couplings ε > εl, the time
lag τ0 continuously decreases, but no qualitative transitions are observed.
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Figure 2.5: The frequency difference Ω1 − Ω2, the minimum of the similarity
function σ and the four largest Lyapunov exponents λ of two coupled Rössler
oscillators vs. the coupling ε. Three different regions are clearly seen on σ vs
ε plot correspondent to non–synchronous state, phase and lag synchronization
respectively. The transitions between these regimes are reflected in the spectrum
of Lyapunov exponents: at the first transition one of the zero LE becomes
negative, while the second transition corresponds to the zero crossing of one of
the positive LE. The dashed line shows dependence of S(0) on the coupling; from
this plot one can see that comparison of states of interacting systems without
time shift does not reveal the transition to LS. Two “outbursts” on σ vs ε plot
at ε ≈ 0.06 and ε ≈ 0.145 correspond to period 3 windows.
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Figure 2.6: Similarity function S(τ) for different values of coupling strength ε
(1: ε = 0.01, 2: ε = 0.015, 3: ε = 0.05, 4: ε = 0.075, 5: ε = 0.15, 6: ε = 0.2).
With the increase of coupling a minimum appears indicating the existence of a
certain phase shift between interacting systems (curves 3 and 4). In the regime
of lag synchronization (curves 5 and 6) the minimum is extremely small.

The transitions between different types of synchronization can be related to
the changes in the Lyapunov spectrum (see Fig. 2.5). For small coupling ε < εp

there are two positive LE (corresponding to chaotic amplitudes) and two nearly
zero LE (corresponding to independently rotating phases). At the phase locking
transition at ε ≈ εp, one of the zero LEs becomes negative, corresponding
to a definite stable relation between phases (one zero LE, corresponding to a
simultaneous phase shift of both Rössler oscillators, remains for all couplings, as
it should be in an autonomous system). The second transition to LS corresponds
to the change of the sign by the second positive LE, but does not exactly coincide
with it due to intermittency discussed below. This means that the relation
appears not only between the phases, but also between the amplitudes. The
phase shift remains, and therefore a time lag between the signals x1 and x2 is
observed.



Chapter 3

Systems with ill-defined
phase

In this Chapter we treat the case when a chaotic system has no well-defined
phase. It means that we are not able to find a projection of the strange attractor
that looks like smeared rotations around some center and, hence, we are not able
to choose unambiguously the Poncaré section. However, synchronization can be
characterized in this case as well. We consider two approaches to the problem.

3.1 Statistical approach

3.1.1 An example: Rössler system with funnel attractor

Now we consider the Rössler system for parameters slightly different from those
in (1.20): instead of the term 0.15y take 0.25y in the second equation. This
change leads to the appearance of the so-called funnel attractor, shown in
Fig. 3.1. The Rössler system with the funnel attractor serves as an example
of the system with ill-defined phase. The topological structure is now complex:
there are small and large loops on the x, y plane, and it is not clear which
phase shift (π or 2π) should be attributed to these loops. Respectively, different
definitions of the phase give different results (Fig. 3.1).

3.1.2 Indirect characterization of synchronization

An important consequence of the statistical approach described in Section 1.3.2
is that the phase synchronization can be characterized without explicit compu-
tation of the phase and/or the mean frequency: it can be indicated implicitly
by the appearance of a macroscopic mean field in the ensemble of oscillators, or
by the appearance of the large discrete component in the spectrum. Although
there may be other mechanisms leading to the appearance of macroscopic order,
the phase synchronization appears to be the mostly common ones.

We use this approach to look for possible effects of phase synchronization
in the Rössler system with the funnel attractor. Because the phase itself is ill-
defined, we considered only implicit characteristics of synchronization. Namely,
we take a large ensemble of identical copies of the chaotic oscillator which differ

27
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Figure 3.1: Rössler oscillator with the funnel attractor is an example of the
system with ill-defined phase. Here different approaches to phase estimations
provide different results. Dot-dashed line: the phase φ, solid line: the phase
variable φP , dashed line: the Hilbert-transform phase φH .
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only by their initial states, and let them evolve under the same periodic forcing.
After the transient, the projections of the phase state of each oscillator onto the
plane x, y form the cloud that exactly corresponds to the probability density. Let
us now consider the ensemble average of some observable, e.g., x(t). Without
synchronization the cloud is spread over the projection of the attractor, and the
average is small: no significant average field is observed. In the synchronous
state the probability is localized, so the average is close to some middle point
of the cloud; this point rotates with the frequency of the force and one observes
large regular oscillations of the average field.

Hence, the synchronization can be easily indicated through the appearance
of a large (macroscopic) mean field in the ensemble. Physically, this effect is
rather clear: unforced chaotic oscillators are not coherent due to internal chaos,
thus the summation of their fields yields a small quantity. Being synchronized,
the oscillators become coherent with the external force and thereby with each
other, so the coherent summation of their fields produces a large mean field.

3.2 Locking-based frequency measurement

In this Section we discuss a method that allows one to reveal synchronization of
systems with ill-defined phases, estimating the average frequency 〈φ̇〉 of individ-
ual oscillators from observed signals. This method, based on the use of auxiliary
limit cycle oscillators, can characterize synchronization of two or many coupled
systems; unlike the above described statistical approach it does not require en-
semble averaging.

3.2.1 Idea of the method

Let us consider an ensemble of uncoupled limit cycle oscillators with natural
frequencies ωk distributed in an interval [ωmin, ωmax]. Let each oscillator of
this ensemble be driven by a common periodic force of a frequency ν. It is well-
known that the force synchronizes those elements of the ensemble which have
frequencies close to nν/m, where n,m are integers. This can be demonstrated by
plotting the frequencies of the driven limit cycle oscillators Ωk, called hereafter
the observed frequencies, vs. the natural frequencies ωk: the synchronization
manifests itself in the appearance of horizontal plateaus (more precisely, one
expects to observe a devil’s staircase structure with infinitely many plateaus
whose widths depend on the amplitude of the forcing). This means that the
frequencies of entrained elements corresponding to a particular plateau are in
exact n : m relation to the frequency of the forcing. Hence, an unknown fre-
quency of the drive can be revealed by the analysis of the Ωk vs. ωk plot. The
idea of our approach is to use the ensemble of auxiliary oscillators as a device
for measuring the frequency of complex signals.

A simple implementation of the method is to drive the array of Poincaré
oscillators with a signal X(t)

Ȧk = (1 + iωk)Ak − |Ak|2Ak + εX(t) . (3.1)

Separating the real amplitude R and the phase φ from the complex amplitude
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A = Reiφ we can rewrite (3.1) as

Ṙk = Rk −R3
k + εX(t) cos φk ,

φ̇k = ωk −R−1
k εX(t) sin φk .

(3.2)

Noting that for small ε the amplitude R is close to unity, and neglecting its
fluctuations, we can write equations for our measuring oscillators as pure phase
equations:

φ̇k = ωk − εX(t) sin φk , (3.3)

and the observed frequencies are Ωk = 〈φ̇k〉. Note that Eqs. (3.3) become exact
if one writes a higher order nonlinearity |A|pA in (3.1) and considers the limit
p → ∞. Practically, in calculations below we normalize the signal X(t) to
have zero mean and unit variance so that the coupling constant ε is the only
parameter of the method.1

3.2.2 Synchronization of chaotic oscillators with complex
dynamics

Driven systems

First we consider the Rössler system with a funnel attractor (Fig. 3.1):

ẋ = −y − z ,
ẏ = x + 0.4y ,
ż = 0.25 + z(x− 8.5) .

(3.4)

Clearly we cannot find an origin that is revolved by all trajectories. Due to this,
there is no direct way to introduce the phase for this system and to characterize
its synchronization. Therefore we use the (normalized) signal x(t) to drive
system (3.3) with ε = 0.5. The frequencies of the oscillators in the measuring
device driven by X(t) = x(t) are shown in the solid curve denoted by E = 0 as
functions of the natural frequencies in Fig. 3.2. The resulting plateau in the Ωk

vs. ωk plot gives Ωp ≈ 0.94, where “p” stands for “plateau”. Thus an estimate
of the characteristic frequency of the signal x(t) is Ωp = 0.94. One can see that
this characteristic frequency cannot be directly associated with a peak in the
power spectrum (Fig. 3.1). We also see that Fig. 3.2 does not show the devil’s
staircase structure, but only one, smeared plateau. This is due to the chaotic
nature of the process x(t), so that, similar to the case of narrow-band noisy
signals, the high-order phase-locked regions are not observed [47, 70].

Next we study a synchronization of the system (3.4) by a periodic forcing.
The first equation of (3.4) now reads as ẋ = −y − z + E sin(νt). Performing
measurements with “device” (3.3) for different values of the forcing amplitude
E, we see that the measured frequency Ωp approaches the external frequency
ν, giving a clear picture of frequency entrainment (Fig. 3.2). Note also that the
plateau becomes wider: this can be interpreted as an indication that the external
force brings order in the Rössler system. It is important to mention that the
shift of the plateau is due to the entrainment of the chaotic oscillations and is
not an effect of the presence of a periodic component in the signal x(t). This
was checked by using a mixture of an unforced oscillation x(t) and a periodic

1The mean value can slightly influence the result.
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Figure 3.2: Output of the frequency measuring “device” (3.3) as a function of
the natural frequencies of auxiliary systems ωk for the driven Rössler oscillator
at three forcing amplitudes (results for (3.1) practically coincide with them).
Bold curve shows the frequencies of an ensemble of uncoupled limit cycle os-
cillators driven by the system (3.4). The height of the plateau determines the
characteristic frequency of this chaotic drive Ω(p) = 0.94. Two other curves are
obtained for the forced (with the amplitude E) Rössler system, and demonstrate
shift of the characteristic frequency towards the frequency of the forcing ν = 0.9
(horizontal line), thus indicating synchronization.

force E sin(νt) for X(t) in (3.3); in this case no shift of the plateau has been
observed.

The described method has been also applied to experimental data obtained
from the ensemble of 64 globally coupled chaotic electrochemical oscillators [116,
38]. (See [116] for the details of the experiment). The oscillators have been sub-
jected to a mutual coupling stronger than that required for phase synchroniza-
tion but weaker than that necessary for complete synchronization. The array
was forced periodically and the oscillations have been recorded for several values
of the forcing amplitude. Because of the coupling, several of the oscillators in
this parameter range demonstrate complex patterns of oscillations so that it was
impossible to define the phase with the Hilbert Transform method. Neverthe-
less, with applying our method we were able, without any special adjustment,
to determine the frequencies of all oscillators in the array and to show that with
increasing of the forcing amplitude they become phase synchronized with the
external force.

Coupled oscillators

Our next application is the analysis of two coupled oscillators with ill-defined
phases. The scalar signals x1,2 from these systems are used as inputs for two
measuring devices, i.e., x1,2 drive two identical ensembles (3.1) or (3.3). The
outputs of the devices are two frequencies Ωp

1,2; for uncoupled systems we expect
that they differ due to a detuning. The onset of the equality Ωp

1 = Ωp
2 with the

increase of coupling will reflect the synchronization of the complex systems
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under consideration. As a particular example we consider two weakly coupled
Rössler systems with funnel attractors:

ẋ1,2 = −ω1,2y1,2 − z1,2 + η(x2,1 − x1,2) ,
ẏ1,2 = ω1,2x1,2 + 0.22y1,2 + η(y2,1 − y1,2) ,
ż1,2 = 0.1 + z1,2(x1,2 − 8.5),

(3.5)

where ω1 = 0.98, ω2 = 1.03. Application of the method (Fig. 3.3) reveals
synchronization for coupling parameter η & 0.05. The particular parameter
values in (3.5) give us a possibility to compare our approach with direct phase
measurements. Indeed, for most η the trajectory in the coordinates (ẋ, ẏ) rotates
around the origin and the phase φ = arctan(ẏ/ẋ) is well-defined; this does not
hold for coupling 0.04 & η & 0.03, when some trajectories do not wrap the origin
(although these events are relatively rare).2 Thus the onset of synchronization
in system (3.5) can be traced in a straightforward way, by plotting the phase
difference that becomes bounded with increase of coupling (for η & 0.05).
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1.3
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0.9 1.1 1.3ωk
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Figure 3.3: Output of the frequency measuring “device” for two Rössler sys-
tems (2.5). (a) no coupling, (b) coupling, η = 0.05. For zero coupling (a)
the characteristic frequencies Ω(p)

1,2 are different (plateaus have different height);
for coupling (b) these frequencies coincide, i.e. synchronization sets in. Solid
and dotted lines correspond to first and second oscillator, respectively. Note
that the common frequency in (b) lies below both frequencies in (a); such a
frequency shift is usual for diffusive coupling, it appears due to dependence of
the frequency on the amplitudes, the latter being reduced due to coupling.

Discussion of the method

We expect that for chaotic systems with very complicated topology of the phase
space the plateau may be not seen at all and hence the frequency may be not
found. This limitation of the presented method is due to the principal fact that
systems with strong effective noise do not have a characteristic frequency and
are not capable of synchronization. Like noisy systems, chaotic oscillators with
ill-defined phase do not allow an unambiguous definition of synchronization;
therefore the distinction between the systems that can and cannot synchronize
is smeared. Note also, that with our method we define frequency of a signal,

2It is easy to see that the transformation to the coordinates (ẋ, ẏ) proposed in Chen et
al. Phys. Rev. E. 64, 016212 (2001), is not of general use. So, it also fails for the driven
system (3.4) and another parameter choice in (3.5), whereas our technique reveals phase
synchronization in these cases as well.
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not of an oscillator. In particular, frequencies for different observables from one
system can differ.

In a general context, we can interpret the ensemble of uncoupled oscillators
with a common input (Eqs. (3.1) or (3.3)) as a nonlinear filter that picks
up a certain frequency from a broad-band input. Indeed, the average velocity
of the phase point rotation around the limit cycle in a single oscillator (3.1)
is determined by some average properties of the aperiodic driving force. In
particular, the system filters out the action when the signal X(t) is nearly
zero (and therefore the phase is ill-defined), because the point of the oscillator
continues to rotate (with the natural frequency). In this respect our device is
similar to the well-known technical system, the phase locked loop [6]. The latter
provides a phase of an input even during epochs when the amplitude of the input
is small (say, of the same order as the underlying noise). In particular, taking
the natural frequency in (3.3) in the middle of the plateau, one can use the
corresponding phase φk(t) as an “estimate” to the signal’s phase. It is essential
to use nonlinear self-sustained oscillators and not linear resonators, in the latter
case simply the power spectrum of the process would be measured, while in our
case a single frequency is extracted.
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Chapter 4

Synchronization approach
to bivariate data analysis

In this Chapter we use the idea of phase synchronization for experimental ap-
plications. The problems we consider can be formulated as follows. Suppose we
observe two systems that are possibly coupled. We do not have access to the
parameters of these systems but just can measure the signals at their outputs.
Out goal is to analyze these bivariate data in order to find out whether these
systems interact. If they do, the natural problems are:

1. to quantify the strength of interaction;

2. to quantify the asymmetry in interaction (coupling direction).

We discuss methods of data analysis giving answers to the above questions and
illustrate them by experimental examples. The relation of the developed and
traditional techniques is also discussed.

Our approach is especially important for applications in medicine and bi-
ology. Indeed, in experiments with live systems a researcher usually cannot
perform an active experiment, i.e., to change the parameters of systems and/or
coupling and to look for the response in the dynamics of the systems. Quite
often one can perform only passive experiments, i.e., to measure the signals from
biological systems under free-running conditions and analyze them.

4.1 Introduction

Remarkably, the properties of phase synchronization in chaotic systems are sim-
ilar to those of synchronization in periodic noisy oscillators (see the discussion in
Section 1.2.3. This allows one to describe both effects within a common frame-
work. Moreover, from the experimentalist’s point of view, one can use the same
methods in order to detect synchronization both in chaotic and noisy systems.
Therefore, describing particular experiments and searching for phase relations,
we will not be interested in the question, whether the observed oscillations are
chaotic or noisy: the approach we present below is equally applicable in both
these cases.

35
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Synchronization phenomena are often encountered in living nature. Indeed,
the concept of synchronization is widely used in experimental studies and in
the modeling of interaction between different physiological (sub)systems demon-
strating oscillating behavior. The examples range from the modeling of the heart
in the pioneering paper of van der Pol and van der Mark [114] to investigation
of the circadian rhythm [5, 29], phase locking of respiration with a mechanical
ventilator [67] or with locomotory rhythms [10], coordinated movement [29] and
animal gaits [14], phase locking of chicken embrion heart cells with external
stimuli and interaction of sinus node with ectopic pacemakers [29], synchroniza-
tion of oscillations of human insulin secretion and glucose infusion [107], locking
of spiking from electroreceptors of a paddlefish to weak external electromagnetic
field [53], and synchronization of heart rate by external audio or visual stimuli
[4].

The notion of synchronization is also related to several central issues of
neuroscience (see, e.g., [103, 33, 34]). For instance, synchronization seems to
be a central mechanism for neuronal information processing within a brain area
as well as for communication between different brain areas. Another evidence
is that synchronization of the oscillatory activity in the sensorimotor cortex
may serve for the integration and coordination of information underlying motor
control [50]. On the other hand, synchronization plays an important role in
several neurological diseases like epilepsies [20] and pathological tremors [23, 19].
Correspondingly, it is important to analyze such synchronization processes to
achieve a better understanding of physiological brain functioning as well as
disease mechanisms.

4.1.1 Synchronization and analysis of bivariate data

Synchronization phenomena are abundant in the real world and biological sys-
tems, in particular. Thus, detection of synchronization from experimental data
appears to be an important problem, that can be formulated as follows: Suppose
we can obtain several signals coming from different simultaneous measurements
(e.g., an electrocardiogram and respiratory movements, multichannel electro-
or magnetoencephalography data, records of muscle activity, etc.). Usually it
is known how to attribute these signals to different oscillating objects. The
question is whether there are states (or epochs) where these objects oscillate in
synchrony. Unfortunately, typically observed oscillations are highly irregular,
especially in live systems, and therefore possible synchronization phenomena are
masked by strong noise and/or chaos, as well as by nonstationarity.

This task is similar to a well-known problem in time series analysis: how to
reveal the presence of an interdependence between two (or more) signals. The
analysis of such bivariate data is traditionally done by means of linear cross-
correlation (cross-spectrum) techniques [78] or nonlinear statistical measures
like mutual information or maximal correlation [81, 77, 115].

Recently, different synchronization concepts of nonlinear dynamics have been
used in studies of bivariate data. Schiff et al. [98] used the notion of dynami-
cal interdependence [65] and applied the mutual prediction technique to verify
the assumption that measured bivariate data originate from two synchronized
systems, where synchronization was understood as the existence of a functional
relationship between the states of two systems, called generalized synchroniza-
tion. In our previous works [86, 90, 89, 111, 95, Appendices 4 and 5], we
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proposed an ansatz based on the notion of phase synchronization; this implies
existence of a relationship between phases of two weakly interacting systems,
whereas the amplitudes may remain uncorrelated [85, 71, Appendix 1]. In our
approach we assume that the measured bivariate data originate from two in-
teracting self-oscillatory systems which may either be phase locked or oscillate
independently.

Generally, we try to access the following problem: suppose we observe a sys-
tem with a complex structure that is not known exactly, and measure two time
series at its outputs (Fig. 4.1). Our goal is not only to find out whether these
signals are dependent or not - this can be done by means of traditional statisti-
cal techniques - but to extract additional information on the interaction of some
subsystems within the system. Obviously, we cannot consider the system under
study as a “black box”, but need some additional knowledge to support the
assumption that the content of this “box” is complex, and we indeed encounter
several subsystems, that generate their own rhythms, but are, probably, weakly
coupled.

An advantage of our approach is that it allows to address rather weak in-
teraction between the two oscillatory subsystems. Indeed, the notion of phase
synchronization implies only some interdependence between phases, whereas
the irregular amplitudes may remain uncorrelated. The irregularity of ampli-
tudes can mask the phase locking so that traditional techniques treating not the
phases but the signals themselves may be less sensitive in the detection of the
systems’ interrelation [86, 89].

a) b)

?

Figure 4.1: Illustration of the synchronization approach to analysis of bivariate
data. The goal of the analysis is to reveal the presence of a weak interaction
between two subsystems from the signals at their outputs only. The assump-
tion made is that the data are generated by two oscillators having their own
rhythms (a). An alternative hypothesis is a mixture of signals generated by two
uncoupled systems (b).

To conclude this Section, we stress that the appearance of synchronization
entails some relations between phases and frequencies of oscillators, but the in-
verse statement is strictly speaking not correct. Indeed, if a system is outside
the synchronization region, but close to its border, then the distribution of the
cyclic relative phase Ψn,m(t) is also non-uniform, and the frequencies of oscilla-
tors are closer than those for non-interacting systems. Thus, the presence of a
peak in the distribution of Ψn,m(t) generally indicates the presence of some in-
teraction only, but does not necessarily mean that the systems are synchronized.
As we are not interested in determination of the borders of a synchronization
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region, but are only searching for the presence of coupling, this fact does not
influence interpretation of our results. We emphasize that interdependence of
phases can results not only from coupling of self-sustained oscillators, capable
to synchronize, but also due to such effects as modulation or stochastic reso-
nance [51]. Hence, the interpretation of passive experiments must be made very
carefully.

4.2 Estimating phases from data

Before we can analyze the relations between the phases of two oscillators, we
have to estimate these phases from scalar signals. We have shown above how to
define the phase for a periodic self-sustained system and for chaotic oscillations.
Quite often, the phase of an oscillator can be determined if one can find a suitable
projection of the phase space ensuring that all the trajectories rotate around
some point that is taken as the origin. From this projection, the phase can be
identified with the angle (with respect to an arbitrary direction) of the vector
drawn from the origin to the corresponding point on the trajectory. Note that in
this way we obtain a some non-uniformly rotating phase, what can essentially
complicate the analysis. Another possibility is to construct a Poincaré map
(stroboscopic map) and to define the phase according to (1.9).
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Figure 4.2: Short segments of (a) an electrocardiogram (ECG) with R-peaks
marked and (b) of a respiratory signal; both signals are shown in arbitrary
units. (c) Phase of the ECG computed according to Eq. (4.1) is a piece-wise
linear function of time; the instants when the R-peaks occur are shown by circles.
(d) Phase of respiration obtained via the Hilbert transform (Eq. (1.13)).

These two methods can be adapted for estimation of phases from experi-
mental data. To explain the details, we consider a human electrocardiogram
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(ECG) and a respiratory signal (air flow measured at the nose of the subject)
as examples. An essential feature of the ECG is that every (normal) cardio-
cycle contains a well-pronounced sharp peak that can be with high precision
localized in time; traditionally it is denoted as R-peak (Fig. 4.2a). The series of
R-peaks can be considered as a sequence of point events taking place at times
tk, k = 1, 2, . . .. Phase of such a process can be easily obtained. Indeed, the
time interval between two R-peaks corresponds to one complete cardiocycle;
therefore the phase increase during this time interval is exactly 2π. Hence, we
can assign to the times tk the values of phase φ(tk) = 2πk, and for arbitrary
instant of time tk < t < tk+1

φ(t) = 2πk + 2π
t− tk

tk+1 − tk
. (4.1)

This method (see also [99]) can be applied to any process that contains distinct
marker events and can therefore be reduced to the spike train. Determination
of the phase via marker events in time series can be considered as the analogy
to the technique of Poincaré section, although we do not need to assume that
the system under study is a dynamical one.

Now we consider the respiratory signal (Fig. 4.2b); it reminds a sine-wave
with slowly varying frequency and amplitude. Phase of such a signal can be
effectively obtained by means of the analytic signal concept, see Section 1.2.
Discussion of properties and practical implementation of the Hilbert Transform
and analytic signal are given in Appendices to [91, 70].

An important practical question is: Which method should be chosen for
analysis of particular experimental data? To address this problem we make the
following remarks:

• If we define the phase of a system in order to characterize its frequency
locking properties, then different methods (via the Poincaré section, from
the two-dimensional projection of the phase space or from an oscillatory
observable by means of the Hilbert transform) give similar results, at
least if the system is a “good” one [71]. Although these phases vary
microscopically, i.e., on the time scale less than one (quasi)period, the
average frequencies obtained from these phases coincide, and it is exactly
the frequencies what is primarily important for the description of syn-
chronization. Therefore, theoretically all the definitions of the phase are
equivalent. That is rarely the case in an experimental situation, where we
have to estimate the phases from short, noisy and nonstationary records,
so that numerical problems become a decisive factor.

• If the signal has very well-defined marker events, like the ECG, the Poincaré-
map-technique is the best choice. It could be also applied to an “oscilla-
tory” signal, like the respiratory one: here it is also possible to define the
“events” (e.g., as the times of zero crossing) and to compute the phase
according to Eq. (4.1). However, we do not recommend to do this: the
drawback is that the determination of an event from the slowly varying
signal is strongly influenced by noise and trends in the signal. Besides,
we get only one event per quasiperiod, and if the record is short, then
the statistics is poor. In such case the technique based on the Hilbert
transform is much more effective because it provides the phase for every
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point of the time series, so that we have a lot of points per quasiperiod
and can therefore smooth out the influence of noise and obtain sufficient
statistics for the determination of phase relationships.

Another important point is that even if we can unambiguously compute the
phase of a signal, we cannot avoid the uncertainty in the determination of the
phase of an oscillator.1 The latter depends on the observable used; “good”
observables provide equivalent phases (i.e., the average frequencies defined from
these observables coincide). In an experiment we are rarely free in the choice of
an observable. Therefore, one should always be very careful in formal application
of the presented methods and in the interpretation of the results.

We emphasize, that even if the observable is good enough, the distribution
of the estimated cyclic relative phase can essentially differ from that obtained
from the distribution of the correct phase satisfying Eq. (1.9).

4.3 Detection of weak interaction: techniques
and experimental examples

In this Section we on elaborate the techniques of phase relationship analysis and
illustrate them by several examples. These techniques are based on the idea of
synchronization and, therefore, we use the corresponding vocabulary, although
generally speaking we can reveal only the presence of some interaction.

4.3.1 Straightforward analysis of phase difference: Appli-
cation to posture control in humans

The simplest approach to look for synchronization is to plot the phase difference
versus time and look for horizontal plateaus in this presentation. Generally, we
have to plot the generalized phase difference

ϕn,m = nφ1 −mφ2 . (4.2)

This straightforward method turned out to be quite effective in the analysis of
model systems and some experimental data sets.

To illustrate this, we describe the results of experiments on posture control
in humans [89]. During these tests a subject is asked to stay quietly on a special
rigid force plate equipped with four tensoelectric transducers. The output of
the setup provides current coordinates (x, y) of the center of pressure under
the feet of the standing subject. These bivariate data are called stabilograms;
they are known to contain rich information on the state of the central nervous
system [31, 13, 26, 49]. Every subject was asked to perform three tests of
quiet upright standing (3 minutes) with (i) eyes opened and stationary visual
surrounding (EO); (ii) eyes closed (EC); (iii) eyes opened and additional video–
feedback (AF). 132 bivariate records obtained from 3 groups of subjects (17
healthy persons, 11 subjects with an organic pathology and 17 subjects with a
psychogenic pathology) were analyzed by means of cross-spectra and generalized

1We remind that although one can compute several phases from different observables of the
same oscillator, there exist only one phase of that system corresponding to its zero Lyapunov
exponent.
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mutual information. It is important that interrelation between the body sway
in anterior–posterior and lateral directions was found in pathological cases only.
Another observation is that stabilograms can be qualitatively rated into two
groups: noisy and oscillatory patterns. The latter appear considerably less
frequently — only a few per cent of the records can be identified as oscillatory
— and only in the case of pathology.

The appearance of oscillatory regimes in stabilograms suggests the excitation
of self-sustained oscillations in the control system responsible for the mainte-
nance of the constant upright posture; this system is known to contain several
nonlinear feedback loops with time delay. From the other hand, the indepen-
dence of the body sway in two perpendicular directions for all healthy subjects
and many cases of pathology suggests that two separate subsystems are involved
in the regulation of the upright stance. A plausible hypothesis is that when self-
sustained oscillations are excited in both these subsystems, synchronization may
take place. To test whether the interdependence of two components of a sta-
bilogram may be due to a relation between their phases, we have performed the
analysis of the phase difference.

Here we present the results for one trial (female subject, 39 years old, func-
tional ataxia). We can see that in the EO and EC tests the stabilograms are
clearly oscillatory (Figs. 4.3 and 4.4). The difference between these two records
is that with eyes opened the oscillations in two directions are not synchronous
during approximately the first 110 sec, but exhibit strong interrelation between
phases during the last 50 sec. In the EC test, the phases of oscillations nearly
coincide during all the time. The behavior is essentially different in the AF test;
stabilograms represent noisy patterns, and no phase relation is observed. We
emphasize, that the traditional techniques are not efficient to detect the cross-
dependence of these signals because of the non-stationarity and insufficient
length of the time series.

Remarks on the method

An important advantage of the straightforward phase analysis is that by means
of ϕn,m(t) plots one can trace transitions between qualitatively different regimes
that are due to nonstationarity of parameters of interacting systems and/or
coupling (Fig. 4.3). Noteworthy, this is possible even for very short records.
Indeed, two different regimes that can be distinguished in Fig. 4.3 contain only
about ten characteristic periods, i.e., these epochs are too short for reliable
application of conventional methods of time series analysis.

A disadvantage of the method is that synchronous regimes of the order dif-
ferent from n : m, e.g., synchronization of order n : (m + 1), appear in this
presentation as nonsynchronous epochs. Besides, there exist no regular meth-
ods to pick up the integers n and m, so that they are usually found by trial and
error. Respectively, in order to reveal all the regimes, one has to analyze a num-
ber of plots. In practice, the possible values of n and m can be estimated from
the power spectra of the signals, or by computation of the frequencies along the
recommendations given in the previous Section, and are often restricted due to
some additional knowledge on the system under study.

Another drawback of this technique is that if noise is relatively strong, this
method becomes ineffective and may be even misleading. Indeed, frequent phase
slips mask the presence of plateaus and synchronization can be revealed only by
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Figure 4.3: Stabilogram of a neurological patient. x (bold line) and y (solid line)
represent the body sway while quiet stance with open eyes in anterior-posterior
and lateral directions, respectively (a). The phases of these signals, and the
phase difference are shown in (b) by bold, solid and dashed lines, respectively.
The transition to a regime where the phase difference fluctuates around a con-
stant is clearly seen at ≈ 110 sec. A typical plot of y vs. x shows no structure
that could indicate the interrelation between the signals (c).

a statistical approach, e.g., by analysis of the distribution of the cyclic relative
phase to be defined below.

4.3.2 Statistical analysis of phase difference: Application
to brain activity

If the interacting oscillators are quasilinear then we can estimate the strength
of the n : m phase locking by comparing the distribution of the cyclic relative
phase Ψn,m(t) = (nφ1 − mφ2) mod 2π with the uniform distribution. For a
single record this can be done by visual inspection, but in order to perform
automatic analysis for large data sets or in order to trace the variation of the
strength of interaction with variation of some parameter, we need quantitative
criteria of synchronization. Quantitative characterization is also required for
significance tests. To this end we introduce three n : m synchronization indices:

(I) The synchronization index based on the Shannon entropy S of the phase
difference distribution [111, Appendix 5]. Having an estimate pk of the distri-
bution of Ψn,m, we define the index ρ as

ρn,m =
Smax − S

Smax
, (4.3)
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Figure 4.4: Stabilogram of the same patient as in the Fig. 4.3 obtained during
the test with the eyes closed. All the notations are the same as in Fig. 4.3. From
the phase difference one can see that the body sway in two directions are tightly
related in phases within the whole test, although the amplitudes are irregular
and essentially different.

where S = −∑N
k=1 pk ln pk, and the maximal entropy is given by Smax = ln N ;

N is the number of bins and pk is the relative frequency of finding Ψn,m within
the k-th bin.2 Due to the normalization used,

0 ≤ ρn,m ≤ 1 , (4.4)

whereas ρn,m = 0 corresponds to a uniform distribution (no synchronization)
and ρn,m = 1 corresponds to a distribution localized in one point (δ-function).
Such distribution can be observed only in the ideal case of phase locking of
noise-free quasilinear oscillators.

(II) Intensity of the first Fourier mode of the distribution

γ2
n,m = 〈cosΨn,m(t)〉2 + 〈sinΨn,m(t)〉2 , (4.5)

where the brackets denote the average over time, can serve as the other measure
of the synchronization strength; it also varies from 0 to 1. The advantage of
this index is that its computation involves no parameters: we do not need to
choose the number of bins as we do not calculate the distribution itself.

(III) If the oscillators are strongly nonlinear then the distribution of Ψn,m(t)
is non-uniform even in the absence of noise; this is essential if synchronization
occurs via parametric action. In this case we need some other measure to

2The optimal number of bins can be estimated as N = exp[0.626 + 0.4 ln(M − 1)], where
M is the number of samples [57].



44 Data analysis

characterize the strength of synchronization. For this purpose we recall the
stroboscopic approach: we know that in the synchronous state the distribution
of the stroboscopically observed phase is the δ-function; it is smeared in the
presence of noise. Thus, for n : m synchronization we have to characterize the
distribution of

η = φ2 mod 2πn |φ1 mod 2πm=θ . (4.6)

This means that we observe the phase of the second oscillator at the instants of
time when the phase of the first one attains a fixed value θ (phase stroboscope).
To account for the n : m locking, the phases are wrapped into intervals [0, 2πm]
and [0, 2πn], respectively. Repeating this procedure for all 0 ≤ θ < 2π and
averaging, we get a statistically significant synchronization index [111, Appendix
5].

n:m synchronization

no n:m synchronization
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Figure 4.5: Synchronization index based on the conditional probability. Phase
of the second oscillator φ2 wrapped in the interval [0, 2πn] is observed strobo-
scopically, i.e. when phase of the first oscillator φ1 is found in the certain bin
θl of the interval [0, 2πm]. If there is no synchronization then the stroboscopi-
cally observed φ2 is scattered over the circle, otherwise it groups around some
value. The sum of the vectors pointing to the position of the phase on the circle
provides a quantitative measure of synchronization.

Practically, if we deal with the time series, we can introduce binning for
the phase of the first oscillator, i.e. divide the interval [0, 2πm] into N bins.
Next, we denote the values of φ1 mod 2πm falling into the l-th bin as θl and
the number of points within this bin as Ml. Then, with the help of Eq. (4.6)
we compute Ml corresponding values ηi,l, where i = 1, . . . ,Ml. If the oscillators
are not synchronized, then we expect ηi,l to be uniformly distributed on the
interval [0, 2πn], otherwise these quantities group around some value and their
distribution is unimodal (Fig. 4.5). To quantify it, we compute

Λl = M−1
l

Ml∑

i=1

exp [ı(ηi,l/n)] . (4.7)

The case of complete dependence between both phases corresponds to |Λl| = 1,
whereas |Λl| vanishes if there is no dependence at all. To improve the statistics,
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we average over all N bins and get the synchronization index

λn,m = N−1
N∑

l=1

|Λl| . (4.8)

According to the definition above λn,m measures the conditional probability for
φ2 to have a certain value provided φ1 is in a certain bin.

Comparison of these three indices using the simulated data was performed
in [91]. We stress here two points. First, the indices are nonzero outside the
synchronization region. It is not surprising: we have noted already that the
distribution of the cyclic phase outside the region also has a peak. Thus, we
can reveal the presence of interaction even if it is too weak to induce synchro-
nization. Second, in case of frequency modulation in the signals, the conditional
probability index is definitely superior over two other indices.

Human brain activity during pathological tremor

Here we briefly present the results of the investigation of phase synchroniza-
tion between different brain areas, as well as between brain and muscle activ-
ity in Parkinsonian patients by means of noninvasive measurements [111, 110,
Appendix 5]. The goal of the study was to find out whether synchronization
between different cortical areas is involved in the generation of pathological
tremor.

The neuronal activity of the human brain was noninvasively assessed by
registering the magnetic field outside the scull by means of multichannel mag-
netoencephalography (MEG). In addition to the MEG, the electromyogram
(EMG) from two antagonistic muscles exhibiting tremor activity, namely the
right flexor digitorum superficialis muscle (RFM) and the right extensor indicis
muscle (REM), was registered by standard techniques.

The phase analysis was performed in the following way. First, the instanta-
neous phases of signals were obtained by means of the Hilbert transform. Next,
one signal was taken as the reference one, and phase locking between this chan-
nel and all others was studied in pairs. To cope with nonstationarity, a sliding
window analysis was done and the distribution of Ψn,m was computed for every
time point t within the window [t−T/2, t+T/2] and characterized by means of
the synchronization indices ρ and λ.3 The window length T was varied between
2 and 20 s; the results are robust with respect to this variation. In search of
corticomuscular synchronization (CMS), an EMG signal was taken as a refer-
ence signal. Investigation of cortico-cortical synchronization (CCS) was done
by choosing for reference one of the MEG channels over the left sensorimotor
cortex.

It was found that tremor activity reflects the time course of cortico-cortical
synchronization. Another important observation is that the onset of CCS pre-
cedes initiation of the tremor. Moreover, the phase analysis allows to localize
the brain areas with MEG activity phase locked to tremor activity from non-
invasive measurements (Fig. 4.6). The main focus of the 1 : 2 synchronization
is located over the contralateral sensorimotor cortex. Additionally, this type of
locking is observed over premotor, frontal, contralateral parietal and contralat-
eral temporal areas. In contrast to the 1 : 2 locking, the 1 : 1 synchronization is

3Computation of both indices gives consistent results.
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much weaker, and is observed over contralateral sensorimotor, parieto-occipital
and frontal areas. All areas which are 1 : 2 locked with the tremor are also 1 : 1
locked among each other.
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Figure 4.6: Time dependence of the synchronization index ρ1,2 characterizing 1 :
2 locking between the EMG of the right flexor muscle (reference channel, plotted
in the lower right corner) and all MEG channels. Each rectangle corresponds
to an MEG sensor; time axis spans 310 s and y-axis scales from 0 to 0.25. The
head is viewed from above, ‘L’ and ‘R’ mean left and right (see the “head” in the
upper right corner). The upper and lower gray regions corresponds to premotor
and contralateral sensorimotor areas respectively. The results are similar for
the extensor muscle.

4.3.3 Stroboscopic technique: Application to cardiorespi-
ratory interaction

In this Section we present the synchronization analysis of cardiorespiratory in-
teraction in humans. The data we analyze, namely electrocardiogram (ECG)
and respiratory signal, were already introduced in Fig. 4.2. The complexity of
this case is related to the following features:

• the time series have essentially different forms (respiration is a narrow-
band signal, while ECG can be reduced to the spike train);

• the characteristic time scales of two signals are different (there are always
several heartbeats per respiratory cycle) and vary essentially within one
experimental record; therefore we expect (and we indeed observe it) syn-
chronization of some high order n : m and transitions between different
synchronous states;

• synchronization is probably related to modulation of the heart rate by
respiration, so that stroboscopic methods suitable for the detection of
n : m locking from nonstationary data are required.

These features make the problem a very useful example for comparison of dif-
ferent analysis techniques.
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Phase stroboscope (Cardiorespiratory synchrogram)

First we present a graphic tool based on the stroboscopic technique. With this
method, the phase of the driven oscillator is observed with the period of external
force, φk = φ(t0 + k ·T ), where k = 1, 2, . . . and t0 is the (arbitrary) time of the
first observation. If the oscillator is entrained, the distribution of the φk is a
δ-function, if the oscillator is periodic, and it is narrow, if the oscillator is noisy
or chaotic. Non-synchronous state implies that the stroboscopically observed
phase attains an arbitrary value, and its distribution is therefore broad.

A simple generalization makes this technique a very effective tool of time
series analysis. To this end, we consider two coupled oscillators and observe
the phase of one oscillator not periodically in time, but periodically (with the
period 2π) in phase of the other oscillator. In other words, we pick up φ1k at
the moments when φ2(t) = φ0+2π ·k. We refer to this technique as to the phase
stroboscope. Obviously, if the second oscillator is periodic, the phase and the
time stroboscopes are equivalent. Certainly, it does not matter which oscillator
is taken as the reference one (second in our notation); the choice solely depends
on the convenience of the phase determination. In the rest of this Section
we explain and illustrate how the stroboscopic technique can be used for the
detection of interaction (provided that we know that the signals originate from
interacting self-sustained oscillators) in case when the frequencies of the signals
obey nΩ1 ≈ mΩ2, or, generally, for detection of complex relations between the
phases of two signals.

Suppose first that we deal with two n : 1 synchronized oscillators that gen-
erate signals like shown in Fig. 4.2 and let n spikes4 of the fastest signal occur
within one cycle of the slow one, i.e., there is a n : 1 locking. Then we expect to
find the spikes at n different values of the phase of the slow signal. A similar pic-
ture can be observed if there is no synchronization, but one process is modulated
by the other one. Therefore, in a particular experiment, we can use this idea
to reveal complex interaction, but cannot distinguish between synchronization
and modulation.

It is natural to observe the phase of the slow signal at the times of spiking.
Thus, we plot the stroboscopically observed cyclic phase ψ(tk) = (φ1(tk) mod
2π)/2π versus time and call such a plot a synchrogram. Presence of interaction
is reflected by the occurrence of n stripes in this presentation.

The final step is to extend the stroboscopic technique to the general case of
n : m locking. Suppose again that we observe one oscillator, whenever the phase
of the second one is a multiple of 2π. Then, if interaction is present, we expect
to make n observations within m cycles of the first oscillator. To construct
a synchrogram we have to distinguish somehow the phases within m adjacent
cycles. For this purpose we make use of the fact that phase can be defined either
on a circle, i.e., from 0 to 2π, or on the real line. We often intermingled these
two definitions, and the range of the phase variation was clear from the context.
Now we perform the following trick: we take the unwrapped (i.e., infinitely
growing) phase and wrap it on the cycle [0, 2πm]. In this way we consider m
cycles as one cycle, and then proceed as before, plotting ψm(tk) versus time
(Fig. 4.7); the index m indicates how the phase was wrapped. Note that only

4If there were no spikes, we can define the events as, say, zero crossing in one direction.
In other words, we have to define the instants when the phase of the fastest oscillator attains
some fixed value.
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the value of m should be chosen by trial and error, and different epochs, say
with approximate frequency ratios n : m and (n + 1) : m, can be seen within
one synchrogram.

ψm(tk)

φ 1
π

(t
) 

m
od

 2

(a)

time

time

time

(d)
m

0
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Figure 4.7: Principle of the phase stroboscope, or synchrogram. Here a slow
signal (a) is observed in accordance with the phase of a fast signal (c). Measured
at these instants, the phase φr of the slow signal wrapped modulo 2πm, (i.e., m
adjacent cycles are taken as a one longer cycle) is plotted in (d); here m = 2. In
this presentation n : m phase synchronization shows up as n nearly horizontal
lines in (d); similar picture appears in the case of modulation.

Cardiorespiratory interaction

Interaction between human cardiovascular and respiratory systems was inten-
sively studied. Although it is well-known that these systems do not act inde-
pendently [43] and in spite of early communications in the medical literature
(that often used different terminology) [108, 21, 66, 37, 79, 80], in the biological
physics community these two systems were often considered to be not synchro-
nized. So, an extensive review of previous studies of biological rhythms led to the
conclusion that “there is comparatively weak coupling between respiration and
the cardiac rhythm, and the resulting rhythms are generally not phase locked”
(see [29], page 136). Recently, the interaction of these vital systems attracted
attention of several physics groups, and synchronization during paced respira-
tion [97, 102] was investigated. Here, as well as in Refs. [108, 66, 37, 97, 102]
only synchronous states of orders n : 1 (n heartbeats within 1 respiratory cycle)
were found due to limitation of the ad hoc methods used for the analysis of
data. In our recent work [95, 96, 52, Appendices 4 and 6] we have reported on
cardiorespiratory synchronization under free-running conditions in two groups
of subjects: young athletes and healthy newborns. The proposed analysis tech-
nique allows to find out synchronous epochs of different orders n : m by means
of synchrograms (see an example in Fig. 4.8) as well as fully automatically, by
means of stroboscopic synchronization index [52, Appendix 6]. Cardiorespira-
tory synchrogram was also used in [11, 104], where cardiorespiratory interaction
in healthy relaxed subjects (non-athletes) and in rats during anesthesia was an-
alyzed.
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Figure 4.8: An example of alternation of interaction with approximate frequency
relations 2 : 1 and 5 : 2 between heart rate and respiration of a healthy baby.
(a) Two adjacent respiratory cycles are taken as one cycle. Therefore, epochs
of 2 : 1 and 5 : 2 relation between phases appear as 4- and 5-lines patterns. (b)
Plot of the number of heartbeats within two respiratory cycles N2 also indicates
epochs of interdependence. (c) If the respiratory phase is wrapped modulo 2π
then only 2 : 1 relation is seen. The data points are shown by different symbols
in cyclic order (5 and 2 symbols in (a) and (c), respectively) for better visual
impression.

4.3.4 Discussion

Is it really synchronization?

An important issue is interpretation of the results of the phase analysis. Here
we have to be aware of two problems:

• Can we be sure that the patterns of the relative phase, described in the
sections above, indeed indicate synchronization, and, respectively, under-
lying nonlinear dynamics?

• How reliable is this indication?

Before we address these questions, we remind that the synchronization tran-
sition in noisy systems is smeared. Next, as we already stressed, the relation
between phases indicates, strictly speaking, the presence of interaction between
systems, but not necessarily means that they are synchronized. Finally, our
synchronization approach to data analysis is based on certain assumptions that
might be not always fulfilled. All in all, we can never unambiguously state that
we have observed synchronization; nevertheless, strong indications in favor of
such a conclusion can be sometimes found.

As synchronization is not a state, but a process of adjustment of rhythms
due to interaction, we cannot validate its existence if we do not have access to
the system parameters and cannot check experimentally that the synchronous
state is stable towards variation of the parameter mismatch within a certain
range (i.e., if we cannot plot the frequency vs. detuning curve). If we are not
able to do such experiments, but just have some data sets registered under
free-running conditions, the only way to get some confirmation (but certainly
not a proof) on the existence of synchronization is to make use of the fact
that the data are nonstationary. Indeed, we can trace the variation of the
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instantaneous frequencies of both signals and their relation with time. If we
find some epochs, as in the case of cardiac and respiratory data, where both
frequencies vary, but their relation remains stable (example of such epoch in
context of cardiorespiratory interaction is given in [91]), this can be considered
as a strong indication in favor of our conclusion.

Another indication that also can be obtained using the fact of nonstationarity
of the data is the presence of several different n : m epochs within one record.
Indeed, one can argue that observed phase or frequency locking of, e.g. order
3 : 1, could be due to the coincidence of frequencies of the uncoupled systems.
Nevertheless, occasional coincidence of frequencies having the ratios exactly
corresponding to neighboring Arnold tongues seems to be very unlikely.

If the data are rather stationary and we are not able to find such epochs,
the situation is more difficult. Suppose that the distribution of the relative
phase for such a bivariate record is non-uniform. Can it just happen due to an
occasional coincidence of frequencies? From the theory and the simulation of
model examples we know that even if the frequencies of uncoupled oscillators are
equal, the distribution of Ψn,m, computed on a sufficiently long time scale, has
to be nearly uniform due to the diffusion of the phase. Certainly, occasionally
one can find short epochs where phases seem to be locked. How can we estimate
what is “short” and “long” in this context?

From the first sight, a natural way to address this problem is to use the
surrogate data techniques [59, 102]. However, we see some serious problems in
this approach. The usual formulation of the null hypothesis that is used for
nonlinearity tests is to consider a Gaussian linear process [112] with a power
spectrum that is identical to that of the tested signal; more sophisticated meth-
ods [101] imply also preservation of the probability distribution. A modification
of this null hypothesis for the tests for synchronization — a consideration of two
surrogate signals that preserve the linear cross-correlation between the original
data — seems to be not sufficient. Indeed, due to the definition of synchroniza-
tion, we are interested in the relation between instantaneous phases, whereas
the variations of amplitudes and their interrelation are of no importance. The
usual way to construct surrogates (the randomization of Fourier phases) mixes
the phase and amplitude properties, transforming the variation of instantaneous
phase into the variation of instantaneous amplitude and vice versa. Moreover,
the signals generated by self-sustained oscillators possess certain properties of
the distribution of instantaneous amplitudes (see [48] and references therein),
and this distribution is destroyed by the Fourier phase randomization.

Although we cannot give a general recipe how to estimate the reliability of
phase analysis, some empirical methods can be used in particular experiments.
So, in the above described MEG study [111, 110, Appendix 5] the surrogates
were constructed by taking either white noise or empty room measurements
(instrumental noise) and filtering them with the same band-pass filter as the
data. The 95th percentile of the distribution of a synchronization index for
surrogates was taken as the significance level. Afterwards, the synchronization
indices were re-calculated in accordance to this level, e.g. ρn,m → max{ρn,m −
ρ̃, 0}, where ρ̃ is the significance level.
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Figure 4.9: Results of the cross-spectral analysis of two pairs of signals. The
autospectra of a channel characterizing the sensorimotor and muscle activities
and the coherence function are shown in (a), (b), and (c), respectively. The
same is shown in (d), (e) and (f) for a channel over the right temporal cortex.
(The spectrum of the EMG is repeated in (e) for convenience). It is seen that
both MEG channels are coherent with the muscle activity, whereas only one
channel is synchronized with it.

Synchronization versus coherence

A very important problem is the difference between our synchronization ap-
proach and traditional correlation (coherence) analysis. Coherence is widely
used in neuroscience as a standard tool for the detection of interaction [55].
However, since the coherence analysis does not separate the phase and ampli-
tude dynamics but treats the signals themselves, it addresses different aspects
of systems interaction as compared to the phase synchronization analysis. This
is illustrated in Fig. 4.9.

4.4 Identification of coupling direction from data

In this Section we discuss experimental detection of directionality of weak cou-
pling between two self-sustained oscillators from bivariate data [84, 88, Ap-
pendix 7]. The algorithms we present provide directionality index that shows
whether the coupling between the oscillators is unidirectional or bidirectional
and quantifies the asymmetry of bidirectional coupling. These techniques are ap-
plied to analysis of cardiorespiratory interaction in healthy infants. The results
reveal that the direction of coupling between cardiovascular and respiratory sys-
tems varies with the age within the first 6 months of life: we find a tendency to
change from nearly symmetric bidirectional interaction to nearly unidirectional
one (from respiration to the cardiovascular system).
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Estimation of interdependence between two time series is a traditional prob-
lem of signal processing. Widely used tools like cross-spectra [57], mutual infor-
mation [77] or maximal correlation [115] provide symmetric measures and are
therefore not suitable for evaluation of causality in interrelation. The latter issue
was addressed in recent studies, where one can outline two main approaches.
One approach, based on the information theory, used entropy measures [100]. A
second approach, arising from studies of generalized synchronization, exploited
the idea of mutual predictability: it quantified the ability to predict the state
of the first system from the knowledge of the second one [98]. While both ap-
proaches are rather complicated to implement and interpret, neither requires
any assumptions on the systems under investigation. On the contrary, the ap-
proach to analysis of causality, or directionality of interaction, presented here, is
explicitly based on the assumption that experimentalists deal with weakly inter-
acting self-sustained oscillators. In this particular, but pretty often encountered
case the direction of coupling can be efficiently quantified.

The main idea is to use the fact that weak coupling affects the phases of
interacting oscillators, whereas the amplitudes remain practically unchanged.
Hence, the dynamics can be reduced to those of two phases φ1,2:

φ̇1,2 = ω1,2 + ε1,2f1,2(φ2,1, φ1,2) + ξ1,2(t) . (4.9)

Here, random terms ξ1,2 describe noisy perturbations that are always present
in real-world systems; small parameters ε1,2 << ω1,2 characterize the strength
of the coupling. Equations (4.9) describe also the phase dynamics of coupled
continuous-time chaotic systems; in this case ξ1,2 are irregular terms that re-
flect the chaotic nature of amplitudes. The fact that the regular component of
the phase dynamics is two-dimensional, essentially simplifies detection of the
asymmetry in interaction. Functions f1,2 are 2π-periodic in both arguments
and combine the description of the phase dynamics of autonomous (uncoupled)
systems and the coupling between them. If the coupling is bidirectional, f1

and f2 depend on both φ1 and φ2. In case of unidirectional driving, say from
system number 1 to system number 2, f1 = f1(φ1), whereas f2 = f2(φ1, φ2) is
the function of two arguments.

In the following discussion of the algorithms, we assume that the time series
of phases are known. Practically, the phases φ1,2(tk), tk = k ·∆t, k = 1, 2, . . .,
where ∆t is the sampling interval, can be estimated from the experimental data
as discussed above.

4.4.1 Evolution map approach

Here we briefly describe the technique introduced in [84], we call it the EMA.
Let us consider increments of phases during some fixed time interval τ :

∆1,2(k) = φ1,2(tk + τ)− φ1,2(tk) ; (4.10)

τ is the only parameter of the algorithm. Note that the phases are unwrapped,
i.e. not reduced to the interval [0, 2π); hence ∆1,2 can be larger than 2π. These
increments can be considered as generated by some unknown two-dimensional
noisy map

∆1,2(k) = ω1,2τ + F1,2 (φ2,1(tk), φ1,2(tk)) + η1,2(tk) . (4.11)
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The deterministic parts F1,2 of the map can be estimated from the time se-
ries ∆1,2(k) and φ1,2(k). For this purpose, we fit (in the least mean square
sense) the dependencies of ∆1 and ∆2 on φ1, φ2. As the phases are cyclic
variables, the natural choice of the probe function is a finite Fourier series,
F1,2 =

∑
m,l Am,le

imφ1+ilφ2 . Note that fitting also filters out the noise. A sim-
ilar procedure was used for noise reduction in discrete dynamical systems [75]
and (with τ → 0) for extracting model equations from experimental noisy data
[24].

From the smooth functions F1,2 obtained via approximation one can compute
the measures c1,2 of the cross-dependencies of phase dynamics of two systems:

c2
1,2 =

∫ ∫ 2π

0

(
∂F1,2

∂φ2,1

)2

dφ1 dφ2 . (4.12)

Finally, the directionality index is introduced as

d(1,2) =
c2 − c1

c1 + c2
. (4.13)

Normalized in this way, the index varies from 1 in the case of unidirectional
coupling (1 → 2) to −1 in the opposite case (2 → 1) with intermediate values
−1 < d(1,2) < 1 corresponding to bidirectional coupling. Note that the index is
an integrated measure of how strong each system is driven and of how sensitive
it is to the drive.

To understand exactly how the asymmetry in coupling is characterized by
the index d, i.e., how d is related to the parameters of the model equation (4.9),
we estimate the deterministic components ∆1,2 of the phase increase within the
interval τ . As follows from (4.9), in the absence of noise, we obtain for small
ε1,2

∆φ1,2 ≈ ω1,2τ + ε1,2

∫ τ

0

f1,2(φ2,1, φ1,2)dt = ω1,2τ + F1,2(φ2,1, φ1,2) . (4.14)

So, for a particular (but rather common) case of antisymmetric coupling function
f1(φ2, φ1) = −f2(φ1, φ2), we obtain from (4.12) c1,2 = aε1,2, where the constant
a is determined by the integral in (4.14). In general case the coefficients c1,2 =
a1,2ε1,2, where a1 6= a2, reflect also the difference in coupling functions f1,2.
Thus, the directionality index d characterizes the asymmetry in coupling but
does not incorporate the difference in the frequencies of autonomous systems.

4.4.2 Instantaneous period approach

Let us now compute the time needed for the phase φ1,2(tk) to increase by 2π;
in other words we compute the instantaneous periods, or Poincaré return times,
for all k.5 Obviously, for uncoupled noisy and/or chaotic systems the return
times fluctuate around a constant (mean period), T1,2(k) = T 0

1,2 + η1,2(tk),
while for coupled systems T1,2(k) = T 0

1,2 + Θ1,2(φ2,1(tk), φ1,2(tk)) + η1,2(tk).

5Practically, for discrete data, this can be done in the following way. For any tk we
find tj such that φ(tj) ≤ φ(tk) + 2π and φ(tj+1) > φ(tk) + 2π. Then t′ correspondent to
φ = φ(tk)+2π is obtained via interpolation between tj and tj+1. If the sampling rate is high,
simple linear interpolation suffices, otherwise spline interpolation (using several points around
tj) is recommended; this procedure also reduces the effect of noise.
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The deterministic component Θ1,2 of this dependence can be again found by
fitting a Fourier series, and the cross-dependencies of T1 on φ2 and of T2 on
φ1 can be characterized in the same way as above, by computing coefficients
c1,2 from partial derivatives of Θ1,2 with respect to φ2,1, similarly to Eq. (4.12).
Then, the new directionality index r(1,2) = (c2 − c1)/(c2 + c1) is computed (cf.
Eq. (4.13)). An important advantage of the proposed algorithm is the absence
of parameters.

Now we show that this algorithm provides different characterization of asym-
metry than EMA. Indeed, for weak coupling, ε1,2 << ω1,2, the deterministic
component of the instantaneous period T1 can be estimated from (4.9) as

T1(φ1, φ2) =
∫ φ1+2π

φ1

dφ′

ω1 + ε1f1(φ2, φ′)

=
1
ω1

∫ φ1+2π

φ1

dφ′

1 + ε1
ω1

f(φ2, φ′)

=
2π

ω1
− ε1

ω2
1

∫ φ1+2π

φ1

f(φ2, φ
′)dφ′

= T 0
1 + Θ1(φ2, φ1) ,

(4.15)

and similarly for T2. Clearly, for coupling functions satisfying f1(φ2, φ1) =
−f2(φ1, φ2), this algorithm provides c1,2 = aε1,2/ω2

1,2. Hence, directionality
index r reflects not only asymmetry in coupling coefficients ε1,2 and asymmetry
in coupling functions f1,2, but also in natural frequencies ω1,2.

4.4.3 Mutual prediction approach

As already mentioned, mutual prediction is used for estimation of causal rela-
tions in the methods based on the concept of generalized synchronization. These
methods imply existence of a functional relationship between the (phase) states
of two systems; such a relation arises due to a comparatively strong coupling.
We exploit here a different understanding of mutual prediction, and this allows
us to assess a weaker interaction. Namely, we look whether the predictability
of, say, first time series can be improved by the knowledge of the second signal.
A similar concept, initially introduced by C. Granger, was very recently used
by several groups [117].6 The main distinction of our approach is that we work
with phases, not raw signals.

Thus, we take one series, say, φ1(tk), and use some scheme to predict a
future of its points. For the kth point we compute the univariate prediction
error E1(tk) = |φ′1(tk)−φ1(tk + τ)|, where φ′1(tk) is the τ -step ahead prediction
of the point φ1(tk); remember that phases are unwrapped. Next, we repeat the
prediction for φ1(tk), but this time we use both signals φ1, φ2 for construction
of the predictor. In this way we obtain the bivariate prediction error E12(tk). If
system 2 influences the dynamics of system 1 then we expect E12(tk) < E1(tk),
otherwise (for sufficient statistics) E12(tk) = E1(tk). The root mean squared

6Also: U. Feldmann and J. Bhattacharya, presentation at the 6th Experimental Chaos
Conference; B. Schack and M. Arnold, private communication.
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E1(tk) − E12(tk), computed over all possible k and denoted by I12, quantifies
the predictability improvement for the first signal. This measure characterizes
the degree of influence of the second system on the first one. Computing in the
same way I21, we end with the directionality index

p(1,2) =
I21 − I12

I12 + I21
. (4.16)

Particularly, we use simple prediction scheme, due to the low dimension of the
phase dynamics [88, Appendix 7]. We emphasize that the MPA does not directly
use the assumption of weakly coupled oscillators; generally, it can be applied to
arbitrary signals. If the assumption of weak coupling is correct, then the choice
of phases is crucial as these variables are mostly sensitive to the coupling.

To summarize this Section, we emphasize two points. First, it is clear that
all methods fail if oscillators synchronize. Indeed, in this case φ1,2 are func-
tionally related, and no information on the coupling direction can be obtained.7

Practically it means that the points on the (φ1, φ2) torus collapse to a line,
and the approximation procedure fails. Thus the direction of interaction can
be revealed if the coupling is too weak in order to induce mode locking (i.e.,
in the quasiperiodic state) or the noise in the system is strong enough to cause
large deviations from the synchronous state. If the noisy systems are close to
a synchronous state, the points on the torus form a band with some (rare) ex-
cursions from it. In this case the described global approximation procedures,
i.e., EMA and IPA, are not efficient and a scheme based on local approximation
is required. Next, we emphasize that there is no unique way to quantify the
directionality in case of bidirectional coupling; different methods can therefore
give non-coinciding characteristics (e.g., d and r indices do not coincide). The
choice of a quantification measure is to large extent a matter of taste.

7Indeed, for the simplest case of sine coupling function, f1,2 = sin(φ2,1 − φ1,2), in the

synchronous regime the constant phase difference is φ2−φ1 = arcsin
ω2 − ω1

ε2 + ε1
, and we cannot

extract information on ε1,2 separately.
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Chapter 5

Conclusions

1. It is demonstrated that synchronization phenomena in periodic, noisy and
chaotic oscillators can be understood within a unified framework. This is
achieved by extending the notion of phase to the case of continuous-time
autonomous chaotic systems. Phase is introduced as a variable corre-
sponding to the zero Lyapunov exponent.

(a) If the system admits construction of a Poincaré map, then, for each
piece of a trajectory between two cross-sections with the Poincaré
surface of section, the phase is defined as linear function of time,
so that it gains 2π with each return to the surface of section. The
method can be adopted to phase estimation from scalar experimental
signals.

(b) The phase can be efficiently estimated from such a projection of the
strange attractor, where all the trajectories rotate around the origin,
as the polar angle in this projection. The phase can also be estimated
from an oscillatory observable by means of the Hilbert Transform.

2. A chaotic oscillator can be n : m entrained by a weak external force; two
nonidentical oscillators can synchronize due to a weak coupling. These
effects can be described in terms of phases and corresponding mean fre-
quencies. Synchronization properties of chaotic systems are qualitatively
similar to those of noisy oscillators. Depending on the distribution of the
Poincaré return times chaotic system can synchronize like a limit cycle
oscillator with bounded or unbounded noise (respective examples are the
Rössler and the Lorenz systems). In the former case there is a range of
parameter mismatch where frequencies are perfectly locked and the phase
difference between the oscillators fluctuates around a constant; outside
synchronization region the phase dynamics are intermittent.

3. Transition to phase synchronization is reflected in the spectrum of Lya-
punov exponents: one of the zero Lyapunov exponents of the combined
system becomes negative what corresponds to the stability of the phase
difference. Two positive Lyapunov exponents remain positive, reflecting
the irregularity of chaotic amplitudes; the latter are practically uncorre-
lated in the state of phase synchronization. Thus, phase synchronization
transition is a transition within hyperchaos.
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4. Ensembles of nonidentical chaotic oscillators exhibit Kuramoto self-syn-
chronization transition. This is observed even for systems with ill-defined
phase. Synchronization is also possible in chains of nonidentical nearest-
neighbor coupled oscillators. Depending on the parameter mismatch, syn-
chronization transition in chains occurs either smoothly or via formation
of clusters.

5. Coupled nonidentical chaotic oscillators (e.g., Rössler systems) can ex-
hibit effect of lag synchronization. If the coupling is increased beyond the
threshold of phase synchronization, the amplitudes become dependent as
well, and lag synchronization appears as a nearly perfect coincidence of
shifted in time states of two systems, x1(t + τ0) ≈ x2(t).

6. Synchronization of systems for which there exist no well-defined phase can
be however characterized indirectly. Onset of synchronization by exter-
nal force can be traced by resonance-like increase of the average field in
an ensemble of identical systems having different initial conditions. Next,
synchronization can be revealed with the help of ensembles of auxiliary
limit cycles oscillators. These ensembles can be considered as a device
for locking-based frequency measurements. This method is easily imple-
mentable in experiments and can be exploited in analysis of many coupled
oscillators.

7. Ideas of the synchronization theory can be used to reveal weak interaction
from experimental data. As noisy and chaotic systems have qualitatively
similar phase dynamics, synchronization approach to data analysis can be
exploited for analysis of any irregular oscillators (noisy, chaotic, or noisy
chaotic).

8. Algorithms for detection and quantification of weak interaction from noisy
multivariate data have been developed and used in several experiments.

(a) It was found that cardiovascular and respiratory systems in humans
(in young athlets and in healthy newborns) can exhibit n : m lock-
ing. Intensity of cardiorespiratory interaction in healthy newborns
increases with the age within first 6 month of life.

(b) Synchronization analysis allowed us to localize the sources of patho-
logical brain activity in Parkinsonian patients from multichannel
magnetoencephalography data, as well as reveal interaction between
different brain areas involved in generation of Parkinsonian tremor.

9. Algorithms for detection of coupling direction from data have been devel-
oped. They are effective for analysis of signals generated by two weakly
coupled noisy oscillators. With the help of these techniques it was found
that the direction of cardiorespiratory interaction in healthy newborns is
age-dependent.
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[92] O. E. Rössler. An equation for continuous chaos. Phys. Lett. A, 57(5):397,
1976.



65

[93] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel.
Generalized synchronization of chaos in directionally coupled chaotic sys-
tems. Phys. Rev. E, 51(2):980–994, 1995.

[94] H. Sakaguchi, S. Shinomoto, and Y. Kuramoto. Local and global self-
entrainments in oscillator lattices. Prog. Theor. Phys., 77(5):1005–1010,
1987.
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Phase Synchronization of Chaotic Oscillators
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We present the new effect of phase synchronization of weakly coupled self-sustained chaotic
oscillators. To characterize this phenomenon, we use the analytic signal approach based on the Hilbert
transform and partial Poincaré maps. For coupled Rössler attractors, in the synchronous regime the
phases are locked, while the amplitudes vary chaotically and are practically uncorrelated. Coupling
a chaotic oscillator with a hyperchaotic one, we observe another new type of synchronization, where
the frequencies are entrained, while the phase difference is unbounded. A relation between the phase
synchronization and the properties of the Lyapunov spectrum is studied.

PACS numbers: 05.45.+b

Cooperative behavior of chaotic dynamical systems and,
in particular, synchronization phenomena have received
much attention recently. Nevertheless, the notion of syn-
chronization itself lacks a unique interpretation. Mostly,
the synchronization is considered as the complete coin-
cidence of the states of individual systems (subsystems).
Such a regime can result from an interaction between sys-
tems [1] or subsystems [2,3], as well as from the influence
of external noisy [4] or regular [5] fields; in all these situ-
ations synchronization is a threshold phenomenon.

Generally, synchronization can be treated as an ap-
pearance of some relations between functionals of two
processes due to interaction [6]. The choice of the func-
tionals is to some extent arbitrary and depends on the
problem under consideration. In the classical case ofpe-
riodic self-sustained oscillators, described as early as in
the 17th century by Hugenii [7], synchronization is usu-
ally defined as locking of the phasesf1,2, nf1 2 mf2 ­
const [8], while the amplitudes can be quite different.
This effect is widely used in engineering for improvement
of the linewidth of a high-power generator with the help
of a low-power but more stable (having narrower line)
one. Some other types of synchronization in systems with
quasiperiodic and chaotic behavior have been discussed in
Ref. [9].

In this Letter we investigate phase synchronization of
chaoticoscillators. Using the methods of analytic signal
and the Poincaré map, we show that the interaction of
nonidentical autonomous chaotic oscillators can lead to a
perfect locking of their phases, whereas their amplitudes
remain chaotic and noncorrelated. A similar effect of
phase locking of chaotic oscillations by a periodic external
force has been described in Refs. [10,11]. We also
describe a weaker type of synchronization, when the
frequencies are locked while the phase difference exhibits
a random-walk-type motion.

Firstly, we have to determine the amplitude and the
phase of an arbitrary signals(t). A general approach has
been introduced by Gabor [12] and is based on the analytic
signal concept [13]. The analytic signalcstd is a complex

function of time defined as

cstd ­ sstd 1 js̃std ­ Astdejfstd, (1)

where the functioñsstd is the Hilbert transform ofsstd

s̃std ­ p21P.V.
Z `

2`

sstd
t 2 t

dt (2)

(where P.V. means that the integral is taken in the sense of
the Cauchy principal value). The instantaneous amplitude
Astd and the instantaneous phasefstd of the signalsstd
are thus uniquely defined from (1). From (2), the Hilbert
transforms̃std of sstd may be considered as the convolu-
tion of the functionssstd and 1ypt. Hence the Fourier
transformS̃s jvd of s̃std is the product of the Fourier trans-
forms ofsstd and1ypt. For physically relevant frequen-
ciesv . 0, S̃s jvd ­ 2jSs jvd; i.e., ideallys̃std may be
obtained fromsstd by a filter whose amplitude response is
unity, and whose phase response is a constantpy2 lag at
all frequencies [13,14].

For chaotic oscillators, we can calculate the phase from
taking assstd any observable, so there is no unique phase
of chaotic oscillations. However, in some cases “natural”
observables provide phases that agree with an intuitive
definition. For example, for the Rössler attractor [15]
taking the observabless1 ­ x and s2 ­ y [see below
Eqs. (3)] gives phases shifted byøpy2 and rotating with
the same averaged velocity, corresponding to the main
peak in the power spectrum.

To study phase synchronization of coupled chaotic
oscillators, we calculate the phases of the oscillators and
then check whether the weak locking conditionjnf1 2

mf2j , const is satisfied. In this Letter, we restrict
ourselves to the casem ­ n ­ 1.

As the simplest example of phase synchronization, we
consider two coupled Rössler systems [15]

Ùx1,2 ­ 2v1,2y1,2 2 z1,2 1 Csx2,1 2 x1,2d ,

Ùy1,2 ­ v1,2x1,2 1 0.15y1,2 , (3)

Ùz1,2 ­ 0.2 1 z1,2sx1,2 2 10d .

1804 0031-9007y96y76(11)y1804(4)$10.00 © 1996 The American Physical Society
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Here we introduce the parametersv1,2 ­ 1 6 Dv and
C, which govern the frequency mismatch [16] and the
strength of coupling, respectively [17]. As the coupling
is increased for a fixed mismatchDv, we observe a
transition from a regime, where the phases rotate with
different velocitiesf1 2 f2 , DV t, to a synchronous
state, where the phase difference does not grow with time
jf1 2 f2j , const; DV ­ 0. This transition is illus-
trated in Fig. 1(a). We emphasize that in contrast to the
other types of synchronization of chaotic systems [1,2],
here the instant fieldsx1,2, y1,2, andz1,2 do not coincide.
Moreover, the correlations between the amplitudes ofx1
and x2 are pretty small [Fig. 1(b)], although the phases
are completely locked and in this respect the motions are
highly coherent.

For the Rössler attractor, because of its simple form, the
phase can be introduced in a more straightforward way,
based on the Poincaré map construction. One can say that
the motion from one crossing with a secant surface until the
next one corresponds to the phase shift 2p. When we con-
sider coupled chaotic systems, we still can construct par-
tial Poincaré maps, e.g., taking successive maxima of the
variablesx1,2 in the coupled Rössler systems. Partial fre-
quencies are then simply defined as an average number of
crossings of the secant surfaces per unit time. According
to this approach, the synchronization in coupled Rössler
systems simply means that the average numbers of oscil-

FIG. 1. Phase difference of two coupled Rössler systems
[Eq. (3)] versus time for nonsynchronoussC ­ 0.01d, nearly
synchronoussC ­ 0.027d, and synchronoussC ­ 0.035d states
(a). In the last case the amplitudesA1,2 remain chaotic (b), their
cross correlation is less than 0.2. The frequency mismatch is
Dv ­ 0.015.

lations (number of maxima) per unit time in both systems
coincide. The region of synchronization in the plane of pa-
rameters “coupling-frequency mismatch,” obtained using
these partial Poincaré maps, is presented in Fig. 2. Note
that it seems to have no threshold: If the frequency mis-
match is smallDv ! 0, synchronization appears already
for vanishing coupling. This is a particular feature of the
Rössler system, where the motion is highly coherent (in
the power spectrum a very sharp peak is observed [18]).
From the other side, it is possible to synchronize systems
with frequency mismatch of more than 20% (see Fig. 2).

The instantaneous phasef, defined through the Hilbert
transform (2) provides, of course, additional information
on the dynamics of synchronization (see, e.g., the time
evolution off1 2 f2 for C ­ 0.027 in Fig. 1). We also
note that in the case of asymmetric coupling the averaged
value of the phase difference can be nonzero. This, e.g.,
happens in the asymmetric coupling of Rössler systems,
where the variablex1 is driven byy2 [the first equation
in (3) has a formÙx1 ­ 2v1y1 2 z1 1 cy2]. Here in the
synchronous state the phase difference (both phases are
obtained using observablesx1,2) fluctuates near the mean
valuepy2. With the method of partial Poincaré map this
particular property is not detectable.

It is remarkable how the phase synchronization mani-
fests itself in the Lyapunov spectrum (Fig. 3). In the ab-
sence of coupling, each oscillator has one positive, one
negative, and one vanishing Lyapunov exponent. As the
coupling is increased, the positive and negative exponents
remain, whereas one of the zero exponents becomes nega-
tive. This behavior can be explained as follows: Without
coupling, the vanishing exponents correspond to the trans-
lation along the trajectory, i.e., to the shift of the phase of
the oscillator. The coupling produces an “attraction” of the
phases such that the phase differencef1 2 f2 decreases.

FIG. 2. The mean frequency differenceDV for the coupled
Rössler systems (3), calculated with the method of partial
Poincaré maps, as a function of the couplingC and the
frequency mismatchDv. For C large enough the frequency
differenceDV is nearly zero; this region of synchronization is
completely analogous to the phase-locking domain (the Arnold
tongue) for coupled periodic oscillators. For smallC there is no
synchronization and the phase difference grows with the finite
rateDV.
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FIG. 3. The four largest Lyapunov exponents, one of which is
always zero (lines) andDV (circles) vs couplingC for system
(3) with Dv ­ 0.015.

Thus one of the vanishing exponents becomes negative.
For large coupling the attraction is so strong that the phases
remain locked.

Qualitatively, the dynamics of the phase of an au-
tonomous chaotic oscillator can be described with the
equation (cf. [10,19])

Ùf ­ v 1 FsAd . (4)

Here v is the mean frequency of the oscillations, and
the term FsAd accounts for the amplitude dependence
of the frequency; the amplitudeA is assumed to behave
chaotically. For coupled oscillators a generalization of
(4) reads

Ùf1,2 ­ v1,2 1 F1,2sA1,2d 1 ´Gsf2,1, f1,2d . (5)

Here G is 2p periodic in each argument function,
describing coupling. In the simplest case we can assume
that Gsf1, f2d ­ sinsf2 2 f1d. Thus for the phase
differenceDf ­ f1 2 f2 we get from (5)

dDf

dt
­ v1 2 v2 2 2´ sinsDfd 1 F1sA1d 2 F2sA2d .

(6)

This equation is similar to the equation describing phase
locking of periodic oscillators in the presence of noise
[20]. Here instead of external noisy force we have
the term depending on the chaotic amplitudes. In the
Rössler attractor the dependence of the frequency on the
amplitude is very small, so the effective noiseF1sA1d 2

F2sA2d in Eq. (6) is negligible, and the dynamics of the
phases is very similar to that in the coupled periodic
oscillators. This explains the complete phase locking, as
well as the absence of the threshold.

It is noteworthy that the phenomenon of phase synchro-
nization is observed even when completely different sys-
tems, such as the Rössler oscillator and the Mackey-Glass
differential-delay system [21], interact. Here we describe

the interaction of the chaotic and the hyperchaotic Rössler
oscillators [22]:

Ùx ­ 2vy 2 z 1 Csu 2 xd,

Ùy ­ vx 1 0.15y,

Ùz ­ 0.2 1 zsx 2 10d ,

(7)

Ùp ­ 2u 2 y,

Ùu ­ p 1 0.25u 1 w 1 Csx 2 ud,

Ùy ­ 3 1 py,

Ùw ­ 20.5y 1 0.05w .

Clearly, for the interaction of such different systems there
is no hope to observe synchronization in the usual sense
[1,2]. However, the phase synchronization occurs in (7),
as is demonstrated in Fig. 4. Here we plot the difference
between averaged frequenciesDV ­ k Ùf1 2 Ùf2l vs v

(this parameter governs the frequency mismatch), for
different coupling strengthsC. For this system we have
not found a regime with perfect phase locking: Even
whenDV ø 0, the phase differencekf1 2 f2l exhibits a
random-type walk and is not constrained [23]. Thisweak
phase synchronization can be qualitatively described with
the model equation (6) with sufficiently large effective
noiseF1sA1d 2 F2sA2d.

In conclusion, we have demonstrated the possibility of
phase synchronization of chaotic self-sustained oscilla-
tors. In this regime the phases are synchronized, while
the amplitudes vary chaotically and are practically uncor-
related. We have described two types of phase synchro-
nization: When interacting chaotic oscillators are highly
coherent, the phases are perfectly locked; otherwise, the
frequencies are entrained while the phase difference is un-
bounded. The effect of phase synchronization is also pos-
sible when the natural frequencies are in a rational relation
(this is relevant for an important physiological problem of
interaction of the cardiac and respiratory systems).

FIG. 4. The mean frequency differenceDV in system (7),
calculated via Hilbert transform vsv for several values of the
coupling constantC.
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We emphasize that the phase synchronization is ob-
served already for extremely weak couplings, and in some
cases can have no threshold, contrary to other types of
synchronization. This phenomenon is a direct general-
ization of synchronization of periodic self-sustained os-
cillators. As the latter, it may find practical applications,
in particular, when a coherent summation of outputs of
slightly different generators operating in a chaotic regime
is necessary. For this purpose, it is sufficient to synchro-
nize phases, while amplitudes can remain uncorrelated.
We expect this to be relevant for an important problem of
output summation in arrays of semiconductor lasers [24].
For a description of such arrays, as well as of a number of
other physical and biological phenomena, one often uses
a model of globally coupled oscillators (see, e.g., [25]).
Here mutual phase synchronization of individual chaotic
states manifests itself as an appearance of a macroscopic
mean field [26].

We also mention that the phenomenon of phase syn-
chronization is a characteristic feature of autonomous
continuous-time systems, and cannot be observed in
discrete-time or periodically forced models. In the latter
systems the phases are not free (in the sense of the ex-
istence of the zero Lyapunov exponent corresponding to
the phase shift) and therefore cannot be adjusted by small
coupling.

We thank M. Zaks for useful discussions. M. R.
acknowledges support from the Alexander von Humboldt
Foundation.
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Abstract. – We demonstrate synchronization transition in a large ensemble of non-identical
chaotic oscillators, globally coupled via the mean field. We show that this coherent behaviour
is due to synchronization of phases of these oscillators, while their amplitudes remain chaotic.
Two types of transition, depending on the phase coherence properties of the individual systems,
are described.

A number of physical, chemical and biological systems can be viewed as large ensembles
of weakly interacting non-identical oscillators [1]. One of the most popular models here is
an ensemble of globally coupled non-linear oscillators. Such systems appear in the studies of
Josephson junction arrays [2], oscillatory neuronal systems [3], multimode lasers [4], charge-
density waves [5], etc. Investigations of ensembles of non-linear continuous-time oscillators have
revealed such interesting phenomena as clustering [6], existence of splay states [7], finite-size–
induced transition [8], dephasing and bursting [9] and collective chaotic behaviour [6], [10]. A
non-trivial transition to self-synchronization in a population of periodic oscillators with differ-
ent natural frequencies coupled through a mean field has been described by Kuramoto [11]. In
this system, as the coupling parameter increases, a sharp transition is observed for which
the mean-field intensity serves as an order parameter. This transition owes to a mutual
synchronization of the oscillators, so that their fields become coherent (i.e. their phases are
locked), thus producing a macroscopic mean field. In its turn, this field acts on the individual
oscillators, locking their phases, so that the synchronous state is self-sustained. Different
aspects of this transition have been studied in [12], where also an analogy with a second-order
phase transition has been exploited.

In this letter we describe self-synchronization transitions in a population of chaotic sys-
tems. We explain this by the recently found phenomenon of phase synchronization of chaotic
oscillators [13].

As a basic model we consider a population of non-identical Rössler oscillators
ẋi = −ωiyi − zi + εX,
ẏi = ωixi + ayi,
żi = 0.4 + zi(xi − 8.5),

(1)

(∗) A. von Humboldt Fellow. Permanent address: Mech. Eng. Res. Institute, Russian Academy
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Fig. 1. – Variance of the mean field X vs. coupling parameter ε for different topologies of the Rössler
system (a = 0.15, ω0 = 1 for curves a) and b); a = 0.25, ω0 = 0.97 for curves c) and d)) and different
distributions of natural frequencies (∆ω = 0 for curves a) and c); ∆ω = 0.02 for curves b) and d)).
The number of oscillators is N = 5000 for curves a)-d). Curve e) differs from curve d) only in the size
of the ensemble (N = 20 000); it demonstrates the finite-size effect on the order parameter.

coupled via the mean fieldX = N−1
∑N

1 xi. Here N is the number of elements in the ensemble,
ε is the coupling constant, a and ωi are parameters of the Rössler oscillators [14]. The param-
eter ωi governs the natural frequency of an individual system [13]. We take a set of frequencies
ωi Gaussian distributed around the mean value ω0 with variance (∆ω)2. Because the Rössler
system typically shows windows of periodic behaviour as the parameter ω is changed, we
usually choose such a mean frequency ω0 that avoids large periodic windows. The parameter
a governs the topological type of the Rössler attractor; its significance is discussed below.

In our computer simulations we solve eqs. (1) numerically for rather large ensembles N =
3000–5000. From our numerical calculations we have good indications that these ensembles
are large enough to describe the dynamics correctly in the thermodynamic limit N →∞.

With an increase of the coupling strength ε, the appearance of a non-zero macroscopic mean
field X is observed, as is shown in fig. 1. There the order parameter (the variance of the mean
field) is depicted vs. the coupling ε for two values of the parameter a of the Rössler system
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Fig. 2. – Projections of the phase portraits of the Rössler oscillators (left column) and of the mean
fields X = 〈xi〉, Y = 〈yi〉 in an ensemble of N = 5000 oscillators. a) Phase-coherent Rössler
attractor, ω0 = 1, a = 0.15. b) Mean field in the ensemble of oscillators a) with Gaussian distribution
of frequencies ∆ω = 0.02 and coupling ε = 0.1. c) Funnel attractor ω0 = 0.97, a = 0.25. d) Mean field
in the ensemble of oscillators c) with Gaussian distribution of frequencies ∆ω = 0.02 and coupling
ε = 0.15.
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Fig. 3. – Power spectra of the processes x(t) and X(t) from fig. 2.

and for ensembles of identical (∆ω = 0) and non-identical (∆ω > 0) oscillators. The non-zero
value of the order parameter (≈ 0.01) for small couplings is due to finite-size effects (finiteness
of N , compare curves d) and e)).

We first focus on the non-identical case (curves b) and d)). One can see that although
qualitatively a macroscopic mean field appears for both values of the parameter a, for a = 0.15
the field is much stronger than for a = 0.25. Also the threshold εc ≈ 0.05 for a = 0.15
is significantly smaller than εc ≈ 0.1 for a = 0.25. We attribute this to the quite different
topologies of the corresponding strange attractors and hence the corresponding phase coherence
properties to be described below.

The phase portrait of the Rössler attractor for a = 0.15 is shown in fig. 2 a). Here, the
motion can be well represented as oscillations with a chaotic amplitude modulation, while
the dynamics of the phase is relatively regular. In the power spectrum of the variable x(t),
this manifests itself as a sharp peak above a broad-band component (fig. 3 a)) [15], [16]. This
type of attractor is called phase-coherent. In fact, we can introduce the phase of the Rössler
attractor by making a projection of (1) on the plane (x, y) and taking the value of

φi(t) = arctan(xi(t)/yi(t)) (2)

for the instantaneous phase. As has been argued in [17], [13], the dynamics of the phase is
similar to that of a periodic oscillator and can be described by the following model equation:

φ̇i = ωi + F (Ai). (3)

Here ωi is the mean frequency of oscillations and F (A) is the amplitude-dependent non-linear
term responsible for the non-uniform phase motion. Due to the chaotic nature of the attractor,
F (A) can be considered as a noisy term responsible for the phase diffusion.

Regarding the mean field X(t) in eq. (1) as an external force having nearly constant
amplitude (which is confirmed by numerics, see fig. 2 b)) and the phase ψ, we can write the
dynamics of the phase φi under this force as

φ̇i = ωi + F (Ai) + εG(φi, ψ) , (4)

where G is a 2π-periodic in each argument function describing phase entrainment by the
external force; in the first approximation one can take G(φ, ψ) ∼ sin(φ− ψ). Comparing with
the model of globally coupled periodic noise-driven oscillators having distribution of natural
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Fig. 4. – Successive maxima (upper panel) and observed frequencies, eq. (5) (bottom panel) vs. natural
frequencies in the ensemble of coupled phase-coherent Rössler systems of fig. 2a). a) The coupling
ε = 0.05 is slightly below the transition threshold, the observed frequencies Ω are proportional to the
natural frequencies ω. b) Above threshold (ε = 0.1) most of the oscillators form a coherent cluster
(plateau in the bottom panel), while the amplitudes remain chaotic (with the exception of the period-3
window for ω ≈ 0.97).

frequencies [18], we can see that the difference is in the term F (A), which, instead of being
Gaussian white noise, describes rather specific properties of phase dynamics in a particular
chaotic system. Nevertheless, one can expect that qualitatively this term acts as an effective
noise, thus allowing to consider the transition in the ensemble of chaotic autonomous oscillators
as a phenomenon analogous to the synchronization transition in a network of coupled noisy
limit-cycle oscillators.

In fact, for the Rössler attractor (fig. 2 a)) this term is rather small, so the phase can be
easily locked by an external periodic force [17], [16] or due to the interaction of different
oscillators [13]. Thus, the self-induced synchronization in the population of the Rössler
systems can be explained as a Kuramoto-type transition in a network of oscillators without
noise: the phases of some part of the ensemble become locked and the coherent summation
of corresponding contributions leads to a non-zero mean field, while the amplitudes remain
chaotic and uncorrelated. (A similar synchronization has been reported in [19] for a lattice of
locally coupled identical Rössler systems.)

This is illustrated in fig. 4 where we plot the observed frequency Ωi of the i-th oscillator,
defined as the average derivative of the phase (2):

Ωi = 〈φ̇i〉 = 〈(xiẏi − ẋiyi)(x2
i + y2

i )
−1〉, (5)

vs. the natural frequency ωi.
In the absence of coupling (ε = 0) the observed frequency Ωi is, as one could expect,

proportional to ωi. With the increase of coupling we observe the appearance of a plateau
in the plot, i.e. these averaged frequencies of a large number of oscillators become equal.
Respectively, these systems oscillate in-phase, and their contributions to the mean field produce
a non-zero component. In the upper panel of fig. 4, we plot the values of the maxima



A. S. PIKOVSKY et al.: SYNCHRONIZATION IN A POPULATION OF GLOBALLY ETC. 169

0.90 0.94 0.98 1.02
ω

0.88

0.92

0.96

1.00

Ω

-0.005

-0.003

-0.001

0.001

0.003

Ω~

Fig. 5. – The observed frequency Ω in the ensemble of coupled funnel attractors with parameters of
fig. 2 d). The upper panel shows the deviation Ω̃ from the linear fit: the tendency to synchronization
is clearly seen in this panel, although it is rather small.

of the field xi for each oscillator. The distribution of these maxima gives an impression
about the chaoticity of the amplitudes; we see that even in the case when almost all systems
are synchronized, the amplitudes remain chaotic (with the exception of a small number of
systems with periodic behaviour; it is worth noting that both chaotic and periodic systems are
nevertheless synchronized). This agrees with recent findings [13], where the synchronization
of two Rössler attractors has been considered and the chaoticity of the amplitudes has been
verified by calculations of the Lyapunov exponents. Because the phases of different oscillators
are locked, the mean field is fairly periodic, as demonstrated in a phase portrait (fig. 2 b)),
where Y = N−1

∑N
1 yi is plotted vs. X and in the power spectrum of the variable X (fig. 3 b)).

Some modulation of the mean field visible there seems to be a finite-size effect.
We now discuss the situation when the Rössler oscillator has a rather weak phase coherence,

e.g. for a = 0.25. The corresponding so-called funnel attractor [15], [16] is presented in fig. 2 c)
and the power spectrum of x(t) in fig. 3 c). The spectrum has no sharp peak because sometimes
a trajectory makes a roundtrip around the origin in the (x, y)-plane, and sometimes it makes
only a half of this roundtrip (fig. 2 c)). These irregular phase shifts can be interpreted as a large
effective noise term F (A) in eqs. (3), (4) which breaks the phase coherence. Nevertheless, for
sufficiently large couplings a macroscopic highly coherent mean field appears (fig. 1, curve d);
fig. 3 d)), although this field is much smaller than in the case of the phase-coherent attractor
(fig. 2 a)). We interpret this transition as a synchronization transition, described for noisy
coupled phase oscillators in [1], [18]. There it has been demonstrated that in an ensemble of
globally coupled noisy phase oscillators a transition to a non-uniform distribution of the phases
and to a macroscopic mean field occurs at a critical value of coupling. Similar transitions in
coupled two-well noisy oscillators have been described in [20].

A qualitative difference between these two types of synchronization becomes clear if we
consider the dependence of the observed frequency on the natural one. In the case of the
phase-coherent attractor, the phases of the entrained oscillators are completely locked, and
their observed frequencies coincide almost perfectly (fig. 4 b)). For funnel attractors there is
no plateau in the distributions of frequencies; only a small “attraction” to the frequency of
the mean field is seen (fig. 5). Exactly such an attraction occurs at the synchronization of
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a noisy oscillator by a periodic force [21]. Nevertheless, this attraction produces the visible
macroscopic effect.

Another difference is that the synchronization of the phase-coherent oscillators occurs
already for very small couplings, if the distribution of natural frequencies is narrow; for noisy
oscillators even for identical natural frequencies a finite threshold of synchronization exists,
depending on the noise strength. This is illustrated in fig. 1, where the mean field is shown
for the ensemble of identical systems (∆ω = 0) with phase-coherent (curve a)) and funnel
(curve c)) attractors.

In conclusion, we have demonstrated that in a population of globally coupled chaotic
oscillators a transition to phase synchronization can be observed. The order parameter for this
transition is the intensity of the mean field. The features of the transition depend crucially
on the phase coherence properties of the individual systems. If the chaotic oscillators are
phase-coherent, i.e. have a sharp peak in the spectrum, the dynamics of the phase is very
similar to that in the population of periodic oscillators, the amplitudes of the oscillators
remain, however, chaotic. Such a transition is also observed for the systems with coupled
non–phase-coherent funnel attractors. In the latter case it is similar to the transition in a
population of noisy phase oscillators. Statistical properties of the mean field and the finite-size
effects remain a problem for future studies.

***
We thank M. Zaks for useful discussions. MGR acknowledges support from Alexander von

Humboldt Foundation.
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From Phase to Lag Synchronization in Coupled Chaotic Oscillators
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We study synchronization transitions in a system of two coupled self-sustained chaotic oscillators.
We demonstrate that with the increase of coupling strength the system first undergoes the transition to
phase synchronization. With a further increase of coupling, a new synchronous regime is observed,
where the states of two oscillators are nearly identical, but one system lags in time to the other. We
describe this regime as a state with correlated amplitudes and a constant phase shift. These transitions
are traced in the Lyapunov spectrum. [S0031-9007(97)03271-7]

PACS numbers: 05.45.+b

Synchronization phenomena in coupled chaotic systems
have been extensively studied in the context of laser dy-
namics [1], electronic circuits [2,3], chemical and biologi-
cal systems [4], and secure communication [5]. Complete,
generalized, and phase synchronizations of chaotic oscilla-
tors have been described theoretically and observed experi-
mentally. Complete (full) synchronization (CS) implies
coincidence of states of interacting systems,x1std ­ x2std
[6–8]; it appears only if interacting systems are identi-
cal. Otherwise, if the parameters of coupled oscillators
slightly mismatch, the states are closejx1std 2 x2stdj ø 0
but remain different [7,9]. A generalized synchronization
(GS) [10], introduced for drive-response systems, is de-
fined as the presence of some functional relation between
the states of response and drive, i.e.,x2std ­ F fx1stdg
[11]. The phase synchronization (PS) described in [12,13]
and experimentally observed in [14] means entrainment
of phases of chaotic oscillators, whereas their amplitudes
remain chaotic and noncorrelated; the notion of phase is
discussed in details in [15]. The relation between these
different types of synchronization and the scenarios of tran-
sitions to or between them have not been addressed yet.

In this Letter we study synchronization of symmetri-
cally couplednonidenticaloscillators. We demonstrate
that, with the increase of coupling, first the transition from
nonsynchronous state to PS occurs. For larger couplings
a new regime which we call lag synchronization (LS) is
observed. LS appears as a coincidence ofshifted in time
states of two systems,x1st 1 t0d ­ x2std. Finally, with
a further increase of coupling, the time shift decreases and
this regime tends to CS. We show that these transitions
are related to the changes in the spectrum of Lyapunov
exponents (LE).

Synchronization is a universal nonlinear phenomenon,
and its main features are typically independent of particu-
lar properties of a model. As a first example, we study
two coupled Rössler systems [16],

Ùx1,2 ­ 2v1,2y1,2 2 z1,2 1 ´sx2,1 2 x1,2d ,

Ùy1,2 ­ v1,2x1,2 1 ay1,2 , (1)

Ùz1,2 ­ f 1 z1,2sx1,2 2 cd ,

wherea ­ 0.165, f ­ 0.2, andc ­ 10. The parameters
v1,2 ­ v0 6 D and´ determine the mismatch of natural
frequencies and the coupling, respectively. These equa-
tions serve as a good model for real systems having a
strange attractor that appears via period-doubling cascade,
e.g., for electronic circuits [2,3] or chemical systems [17].

To describe the phase and the lag synchronization,
we need to introduce corresponding quantities. For the
Rössler attractor the phase and the amplitude can be
conveniently introduced as [13,15,17]

f ­ arctan
y
x

, A ­ sx2 1 y2d1y2 . (2)

The phase can be easily calculated for each subsystem,
thus allowing one to determine mean frequenciesV1,2 ­
k Ùf1,2l and relations of locking between them. To charac-
terize LS, we introduce a similarity functionS as a time
averaged difference between the variablesx1 andx2 (with
mean values being subtracted) taken with the time shiftt

[18],

S2std ­
kfx2st 1 td 2 x1stdg2l

fkx2
1 stdl kx2

2stdlg1y2
, (3)

and search for its minimums ­ mint Sstd. If the signals
x1 andx2 are independent, the difference between them is
of the same order as the signals themselves; respectively,
Sstd , 1 for all t. If x1std ­ x2std, as in the case of CS,
Sstd reaches its minimums ­ 0 for t ­ 0. Below, we
demonstrate a nontrivial case, when the similarity function
Sstd has a minimum for nonzero time shiftt, meaning a
time lag exists between the two processes.

First, we describe the transition to PS in the system
(1) (see also [12]). The parametersv0 ­ 0.97 andD ­
0.02 are chosen by trial in such a way that appearance
of large windows of periodic behavior is avoided. The
calculation of the average frequenciesV1,2 allows us to
follow the transition at́ ­ ´p ø 0.036 to the frequency
entrainmentV1 ­ V2 ­ V (see Fig. 1). Because of high
coherence of the Rössler attractor, the phase difference in
the synchronous regime is bounded and oscillates around
some mean valuedf ­ kf1std 2 f2stdl fi 0.

0031-9007y97y78(22)y4193(4)$10.00 © 1997 The American Physical Society 4193
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FIG. 1. The frequency differenceV1 2 V2, the minimum
of the similarity functions, and the four largest Lyapunov
exponentsl of two coupled Rössler oscillators vs the coupling
´. Three different regions are clearly seen on thes vs ´
plot correspondent to a nonsynchronous state, phase, and lag
synchronization, respectively. The transitions between these
regimes are reflected in the spectrum of Lyapunov exponents:
At the first transition, one of the zero LE becomes negative,
while the second transition corresponds to the zero crossing of
one of the positive LE. The dashed line shows the dependence
of Ss0d on the coupling; from this plot one can see that
comparison of states of interacting systems without time shift
does not reveal the transition to LS. Two “outbursts” on the
s vs ´ plot at ´ ø 0.06 and´ ø 0.145 correspond to period3
windows.

For stronger couplinǵ ­ ´l ø 0.14 we observe a
new transition to lag synchronization (see thes vs ´

curve in Fig. 1). In Fig. 2 we show numerically obtained
similarity functions in system (1) for relatively weak,
intermediate, and strong coupling. For weak coupling

FIG. 2. Similarity functionSstd for different values of cou-
pling strength´ (1: ´ ­ 0.01, 2: ´ ­ 0.015, 3: ´ ­ 0.05, 4:
´ ­ 0.075, 5: ´ ­ 0.15, 6: ´ ­ 0.2). With the increase of
coupling, a minimum appears, indicating the existence of a cer-
tain phase shift between interacting systems (curves 3 and 4).
In the regime of lag synchronization (curves 5 and 6), the mini-
mum is extremely small.

´ , ´p (curves 1 and 2),S , 1 and practically does
not depend ont, as can be expected for independent
signals. For intermediate coupling strength´p , ´ , ´l ,
a minimum of Sstd appears (curves 3 and 4) indicating
the existence of some characteristic time shiftt0 between
x1 and x2. This shift is related to the phase difference
ast0 ­ dfyV. Note that in this regime the amplitudes
are uncorrelated, so the value ofSst0d is relatively
large. Further increase of coupling makes, at´ ø ´l ,
this minimum very sharp (curves 5 and 6) and practically
equal to zero. It means that the states of the systems
become identical, but shifted in time with respect to
each other. The regime of LS is clearly demonstrated
in Fig. 3 by plottingx1st 1 t0d vs x2std. It is important
that calculations ofSs0d, i.e., the comparison ofx1 andx2
without time shift, reveal no transition at́ ­ ´l. For
larger couplings´ . ´l , the time lagt0 continuously
decreases, but no qualitative transitions are observed.

The transitions between different types of synchroniza-
tion can be related to the changes in the Lyapunov spec-
trum (see Fig. 1). For small couplinǵ, ´p, there are
two positive LE (corresponding to chaotic amplitudes)
and two nearly zero LE (corresponding to independently
rotating phases). At the phase locking transition at´ ø
´p, one of the zero LEs becomes negative, correspond-
ing to a definite stable relation between phases (one zero
LE, corresponding to a simultaneous phase shift of both
Rössler oscillators, remains for all couplings, as it should
in an autonomous system) [12]. The second transition to

FIG. 3. Projections of the attractor of the coupled system on
the planesssx1std, x2stdddd and delayed-coordinate plotsx2st 1 t0d
vs x1std for different values of coupling. (a),(b)́ ­ 0.05, a
regime with phase synchronization, (c),(d)´ ­ 0.2, a regime
with lag synchronization. The qualitative difference between
PS and LS is clearly seen from (b),(d), where time shifts,t0 ­
0.87 andt0 ­ 0.21, respectively, correspond to the minima of
the similarity functionSstd. The panel (d) demonstrates that
the state of one of the oscillators is delayed in time with respect
to the other; the same can be shown for the variablesy1,2 and
z1,2 as well.
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LS corresponds to the change of the sign by the second
positive LE, but does not exactly coincide with it due to
the intermittency discussed below. This means that the
relation appears not only between the phases but also be-
tween the amplitudes. The phase shift remains, and there-
fore a time lag between the signalsx1 andx2 is observed.

To develop an approximate theory of the phase and lag
synchronization in the model (1), let us rewrite it in the
variables (2):

ÙA1,2 ­ aA1,2 sin2 f1,2 2 z1,2 cosf1,2

1 ´sA2,1 cosf2,1 cosf1,2 2 A1,2 cos2 f1,2d ,

Ùf1,2 ­ v1,2 1 a sinf1,2 cosf1,2 1 z1,2yA1,2 sinf1,2 (4)

2 ´sA2,1yA1,2 cosf2,1 sinf1,2 2 cosf1,2 sinf1,2d ,

Ùz1,2 ­ f 2 cz1,2 1 A1,2z1,2 cosf1,2 .

The main idea in analyzing this system is to use averaging
over rotations of the phasesf1,2, assuming that the am-
plitudes vary slowly. Although there is no small parame-
ter allowing one to perform this procedure mathematically
correct, we will see that the results correspond rather well
to the properties of the full system. Introducing the “slow”
phasesu1,2 according tof1,2 ­ v0t 1 u1,2, and averag-
ing the equations for them, we get

d
dt

su1 2 u2d ­ 2D 2
´

2

µ
A2

A1
1

A1

A2

∂
sinsu1 2 u2d .

(5)

When we neglect the fluctuations of the amplitudes on the
right-hand side, this equation has a stable fixed point

u1 2 u2 ­ arcsin
4DA1A2

´sA2
2 1 A2

1d
(6)

which corresponds to the phase locking of the Rössler
systems. The transition point to phase synchronization
can thus be estimated as´p ø 4DkA1A2ysA2

2 1 A2
1dl. If

we neglect the variations of the amplitudes we obtain
´p ø 2D ­ 0.04 (for the parameters used), in rough
agreement with the numerical result´p ø 0.036.

Now we turn to the description of the next transition,
and for this purpose we assume constant slow phases
in the equations forA and z. Here we also perform
the averaging, except for the terms containing both the
fast phasesf1,2 and the variablesz1,2, because the latter,
contrary to the amplitudes, cannot be considered as slow.
As a result we obtain

ÙA1,2 ­
a
2

A1,2 2 z1,2 cossv0t 1 u1,2d

1
´

2
fA2,1 cossu1 2 u2d 2 A1,2g , (7)

Ùz1,2 ­ f 2 cz1,2 1 A1,2z1,2 cossv0t 1 u1,2d .

This is a system of two coupled periodically driven
oscillators. It is important that the driving in both
systems is not identical, but comes with the phase shift

(6). If we neglect for a moment this phase shift, the
system (7) becomes a system of coupledidenticalchaotic
oscillators, with a transition tocompletesynchronization
to be observed [6,7]. In the system (7) this happens
for ´ ­ 0.095, to be compared with́ l ­ 0.14 in the
full system. With the phase shift, the transition to lag
synchronization occurs. Indeed, if we introduce the lag
variables for the second system̃A2 ­ A2st 1 t0d, z̃2 ­
z2st 1 t0d, where t0 ­ su1 2 u2dv21

0 , we can reduce
(7) to the system of two identical oscillators, driven with
the same force but where the coupling term contains one
amplitude that is time shifted. Because the amplitudes
in this model are slow, this time shift does not influence
the full synchronization significantly, so we getA1 ø
Ã2, z1 ø z̃2. In the initial variables this means the onset
of lag synchronization:

x2st 1 t0d ø x1std , y2st 1 t0d ø y1std ,

z2st 1 t0d ø z1std .

This consideration also explains the discrepancy be-
tween the transition point to lag synchronization at´ ­
´l ø 0.14 and the point where the second Lyapunov ex-
ponent becomes negatives´ ø 0.11d. Indeed, it is known
that the transition to complete synchronization is extremely
sensitive to small perturbations. Even when the second
LE is negative, the local instability can lead to bursts of
nonsynchronous behavior [19], see Fig. 4. Because of
this intermittency,s gradually decreases in the region
0.11 , ´ , 0.14 until these local instabilities disappear.

We now discuss the relation between the lag synchro-
nization and the generalized one. The relationx1std ø
x2st 1 t0d can be rewritten asx1std ø Ttx2std, where
T t is the generating operator of the flow of the dynamical
system. If the couplinǵ and the time lagt are small,
we can approximateT with the generating operator of a
partial (uncoupled) Rössler flow; it can be considered as a
function in the three-dimensional phase space. Thus, the
lag synchronization is similar to GS with the function be-
ing defined by the dynamics of the partial system.

To check the universal character of the LS, we inves-
tigate numerically two dynamical models of real physical
systems. One is the electronic circuit experimentally stud-
ied in [3] in the context of CS; the other is the hybrid laser
system experimentally studied in [20]. Both systems are

FIG. 4. The time seriesx2st 1 td 2 x1std in the intermittent
region ´ ­ 0.13, t ­ 0.32. The bursts can be viewed as the
excursions from the low-dimensional “synchronous” attractor.
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described with low-dimensional models and allow one to
implement coupling in a straightforward way. We have
observed regimes of chaotic lag synchronization in both
cases [21], with the similarity function having a rather
sharp minimum. E.g., in coupled circuits [3] the similarity
functionSstd attains its minimums ­ 0.01 for t ­ 0.21
[to be compared withSs0d ­ 0.07]. For the coupled laser
system the LS is even more pronounced:s ­ 0.005 for
t ­ 0.3, while Ss0d ­ 0.19.

In summary, we have studied the synchronization
properties of two mutually coupled self-sustained chaotic
oscillators and have found a new synchronous state,
which we refer to as the lag synchronization. We have
shown that with the increase of the coupling strength the
system can undergo several transitions. First, phase syn-
chronization appears; by this transition, one of the zero
LE becomes negative. Further increase of coupling leads
to the occurrence of the relationship between the chaotic
amplitudes. As a result, the states of two interacting
systems coincide (if shifted in time); in the Lyapunov
spectrum this transition corresponds to the zero crossing
by one of the positive LEs. The motion in the origi-
nally six-dimensional phase space is now confined to a
nearly three-dimensional manifold, thus corresponding to
characterization of a synchronous regime via attractor di-
mensions [22]. Further increase of coupling decreases
the time shiftt0, and the systems tend to be completely
synchronized. We emphasize that, in the LS state, full
coherence ofnonidenticalsystems is achieved due to in-
teraction. This may be important, e.g., for coherent sum-
mation of radiation in laser arrays. As real systems can
be hardly found fully identical, the LS can be more fre-
quently encountered in experiments with coupled systems
than CS. Finally, with the help of LS we can con-
sider synchronization of periodic and chaotic oscillators
within a common theoretical framework. Indeed, due to
phase shift in the synchronous state, mutual entrainment
of periodic oscillators having different frequencies can
be viewed as a particular case of lag synchronization,
but not of the complete one.
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shape, scaled so that R(K)=1, with total
length L. The inverse-square ‘energy’ (S(K),
A, writhe, and so on) can be estimated by
assuming the ‘mass’ of the knot is concen-
trated at points p on the integer lattice. Con-
centric shells of unit thickness about each p
each contribute the same amount, so the
contribution for p is that constant multiplied
by the number of shells, which is of the order
of L1/3. Multiplying by the number of points,
L, gives L4/3. The proof that S(K) linearly
bounds A is simple vector geometry.

The 4/3 exponent is sharp. Consider the
Hopf link of two tori in its natural geo-
metrical position. Fill each torus with N
loops parallel to the centre curve, each loop
a strand of radius 1 (Fig. 1a). Then with any
tight packing of the loops, the minor radii of
the tori is of the order of √N. The conforma-
tion fits inside a sphere of radius 4√N, so the
total rope length is about N3/2. Each loop is
linked with N loops in the perpendicular
torus, so the crossing number is about N2.
Therefore the rope length is of the order of
C(K)3/4. Because 11L(K)4/3/4πA(K)/C(K),
this example has A in the order of L(K)4/3.

The minimum rope length for a knot is
bounded by 3C(K)2. This can be seen by
arranging the knot so that the crossings are
evenly spaced along a line (Fig. 1d). For the
simpler knot types, L(K), S(K) and A in
minimized conformations all ‘appear’ to be

linearly related7. An explanation is that the
simpler conformations are ‘planar’: from
most perspectives a unit arc of the knot
crosses only a few other unit arcs.

As complexity increases, there are many
families of knots and links with three-
dimensional growth, exhibiting the 4/3
power law. Families with single-dimension-
al growth (Fig. 1b,c) have a linear relation-
ship among the measures. With planar
growth, we expect A to be linear with C(K)
and S(K) to be of the order of  L(K)logL(K).

We propose that the rope length
required (Fig. 1e–i) to tie an N-crossing
knot or link varies only between k1N

3/4 and
k2N. Other investigators have also recently
observed the 4/3 law in knots on the cubic
lattice9 and in vector fields10.

A good knot energy has only a finite
number of knot types realized below any
given energy level. Our theorem gives us
this property for L(K) and S(K), proving
that there is a finite number of knots that
can be tied with a finite length of mathe-
matical rope. 
Gregory Buck
Department of Mathematics, Saint Anselm College, 
Manchester New Hampshire 03102, USA
email: gbuck@anselm.edu
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Heartbeat synchronized
with ventilation

It is widely accepted that cardiac and respi-
ratory rhythms in humans are unsynchro-
nised1. However, a newly developed data
analysis technique allows any interaction
that does occur in even weakly coupled
complex systems to be observed. Using this
technique, we found long periods of hidden
cardiorespiratory synchronization, lasting
up to 20 minutes, during spontaneous
breathing at rest. 

Synchronization is a universal phenom-
enon that occurs when two or more non-
linear oscillators are coupled. It is observed
in many fields of science and is widely
applied in engineering. The case of syn-
chronisation in periodic, or even noisy,
oscillators is well understood2–4. The
notion of synchronization has often been
used to analyse the interaction between
physiological (sub)systems1, but these
studies have been restricted to almost peri-
odic rhythms. No approach has been sug-
gested to probe the weak interactions
between such irregular and non-stationary
oscillators as the human heart and respira-
tory system. 

These two physiological systems are
known to be coupled by several mecha-
nisms, but apart from respiratory modula-
tion of heart rate, first observed in 1847 and
known as ‘respiratory sinus arrhythmia’
(RSA)5–7, no other effects have been report-
ed. Moreover, in spite of some early com-
munications8, it has been concluded that
“there is comparatively weak coupling
between respiration and the cardiac
rhythm, and the resulting rhythms are gen-
erally not phase locked”1. 

We used the concept of phase syn-
chronization of chaotic oscillators9,10 to
develop a technique to analyse irregular
non-stationary bivariate data. We analysed
data obtained in non-invasive examina-
tions of eight healthy volunteers (14–17-
year-old, high-performance swimmers;
four of them male and four female). While
subjects lay at rest, electrocardiograms
(ECGs) were recorded while respiratory
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FFiigguurree  11 Knot conforma-
tions. aa, Packed Hopf tori. bb,
L̀inear’ conformations. Left,
a product of trefoils; right, a
thick chain with a linear
relationship between cross-
ing number and rope
length. The chain also
seems to be a continuous
family of minima for rope
length, in which case mini-
ma are not isolated in the
link class. cc, ‘Linear’ confor-
mation of a twist knot —
apparent minimum. dd, An
N-crossing knot fits in a
square of side order N. ee,ff,
Minima for figure-eight and
square knot respectively. No
particular accuracy is
claimed — these knots were
tied before the calculation
of the computer data7, and
both the conformation and
the values for rope length
match almost exactly, as
did several other knots. gg,
Minimum for the ‘granny’
knot, differing in shape from
the minimum found by
computer11, and having a different symmetry. hh, Another view. We estimate this to be the true global mini-
mum. ii, Some support for the accuracy of the rope calculations is given by this conformation of the five-
crossing torus knot, which by rope seemed to be a lower minimum than the conformation reported in ref. 7.
Further computation confirmed this.
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flow was simultaneously measured with a
thermistor at the nose. Both signals  were
digitized with a 1,000-hertz sampling rate
and 12-bit resolution. Each record lasted 30
minutes. 

The resulting time series were irregular,
strongly non-stationary and noisy. These
characteristics made it inappropriate, in
analysing the mutual dependencies
involved, to use even sliding versions of
traditional spectral and correlations tech-
niques, or direct computation of instanta-
neous phase differences9,10. So instead of
these techniques, we used a new kind of
data presentation which we call a cardiores-
piratory synchrogram (CRS), to detect dif-
ferent synchronous states and transitions
between them.

We first used the Hilbert transform9 to
calculate the instantaneous phase fr(t) of
the respiratory signal. fr(t) is defined on
the real line (not restricted to the [0,2p]
interval). Next, we regarded the respiratory

phase stroboscopically at times tk, where the
R-peak in the kth heartbeat occurs and
hence the phase of the heart rhythm
increases by 2p. In the simplest case of n:1
synchronization, there are n heartbeats in
each respiratory cycle; these beats appear at
n certain values of respiratory phases, which
are constant over all cycles.

Plotting these relative phases c as a
function of time shows n horizontal
stripes. In the general case of n:m syn-
chronization, such a structure appears if
we relate the phases of the heart beats to
the beginning of m adjacent respiratory
cycles, c(tk)=(fr(tk) mod 2pm)/2p; we
have n horizontal stripes within m respira-
tory cycles.

This technique allows us to distinguish
between different periods of synchroniza-
tion, even for noisy and non-stationary
data. For example, we observe 5:2 locking
between the respiratory frequency vr and
the heart rate vh (5vr≈2vh) during a

period of about 300 seconds, then after a
transition period, a regime of 3:1 phase
locking is found for about 20 minutes (Fig.
1). These two kinds of locking can be rec-
ognized using histograms (Fig. 1c) and the
autocorrelation function of phases (Fig.
1d). 

Our analysis showed cardiorespiratory
synchronization of several locking ratios
occurring in six out of eight subjects (Table
1). Subjects with the strongest synchroniza-
tion had no remarkable RSA, whereas both
subjects with the highest RSA exhibited no
synchronization.

We conclude that phase locking of
respiratory and the cardiac rhythms, and
respiratory modulation of heart rate, are
two competing aspects of cardiorespiratory
interaction. From a physical viewpoint, syn-
chronization and modulation are different
phenomena and are related to different
coupling. RSA generation is associated
mainly with the baroreflex feedback loop
and its respiratory phase-dependent infor-
mation processing7.

Perhaps cardiorespiratory synchroniza-
tion is an expression of another kind of
cardiorespiratory interaction, such as a cen-
tral coupling between cardiovascular and
respiratory neuronal activities.
Carsten Schäfer, Michael G. Rosenblum,
Jürgen Kurths
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FFiigguurree  11 Analysis of cardiorespiratory cycles. aa,, Cardiorespiratory synchrogram, showing the transition (red)
from 5:2 frequency locking (black) to 3:1 phase locking (blue). Each point shows the normalized relative
phase of a heartbeat within two adjacent respiratory cycles c(tk)=(fr(tk) mod 4p)/2p. bb,, Number of heartbeats
within two adjacent respiratory cycles. cc,, Histogram of phases. The six horizontal stripes in the blue region
of the CRS result in six well-pronounced peaks in the distribution of phases. dd,, Autocorrelation function of
phases Rc(t)=Sk(c(tk)–<c>)(c(tk+t)–<c>)/Sk(c(tk)–<c>)2. The coloured curves correspond to respective regions.

Table 1 Subjects, ordered by the amplitude of respiratory sinus arrhythmia (RSA) determined as the averaged difference between the longest and

shortest R–R interval within every respiratory cycle*

Code Sex Age R–R (ms) Resp. cycle (ms) RSA (ms) Synchronization
Median DQuart. Median DQuart. Median DQuart.

A m 16.1 1,104 28 3,110 390 15 40 3:1 (1,000 s), 5:2 (300 s), 8:3 (20 s)
B m 14.6 1,018 95 3,210 610 31 38 3:1 (several spells of 40 s)
C m 13.9 975 110 3,230 850 46 57 3:1 (20 s), 7:2 (20 s), 4:1 (20 s)
D f 15.2 1,157 157 2,930 780 56 57 5:2 and 3:1 (several spells of 30 s)
E m 16.9 1,026 89 3,650 620 67 47 7:2 (60 s), 3:1 and 4:1 (20s)
F f 15.0 1,024 143 2,960 700 74 75 11:4 (20 s)
G f 15.9 733 70 5,615 1,550 83 70 No synchronization detectable
H f 16.3 1,256 197 4,260 2,100 264 296 No synchronization detectable

*If an R–R interval spans two adjacent cycles, it is considered to belong to that one which contains more than 50% of the interval. For R–R intervals, respiratory cycles and the
RSA, the medians of respective distributions and differences between the first and third quartile (DQuart.) are given. We observe that cardiorespiratory synchronization tends to
become weak with increasing RSA.
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Detection ofn:::m Phase Locking from Noisy Data: Application to Magnetoencephalography
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We use the concept of phase synchronization for the analysis of noisy nonstationary bivariate data.
Phase synchronization is understood in a statistical sense as an existence of preferred values of the
phase difference, and two techniques are proposed for a reliable detection of synchronous epochs. These
methods are applied to magnetoencephalograms and records of muscle activity of a Parkinsonian patient.
We reveal that the temporal evolution of the peripheral tremor rhythms directly reflects the time course
of the synchronization of abnormal activity between cortical motor areas. [S0031-9007(98)07333-5]

PACS numbers: 87.22.Jb, 05.45.+b, 87.22.As

Irregular, nonstationary, and noisy bivariate data abound
in many fields of research. Usually, two simultaneously
registered time series are characterized by means of tra-
ditional cross-correlation (cross-spectrum) techniques or
nonlinear statistical measures like mutual information or
maximal correlation [1]. Only very recently a tool of non-
linear dynamics, mutual nonlinear prediction, was used for
characterization of dynamical interdependence among sys-
tems [2]. In this Letter we use a synchronization approach
to the analysis of such bivariate time series and introduce a
new method to detect alternating epochs of phase locking
from nonstationary data. By doing so we extract informa-
tion on the interdependence of weakly interacting systems
that cannot be obtained by traditional methods.

Our technique, based on theoretical studies of phase syn-
chronization of chaotic oscillators [3], can be fruitfully
applied, e.g., in neuroscience, where synchronization pro-
cesses are of crucial importance, e.g., for visual pattern
recognition [4] and motor control [5]. Recent animal ex-
periments have led to the conclusion that the control of
coordinated movements is based on a synchronization of
the firing activity of groups of neurons in the primary
and in secondary motor areas [5]. Synchronization is also
assumed to be involved in the generation of pathologi-
cal movements, e.g., resting tremor in Parkinson’s disease
(PD) [6]. Although experimental studies indicate which
parts of the nervous system are engaged in generating
tremor activity, the dynamics of this process is not yet un-
derstood [7].

Here we study synchronization between the activity of
remote brain areas in humans by means of noninvasive
measurements. This is possible because a group of syn-
chronously firing neurons within a single area generates a
magnetic field which can be registered outside the head by
means of multichannel magnetoencephalography (MEG)
[8]. Accordingly, synchronization of neuronal activity be-
tween remote areas is reflected as phase locking between
MEG channels. Our analysis reveals phase synchroniza-
tion (a) between the activity of certain brain areas and
(b) between the activity of these areas and the muscle ac-
tivity detected by electromyography (EMG).

In particular, we find that the phase locking between the
activity of primary and secondary motor areas is related to
the coordination of antagonistic muscles.

Our approach is based on the notion of phase synchro-
nization. Classically synchronization of two periodic non-
identical oscillators is understood as adjustment of their
rhythms, or appearance ofphase locking,due to interac-
tion. The locking condition reads

jwn,mstdj , const, wherewn,mstd ­ nf1std 2 mf2std ,
(1)

n and m are some integers,f1,2 are phases of two os-
cillators, andwn,m is the generalized phase difference, or
relative phase; all phases are divided by2p for normal-
ization, andwn,m, as well asf1,2, are defined not on the
circle f0, 1g but on the whole real line. In this simplest
case condition (1) is equivalent to the notion offrequency
locking nV1 ­ mV2, whereV1,2 ­ k Ùf1,2l and brackets
mean time averaging. Note that for the determination of
synchronous states it is irrelevant whether the amplitudes
of both oscillators are different or not.

The definition of synchronization innoisy and/or
chaotic systemsis not so trivial. Recently it has been
shown [3] that the notion of phase can generally be
introduced for chaotic systems as well, and phase locking
in the sense of (1) can be observed. The amplitudes of
synchronized systems remain chaotic and effect the phase
dynamics qualitatively in the same way as external noise
[3]. Therefore in the following we consider noisy and
chaotic cases within a common framework, i.e., by the
term “noise” we denote both random and purely determin-
istic perturbations to phases. If this noise is weak (and
bounded) then in the synchronous state the relative phase
fluctuates around some constant value, and the condition
of frequency locking is fulfilled. Strong noise can cause
phase slips,i.e., rapid unit jumps of the relative phase. In
this case the question “synchronous or not synchronous”
cannot be answered unambigously, but can be treated
only in a statistical sense. Following the basic work of
Stratonovich [9] we understand synchronization of noisy
systems as appearance of peaks in thedistribution of the

0031-9007y98y81(15)y3291(4)$15.00 © 1998 The American Physical Society 3291
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cyclic relative phaseCn,m ­ wn,m mod1, that enables us
to detect preferred values of the phase difference irrespec-
tive of the noise-induced phase jumps. The probability of
these upward and downward jumps may either be equal or
different, i.e., the relative phase performs either unbiased
or biased random walks. In the first case the averaged
frequenciesV1,2 ­ k Ùf1,2l coincide, whereas in the second
case they are different. However, in a statistical sense
synchronization is characterized by the existence of one
or a few preferred values ofCn,m, no matter whether the
oscillators’ averaged frequencies are equal or different.

For illustration we consider two coupled nonidentical
Rössler systems subject to noisy perturbations:

Ùx1,2 ­ 2v1,2y1,2 2 z1,2 1 j1,2 1 ´sx2,1 2 x1,2d ,

Ùy1,2 ­ v1,2x1,2 1 0.15y1,2 , (2)

Ùz1,2 ­ 0.2 1 z1,2sx1,2 2 10d .

Here we introduce the parametersv1,2 ­ 1 6 0.015 and
´ which govern the frequency mismatch and the strength
of coupling, respectively;j1,2 are two Gaussian delta-
correlated noise terms,kjistdjjst0dl ­ 2Ddst 2 t0ddi,j.
The system is simulated by Euler’s technique with the time
stepDt ­ 2py1000. If the noisy perturbations are rather
weak, D ­ 0.2, the phase difference oscillates around
some constant level, and its distribution obviously has a
sharp peak. Therefore we can speak of frequency and
phase locking here (Fig. 1a, curve 1). If the noise is
stronger,D ­ 1, the relative phase performs a biased
random walk, so there is obviously no frequency locking
(Fig. 1a, curve 2). Nevertheless, the distribution of the
phase definitely indicates locking in the statistical sense
(Fig. 1b), in contrast to the nonsynchronous case (Fig. 1a,
curve 3 and Fig. 1c).

It is very important to emphasize that synchronization is
not equivalent to correlation. Hence, our analysis reveals
different characteristics of the systems’ interdependence.
To illustrate this, we consider signalsu ­ s1 2 mdx1 1

mx2 andw ­ mx1 1 s1 2 mdx2. By doing so we imitate
the real situation: each MEG sensor measures signals
originating from more than one area of neuronal activity.
Nevertheless, this mixture of signals does not lead to a
spurious detection of synchronization, althoughu and w
are correlated (Fig. 1).

Now we use our approach to extract information about
the underlying dynamics of the system from bivariate data
at its output. With this aim in view we compute the
instantaneous phasefj of each observed signal by means
of the Hilbert transform (see [3], and references therein).
A straightforward approach to search forn:m locking is
to pick n andm by trial and error, plot the relative phase
wn,m vs time, and look for horizontal plateaus in this
presentation [10]. Because of phase fluctuations and slips
this can be misleading for noisy data (cf. Fig. 1). Thus,
the above described statistical approach is needed.

To characterize the strength of synchronization, we have
to quantify the deviation of the actual distribution of the
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FIG. 1. The relative phasesw1,1 (a) and distribution of
C1,1 ­ w1,1 mod1[(b),(c)] for system (2). If the noise is weak,
D ­ 0.2, the phase difference of two synchronized oscillators
(´ ­ 0.04) fluctuates around some constant value (curve 1),
and its distribution is obviously sharp (not shown). In the
presence of strong noise,D ­ 1, the phase difference performs
a biased random walk (curve 2,́­ 0.04), as well as in the
nonsynchronous case (curve 3,´ ­ 0.01). The distributions
of C1,1 [(b),(c)] clearly distinguish these states. The phase
difference [(a), curve 4] computed fromu andw that are linear
combination (see text) of outputs from uncoupled oscillators
and its distribution (d) do not lead to a spurious detection of
synchronization, although cross-spectrum analysis by means of
Welch technique with the Bartlett window reveals significant
coherenceg2 ­ 0.43 betweenu and w; parameters areD ­
0.2, m ­ 0.02.

relative phase from a uniform one. For this purpose, we
propose two measures, orn:m synchronization indices.
(i) Index based on the Shannon entropyis defined as
r̃nm ­ sSmax 2 SdySmax, whereS ­ 2

PN
k­1 pk ln pk is

the entropy of the distribution ofCn,m andSmax ­ ln N ,
where N is the number of bins. Normalized in this
way, 0 # r̃nm # 1, where r̃nm ­ 0 corresponds to a
uniform distribution (no synchronization) and̃rnm ­ 1
corresponds to a Dirac-like distribution (perfect synchro-
nization). (ii) Index based on conditional probability:
Suppose we have two phasesf1stjd and f2stjd defined
on the intervalf0, ng and f0, mg, respectively; indexj
corresponds to time. We divide each interval intoN
bins. Then, for each binl, 1 # l # N , we calculate
rlstjd ­ M21

l

P
eif2stj d for all j, such thatf1stjd belongs

to this bin l, andMl is the number of points in this bin.
If there is a complete dependence between two phases,
then jrlstjdj ­ 1, whereas it is zero if there is no depen-
dence at all. Finally, we calculate the average over all
bins, l̃nmstjd ­ 1yN

PN
l­1 jrlstjdj. Thus, l̃nm measures

the conditional probability forf2 to have a certain value
providedf1 is in a certain bin [11]. To findn andm we try
different values and pick up those that give larger indices.

Here we analyze MEG and EMG data from a PD
patient who had a tremor of the right hand and forearm
with a principal frequency component between 5 and
7 Hz (Fig. 2). We registered EMG from two antagonistic
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muscles, namely, the right flexor digitorum superficialis
muscle and the right extensor indicis muscle; standard
preprocessing (cf. [7]) was used so that the resulting signal
represents the time course of the muscular contraction.
Next, MEG and EMG were filtered with a bandpass
corresponding to the principal EMG frequency component
(5–7 Hz). MEG signals were additionally filtered with
a bandpass corresponding to the tremor’s first harmonics
(10–14 Hz). As the data are nonstationary, we perform a
sliding window analysis and compute for every time pointt
the distribution ofCn,m within the windowft 2 Ty2, t 1

Ty2g and synchronization indices [12].
To avoid spurious detection of locking due to noise and

bandpass filtering, we derive significance levelsrs
n,m and

ls
n,m for eachn:m synchronization index̃rn,m andl̃n,m by

applying our analysis to surrogate data (white noise filtered
exactly as the original signals). The 95th percentile of the
distribution of then:m synchronization indices (r̃n,m or
l̃n,m) of the surrogates serves as significance level (rs

n,m
or ls

n,m). Only relevant values of then:m synchronization
indices are taken into account by introducing the significant
n:m synchronization indicesrn,m ­ maxhr̃n,m 2 rs

n,m, 0j
andln,m ­ maxhl̃n,m 2 l̃s

n,m, 0j. For our data, computa-
tion of both indices gives consistent results.

Let us summarize our results. Pronounced tremor ac-
tivity starts after ,50 s (Fig. 3a). During this epoch,
besides the expectedperipheral coordination,i.e., 1:1 an-
tiphase locking of EMG’s of flexor and extensor muscles,
(Fig. 3b), we also findcorticomuscular (CMS) as well as
cortico-cortical synchronization(CCS). Namely, the ac-
tivity of both sensorimotor cortex and premotor areas are
1:2 phase locked with the EMG activity of both flexor and
extensor muscles (Figs. 3c and 4), whereas the activities
of these two brain areas are1:1 locked (Fig. 3d). It is im-
portant that when the strength of peripheral coordination
decreases during the last,50 s, the strength of CMS and
CCS is also reduced. We find that MEG activity in the
range of 10–14 Hz is responsible for both CMS and CCS.
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FIG. 2. An original and filtered MEG signal (from a channel
over the left sensorimotor cortex) (a) and its power spectrum
(c). The EMG signal of the right flexor digitorum muscle (b)
and its power spectrum (d).

Our analysis reveals the brain areas with MEG activity
phase locked to tremor activity (Fig. 4), while the tradi-
tional cross-spectrum technique fails here. Contralateral
sensorimotor MEG signals are coherent with EMG, in ac-
cordance with the concept of Volkmannet al. [13] which
is based on their MEG study, animal experiments, and
recordings during neurosurgery in PD patients. Never-
theless, we also found tremor coherent MEG activity ex-
tended over the right hemisphere in contradiction to this
concept [7]. Inefficiency of the coherence technique can
additionally be seen from the fact that MEG channels
overlying sensorimotor and premotor areas are coherent
with practically all other MEG channels.

To conclude, we proposed a method to detectn:m
phase locking and quantify the strength of synchronization
from noisy bivariate data. A very important feature of our
approach is that we can avoid the hardly solvable dilemma
“noise vs chaos”: irrespective of the origin of the observed
signals the approach and techniques of the analysis are
unique. In this way we addressed a fundamental problem
in neuroscience whether cortico-cortical synchronization
is necessary for establishing coordinated muscle activity.

FIG. 3. (a) EMG of the right flexor muscle (RFM, upper
trace) and an MEG over the left sensorimotor cortex (LSC)
(lower trace). (b) 1:1 synchronization between right flexor and
extensor muscles: the distribution of the cyclic phase difference
C1,1 computed in the running windowft 2 5, t 1 5g is shown
as a gray-scale plot, where white and black correspond to
minimal and maximal values, respectively (upper plot); the
lower plot shows the corresponding significant synchronization
index r1,1. (c) 1:2 corticomuscular synchronization: time
course of the distribution of the cyclic phase differenceC1,2
between MEG signal from the LSC and EMG of the RFM
(uppermost plot) and of the corresponding indicesr1,2 and
l1,2; for comparison, 1:1 synchronization indexr1,1 between
LSC and RFM is shown below. (d) 1:1 cortico-cortical
synchronization between LSC and a premotor MEG channel.
The dashed line indicates the value ofr1,1 corresponding
to 99.9th percentile of the surrogates. Significance levels
are r

S
1,2 ­ 0.03, l

S
1,2 ­ 0.26, r

S
1,1 ­ 0.07 [(b) and (c)], and

r
S
1,1 ­ 0.03 (d).
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FIG. 4. Time dependence of the significant synchronization indexr1,2 characterizing 1:2 locking between the EMG of the right
flexor muscle (reference channel, plotted in the lower right corner) and all MEG channels. Each rectangle corresponds to an MEG
sensor, time axis spans 310 s andy axis scales from 0 to 0.25. The head is viewed from above, “L” and “R” mean left and right
(see the “head” in the upper right corner). The upper and lower gray regions correspond to premotor and contralateral sensorimotor
areas, respectively. The results are similar for the extensor muscle. Significance levelr

S
1,2 ­ 0.03 and window lengthT ­ 10 s.

By means of our technique we showed for the first time
that the temporal evolution of the coordinated peripheral
tremor activity directly reflects the time course of the
strength of the synchronization of abnormal rhythmic
activity within a neural network involving cortical motor
areas. Additionally, we localized areas with tremor
related brain activity from noninvasive measurements.

This study was supported by grants from the Deutsche
Forschungsgemeinschaft (SFB 194, A5, Z2) and from the
Volkswagenstiftung.
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We investigate the phase synchronization of heartbeat and respiration in a group of healthy
infants. Having presented and compared two quantitative measures of synchronization, we
conclude that one of these measures — the conditional probability index — allows reliable de-
tection of synchronous epochs of different order n :m and, thus, makes possible an automatic
processing of large data sets. In our analysis of experimental time series, we have found numer-
ous epochs of phase synchronization. It turned out that the average degree of synchronization
varies with the age of the newborns.

1. Introduction

Generation of rhythms is an inherent property of
many physiological systems, of which breathing
and heartbeat are the obvious examples. Patterns
of autonomic neural regulation of human respira-
tory and cardiovascular systems are imprinted on
these rhythms, therefore their analysis may give in-
sight into the functioning and interaction of these
systems.

Both respiratory and cardiac rhythms have
been extensively examined with regard to their abil-
ity to detect pathological conditions. Different tools
of linear and nonlinear univariate time series anal-
ysis have been used in numerous attempts to quan-
tify the state of either cardiovascular or respira-
tory systems and to reveal malfunction [Akselrod
et al., 1981; Kluge et al., 1988; Schechtman et al.,
1989, 1990; Goldberger & Rigney, 1991; Kurths

et al., 1995; Patzak et al., 1996, 1997; Persson,
1997].

Nevertheless, the separate analysis of both
rhythms does not seem to be sufficient. Indeed,
it is well known that cardiovascular and respiratory
systems are not independent. Normally, their inter-
action is rather weak, its most pronounced mani-
festation being called respiratory sinus arrhythmia
(RSA) [Ludwig, 1847; Saul et al., 1989]. In physi-
cal terms, RSA can be regarded as the modulation
of heart rate by a respiratory related signal; it has
been characterized and analyzed in many studies
[Kim & Khoo, 1997; Loula et al., 1997; Koh et al.,
1998]. On the other hand, in certain conditions
there is apparently a very tight coupling between
the circulatory and the respiratory systems. An ex-
ample is Cheyne–Stokes respiration [Guyton et al.,
1956] that is a definite sign of a severe pathology.1

Appearance of this phenomenon is supposed to be

∗URL: www.agnld.uni-potsdam.de
1This effect can be viewed as a complex modulation of the respiratory activity, so that there are epochs where there is no
breathing at all. The Cheyne–Stokes respiration occurs in such situations as intoxication, chronic hypoxemia (low blood
oxygen level), and diffuse brain damage.
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related to the change of certain parameters of the
circulatory system [Guyton et al., 1956; Glass &
Mackey, 1988]. Thus, the interdependence of os-
cillatory activity of respiratory and cardiovascular
systems may be physiologically relevant. There-
fore, the joint analysis of the two rhythms may pro-
vide additional physiological information and may
be useful for early detection of malfunctioning.

Coordinated activity of respiratory and cardio-
vascular systems has been addressed in early work
by Hildebrandt, Kenner, Pessenhofer, Raschke,
and others [Hinderling, 1967; Engel et al., 1968;
Pessenhofer & Kenner, 1975; Kenner et al., 1976;
Raschke, 1981, 1987, 1991; Raschke & Hildebrandt,
1987]. In these papers, different ad hoc methods
have been used and an indication of the n : 1 syn-
chronization between heartbeat and respiration has
been found. For example, Raschke and Hildebrandt
[1987] have computed the histograms of ratios of the
periods of respiratory and cardiac cycles and found
peaks around integers three and four. Synchroniza-
tion between these systems has been also accessed
by analysis of other signals, such as blood pressure
and respiration. Koepchen and Thurau [1958] dis-
cussed a central neural mechanism for fixed ratio
synchronization between blood pressure and respi-
ration. Synchronization between the 0.1 Hz com-
ponent of blood pressure oscillation and respira-
tion was described by Golenhofen and Hildebrandt
[1958].

Recently, several groups addressed different as-
pects of cardiorespiratory interaction [Hoyer et al.,
1997; Schiek et al., 1998; Seidel & Herzel, 1998].
In particular, the concept of phase synchronization
was used for this goal [Schäfer et al., 1998, 1999;
Toledo et al., 1998]. As a result, different n : m
synchronous regimes have been revealed by means
of a graphic tool called “cardiorespiratory synchro-
gram” (CRS), and an attempt was made to as-
sess the cardiorespiratory synchronization quantita-
tively [Toledo et al., 1998; Rosenblum et al., 2000a,
2000b]. Nevertheless, until now, only a small group
of adults (young athletes, normal healthy and heart
transplant subjects) have been examined, and it is
not clear yet whether synchronization is a typical
feature of cardiorespiratory interaction. For exam-
ple, there are no studies of synchronization phenom-
ena in infants.

Here we discuss the methods that allow to
quantify the strength of synchronization from bi-
variate data. We present the results of a quan-
titative analysis of cardiorespiratory interaction

in a group of 25 healthy newborn babies and
address the age dependence of cardiorespiratory
synchronization.

2. Quantification of Phase
Synchronization

The notion of phase synchronization implies the ap-
pearance of some interrelation between suitably in-
troduced phases of two (or many) self-sustained os-
cillators whereas the amplitudes can be generally
uncorrelated; for the introduction to the concept
and the references see the tutorial paper in this issue
[Pikovsky et al., 2000]. Here we briefly summarize
the facts needed in the following for quantification
of the synchronization from noisy data.

For two weakly interacting periodic oscillators
one can obtain in the first approximation the equa-
tions for the phase dynamics:

dφ1

dt
= ω1 + εg1(φ1, φ2) ,

dφ2

dt
= ω2 + εg2(φ2, φ1) ,

(1)

where the phases φ1,2 are defined not on the [0, 2π]
circle but on the whole real line, the coupling terms
g1,2 are 2π-periodic in both arguments, and ε is the
coupling coefficient. For a general case of n : m
locking one can introduce the generalized phase
difference, or relative phase

ϕn,m(t) = nφ1(t)−mφ2(t) (2)

and obtain for it the equation

dϕn,m
dt

= nω1 −mω2 + εG(φ1, φ2) , (3)

where G(·, ·) is 2π-periodic in both arguments.
As it is well known, Eq. (3) admits solutions of
two kinds: the relative phase is either unbounded
or bounded. The first case corresponds to the
quasiperiodic motion with two incommensurate fre-
quencies, whereas a solution of the second type
corresponds to phase locking

|nφ1(t)−mφ2(t)− δ| < const , (4)

where δ is some (average) phase shift. We empha-
size, that in the synchronous state the relative phase
generally oscillates around a constant value; these
oscillations vanish only if the coupling depends on
the relative phase: G(φ1, φ2) = G(nφ1 − mφ2)
[Pikovsky et al., 2000].
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Noise is inevitable in live systems, and we must
take its influence on the phase locking into account.
As known [Stratonovich, 1963], noise causes the
fluctuations of the relative phase and (sometimes)
rapid 2π jumps of ϕn,m (phase slips). Chaotic sys-
tems exhibit qualitatively similar phase dynamics
[Rosenblum et al., 1996], so that in the following
we do not discuss whether the system we analyze is
noisy or chaotic and noisy.

To introduce the quantitative measures of syn-
chronization we consider first the simple case: let
the oscillation of the relative phase in the locked
state vanish and no noise be present. Then the
relative phase is constant, ϕn,m(t) = δ, if synchro-
nization occurs, and ϕn,m(t) ∼ (nω1−mω2)t, if the
motion is quasiperiodic. Respectively, the distri-
bution of the cyclic relative phase ϕn,m(t) mod 2π
is either a δ-function, or broad. Now we can con-
sider the influence of a weak noise: the distribution
becomes smeared, but remains, nevertheless, uni-
modal [Stratonovich, 1963]. To characterize this
distribution, we compute the intensity of its first
Fourier mode

γ2
n,m = 〈cos ϕn,m(t)〉2 + 〈sin ϕn,m(t)〉2 , (5)

where the brackets denote the average over time
[Rosenblum et al., 2000a, 2000b]. The synchroniza-
tion index γ varies from 0 (no synchronization) to
1 (synchronization in the noise-free case). Due to
the noise, γ does not attain unity any more, nev-
ertheless it remains almost 1 in the middle of the
synchronization region and continuously decreases
with the loss of synchronization.

The situations gets more complicated if in the
synchronous regime the relative phase oscillates, so
that the general condition (4) must be taken into
account. If this oscillation is not negligible then
the distribution of ϕn,m(t) mod 2π is not unimodal
and narrow any more, even in the absence of noise,
and the noise makes it practically uniform. This
is especially essential if the interaction is not very
weak, or if synchronization occurs via modulating
(parametric) action of one oscillator on the second
one [Schäfer et al., 1999; Rosenblum et al., 2000a,
2000b]. Therefore, the synchronization index γ can
be rather small even if the synchronization does oc-
cur, and we need another measure of locking. Such
a measure can be obtained by means of the strobo-
scopic approach.

Consider again Eq. (3). For convenience we
treat now the cyclic phases φ̃1,2 = φ1,2 mod 2π. Let

us fix the value of the phase of, say, first oscillator
at some constant value θ, and observe the phase of
the second oscillator for each time ti when φ̃1 = θ:

ηi = φ̃2(t)|φ̃1(t)=θ . (6)

This is nothing else than the construction of the
Poincaré secant surface that reduces Eq. (3) to the
well-known circle map. In case of 1:1 phase locking
it has a fixed point, so that ηi = const; due to the
presence of a weak noise the values of ηi are scat-
tered around this constant value. The distribution
of ηi can be characterized in a similar way as above
by computing the intensity of its first Fourier mode.
To improve the statistics, we average over different
values of θ. Numerically, it can be done if we intro-
duce a binning for the phase of the first oscillator,
compute the estimate of the index for the lth bin as

Λ2
l = M−2

l

Ml∑
i=1

cos ηi

2

+M−2
l

Ml∑
i=1

sin ηi

2

,

(7)

where l = 1, . . . , N , and Ml is the number of points
in the corresponding Poincaré section, and average
Λl over all N bins in order to get a synchronization
index

λ = N−1
N∑
l=1

Λl . (8)

The last step is to generalize the index λ for the case
of n :m locking. When the integers n and m are a
priori known, we expect to observe nm points in the
Poincaré section. To focus on any of them alone, we
rescale the phases, φ1 → φ1/m, φ2 → φ1/n, and use
the above described approach in order to obtain the
n : m locking index; this rescaling is equivalent to
“making” the frequencies of two oscillators equal
and thus reducing the problem to the 1:1 case.

According to its definition, λn,m measures the

conditional probability for φ̃2 to have a certain value
provided φ̃1 is in a certain bin [Tass et al., 1998],
see Fig. 1. One can see, that if the oscillation of the
relative phase vanishes, then the indices λn,m and
γn,m coincide. In practice, the integers n and m are
chosen by trial and error.

We emphasize that appearance of a certain in-
terdependence between phases indicates, strictly
speaking, only the presence of coupling between
systems, but does not necessarily imply that they
are synchronized. Indeed, if the coupling is not
sufficient in order to induce synchronization, but
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Fig. 1. Synchronization index based on the conditional
probability. Phase of the second oscillator φ2 rescaled by
n and wrapped onto the circle [0, 2π] is observed stroboscop-
ically, i.e. when phase of the first oscillator φ1/m mod 2π is
found in the certain bin θl of the interval [0, 2π]. If there is
no n :m synchronization then the stroboscopically observed
φ2 is scattered over the circle, otherwise it groups around
some value. The sum of the vectors pointing to the position
of the phase on the circle provides a quantitative measure of
synchronization.

close to this threshold value, the distribution of the
relative phase is also unimodal.

3. Experimental Data and
Preprocessing

We measured the electrocardiograms (ECG) using a
bipolar limb lead (Biomonitor 501, Meßgerätewerk
Zwönitz, Germany) and obtained thoracic respira-
tion with the inductive plethysmographic method
(Respitrace, Studley Data Systems, Oxford, UK) in
25 newborn infants. Measurements were performed
on each of the first five days of life, then every week
and later monthly up to the sixth month of life.

Data acquisition began 30–60 min after feed-
ing, in the evening hours between 8 p.m. to 11 p.m.,
and took approximately 1 h. Data were stored on a
DAT multichannel recorder (DAT, DTR-1800, bio-
logic, France) for further analysis. The data were
offline digitized with a computer based monitoring
system (XmAD, ftp://sunsite.unc.edu/pub/Linux/
science/lab/) with a sampling rate of 1000 Hz.

An artifact free, 10 min long segment of each
measurement was chosen for further analysis. R-
waves were detected with the precision of 1 ms by
means of a convolution technique applied to a high
pass filtered ECG (20 ms moving average) and a
typical QRS-template. Instantaneous phase of the
ECG was estimated as

φh(t) = 2πk + 2π
t− tk

tk+1 − tk
, (9)

where tk are the times of appearance of a kth R-
peak.

The respiratory signal was filtered with a high-
pass (3 sec length moving average) and a low-pass
(50 ms length moving average) filter prior to a
resampling at 100 Hz. Instantaneous phases of
the respiratory signal were computed by means of
the analytic signal approach [Gabor, 1946; Panter,
1965] based on the Hilbert transform; technical im-
plementation of that technique is discussed, e.g. in
[Rosenblum & Kurths, 1998; Schäfer et al., 1999].
The instantaneous phases of the respiratory sig-
nal were smoothed with the help of a second order
Savitzky–Golay filter [Press et al., 1992] of length
1000. Synchronization indices γ and λ were calcu-
lated in a sliding window of length 2000 points; the
window was moved step by step.

4. Results

We have analyzed 221 records. A typical data set
along with the computed synchronization indices
is shown in Fig. 2. For visualization of entrain-
ment between heartbeat and respiration we used
the phase stroboscope, or synchrogram technique
[Schäfer et al., 1999]. Briefly, it can be explained
in the following way. The phase of the respiration
φr is observed stroboscopically at the instants tk of
occurrence of the kth R-peak in the ECG. After-
wards, φr(tk) is plotted versus tk. In the noise-free
case of n : 1 synchronization (n heartbeats within
each respiratory cycle), we would observe n distinct
values within one respiratory cycle so that such a
plot would exhibit n horizontal lines. In our plots
n colors are used in a cyclical order, so that the
lines are clearly seen. Noise smears these lines, and
some bands are expected to be observed instead.
To look for n :m locking one has to use the wrap-
ping of the respiratory phase into [0, 2πm] interval,
i.e. consider m adjacent oscillations as one cycle,
and plot

ψm(tk) =
1

2π
(φr(tk) mod 2πm) (10)

versus tk.
We have found a considerable number of

epochs, where synchronization of different order
n : m occurs; these results are summarized in Ta-
ble 1. To analyze the efficiency of two indices γn,m
and λn,m, we compared their values for the epochs
where synchronization can be detected by visual in-
spection of cardiorespiratory synchrograms and by
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Fig. 2. An example of occurrence of 2:1 and 5:2 synchronization. A: R–R (interbeat) intervals. B: Number of heartbeats
per respiratory cycle. C and E: Quantitative measures of n :m synchronization: conditional probability index λn,m (blue) and
index γn,m based on computation of the Fourier mode of the distribution of relative phase (red). D and F: Cardiorespiratory
synchrograms demonstrating alternating epochs of 2:1 and 5:2 synchronization.

Table 1. The number of epochs of
n : m synchronization found in 221
data sets. The rows correspond to the
number n of cardiac cycles, whereas
the columns correspond to the number
m of cycles of respiration. Only the
epochs that lasted longer than 20 sec-
onds are counted; synchronization is
identified if the conditional probabil-
ity index λn,m ≥ 0.95.

resp. cycle (m)
R–R cycle (n) 1 2 3

2 3

3 25 7

4 39 6

5 15 52 19

7 85 85

8 94

9 82

counting the number of heartbeats N1 within each
respiratory cycle. We find that the index γn,m is
less sensitive than the conditional probability in-
dex λn,m; this becomes especially essential with the
increase of the order of synchronization. So, com-
paring Figs. 2C and 2D we see that the index γn,m
indicates synchronization of order 2:1 but fails to
detect the epochs of 5:2 synchronization. Inspection
of another data set (Fig. 3), where 4:1 synchroniza-
tion appears for almost all 10 minutes, shows that
the index γn,m drops strongly if a phase slip oc-
curs (the slips can be easily seen in Fig. 3B). Sum-
marizing the comparison of two quantitative mea-
sures of synchronization in Table 2, we conclude
that reliable detection of synchronous epochs can
be achieved by means of the conditional probability
index λn,m.

Next, we investigate how the occurrence of
synchronization depends on the postnatal age. We
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probability index λn,m (blue) and index γn,m (red). D: Cardiorespiratory synchrogram demonstrating long synchronous epochs
interrupted by phase slips.

Table 2. Probability of the synchroniza-
tion index γn,m to be larger than 0.707
provided that λn,m > 0.95. The rows
correspond to the number n of cardiac
cycles, whereas the columns correspond
to the number m of cycles of respiration.
The results suggest that the index γn,m
may not be used for reliable automatic
detection of synchronization.

resp. cycle (m)
R–R cycle (n) 1 2 3

3 0.744 0

4 0.391 0

5 0.0317 0 0

7 0.0008 0

8 0

9 0.0081
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Fig. 4. Average time fraction of n :m synchronization iden-
tified by λn,m > 0.95 within first 20 days of life and for the
age 20–180 days. The error bars indicate the standard error
of mean.
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Fig. 5. Average time fraction of 3:1 and 4:1 synchronization as a function of the postnatal age. The error bars indicate the
standard error of mean.

have found that the average time fraction of the 7:2,
4:1, and 9:2 synchronization is significantly smaller
in the first three weeks of life compared to the frac-
tions at the age from three weeks up to six months.
In contrast, the average time fraction of a 5:2, 8:3,
and 3:1 synchronization did not show any statisti-
cally significant age dependency. These results are
summarized in Fig. 4. The detailed age develop-
ment of the average time fraction for 3:1 and 4:1
synchronization is shown in Fig. 5.

Furthermore, from Fig. 4 it becomes clear that
the time fraction where synchronization occurs is
small compared to the fraction of nonsynchronized
periods. However, in some cases long epochs of
synchronization were observed (cf. Fig 3).

5. Discussion and Outlook

The exact physiological mechanisms responsible for
cardiorespiratory synchronization are so far poorly
understood. There are several levels where the
interaction occurs.

First, the frequency of the primary pacemaker
of the heart (sino-atrial node) is modulated by
the autonomic neural and hormonal control. It
is known that the efferent neural activity incorpo-
rates the respiratory related rhythms [Jewett, 1964].
Furthermore, there is a mechanical coupling be-
tween the systems. In the examinations of the heart
transplant patients, in which the neural autonomic
control is abolished, it was found that respiratory
modulation effects [Slovut et al., 1998] are still

present and synchronization is possible [Toledo
et al., 1998]. This interaction is thought to origi-
nate from the mechanical stretch of the sinus node
caused by variation of the intra-thoracic pressure,
which in its turn causes the variation of the atrial
filling pressure. This breathing dependent stretch
alters the electrical properties of the sino-atrial
node membrane, and therefore influences the fre-
quency of the heart excitation.

Secondly, the respiratory rhythm is generated
in the cardiorespiratory center of the brain stem
[Koshiya & Smith, 1999]. The nerves coming from
the arterial baroreceptors provide the brain stem
with information regarding blood pressure, and,
hence, on heart rhythm. Furthermore, it has been
found that the baroreceptor reflex depends on the
phase of respiration [Seidel et al., 1997]. These are
examples of physiological cross-connection between
the “generators” of cardiac and respiratory rhythms
which may yield synchronization.

Synchronization of heartbeat and respiration in
infants occurs in different ratios n :m. The typical
change in mean heart rate and respiration frequency
[Mrowka et al., 1996] after birth may predispose for
certain synchronization ratios. The frequency ratio
of heartbeat and respiration, recomputed using the
data of Mrowka et al. [1996], is shown in Fig. 6.
This dependence explains the age development of
the average time fraction of 3:1 and 4:1 synchro-
nization illustrated in Fig. 5. Indeed, the average
frequency ratio is ≈ 2.5 for the age up to 20 days,
≈ 3 for the age from 40 to 80 days, and ≈ 4 for the
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Fig. 6. Average ratio of respiratory frequency and heartrate
in dependence on postnatal age shown for different sleep
stages. (Recalculated after [Mrowka et al., 1996].)

age after 100 days. Thus, synchronization of or-
der 5:2 is more likely to occur within the first three
weeks of life, whereas synchronization of order 4:1
(and with close ratios 7:2 and 9:2) is more probable
at the age 20–180 days. On the other hand, analyz-
ing the average occurrence of synchronous epochs
shown in Fig. 4, we see that the probability to ob-
serve 4:1, 7:2 and 9:2 synchronization is large than
the probability to encounter the 5:2 synchroniza-
tion. Moreover, for any ratio, the probability of
synchronization increases with age. Therefore, we
conclude that the strength of coupling between res-
piratory and cardiovascular systems increases with
the age of infants.

The duration of epochs of synchronization
compared to the nonsynchronous ones is usually
rather small,2 nevertheless in some cases synchro-
nization is a long-lasting effect (see Fig. 3). It is
not clear yet whether synchronization is essential
for efficient cardiovascular and respiratory control.
However, one might speculate that the lack of syn-
chronization might indicate blunted feedback mech-
anisms or interconnections in pathological condi-
tions, or in individuals at risk. The examination of
data originating from different diseased stages may
provide understanding of synchronization and its
relevance.
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I. INTRODUCTION

Theoretical insights in nonlinear dynamics have been
widely used in time series analysis@1#. In particular, the
concepts of generalized@2# and phase@3–5# synchronization
have been exploited for the identification of interdepen-
dences between coupled sub~systems! from multivariate data
and have found a number of applications in the studies of
biological time series@5–11#. One can formulate two main
problems in such an analysis. The first problem is to reveal
whether the systems under investigation are coupled and to
quantify the intensity of interaction, while the second one is
to characterize the driver-response~causal! relationships, or
directionality of coupling.

Many natural phenomena can be modeled by coupled ir-
regular self-sustained oscillators. The description of a weak
interaction between such systems can be reduced to the
phase dynamics@5,12#. Hence, if one considers an inverse
problem—characterization of weak coupling from data—it is
sufficient to analyze interrelation between the phasesf of
oscillators; the phases can be beforehand estimated from the
scalar signals. In this way, the intensity of interaction can be
assessed quantitatively@5,9,11#. Moreover, a recent approach
@13# demonstrated that the asymmetry in interaction of two
oscillators could be also detected. The idea of this approach
is as follows: if, say, system 1 is driven by system 2, then the
evolution off1 depends also onf2; in other words, predic-
tion of f1 from its previous values can be improved by tak-
ing into account the prehistory off2 only if system 2 drives
system 1.

In the present paper we further develop the technique for
detection of the directionality in coupling. We propose two
algorithms and compare them with that of Ref.@13#. Next,
we exploit the presented method to address an important
physiological problem—analysis of the direction of the car-
diorespiratory interaction.

Different aspects of interaction between cardiovascular
and respiratory systems in humans have been the subject of
interest of many researchers. In physiological terms, there
are different levels where interaction between heart rate and
respiratory rhythm might occur. Foremost, the central ner-
vous interaction in the cardiorespiratory region in the brain
stem plays an eminent role. A well-studied phenomenon is
the modulation of the heart rate by respiration, known since
19th century as respiratory sinus arrhythmia@14#. Another
possible effect of interaction is synchronization. So, 1:m
locking between the cardiac and respiratory rhythms was in-
vestigated in Ref.@15#. Graphical tools and quantification
measures allowing one to assess the general case of interac-
tion with n:m frequency relation were introduced in
@8,10,11# and used in Ref.@16#. In our previous work@17#,
we analyzed cardiorespiratory interaction in a large group of
healthy infants and we found that intensity of interaction
increased with the age.

It is widely believed that coupling between the cardiovas-
cular and respiratory system is unidirectional, i.e., the respi-
ratory rhythm influences the heart rate via vagal stimulation
and direct mechanical action on the primary cardiac pace-
maker, the sinus node; this is called irradiation theory. Nev-
ertheless, some evidence@18# conflicts with this theory sug-
gesting that the respiratory oscillator in the central nervous
system is not always dominant, i.e., the cardiorespiratory*Electronic address: www.agnld.uni-potsdam.de
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coupling is bidirectional. To obtain further insight into this
controversy, we investigated the direction in cardiorespira-
tory interaction in healthy babies and its age dependence. We
show that within the first 6 months of life there is a tendency
to change from roughly symmetric interaction to a nearly
unidirectional one~from respiration to heart rate!. Further-
more, our directionality indices clearly demonstrate a depen-
dence on breathing frequency. We explain this dependence
by two classes of frequency response properties of the path-
way transmitting information from the central nervous sys-
tem to the heart.

The paper is organized as follows. In Sec. II, we present
our techniques of data analysis and discuss their relation to
other methods; in Sec. III, we illustrate the techniques by
several model examples; in Sec. IV, we describe and discuss
the analysis of experimental data; and in Sec. V, we summa-
rize our results.

II. TECHNIQUES OF DATA ANALYSIS

Estimation of interdependence between two time series is
a traditional problem of signal processing. Widely used tools
such as cross spectra@19#, mutual information@20# or maxi-
mal correlation@21# provide symmetricmeasures and are,
therefore, not suitable for evaluation ofcausality in inter-
relation. The latter issue was addressed in recent studies,
where one can outline two main approaches. One approach,
based on the information theory, used entropy measures@22#.
A second approach, arising from studies of generalized syn-
chronization, exploited the idea of mutual predictability: it
quantified the ability to predict the state of the first system
from the knowledge of the second one@6#. While both ap-
proaches are rather complicated to implement and interpret,
neither requires any assumptions on the systems under inves-
tigation. On the contrary, the approach to analysis of causal-
ity or directionality of interaction, introduced in Ref.@13#
and further developed here, is explicitely based on the as-
sumption that experimentalists deal with weakly interacting
self-sustained oscillators. In this particular, but pretty often
encountered case the direction of coupling can be efficiently
quantified.

The main idea of Ref.@13# is to use the fact that weak
coupling affects the phases of interacting oscillators, whereas
the amplitudes remain practically unchanged@5,12#. Hence,
the dynamics can be reduced to those of two phasesf1,2:

ḟ1,25v1,21«1,2f 1,2~f2,1,f1,2!1j1,2~ t !. ~1!

Here, random termsj1,2 describe noisy perturbations that are
always present in real-world systems; small parameters«1,2
!v1,2 characterize the strength of the coupling. Equation~1!
describes also the phase dynamics of coupled continuous-
time chaotic systems; in this casej1,2 are irregular terms that
reflect the chaotic nature of amplitudes@3#. The fact that the
regular component of the phase dynamics is two dimen-
sional, essentially simplifies detection of the asymmetry in
interaction. Functionsf 1,2 are 2p periodic in both arguments
and combine the description of the phase dynamics of au-
tonomous~uncoupled! systems and the coupling between

them. If the coupling is bidirectional,f 1 and f 2 depend on
both f1 andf2. In case of unidirectional driving, say from
system number 1 to system number 2,f 15 f 1(f1), whereas
f 25 f 2(f1 ,f2) is the function of two arguments.

In the following discussion of the algorithms, we assume
that the time series of phases are known. Practically, the
phasesf1,2(tk), tk5kDt, k51,2, . . . ,whereDt is the sam-
pling interval, can be estimated from the experimental data
as discussed in Sec. IV.

A. Evolution map approach „EMA …

Here we briefly describe the technique introduced in Ref.
@13#, we call it the EMA. Let us consider increments of
phases during some fixed time intervalt ~Fig. 1!:

D1,2~k!5f1,2~ tk1t!2f1,2~ tk!, ~2!

the choice of the parametert is discussed below. Note that
the phases are unwrapped, i.e., not reduced to the interval
@0,2p); henceD1,2 can be larger than 2p. These increments
can be considered as generated by some unknown two-
dimensional noisy map

D1,2~k!5v1,2t1F1,2„f2,1~ tk!,f1,2~ tk!…1h1,2~ tk!. ~3!

The deterministic partsF1,2 of the map can be estimated
from the time seriesD1,2(k) and f1,2(k). For this purpose,
we fit ~in the least mean square sense! the dependences ofD1
and D2 on f1 ,f2. As the phases are cyclic variables, the
natural choice of the probe function is a finite Fourier series,
F1,25(m,lAm,le

imf11 i l f2. Note that fitting also filters out the

FIG. 1. Evolution of trajectories of system~1! on the torus
(f1 ,f2) ~schematically!. Open symbols show some arbitrarily
taken points, closed symbols show the positions of these points
after time intervalt, wheret is a parameter; evolution of one point
~boxes! is shown by arrows. Phase incrementD15f1(t1t)
2f1(t) depends on bothf1 ,f2 if there is a driving from system 2
to system 1, and only onf1 if 2 does not act on 1~similarly for
D2). Thus, analysis of dependencesD1,25F1,2(f1,2,f2,1) helps to
reveal and quantify asymmetry in the coupling between two oscil-
lators; smooth functionsF1,2 are obtained by an approximation.
Note that D1,2 are computed with account of possible trajectory
revolution around the torus, so that generallyD1,2.2p.
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noise. A similar procedure was used for noise reduction in
discrete dynamical systems@23# and~with t→0) for extract-
ing model equations from experimental noisy data@24#.

From the smooth functionsF1,2 obtained via approxima-
tion one can compute the measuresc1,2 of the cross depen-
dences of phase dynamics of two systems

c1,2
2 5E E

0

2pS ]F1,2

]f2,1
D 2

df1 df2 . ~4!

Finally, thedirectionality indexis introduced as

d(1,2)5
c22c1

c11c2
. ~5!

Normalized in this way, the index varies from 1 in the case
of unidirectional coupling (1→2) to 21 in the opposite case
(2→1) with intermediate values21,d(1,2),1 correspond-
ing to bidirectional coupling. Note that the index is an inte-
grated measure of how strong each system is driven and of
how sensitive it is to the drive.

To understand exactly how the asymmetry in coupling is
characterized by the indexd, i.e., how d is related to the
parameters of the model equation~1!, we estimate the deter-
ministic componentsD1,2 of the phase increase within the
interval t. As follows from Eq.~1!, in the absence of noise,
we obtain for small«1,2,

Df1,2'v1,2t1«1,2E
0

t

f 1,2~f2,1,f1,2!dt

5v1,2t1F1,2~f2,1,f1,2!. ~6!

So, for a particular~but rather common! case of antisymmet-
ric coupling functionf 1(f2 ,f1)52 f 2(f1 ,f2), we obtain
from Eq.~4! c1,25a«1,2, where the constanta is determined
by the integral in Eq.~6!. In general case the coefficients
c1,25a1,2«1,2, where a1Þa2 reflect also the difference in
coupling functionsf 1,2. Thus, the directionality indexd char-
acterizes the asymmetry in coupling but does not incorporate
the difference in the frequencies of autonomous systems.

B. Instantaneous period approach„IPA …

Let us now compute the time needed for the phase
f1,2(tk) to increase by 2p; in other words, we compute the
instantaneous periods or Poincare´ return times, for allk @25#.
Obviously, for uncoupled noisy and/or chaotic systems the
return times fluctuate around a constant~mean period!,
T1,2(k)5T1,2

0 1h1,2(tk), while for coupled systemsT1,2(k)
5T1,2

0 1Q1,2@f2,1(tk),f1,2(tk)#1h1,2(tk). The deterministic
componentQ1,2 of this dependence can be again found by
fitting a Fourier series, and the cross dependences ofT1 on
f2 and ofT2 on f1 can be characterized in the same way as
above, by computing coefficientsc1,2 from partial derivatives
of Q1,2 with respect tof2,1, similar to Eq.~4!. Then, the new
directionality index r (1,2)5(c22c1)/(c21c1) is computed

@cf. Eq. ~5!#. An important advantage of the proposed algo-
rithm is the absence of parameters.

Now we show that this algorithm provides different char-
acterization of asymmetry than EMA. Indeed, for weak cou-
pling, «1,2!v1,2, the deterministic component of the instan-
taneous periodT1 can be estimated from Eq.~1! as

T1~f1 ,f2!5E
f1

f112p df8

v11«1f 1~f2 ,f8!

5
1

v1
E

f1

f112p df8

11
«1

v1
f ~f2 ,f8!

5
2p

v1
2

«1

v1
2Ef1

f112p

f ~f2 ,f8!df8

5T1
01Q1~f2 ,f1!, ~7!

and similarly forT2. Clearly, for coupling functions satisfy-
ing f 1(f2 ,f1)52 f 2(f1 ,f2), this algorithm providesc1,2

5a«1,2/v1,2
2 . Hence, directionality indexr reflects not only

asymmetry in coupling coefficients«1,2 and asymmetry in
coupling functionsf 1,2, but also in natural frequenciesv1,2.

C. Mutual prediction approach „MPA …

As already mentioned, mutual prediction is used for esti-
mation of causal relations in the methods based on the con-
cept of generalized synchronization. These methods imply
existence of a functional relationship between the~phase!
states of two systems; such a relation arises due to a com-
paratively strong coupling. We exploit here a different under-
standing of mutual prediction, and this allows us to assess a
weaker interaction. Namely, we look whether the predictabil-
ity of, say, first time series can be improved by the knowl-
edge of the second signal. A similar concept, initially intro-
duced in Ref.@26# was very recently used by several groups
@27,28#. The main distinction of our approach is that we
work with phases, not with raw signals.

Thus, we take one series, say,f1(tk) and use some
scheme to predict a future of its points. For thekth point we
compute theunivariate prediction error E1(tk)5uf18(tk)
2f1(tk1t)u, wheref18(tk) is thet-step ahead prediction of
the pointf1(tk); remember that phases are unwrapped. Next,
we repeat the prediction forf1(tk), but this time we use both
signalsf1 ,f2 for construction of the predictor. In this way
we obtain thebivariate prediction error E12(tk). If system 2
influences the dynamics of system 1 then we expect
E12(tk),E1(tk), otherwise~for sufficient statistics! E12(tk)
5E1(tk). The root mean squaredE1(tk)2E12(tk), computed
over all possiblek and denoted byI 12, quantifies thepredict-
ability improvementfor the first signal. This measure charac-
terizes the degree of influence of the second system on the
first one. Computing in the same wayI 21, we end with the
directionality index
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p(1,2)5
I 212I 12

I 121I 21
. ~8!

Particularly, we use simple prediction scheme due to the
low dimension of the phase dynamics. In constructing pre-
dictor, we exploit a common idea that similar states have
similar future. So, we pick up one point of the signalf1(tk),
say at the timetK and search for all points in the signal that
have value close to the chosen point; important that here the
phases are taken in@0,2p) and the distances between points
are defined on the unit circle. Namely, for a chosen point
f1(tK) we find all points f1(t l) such that ueif1(t l )

2eif1(tK)u,d, where d is a constant; these points form a
stripe on the (f1 ,f2) torus ~see Fig. 2!. Then we compute
the predicted phase incrementD18(K)5^D1( l )&, whereD1( l )
are phase increments@see Eq.~2!#, and^& denotes averaging.
Univariate prediction errorE1(K) is thenuD18(K)2D1(K)u.
To make the bivariate prediction, we choose amongt l the
subset of pointstm ~mutual neighbors! satisfying ueif2(tm)

2eif2(tK)u,d, and proceeding as described above, compute
the errorE12 @29#. The errorsE2 ,E21 corresponding to the
signalf2(tk) are obtained in a similar way.

Several remarks are in order. First, the described scheme
can be understood as a kind of local~constant! approxima-
tion technique. Generally, different prediction schemes can
be used to estimate directionality. Second, as we are inter-
ested in the predictability improvement, not in the predict-
ability itself, it is not required to search for the optimal pre-
diction scheme. Finally, we emphasize that the MPA does not
directly use the assumption of weakly coupled oscillators;
generally, it can be applied to arbitrary signals. If the as-

sumption of weak coupling is correct, then the choice of
phases is crucial as these variables are mostly sensitive to the
coupling.

To summarize this section, we emphasize two points.
First, it is clear that all methods fail if oscillators synchro-
nize. Indeed, in this casef1,2 are functionally related, and no
information on the coupling direction can be obtained@30#.
Practically it means that the points on the (f1 ,f2) torus
collapse to a line, and the approximation procedure fails.
Thus, the direction of interaction can be revealed if the cou-
pling is too weak in order to induce mode locking~i.e., in the
quasiperiodic state! or the noise in the system is strong
enough to cause large deviations from the synchronous state.
If the noisy systems are close to a synchronous state, the
points on the torus form a band with some~rare! excursions
from it. In this case the described global approximation pro-
cedures, i.e., EMA and IPA are not efficient and a scheme
based on local approximation is required. Next, we empha-
size that there is no unique way to quantify the directionality
in case of bidirectional coupling; different methods can,
therefore, give noncoinciding characteristics~e.g., d and r
indices do not coincide!. The choice of a quantification mea-
sure is to large extent a matter of taste.

III. TESTS OF ALGORITHMS WITH SIMULATED DATA

In this section we illustrate the introduced algorithms by
application to simulated data and discuss the choice of pa-
rameters. Note that the IPA is parameter free, EMA has only
one parametert, and MPA has two parameterst and radius
of the neighborhoodd. Next, we briefly discuss the case
when the frequencies of two oscillators are essentially differ-
ent and the case of more than two interacting systems. We
especially pay attention to the case of short and noise con-
taminated data. The ability of the techniques to work with
such records is particularly important for biomedical appli-
cations.

A. Two coupled phase oscillators

We start, following Ref.@13# with the model of coupled
noisy phase oscillators:

ḟ1,25v1,21b cos~f1,2!1«1,2sin~f2,12f1,2!1j1,2~ t !,
~9!

where f1,2 are phase variables evolving on a two-
dimensional torus, parametersv1,2 govern the natural fre-
quencies of oscillators~although do not coincide with them
for bÞ0), «1,2 are the coupling coefficients, andj1,2 are
noise terms. In the following simulationsj1,2 are Gaussian
d-correlated noise terms,̂ j i(t)j j (t8)&52Dd(t2t8)d i , j .
The model~9! describes the phase dynamics in the general
case of weakly coupled noisy limit cycle oscillators@12#; it
also appears in the description of interacting continuous-time
chaotic systems, Josephson junction arrays@31#, and phase-
locked loops@32#.

First, we consider the effect of noise on the estimates of
directionality ~Fig. 3!. The parameters of the system~9! are

FIG. 2. Illustration of the mutual prediction approach. A chosen
point, f1(tK), evolves during the time intervalt from position 1 to
position 2; the points that have closef1 coordinate~delineated
vertical stripe! evolve to the dotted stripe. The average of these
evolved states gives a univariate predictionf8. A better prediction
f9 can be obtained using only the points that have close coordi-
nates in bothf1 and f2, i.e., points in a square neighborhood of
point 1. Note that the stronger is the dotted stripe bent, the larger
is the predictability improvement. As follows from Eq.~6!, this
bending is proportional to«1; hence, the indexp(1,2) quantifies
bidirectional coupling in the same way as the indexd(1,2).
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v1,25160.1, b50.5. Coupling coefficient«1 is fixed at
0.05 while «2 is varied in the interval@0,0.25# and three
directionality indicesd(1,2), r (1,2), andp(1,2) are computed for
different values of the noise intensityD. For the noise-free
case, all indices correctly recover the information on the
asymmetry of coupling as long as the system remains in a
quasiperiodic state~for «2,'0.17). The estimated indices
d(1,2) andp(1,2) closely follow the theoretical curve

«22«1

«11«2
, ~10!

whereas the indexr (1,2) follows

«2v1
22«1v2

2

«1v2
21«2v1

2
. ~11!

The performance of all algorithms degrade rapidly with the
synchronization transition~traced by means of the synchro-
nization indexr @33#!. Indeed, direction of interaction cannot
be estimated in case of synchronization, when phasesf1,2
are functionally related. The influence of noise is twofold.
On one hand, it naturally makes the estimation less precise,
especially for very weak coupling@clearly, correct estimation
is not possible if the noise term in Eq.~9! is in average larger
than the coupling#. On the other hand, noise facilitates esti-
mation of the indices for larger coupling values~correspon-

dent for the synchronized regimes in the noise-free system!.
Note that the records used for estimation of indices contain
only '100 periods of oscillations; with such short records,
the MPA approach works better in the noisy case. Increase of
the data length allows for better estimation of directionality
from noisy data, the corresponding results are shown in
Fig. 4.

Now we discuss the selection of parameters for EMA and
MPA, starting with the parametert. Clearly, the value oft
should be related to the periods of oscillationt5T1,2. In-
deed, the influence on the own dynamics of an oscillator
@note theb cos(f1,2) term in Eq. ~9!# averages out during
each cycle. As the frequencies of two oscillators are differ-

FIG. 3. Effect of noise on the estimation of directionality indi-
ces. One coupling coefficient is kept constant,«150.05, whereas
the second coefficient is gradually varied. The indices are shown in
~b!–~d! for different values of noise intensity. The solid curves
show the dependencey5(«22«1)/(«21«1) in ~b!,~d! and y
5(«2v1

22«1v2
2)/(«2v1

21«1v2
2) in ~c!. The degree of synchroniza-

tion can be traced by the synchronization indexr ~a!. In the absence
of noise, all indices correctly reflect the asymmetry in interaction as
long as the system remains in the quasiperiodic state~for «2,
'0.17); noise helps to estimate the indices for«2.0.17, causing
deviations from the synchronous regime.

FIG. 4. Effect of data length on the estimation of directionality
index d for noise intensityD50.1 ~a! and D50.2 ~b!. The esti-
mates are shown for different numbers of cyclesNc in the data; the
solid line shows the dependencey5(«22«1)/(«21«1).

FIG. 5. Dependence ofd and p indices on parameters for one
coupling configuration («150.05,«250.03) and different levels
of noise. ~a! d vs t, ~b! p vs t for d50.3, and~c! p vs d for
t5(T11T2)/2. The vertical dashed lines in~a!,~b! show the values
corresponding to mean oscillation periods of both systems.
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ent, we have to find a compromise. Our tests suggest the
following choice: t5min(T1,T2) and t5(T11T2)/2 for
EMA and MPA, respectively. The computed dependences of
d andp indices ont are shown in Figs. 5~a!, 5~b! for differ-
ent levels of noise. Regarding the parameterd, we emphasize
two counteracting tendencies:d should be small enough to
resolve the influence of coupling and large enough in order
to cope with the noise contamination dominating at small
scales; the computed dependences are shown in Fig. 5~c! and
Fig. 6. Clearly, short records require largerd. Note that by
definition 0,d,2.

We have also tested the algorithms in case when the natu-
ral frequencies of coupled oscillators are essentially differ-
ent, v1'0.4, v2'1.2, b50. The computations show that
the indices follow the theoretical curves~10! and~11! in this
case as well. Note, that these curves are now essentially dif-
ferent due to the factorv1 /v2. In conclusion, tests with the
data generated by two coupled phase oscillators demonstrate
that all indices allow reliable estimate of the asymmetry in
coupling from short noisy data.

B. Asymmetric coupling

We discuss now the case of asymmetric coupling. For the
sake of definiteness, we considerf 15sin(f223f1), f 2
5sin(3f12f2). Clearly, in computation of the coefficientc2
according to Eq.~4! we obtain, due to derivation, an addi-
tional factor of 3. Hence, the indicesd(1,2) and r (1,2) follow
now the dependences (3«22«1)/(«113«2) and (3«2v1

2

2«1v2
2)/(«1v2

213«2v1
2), respectively. Important, for this

case the results of the MPA differ from the results of EPA:
index p(1,2) follows the curve («22«1)/(«11«2). Indeed,
the predictability improvement is proportional to the ampli-
tude of the coupling function and does not depend on its
period ~see caption to Fig. 2!. Thus, MPA fails to reveal the
asymmetry in coupling functionsf 1,2. We note that the dif-
ference in estimates obtained by EMA and MPA may be used
to extract information about the coupling function.

The above considerations were tested with the model~9!,

for which parameter values arev1'0.4, v2'1.2, b50,
«150.01, and«1 varied in the range from 0 to 0.018.

C. A note on more complex cases

In our tests of the techniques we always assumed that we
deal with two coupled oscillators. In real-world applications
we nevertheless can encounter more complex situations, e.g.,
when two systems are a part of a complex oscillatory net-
work. Here, we comment on several important cases.

Uncoupled systems.Our algorithms cannot properly treat
this situation. Hence, one should check whether bothc1,2 are
close to zero and, if the presence of interaction is not obvious
a priori, it is recommended to conduct first standard cross
correlation~or other! analysis to check whether the two sig-
nals are inter-related.

Two coupled oscillators versus two uncoupled oscillators
under common forcing.Two noninteracting systems can be
driven by a common force. Certainly, in this case estimation
of directionality indices is senseless. In order to exclude this
case, we can exploit the cross-spectrum analysis, as illus-
trated by the following example. We simulate the outputx1,2
of two coupled noisy van der Pol oscillators

ẍ1,220.2~12x1,2
2 !ẋ1,21v1,2

2 x1,21«1,2~ ẋ2,12 ẋ1,2!1j1,250,

to be compared with the output of two uncoupled systems
under common driving

ẍ1,220.2~12x1,2
2 !ẋ1,21v1,2

2 x1,21«1,2ẋ31j1,250,

where

ẍ320.2~12x3
2!ẋ31v3

2x31j350

andv150.9, v251.1, v351, «1,250.05, and intensities of
noise s1,250.1, s350.5. From the result of the cross-
spectrum analysis shown in Figs. 7 and 8 we definitely can

FIG. 6. Dependence ofp index on parametersd andt for one
coupling configuration («150.05,«250.03) in the absence of noise.

FIG. 7. Coherence function~a! and power spectra~b!,~c! for two
coupled oscillators. High coherence is seen around the natural fre-
quencies of oscillatorsv1,2/2p.
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distinguish these two cases.
Three oscillators in a ring.Finally, we perform a fre-

quently used test and consider three noisy van der Pol oscil-
lators with unidirectional coupling, arranged in a ring~Fig.
9!:

ẍi20.2~12xi
2!ẋi1v i

2xi5« ẋ( i 12)mod 31j i .

Computing a directionality index for, say, oscillators 1 and 2,
we expect this index to be between 0 and 1. Indeed, oscilla-
tor 2 acts on the oscillator 1 indirectly, via the system 3, and
this action should be weaker than direct forcing of 2 by 1. To
check this, we take the parametersv150.95, v251.05, v3
51, «50.05, a noise intensity 0.1, and estimate thed index
from '500 oscillation periods;«50.05, t is of the order of
the period. The results~see also Fig. 9! d(1,2)50.41, d(1,3)

520.7, andd(2,3)50.57 correctly reveal the direction of in-
teraction in the ring structure. Next, we take identical sys-
tems,v15v25v351, so that in the absence of noise the
systems synchronize. With a sufficiently strong noise~with

intensity 0.2!, direction of coupling can be nevertheless de-
tected:d(1,2)50.12, d(1,3)520.19, andd(1,3)50.27.

IV. DIRECTIONALITY OF CARDIORESPIRATORY
INTERACTION IN HEALTHY NEWBORNS

The goal of our experimental study is to clear the contro-
versy concerning the direction of cardiorespiratory interac-
tion. For this purpose we analyze bivariate data, namely,
heart rate and respiration obtained from healthy newborns.
The presence of interaction is indicated by the presence of
respiratory sinus arrhythmia as well as the results of cross-
spectral ~Fig. 10! and synchronization@17# analysis per-
formed on the same group of subjects. On the other hand,
synchronous epochs are rather rare, so that the coupling can
be considered weak. Next, we study the dependence of di-
rectionality indices on age as well as on heart rate and res-
piratory frequency.

A. Measurements and data analysis

We measured the electrocardiograms~ECG! using a bipo-
lar limb lead ~Biomonitor 501, Meßgera¨tewerk Zwönitz,
Germany! and obtained thoracic respiration with the induc-
tive plethysmographic method~Respitrace, Studley Data
Systems, Oxford, UK! in 25 newborn infants; data sets from
five newborns are used in the present paper. Measurements
were performed on each of the first 5 days of life, then every
week and later monthly up to the 6th month of life. Data
acquisition began 30–60 min after feeding, in the evening
hours between 8 p.m. to 11 p.m., and took approximately 1 h.
Data were stored on a digital audio tape~DAT! multichannel
recorder ~DAT, DTR-1800, biologic, France! for further
analysis. The data were off-line digitized with a computer
based monitoring system~XmAD, ftp://sunsite.unc.edu/pub/
Linux/science/lab/! with a sampling rate of 1000 Hz.

FIG. 8. Coherence function~a! and power spectra~b!,~c! for two
uncoupled oscillators driven by a common force. High coherence is
observed at the frequency of that drive, but there is no coherence at
the frequencies of oscillators.~Note that the frequency peak corre-
sponding to the drive is barely seen in power spectra because the
drive is very noisy.!

FIG. 9. Three oscillators arranged in a ring. The unidirectional
~clockwise! coupling is revealed by pairwise estimation of the di-
rectionality index.

FIG. 10. Cross-spectral analysis demonstrates the presence of
interaction between heart rate and respiration. For each of 16 sub-
jects the maximal value of the coherence function was determined;
the line and vertical bars show the mean and the standard error,
respectively.
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An artifact free,'10-min-long segment of each measure-
ment was chosen for the further analysis; these segments
correspond to the stage of quiet sleep.R waves were detected
with the precision of 1 ms by means of a convolution tech-
nique applied to a fifth-order high-pass filtered ECG~20 ms
moving average! and a typical QRS template. The instanta-
neous phase of the cardiac signal has been estimated accord-
ing to

fh~ t !52pk12p
t2tk

tk112tk
, ~12!

wheretk are the times of appearance of akth R peak in the
ECG. Phase of the respiratory signal has been obtained by
means of Hilbert transform applied on the whole segment.
Prior to phase derivation, the respiratory signal has been de-
trended~linear or polynomial, up to fourth order, trend was
removed with manual check of all records!, and smoothed
using a second-order Savitzky-Golay filter of 501 data points
length. See Refs.@5,11# for discussion of phase estimation
techniques.

In order to trace the variation in the direction of coupling
due to nonstationarity in the system, the corresponding indi-
ces were computed in a sliding window~with 3/4 overlap!
and the average for each day was obtained. We found that all
three methods provide consistent results~Fig. 11!, supporting
our assumption of weak coupling. Next, the stability of EMA
and MPA with respect to parameter variation was checked.
Comparing EMA and MPA we found that thed index is more
stable with respect to parameter~s! variation than thep index;
we remind that IPA has no parameters. In order to illustrate
the robustness of EMA towards parameter variation, we fo-
cus on two distinct data sets from the same subject, corre-
sponding to the first and the last~180th! recording day. An

'100-s-long segment was extracted from each of these two
records, thend(hr) was computed fort<10 s @see Fig.
12~a!#; the average interbeat interval was, respectively,
^Th&50.46 s and̂ Th&50.54 s. A good stability of direc-
tionality index estimates with respect to the window size is
reflected in Fig. 12~b!. Further, data sets for five babies have
been analyzed, with the window length corresponding to 200
heartbeats andt taken as the average cardiac cycle within a
window.

B. Results and discussion

Below we present only the results of the EMA approach
(d index!. This choice is motivated by our interest in the

FIG. 11. Three directionality indices as a function of age for one
subject. Each symbol shows the estimate of the respective index
computed in a running window, the dashed lines connect the mean
value for a particular day. Note the smaller variability of thed
index.

FIG. 12. Robustness of the estimates of the directionality index
d(hr) with respect to parameters.~a! d(h,r ) vs t for the first ~dash-
dotted line! and 180th~solid line! day of life; each estimate was
computed from a data segment containing 200 heartbeats.~b! Influ-
ence of the window length. Open circles show the average of esti-
mates of d(h,r ) computed with different window size
(100,200, . . . ,800heartbeats!.

FIG. 13. Directionality indexd(hr) versus age~log scale! for five
newborns. Symbols show the values obtained from different win-
dows; dashed lines show the average~for a certain day! values. All
subjects demonstrate tendency towards unidirectional coupling~res-
piration drives heartbeat! with maturation.
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dependence of the directionality on both respiratory fre-
quency and heart rate. We remind also thatd index does not
directly include oscillator frequencies@cf. Eqs. ~10!,~11!#
what results in a smaller variability of its estimates~cf. Fig.
11!.

The main results are summarized in Fig. 13 clearly indi-
cating the evolution from an approximately symmetric inter-
action during the first days of life to a dominant unidirec-
tional coupling~respiration drives the heart rate! at the age of
6 months. Next, we analyzed the dependence of the direc-
tionality index d(h,r ) on the frequency of respirationf r and
on heart ratef h . No dependence betweend(h,r ) and f h was
seen, whereas the plot ofd(h,r ) vs f r displays a characteristic
n shape@Fig. 14~a!#. It can be seen that, for all measurements
with f r,0.5 Hz the interaction occurs dominantly in one
direction, from respiration to heart rate. We suggest the fol-
lowing explanation. The cardiac influence on respiration is
weak and frequency independent, while the coupling from
the respiration to heart rate is similar to a low-pass filter.
Then, for low frequencies (f r,'0.5 Hz in our case! the
respiratory driving effect is relatively strong compared with
the strength of the cardiac influence; correspondingly, the
directionality index is close to21. For higher frequencies,
the signal from the respiratory center@35# is attenuated and
therefore the interaction appears as nearly symmetrical. This
explanation is supported by the fact that variability ofd in-
dex estimates is larger for higher frequencies~influence of
noise on the estimate of an index is stronger for weak cou-
pling, see discussion in the Sec. III!.

The basis of the low-pass behavior of the information
transmission channel can be found in the physiological
mechanisms of the coupling. Indeed, signals from the vagal
nerve to the sinus node are transmitted by means of the neu-

rotransmitter acetylcholine. The release and the enzymatic
degradation of the acetylcholine is frequency limited@37#.
Note also, that respiratory sinus arrhythmia is a frequency-
dependent phenomenon as well@14#.

The presence of two branches in then-shaped plot ofd
index vsf r indicates two possible modes of interaction, char-
acterized by different characteristics of the low-pass filter
~see Fig. 14!. At very young ages~first week of life!, the
value of the cutoff frequency appears to be lower. Maturation
of the functions of the central nervous system as well as
cardiovascular adaptation processes to extrauterine condi-
tions such as closure of fetal shunts may account for this
finding. Correlation to hemodynamic data could give further
insight into this hypothesis. Another possible explanation of
the existence of two modes of interaction may be related to
different substages of quiet sleep@38#.

In summary, our results support the ‘‘irradiation theory’’
in the sense that there is a clear effect of respiration on heart
rate. However, at physiological conditions, characterized by
high breathing rates, this unidirectional action is abolished.
The reason for this abolishment is explained by the well-
known neurotransmitter kinetics of acetylcholine at the
vagal-atrial junction. To reveal mechanisms responsible for
the n shape of the dependence of the directional index on
breathing frequency further investigations are necessary.

V. CONCLUSIONS

We have proposed and analyzed approaches for identifi-
cation of direction of weak coupling between two self-
sustained oscillators. We have compared the efficiency of
three algorithms and have shown that they can be used for
analysis of real-world data. One algorithm EMA requires

FIG. 14. Scatter plots of the
d(hr) index versus breathing fre-
quency (f r) have a characteristic
n shape.~a! All five subjects to-
gether. Opened and filled squares
denote the estimates during the
first month and 2–6 months, re-
spectively. ~b!, ~c!, and ~d!
show the results for two subjects
~denoted by different symbols!.
One can see that the points from
some subjects fall only onto one
branch of then curve ~c!, while
the estimates from other subjects
fall onto both branches~b!. In one
subject the first days fall onto one,
others fall onto the second stripe
~d!.
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only one parameter, is generally more stable towards its
variation and easier to use than the algorithm based on the
idea of mutual predictability. The essential advantage of the
proposed method IPA is that it has no parameters. More im-
portant, all methods work with rather short and noisy
records, that makes them suitable for applications to biologi-
cal, geophysical, astrophysical, and other real-world signals.

Application of the considered methods to a particular
problem, analysis of cardiorespiratory coupling, revealed
that this interaction is age dependent: it evolves from ap-
proximately symmetric coupling during the first days of life
to unidirectional after 6 months of age. Moreover, the depen-

dence of the directionality index on the respiratory frequency
indicates the possible existence of two regimes of interac-
tion.
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