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Abstract

Many methods have been proposed for the simulation of constrained me�
chanical systems� The most obvious methods have mild instabilities and drift
problems� and consequently stabilization techniques have been proposed� A
popular stabilization method is Baumgarte�s technique� but the choice of pa�
rameters to make it robust has been unclear in practice�

Here we �rst review some of the simulation methods which have been pro�
posed and used in computations from a stability point of view� This involves
concepts of di�erential�algebraic equations �DAE	 and ODE invariants� We
explain why Baumgarte�s method may run into trouble� and why a further
quest for �nding better parameter values for this method will always remain
frustrating� We then show how to improve it�

We propose an e
cient stabilization technique which may employ explicit
ODE solvers in case of nonsti� or highly oscillatory problems and relates to
coordinate projection methods� Examples of a two�link planar robotic arm
and a squeezing mechanism illustrate the e�ectiveness of this new stabilization
method�
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� Introduction

Many methods have been proposed and implemented in commercial codes for the
simulation of constrained mechanical systems� see� e�g� ��� �� and references therein�
However� the most obvious of these methods have mild instabilities and drift prob	
lems� and consequently stabilization techniques have been proposed� A popular sta	
bilization method is Baumgarte
s technique ���� but the choice of parameters to make
it robust has remained unclear in practice� Many attempts have been made in the
literature to �nd a robust choice for these parameters 
 see� for example� the papers
in ���� One purpose of this paper is to survey some of these techniques� their advan	
tages and limitations� from a stability point of view� We explain what troubles the
Baumgarte technique may run into and explain why a further heuristic search for its
parameter values is bound to fail� We then develop some new and better stabilization
techniques� The mathematical and additional numerical analysis background behind
this exposition can be found in ��� �� ���

In order to better understand the issues involved� it is useful to write down the
Lagrangian formulation of the equations of motion describing the dynamics of a con	
strained multibody system�

�q � v
M�q� �v � f�q�v��G�q�T�

� � g�q�
�����

where
q is the vector of generalized coordinates
v is the vector of generalized velocities
M�q� is the mass matrix
f�q�v� is the vector of external forces �other than constraint forces�
g�q� is the vector of �holonomic� constraints
G�q� � �g

�q
is the constraint Jacobian matrix

� is the vector of Lagrange multipliers
We assume for simplicity that the mass matrix is symmetric positive de�nite and that
the constraint Jacobian has a full row rank for all q�t� encountered� For notational
simplicity� we have suppressed any explicit dependence of M � f or g on the time t�
Also� we consider only holonomic constraints because they are the ones producing
more stability di�culties when integrated numerically�

The system ����� is a system of di�erential	algebraic equations �DAE� of index �
�the index is one plus the number of di�erentiations of the constraints that are needed
in order to be able to eliminate the Lagrange multipliers ��� It is well	known that a
direct �nite	di�erence discretization of an index	� DAE may yield practical di�culties
���� and this relates to the classical ill	posedness of higher index DAEs ��� ��� This
type of system is obtained for the dynamics of rigid bodies �or when applying modal
analysis to �exible bodies� using the augmentation method �e�g� ����� For some simple
multibody systems� notably open loop systems� it is possible to explicitly reduce the
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DAE to an ODE �of a smaller size� by using relative generalized coordinates and
eliminating the constraints� The resulting ODE can then be integrated using ODE
methods without worrying about the stability issues with which we are concerned
here� Such a reduction cannot be done in general� though� and even when it can�
the obtained di�erential equations are typically more complicated� We assume in any
case� for the purposes of this article� that this reduction is not performed�

A very popular approach in practice is to di�erentiate the constraints twice� ob�
taining at each time t an algebraic system for the accelerations and the Lagrange
multipliers� Thus� di�erentiating the position constraints

� � g�q� �	�
�

once� we obtain the constraint equations on velocity level

� � �g � G�q�v �	���

and a further di�erentiation with respect to time results in the constraint equations
on acceleration level�

� � 
g � G�q� �v� vTgqq�q�v �	���

The ODE in �	�	� is written together with �	��� as an index�	 DAE

�
M GT

G �

��
�v
�

�
�
�
f

�

�
�	���

where � � �vTgqq�q�v� and this allows elimination of � in terms of the accelerations
�v� obtaining an ODE system for v and q

�q � v

M�q� �v � �f�q�v�
�	���

which may be integrated using standard codes� �Note that� in principle� the index�
reduced system �	��� or �	��� needs more initial conditions than the original system
�	�	� to specify a unique solution� We assume� however� that consistent initial condi�
tions �see� e�g� ���� for the generalized position and velocity coordinates are provided��

However� there are two disadvantages to integrating �	��� or �	��� numerically�
The easily visible one is that the position and velocity constraints �	�
� and �	���
are no longer satis�ed exactly � there is a drift o� the constraints� which does not
look good in a graphical depiction of motion simulation� Moreover� though� the drift
magnitude as well as the error in generalized positions and velocities grows with time
t � at worst quadratically ��� �� ��� This is not because of the numerical method used

�Throughout this paper we will refer to ����� as the position constraints� to ����� as the velocity

constraints and to ���	� as the acceleration constraints� although of course these are all just di
erent
forms of the original constraints which are given on the generalized position coordinates�
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to integrate ����� but because the system ����� or ����� itself is mildly unstable� All of
the stabilization methods reviewed in xx� and 	 below reduce the index of the original
system to at most � in a stable way 
�� �� ��
 yielding systems which can be safely
discretized under certain conditions�

In x� we consider Baumgarte�s technique 
	
� and show why it may run into trouble
in di�cult situations� and why a further heuristic search for good parameter values
with this method is to be discouraged� In x	 we review a number of good stabilization
techniques� brie�y commenting on their merits and disadvantages� In x� we view the
position and velocity constraints ����� and ���	� as de�ning an invariant manifold for
the solution of the augmented ODE ����� and seek to stabilize the manifold� This
leads in x� to practical discretization schemes which in turn relate to� and shed a
new light on� some of the methods of x	� These schemes are particularly useful for
nonsti� problems �including highly oscillatory ones�� where explicit ODE integration
schemes may be employed� A particularly attractive method of this type is proposed
and implemented 
�
� Examples utilizing a double pendulum with a constrained path
�or a two�link planar robotic arm� and a squeezing mechanism are given in x��

� Baumgarte�s technique

Using Baumgarte�s technique 
	
� we consider the index�� DAE ����� or the corre�
sponding ODE ����� obtained by eliminating the Lagrange multipliers� but now � is
de�ned by

� � �vTgqq�q�v� �� �g�q�v�� ��g�q� �����

where the parameters �j are chosen so that the roots of the polynomial

��� � � � � � ��� � ��

both have negative real parts� For instance� one may choose

��� � � �� � ��� �����

for some � � �� The e�ect of this is to replace eq� ����� by

� � �g � �� �g � ��g ���	�

If we view g as a vector of dependent variables then we have replaced a mildly
unstable ODE which allows perturbations to grow linearly in time by an asymptoti�
cally stable ODE� where perturbations decay with time� To make these observations
more precise� we would linearize the position constraints and split a given unknown
vector function into its component in the range space of G plus its component in
the orthogonal subspace �i�e� a direct sum�� see x	 of 
�
 for the details� Another
way of viewing the Baumgarte technique is by regarding the invariant manifold that
the unsatis�ed constraints ����� and ���	� de�ne with respect to the ODE ������ In

�



case of the unstabilized index reduction ������ this manifold is mildly unstable� while
Baumgarte�s technique makes it an attracting manifold�

In terms of a numerical discretization by 	nite di
erences with a 	xed step size�
truncation errors along the manifold in the unstabilized case may accumulate quadrat�
ically in time� because the error committed at each step grows linearly �
�� whereas
in the stabilized case these errors do not accumulate� Of course� the errors in the
orthogonal direction to the manifold may well accumulate even in the stabilized case�

The apparent conceptual simplicity of the Baumgarte stabilization technique and
the fact that it essentially replaces the index�� DAE ����� by an ODE formulation
must be considered a major reason for its popularity in engineering applications� But
the practical choice of parameters �e�g� � in ������ to make it robust is widely regarded
as unknown� despite many attempts �see� e�g�� ����� We now give three indications
to explain why this parameter choice is indeed inherently di�cult and in a sense
impossible�

First� note that the form ����� or ����� with the stabilization ����� suggests that
the parameter � should be independent of the discretization method and of the dis�
cretization step size �say h�� But such a conclusion would be wrong in practice� In
fact� our results indicate that the optimal � does indeed depend on both the dis�
cretization step size h and the discretization method� This can be easily seen using
the following simple example�

Example �

Let us simplify the multibody equations ����� by assuming a constant mass matrix
M and a constant constraint Jacobian G� with g � Gq� Then the position and
velocity level constraints are �q � �v � �� where �q � Gq and �v � Gv� Further� apply
a forward Euler discretization with a constant step h� Baumgarte�s technique then
gives

qn�� � qn � hvn
vn�� � vn � hM��f�qn�vn��

hM��GT �GM��GT ����GM��f�qn�vn� � ��Gqn � ��Gvn�
�����

where qn denotes the approximation of q�tn�� tn�� � tn � h� etc�
To observe the drift we multiply both equations of ����� by G and write them in

terms of �q and �v�

�
�qn��
�vn��

�
� B

�
�qn
�vn

�
� B �

�
I hI

���hI �� � ��h�I

�

The question then becomes how to choose the Baumgarte parameters �� and �� to
minimize the spectral radius of the ampli	cation matrix B �note that kBk

�
� �

regardless�� Calculating the eigenvalues of B we 	nd that they can be optimally

set to � if we choose �� � �

h
� �� �

�
�

�

�
� �

h�
� i�e� � � �

h
in ������ This choice�

�



10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

10-1 100 101 102 103

Figure ���� Error behaviour as a function of �� The solid line is good� the dashed line
is bad�

which certainly does depend on h� gives B �
�

I hI

�h��I �I

�
� B� � �� The fact that

kBk� � h�� now gives cause for concern� although of course there are other matrix
norms in which kBk � � 	since the spectral radius is �
� Thus we do not expect the
choice � � �

h
to be necessarily optimal in practical� nonlinear situations either� 	For

such calculations it is really important to make both kBk not large and kB�k small�
and these are seen to be con�icting desires for the Baumgarte technique�


The method that we propose later on yields� by contrast� B � �� �

Another di�culty with Baumgarte
s technique is explained as follows� Since from
	���
 the larger the parameter � the more attracting the invariant manifold becomes�
one would have hoped that �it is safe to take � as large as we wish�� which would
have made the choice of � simpler� But when � � � such that �h � �� the
discretized problem is close to a direct discretization of the original index�� DAE
	���
� and therefore numerical stability di�culties arise� Thus� referring to Fig� ���
which depicts solution errors as a function of �� while one would hope for an error
curve like the solid line� which never increases� one may get instead a curve like the
dashed line�

Finally� an additional di�culty arises when kGM��GTk � kGkkM��GTk� which
may occur in a heterogeneous mechanical system� In such a case an unreasonably

�



small step size may be needed in order to recover the asymptotic stability of the
stabilized manifold� For examples and discussion see x� of ���� Example � of ��� yields
the dashed curve of Fig� ���� and a variant using GGT instead of GM��GT in x�
below yields the solid curve of Fig� ��� and resolves the di	culty in that example�

� Other good techniques

A variety of other solution techniques� consisting at least in part of reformulating
the given constrained formulation 
����� have been proposed in the literature� They
can be divided into state�space formulations and projection methods� All of these
methods require the solution of a set of nonlinear equations at each step� Below
we give a short characterization of these two types of methods� We start with the
state�space formulation�

��� State�space formulation

One class of methods reformulates the problem locally into state�space form ��
� ���
���� The DAE 
���� is considered as an ODE on the manifold de�ned by the position
and velocity constraints 
����� 
����� and a local parameterization is carried out to
explicitly yield this reduction� Suppose that there are n generalized coordinates in q
and that there are m constraints in 
����� At each point t consider an 
n �m� � n

matrix R such that
�
R

G

�
is nonsingular� A simple practical choice for R is to be

piecewise constant 
at least over one step of integration�� Then an ODE can be
locally derived for the state�space variable

u � Rq 
����

insisting that the constraints be satis�ed� The matrix function R must be chosen� for
stability reasons� such that

�����
�
R

G

�
��
����� � K� kRk � K 
����

for a constant K of moderate size 
cf� ����� In a coordinate partitioning method ��
�
R is a matrix whose rows are unit vectors� thus choosing certain components of q to
form u� Another idea is to make RGT � 
 ���� at the beginning of each integration
step� In any case� when 
���� is deemed violated� a new constant matrix R is chosen
based on a new reference point� giving a di�erent state�space ODE for a new u of

����� The segments are connected in such switching points through continuity of
q and v� The advantages of such schemes are their reduced size and their stability

provided 
���� holds� and no�drift� A robust detection scheme for the necessity to
change R is the more di	cult aspect of these schemes� however�
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��� Projection methods

For the rest of this section� consider the reduced DAE ����� or the ODE ������ and
the invariant manifold de	ned by the position and velocity constraints ���
�� ������
One can view the system ������ ���
�� ����� as an overdetermined DAE ��� ��
� Given
appropriate initial conditions� such a system has a unique solution� however� upon
numerical discretization there is no exact solution to the overdetermined system� Var�
ious projection schemes were proposed in order to solve it� in that their discretization
is no longer overdetermined�

There are two basic ways to project the solution onto the constraint manifold �or
part of it�� One is to rede	ne the ODE ����� by adding new Lagrange multipliers
���� �� ��� ��
� This is the method of projected invariants� For example� if we only
project onto the original position constraints ���
� we get �with � the new Lagrange
multipliers�

�q � v�G�q�T�
M�q� �v � �f�q�v�

� � g�q�
�����

This is a stable index�
 DAE which can be discretized either by a BDF method or
by a sti�y stable implicit Runge�Kutta method� Thus� a stable index reduction has
been achieved� A projection onto the velocity constraints ����� can be added as well�
and this may in some cases allow a larger step size in the ensuing discretization at
the expense of a larger system to solve at each step�

The other approach is to proceed to discretize numerically the ODE ������ but at
the end of each discretization step to project the obtained approximate solution onto
the selected constraints manifold� This is referred to as the method of coordinate
projection �see� e�g�� ���� ��� ��
�� In both approaches it is possible to choose to
project onto the position constraints manifold ���
�� or onto the velocity constraints
manifold ������ or onto both �which may be more expensive�� Both approaches lead
e�ectively to stable index reduction and thus to the possibility of a stable solution
of the original problem� Finally� when the mass matrix M involves di�erent scales�
it can be important in both approaches to project using GT � not M��GT � in order
to allow a reasonably large discretization time step h ��
� Note� though� that there
is potentially an additional expense involved per step because a decomposition of
GM��GT but not of GGT is already used anyway to obtain ������ However� this
expense does not have to be signi	cant� see ���� �
�

� Stabilization of invariants

In this and the following section we derive a stabilized ODE formulation that im�
proves the stabilizing properties of Baumgarte�s method and makes the choice of the
parameters straightforward� Our aim is to retain the computational simplicity of
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Baumgarte�s approach� In particular� we later explore the use of explicit ODE inte�
gration schemes� This means that we do not explore sti� systems and do not insist
that the solution precisely lie in the constraint manifold�

Let us write the ODE ���	
 as

z� � �f�z
 �
��


for z � �q�v
� The position and velocity constraints together form an invariant set
M of this ODE� given by

� � h�z
 �
�

g�q

G�q
v

�
�
��


assuming� to recall� that

H�z
 � hz�z
 �
�

G �
vTgqq G

�

has a full row rank� �If we choose to concentrate only on the velocity constraints ����

then �
��
 is identi�ed with ����
 for v alone� and H � G�


Consider the family of stabilization methods

z� � �f�z
� �F �z
h�z
 �
��


where � � � is a parameter and

F � D�HD
�� �
�



with D�z
 smooth such that HD is nonsingular �indeed� kHDkk�HD
��k should be
nicely bounded
 for each z� For instance� we can choose D � HT � or the cheaper
variant

D �
�
GT �
� GT

�
�
��


yielding

F � GT �GGT 
��
�

I �
�vTgqqG

T �GGT 
�� I

�
�
�	


which has the advantage that only GGT needs to be decomposed �or �inverted�
� See
��� for additional possibilities�

This ODE� its invariant and its stabilization given by �
��
��
�

 have a general
form� It does not include the Baumgarte technique for an index�� DAE ����
�����
�
but it does include a Baumgarte technique for an index�� DAE �e�g� for a multibody
system with nonholonomic constraints g�v
 � �
� where ����
 is replaced by � �
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�g� �g� In this case we can identify H with G and D with M��GT � see ��� and recall
x��

It was shown in ��� that the manifold M of 	
��� is an asymptotically stable
invariant manifold of the ODE 	
��� for all � � 
� and that the �ow of 	
��� on M
reduces to the �ow of 	
��� restricted toM� Moreover� rewriting the stabilized system
	
��� as

z� � �f	z��D	z�� 	
���

� � h	z��
�

�
	HD�	z��

we see that as we let � �� the formulation reduces to the index�� DAE

z� � �f	z��D	z�� 	
���

� � h	z�

obtaining the projected invariant method described in the previous section� Thus�
unlike for Baumgarte�s technique� the limit � � � is a �safe� limit� It therefore
makes sense to discretize the stable ODE 	
���� which we now proceed to consider�

� Discretization of the stabilized ODE formula�

tion

The stabilized ODE 	
��� can be safely integrated by a general purpose package for
initial value ODEs� However� there remains the question of determining the parameter
�� If the package integrates sti� ODE problems e�ectively then � can be taken very
large� But if a nonsti� ODE solver is desired then �h should be in the absolute
stability region of the method used when the stepsize is h� Moreover� the two terms
on the right hand side of 	
��� di�er substantially from each other� both in purpose
	��Fh is just a stabilization term� and in size� Hence it makes sense to apply di�erent
discretization schemes to them�

Let us consider the discretization of the ODE 	
��� 	i�e� the ODE 	����� obtained
by directly di�erentiating the constraints twice from the original constrained multi�
body system 	������ by a textbook one�step scheme� e�g� Runge�Kutta of order p � ��
This results in the time�h�map

zn�� � �fh	zn� � 	����

which advances the solution from the approximate state zn at t � tn to an approx�
imate state zn�� at tn�� � tn � h� For the stabilization term� it su�ces to apply a
�rst order method 	this term vanishes at the exact solution�� Using backward Euler�
for example� we get

zn�� � �
f
h	zn�� �F 	zn���h	zn��� 	����

��



with � � h�� It was shown in ��� �Theorem ��	
 that the obtained scheme does
retain the global error O�hp
 in zn��� and that the constraints ���

 are satis�ed to
O�hp����
� This scheme possesses an invariant manifoldMh which is asymptotically
stable� This is a solid� stable scheme �for an appropriate choice of D
� but it does not
buy us much new� it is implicit� the best choice of � is ���� and in this limit we
obtain the coordinate projection method

zn�� � �fh�zn
�D�zn��
� ����


� � h�zn��


�compare this to ����

�
An explicit alternative to the scheme ���

 is therefore derived next by evaluating

the stabilizer Fh at the argument obtained by applying the higher order discretization
scheme ���	
� This yields the method

�zn�� � �fh�zn
 ����a


zn�� � �zn�� � �F ��zn��
h��zn��
 ����b


The obtained scheme can be also viewed as a modi�cation of a forward Euler dis�
cretization of the stabilization term� It was shown in ��� �Theorem ��

 that the
obtained scheme ����
 retains the global error O�hp
 in zn��� and that the constraints
���

 are satis�ed to O�hp��
� This scheme possesses an invariant manifoldMh which
is asymptotically stable� Moreover� any choice of � in the range � � � � 
 is stable�
and the choice � � 	� i�e� � � 	�h �which certainly depends on the discretization
step size h
� is close to optimal�

The scheme ����
 appears to give a good compromise between the requirements of
e�ciency and stability� It can be considered as applying one Newton iteration� con�
strained to be in the range of D� for the solution of the nonlinear system appearing
in the coordinate projection method ����
 at each time step� While such an approxi�
mation to ����
 has been proposed before and observed to work well in practice �see�
e�g� �	�� 	��
� here this approximation is actually justi�ed� using a di�erent point
of view� The scheme ����
 is identical to the coordinate projection method if the
constraints h�z
 are linear �even if they depend explicitly on time
� Note that the
velocity constraints ����
 are indeed linear in the generalized velocities v �assuming
holonomic constraints �	�

 to begin with
�

Setting � � 	 we write this method for the mechanical system model� At a time
step n� apply the following two�stage discretization step�

	� Starting with �qn�vn
 at t � tn� use a favourite ODE integration scheme �fh
�e�g� Runge�Kutta or multistep
 to advance the system

�q � v

M�q
 �v � f�q�v
�GT �p
�

� � G�q
 �v � vTgqq�q
v

	




by one step� Denote the resulting values at tn�� � tn � h by ��qn��� �vn����

�� Stabilize	
�
qn��
vn��

�
�
�
�qn��
�vn��

�
� F ��qn��� �vn���h��qn��� �vn���

where h is given by �
��� and �
���� and F is given by �
�
��

For instance� F may be given by D � H or by �
����
Unfortunately� both of these choices of F contain a term involving gqq which we

may wish to avoid in order to economize the computation� We therefore consider also
the choices

F � M��GT �GM��GT ���
�
I �
� I

�
�����

or

F � GT �GGT ���
�
I �
� I

�
�����

which are su�cient in many applications �when vTgqq does not signi�cantly dominate
G��

A choice which we �nally recommend ��� is to replace the stabilization step above
by the double step

�
�qn��
�vn��

�
�

�
�qn��
�vn��

�
� F ��qn��� �vn���h��qn��� �vn���

�
qn��
vn��

�
�

�
�qn��
�vn��

�
� F ��qn��� �vn���h��qn��� �vn���

with F given by ����� or ������ This gives a drift error of O�h�p� rather than O�hp���
�see ���� at a negligible additional cost� since F is evaluated at most once per time
step� In particular� using ����� the cost of the entire stabilization step can be easily
made to be well below the cost of one stage of a Runge�Kutta step�

� Examples and code

Example �

We have performed a number of calculations for the problem of a two�link robotic
arm� This is a double planar pendulum with a prescribed path at its �free� end
�see� e�g�� ������ Thus� one end of a rigid rod is �xed at the origin� and the other is
connected to another rigid rod with rotations allowed in the x � y plane� Let �� be
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Figure ���� Two�link planar robotic system

the angle that the �rst rod makes with the horizontal axis� and let �� be the angle
that the second rod makes with respect to the �rst rod 	see Fig� ���
� The masses of
the rods are denoted by mi and their lengths are denoted by li� The coordinates of
the link between the rods are given by

x� � l�c� y� � l�s�

and those of the �free
 end are

x� � x� � l�c�� y� � y� � l�s��

where ci � cos �i� si � sin �i� c�� � cos	�� � ��
� s�� � sin	�� � ��
�
Referring to the notation of 	���
� we let q � 	��� ��
T and obtain

M �
�
m�l

�

�
�� �m�	l�� � l�

�
�� � l�l�c�
 m�	l���� � l�l�c���


m�	l���� � l�l�c���
 m�l
�

�
��

�

f �
�
�m�gl�c����m�g	l�c� � l�c����


�m�gl�c����

�
�
�
m�l�l�s���	� ��� ��� � ���

�



�m�l�l�s� ������

�

In the following simulation we use the data

m� � m� � ��kg� l� � l� � �m� g � ����m�s�

��	�
 � ��o� ��	�
 � ����
o� ���	�
 � ���	�
 � �

��



Note that in this example �and the next� M��GT does not form a �bad angle� with
G� Examples where this is an issue have been examined in ��	 
��� Here we consider
other issues�

We examine two choices for a constraint g�q� t� on the position of �x�� y���

Case I Consider the case where the coordinates �x�� y�� are constrained to lie on a
parabola

y� 
 x�
�
� �

where � is chosen such that the above initial conditions are consistent� Simulations
for time up to tf 
 ��s have been carried out as follows�


� using no stabilization �denoted Baum��� ���	

�� using Baumgarte�s method with parameters �� and �� �denoted Baum���� ����	

�� using the stabilization ����� with projection on both velocity and position con�
straint levels utilizing D 
 H in ����� �denoted S�full�	

�� using ����� with projection on both velocity and position constraint levels uti�
lizing ����� �denoted S�both�	

�� using the double stabilization step with projection on both velocity and position
constraint levels utilizing ����� �denoted S�both��	

�� using ����� with projection only on velocity level constraints utilizing F 

GT �GGT ��� �denoted S�vel�	 and

�� using ����� with projection only on position level constraints utilizing F 

GT �GGT ��� �denoted S�pos��

Note that the last among the projections above does not give an invariant manifold
in the sense of ���
�	 �����	 although it still yields a method which may be interpreted
as a good discretization of a stable index�reduced problem�

The path in cartesian coordinates traversed by �x�� y��	 is depicted in Fig� ����
In Table ��
 we record the measured drifts based on runs using an explicit Runge�

Kutta scheme of order � with a constant step size h� In case of a solution blowup we
write ��

We observe that the stabilizations on both velocity and position levels and the sta�
bilization on velocity level alone yield good results	 while stabilization on the position
level alone in the sense of ����� �i�e� one iteration step� does not yield good results
for this example	 in agreement with ���� If we add a few more restricted Newton iter�
ations per step	 i�e� we perform a �true� coordinate projection on the position level
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Figure ���� Constraint path for �x�� y��� Case I

alone� then the drift at the position level essentially vanishes� but the other errors in
solution and velocity drift are not improved by much� We emphasize� though� that
in various other examples which were tried the projection S	pos proved useful�

Of all these variants the stabilization S	both� may be the preferred one� because
it cheaply yields a smaller residual on the position level� It costs almost the same as
the only	velocity stabilization S	vel� and the residuals are much smaller�

The Baumgarte stabilization performs reasonably well here for h 
 ����� Even
without stabilization we obtain decent drift values in this case�

Case IIAmore di
cult case is obtained when the coordinates �x�� y�� are constrained
to obey

y� 
 sin���t�

The problem gets tougher the larger the parameter � becomes� We choose � 
 �

�

below� The obtained constrained path for �x�� y�� is depicted in Fig� ���� In this case
the constraint forces become large at a few distinct times�

In Table ��� we record the measured drifts based on runs up to tf 
 ��s using an
explicit Runge	Kutta scheme of order � with a constant step size h�

Note that the Baumgarte stabilization is not as e�ective as the S	 stabilizations�
especially for the case h 
 ���� Other parameters ���� ��� tried �including � 
 ��h
in ������ do not yield signi�cantly better results� �

��



h stabilization drift�velocity drift�position
��� Baum��� �� ���e�	 ��
e�	
��� Baum��	� 
�� �
	e�	 ���e�	
��� S�full ��	e�
 ���e�

��� S�both ���e�� ��
e�

��� S�both� ��
e�� ���e���
��� S�vel ���e��� ���e��
��� S�pos � �

���� Baum��� �� ��	e�� ��
e��
���� Baum��	� 
�� �
�e�� ���e��
���� S�full ���e��� ���e���
���� S�both ���e�� ��
e���
���� S�both� ���e��� ���e���
���� S�vel ���e��� ���e��
���� S�pos ���e�	 �
�e���

Table ���� maximum drifts for Case I

Based on these experiments and others we have determined that the stabilization
technique S�both�� i�e�� using the double stabilization step with F given by ����� or
������ is a good compromise between stability and computational expense per step� An
experimental code with error control based on the code DOPRI� of �	��� which in turn
is based on the Dormand�Prince Runge�Kutta formulae �		�� has been implemented
� see ����

Example � �cont��
Using this code we can easily compare the performances of our stabilization tech�

nique and Baumgarte�s� because the cost of a discretization step is similar and the
same ODE integrator is used �the stabilization cost being negligible�� In Table ���
we use relative local error tolerance TOL � ���� and take the absolute tolerance
to be ����TOL� Also� NSTEP denotes the number of time steps �including rejected
ones� that the code takes� We integrate case II above for di�erent values of � up to
tf � ���s�

The advantage of our stabilization method is clear� �

Example �
A seven�body squeezing mechanism is described in �	�� and tested in �	�� as well�

We have solved this popular example using the same tolerances as in the previous
example� The interval of integration is from t � � to tf � ��s� which makes the
problem more challenging than with the value of tf � ����s taken in the above
references� A plot of the solution components �mod 	�� is given in Fig� ����
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Figure ���� Constraint path for �x�� y��� Case II
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h stabilization drift�velocity drift�position
��� Baum��� �� � �

��� Baum���� 	�� �
� ��
e��
��� S�full �	�e�
 ���e��
��� S�both ���e�� ��
e�

��� S�both� ���e�� ��
e��
��� S�vel ���e��� �	
e��
��� S�pos �	� ��
e��
���� Baum��� �� ���e�� �
�e��
���� Baum���� 	�� ���e�� ��
e��
���� S�full ���e��� �
�e���
���� S�both ���e�� ���e���
���� S�both� ���e�� �	
e��

���� S�vel ���e��� �

e��
���� S�pos ���e�� �

e���

Table ���� maximum drifts for Case II

� stabilization NSTEP drift�position drift�velocity
��
 Baum��� �� ��
�� ��� ���e��

Baum���� 	�� ���	 �
�e�
 ���e��
S�both� �	�	 ���e��� ��	e��

��� Baum��� �� �
��
 ���
 ���e��
Baum���� 	�� ��
�� ���e�� �
�e��

S�both� 
�
� ���e�� �
�e��

Table ���� maximum drifts for Case II using automatic code

In Table ��� we list the number of steps taken by the various methods tested
as well as the maximum drifts in position and velocity level constraints� While the
various variants cost about the same to execute� the maximumdrifts are much smaller
using our method� Here the Baumgarte parameters have to be taken larger than in
the previous example in order to observe a signi�cant e�ect� Moreover� comparing
solution values at t � tf to those obtained with a smaller tolerance it turns out that
the �rst two entries in Table ��� correspond to solutions with an error in their leading
digit� despite the much smaller drifts recorded� �

While a full�blown comparison to other general purpose codes like MEXX ����
�see also xVI�� in ����� is well beyond the scope of this paper� we have made some
preliminary such comparisons for both Examples � and �� in which the code described
here fares well� More details are given in ����

��



stabilization NSTEP drift�position drift�velocity
Baum��� �� ���� 	
�e�� 	��e��
Baum���� ��� ��
� 	
�e�� 	

e��

Baum����� ������ ���� 	
�e�� 	
�e�

S�both� ���� 	�
e��� 	��e��

Table �	
� maximum drifts for seven�body example using automatic code
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