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Chapter 1

Introduction

1.1 General aspects of cell adhesion

The human body consists of around 10'3 cells, which can be classified into
more than 200 different cell types [2]. In order to function in the way we are
used to, the human body has to fulfill two seemingly contradicting princi-
ples. On the one hand, the cells in our body have to adhere to each other,
otherwise it would simply fall apart. On the other hand, they must be able
to reorganize quickly, for example when the body has to react to infection
or injury. Nature has evolved different strategies to cope with these conflict-
ing requirements. On the molecular level, biological adhesion is based on
relatively weak (non-covalent) interactions with short lifetimes of the order
of seconds. In order to achieve long-lived assemblies, the cells in our body
adhere through clusters of adhesions bonds, which prolongue lifetime both
by large bond numbers and by facilitating rebinding of single bonds. Be-
cause they are highly dynamic, biological adhesion clusters can react quickly
to new stimuli by association and dissociation. On the level of tissues, cells
build up an additional structure, the extracellular matrix (ECM), a network
of protein filaments (e.g. collagen in the connective tissue) which provides
structural integrity to the tissue as a whole. The ECM is secreted by cells
during developement or after injury and is continuously remodeled by the
cells. It provides structural coupling between the cells without preventing
them from dynamic rearrangements.

Cells in a multicellular organism communicated with each other through
many different channels. The main mean of communication is release and
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capture of biochemical molecules [101]. In this way, cells can exchange very
specific information. In solution, the biochemical information is supple-
mented by one additional degree of information, namely ligand concentration
(including diffusion gradients). In cell adhesion, biochemical ligands are at-
tached to surfaces, like the plasma membrane of other cells or the proteins of
the ECM. Therefore now the biochemical information can be supplemented
by several additional degrees of information, including spatial distributions of
ligand which are not determined by diffusion, and the mechanical properties
of the structure the cell attaches to. However, experimentally it is very diffi-
cult to quantify these additional factors. During recent years, rapid advances
in materials science have led to strongly improved control of extracellular lig-
and distribution and of the properties of the micromechanical environment.
As a result, the investigation of cellular response to the biochemical and phys-
ical properties of adhesive surfaces has become a very active area of research.
Apart from understanding the basic principles of cellular decision making in
a physiological environment, this field is also driven by the prospect of de-
signing artificial environments for cells, which on the one hand can function
as biomimetic environment, but on the other hand can also be more versatile
than biological environments, which result from specific developmental pro-
cesses. In general, the combination of materials science and active biological
processes promises exciting new developments in the future [113]. In partic-
ular, judging from the developments of the last years, one might expect that
cell adhesion and materials science (including soft lithography, microfluidics,
and nanotechnology) are going to merge into a new field in the future, which
also might lead to completely new biomedical applications, including new
kinds of biochips [129] and artificial tissues [37].

Traditionally, cells have been studied on flat substrates, like culture dishes
made from glass or plastic, which can be easily used in standard setups for
optical microscopy. In the early 1980s, Harris and coworkers introduced the
use of elastic substrates into cell biology [76, 75]. By crosslinking the surface
of silicon oil by exposure to heat, they created thin polymer films which due
to their small thickness tend to buckle under cell traction. The resulting
wrinkles can be easily observed in optical microscopy and have been used
as qualitative assay for mechanical activity of cells since then. However, a
quantitative analysis of cell traction by elastic substrates has been achieved
only much later, mainly through the use of non-wrinkling elastic substrates
made from polyacrylamide (PAA). By inverting the elastic equations, it then
became feasible to calculate the details of cellular traction patterns from the



CHAPTER 1. INTRODUCTION 3

Figure 1.1: The mechanical activity of cells can be monitored on elastic substrates.
Recent advances include the fabrication of micropatterned elastic substrates made
from the elastomer polydimethylsiloxane (PDMS). (a) A shallow pattern of dots
effectively preserves the flatness of the substrate, but can be used for easy visu-
alization of the deformations due to cell traction (small green arrows in inset).
Combined with fluorescence markers for the sites of focal adhesion (white) and
linear elasticity theory, this allows to calculate the internal forces exerted at focal
adhesions (large red arrows) [6]. (b) When plated on a bed of flexible microneedles
fabricated with PDMS, cellular traction generated in the actin cytoskeleton (red)
leads to displacement of the needle tips (blue). For small bending, the needles
act as linear springs, thus here force is simply proportional to displacement (cell
nucleus in green) [169].

displacement data (traction force spectroscopy) [40, 42]. Recent advances
in this field include the use of micropatterned elastic substrates made from
polydimethylsiloxane (PDMS) [6, 169] and the combination of traction force
microscopy with fluorescent constructs for cell-matrix contacts [6, 12]. A
growing body of evidence now suggests that the mechanical properties of
the extracellular environment (in particular its elasticity) play a much more
important role for cellular decision making than formerly appreciated. In
particular, it has been shown that cells more strongly upregulate cytoskeleton
and cell-matrix adhesion on stiffer substrates [135, 46], that cells locomote
in favor of stiffer or strained substrates [116, 179], and that extracellular
mechanical properties and cellular decision making are connected by the
internal forces developing at cell-matrix contacts due to cellular actomyosin
contractility [6].
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Figure 1.2: Adhesive patterns with different geometries can be created by mi-
crocontact printing of suitable proteins on flat substrates. When plated on these
adhesive islands, cells adopt the given shapes, e.g. (a) triangle, (b) square, or (c)
pentagon [19].

A development closely related with these improvements in the elastic
substrate techniques is the control of cell adhesion by microcontact printing.
Recent advances in microfabrication technology, originally developed for the
semiconductor industry, make it possible to create adhesive islands of differ-
ent shapes on a passivated surface. It has found by the groups of Ingber and
Whitesides that cells plated on these islands adopt the given shape (resulting
in e.g. square-shaped cells) and that this shape determines if cells grow and
divide or if they switch on the death program [164, 29]. The same collab-
oration also has reported that cells on adhesive island extend lamellipodia
and filopodia preferentially from the corner regions [134, 19]. Recent results
from the Bastmeyer group suggest that below a ligand coverage of around
15 percent, the geometrical stimulus might become less important than the
chemical one [104].

Very recently, the two fields of cells on gels and cells on islands have been
combined for the first time [176]. Usually, the adhesive islands are created
with the ECM-protein fibronectin (FN) on glass and passivation is achieved
by polyethylene glycol (PEG). In the new technique, elastic substrates were
made from PAA and covered with a thin membrane of PDMS, which featured
holes of different shapes created by microfabrication. Collagen was adsorbed
to the elastic substrate through the holes, the PDMS membrane was removed
and the exposed area passivated with bovine serum albumin (BSA). Traction
force microscopy then revealed that forces are highest at the corners, thus
again mechanical factors seem to determine cellular behaviour.

It has long been known, especially in the medical and bioengineering com-
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munities, that certain cell functions are strongly determined by mechanical
stimuli. For example, endothelial cells in blood capillaries [39], osteocytes
in bone [43] and aveolar cells of type II in lung [178] only function properly
when subject to a certain level of strain indicating proper body function-
ing (namely the one resulting from blood pulsation, body movements and
breathing, respectively). However, only recently has it become possible to
study the mechanisms of the underlying mechanotransduction processes in
quantitative detail and on the level of single cells. During the last decade,
there has been an increased effort to study the effect of externally applied
force on cells. Several different experimental techniques have been applied
for this purpose, including magnetic twisting cytometry [175], laser optical
tweezers [35] and micropipettes [144]. These studies showed that there is
a strong correlation between aggregation of cell-matrix contacts, build-up
of force and triggering of certain signaling cascades determining such phys-
iologically important processes as cell division, apoptosis (programmed cell
death), and cell migration [56, 34, 60]. In particular, there is a close relation
between the proper functioning of cell-matrix contacts and certain diseases
like cancer.

In order to elucidate the molecular basis of these phenomena, another
recent development in biophysics might be highly relevant, namely single
molecule dynamic force spectroscopy (DFS). Pioneered by early AFM-experi-
ments by the Gaub group [54] and later put onto a firm theoretical basis
by Evans and Ritchie [51], which then was confirmed impressively by ex-
periments both in the Gaub [143] and Evans groups [124], it was shown
that adhesion bonds feature a much more complicated behaviour under force
than suggested by the traditional affinity experiments in solution [101]. In
detail, it has been shown that binding strength (the force needed to rup-
ture a bond) is a dynamical quantity which depends crucially on the loading
rate with which the bond is probed [51, 88, 160]. A large number of DFS-
experiments with different experimental techniques and a growing body of
theoretical studies have now demonstrated that most biomolecular adhesion
bonds feature a complicated binding energy landscape [49], whose biologi-
cal significance has to be identified in the future. In this context, it is very
likely that some of these bonds serve as mediators between the mechanical
properties of the extracellular environment and intracellular decision making.
For example, it has been argued that force generation by tissue cells might
mechanically destroy the RGD-motive common to many ECM-proteins like
fibronectin, thus triggering other biochemical and structural changes impor-
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tant for mechanosensation of cells [96]. Recently it has been reported that
the fibronectin domain FN-III; exhibits stable intermediate states during
forced unfolding, which might expose cryptic binding sites inducing fibrillo-
genesis [57]. Since the FN-III; repeat is present in many proteins involved
in signalling (e.g. tyrosine kinases and phosphatases), it seems to be a good
candidate for mechanosensory function through single molecule unfolding.
Although this appears to be a rather realistic scenario, it will be left to fu-
ture studies to prove the physiological relevance of force-induced unbinding
events.

During the last decades, much has been learned about cell function from
detailed studies of vesicles [109, 115, 154]. Vesicles are closed shells made
of lipid bilayers, which are one of the fundamental building blocks of cells.
In particular, the plasma membrane defines cell shape and modulates the
communication between cell and environment. On the micrometer scale, the
behaviour of vesicles can be theoretically explained rather well using the
concept of membrane curvature. Subjects especially interesting in regard
to cellular systems include the shape of free vesicles [15, 125], domain for-
mation and budding [110, 92|, interaction with colloidal particles [114, 94],
non-specific adhesion to flat substrates [158], free vesicles in shear flow [97],
adhering vesicles in shear flow [155, 26, 167, 117], and forced unbinding of
adhering vesicles [166]. In recent years, there has been an large effort to re-
constitute increasingly more cellular features in vesicular systems, including
incorporation of receptors, specific binding to flat substrates, anchorage of
polymers, and coupling of actin gels to the lipid bilayer. Actin can be posi-
tioned either outside [78] or inside the vesicle [108] and opens the intriguing
prospect of adding molecular motors from the myosin family. Molecular mo-
tors are responsible for active transport in cells and their stochastic dynamics
has been extensively modeled during recent years [91, 112, 83]. Actomyosin
contractility is the basis of mechanical activity of cells and the interaction of
myosin and actin is a very active area of research [85]. However, until now
it has not been possible to reconstitute actomyosin contractility in vesicular
systems. This is different for the formation of adhesion plaques, which have
been reconstituted with lipid vesicles carrying sticker and repeller molecules
and adhering to a ligand-coated substrate [21]. During the last decade, sev-
eral theoretical studies have been devoted to the possible mechanisms driving
plaque formation, including elastic and entropically induced interactions be-
tween stickers [22, 111, 123, 177, 21].

In this work, we present recent theoretical work on the role of forces
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and elasticity in cell adhesion, using methods from statistical physics and
physics of soft condensed matter. The main tools used are elasticity theory
to characterize the mechanical properties of the extracellular environment
and stochastic equations to model the bond dynamics at cell adhesion con-
tacts. In contrast to existing work on vesicle adhesion, we assume that adhe-
sion plaques have already been assembled and connected to the cytoskeleton.
Since such a system has not yet been reconstituted for vesicles, our exper-
imental reference systems are cellular ones. In particular, we will focus on
two paradigmatic situations in cell adhesion, cell-matrix adhesion of tissue
cells like fibroblasts to a flat substrate, and rolling adhesions of leukocytes.
We start with the case of cell-matrix adhesion and present in chapter 2 a new
technique which we have developed in a collaboration with cell biologists in
order to measure for the first time internal force at single cell-matrix contacts
(6, 151, 150]. Together with another study by the same collaboration on the
effect of external force on cell-matrix contacts [144], this work proved that fo-
cal adhesions act as mechanosensors, converting force into biochemistry and
vice versa. In order to address potential mechanism for the mechanosensor,
in chaper 3 we will study the stochastic dynamics of clusters of molecular
bonds under force [48, 47]. Our results have also been applied in a collabo-
ration with immunologists to interpret recent advances in experiments with
leukocytes under shear flow tethering to adhesive surfaces [44, 149]. In chap-
ter 4, we will address the question how one can predict celluluar behaviour in
a soft environment from our knowlegde on the kind of information gathered
by the mechanosensor at cell-matrix contacts [153, 18, 17]. In the remain-
der of this chapter, we give additional background information and a more
detailed overview for the main body of this work.

1.2 Cell-matrix adhesion

When cell-matrix adhesion is investigated experimentally, traditionally cells
are dissolved in solution (often with the help of trypsin, which removes all
former surface attachements) and studied on a culture dish inserted into some
microscopic setup. The solution usually contains nutrients and buffers. De-
pending on the objective of the experiment, it might also contain additional
factors, e.g. growth factors triggering cell growth and division. A culture
dish is typically made from glass or plastic and provides a flat, rigid sub-
strate for cell adhesion. Cell adhesion onto the substrate usually takes place
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Figure 1.3: Schematic representation of cell adhesion. (a) Specific recognition
provides a gain in adhesion energy driving cell adhesion. As for the adhesion of
other soft objects, the size of the contact region is determined by object’s resis-
tance to elastic deformation, which for cells is provided mainly by the actin cortex
underlying the cell membrane (red line). (b) Mature cell adhesion is determined
by active processes, namely polymerizing actin gels pushing out the cell envelope
(red regions) and formation of focal adhesions close to the cell rim, thus pinning
it to its new location. These processes typically lead to a pancake-like cell shape.

only if the appropriate kind of proteins have been adsorbed onto it. These
proteins have to be ligands to cell adhesion receptors of the cell, and usually
are proteins of the extracellular matrix (ECM), which is secreted by cells in
tissues. In an in vitro experiment, the ECM proteins can either be absorbed
from the medium during incubation or can be coated in a separate step of the
protocol. Very often one also uses synthetic adhesion ligands, like the RGD-
peptide motive common to many ECM proteins. Depending on cell type,
adhering cells might secrete new ligands on the timescale of hours. However,
usually this effect is not desired and the adhesion experiment is stopped at
an earlier time point.

In principle, cell adhesion might also be mediated by non-specific inter-
actions like the van der Waals attraction ubiquitous in soft matter systems.
However, this is prevented by the glycocalix, a polymer brush surrounding
every animal cells [11] (this mechanism is reminiscent of steric stabilization
in solution of colloidal particles). By switching off non-specific adhesion, cells
control which surfaces they adhere to. Therefore the gain in adhesion energy
required to drive cell adhesion is mainly provided by specific adhesion. It is
counteracted by cell elasticity, which is mainly provided by the actin cortex,
a thin layer of actin gel underlying the plasma membrane of all animal cells.
From a physical point of view, the balance of adhesion energy and elastic
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deformation determines the degree to which the cell can adhere over a finite
contact area. This situation is depicted schematically in Fig. 1.3a. It resem-
bles adhesion of other soft objects to flat substrates, e.g. of fluid droplets
governed by the laws of Laplace and Young [86], of elastic spheres as de-
scribed by contact mechanics [90], of vesicles [158], and of hollow capsules
made from thin shells [152]. To model the elastic aspects of cell adhesion, in
principle one should include both the effect of the thin shell elasticity of the
actin cortex [70] and the effect of the lipid bilayer [158], as has recently been
done for red blood cells in solution [107].

In contrast to the adhesion of inert soft objects, however, cell adhesion
is an active process. The cell adhesion receptors driving cell adhesion not
only provide a gain in adhesion energy, they also trigger cellular signaling
cascades which lead to an active increase in contact area. This active element
of cell adhesion is tightly regulated by signaling networks and consumes ATP.
Eventually the cell tends to spread flat on the substrate like a pancake (or
rather like a fried egg, because the nucleus is a rigid object which sticks out).
From a physics point of view, one might think that some kind of viscoelastic
flow leads to the flat morphology characteristic for mature adhesion on flat
substrates. In practice, the cell’s elasticity does increase rather than decrease
during cell adhesion, thus the cell has to spread against its own elasticity.
This is accomplished by rapidly polymerizing actin gels (lamellipodia), which
push the cell envelope forward, and the build-up of strong adhesion contacts
along the cell rim, which keep the cell in its tensed state. For animal cell
types like fibroblasts and in contrast to the situation in physical adhesion,
adhesion now is not homogeneous over some contact region, but localized
to cell-matrix contacts called focal adhesions. They can be detected as dark
areas in interference reflection microscopy [1] and as regions of close approach
and high electron density in transmission electron microscopy [32]. Today it
is common practice to monitor focal adhesions in real time and in live cells by
using fluorescence constructs for one of the more than 50 different proteins
localizing to focal adhesions. Fig. 1.3b shows a schematic presentation of the
active part of cell adhesion, including the regions of polymerizing actin gel
and the focal adhesions.

Although the resulting structure is already under large tension, in many
situations mature adhesion is characterized by an additional active process,
which further increases the mechanical load of the focal adhesions, namely
the build-up of so-called stress fibers. Stress fibers are bundles of actin fila-
ments set under tension by myosin II molecular motors. They end at focal
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Figure 1.4: Mature adhesion to flat substrates is characterized by stress fibers
and focal adhesions. (a) Fluorescence staining of an adhering fibroblast for actin
(green) and the focal adhesion protein vinculin (red). (b) Schematic representa-
tion with one stress fiber and two focal adhesions. Force is generated by myosin II
molecular motors interacting with actin filaments and transmitted to the extracel-
lular environment through the focal adhesions. The traction pattern exerted onto
the substrate is pinch-like. Signaling from focal adhesions activates motor activity
and combines with other signals to determine gene expression and cell fate.

adhesions, which transmit the internally generated force onto the environ-
ment. Stress fibers can be considered to be little muscles, and indeed have
been shown by a-actinin staining to contain a striated substructure. The
force-generating activity of the molecular motors requires ATP and is known
to be activiated by signals from the focal adhesions, in particular by the
small GTPases from the Rho family. Fig. 1.4a shows a fluorescence picture
of an adhering fibroblast with staining for actin (green) and the focal adhe-
sion protein vinculin (red). One clearly sees that stress fibers end in focal
adhesions, which in turn are elongated towards the direction of the stress
fibers. In Fig. 1.4b, we show a schematic representation of the system of fo-
cal adhesions and stress fibers, which is characteristic for mature cell-matrix
adhesion onto flat substrates.

During recent years, the molecular composition of focal adhesions has
been studied in great detail [180, 181]. This has led to the following sce-
nario. First small, dot-like adhesions form close to the lamellipodium, the
so-called focal complexes. Depending on certain stabilization processes, they
might mature into focal adhesions, which can achieve micrometer dimensions.
Focal adhesions are usually connected to stress fibers and elongated in this
direction. Often one observes that the whole focal adhesions translocates
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Figure 1.5: (a) White blood cells (leukocytes) circulate through the body in blood
vessels. Near sites of inflammation they begin to roll on the vessel wall (rolling
adhesion). The main agent of initial capture are L-selectin receptors which are
localized to the tips of microvilli and bind to certain carbohydrate ligands on
the endothelium. Depending on certain signals, the leukocytes might stop and
leave the blood stream into the surrounding tissue and lymph (eztravasation). (b)
Transmission electron micrograph of a leukocyte with clearly exposed microvilli
close to an endothelial sheet.

in time in the direction of the dominant stress fiber. Although this process
is sometimes called sliding, it should not be confused with sliding of solid
objects pulled by force over a substrate. Rather it reflects a growth process,
where new material is added at the leading edge and old material is removed
from the trailing edge. Often one also observes that focal adhesions separate
into two parts, which the more rapidly translocating part moving quickly to-
wards the cell center. This streak-like contacts are called fibrillar adhesions
and tend to have a somehow different molecular composition than classical
focal adhesions. In physiological settings like three-dimensional collagen gels,
the molecular composition is somehow different [36], but in principle one ex-
pects that the same mechanisms are at work here as in the experiments on
flat substrates.

1.3 Rolling adhesion

Traffiking of white blood cells (leukocytes) plays a central role in the body’s
immune response [145]. Inflammation of a tissue due to e.g. the presence of a
pathogen causes nearby blood vessels to dilate. This changes the local hydro-
dynamic flow conditions and leukocytes, which constantly circulate with the
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blood stream, are driven to the wall, where they start interacting adhesively.
Initial contact is mediated by adhesion molecules from the selectin family,
which bind to certain carbohydrates. Adhering leukocytes begin to roll on
the vessel wall in the direction of the blood flow, thereby constantly breaking
old and forming new bonds. The rolling process enables them to survey the
vicinity of the vessel wall for signs of inflammation. Subsequently they either
return to the blood stream, or, on encountering certain signals, activate ad-
hesion molecules from the integrin family, which bind more strongly than the
selectins and eventually lead to firm arrest of the leukocytes. Finally the cell
flattens and leaves the bloodstream towards the surrounding tissue, where
it starts to sense certain chemotaxic gradients which allow it to home in on
the pathogen. The multi-step process involving rolling on the endothelium,
activation by chemokines, arrest, and transendothelial migration is called
the extravasation cascade and is far from understood. Overexpression of se-
lectin is known to lead to inflammatory responses (like in arthritis); therefore
blocking selectins can help to treat chronic inflammatory disorders. Rolling
adhesion is also one of the mechanisms which is used both by cancer and
stem cells to travel the body; a better understanding of this process may
help to prevent metastasis and to improve use of stem cells.

The interplay between hydrodynamics, elasticity and adhesion at play
for rolling adhesion has been addressed both theoretically and in simula-
tions [72, 20, 98, 30, 28]. An adhering cell in shear flow is lifted up by
hydrodynamic flow, as investigated recently for vesicles both theoretically
[155] and experimentally [117]. However, in physiological flow, the leuko-
cytes are driven to the vessel walls by collisions with red blood cells. In
flow chamber experiments monitored by video microscopy, leukocytes move
very close to the chamber bottom where they make random contacts and
then interact adhesively [5, 4]. A key molecule in this process is L-selectin, a
leukocyte-expressed adhesion receptor which is localized to tips of microvilli
and seems to be the main agent for initial cell capture. In contrast to teth-
ering through other receptor systems like P-selectin, E-selectin or integrins,
appreciable tethering through L-selectin and subsequent rolling only occurs
above a threshold in shear [53], even in cell-free systems [3, 67]. Downregu-
lation by low shear is unique for L-selectin tethers and might be necessary
because L-selectin ligands are constitutively expressed on circulating leuko-
cytes, platelets and on subsets of blood vessels. Quantitative analysis with
normal video camera (time resolution 30 ms) of L-selectin tether kinetics in
flow chambers above the shear threshold resulted in first-order dissociation
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kinetics, with an exponential dependance on force and a force-free dissocia-
tion constant of 6.6 Hz [5, 4, 30, 31]. This has been interpreted as signature
of single L-selectin carbohydrate bonds. However, recent experiments using
high speed camera (time resolution 2 ms) and theoretical analysis of the new
data suggest that L-selectin tether stabilization involves multiple bonds and
rebinding [44, 149].

1.4 Overview

The remainder of this work is divided into three chapters. In chapter 2, we
will present a collaboration with cell biologists in which we developed a new
method which allowed to measure single forces at focal adhesions for the first
time [6, 151, 150]. The theoretical part of this project consists of numerically
solving the ill-posed inverse problem of linear elasticity theory. The main re-
sult of this work is that there exists a linear correlation between internal force
and size of focal adhesions. Because size in turn correlates with signaling,
this indicates that focal adhesions act as mechanosensors which convert force
into signaling and vice versa. In another study, the same collaboration was
able to show that focal adhesions also act as mechanosensors in regard to ex-
ternal force [144]. In chapter 2, we will give an introduction into quantitative
analysis of elastic substrates and present the details of our new method.

In chapter 3, we present models for the stochastic dynamics of adhesions
clusters [48, 47]. This work is based on a Master equation for the temporal
development of a cluster of parallel adhesion bonds, with the force-dependent
transition rates following from Kramers theory. Our results can be used for
quantitative evaluation of adhesion experiments and might be used in the fu-
ture to understand more about the detailed mechanism of the mechanosensor
at focal adhesions. Moreover, our results have been used in a collaboration
with immunologists which for the first time showed that the shear threshold
results from tether stabilization due to multiple bonds and fast rebinding
44, 149].

In chapter 4, we investigate how the information gathered at focal adhe-
sions translates into cellular behaviour in soft media [153, 18, 17]. The main
idea here is to model cellular force patterns as anisotropic force contraction
dipoles and to describe effective cell behaviour as extremum principle in lin-
ear elasticity theory. Our predictions are derived from exact solutions of the
elastic equations for different geometries and boundary conditions consid-
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ered for the extracellular environment, and are in excellent agreement with
experiments for fibroblasts both on elastic substrates and in collagen gels.
In the future, our theory might be used for biomedical applications, e.g. for
optimizing protocols for the design of tissue equivalents and implants, or for
the design of elastic features on biochips.



Chapter 2

Forces at focal adhesions
measured with elastic
substrates

2.1 Introduction

The main technique to measure cellular forces is the elastic substrate method
[13, 146], which has been introduced by Harris and coworkers in the early
1980s [76, 75]. In this work, the highly viscous, polymeric fluid polydimethyl-
siloxane (PDMS) was crosslinked at the surface by exposing it to heat. A thin
elastic film over a fluid is obtained which under cell traction yields a wrin-
kled pattern which is characteristic of the pattern of forces exerted. Major
improvements of the wrinkling substrates method include the tuning of the
elastic compliance [24, 23]. However, deformation data can be analyzed only
semi-quantitatively with this technique, since the buckling of thin polymer
films is a non-linear phenomenon which is very difficult to treat in elasticity
theory. Wrinkling can be suppressed by prestressing the film, thus allowing
only for tangential deformation, which can be tracked by fluorescent latex
beads dispersed within the film before crosslinking [103]. Quantitative anal-
ysis of elastic substrate data was pioneered by Dembo and coworkers. Using
linear elasticity theory for thin elastic films and numerical algorithms for
solving inverse problems, the forces exerted by keratocytes on the substrate
could be reconstructed [40, 130].

For strong mammalian cells like fibroblasts, the non-wrinkling PDMS-

15
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films are too weak. By replacing PDMS with polyacrylamide (PAA) gels,
a thick elastic substrate was achieved which is soft enough to deform under
cell traction [135]. Like any isotropic elastic medium, it is characterized
by two elastic constants. In several recent studies, a thick PAA-film with
Young modulus F ~ 6 — 24 kPa and Poisson ratio v ~ 0.5 was used in order
to quantitatively investigate traction of fibroblasts [42, 116, 12]. Since the
marker bead displacements near the substrate surface are much smaller than
the film thickness, they can be evaluated under the assumption that the thick
film behaves like an elastic halfspace, whose elastic Green function is well
known [99]. This allowed to reconstruct a continuous force field emanating
from underneath the cell by using standard techniques for the solution of
ill-posed inverse problems.

Recently, we developed a novel elastic substrate technique to measure
cellular forces at the level of single focal adhesions (FAs) [6, 151, 150]. A
thick polymer film made from PDMS with a Young modulus £ ~ 10 — 20
kPa and Poisson ratio v = 0.5 was micro-patterned by standard lithographic
techniques. Due to the regularity of the surface pattern, its deformation
can be easily extracted from microscope pictures by an automatic procedure.
Cell traction was generated by stationary, yet mechanically active cells (hu-
man foreskin fibroblasts, cardiac fibroblasts or cardiac myocytes) expressing
GFP-vinculin. Vinculin is one of the major proteins of the submembrane
plaque of FAs and can be tagged with green fluorescent protein (GFP) at
its amino terminal. GFP-vinculin localizes at FAs and has good overlap
with the dark areas in interference reflection microscopy [144]. In our setup,
GFP-vinculin marks FAs with very high optical quality. The cells studied in
our experiments show mature adhesion with well-developed FAs and stress
fibers, and with little ruffling activity. We never observed traction near an
area deprived of FAs, which allows us to assume that FAs are the main sites
of application of force by the cells and to develop a numerical procedure
which reconstructs discrete forces at sites of FA. The assumption of localized
force necessitates several changes to the standard procedure. In this chapter,
we address the details of our new computational method and show how the
elastic substrate method is affected by the assumption of localized force. The
concept of a force multipolar expansion is used in order to show under which
experimental conditions one can neglect the details of the force distribution
close to FAs and the finite thickness of the elastic substrate. We use system-
atic simulation of data in order to confirm that the inverse problem of linear
elasticity theory is ill-posed for reasonable levels of noise and to show that
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Figure 2.1: Fabrication of micro-patterned elastic substrates. (a) Peeling off
the elastomer from the photoresist mould on a Si-wafer results in a topographic
modulation of the film surface. (b) The topographic pattern can be easily detected
in a phase-contrast image, but is sufficiently shallow (dot depth 0.3 pm) that
cells do not react to it (space bar 6 um) (¢) When pulled with a micropipette
with force 450 nN, the substrate shows elastic deformation in accordance with its
macroscopically measured Young modulus of 19 kPa.

regularization in general cannot be neglected. Data simulation is also used
in order to estimate both the spatial and force resolution of our method. Fi-
nally we report the main experimental results found with the help of the new
method. Our results show that there is a close relationship between force and
aggregation at focal adhesions, suggesting that they act as mechanosensors
through which the cell can collect information on the mechanical properties
of its environment.

2.2 Experimental method

The fabrication of micro-patterned elastic substrates is shown schematically
in Fig. 2.1. A pattern of photoresist (Microposit S1805, Shipley) was pro-
duced on Si wafers using standard optical lithography. PDMS elastomer (Syl-
gard 184, Dow Corning) was poured onto glass coverslips, partially cured, put
in contact with the photoresist pattern, and cured again. After peeling off,
the PDMS film features a topographic modulation, which can be detected
easily in phase-contrast microscopy. Typically, a 2 pm square lattice of 0.5
pm diameter dots with depth 0.3 pm was created on a 40 pum thick film.
Varying the ratio of silicone elastomer to curing agent from 10:1 to 50:1 re-
sulted in a Young modulus varying from 1000 to 12 kPa (the Poisson ratio was
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always close to 0.5). The elastic substrates was coated with fibronectin and
cells (human foreskin fibroblasts, cardiac fibroblasts or cardiac myocytes)
transfected with GFP-vinculin were plated onto them. Observations were
made for mature adhesion, 10-60 h after plating. Identifying the dot cen-
ters in the phase-contrast pictures of substrates deformed by cell traction
relatively to the undeformed substrates resulted in deformation data. Fluo-
rescence pictures were processed by identifying clusters of GFP-vinculin, to
each of which one ellipse was fitted. This resulted in data on position, size
and elongation of focal adhesions (identified with midpoints, area and long
axis of the ellipses).

2.3 Computational method

For adhesion onto a planar substrate, cultured cells usually adopt a flat
morphology and cell traction is exerted onto the surface in a way which is
essentially tangential. Therefore the force vectors can be assumed to be two-
dimensional in the plane of the substrate surface. With a Young modulus E
of the PDMS film around 10 kPa, cell traction leads to surface displacements
of the order of 1 pm. Since this is much smaller than film thickness (40 pm),
the substrate can be considered to be an elastic isotropic halfspace.

In the framework of linear elasticity theory, stress field F(r) and dis-
placement field u(r) are related by a Fredholm integral equation of the first
kind:

ui(r) = /dr’ Gij(r — ') Fy(x") (2.1)

where we apply the summation convention. In general, one has 1 < 4,5 <
3. In our case, G;; is the Green function of the elastic isotropic halfspace,
which was calculated in the 19th century by Boussinesq [99]. The Boussinesq
solution implies that for tangential traction and Poisson ratio v = 0.5, there is
no out of plane displacement. Since our substrates have Poisson ratio v close
to 0.5, we can assume that the displacement vectors are two-dimensional
in the x-y-plane. Therefore the whole elastic problem is two-dimensional,
1 < 4,7 < 2. The Green function for the surface displacements for Poisson
ratio v = 0.5 is

Gij(r) 5 (5ij + xixj) (2.2)

- A Er 72
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with » = |r| and §;; the Kronecker Delta. For a given traction pattern F(r),
the surface displacement u(r) follows from using Eq. (2.2) in Eq. (2.1). Note
that the Green function is long ranged (it scales inversely with distance) and
scales inversely with Young modulus F. The displacement following from
a point force F scales as u = [(I/r) with distance r, where | = \/F/FE is
the length set by force and rigidity. Therefore [ is a measure both for typical
displacements and for the decay length of elastic effects. As can be seen from
the data presented below, we always have |du/dr| < 1, thus linear elasticity
theory is valid.

Experimentally, the displacement field u(r) is measured at different sites
r; (1 <1i < N) by image analysis. For this purpose we use the water algo-
rithm, which has been described elsewhere [180]. In order to quantify the
error related to the automatic determination of the centers of the spots, we
used the water algorithm several times on the same picture in order to de-
termine the positions of the grid. The standard deviation was found to be of
the order of 1 pixel (0.133 pm). The same result was found when subtracting
the displacement following from reconstructed force patterns from the exper-
imentally measured displacement. The inverse problem of calculating forces
from displacements amounts to inverting the Fredholm equation of the first
kind from Eq. (2.1) with a discrete left hand side. However, this is not an
easy task, since this kind of Fredholm integral equations and their discretiza-
tions are ill-posed. A problem is called ill-posed if its solution is not unique
or if it is not a continuous function of the data. Fredholm integral equations
of the first kind and their discretizations are ill-posed since they constitute
smoothing operations which remove high-frequency components. Inverting
the smoothing operation from Eq. (2.1) is an underdetermined problem (too
much information has been lost during smoothing) which causes the solution
F to be very sensitive to any change in u. Ill-posed inverse problem can be
solved by reqularization, that is by including additional information which
stabilizes the solution. They are a subject well investigated in numerical
mathematics, and a number of regularization schemes are available for their
solution [139, 74].

We approximate the cellular force pattern by an ensemble of point-like
forces localized to the sites of focal adhesion. The different positions r;
(1 < i < M) of the different focal contacts can be reconstructed from the
fluorescence image with the water algorithm [180]. As will be argued below,
we can assume that each focal contact corresponds to a point force F; as
long as we take care not to include displacements which are closer to a FA



CHAPTER 2. ELASTIC SUBSTRATES 20

than its lateral extension. Since both forces and displacements are at dis-
crete positions, the integral equation from Eq. (2.1) now becomes a set of
linear equations, u = GF, where u = (u;(rq), uz(r1), us(re), uz(rs),...) is a
2N-vector, F = (Fi(r}), Fx(r)), Fi(r}), Fa(rh),...) a 2M-vector and G the
following 2N x 2M-matrix:

Gu(ry —ry) Gu(r—ry) Gu(r —ry) Gu(ry —rp)
Gai(ry —ry) Gao(ry —ry) Gu(ry —ry) Guo(ry —rp)
Gu(rs —ry) Gu(rz —ry) Gu(r; —ry) Gu(ry —r) (2.3)
G21(1“2 —17) G22(1°2 —17) Gu(ry —ry) Gia(ra —15)

Each experiment gives a displacement vector u € R*¥ and a Green matrix
G € R2N*2M which can be used to solve the inverse problem, that is to find
the force vector F € R?M. We use the usual y?-estimate, that is the quality of
the estimate is measured by the sum of least squares x? = |GF—ul|?*/0? [139].
Here o is the standard deviation of the distribution of measurement errors
for the vector components of the displacement u. y2-estimates are known
to be useful even if the measurement errors are not normally distributed.
Here we assume that this distribution is normal with the same standard
deviation o for each component of u. Then the quantity y? is drawn from a
x2-distribution with 2(IN — M) degrees of freedom, that is x? has an average
2(N — M) and a standard deviation /4(N — M).

In principle, the set of linear equations u = GF can be solved by singular
value decomposition. However, this procedure will in general not lead to
reasonable results, since the problem at hand is ill-posed. This means that
the singular values of the matrix G decay gradually to cero, thus the matrix G
is ill-conditioned (in our analysis, condition numbers of the order of 1000 are
typical). Following the usual procedure for discrete ill-posed inverse problems
[139, 74], we now add a side constraint to the y*>-minimization which in itself
is not ill-posed and ensures a solution F which is robust. In more physical
terms, the procedure aims at filtering out the parts of the displacement data
which are due to noise. In the framework of Bayesian theory, the additional
constraint is an a prior: hypothesis about the physical nature of the expected
solution.

The need for regularization necessitates two choices: which side con-
straint should be chosen in order to stabilize the inversion procedure, and
how strongly this side constraint is enforced for each set of experimental
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data. The choice of the side constraint should be guided by physical consid-
erations. The simplest choice is zero-order Tikhonov regularization, where
one minimizes x? under the constraint that the forces should not become
exceedingly large:

ming {|GF — ul’ + N*|F|*} . (2.4)

The Lagrange parameter A is called the regularization parameter since it
parametrizes the trade-off curve between agreement with the given data (first
term) and regularization (second term). For zero-order Tikhonov regulariza-
tion, A essentially determines below which level contributions from small
singular values are filtered out of the solution. First and higher order regu-
larization involves derivatives of F' and should be chosen for enforcing smooth
force fields. However, since neighboring focal adhesions can connect to dif-
ferent stress fibers, which might point in different directions, there is no
reason to assume smooth force fields. Zero-order regularization both leads
to a simple protocol for the numerical analysis and is the most reasonable
choice in our case. The new target function is still quadratic in u and there-
fore again can be solved by singular value decomposition. For this numerical
work, we used the package of Matlab routines Regularization Tools by P.
C. Hansen. It can be found at Netlib (http://www.netlib.org/) in the file
numeralgo/na4. Detailed explanations are provided in the book by the same
author [74].

In order to choose the regularization parameter A, we have used the x-
criterion [139] and the L-curve criterion [74]. The y-criterion (also known
as discrepancy principle) suggests that A is chosen in such a way that the
residual norm R = |GF — u|? as a function of A assumes the value expected
for an optimal fit, 2(N — M)o?. The L-curve criterion suggests to determine
the value of X\ at which the residual norm starts to increase significantly as
a function of A. The name of this criterion comes from the fact that for
discrete ill-posed problems, a plot of log |F|* versus log |GF — u|? very often
has a L-shape. The corner of the L-curve corresponds to the optimal balance
between data agreement and regularization, and it is this corner (which is
intrinsic to the data at hand) which we detect with the L-curve criterion.
One disadvantage of this method is that it introduces the need for a corner-
finding algorithm. Another potential choice is the self-consistence criterion
[82], which suggests that the regularization parameter X is chosen in such a
way that the resulting force pattern can be used to simulate displacement
data which is consistent with the original set of data. Although this criterion
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is computationally expensive, the notion of self-consistence is very helpful in
general. In particular, if ¢ is the standard deviation of the noise in the ex-
perimental data, then A should be chosen sufficiently small that the standard
deviation between experimental and reconstructed displacement equals o.

2.4 Assumption of localized force and finite
size effects

The lateral extension of FAs ranges up to few micrometers and can be visu-
alized by GFP-labeling of FA-proteins like vinculin or paxillin. Initial and
mature FAs are dot- and streak-like, respectively. In most cases, their shape
resembles an ellipse with half axes a and b. Force is distributed over this
area in a way which in general is unknown. However, as the distance to the
force bearing region increases, details of the force distribution become less
relevant for the determination of the displacement field. This is analogous
to electrostatics, where the far field potential produced by a compact charge
distribution is determined essentially by its highest multipole moment. In
fact, the concept of a multipolar expansion can also be applied to elasticity
theory. By expanding Eq. (2.1) for distances larger than the lateral extension
of the force distribution, we find for the displacement field

ww =L DG, @

i
—~ n! Ox;,  Ox;,

where r’ is some suitably defined midpoint of the force bearing region and
the P, ;i are its force multipoles

f)zj...ini = /dS Si1 . sinfi(r' —+ S) . (26)

The force monopole P; is a vector which describes the overall force exerted
from the force bearing region, and the force dipole P;; is a second-rank ten-
sor which describes pinch-like contractions or expansions. It follows from
Eq. (2.2) that the displacements caused by force monopoles and force dipoles
decay with distance like 1/r and 1/r?, respectively. The next term in the
expansion of Eq. (2.5) is the force quadrupole P;j;, that is a tensor of rank 3
which decays like 1/73.



CHAPTER 2. ELASTIC SUBSTRATES 23

The major assumption of our numerical analysis will be that forces are
exerted mainly at FAs and that the distributed force close to each FA can be
approximated by its first multipole moment, the force monopole or overall
force. In order to justify the mathematical part this assumption, we consider
the following microscopic model for the force distribution over a FA. First, we
assume that all of the distributed force is directed in the same direction. Sec-
ond, we assume that the distribution of magnitude of force is Hertzian. This
means that the force disappears continuously towards the rim and reaches
its maximum in the middle. If we choose the x-axis to be the a-axis of the
FA, we can write

P =g - (G ()R e

The corresponding force multipoles follow from Eq. (2.6). The force monopole
P = Fy, the force dipole F;; vanishes, and the force quadrupole has Py; =
a’Fy;/5, Paa; = b*Fp;/5 and vanishes otherwise.

We now consider how the displacement decays along the x- and y-axes for
a force in x-direction; in these high symmetry directions, the displacement
vector has a contribution only in x-direction, but it is easy to check that
the following results also hold for arbitrary directions. For the monopole
of our model, it follows from Eq. (2.5) that the displacement decays like
3Fy/2mEr along the x-axis and like 3Fy /4w Er (that is twice as fast) along
the y-axis, respectively. For the quadrupole of our model, it follows from
Eq. (2.5) that the displacement decays like 3Fy(a? — b%)/10mEr? along the
x-axis and like 3Fy(a? + 2b%)/40mEr? along the y-axis, respectively. For a
symmetric FA, a = b, the contribution from the quadrupole vanishes along
the x-axis. Along the y-axis, it becomes smaller than the contribution from
the monopole for r > y/3/10a. In general, a and b set the length scales over
which the corrections to the monopole contribution become negligible. Thus
we can expect the crossover between the displacement following from the
distributed force and the displacement following from the force monopole to
occur close to the rim of the FA, at a distance which is set by the size of the
FA itself.

For our model force distribution, this conclusion can be checked numer-
ically by using Eq. (2.2) and Eq. (2.7) in Eq. (2.1). In Fig. 2.2 we compare
the full and approximate displacements (dashed and solid lines, respectively)
for distributed force being directed parallel (upper row, a-c) and perpen-
dicular (lower row, d-f) to the FA-elongation. Note that in contrast to the
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Figure 2.2: Theoretical model for force distribution over a finite-sized adhesion
plaque like a focal adhesion: we assume that force points in x-direction and that
its magnitude is distributed in a Hertzian manner over an ellipse. (a,b,c) Long axis
of ellipse parallel to direction of force. (d,e,f) Long axis of ellipse perpendicular to
direction of force. (a,d) Displacement following from the distributed force. (b,c,e,f)
Dashed lines: magnitude of displacement following from the distributed force along
the x- and y-directions (numerical result). Solid lines: magnitude of displacement
following from equivalent point-like forces exerted at the origin (Boussinesq Green
function). For Young modulus E = 6 kPa and overall force F = 10 nN, all distances
are in pm.

displacement due to the point-like force monopole, the displacement due to
the distributed force does not diverge at the origin (in fact it scales like
Fy/FEa). As predicted from our multipole argument, it crosses over to the
full solution (which scales like Fy/Er) close to the rim of the force-bearing
region. In b and e, the magnitude of displacement is plotted along the x-axis,
and in ¢ and f, along the y-axis. In all cases, the crossover between full and
approximate solutions occurs very rapidly outside the force-bearing regions,
especially if the direction of force is parallel to the elongation of the focal
adhesion. We conclude that as long as one does not consider displacements
which are closer to a FA than the size of the FA itself, the divergence of the
Green function is avoided and it is justified to approximate the distributed
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force exerted at a FA by a point force.

In our experiments, we used polymer films with thickness 40 pym and
lateral size of a few cm. Typical displacements used during quantitative
analysis were of the order of \/F/FE & pm, where F' = 10 nN is the typical
force at FAs and ' = 10 kPa a typical value for the Young modulus. We now
argue in more detail why finite size effects can be neglected in our treatment.
In linear elasticity theory, forces and displacements are related by a second
order differential equation. For a given force distribution, one first solves
the heterogeneous differential equation for an infinite elastic medium. The
resulting solution will be an inverse power of the distance and it will not
be unique, since any solution to the homogeneous differential equation could
be added to it. These additional solutions are called image displacements
and will be polynominals in the distance. They can be used to statisfy
the boundary conditions of the finite sized sample. For free and clamped
surfaces, forces normal to the boundary and displacements have to vanish at
the boundaries, respectively.

The Boussinesq Green function for an infinite elastic half-space is used
throughout our work, although in principle one should use the Green function
which also satisfies the clamped boundary conditions at the bottom and at
the sides of the thick film. This Green function will be very complicated,
but one can estimate its effect as follows. Conider one FA with overall force
F. Then the displacement at a distance r scales as v = F/Er, while the
image displacement scales as u = cr, where ¢ is a dimensionless factor which
has to be determined from the boundary conditions. For clamped boundary
conditions, the two displacements have to cancel at » = h, where h is film
thickness (a similar argument applies for the sides of the sample). Therefore
c = F/Eh* = (I/h)?, where | = \/F/FE is the length scale set by forces and
rigidity. Since [ is also the length scale for displacements close to the FAs,
c is negligible if displacements are much smaller than film thickness, as it is
usually the case in elastic substrate experiments with thick films.

As explained above, the displacement at the position of the FA itself scales
as F'/Ea, where a is the size of the FA. If film thickness h decreases towards
a, this scaling is changed to F'h/Ea* and our treatment is not valid anymore,
since we neglect the effect of finite film size. Therefore an additional require-
ment for our method is that the size of FAs (or of a cluster of neighboring
FAs if the corresponding forces point in the same direction) should be much
smaller than the film thickness. Butler and coworkers recently used the same
scaling argument to argue that cell size should be much smaller than film
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thickness, because they considered the case that stress is distributed uni-
formly over the whole cell [25]. However, in our analysis forces at different
FAs (or at least at FAs in different parts of the cell) had different directions
and therefore screen each other. In order to consider the effect of the whole
cell, one should take at least into account that the vector sum of all forces
will vanish due to Newton’s third law. In the framework of the force multi-
polar expansion, the relevant term becomes the force dipole, and in fact force
patterns from mechanically active cells often resemble pinching deformations.
Below we analyse an experiment that shows that stationary fibroblasts might
be considered to generate force dipoles of magnitude P = —10~'* J. Then
displacement decays as v = P/Er? and ¢ = P/Eh® = (I/h)3, where now
| = (P/E)Y3 ~ 10 pum is the length scale set by force dipole and rigid-
ity. Therefore the additional requirement now becomes that the length scale
set by force dipole and rigidity should be much smaller than film thickness.
Although both additional requirements discussed in this paragraph are some-
how stronger than the usual one derived in the preceding paragraph, they
are less drastic than the one suggested by Butler and coworkers and usually
are satisfied in elastic substrate experiments with thick films.

2.5 Data simulation, regularization and reso-
lution

Data simulation allows an accurate check of our method and to estimate its
resolution. In Fig. 2.3a we show an artificial force pattern Fy which mimics
traction by a polarized fibroblast as monitored in our experiments. The cell
is assumed to be elongated, with FAs occuring close to the rim. Forces are
assumed to be exerted only at the FAs at the lower and upper sides, which
can be considered to be connected by stress fibers running parallel to the long
axis of the cell. One test of our force reconstruction will be whether forces are
generated at the focals at the sides which in the original pattern do not exert
force. Neighboring forces along the upper and lower sides are separated by a
distance of 4 um and are assumed to alternate in magnitude, since this allows
to test the resolution of our force reconstruction. Typical force is assumed to
be 20 nN per FA. Fig. 2.3a also shows the displacement resulting from this
force pattern. The relation between force and displacement is governed by the
Young modulus E, which we assume to be 12 kPa (this is the smallest value
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Figure 2.3: Artificial force patterns Fy mimicing traction by polarized fibroblasts
and the resulting displacement fields u. Young modulus E = 12 kPa. (a) Nine
focals adhesions on each side with average distance 4 um. The distance between the
micro-fabricated dots is 2 pm. Typical magnitude of force is 20 nN. Displacement
is subject to Gaussian noise with standard deviation ¢ = 1 pixel = 0.133 pm,
largest displacement is 1.3 pm. (b) Same parameter values as in (a), but doubled
distance between the micro-fabricated dots. (c) Same parameter values as in (a),
but now there are 13 focal adhesions with distance 2 pm on each side.

obtained in our experiments). Displacements are calculated on a grid of dots
with pitch 2 pm (like for the micro-patterned substrates) and are assumed
to be subject to Gaussian noise with standard deviation ¢ = 1 pixel = 0.133
pm (this is the level of noise resulting from image processing with the water
algorithm). Then the largest displacement picked up is 1.3 pm. Fig. 2.3b
and Fig. 2.3c show two of the several changes to this reference case which
we will discuss below: in Fig. 2.3b, the distance between micro-fabricated
dots has been increased from 2 to 4 um, and in Fig. 2.3c, the number of FAs
has been increased from nine to 13 (thus the distance between FAs has been
decreased from 4 to 2 pm).

In Fig. 2.4, we reconstruct the force pattern from the displacement data
shown in Fig. 2.3a. In Fig. 2.4a, we plot residual norm R = |GF(\) — u|?
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Figure 2.4: (a) Residual norm R = |GF(\) —u/? (in absolute units) and deviation
from original force AF = |F(\) — Fo| (normalized to 100) as a function of regular-
iziation parameter A for the force and displacement data from Fig. 2.3a. The solid
and dotted straight lines indicate expectation value and confidence interval for
the corresponding x2-estimate, respectively. For the choice of the regulariziation
parameter \, x2-criterion, L-curve criterion and the minimum in AF all suggest
A = 0.04. (b,c) Dashed and solid arrows are original and reconstructed forces,
respectively. (b) Force reconstruction with A = 0.04. Even for optimal reconstruc-
tion, some information is inevitably lost. (c) Force reconstruction with A = 0.1.
Regularization is too strong and spatial resolution is lost.

(in absolute units) and deviation from original force AF = |F(\) — F|
(normalized to 100) as a function of regulariziation parameter A. For small
regularization (small \), maximal agreement with the data is achieved; the
residual norm R nevertheless attains a finite value, since there is no force
field which can exactly reproduce the displacements due to Gaussian noise.
For large regularization (large \), the force field vanishes and the residual
norm levels off at the value |u|?. The solid and dotted straight lines indicate
expectation value and confidence interval, respectively, for a y2-estimate. Its
intersection with the R-curve suggests A = 0.04 for the regularization. In fact
this is also the value of A for which R starts to rise as a function of A, so this
result agrees nicely with the L-curve criterion. More important, it also agrees
with the minimum in AF, the deviation from the original force pattern. It
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Figure 2.5: (a) Residual norm R and deviation from original force AF as a
function of regulariziation parameter A for the force pattern from Fig. 2.3a with
the noise level increased to ¢ = 2 pixel = 0.266 pm. (b) Force reconstruction
with A = 0.09. Due to larger noise, more information is lost even for optimal
regularization. (c) Force reconstruction without regularization (A = 0) yields a
rather erratic force pattern.

is important to note that even the optimal choice of A cannot reproduce
the original force pattern: Fig. 2.4a shows that AF' has its minimum at 24
percent, that means a considerable part of the original information has been
lost by the smoothing operation of the elastic kernel and cannot be retrieved
by the inversion. This corresponds to a error of 4 nN for the reconstruction
of the 20 nN original single force. The fact that AF rises again for smaller
values of A indicates the need for regularization: without regularization (A =
0, AF = 30 percent), the agreement between reconstructed and original
force is worse than for the proper value of regularization (A = 0.04, AF
= 24 percent). In Fig. 2.4b we plot the reconstructed (solid) and original
(dashed) force pattern. Note that our method nicely reproduced the overall
characteristics of the pattern: only small forces are generated at the sides,
and for the forces at the upper and lower sides, both the directions and the
alternating magnitudes are reproduced. In Fig. 2.4¢, we show an example
of larger regularization (A = 0.1), which is still within the y?-interval and
consistent with a noise level of o = 1 pixel = 0.133 um. Yet the resolution in
the force magnitude is lost, and their values are estimated as being too low.
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Until now we showed that for parameter values corresponding to our
experiments, the spatial resolution can be considered to be better than 4
pm and the force resolution will be around 4 nN. We now demonstrate that
for data containing less information than assumed here, force reconstruction
will worsen considerably. In Fig. 2.5 we show the effect of a noise level
increased to o = 2 pixel = 0.266 pm. Monitoring R and AF as a function
of A (Fig. 2.5a) determines A = 0.09 for optimal regularization, but this time
AF is considerably higher (37 compared to 24 percent), and goes up to 60
percent for the case without regularization (compared to 30 percent for the
reference case). As was to be expected, with increased noise, regularization
becomes more relevant. Fig. 2.5b and Fig. 2.5¢ compare reconstructed and
original force patterns for A = 0.09 and vanishing A, respectively. In the first
case of optimal regularization, force reconstruction is worse than in Fig. 2.5b
for less noise, and in the second case without regularization, the force pattern
becomes rather erratic. In particular, now larger forces are generated at the
sides, which compensate for lateral compression which in the original pattern
results from the forces at the upper and lower sides.

We now return to a noise level of ¢ = 1 pixel = 0.133 pm, but decrease the
density of micro-patterned dots, that is we pick up less displacements. The
corresponding displacement data is shown in Fig. 2.3b: the distance between
dots has been doubled from 2 to 4 ym. Fig. 2.6a shows that now the force
reconstruction is even worse than in the case of increased noise: optimal
regularization now corresponds to a 45 percent deviation in reconstructed
from original force, and goes up to over 70 percent for the case without
regularization. This drastic effect had to be expected, since the relevant
information is stored in the displacements which are above the noise level,
that is in the displacements close to FAs, of which now many are lost. We also
confirmed that the reconstruction is not considerably improved when adding
displacements farer away from the cell (data not shown). Note however
that the procedure of choosing A is not affected by adding data with little
additional information.

In Fig. 2.6b and Fig. 2.6¢, we show the effect of changing the distance
between FAs from 4 pm to 2 um and 7 um, respectively (the displacement
data for the first case is shown in Fig. 2.3c). In order to be able to compare
the different case for the same level of noise, ¢ = 1 pixel = 0.133 pum, we
adjusted the typical force in such a way that the largest displacement picked
up remains close to 1.3 pm. This amounts to decreasing and increasing
the typical force of 20 nN by about 5 nN, respectively. Then the deviation
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Figure 2.6: (a) Residual norm R and deviation from original force AF as a
function of regulariziation parameter A for the data from Fig. 2.3b, that is dis-
tance between micro-patterned dots is increased to 4 pym. (b) Same for data from
Fig. 2.3c, that is there are 13 focal adhesions with distance 2 ym on each side. (c)
Same for the case of five focal adhesions with distance 7 ym on each side. The more
displacement is picked up and the larger the distance between focal adhesions, the
better is the force reconstruction.

from original force at optimal regularization, which was 24 percent in the
reference case, goes up to 31 percent and down to 15 percent for the two
other cases, respectively. Although the corresponding standard deviations
for single forces remain in the range of 4 nN, in the first case the spatial
resolution is worsened, while in the second case it is improved. Moreover,
in the case of well separated focal adhesions, regularization becomes less
relevant: in Fig. 2.6¢, there is only little difference in AF for all values of A
up to A = 0.04, which is the level of optimal regularization.

2.6 Analysis of experimental data

As a control experiment, we first applied known forces to elastic substrates by
lowering a micropipette onto the substrate and then shifting it tangentially
(compare Fig. 2.1c for a phase-contrast image of such an experiment). In
Fig. 2.7 we show the numerical analysis of such an experiment in terms of a
point-like force applied at the midpoint of the micropipette contact region.
The y-criterion suggests A = 0.05 (the L-curve criterion seems to suggest
a somehow smaller value), which leads to a force estimate of F = 660 nN.
A detailed analysis gives an error estimate of 13 nN. From the observed
deflection of the micropipette, the applied force can be estimated to be 600
+ 90 nN, so the agreement is good. Note that the force applied by the
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Figure 2.7: Analysis of a micropipette control experiment with one point-like force
(Young modulus E = 12 kPa). (a) Residual norm R as function of regularization
parameter \. (b) Force reconstruction according to the x-criterion (A = 0.05).
The result ' = 660 £ 13 nN for the overall force agrees with the experimental
value F' = 600 + 90 nN infered from the micropipette deflection.

micropipette is distributed, but since displacements are picked up only in
the regions in which the field of view is not obscured by the micropipette,
the force monopole approximation is appropriate. We also analyzed the same
displacement data with increasing numbers of point forces distributed over
the contact region and confirmed that this increases the estimate for the
overall force only slightly. Moreover the different forces turn out to be more
or less parallel (no twist) and decay if one moves away from the midpoint of
the contact region.

The rigidity of our substrates has been optimized for studying traction
from strong animal cells like fibroblasts and cardiac myocytes. In Fig. 2.8
we present the analysis for a whole human foreskin fibroblast. In order
to resolve the displacement, such a high microscope resolution was needed
that the cell did not fit into one single picture; the data presented here was
assembled from two different pictures taken one after the other. Fig. 2.8a
shows the resulting fluorescence picture for the whole cell, which is strongly
polarized. Most FAs are located along the rim of the cell, and more or less
elongated along the long axis of the cell itself. The residual norm R as a
function of regularization parameter A is shown in Fig. 2.8b. We see that
the y-criterion suggests A = 0.01. However, the resulting regularization is
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(a) (b)

Figure 2.8: Cell traction from a stationary fibroblast (Young modulus E = 18
kPa). (a) Fluorescence image of the cell which is transfected with GFP-vinculin.
Vinculin is a major component of focal adhesions and its localization is used to
identifiy the regions which correspond to large forces. (b) Residual norm R as a
function of regulariziation parameter A for a whole human foreskin fibroblast. (c)
Force reconstruction for A = 0.01 (middle of x-interval) and (d) A = 0.1 (upper
boundary of x-interval). In (c), regularization is too weak, and the force pattern is
erratic. In (d), there is an unexplained drift in the lower part of the force pattern,
but the overall force pattern is reasonable. Ellipses are fits to the focal adhesions
as marked by GFP-vinculin.
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too weak, as can be seen from the resulting force pattern shown in Fig. 2.8c,
which looks rather erratic. Therefore we use the upper boundary of the
confidence interval, that is A = 0.1, which is still consistent with the noise
level (this choice also seems to be consistent with the L-curve criterion). The
resulting force pattern is shown in Fig. 2.8d. Since we have fitted ellipses
to the FAs in Fig. 2.8¢ and d, one sees clearly that for the stronger level of
regularization, the forces in the upper part of the cell are more or less parallel
to the elongation of the single FAs. This seems reasonable since one expects
stress fibers to run in the same direction. In the lower part of the cell, the
forces seem to be somehow rotated to the right. The main reason for this
seems to be that displacement data is rather scarce in this region, so too
much information has been lost as to achieve a reliable force reconstruction
(the drastic effect of too little displacement information has been shown in
Fig. 2.6a). We find that the force in the upper part can be as strong as 30
nN. In the lower part, most forces are in the order of 10 nN. Note that there
are several small FAs at the sides which seem to carry only little force. In
general, we find that the cell is highly polarized also in regard to the force
pattern and that the two force bearing regions at the upper and lower sides
more or less balance each other. Due to Newton’s third law, the overall
vector force is expected to vanish for a stationary cell, but in this analysis
it amounts to 10 percent of the overall force magnitude, which is probabely
due to the unreliable force reconstruction in the lower part of the cell. From
the viewpoint of a force multipolar expansion, one might say that the cell
forms a force contraction dipole of strength P = —1071J; this corresponds
to a pair of forces, separated by a distance of 60 pm and each 200 nN strong.
A similar result, P = —3 x 10712J, was obtained by Butler and coworkers
for a human airway smooth muscle cell [25].

Fig. 2.9 shows another analysis of a whole cell, this time of a cardiac
myocyte. One clearly sees the striated organization of the actin system,
which is typical for muscle cells. In fact in the experiment this cell was
beating with approximately 1 Hz frequency, leading to periodic deformations
of the elastic substrate, which is taken here at the peak value. Fig. 2.9 shows
that the forces run more or less in parallel with the actin fibers and that
opposing groups of forces tend to cancel each other. However, this data
is difficult to analyse, because the regions of vinculin-rich adhesion are not
clearly defined, thus the assumption of localized force might not be justified.
For quantitative analysis, we therefore focused on those focal adhesions in
fibroblasts which are well-separated from neighboring ones. Fig. 2.10 presents
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Figure 2.9: Distribution of forces in cardiac myocyte: staining for vinculin is
shown in red, while staining for actin is shown in green (yellow are overlap regions).
The light-blue arrows are force applied to the substrate at the vinculin-rich areas.
White bar = 6 pm, blue bar = 70 nN.

our results in this respect. Fig. 2.10a shows that force and area show a
linear relationship. Fig. 2.10b shows that the same holds true for the total
fluorescence intensity, indicating that area and total intensity correlate well
with each other, as found before [181]. Fig. 2.10c shows that the direction of
force correlates nicely with the elongation of the focal adhesion. In Fig. 2.10d,
displacements and forces are shown for a typical experiment, from which the
quantiative analysis is made. Fig. 2.10e-h shows the effect of adding 15
mM 2,3-butanedione monoxime (BDM), which interferes with actomyosin
contractility. As seen in Fig. 2.10h, as a result both aggregation area and
force disappear at the focal adhesions. Fig. 2.10f and g show that the decay
process for force and aggregation proceeds in parallel and is very fast, namely
on the timescale of seconds, in accordance with the fact that the turnover
time for proteins in focal adhesions is on the timescale of seconds [181]. Our
main result is presented in Fig. 2.10e: a plot of area versus force including the
BDM-data reveals a linear relationship between force F’ and area A at mature
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Figure 2.10: Correlation between force and size of focal adhesions. (a-d) Before
and (e-h) after addition of 15 mM 2,3-butanedione monoxime (BDM), which inter-
feres with actomyosin contractility. The green arrows in the insets in (d,h) show
displacements. The red arrow in (d,h) show the calculated force. White bar = 4
pm, red bar = 10 nN, Young modulus = 12 kPa.

focal adhesions, A ~ 1 ym? + 0.2 um?/nN F. The force-independent area of
the focal adhesions is typical for focal complexes, which are the precursors of
the large focal adhesions formed once force is applied. The force-dependent
part of the relation implies a constant stress of 5.5 + 2 nN/um?. We found
the same value for the cardiac myocytes. Recently it has been confirmed in
an independent study using smooth muscle cells plated on a bed of elastic
microneedles [169].

2.7 Conclusions

In this chapter, we presented a novel computational technique which allows
to calculate forces at the level of single focal adhesions (FAs) from displace-
ment data of elastic (micro-patterned) substrates and fluorescence data of
GFP-vinculin labeled FAs. Our main assumption is that forces exerted at
FAs marked by fluorescent GFP-vinculin are appreciably higher than those
developed in neighboring regions along the cell membrane. This assumption
is based on the fact that we never observed traction near an area deprived
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of FAs. Our finding that large force corresponds to large FAs seems to jus-
tify our assumption a posteriori. Since displacements can be measured only
at discrete points, the Fredholm integral equation relating forces to displace-
ments is converted into a system of linear equations. The Boussinesq solution
for the Green function of an elastic isotropic halfspace is used as kernel for
the Fredholm equation. We showed in the framework of a force multipole
expansion that the assumption of point-like forces is reasonable as long as
displacements are picked up at a distance to the FAs which is similar to their
lateral dimensions. The force multipolar expansion was also used to argue in
detail why effects from the clamped boundary conditions at the bottom and
at the sides of the polymer film can be neglected in our treatment.

It is well known that Fredholm integral equations of the first kind like the
one of linear elasticity theory are ill-posed, irrespective of using the assump-
tions of localized or distributed force. By extensively simulating artificial
data which mimic experimental conditions, we confirmed that in general the
inverse elastic problem needs regularization in order to arrive at a reliable
force estimate. In particular we showed that in most realistic cases, the de-
viation of reconstructed from original force AF shows a clear minimum at
finite regularization parameter A. In the absence of this information, that is
in real experiments, one has to estimate the optimal value for the regular-
ization parameter A. We used two different criteria, the x- (or discrepancy)
criterion and the L-curve criterion, which lead to identical results for sim-
ulated data. For real data, the agreement between the two criteria is less
good (possibly due to the presence of non-Gaussian noise or imperfections of
the elastic substrate), but still sufficient. In the rare cases that these criteria
lead to erratic force patterns (compare Fig. 2.8¢), we used the upper limit of
the y-interval, since it is still consistent with the independently determined
noise level.

It is important to note that spatial resolution for the force field is inher-
ently restricted by the smoothing action of the Fredholm integral equation
on the length scale /F/E =~ um, where F' = 10 nN is the typical force at
FAs and E = 10 kPa a typical value for the Young modulus. Our simulations
demonstrated that both spatial and force resolutions depend on the details
of the displacement and force patterns. Although no generally valid values
can be given, simulations for realistic situations showed that our spatial and
force resolutions are better than 4 pym and 4 nN, respectively. This values
have been derived above for a simulated reference pattern which is somehow
more difficult to reconstruct than experimental force patterns, in which the
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high density of FAs of the reference pattern is realized only at certain regions
of the cell. We conclude that calculated forces can be reliably attributed to
single FAs if no other FAs are closer than a few pym. Although the smooth-
ing action of the elastic kernel indicates a basic limitation of elastic subtrate
experiments, it is worth noting that it also benefits our quantitative analy-
sis, since it allows to neglect corrections arising from the modulation of the
micro-pattern.

The method presented here can now be used to analyse mechanically
active cells in quantitative detail. Experimentally, it requires the use of
(micro-structured) elastic substrates and labeling of the force-transmitting
system. We used GFP-vinculin to label FAs, but other possibilities include
use of GFP-cDNA-constructs encoding other adhesion-associated proteins
(like paxillin, zyxin, alpha actinin or actin) or specific antibodies. Numeri-
cally, it requires image analysis of the phase contrast and fluorescence pictures
and use of the force reconstruction program. As the procedure described here
is rather simple and robust, we expect that our protocol might become a
standard tool for such a purpose. In contrast to the reconstruction of a con-
tinuous stress field [42, 116, 12], the reconstruction of a discrete force pattern
is computationally rather cheap and needs only minutes on a standard PC.
Therefore it could be used to study mechanical activity of cells in real time.
Note that if the force-transmitting system cannot be marked, the standard
assumption of distributed force has to be used.

It is interesting to consider which values for the rigidity should be cho-
sen for an elastic substrate experiment. On the one hand, one expects that
cells exert exactly the kind of forces which deform other cells. The effective
Young modulus of a cell has been measured in AFM-experiments to be of
the order of kPa [140]. PDMS-substrates as used in our study have somehow
higher rigidities, but smaller rigidities can be achieved with other protocols
or materials and could lead to larger deformations and a better signal-to-
noise ratio. On the other hand, there are at least two reasons why the elastic
substrate should not be too soft. First, in this case one would expect the
force-generating cell to react in a specific way; in fact it has been observed
that a elastic substrate which is very soft induces the cell to react by weaken-
ing the adhesion [135]. A systematic study of cell adhesion on substrates with
varying elastic rigidity has shown that for fibroblasts there exists an optimal
elastic substrate rigidity in the kPa range where the cells are maximally elon-
gated [89]. Second, we explained above that the spatial resolution in such an
experiment is limited to the length scale 1/ F/E due to the smoothing action
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of the elastic kernel. Thus, decreasing rigidity E leads to decreasing spatial
resolution. Therefore elastic substrates with Young modulus of the order of
kPa seem to be the right choice for the task at hand.

The main result of our work on cell traction on elastic substrates is that
there exists a linear relationship between force and area of a FA, with an offset
for area at vanishing force. This seems to indicate that the development
of FAs is divided into two stages. In the initial stage, hardly no force is
generated, and it can be speculated that this relates to the fact that integrin
signaling suppresses Rho-signaling [142]. The later stage might be stimulated
by Rho-signaling and might correspond to regular growth of a rather well-
ordered supramolecular complex. This picture naturally explains the linear
relationship, since now the addition of new components to the FAs adds a
proportional amount of force. There seems to be a positive feedback loop
acting between force and area. On the one side, larger area leads to increased
signaling through Rho, including increased activity of myosin II molecular
motors and thus larger force. On the other side, larger (external) force has
been shown to lead to increased aggregation [144]. The mutual upregulation
of force and aggregation cannot proceed without limits, and recent work
suggests that the upper bounds are set by the action of microtubules inserting
into mature focal adhesions and delivering some kind of stop-signal [165].

Our results suggest that focal adhesions act as mechanosensors convert-
ing force into protein aggregation and vice versa. In particular, cells can
learn about the mechanical properties of their environment by monitoring the
build-up of force at focal adhesions while pulling on it (active mechanosens-
ing). In recent years, it has been shown that cells react in a typical way to the
elastic properties of their environment, a phenomenon which has been termed
durotaxis: most cell types upregulate their cytoskeleton and their cell-matrix
contacts on stiff substrates [135], and locomote in favor of stiff or strained re-
gions [116]. In principle, there are many different physical mechanisms which
might be at work in the mechanosensor at focal adhesions. For example, it
has been suggested that mechanosensing is based on force-induced confor-
mational changes in specific FA-proteins like vinculin or on force-induced
restructuring of the whole FA-complex [60, 59, 16]. Moreover a recent study
has shown that the durotactic response is suppressed when stretch-activated
ion channels are blocked with gadolinium [128]. Ton channels play a central
role for mechanotransduction in the sensory systems [62], but the situation
at focal adhesions is very different, since speed of response is not an issue
here. In fact another recent study has shown that the aggregation response
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at focal adhesions under force persists even for permeabilized cells without
any plasma membrane (that is without ion channels) [148]. Thus the ex-
act mechanism at work in the mechanosensor is still an open issue, and in
fact it is very likely that several mechanisms work in parallel here. In the
next chapter, we will present a theoretical analysis of the rupture statistics
in adhesion contacts, and discuss a possible relationship to focal adhesions.
In the last chapter, we will explore how cells behave in a soft environment
on the basis of the information gathered through the mechanosensor at focal
adhesions.



Chapter 3

Stochastic dynamics of
molecular bonds under force

3.1 Introduction

Biomolecular bonds are based on weak (non-covalent) interactions because
in this way, biological systems can quickly rearrange in response to external
stimuli. They have evolved specific structures which control not only the
binding energy of the bond, but also the way ligands are guided into and
out of the binding pocket. From a physics point of view, the simplest way to
describe this situation is a one-dimensional potential energy landscape with
one well representing the bound state and a transition state barrier separating
it from the unbound state. Because biological systems are operating at finite
temperatures, biomolecular bonds have evolved to function in the presence
of thermal fluctuations. In principle, all biomolecular bonds will open at
some point in time due to thermal fluctuations, which can overcome the
transition state barrier between bound and unbound states. Naively, this
implies that our own body should disintegrate with time. Obviously this is
not happening, and the reason is that in physiological settings, rebinding
stabilizes molecular bonds. However, the finite lifetime of specific bonds can
be measured for single molecules, and more so for single molecules under
force, which lowers the potential energy barrier stabilizing the bound state.

The mechanical opening-up of biomolecular bonds has become a subject
of extensive research during the last decade or so, both experimentally and
theoretically. The main experimental techniques in this field are atomic force

41
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Figure 3.1: (a) Streptavidin-biotin bond: the large streptavidin molecule shown
as ribbon diagram provides a binding pocket for the small biotin molecule. (b)
Schematic representation of the energy landscape for the streptavidin-biotin inter-
action. The bound state to the left is separated by two transition state barriers
from an intermediate state and the unbound state. Force tilts the energy land-
scape, with the effect being larger for the outer barrier. Each transition state
barrier is characterized by barrier height Ej and separation to the bound state x.

microscopy (AFM) [54], laser optical tweezers (LOT) [93] and the biomem-
brane force probe (BFP) [124]. In AFM-experiments, bonds are attached to
sharp tips mounted on soft cantilevers, which are moved on a piezostage. In
LOT-experiments, bonds are attached to polymer beads, which are pulled
into the focus of a laser beam due to dielectric effects. Finally, in BFP-
experiments, bonds are attached to red blood cells, which are controled by
micropipette aspiration. The main theoretical approaches in this field are
Kramers theory (which describes thermally assisted escape over a transition
state barrier) [51, 88, 160] and steered molecular dynamics (SMD) (atomic
level simulations with force fields and an externally applied force) [69, 88].
The field of single molecule force spectroscopy was opened up by an AFM ex-
periment from the Gaub group in 1994, which reported for the first time the
mechanically induced unbinding of single biotin-strepatavidin bonds, with a
binding strength of 140 pN [54]. In an experimental context, binding strength
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usually means the most frequent rupture force in the spectrum of rupture
forces measured in different experiments. In a theoretical context, one might
prefer the mean rupture force, but in most cases, the rupture force distribu-
tions feature a broad Gauss-like peak, thus the differences are small. Strep-
tavidin (like the related molecule avidin) is a tetrameric glycoprotein with
almost 8000 atoms that can bind up to four molecules of biotin. Biotin is a
32-atom vitamin which acts as an activated COs-carrier in some biochemical
reactions. The biotin-avidin bond has an unusual high affinity (K; = 107
M), resulting in a lifetime of days. In Fig. 3.1a, a molecular representation is
shown for the biotin-strepatavidin bond. In 1997, Evans and Ritchie pointed
out that binding strength is not a static, but rather a dynamic quantity,
which depends on the loading rate with which the bond is probed [51]. The
faster one pulls, the less time thermal fluctuations have to assist unbinding,
and the larger the binding strength will be (this is similar to the situation
with commercial adhesive tapes, where fast loading also leads to large bind-
ing strength). Using Kramers theory for one transition state barrier, Evans
and Ritchie predicted that the most frequent rupture force depends linearly
on the logarithm of loading rate. For an energy landscape with several tran-
sition state barriers, they predicted a corresponding sequence of straight lines
in the plot of binding strength versus logarithm of loading rate. Moreover,
Evans and Ritchie conducted detailed computer simulations to predict the
spectrum of unbinding strengths for biotin-avidin (based on energy landscape
results from molecular dynamics simulations by other groups [69, 88]). Fi-
nally they pointed out that the binding strength of this bond will increase
when investigated by LOT, BFP, AFM and SMD, respectively, because at
that time, this sequence corresponded to increasing loading rates. The semi-
nal paper by Evans and Ritchie gave a new name to the whole field, which is
now called dynamic force spectroscopy (DFS) (for reviews, see [49, 87]). The
theoretical analysis by Evans and Ritchie is in nice agreement with more so-
phisticated treatments by others [88, 160]. Still in 1997, the dynamic nature
of binding strength was impressively confirmed by another AFM experiment
from the Gaub group, namely mechanical unfolding of the large muscle pro-
tein titin [143]. At the same time, another titin pulling experiment from the
Bustamante group with LOT gave conflicting results [93], which however can
be explained by taking into account the role of the soft polymer linkages used
in the experiments [52]. In 1999, the biotin-strepatavidin and biotin-avidin
bonds were probed by an improved BFP-setup over a range of six orders of
magnitude in loading rate, revealing bond strength ranging from 5 to 170 pN,
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Figure 3.2: Dynamic force spectrosopy for biotin-avidin bonds with biomembrane
force probe. (a) Slow loading gives long lifetime of 24 s and small bond strength
of 3 pN. (b) Fast loading gives short lifetime of 0.003 s and large bond strength
of 170 nN. (c) Rupture force histograms for loading rate varying over six orders
of magnitude. (d) Most frequent rupture force varies like the logarithm of loading
rate. Dynamic loading reveals two and three different transition state barriers for
the streptavidin-biotin and avidin-biotin bonds, respectively.

compare Fig. 3.2 [124]. The same BFP-setup was also used to show for the
protein A-IgG bond the crossover from spontaneous to force-induced bond
dissociation with increasing loading rate [163]. During the last years, DFS
has been used to characterize many more receptor-ligand systems, including
some of the most important adhesion receptors, for example P-selectin [55],
L-selectin [50], cadherin [8] and «a;(;-integrin [106].

Besides AFM, LOT and BFP, other experimental techniques have been
employed for force-induced unbinding of biomolecular bonds, including the
surface force apparatus [102], forced unbinding of adhering vesicles [71], mi-
cropipette techniques [33] and flow chambers [131, 182, 137]. Flow chambers
are commonly used to study the adhesion of leukocytes to endothelium-like
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substrates. For diluted ligand, one usually observes first order dissociation ki-
netics, which traditionally has been interpreted as signature of single molecule
events [5, 4]. Although recent results now point to a more complicated sit-
uation involving multiple bonds [44], flow chambers with diluted ligand can
indeed be used to study single molecule unbinding, as has been done e.g. for
biotin-avidin bonds [137].

Since thermal fluctuations are an integral part of DFS-experiments, the-
oretical analysis is essential for their evaluation. As already mentioned, the
early work on single molecule force spectroscopy [54] received an adequate
interpretation only after the theoretical analysis by Evans and Ritchie [51].
An important and still open question is what can be learned in principle
about the energy landscape of molecular bonds from DFS-spectra (this can
be called the inverse problem of DFS). Heymann and Grubmiiller have de-
veloped an algorithm to reconstruct the enery landscape of molecular bonds
from DFS-spectra [79]. A promising route is the use of a recently found exact
theorem by Jarzynski which relates equilibrium properties to measurements
of out-of-equilibrium processes [133].

In order to relate the features of DFS-experiments to molecular structure,
the most promising approach is SMD. This method was pioneered in 1996
with a study of the streptavidin-biotin bond [69]. Later studies included
forced unfolding of the avidin-biotin bond [88], titin [119] and fibronectin
[96]. If one takes care to consider the effect of loading rate, reasonable agree-
ment between theory and experiment can be achieved, e.g. for the biotin-
avidin bond [124, 88]. The simulations show that the movement of the biotin
molecule inside the binding pockets corresponds to a series of slips, each of
which corresponds to the collective rupture of a group of hydrogen bonds.
The experiment revealed three unbinding barriers, the first two of which
can be identified with the slips found in the simulations. In Fig. 3.1b, a
schematic sketch of the energy landscape of the biotin-avidin bond is shown
as it emerged from the DFS-studies.

In the future, the rich spectrum of molecule properties now revealed by
DFS has to be linked to their biological function. For example, it has been
suggested that force-induced unbinding of fibronectin on the extracellular side
(96, 159] and force-induced unbinding of certain cytoplasmic plaque proteins
in focal adhesions (e.g. vinculin) [58, 59] might be involved in mechanosensory
processes for tissue cells. In the same spirit, in rolling adhesion of leukocytes
the specific behaviour of the selectin receptors under force is an essential part
of effective cell capture and arrest [44, 28]. Recently, it has been reported
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that P-selectin, one of the three selectins involved in leukocyte rolling, might
act as a catch bond, that is its lifetime increases under force (rather than
decreases as for the regular slip bond) [121].

Regarding application of DFS to biological systems, it is very important
to note that in cell adhesion, single molecules are the exception rather than
the rule. Indeed most adhesion situations are based on clusters of molecular
bonds. For example, cell-matrix adhesion is mainly provided by large focal
adhesions, which can contain up to 10° integrin-mediated bonds, while an
important part of cell-cell adhesion is provided by similarly large clusters of
cadherin-mediated bonds [2]. Molecular bonds in a cluster can be arranged
and loaded in different ways, including in parallel and serial ways, see Fig. 3.3.
When probed in experiments with cells, the situation is further complicated
by relaxation processes in the viscoelastic parts of the cell which act as force
transducers. Then rather complicated force-extension curves result, even if
they feature single molecule rupture events [14]. In order to arrive at general
statements about the force-induced rupture of adhesion clusters, it is there-
fore favorable to start with simple generic situations, like clusters of parallel
or serial bonds, with no special properties of the transducer. Parallel bonds
loaded through a soft transducer are of special interest, because then force is
shared equally between the closed bonds, thus leading to real cooperativity
[10, 156]. When loaded through a stiff transducers, displacement rather than
force is controled, all bonds feel the same force and a mean field theory can
be used to make further progress [157]. Carefully designed experiments, for
example uniform loading over a contact ring between a receptor-bearing cell
and a ligand-bearing vesicle through a soft transducer [138], can be used to
test the predictions of the theoretical models.

Since we are interested in understanding the role of force in cell adhesion,
our main objective in this chapter will be to improve theoretical understand-
ing of generic features of multiple bonds under shared loading. We start
by recapitulating the most important results from recent advances in under-
standing single molecule force spectroscopy. In order to study cooperativity
between bonds in a loaded adhesion cluster, we then introduce a stochastic
model for rupture of multiple parallel bonds under shared loading. For the
case of constant loading, we derive several new analytical results for spe-
cial cases. For the general case, analytical progress seems hardly possible
and we use numerical methods to solve the stochastic equations. The same
holds true for the case of linear loading, which is of special interest for future
DFS-experiments on multiple bonds.
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Figure 3.3: Different arrangements and loading scenarios for bonds in clusters.
On the left, one bond is loaded after the other (serial loading), leading to a peeling
process, e.g. for adhering cells in shear flow [41]. In the middle, all bonds are
loaded simultaneously (parallel loading), which can be realized experimentally by
moving the transducer perpendicular to the substrate [138]. On the right top,
rupture of the first bond leads to complete failure. On the right bottom, this
failure is prevented by an additional linker, like in the case of titin [143].

3.2 Single bond

Bond rupture can be modeled in the framework of Kramers theory as ther-
mally activated escape over a sharp transition state barrier [51]. In the
absense of force, the rate for barrier crossing ky depends on barrier height
Ey as ko = e P/F [t (95, 73]. Here kT = 4.1 pN nm is thermal energy at
room temperature and tp is attempt time, which for biomolecular bonds is
on the scale of nanoseconds. With a typical value for non-covalent binding,
E, = 20 kT, kg is on the scale of seconds, as it is typical for biomolecules. In
the framework of Kramers theory, force applied to the bond tilts the energy
landscape through an additional term —Fz. A sharp transition state barrier
is therefore lowered by —Fx;,, where x; is the distance between bound state
and barrier along the linear reaction coordinate. This sets an internal force
scale I, = kT /x;,. With a typical value 2, = 1 nm, we have F;, = 4 pN. For
the transition rate, we now have

k(t) = koel®O/F (3.1)

This is the famous Bell equation proposed in a seminal paper by Bell [10],
although it was only later rationalized in the framework of Kramers theory
[51, 88, 160].

We now discuss in detail the dependence of binding strength on loading
rate. It has been shown by Shillcock and Seifert [160] that the adiabatic
approximation used by Evans and Ritchie [51] is valid over a large range
of parameter values. In the adiabatic approximation, one assumes that the
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escape process takes no time, thus the probability to rupture between ¢ and
t + dt is p(t)dt = k(t)S(t)dt, where k(t) is instantaneous rupture rate and
S(t) is the cumulative probability for survival up to time ¢. This quantitiy
satisfies the relation

S(t+dt) = S(t)(1— k(t)dt) (3.2)
therefore
as(t) _
— = kS (3:3)
and
S(t) = e Jodt k(1) (3.4)

In the adiabatic approximation, bond lifetime then follows as

T = /OO dt t p(t) . (3.5)

The simplest case is constant loading. Then k(¢) is independent of time,
S(t) = exp(—kt), p(t) = kexp(—kt) and T = 1/k. This is nothing else than
the classical Poisson process, or, in the language of chemical kinetics, first
order dissocation.

For linear loading, F' = rt with loading rate r, Eq. (3.1) becomes

k(t)dt = k(T)dr = "™ (3.6)

where we have defined dimensionless time 7 = kgt and dimensionless loading
rate i = r/koF,. Then the probability of still being attached is

S(r) = e w ™D (3.7)
and the probability to rupture is
p(7) = S(T)k(r) = e ¥V (3.8)

In the following we are interested in the case u > 1, when rupture is induced
by external loading (rather than by internal dissociation). While S(7) de-
creases like in a Poisson process, k(7) increases due to increased loading and
as a consequence p(7) has a peak at a finite time, which corresponds to the
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most frequent rupture event (for p < 1, the distribution peaks at vanish-
ing time, because the bond dissociates internally in a Poissonian way). We
change variables from 7 to f = F/F, = pr:

dr 1 1 pf et 1 1.5
S(f) = == S(r) = e wlo d'et = Zgmule =D 3.9
(=550 = ; (39)
and therefore
1 1
p(f) = ;e‘“(ef‘”” : (3.10)

For p > 1, this function has a maximum at f*, which is the most frequent
rupture force:

r

=1 F*=F,l .
f n w, bnkOFb

(3.11)
Thus rupture is a stochastical event with most frequent rupture force being
proportional to the logarithm of loading rate. For the most frequent rupture
time we have

* f* . 1nH Fb r

T , t*=—1In .
% % r o koFy

(3.12)

Since the full probability distribution is known, one can also calculate the
most probable rupture force and higher moments. This has been done by
Tees and coworkers [170], who find

(f) = e E(1/p) (3.13)

where FE is the exponential integral. For p > 1, we can expand for small
arguments:

(f)=lnp—~v+0(1/p) (3.14)

where v = 0.577 is the Euler number. Thus for large loading rates, we get
the same result for the average value as for the peak value. For p < 1, we
can expand for large arguments:

(f)=n+0) . (3.15)

With vanishing p, the bond decays by itself at cero force.
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Figure 3.4: Schematic representation of our stochastic model for an adhesion
cluster under shared force: in this case, there are N; = 5 receptor-ligand pairs, of
which ¢ = 3 are closed and equally share the dimensionless force f. Single closed
bonds rupture with dissociation rate k = kgef/* and single open bonds rebind with
force-independent association rate k,,. Our model has three parameters: cluster
size Ny, dimensionless rebinding rate v = ko, /ko and dimensionless force f.

We finally consider the composition of linear and constant loading, that
is a ramp of force followed by a plateau. Thus there is linear loading f = pr
until time 7y, followed by constant loading f = f;. Note that there are
only two independent parameters, 75 and fy, since p = fy/7. For the mean
lifetime we find

er 1 ek [ _etTo
T:—(E(p)—E(M)—i-eﬁe u). (3.16)

Two limites are easily checked: for 75 — 0, we find the result for constant
loading, T = 1/e’°, and for 7y — oo, we find the result for linear loading,

T =e"EQ1/n)/p.

3.3 Stochastic model for multiple bonds

We now turn to the case of multiple bonds. We consider a cluster with a
constant number N, of parallel bonds. At any time ¢, ¢ bonds are closed and
N; — i bonds are open (0 < i < V;). Again we use dimensionless variables:
dimensionless time 7 = kgt, dimensionless single molecule dissociation rate
k/ky and dimensionless overall force f = F'/F,. Note that in general f can be
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time-dependent, f = f(7). The i closed bonds are assumed to share force f
equally, that is each closed bond is subject to the force f/i. This corresponds
to loading through a soft transducer [156]. We also assume that each closed
bond can rupture with the dissociation rate k = ef/*, which corresponds to
the case of one sharp transition state barrier along the rupture path [10, 51].
As long as the receptors are hold in proximity to the ligands, rebinding of
open bonds can occur. Therefore we will assume that single open bonds
rebind with the force independent association rate k,,. The dimensionless
rebinding rate is defined as v = k,,/ko. Fig. 3.4 shows a cartoon of the
situation described by our model.

Since bond rupture is a discrete process, the stochastic dynamics of the
bond cluster can be described by a one-step Master equation [81, 64]

dp;
dr
where p;(7) is the probability that i closed bonds are present at time 7. The

reverse and forward rates between the different states ¢ follow from the single
molecule rates as

= Trit1Dit1 + Gi—1Di—1 — [T + 9D (3.17)

r; = iell . gi=7v(Ny—1i) . (3.18)

Depending on the experimental setup, rebinding from the completely disso-
ciated state (i = 0) might be possible (reflecting boundary) or not (absorbing
boundary). For f = 0 and a reflecting boundary at i = 0, we deal with natural
boundaries, that is given reasonable initial conditions, no special equations
are needed to treat the boundaries. For finite f, r(0) = 0 is required to pre-
vent ¢ from becoming negative. gg = vN; represents a reflecting boundary for
the completely dissociated state © = 0. In this case, the cluster will always
regain stability and cluster lifetime 7" will be infinite. Since adhesion clusters
(like single molecules) usually cannot rebind from the completely dissociated
state due to elastic recoil of the transducer, we are mainly interested in an
absorbing boundary at ¢« = 0, which can be implemented by setting go = 0.
In this case, cluster lifetime T is the mean first passage time to reach the
absorbing state ¢ = 0. A full stochastic solution amounts to finding the set of
state probabilities p;(7) as a function of the three dimensionless parameters
Ny, v and f. Below we will show that analytical solutions can be found for
some special cases. In all other cases, the Master equation has to be solved
numerically. For this purpose, we will use the Gillespie algorithm for efficient
Monte Carlo simulations [61].
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A quantity of large interest is the mean number of closed bonds, N =
(i) = 2™ ip;. From the Master equation Eq. (3.17), one can derive [81]

d(i)

o (1) + (9:) (3.19)

If r and g are both linear functions in ¢, Eq. (3.19) becomes an ordinary
differential equation for N. This suggests to study the following deterministic
equation

aN

= —Nef™N 4 ~(N, = N) (3.20)

as has been done by Bell [10] for constant loading and by Seifert [156] for
linear loading. However, for finite force f solution of Eq. (3.20) does not
give the correct result for the first moment, since then the rate r defined in
Eq. (3.18) is non-linear in ¢ and the average in Eq. (3.19) cannot be taken.
Instead, this equation now involves higher moments, so one ends up with
a potentially infinite system of coupled differential equations. The same

problem arises for higher moments. For example, for the second moment we
have [81]

d

%(<i2> = {(0)?) = 2{igi) — 2{irs) + (1 = 2())(gs) + (1 + 2(0))(rs) ~ (3.21)

which again involves higher order moments if r or g are non-linear function
of 7. It is also important to note that only the reflecting boundary leads
to a deterministic equation like Eq. (3.20). For an absorbing boundary, a
corresponding differential equation is not available, because the boundary
condition is not natural, that is g; does not obey the general form Eq. (3.18)
for the special value i = 0 [81]. Thus this case can be studied only in the
stochastic description Eq. (3.17).

Below we will present a detailed investigation of the stochastic model,
both for constant [48] and linear loading [47]. In particular, we will compare
the stochastic results with results for the deterministic model, which can
be obtained by integration and scaling analysis of Eq. (3.20). Here cluster
lifetime 7" can be identified with the time at which only one last bond is left,
that is by N(T') = 1.

It is important to note that the difficult part of our analysis is the non-
linear form of the reverse rate r;, which follows from the Bell equation. In the
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force-free case, f = 0, the exponential factor vanishes and we deal with the
well-known case of a linear one-step Master equation, which for a reflecting
(i.e. natural) boundary can be solved with the help of a generating function,
as has been done by McQuarrie [122]. We start by defining the generating
function:

G(s, 1) = iSipi(T) : (3.22)

Here the discrete index 7 is transformed to the continuous variable s. The
back transform is

1 9'G(s,7)
pi(T) = i os |, (3.23)
and the moments can be constructed as
0 OFG (s, 1)
5y = (5= )" 1= 24
(i") (Sas) G(8,7)|s=1 o s)F | (3.24)

The generating function has to satisfy the following differential equation:

(- — 1)r(5£) + (s — 1)g(s%) (3.25)

aor s

oG 1 %) a}G

where the reverse and forward rates r; and g; from Eq. (3.18) can be used as
functions r () and g(¢) of ¢ due to the natural boundary. With N(0) = Ny,
boundary and initial conditions are

G(1,7) =1, G(s,0) = s . (3.26)

The first moment is

(3.27)

_#¢
082

oG

2
+ = . (3.28)
1 s 51>

_(9%¢
s=1 88

sS=
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For the rates given in Eq. (3.18), specified to f = 0, we have the following
differential equation:

oG 5 O0G
5 = (14+(y—1)s—7s )% + Nyy(s — )G . (3.29)

For Ny = N, its solution reads

(s =1)e 0T 41 445 Mo
Gl = ( (1+1) ) '

Using Eq. (3.23), we can derive the full solution of the stochatic equations:

(3.30)

_ i _ No—i
No\ (v +e A7) (1 — e~ (A+N)7
pilr)= (" ( ) ( - ) (3.31)
i (14 ~)™
For the expectation value, we get
aG(S 7') NO _
N(r)= —272 = 97y 3.32
)= Toet| =gyt (3.32)

Since here we deal with linear rates and the reflecting boundary, this results
can also be derived directly from the deterministic equation for N, Eq. (3.20),
which now reads

dN

- = —N +v9(No—N) . (3.33)
It can be rewritten as
dN _ 1 d((1+~v)N —~vNy) _ 4 (3.34)
(L+YN=9No  (1+7) 1+7)N—=7No
therefore
N(r) = o (7 + e ) (3.35)
(1+7)

as above. For v = 0 (no rebinding), we get the usual Poisson process. For
finite 7, the fraction of bonds reaches a finite value N, = 7Ny/(1 + ) on
the time scale 1/k(1 +~) = 1/(k + ko,). We can also evaluate the variance:
_ No(y+ eI — e M) N(7)(1 — e UHT)
(1+7)? (1+7)

Thus we obtain the expected result that the effect of fluctuations diminishes
like the inverse square root with increasing system size (D/N ~ 1/N1/2).

D(7)? (3.36)
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Figure 3.5: An analytical solution of the stochastic model based on a generating
function is available for vanishing load and a reflecting boundary at ¢ = 0, the
completeley dissociated state. p;(7) is the probability that ¢ bonds are closed at
time 7 (0 <14 < N;). Here the state probabilities as given in Eq. (3.31) are plotted
for two bonds and the initial condition Ny = Ny = 2. (a) Rebinding rate v = 0,

(b) v=1, (¢) v = 10.

3.4 Two bonds under constant shared load-
ing

Before addressing our stochastic model in the general case of N; bonds, it

is instructive to consider the case Ny = 2. The solution Eq. (3.31) derived

from the generating function for the case f = 0 and a reflecting boundary
now reads

(e U7 4 )2

pa(7) = T (3.37)
B 2(6—(1+fy)r + 7)(1 _ e*(1+'7)7)

pi(7) = (L : (3.38)
B (1 _ 67(1+’y)7)2

po(T) = TEE (3.39)

One readily checks that > . p; = 1 and p;(0) = ;2. In Fig. 3.5, we plot the
p; for vy =0,1, and 10. Since now N, = 27/(1 + ), the average number of
closed bonds is close to 0 and 2 for weak and strong rebinding, respectively.

The probability for reaching the completely dissociated state is the proba-
bility for having one bond times the probability for this bond to rupture, that
is p1—o(7) = p1(7)r(1) = pi(7). For the case without rebinding, v = 0, we
have p;_o(7) = 2(e”™ —e~?7). This result can also be obtained by a different
route, namely through a recursive procedure which uses the fact that now
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cluster rupture corresponds to a well-defined sequence of events, 2 — 1 — 0,
which are connected by two Poisson processes. For each Poisson process, the
dissociation probability decays exponentially with time. We start with two
bonds. Breakage of the first bond is a Poisson process with a rate which is
doubled compared to the situation with one bond:

P (T) =277 . (3.40)

Breakage of the second bond is another Poisson process, this time with the
single-bond rate, which however presupposes that a first bond has broken
some time before:

P1—o(T) = / dr'pa_ (T,)€_(T_T/) =2(e T —e7). (3.41)
0

Thus we obtained the same result as before. Note that p;_¢(0) = 0: in
contrast to the case of single bond decay with p;_(0) = 1, there is no
finite probability for the cluster to decay at the very beginning, because
simultaneous decay of two bonds is a higher order process.

In contrast to the solution with the generating function, the recursive
procedure can be generalized to the case f > 0. The basic idea here is that
even in the case of finite force, we still deal with a well-defined sequence of
two Poisson processes. We now have

pa—(T) = (26f/2)€_(2ef/2)T ; (3.42)
! —(efY(r—7' 2@f —efr —2ef/21
plﬂ[)(T) - A dT/p24)1(7—/)<€f)6 ( )( ) = m(e — € 2 ) .
(3.43)

Obviously the limit f = 0 gives the results given before. For the mean cluster
lifetime, one gets

> 1
T = / dt t p1_o(T) = 5 (2¢7 + e’f/Q) . (3.44)
0

The same result can be obtained more easily by noting that since we have
a sequence of two independent Poisson processes, their lifetimes simply add
up:

1 1

' 21:2 = Taar = (2 (3.45)



CHAPTER 3. BOND DYNAMICS o7

For f = 0, cluster lifetime 7" = 3/2, thus it is not twice as large as single
bond lifetime, but somehow reduced, because bonds decay in parallel. The
recursive procedure can be generalized to arbitrary cluster sizes (see below),
but not to the case of finite rebinding, because then one loses the property
of having a well-defined sequence of Poisson processes.

In the case of finite rebinding, cluster lifetime is infinite for a reflecting
boundary. For an absorbing boundary, cluster lifetime can be identified with
the finite mean first passage time for reaching the state ¢ = 0. Although a
full stochastic solution cannot be found in this case, one can calculate cluster
lifetime for arbitray values of f and v. We note that starting from state 2, the
system moves to state 1 with probability 1, after the mean time 1/ry. From
there, it rebinds to state 2 with probability wgr = ¢1/(r1 + g1) or dissociates
with probability wp = 1 /(r14¢1), after the mean time 1/(r;4g¢;). Thus after
two steps the system has reached state 0 with probability wp or returned to
state 2 with probability wg, with wp +wgr = 1. In detail, the probabilities
and mean times for both processes are

ef 1 1
= tp = 3.46
Wp ef‘f—’}/, D 2€f/2 + €f+7 y ( )
wR:€f177 tR:tD. (347)
(3.48)

Different paths to dissociation only differ in the number of rebinding events
1 to state 2:

W; = Wpwh, ti=tp+ilg . (3.49)
We first check normalization:
> 1
> wi=wp =1 (3.50)
=0 1 —wg
and then calculate cluster lifetime:
T = tw; =tp+tgwp » iwh (3.51)
i=0 i=0
t
= tD + tRwD Wr D (352)

(1—wp)? 1—wg

1
=3 (e_f/2 +2e + 76_3f/2) . (3.53)
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For f = 0, this simplifies to 7" = (3 + 7)/2. For v = 0, this simplifies to
T = (2¢7f + ¢77/2)/2, in agreement with the result found above from the
recursive procedure. For both f =0 and v = 0, we have T' = 3/2 as above.

3.5 Cluster under constant shared loading

We now turn to clusters of arbitrary size /V; under constant loading. We start
with the deterministic equation. In general, it can be solved analytically only
in the case v = 0. Since there is no rebinding, /V; is not important. We have
to solve

dN
—— = —Ne//V. 3.54
dr ‘ ( )
Changing to z = 1/N
dz _ d(fz) _
—dr = ——Ze TN = 22 (fz):dEfz 3.55
: e (B(2) (35
where E is the exponential integral with E(z)’ = —e™*/z. Thus
T*—T():E(Nio) —E(A‘];*) (3.56)
where Ny = N(19). With 79 = 0 and N* = 0, we find
T =FE(f/Ny) . (3.57)
This solution implies three different scaling regimes. For weak loading, f < 1,
we deal with simple Poisson decay, N = Nype™", and
T=InNj. (3.58)

For intermediate loading, f > 1 but with f/Ny < 1, we can expand for small
arguments:

N,
T = E(f/Ny) ~ In 70 . (3.59)
In this case, there are still f bonds left when exponential decay is over, then
faster decay sets in. For strong loading, f/Ny > 1, there is super-exponential
decay right from the start. We expand for large arguments:
eff/NO

T = E(f/No) ~ ik (3.60)
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With increasing load, the scaling of 7" with Ny becomes stronger, from loga-
rithmic for weak loading to linear with strong loading. Note that for a single
bond T = e~/. For the cluster, an exponential dependence is obtained only
for the case of strong loading.

Rebinding stabilizes the cluster. For a reflecting boundary and in the
absence of force, lifetime is infinite. It has been shown by Bell that the
cluster remains stable up to a critical force f. [10]. For the following it is
helpful to revisit the stability analysis by Bell. In equilibrium we have

Ne!/N = ~4(N, = N) . (3.61)

There are two roots in 0 < N < N,, with the larger one corresponding to a
stable equilibrium. Above a critical loading, no roots exist and the cluster
becomes unstable. Exactly at critical loading, the two roots collapse and the
slopes of the two terms become equal. This gives an additional equation to
determine critical values of N and f:

el (1~ i) =—7. (3.62)
We now define a new quantity o = f/N — 1 and rewrite the two equations:
Ne™ = ~(N; = N), ae*™ =~. (3.63)

From the second equation, we can determine a:
a= plog% (3.64)

where the product logarithm plog(a) is defined as the solution = of ze* = a.
When dividing the two equations, we get

Q
N = N; . 3.65
1+a ' ( )
Therefore the critical load is simply
f.=N(1+a)=aN, = Nyplog_ . (3.66)
e

For small v, we have

f gNt . (3.67)
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Figure 3.6: State probabilities p; for Ny = 10. (a) y =0and f =0. (b) y =1
and f = 0 for a reflecting boundary at i« = 0. (c¢) Same for absorbing boundary.
(d) y =0 and f = 50. (a) and (b) follow from Eq. (3.31), (c) is obtained from
Monte Carlo simulations, and (d) follows from Eq. (3.69).

For large 7, we have
fer~ 05N Iny . (3.68)

This result can be interpreted as follows: even for large v (strong rebinding),
the critical force per bond F./N; =~ Fy, because the dependance on y is only
logarithmic. This means the simple force scale set by the potential well is
sufficient to break the cluster even at strong rebinding. Note however that
this is an equilibrium consideration: we did not specify the rupture time,
which is expected to be a stronger function of . For small v, the critical
force goes to cero: for vanishing rebinding, no force is needed to break the
cluster, which dissolves by itself.

We now turn to the stochastic model. For the case f = 0 and the reflecting
boundary, it has been shown above that the Master equation can be solved
exactly with the help of the generating function from Eq. (3.30), leading to
the exact solution for the p;(7) given in Eq. (3.31). If rebinding vanishes,
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v = 0, we deal with radioactive decay, that is each bond decays independently
of the others. Fig. 3.6a shows that in this case, a cluster with N; = 10 bonds
decays from ¢ = 10 to 0 by visiting each of the intermediate states to an
appreciable degree. In order to stabilize the cluster, one has to introduce
rebinding. Then there is fast relaxation to a stable stationary state, as shown
in Fig. 3.6b for v = 1. For the biologically relevant case of an absorbing
boundary at ¢ = 0, a stable stationary state does not exist and the cluster
will always dissociate on the long run. In this case, one has to solve the
first passage problem of reaching the state ¢ = 0 for the first time. This
can be done semi-analytically by using Laplace transforms, where the last
backtransform has to be done numerically. Alternatively, one can solve the
Master equation numerically, as we always do in the general case, when both
rebinding v and force f are finite. Fig. 3.6c shows that in this case, the
plateaus from Fig. 3.6b tilt downward, while py increases steadily with time
7. Stability further decreases if force f is turned on. For very large force,
rebinding (including the type of boundary at i = 0) becomes irrelevant,
because the reverse rate r dominates the forward rate g. Then one has to
deal with the case v = 0, for which decay proceeds in a well-defined sequence
of event. Then one can use a recursive scheme to construct p; from p;_1, as
has been shown above for the case N; = 2. In the general case, we find (with
No = Ny)

N Ne | N

pi(T) = ( 11 73-) YAll—1¢- (3.69)
j=it1 =i |k R

k#j

The probability for cluster dissociation at time 7 is p;(7)r(1). Setting i = 1
in Eq. (3.69) and using Eq. (3.18), one obtains a formula which has been
given before in Ref. [170]. Fig. 3.6d shows, for the case f = 50, that now the
cluster decays very rapidly, with only few of the intermediate states being
visited to an appreciable degree.

Once the set of state probabilities p;(7) is known, one can calculate any
quantity of interest, in particular the mean number of closed bonds N as a
function of time 7. We find that N(7) usually decays exponentially. This is
demonstrated in Fig. 3.7a for the case f = 0. The origin of the exponential
decay can be understood as follows: first the system equilibrates into a bino-
mial distribution peaked around N., = vN;/(1+) as described by the result
for a reflecting boundary, that is Eq. (3.31). The lower tail of this distribution
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Figure 3.7: (a) Simulation results for the mean number of closed bonds N at
time 7 for f =0,y =1 and Ny = 1,2,5,10 and 15 (lower to upper lines). (b)
Four typical simulation trajectories for each of the cases N; = 10,100 and 1000
for v =1 and f/N; = 0.25. Dotted lines are N(7). (c) Same for f/N; = 0.3. (d)
Comparision of stochastic (solid) and deterministic (dashed) results for N(7) for
Ny =5 and 10 for v =1 and f/N; = 0.3.

then ’leaks’ into the state ¢« = 0 due to the absorbing boundary. The smaller
N, or v, the larger the tail contribution at ¢ = 1 and the faster the systems
loses realizations to the absorbing boundary. The resulting decay can be
approximated by N(7) = N.,e™ %" with a = p;(c0) from Eq. (3.31). For the
values of N, used in Fig. 3.7a, one finds @ ~ 4.6 x 107%,9.7x1073,0.16 and 0.5
for N, = 2,5,10 and 15. Numerically we find a = 2.5 x 107%,8.5 x 1073,0.13
and 0.6, thus the leakage estimate is rather good.

In order to assess the role of fluctuations, it is instructive to study sin-
gle simulation trajectories. Since we use the Gillespie algorithm for exact
stochastic simulations [61], they are expected to resemble experimental tra-
jectories. Fig. 3.7b shows that for large cluster size and small force, typical
trajectories fluctuate around a plateau value close to N,,. However, for small
cluster sizes, fluctuations to smaller bond numbers lead to fast loss of realiza-
tions to the absorbing boundary at ¢ = 0. Final decay is rather abrupt due
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to force-accelerated rupture for increasingly smaller bond numbers. Fig. 3.7¢
shows that for sufficiently large force, also the large clusters decay quickly.
The loss of stability for any cluster size follows from Bell’s stability analysis
of the deterministic equation Eq. (3.20) revisited above. For typical values of
N and 7, f. belongs to the intermediate force regime, 1 < f < N;. For v =1,
we have f./N;, = 0.278. Fig. 3.7b and c are below and above the critical force,
respectively. In contrast to Bell’s continuum analysis, our stochastic analysis
shows that for small clusters a small increase in loading can lead to the fast
decay characteristic for the case without rebinding also for forces below f..
Fig. 3.7d compares N(7) as obtained from simulations to N(7) as obtained
from numerical integration of the deterministic equation Eq. (3.20). This
shows that stochastic and deterministic results differ also on the level of the
first moment.

The quantity of largest practical interest is cluster lifetime 7" as a function
of the model parameters Ny, v and f. In general, T' can be calculated from
the adjoint Master equation [172]. For N; = 2 and 3, the solutions can
also be found by directly summing with appropriate weights over all possible
dissociation paths, each of which is a sequence of Poisson processes. This has
been shown above for the case of two bonds, compare Eq. (3.51). For N; > 4,
the direct procedure becomes intractable. However, in the case of vanishing
rebinding (v = 0), there is only one dissociation path and the exact solution
is simply

T=> — (3.70)

for all values of N; [170]. In the small force regime, f < 1, we have the case of
radioactive decay and T' ~ Hy, = Zf\; 1/i~InN;+1/(2N;) +T. Here Hy,
are the harmonic numbers and I' = 0.577 is Euler’s constant. In this regime,
T depends only weakly (logarithmically) on N; and large cluster sizes are
required to achieve long lifetimes [66, 170]. In the intermediate force regime,
1< f< Ny, wefindT ~ Hy,—Hy =~ In(N;/f). Here the effective cluster size
is reduced to V;/f, because the cluster dissociates very rapidly for i < f. In
the high force regime, f > N;, only the term with ¢ = N, contributes: if the
first bond breaks, all remaining bonds break within no time. In Fig. 3.8a we
plot T as a function of f/N; for different cluster sizes N;. At small forces, T
plateaus at the value Hy,, and at intermediate forces, it decays with a clear
scaling with f/N;.
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Figure 3.8: Analytical results for cluster lifetime 7. (a) T as a function of f/N;
for v = 0 and N; = 1,10,100,1000 and 10000 (lower to upper solid lines). The
dotted curve is the approximation 7" = In (0.61(NV;/f)). (b) T as a function of
cluster size Ny for f =0 and v = 0.0,0.1,1.0 and 10.0 (lower to upper lines).

The destabilizing effect of force can be counteracted by rebinding. In the
case of vanishing force (f = 0), the exact solution can also be found by using
Laplace transforms, because in order to obtain the mean first passage time
based on the solution for the reflecting boundary, the backtransform does
not have to be solved [64]. We find

L O ol FE T U 3.71
B ;{<n)n}+ a (371)
For v = 0, we recover the result T = Hy, from above. For N, = 2, we
get the result T = (3 +7)/2 as above. In general, T scales ~ yM~! with
rebinding rate. In Fig. 3.8b we plot T as a function of V; for different values
of v. For v < 1, the logarithmic dependence of T" on N, is valid over a wide
range of cluster size. However, for very large clusters, lifetime starts growing
exponentially with N;. For v > 1, this strong increase of T" with /V, is found
for any value of N;. Therefore increasing rebinding is much more effective
than increasing cluster size in achieving cluster stability, and essential to
ensure physiological cluster lifetimes with reasonable numbers of bonds. For
example, in the absence of both force and rebinding and if the lifetime of
each bond was 1 s (kg = 1 Hz), Eq. (3.71) predicts that the astronomical
number of ~ 10%%°% independent bonds would be needed to achieve a cluster
lifetime of one day (7' ~ 10° s). In contrast, for k,, = 1 Hz (7 = 1), the same
cluster lifetime T is achieved by N; = 20. If rebinding is ten times slower
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than unbinding (v = 0.1), cluster lifetime 7" is down to 7 s and one needs
N; = 150 bonds to regain a cluster lifetime of one day. In this way, knowing
cluster lifetime and two out of the three parameters N;, v and f allows to
estimate the unknown one.

3.6 Cluster under linear shared loading

We now turn to the case of linear loading, which is important for future
experiments on adhesion clusters. Since now force increases in time without
bounds, the cluster will always dissociate in the long run, both for absorbing
and reflecting boundaries. The deterministic equation from Eq. (3.20) now
reads

dN

It appears that this equation cannot be solved analytically even in the case
v = 0. It has been analyzed before by Seifert in the framework of a scaling
approach [156]. For vanishing rebinding, the scaling analysis shows that
like in the case of constant loading, decay can be divided into two parts.
Initial decay is not yet affected by loading and thus is exponential with
N(7) = Npe~ 7. The second part of the decay is super-exponential and can
be shown to be much shorter than the first part. Therefore the crossover time,
which is defined by an implicit function, determines cluster lifetime 7. In
the regime of slow loading, 1 < 1, exponential decay persists until N(7) =1
where cluster decay is complete and 7' = In Ny. In the regime of intermediate
loading, 1 < pu < Ny, the crossover occurs before N(7) = 1 is reached, and
lifetime is reduced to T' ~ In(Ny/p). In the regime of fast loading, p > Ny,
lifetime scales even stronger with loading rate, T ~ (No/u)In(u/Ny). In
the case with rebinding, the scaling analysis is much more complicated. For
intermediate loading, 1 < y < N, a power-law-like behaviour 7' ~ (N;/u1)'/?
has been erroneously predicted in Ref. [156], as corrected in Ref. [157]. For
fast loading, p > NV, rebinding can be neglected and 7" ~ (No/u) In(u/Ny)
as above.

We first discuss the case of vanishing rebinding, v = 0. In this case, the
cluster can only decay and the total number of bonds /N, is not relevant,
thus it is sufficient to specify Ny. In Fig. 3.9a we plot N(7) as obtained
from simulations of the Master equation (dashed lines) and from numerical
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Figure 3.9: (a) Mean number of closed bonds N as a function of time 7 for the case
of vanishing rebinding, v = 0, for u/Ny = 0.1 and Ny = 10,10% and 10%. Dotted
lines: Initial exponential decay. Solid lines: numerical integration of deterministic
rate equation for V. Dashed lines: first moment of the Monte Carlo simulation of
the Master equation. (b) Individual trajectories from Monte Carlo simulations in
comparison with the mean.

integration of the deterministic equation (solid lines) for Ny = 10,10% and
10%. The dotted line is the exponential decay N(7) = Nye™™ for vanishing
loading. In the presence of loading, the later part of the decay process clearly
is super-exponential. In detail, we find that the final stage of the rupture
process is rather abrupt. This abrupt decay is typical for shared loading and
has been found above also for shared constant loading. Interestingly, the first
moment of the stochastic process decays less abrupt than the deterministic
result. The reason is that at late stage, the stochastic treatment also includes
the effect of clusters larger than in the deterministic equation, resulting in
slower decay. In Fig. 3.9b, we show representative trajectories from Monte
Carlo simulations, which show that fluctuations are most prominent for small
clusters. For increasing cluster size, fluctuations become smaller and rupture
events are concentrated around the rupture of the deterministic cluster. An
analysis of the variance shows that for slow loading, it is close to the exact
result for vanishing loading, (i?) — (i)? = Noe™7(1 — e 7) [122]. It vanishes
for 7 = 0 due to the initial condition, then quickly rises to a maximum and
finally decays exponentially. As loading rate u increases, a large additional
peak appears shortly before final rupture (not shown). This reflects the fact
that fluctuations tend to change the timepoint of rupture, rather than the
typical shape of the decay curve, as evidenced by Fig. 3.9b.

Cluster lifetime 7" is the mean time to reach the state i = 0. By defining
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Figure 3.10: (a) Cluster lifetime 7" and (b) mean rupture force F' = pT for the
case of vanishing rebinding, v = 0, as a function of /Ny for Ny = 10,102 and 103.
Solid lines: numerical integration of deterministic equation (for v = 0, stochastic
results for 7" and F' are rather similar). Dashed lines: curves for all three scaling
regimes.

cluster dissociation rate D = dpy/dr = r1p, cluster lifetime follows as T =
fooo dr D. For p < 1, the simulation results are close to the analytical
results for = 0, D(7) = Noe 7 (1 — e )M~ [122] and T = SN 1/i ~
In Ny + (1/2Ng) + 0.577 [66, 170]. For large Ny, the deterministic scaling
T = In Ny results. For p > 1, the functions D(7) become narrowly peaked
around the mean value T. As suggested by the scaling analysis, we find
that now 7' depends only on the value of u/Ny. In Fig. 3.10a, we plot
deterministic results for 7" as a function of ;1/Ny and for different values of
Ny. The stochastic results are very similar, except for the differences in the
initial plateau values. Initially, the different curves plateau at the values
In Ny for p < 1. For 1 < p < Ny and sufficiently large Ny, they collapse
onto a universal curve, which can be approximated by 0.841n(0.35Ny/u).
For 11 > Ny, they collapse onto another universal curve, (No/p) In(p/No). In
Fig. 3.10b, we plot the logarithm of the mean rupture force, F' = uT’, as a
function of u/Ny. For large Ny, one clearly sees the sequence of the three
different scaling regimes. For decreasing Ny, the intermediate scaling curve
becomes an increasingly bad fit.

We now turn to the case of finite rebinding. In the stochastic framework,
cluster lifetime can be identified with the finite mean first passage time of
reaching the absorbing boundary at ¢ = 0. For vanishing loading, u = 0,
an exact result Tyoen has been derived in Eq. (3.71). In the deterministic
framework, Bell’s stability analysis has shown that cluster stability is lost
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Figure 3.11: (a) Mean number of closed bonds N as a function of time 7 for
rebinding rate v = 1 and loading rate p/Ney = 0.01. Cluster sizes N; = 10, 102
and 103, initial condition Nog = Ny = yN;/(1+7). Dotted lines: Initial number of
closed bonds. Solid lines: numerical integration of deterministic equation. Short
dashed lines: first moment of the Monte Carlo simulations. Long dashed line:
reflecting boundary for Ny = 10. (b) Individual trajectories from Monte Carlo
simulations in comparison with the mean.

beyond the critical force f. = N;plog(y/e), compare Eq. (3.66) [10]. For slow
loading, v < 1, the adhesion cluster will follow the quasi-steady state until
the critical force f. is reached at the time 7. = f./u. The remaining time to
rupture is smaller and thus the lifetime of the adhesion cluster is close to

N,
Tyer = ~plog . (3.73)
1 e

It diverges with the inverse of loading rate in the limit of vanishing u, as it
is required by the existence of a stable steady state and a finite rupture force
F = uT = f.. In Fig. 3.11a N(7) is plotted for v = 1 as obtained from Monte
Carlo simulations (short dashed lines) and from numerical integration of the
deterministic equation (solid lines). The three different initial conditions Ny
for N; = 10,10? and 10% are represented by the dotted lines. In Fig. 3.11b
individual trajectories from the simulations are compared to the stochastic
averages from Fig. 3.11a. For the small cluster size N; = 10, loading rate
is so small that f./p > Tsoen. Then T & Ty and the cluster decays by
itself due to stochastic fluctuations to the absorbing boundary (ultra-slow
regime). In this case, stochastic and deterministic results deviate strongly
from each other. For the case of a reflecting boundary (long dashed line
in Fig. 3.11a), stochastic and deterministic results agree rather well up the
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Figure 3.12: (a) Cluster lifetime 7" and (b) mean rupture force F' = pT" for the

case 7 = 1 as a function of /Ny for Ny = 10,10% and 103. In (a), the curves for
the two larger clusters are nearly identical.

abrupt decay of the deterministic solution, but show considerable differences
beyond this point. For the large clusters, N, = 10? and 103, fluctuations are
less probable until the force is close to f.. Therefore the individual clusters
fluctuate around the quasi-steady state and decay occurs only close to the
deterministic cluster lifetime Ty.;. Due to the large force on a single bond
at f., the absorbing boundary condition has little influence here. A detailed
analysis of the variance confirms this description (not shown): for the smallest
cluster, when fluctuations dominate during the whole time evolution, the
variance shows a broad peak. For the larger clusters, it develops a narrow
peak around the mean rupture time.

In Fig. 3.12, we show cluster lifetime T and the mean rupture force F =
uT for v = 1 as a function of /Ny for the cases N; = 10, 10? and 103.
For the smallest cluster, fluctuations to the absorbing boundary determine
the lifetime at small loading rates, thus 7T starts at the value of Ty, and
ends in the scaling regime for fast loading, where the curves are practically
identical for all different parameter values at a given value for pi/N.,. The
curves for the two larger clusters are nearly identical. They start at the
values of T} for small loading rates and end in the same fast loading regime
that is found for the smallest cluster (at extremely small loading rates, they
show the constant scaling with p). An intermediate loading regime seems to
exist only as a transient between the regimes of slow and fast loading. In
particular, it does not fit well to an inverse square root dependence (dashed
line in Fig. 3.12a).

In summary, for the case of vanishing rebinding, v = 0, our full treatment
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nicely confirms the scaling analysis of the deterministic equation for cluster
lifetime 7" as a function of ;1 and Ny [156]. However, in contrast to the scaling
analysis, the full treatment presented here allows for detailed comparision
with experiments, e.g. in regard to typical unbinding trajectories or binding
strength over a range of loading rates spanning different scaling regimes. For
the case with finite rebinding, v > 0, we identify a sequence of two new
scaling laws within the regime of slow loading, 1 < 1. For ultra-slow loading,
T is independent of p and is determined by stochastic fluctuations towards
the absorbing boundary. For larger p (but still with p < 1), T starts to scale
inversely with u, due to the finite rupture strength at constant loading. In
contrast to the case of vanishing rebinding, a scaling regime of intermediate
loading, 1 < p < N4, could not be identified.

3.7 Biological relevance

The case of linear loading is relevant mainly to future experiments on forced
unbinding of adhesion clusters. Recently, dynamic force spectroscopy ex-
periments have been reported for clusters of bonds between «,, (33-integrins
on endothelial cells and RGD-lipopeptides on vesicles [138]. Since the vesi-
cles act as soft transducers, shared loading over a contact ring is expected.
For this experiment, parameter values can be estimated to be N; ~ 100,
Fy =~ 40 pN, kg ~ 0.01 Hz and v ~ 1. Loading rates have been varied from
r =20 — 4 x 10% pN/s, corresponding to /Ny = 0.5 — 100, that is to the in-
termediate and fast loading regimes. We expect that future improvements in
experimentation will make it possible to access also the slow loading regime,
for which our work predicts interesting stochastic effects.

In physiological settings, force will never increase without bounds like in
experiments with linear loading ramps. In particular, in cell-matrix and cell-
cell adhesion, cluster lifetime is usually much larger than the time scale for
changes in loading. Then the case of constant loading can be assumed to be
a good approximation. However, the modeling presented above for constant
loading does certainly not hold for cell-matrix adhesions, for which we have
shown in chapter 2 that they grow rather than decay under force. At the cur-
rent stage, additional experimental evidence would be very helpful to proceed
with modeling the mechanosensor at focal adhesions. However, one intriguing
possibility is that force at focal adhesions leads to mechanical opening-up of
domains in certain focal adhesion proteins like vinculin [6, 59, 16]. This then
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might result in certain signaling events leading to recruitment of additional
bonds (instead of loss of bonds like in the physical case without signaling).
In this context, the model presented in this chapter suggests that the stress
constant ~ 5.5 nN/um? found in chapter 2 might be close to the critical force
fe = No plog(v/e), because then small changes in cytoskeletal loading would
result in strongly accelerated cluster decay, possibly leading to mechanical
opening-up of signaling domains. Recent single molecule experiments for ac-
tivated as(;-integrin binding to fibronectin gave ky = 0.012 Hz and F;, = 9
pN [106]. Setting F, = 5.5 nN and using Ny = 10%, we predict v = 0.2,
corresponding to a rebinding rate k,, = 0.002 Hz. Estimates like this are
useful, because if they could be validated in an independent experiment, it
would give support to the notion that focal adhesions (or parts of them)
are regulated to be close to critical thresholds, a property which is known
from certain signaling pathways. However, it should also be pointed out that
other mechanisms might account for the mechanosensor at focal adhesions,
including large-scale rearrangements of the submembrane plaque or changes
in transport rates in and out of the plaque effected by force.

Our model for constant loading is expected to apply to situations in cell
adhesion in which no reenforcement processes counteract the destabilizing
effect of force. Recently, we have argued that this might be the case for teth-
ering and rolling of leukocytes on blood vessel walls [44, 149]. As explained
in the introduction, leukocytes roll on the endothelium in order to survey it
for signs of inflammation. Initial capture is provided mainly by L-selectin.
A physiological ligand density, tethering through L-selectin leads to deceler-
ation, but not to complete stop, because the later part of the extravasation
cascade is determined by more specific signals. Therefore, L-selectin tethers
are meant to break quickly, in marked contrast to focal adhesions. There
are two properties of L-selectin tethers which ensure this requirement: short
bond lifetimes and small cluster sizes due to low ligand density. Since the
pioneering experiments on L-selectin rolling in flow chambers, it has been
widely believed that L-selectin tethers are based on single molecule binding
events [5, 4]. The main piece of evidence for this interpretation has been
that L-selectin tether kinetics in flow chambers shows first-order dissociation
kinetics with a dissociation rate which depends exponentially on shear force,
as predicted by the Bell equation. One remaining puzzle in this field however
has been the explanation for the shear threshold, that is the observation that
appreciable tethering through L-selectin and subsequent rolling only occurs
above a threshold in shear [53], even in cell-free systems [3, 67].
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Several explanations have been suggested for the shear threshold. Chang
and Hammer suggested that faster transport through increased shear flow
leads to increased probability for receptor ligand encounter [27]. However,
new high resolution data from the Alon lab (video camera resolution 2 ms)
now indicate that below the shear threshold, the issue is insufficient stabi-
lization rather than insufficient ligand recognition [44]. Earlier work has used
a time resolution of 30 ms and therefore has missed the formation of short-
lived tethers below the shear threshold [5, 4]. Chen and Springer suggested
that increased shear helps to overcome a repulsive barrier, possibly resulting
from negative charges on the mucin-like L-selectin ligands [30]. However,
the Alon lab showed that small oligopeptide ligands for L-selectin presented
on non-mucin avidin scaffolds exhibit the same shear dependence as their
mucin counterparts [44]. Evans and coworkers have argued that increased
shear leads to cell flattening and formation of additional bonds [50]. How-
ever, the Alon lab found that fixation of PSGL-1 presenting neutrophils does
not change the properties of tethers formed on low density immobilized L-
selectin, thus cell deformation as well as stretching and bending of microvilli
do not play any significant role in L-selectin tether stabilization. Recently,
the unusual molecular property of catch bonding has been suggested as ex-
planation for the shear threshold [121]. However, the data by the Alon lab
suggest that force-related processes do not account for the shear threshold of
L-selectin mediated tethering [44].

In Fig. 3.13a, we plot the recent data from the Alon lab which suggests
a new explanation for the shear threshold [44]. The main idea here is that
by adding 6 percent of the non-toxic sugar Ficoll, viscosity and thus shear
stress (but not shear rate) is increased by a factor of 2.6. Below the shear
threshold at shear rate ¥ = 40 Hz, the high resolution data show tethering
events which have been missed earlier, since with 250 Hz the dissociation
rate below the shear threshold is unusually large. Fig. 3.13a shows that it is
independent of the viscosity of the medium. At the shear threshold, we find
a 14-fold reduction in dissociation rate. In the case of added Ficoll, a similar
stabilization takes place at the same value of shear rate (although dissociation
at the shear threshold is now increased 3-fold compared to the case without
Ficoll, roughly as expected from the Bell equation). The fact that there is no
shift of the shear threshold on addition of Ficoll indicates that stabilization
at the shear threshold results from shear-mediated transport, rather than
from a force-dependent process. Transport might result in the formation
of multiple bonds, most likely of two bonds distributed over two microvilli.
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Figure 3.13: (a) Tether dissociation rate k,s¢ determined from kinetic analysis
of flow chamber experiments plotted as function of shear rate 4. Solid line with
circles versus dotted line with squares: without versus with Ficoll. (b) Theoretical
predictions compared to the experimental data without Ficoll from (a). Dotted
line: single bond dissociation rate with instantaneous loading. Dash-dotted line:
effect of finite loading rate. Solid lines from top to bottom: cluster dissociation
rate for two-bonded tether with increasing values of rebinding rate.

However, as we have argued above, simple increase in bond number has
only a weak effect on cluster lifetime. In particular, the lifetime of two
independently decaying bonds is increased only by a factor of 1.5 compared
to a single bond. Eq. (3.70) predicts that without rebinding, the astronomical
number of 6 x 10° bonds was needed to achieve the 14-fold stabilization
found experimentally. For the case of diluted ligand studied here, this is
clearly unrealistic. The modeling presented above therefore suggests that
fast rebinding made possible by the presence of multiple bonds leads to the
dramatic stabilization at the shear threshold.

In Fig. 3.13b, we present our detailed modeling for the experimental data
in Fig. 3.13a [149]. The dotted line is the single bond dissociation rate as
given by the Bell equation, with the assumption of a force-free dissociation
rate kg = 250 Hz and instantaneous loading. As suggested in earlier work,
here we use an internal force scale F, = 200 pN and force F' = 180 pN per
dyn/cm? of shear stress [5, 4]. In order to explain the plateau in dissociation
rate observed below the shear threshold, we take into account the effect
of finite loading rate. Modeling the loading protocol as a ramp of force
with initial loading rate r, which plateaus at the constant force F' after
deceleration time ¢, (compare Eq. (3.16)), we obtain the dash-dotted line,
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which is in much better agreement with the experimental results. Here the
detailed values follow from the laws of Stokes flow [65]. Right at the shear
threshold, » = 10* pN/s, F' = 72 pN and ¢, = 8 ms. The main issue
here is that with r = 10* pN/s, we are below the critical loading rate r. =
koF, = 5 x 10* pN/s, thus the bond essentially decays by itself before it
starts to appreciably feel the effect of force. Dissociation above the shear
threshold is modeled as dissociation of a cluster with two bonds. Because now
tether dissociation rate is much larger than initial loading rate, force can be
assumed to be constant and we can use Eq. (3.53). The solid lines from top to
bottom show the resulting cluster dissociation rate with rebinding rate k,, =
0,10, 20,40 and 60 ko. The two-bonded tether with k., ~ 10* Hz agrees well
with the experimentally measured data. In fact this estimate is supported
by other estimates using tethering behaviour observed for certain L-selectin
mutants and affinity experiments in solution [149]. A detailed analysis also
shows that small clusters with fast rebinding show the same characteristics
in the dissociation behaviour as observed in flow chamber experiments for
L-selectin tethering above the shear threshold, namely effectively first order
dissociation with exponential dependance on shear rate [149]. Although the
new interpretation for the shear threshold has to be checked carefully in
future experiments, our modeling shows that theoretical estimates indeed
can help to narrow down the list of possible mechanisms at play in complex
cellular systems.



Chapter 4

Elastic interactions of cells with
soft materials

4.1 Introduction

Anchorage-dependent cells like fibroblasts in connective tissue show a re-
markable degree of mechanical activity. As explained in detail in chap-
ter 2, cellular forces can be measured with elastic substrates. Using micro-
patterned elastic substrates, we found that fibroblasts typically exert forces
of 10 nN at mature focal adhesions [6, 151]. Using a bed of flexible micronee-
dles, similar values were found for smooth muscle cells [169]. Since adherent
cells can have up to hundreds of focal adhesions, the overall force exerted by
the cell can amount to uN. The forces exerted by cells on their environment
result from non-equilibrium processes inside the cell and are generated by
myosin [I molecular motors interacting with the actin cytoskeleton. Since
typical forces produced by molecular motors are in the pN-range [83], there
must be up to 10° myosin II molecular motors contributing to overall cell
traction.

When Harris and coworkers first observed the strong mechanical activity
of cells on elastic substrates [76, 75], they concluded that they are required for
the physiological function of the specific cell type under consideration. For
example, fibroblasts are believed to maintain the integrity of connective tissue
by mechanically pulling on the collagen fibers. Moreover, they are an integral
part of the wound contraction process. Harris and coworkers also noticed that
cells react to mechanical changes in their environment caused by traction

75
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of other cells. Since cells are known to align along topographic features
in their environment (contact guidance), they suggested that cells react to
traction-induced reorganization of collagen fibers. This mechanism amounts
to a mechanical interaction of cells and has been addressed theoretically in
coupled transport equations for fiber and cell degrees of freedom [132, 7].

During recent years, the sophisticated use of elastic substrates has shown
that cells also react to purely elastic features in their environment, including
rigidity, rigidity gradients and prestrain [135, 116, 179]. It is now generally
accepted that these effects are related to the special properties of focal adhe-
sions [59]. In particular, it has been shown that application of external force
leads to growth of focal adhesions and therefore to strong signaling activity
(175, 35, 144]. The same aggregation has been found for mature focal ad-
hesions under internally generated force [6, 151, 169], suggesting that focal
adhesions act as mechanosensors that convert force into biochemistry and
vice versa. Therefore the mechanical activity of cells is not only related to
the physiological function of their cell type, but is also a general way to col-
lect information about the mechanical properties of the environment (active
mechanosensing). There is strong evidence that this mechanism is involved
in many important physiological situations, including tissue maintenance,
wound healing, angiogenesis, development and metastasis [34, 56, 84].

The dynamics of focal adhesions is a subject of much current research
[60]. Anchorage-dependent cells constantly assemble and disassemble focal
adhesions, thereby probing the mechanical properties of their environment.
Initial focal adhesions (focal complezes) are local processes based on inte-
grin clustering. If initial clustering is stabilized by the properties of the
extracellular environment, focal complexes can mature into focal adhesions.
In this case, they connect to the actin cytoskeleton and a contractile force
pattern builds up, that is actively generated by myosin II molecular motors
interacting with the actin cytoskeleton. The minimal configuration of this
machinery is a set of two focal adhesions connected by one bundle of actin
filaments (stress fiber), that leads to a pinch-like force pattern, see Fig. 1.4.
In condensed matter physics, such an object is known as an anisotropic force
contraction dipole [161]. The concept of force dipoles has been applied before
mainly for the description of point defects in traditional condensed matter
systems, including hydrogen in metal (e.g. platinum) [173], atoms adsorbed
onto crystal faces (e.g. argon on gold) [100], or intercalation compounds (e.g.
lithium in graphite) [147]. The concept of force dipoles has also been used to
model active biological particles in a fluid environment, e.g. ion pumps [141]
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Figure 4.1: Schematic representation of physical and cellular force dipoles. (a)
Physical case: an intercalated defect deforms the simple cubic host lattice, thus act-
ing as an isotropic force expansion dipole. (b) Cellular case: anchorage-dependent
cells probe the mechanical properties of the soft environment through their con-
tractile machinery. Actin stress fibers (lines) are contracted by myosin IT molecular
motors and are connected to the environment through focal adhesions (dots). Even
if cell morphology is round or stellate, different stress fibers probe different direc-
tions of space and compete with each other for stabilization of the corresponding
focal adhesions. Therefore the probing process can be modeled as anisotropic
force contraction dipole. (c¢) Cell morphology becomes elongated in response to
anisotropic external stimuli, during locomotion or spontaneously during times of
strong mechanical activity. Then most stress fibers run in parallel and the whole
cell appears as an anisotropic force contraction dipole.

and rotary motors [105] embedded in fluid membranes, or self-propelled par-
ticles like swimming bacteria [162]. In chapter 2, we have used this concept
to analyze the assumption of localized force and the use of finite film thick-
ness in our work on elastic substrates. Recently, we have suggested to use
the concept of force dipoles also to model the mechanical activity of cells
[153]. Cells in an isotropic environment often show isotropic (that is round
or stellate) morphologies. However, since the focal adhesion dynamics is lo-
cal, even in this case there is an anisotropic probing process, that can be
modeled by anisotropic force contraction dipoles. As we will argue below,
only an anisotropic probing process can react to anisotropies in the environ-
ment. The anisotropy of focal adhesion dynamics becomes apparent when
stress fibers start to orient in one preferential direction, either spontaneously
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during a period of large mechanical activity, or as a response to some external
anisotropy, or during cell locomotion. In this case, cellular dipoles have been
measured to be of the order of P~ —107'!J (this corresponds to two forces
of 200 nN each, separated by a distance of 60 pm) [151, 25]. In Fig. 4.1 we
show schematic representations of the physical and cellular cases discussed
here.

In order to sense the mechanical properties of their environment, cells can
make use of the fact that these properties modulate the build-up of their own
force patterns. In this chapter, we focus on the role of stress and strain in the
extracellular material for cellular decision making in regard to positioning and
orienting in a soft environment. In order to calculate how stress and strain are
propagated in the environment, the extracellular material is modeled using
isotropic linear elasticity. This is certainly true for synthetic elastic substrates
(usually made from polydimethylsiloxane or polyacrylamide). The typical
physiological environment for anchorage-dependent cells are hydrogels, whose
mechanical properties are more difficult to model, in particular due to their
viscoelastic and non-linear behaviour. Yet our calculations will show that our
model has large predictive power also for this case, possibly because elastic
deformations of hydrogels become encoded in plastic changes that later can
be detected by active mechanosensing in a similar way as persistent elastic
deformations. Given the assumption of isotropic linear elasticity, we can
calculate how stress and strain follows from the force dipoles by solving the
elastic equations for the geometry and boundary conditions of interest.

The most critical part of our modeling is the way in which physical or
cellular force dipoles react to stress and strain in their environment. This
subject has been treated extensively for the case of atomic defects in tra-
ditional condensed matter systems [173, 100, 147]. Here defects are usually
modeled as isotropic force expansion dipoles. The equilibrium configuration
follows by minimizing the sum of the elastic energy of the strained medium
and the direct interaction energy between force dipole and elastic environ-
ment. The first term represents a restoring force and raises the energy (i.e.
its sign is always positive), while the second term is a driving force that
reduces the total energy (i.e. its contribution will always be negative). The
equilibrium configuration will correspond to the minimum of the total energy
as a function of position and orientation of the force dipoles, which results in
an effective, so-called elastic interaction between the force dipole and other
dipoles, sample boundaries or external strain fields. One central result of
these studies is that the direct interaction between isotropic force dipoles in
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an isotropic elastic material vanishes [161] and that they interact through
a boundary-induced (image) interaction that varies on the length scale of
the sample size (leading to macroscopic modes) [173]. For anisotropic force
dipoles, the direct elastic interaction does not vanish.

In contrast to this physical case, the effective behavior of active cells usu-
ally follows from dynamic and tightly regulated non-equilibrium processes
inside the cell. In this chapter, we will show that despite this severe com-
plication, it is still possible to describe the active response of mechanosens-
ing cells in an elastic material in the same framework as the physical case
[18, 17]. In particular, we consider interactions with external strain fields,
sample boundaries or other physical force dipoles/cells. Although there are
marked conceptual differences between the physical and cellular cases, they
both require to solve the elastic boundary value problem to predict the result-
ing structure formation. Since cells are modeled as anisotropic force dipoles,
these calculations are in general more involved than similar calculations for
isotropic force dipoles. Our model can consistently explain a large body of ex-
perimental evidence for the behaviour of fibroblasts both on elastic substrates
and in collagen gels. Our theory not only contributes to a better understand-
ing of physiological processes involving mechanical activity of cells (including
tissue maintenance, wound healing, angiogenesis, development and metasta-
sis), in the future it also might be used to predict cell behaviour in artificial
tissues, close to implants and on compliant biosensors.

4.2 Modeling

4.2.1 Force multipoles

In the following, we model a mechanically active cell as a localized force
distribution in an elastic medium. In order to describe its mechanical action,
we use the concept of a force multipolar expansion, which has been applied
before for the description of point defects in condensed matter systems [173,
100, 147]. Force multipoles have been defined in chapter 2, compare Eq. (2.6).
For both the cellular and physical situation we are interested in, we can
assume local forces. For point-like defects, one can moreover assume that the
overall force vanishes, because due to Newton’s Third Law, the forces exerted
by the defect on the elastic medium and by the elastic medium on the defect
have to balance each other (the same argument applies to point defects in a
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fluid medium [141, 105, 162]). For cells, the situation is more complicated,
because they are at the same time in contact with the elastic matrix and an
aqueous medium, thus unbalanced forces might appear in the elastic matrix,
which are balanced by viscous forces in the aqueous medium. However,
viscous processes in the fluid medium decay very rapidly on the timescale of
cell movement. Therefore unbalanced forces might occur for short periods of
time, e.g. during back retraction of locomoting cell, but during most of the
time, cells can be expected to be in mechanical equilibrium, as suggested by
experiments measuring force patterns of both stationary and locomoting cells
on elastic substrates [42, 151]. Our model for cellular force patterns can be
interpreted as one stress fiber connecting two focal adhesions. Obviously this
minimal system obeys mechanical equilibrium. Then overall force vanishes
and the force dipole is the first relevant term in the multipolar expansion
Eq. (2.6).

Force dipoles are classified according to their symmetry properties into
isotropic dipoles (centers of contraction or dilation), anisotropic dipoles with-
out moment and anisotropic force dipoles with moment [118]. Force di-
latation and force contraction dipoles have only positive and only negative
eigenvalues, respectively. For example, in three dimensions three pairs of
juxtaposed forces, one for each coordinate direction, form an isotropic force
dipole, where P;; = P¢;;. Such a force dipole describes a spherical inclusion
in a simple cubic lattice, see Fig. 4.1a [173]. Applied to two dimensions,
it describes atomic defects adsorbed onto a substrate [100]. An anisotropic
force dipole without moment is a non-diagonal, but symmetric tensor. For
example, for a couple of juxtraposed forces with a dipole strength P and an
orientation in direction l_: we can write the force dipole tensor as P;; = Pl;-l}.
Such dipoles are used below to describe the probing force patterns of cells, see
Fig. 4.1b and ¢ [153]. An anisotropic force dipole without moment oriented
in the z-direction reads P;; = PJ;.0;, and describes for example an atomic
defect intercalated in graphite [147]. Finally, an anisotropic force dipole with
an angular moment describes a set of two opposing forces F separated by a
distance [ oriented arbitrarily with respect to ]3, which leads to P;; # Pj;. In
this paper, we only consider force dipoles without such moments.

4.2.2 Elastic interactions for physical dipoles

The elastic medium surrounding a particle can mediate an elastic interaction
with other particles, sample boundaries or external strain fields. It is impor-
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tant to note that this effect requires a direct interaction of the particle with
its elastic environment. In traditional condensed matter systems, the direct
interaction is usually a quantum effect (e.g. Born repulsion for defects inter-
calated into a crystal lattice or van der Waals attraction for defects adsorbed
onto a crystal lattice). The interaction of a single particle localized at 7 with
the elastic medium can be described by an interaction potential V(7 ),
which not only depends on position 7, but which also is a functional of the
displacement field @(r") of the elastic medium. For a fixed particle position
7, we can expand the interaction potential with respect to the displacement
field:

Va7, @) ~ —/fi(FJr S (7 + 5) d®s (4.1)

where f; = —dV;/du;|u,—o is the force density exerted by the defect onto the
elastic medium in its undeformed reference state. Here and in the following,
summation over repeated indices is always implied. The expansion can be
terminated after the linear term because we assume small deformations, or,
equivalently, small forces. This linearized interaction potential is widely used
in the literature on elastic defects in traditional condensed matter materials
[173, 100, 147]. For later use, we also note that Eq. (4.1) can be rewritten in
terms of the force multipoles defined in Eq. (2.6), if one makes the assumption
that the interaction of the defect with the medium is short-ranged. Then

[e.e]
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where indices after the comma denote derivatives of the displacement field
with respect to position (u; = Ou/dr;). In this way, all the details of the
direct interaction between medium and defect are subsumed in the defect
force pattern and one can study elastic effects in different materials within a
common theoretical framework, as long as the two assumptions of small and
localized forces are valid.

The displacements of the elastic medium are controlled by a competition
between the direct interaction between defect and medium and the elastic
strain energy of the medium under the constraints of adequate boundary
conditions. The strain energy is [99]

1 S -
V. = 3 /d3r Cijrrthiz (T) g (1) (4.3)
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where w;;(7) is the strain tensor and Cj;x; the elastic constant tensor of the
medium. Consider now the general case of an elastic medium subject to load-
ing with defects with an overall volume force density f({/*},7) = Y o),
where a numbers the different defects. Then the total energy of the system
is

Vim g [ @ Cony@un() — [ @1 () - § 48 £ () (4.0

where the first term is the strain energy V. and the second term the direct
interaction Vz = 2 Vy(™). The surface force density f* in the third term
acts as a Lagrange multiplier that enforces the boundary conditions at the
sample surface S. For a fixed defect configuration, the displacements (7)
are determined from 0V, /0@ = 0, which defines mechanical equilibrium:

C’ijklukld(f') == —fz({T_’a},T_”) 7?111 V, (45)

and the boundary condition at the surface of the elastic material:
C’ijklukl(f')nj(F) = ff(f’) FOH S, (46)

where 7 is the outward directed surface normal of the surface element dS.
By combining Eq. (4.5) and Eq. (4.3), one finds V, = %deT fiu; = —%Vd.
Therefore the overall energy V; = Vy; + V., = %Vd = —V, and the overall
energy can be written as function of the defect configuration only. In this
way, the direct interactions of the particles with the medium can be rigorously
transformed into an indirect interaction between defects. This also allows the
calculation of the interaction of a single defect with a boundary induced strain
field or an external strain field applied at the boundary. The groundstate
configuration of elastically interacting defects is obtained by minimizing total
energy V;.

4.2.3 Elastic interactions for active cells

The forces exerted by mechanically active cells on the environment are mainly
due to actomyosin contractility. Thus, in contrast to the interaction of phys-
ical force dipoles with the elastic medium, where the force can be derived
from conventional interaction potentials, cellular forces are continuously and
actively generated by the cell and involve non-equilibrium processes, that
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(a) (b)

Figure 4.2: An adherent cell actively pulls on its soft environment through cell-
matrix contacts. Experimentally, one finds that cells orient themselves in the di-
rection of maximal stiffness of the environment. With this cartoon, we present one
possible mechanism by which active mechanosensing in an elastically anisotropic
medium might lead to cell orientation. The local elastic environment is represented
by linear springs with different spring constants K, as indicated by differently sized
springs. For upregulation of a contact, the cell has to invest the work F?/2K.
Therefore, upregulation is more efficient for larger K. (a) In an isotropic environ-
ment, all spring constants are the same, growth at different contacts is similar and
the cell does not orient. (b) If spring constants are largest in one specific direction,
the corresponding contacts outgrow the others and the cell orients in the direction
of maximal stiffness of the environment.

are tightly regulated by biochemical events inside the cell. Hence, the in-
teractions of cells with an elastic environment are more complicated than
for physical defects and there is little a priori reason why they should be
described by Eq. (4.1). Motivated by recent experiments with elastic sub-
strates [135, 116, 179], we will now argue that despite these complications, a
similar description as for the physical case can be employed for the cellular
one [18, 17]. We ask which kind of information a cell can extract from its
elastic environment using its contractile machinery. An appropriate scalar
quantity to characterize the environment is the work the cell has to perform
in order to build up a certain level of force against the elastic environment.
Experimental observations suggest that active cell behaviour amounts to a
simple preference for large effective stiffness, which corresponds to a mini-
mization of this energy. As a simple analogue, consider a linear spring. In
order to build up a certain force F', the energy W = Kz?/2 = F? /2K has to
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be invested into the spring, where x is displacement and F' = Kz is force at
equilibrium. If there is a choice of different springs with different spring con-
stants K, the smallest amount of energy W to build up F has to be invested
into the spring with the largest value for K. In the case of cells, the different
springs correspond to different directions as probed by different stress fibers,
and on the long run, the cell will orient in that direction that corresponds
to the largest value of K, possibly because in this direction, the build-up of
force is most efficient. The example of the linear spring can also be used to il-
lustrate the main difference to the physical case, when the final configuration
is determined by the overall energy V; = K1?/2 — Fo = —F?/2K = —W.
Thus in contrast to the case of cellular force dipoles, for physical dipoles min-
imal values of stiffness K are most favorable. Our suggestion is presented in
Fig. 4.2 as a cartoon.

We now explain our reasoning in more detail for the case of cells in a
three-dimensional environment described by continuum elasticity theory. In
order to identify a suitable analogue to the spring constant K, we introduce
the concept of local effective stiffness of the elastic environment. We define
this quantity to be the work W required to build up a unit force in the elastic
medium. The deformation work W required to build up an arbitrary force

—

distribution f(7) is given by:

W = /d3T / C’ijklukl(F)duij(f’), (47)
0

which in the absence of external prestrain is equivalent to the energy stored
in the elastic medium given in Eq. (4.3). Then integration by parts gives

1 L1
W= 2 /d?’r ;i (7) Cijrun j () + 2 fdg 15 Cijrtinr (7 ui (7) - (4.8)

Applying the mechanical equilibrium conditions of the elastic medium, Egs. -
(4.5,4.6), yields

W= / Pr a7 + ]f 45 ui(7) f3(7) . (4.9)

In an infinite medium the boundary condition at the surface yields a vanishing
surface integral. Hence for a force distribution centered around 7, the volume
integral can be turned into a local expression by using the definitions of
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Eq. (2.6):
N 1/f<*+*) (7 + 5) d° 1§: Lp (7). (4.10)
W= = — (r+s) u;(r+s s == — iy Wiy i (7). .
2 7 7 2 g n' 1.t W2,21 ...

In particular, for a force monopole and a force dipole one finds W™ =
sPu(7) and W™ = JPju (), respectively, where @™ and u are the
displacement and strain tensor fields caused by the respective force multi-
pole in an infinite homogeneous medium. W relates the effective stiffness
encountered by a cell to the elastic constants. Since strain scales inversely
with elastic constants, W decreases if the elastic constants increase. For an
elastically anisotropic medium, W varies with the direction of force appli-
cation, which provides an orientational clue for cell orientation. As we will
see below, tensile prestrain or boundary-induced tensile image strain also
leads to an increased effective stiffness. Therefore minimization of W cor-
responds to the experimentally observed cellular preference for large effective
stiffness.

4.2.4 Isotropic elastic medium

The mechanical equilibrium condition Eq. (4.5) states that the applied body
forces f;(7) are balanced by the internal restoring forces o;; ; (), where o;;(r) =
Cijkiug (7) is the stress tensor. In the following, we will consider only isotropic
elastic materials, that is there are two elastic constants, e.g. the Lamé co-
efficients p and A\ or Young modulus F (elastic rigidity) and Poisson ratio
v (that describes the relative importance of shear and compression modes).
For our purpose, it is convenient to define a third pair of elastic constants,
A=X/pand ¢ =2u+ X\ = u(2+A). Therefore Poisson ratio v = A/2(A+1)
and v = 1/2,1/4 and 0 correspond to A — oo, A = 1 and A = 0, respec-
tively. In practice, E will be of the order of a few kPa, which is a typical
value for physiological tissues (simple scaling shows that for a typical force
F =10 nN at focal adhesions, a deformation in the ym-range corresponds to
E =10 kPa). Values for the Poisson ratio v are close to 1/2 (incompressible
medium) both for synthetic elastic substrates and physiological hydrogels.
However, other values for v might be realized in future applications, e.g. for
artificial tissues or on compliant surfaces of biosensors. For isotropic elastic-
ity, the elastic constant tensor of the medium reads Cjx = A6;;0k + 2060505
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and Eq. (4.5) is conveniently rewritten using a vector notation as:

AU(F) + (1 + A)VV - id(r) = —% 7in V, (4.11)
which is a linear second order differential equation for the displacement field
and has to be solved with the appropriate boundary conditions.

Since the differential equation Eq. (4.11) is linear, the superposition prin-
ciple applies and the boundary value problem is formally solved by deter-
mining the Green tensor G;(7, % ), i.e. the kernel for a point-like body force
fi(F) = fié(7 — 73) The elastic fields of more complicated force distribu-
tions can be obtained by convolution of the Green tensor with the force
density, i.e. u;(7) = [ Gi;(7, 7)) f;(r")d*"'. The elastic fields resulting from
force dipoles are obtained by differentiation of Gy, u;(7) = Gy k(7 7 )Py and
wi (7) = G (7, ﬁ)Pkl. In general, the determination of Green functions in
elasticity theory for a given geometry and boundary condition is rather diffi-
cult, since the second term in Eq. (4.11) couples different components of the
displacement field. By taking the Laplacian of Eq. (4.11), one arrives at the
biharmonic equation AA% = 0 for the displacements. Thus, harmonic po-
tential theory is frequently used, for instance in the stress function y-method
[99] and in the Galerkin-vector approach [126], in addition to other methods
like expansion of « in terms of a suitable complete basis set of orthonormal
functions [80].

4.2.5 External strain

We now consider how a cell establishes a force pattern in a prestrained ho-
mogeneous medium. The work required to generate a force pattern in the
presence of an externally imposed strain tensor field ug;(7) is given by:

ug ]
W = /dgT’/ C'Uklukl(F)duw(f’)
0
—/d37" / ! C’Uklukl(f’)dum(f") =W 4+ AW*® (412)
0
with

- o0 1
AWE = /d3r Oijklui;uzl(m = Z E‘Piluiniuzil...in (7). (4.13)

n=0
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The derivation of Eq. (4.13) proceeds along the same lines as for Eq. (4.10).
In particular, for a single force dipole one gets AW® = Pj;us (). Because of
contractile cell activity, P;; has negative eigenvalues (P < 0). Thus, tensile
prestrain (uf; > 0) decreases W as does a larger rigidity £ and hence is in-
terpreted by the cell as an increase in effective stiffness (strain-stiffening). In
contrast, compressive prestrain corresponds to a decrease in effective stiffness
and hence is avoided by the cell.

4.2.6 Boundary-induced image strain

We now consider the energy involved to deform an elastic medium in the
presence of a sample boundary. In order to quantify the effect introduced
by the boundary, we split u;; = w7y + uﬁ?j into a contribution arising in an
infinite medium v} and a boundary induced strain field u?j (image strain),
that depends on sample geometry and boundary condition. 4> ensures that
the force balance is satisfied everywhere in the sample volume V. However,
> will not satisfy the boundary condition at S, that requires to introduce .
In order to keep the force balance in the sample, the image displacements have
to be homogeneous solutions of Eq. (4.11). Otherwise they can be chosen in
such a way that the boundary conditions are satisfied. Now W = W>®+AW?,
where W™ is the energy of the infinite medium and AW? is the additional

energy due to the boundary effect. For the latter, we have

AW =5 [ @ 1@l + 5 §dS £ (4.14)
which includes both the effects of fixed boundary strain and fixed boundary
forces. In principle, the boundary conditions in a physiological context can
be very complicated. In our calculations we will restrict ourselves to two
fundamental reference cases, namely free boundaries, where the normal trac-
tions vanish at the boundary, i.e. f#(7) = 0, and clamped boundaries, where
the displacements vanish at the boundary, i.e. u;(7) = 0. We will refer to the
former as the Neumann problem and to the later as the Dirichlet problem.
In both cases, the surface integral in Eq. (4.14) vanishes. Thus, the change
in effective stiffness induced by a boundary as encountered by a force dipole
reads AW?® = 1P;;ul (7). In this way, cells can actively sense not only the

/[/7j
presence of a close-by surface, but also its shape and boundary condition.
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4.2.7 Elastic interactions between cells

Strain fields produced by other cells may be large enough to be detected as
external strain by the cell, which gives rise to an elastic interaction of cells.
Even if cells have initially isotropic force patterns, they will sense anisotropic
strain and begin to polarize. The change in stiffness encountered by a force
pattern f centered around 7 caused by a second force pattern f centered at
r’ reads:

AW / s fi(F + i+ 5)
_ / / Bsds fi(F + &Gy (7 + 5,7 + §) f1(77 + 5)

11
= ZZ — PisiniGijin oo (P T VP g s (4:15)

n!'m!
n=0 m=0
where the indices 4; ... %, denote derivatives of the Green function with
respect to the unprimed coordinates and j; ... 7, derivatives with respect

to the primed coordinates. For translationally invariant geometries, for in-
stance in infinite space, Gy;(7, ') = Gy;(7—17) and derivatives for j; become
equivalent to derivatives for —i;. As a model for elastically interacting cells,
we consider how identical, static anisotropic contraction dipoles organize in
a soft medium in order to sense maximal effective stiffness in their environ-
ment. The case n = m = 1 in Eq. (4.15) corresponds to the force dipolar
interaction:

AWFP' = Pyug(7) = PuGiju (7, 77) P (4.16)

and will be discussed in more detail below.

4.2.8 Summary modeling section

To summarize the first part of this chapter, both physical defects and active
cells respond to elastic deformations in their environment and we suggest that
the same mathematical formalism can be used to describe both situations. In
fact, all formulae derived in this section for interactions of cells with external
strain, sample boundaries and other cells as quantified by W describe the
corresponding interactions of physical dipoles as quantified by V;, with W
and V; being related to each other simply by a switch in sign. This result
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is typical for situations described by energies with quadratic scaling, as ex-
plained above for the simple case of a linear spring. For different situations of
interest we found the same result AW = P;u;;, where u;; is the strain tensor
evaluated at the position of the force dipole P;;. Depending on the situation
of interest, this strain tensor can correspond to externally imposed strain,
image strain induced by a sample boundary or strain due to the traction of
other force dipoles. Our formula shows that cells can sense anisotropies in
their environment only through an anisotropic probing process: if the prob-
ing process were isotropic, P;; = Pd;;, we would find W = Pu;; and cells
could only sense the scalar quantity wu; describing the local relative change
in volume, but not any tensorial quantity like the direction of external strain.
It is important to note that the above equations for active cells are not
interaction potentials in a strict physical sense. Rather these equations try
to quantify information that cells can gain by pulling on their environment
and show how external perturbations result in changes in effective stiffness.
The experimental observation that active cells prefer large effective stiffness
in their environment leads to the interaction laws for cells given in Egs. -
(4.13,4.14,4.15). In this way, we can predict cellular self-organization in soft
media from an extremum principle in elasticity theory, in excellent agree-
ment with experimental results [18, 17]. The structure formation for physical
dipoles follows simply by inverting the sign of the interaction laws derived for
active cells. This case might also apply to artificial or inert cells [153]. For
biomimetic systems, one might think of vesicles or nanocapsules which con-
tract on adhesion to an elastic environment. For cellular systems, one might
think of cells which are deficient in regard to the experimentally observed
dynamic response of normal cells to elastic properties of the environment.
In regard to modeling of active cells, we assume that they probe their elas-
tic environment through an anisotropic process in which force is of central
importance, and that this process results in a cellular preference for large ef-
fective stiffness in the environment. Although the phenomena described here
are closely related to cell morphology and the dynamics of focal adhesions,
these aspects are not the subject of the present work. In particular, the mag-
nitude P of the cellular force dipole tensor does not enter our predictions, in
contrast to the positions and orientations represented by the dipole tensor
P;;. This reflects the fact that our model focuses on the extracellular proper-
ties that can be sensed by the cell. Since we avoid modelling cell morphology
and dynamics of focal adhesions, we are able to describe the active behavior
of cells in the same mathematical framework developed before to describe
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physical defects in a deformable medium. In particular, both cases require
the solution of the corresponding elastic boundary value problem given in
Eq. (4.5) and Eq. (4.6). In the next section, we present exact solutions for
different cases of interest.

4.3 Examples of cell organization

4.3.1 Interaction with external strain

As an example for cell organization in a prestrained environment, we consider
a homogeneously prestrained elastic slab with an uniaxial stress p acting
along the z-axis. The other faces are traction free, i.e. the stress tensor
has only one non-zero component, o,, = p . Then the corresponding strain
tensor has only diagonal components uf; = £{(-v,0,0),(0,-v,0),(0,0,1)}
independent of position. Contraction of this external strain tensor with the
force-dipole tensor P;; according to Eq. (4.13) leads to:

_pP

AWE
W E

[(14+v)cos® 8 —v] (4.17)
where 6 is the orientation of the dipole relative to the direction of externally
applied strain. Eq. (4.17) applies to both a cell on the top surface of the
strained slab (elastic substrate) or inside a strained infinite elastic material
(hydrogel). For tensile strain (p > 0) the cell senses maximal effective stiff-
ness along the direction of stretch § = 0, thus cells orient preferentially in
the direction of stretch in a prestrained environment (in Ref. [18], tensile
strain has been defined with the opposite sign, thus Eq. (4.17) carries the
opposite sign there, too). On the other hand, due to lateral contraction, cells
in a precompressed environment (p < 0) will orient perpendicularly to the
axis of compression, which is a combined effect of compressive strain avoid-
ance in the z-direction and maximal tensile strain detection in the perpen-
dicular directions, which will be most pronounced for incompressible media
(v &~ 1/2). In contrast, a physical anisotropic contraction dipole, causing
a local contraction of the environment along its axis, is repelled (attracted)
by tensile (compressive) strain, because the negative interaction energy with
the medium is reduced (increased) due to the expansion (compression) of the
environment caused by the external field. Physical anisotropic contraction
dipoles therefore orient in the opposite way as mechanosensing cells with
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respect to external homogeneous strain. As an aside, we note that there
exists another interesting possibility for the reaction of a force dipole to ex-
ternal strain, which however cannot be described in terms of minimizing W*¢
or V; = —W,. Namely, if there was some mechanism which would lead to
the avoidance of both tensile and conpressive strain, then the optimal con-
figuration would be V; = —W, = 0. One easily calculates that this case
corresponds to 6 = arccos y/v/(1 + v). For v ~ 0.4, this yields 6 ~ 60°. In
fact, such an response has been reported for stationary cells on elastic sub-
strates cyclically stretched with a 1 Hz frequency [38]. However, in this case
cells are subject to large passive deformations, while here we are concerned
with active mechanosensing.

4.3.2 Dipoles on elastic halfspace

Mechanically active cells adhering to an elastic substrate can interact elas-
tically with each other according to Eq. (4.15). If the thickness of the sub-
strate is much larger than the elastic displacements on the top surface, it
can be modelled as a semi-infinite elastic space [151]. The Green function
for a force applied to the surface of a semi-infinite space is given by the
well known Boussinesq solution [99]. Since tangential forces are expected to
be much larger than normal forces, P;; can be restricted to the z-y-plane.
Moreover the normal displacement component contributes very little to the
elastic interaction and we may use the two-dimensional (2D) Green function,
i.e. only the x- and y-components of the Boussinesq solution:
/

= RR;| 1
G?J-D(T,T) = a1 {(125U+ R2J}E, (418)

where ¥ = 7 — r’ and

O AA+2) v(1+vw) 24N 1w
al_47rc(1—|—/\)_ A

(4.19)

Note that the case v = 1/2 has been used in Eq. (2.2) for our elastic substrate
work. It is convenient to define the angles 6, 8" and « via the scalar products
cosf = [ - 7, cost = -7 and cosaw = [ - I'. Then the change in effective
stiffness encountered by one cell due to the traction of the other is given by:

PP’

A PP _
W =mor

f(0.6', ) (4.20)
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Figure 4.3: Different structures arising from elastic interactions of anisotropic
force dipoles on top of an elastic halfspace. (a) Physical force dipoles for Poisson
ratio v & 1/2 locally form a T-configuration. (b) Linear electric quadrupoles have
the same optimal configuration. (c) Physical force dipoles for Poisson ratio v &~ 0
align side by side in a railway track like configuration. The crossover between
(a) and (c) occurs at ¥ = 1/5. (d) Cellular force dipoles align in strings, similar
to electric dipoles and independent of the value for v. (e) - (h) Small clusters of
physical force dipoles are subject to surface reconstruction. For five particles, (g)
and (h) are nearly degenerate. (i) At high densities, herringbone order results. (j)
In terms of energy, the square lattice is most favorable.
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with the angular dependence:

1
f(0,0,0) = 3(cos® 8 + cos®§' — 5cos®f cos® 0 — §>

— (1 —ay)cos’a —3(ay — 3)cosacosfcostl. (4.21)

Since the displacements of a force dipole scale ~ R~2, the strain field scales ~
R~ with distance, which leads to a long-ranged elastic interaction (W5 ~
R73) typical for dipolar interactions. The complicated angular dependence
in Eq. (4.21) results in a highly anisotropic interaction. Note that for the
planar geometry, there are only two independent angles. Nevertheless here
we prefer to write the interaction symmetric in the primed and unprimed
coordinates, since this is favorable for numerical implementations.

AWPP" has a pronounced minimum for aligned dipoles ( = ¢ = o =
0), independent of v. A contractile cell causes a local compression of the
substrate underneath the cell along the contraction axis and tensile strain
at more distant points. Hence at distant points maximal strain-stiffening
occurs along the axis of contraction. A second cell will therefore upregulate
its mechanical activity along the same direction. This scenario constitutes
a positive mechanical feedback loop for cell alignment, since in the aligned
configuration the mechanical activity of one cell upregulates the activity of
the other and vice versa. At low cell densities, a common pattern for the
organization of elastically interacting cells will therefore be the formation of
strings of cells, similar to the case of electric dipoles [171]. Strings might
close into rings so that each cell is fully activated by its neighbors.

The 2D case for physical dipoles has been discussed before for the isotropic
case [100]. Then

- —
— 7

24+ A)?2PP
‘/t = —P5liGij71k(T,T/)Pl5kj = _PP,Gij,ij(F;T) = ( + )

~ 4r(1+ A)cR¥ (4.22)

Thus, for identical dipoles the interaction is isotropic and repulsive. The case
of an isotropic physical dipoles is described by the negative of Eq. (4.20).
Then the groundstate configuration strongly depends on the Poisson ratio v
via the angular dependence of Eq. (4.21). For incompressible media, v = 1/2
(A — o0), dipoles arrange with perpendicular orientations in a local T-
configuration. This leads to rather compact structure formation, with a
square lattice pattern at intermediate and a herringbone pattern at high
dipole densities, similar to the situation with electric quadrupoles [153]. For
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highly compressible media, v — 0 (A — 0), dipoles prefer to align side by
side in a railway track like configuration. For v = 1/5 (A = 2/3), both
states have degenerate energies. Fig. 4.3 schematically shows the different
structures predicted by our analysis.

4.3.3 Dipoles in elastic full space

Strain propagation in an elastic three-dimensional (3D) infinite medium is
described by the Thomson Green function [99]:

0ol = ) %) 00 RzR 1
Gy (Fyr') = a3 {CLQ 0ij + R—QJ} I (4.23)
with
1+v A+1 3+ A
1= = ¥ =B-d)="—F. 4.24
“ 8TE(1 —v) Src " (8 —4v) 1+A (4:24)

The most important result for physical dipoles is the fact that since G5y = 0,
the elastic interaction of isotropic dipoles in 3D vanishes [161]. Therefore
their interaction is completely determined by boundary-induced interactions,
like for hydrogen in metal samples of finite size [173].

For the elastic interaction of two active cells, we find

/
AWPE *aOOPP

=4 5ps [(0,0', ) (4.25)

with the angular function (0,6, «) given by Eq. (4.21) by replacing the
constants a; and ay with af® and a3°, respectively. Note that in 3D there
are three independent orientational degrees of freedom. In Fig. 4.4 we show
a density plot of AWP?" for dipoles with relative orientations a = 0 and
a = m/2 positioned in the x-z-plane for two different values of the Poisson
ratio, v = 0 and v = 1/2. Like on 2D substrates, cells in a 3D environment
encounter a mechanical feedback loop favoring cell alignment. In Fig. 4.5,
we show a Monte Carlo simulation of elastically interacting cells. The finite
temperature used can be interpreted as a measure of the stochastic element
of cell organization. As expected from Eq. (4.25), the cells form strings,
which moreover are alinged in parallel due to an added external strain field
in z-direction. For two parallel dipoles in z-direction placed along the z-axis,
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Figure 4.4: Density plots of cellular interaction potential AW from Eq. (4.25)
for (a,b) parallel and (c,d) perpendicular orientations. In (a,c), Poisson ratio
v =1/2, and in (b,d), ¥ = 0. One dipole oriented along the z-axis is fixed at the
origin, while the other is moved in space. Black denotes areas of attraction and
white areas of repulsion. The interaction potential for physical force dipoles simply
differs in sign, thus black and white exchange meaning. (a,b) Independent of the
value for v, two cells prefer alignment (black region along z-axis). The interaction
in the railway track configuration (along x-axis) changes sign at v = 1/4, when
the black cone vanishes. (c¢,d) The T-configuration is the ground state for physical
dipoles in 3D independent of the value for v (white regions along z- and x-axes).
This is different on an elastic halfspace, in which case the groundstate changes
from the T- to the railway track configuration for v = 1/5.
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Eq. (4.25) gives

AWPP = _A+P (1>3, (4.26)

2rce z

which yields the optimal configuration independent of the value for A (or,
equivalently, v). Again this behaviour is similar to the ones of electric dipoles
[171]. For two parallel dipoles in z-direction placed along the x-axis (railway
track configuration), we find

AWPP' = (A-DPF (1)3 . (4.27)

8rc T

Thus AW changes sign as A varies through 1 (v = 1/4). Finally, in the
T-configuration, where the first dipole is fixed in z-direction at the origin
and the second dipole is positioned in the x-y-plane oriented perpendicular
to the z-axis, we find:

AWPP = _A+ne <1)3 (4.28)

dre T

which is always positive and yields a globally maximal AW Therefore
it corresponds to a globally minimal V; = —AW??" and the T-configuration
is the groundstate of two physical anisotropic contraction dipoles, indepen-
dent of the value for v. The aggregation of physical dipoles in 3D is more
complicated than in 2D, since the T-configuration cannot be continued in 3D
without causing frustration. This leads to the existence of many metastable
states.

4.3.4 Dipoles in elastic halfspace

The elastic isotropic halfspace with a clamped surface at r3 = 0 constitutes
a Dirichlet problem with vanishing displacements at the planar boundary,
u; () = 0 for 3 = 0, whereas the free surface leads to a Neumann boundary
value problem with vanishing surface tractions, o;;()n; = 0 for r3 = 0 with
7 = (0,0,1) being the surface normal. The boundary value problem of the
semi-infinite space can be solved using the concept of image singularities.
Image approaches are well known from electrostatics: the simplest example
is the charge in front of a metal plate. Here, the field due to a charge () at
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Figure 4.5: Monte Carlo simulations of elastically interacting cells in an external
strain field. The temperature used in the simulation represents the stochastic
element of the process of cell organization. Without external strain, cells form
strings. In its presence, strings align in parallel.
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Figure 4.6: Image fields @ for a contraction dipole P;; positioned at P = (0,0,d)
in front of a clamped surface of a semi-infinite space for Poisson ratio v = 1/2.
Dipole orientations are (a) § = 0, (b) 6 = 7 and (c) # = 5 with respect to the
surface normal. At the clamped surface the image displacements @® balance the
displacements #*° of an infinite space. Inside the sample, they are homogeneous
solutions of the elastic equations. The interaction of a dipole with the clamped
surface is equivalent to the interaction of the dipole with a set of image singularities
placed at 7 im = (0,0, —d). For a free surface, the normal tractions vanish and all
image displacements change sign. For v < 1/2, there is an additional contribution
to @’ derived from line images. However, the interaction of force dipoles with the
boundary does not change qualitatively as v is varied.



CHAPTER 4. ELASTIC INTERACTIONS 98

7 = (r},r5,r) with the boundary at r3 = 0 is equivalent to the field of the

charge and an image charge —Q at 1/, = (1,75, —r%) without a boundary.
In analogy, the displacement field due to a unit force at 7 close to a planar
surface of a semi-infinite space is equivalent to the superimposed fields of a
set of force nuclei placed in a homogeneous infinite substrate, i.e.:

Gij(7F, 1) = G (7, 17) + G, 7), (4.29)
where G379 is the Green function in an infinite medium, Eq. (4.23), and G}
specifies its image system, which is a sum of functions derived from G7¥ by
differentiation (point images, i.e. forces and force dipoles) or integration (line
images, i.e. a line of force nuclei). Despite its rather simple geometry, the
image system of the elastic half-space is rather complicated and consists of up
to 15 image nuclei, including point nuclei located at ri = (r},ry, —r3) and
line images running normal to the surface and extending from —r% to infinity.
The image system of the free halfspace was calculated by Mindlin using a
Boussinesq-Galerkin representation [126]. The Green function of the clamped
half-space has been derived by Phan-Thien applying a Papkovitch-Neuber
ansatz, however without revealing the image system in detail [136]. Quite
recently, Walpole [174] used methods of general harmonic potential theory
and presented the image system for two joined half-spaces, which includes
the clamped or free half-space as limiting cases of infinite or vanishing shear
rigidity in one of the joined spaces. Using his results, we obtained exact
expressions for G for both the clamped and free boundary conditions [17].
In Fig. 4.6 we plot the image displacements @” resulting by differentation of
the image Green function for three different dipole orientations with respect
to the surface normal of a clamped halfspace. For the value v = 1/2 used
here for the Poisson ratio, all image displacements happen to point in the
opposite direction for a free surface.
According to Eq. (4.14), the change in effective stiffness encountered by
a force dipole P,; positioned a distance 15 = d away from the surface is
proportional to the induced image strain at the position of the dipole, i.e.

— 2 yim (= 7
AW (1) = %PU%PMTQW. Because of rotational symmetry with re-
spect to the surface normal, the surface induced change in effective stiffness
sensed by a dipole depends only on its distance d to the surface and the angle

cos = 11 - | between dipole orientation and surface normal. We find:

2

AW*(d,0) = 25671 Ed>

(a, + b, cos® 0 + ¢, cos* 6), (4.30)
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Figure 4.7: (a) AW for a cell with dipole strength P which is a distance d away
from the surface of an elastic halfspace with rigidity £, plotted in units of P2/Ed>
as a function of angle 6 between cell orientation and surface normal (rescaled by
256m). Solid and dashed lines correspond to Poisson ratios v = 1/2 and v = 0,
respectively. (b) AW for a cell in an elastic sphere of radius R, plotted in units of
P/ER? as a function of distance r to the sphere center in units of R for v = 1/3
(rescaled by 15/8). Solid and dashed lines are parallel (§ = 7 /2) and perpendicular
(0 = 0) orientations, respectively (all other orientations yields curves which lie
inbetween the ones shown).

with the coefficients

(1+v)(5+2v(6r—1)) (1+v)(154+32v(v — 1))

“ = 1—v 2 (e T
y = (LHv)(22 4 4v(2v - 9)) o ()443 —T2)
v 1—v v (1—v)(3 —4v)
(4 v)(13(1 —2v) + 1207) . A+ w)(7T-38y)
= 1—v S Ti—ne—mw) 13D

being rational function of the Poisson ratio v. AW? scales quadratically in
P, because the image strain scales linearly in P, in other words, the force
dipole interacts with its own images. The interaction of the force dipole with
the surface is a long-ranged effect and scales like a dipole-dipole interaction
potential, that is ~ d=2 . For free and clamped surfaces, all coefficients in
Eq. (4.31) are positive and negative, respectively, irrespective of v. Therefore,
the prefered cell orientation close to the surface , i.e. the configurations of
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(a) (b)

Figure 4.8: Predicted cell orientation in a hydrogel close to a surface (a,b) and on
elastic substrates (c,d). (a) Cells prefer the direction of maximal effective stiffness.
Thus, they orient perpendicular to a clamped surface. (b) For a free surface,
this direction is parallel to the surface. (c) Cells close to a boundary between
soft (left) and rigid (right) regions prefer analogous orientations as cells close to
clamped and free surfaces in a hydrogel, respectively. (d) Cells interact elastically
to form strings, because in nose-to-tail alignment, the mechanical activity of one
cell triggers the one of the other cell, thereby forming a positive feedback loop.

minimal AW?, are parallel (§ = 7/2) and perpendicular (§ = 0) orientation
for free and clamped boundaries, respectively. In Fig. 4.7a we plot the angular
dependence of AW? for v = 1/2 and v = 0.

Since |AW?| ~ 1/d? increases if d decreases, the overall mechanical ac-
tivity of a cell increases towards a clamped surface (AW < 0), but decreases
towards a free surface (AW > 0). Thus we predict that cells preferentially
locomote towards a clamped boundary, but tend to migrate away from a free
boundary. In general, free and clamped boundaries have always opposite
effects. One may think of a clamped (free) surface as the interface between
the medium and an imaginary medium of infinite (vanishing) rigidity, which
effectively rigidifies (softens) the medium towards the boundary. Thus for
clamped (free) boundary conditions, the cell senses maximal stiffness towards
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(away) from the boundary. For clamped boundaries, mechanical activity of
cells is favored and cells can amplify this effect by adjusting orientation. For
free boundaries, mechanical activity of cells is disfavored and the orientation
response is an aversion response. In Fig. 4.8a-c, we schematically depict our
predictions for cell organisation near boundaries.

For the interaction of a physical dipole with the surface, we simply have
to switch sign in Eq. (4.30). Hence, physical dipoles are attracted by free
and repelled from clamped surfaces. A clamped surface prevents the defect
from displacing its environment to lower its potential energy, which results in
a repulsive interaction. In contrast a free surface favors displacements close
to the surface since at a free surface there exist no internal restoring forces
acting normal to the surface. This results in an attractive interaction of the
defect with the surface. Since V; ~ P2, the sign of P does not matter, i.e.
dilation and contraction dipole interact in the same way with the surface.

4.3.5 Dipoles in elastic sphere

As an example for a finite sized sample, we consider the elastic sphere with
radius R. Before we turn to the full problem of anisotropic dipoles, it is
instructive to consider the simple case of an isotropic force dipole P;; = Pd;;
at the center of the sphere. The displacement in an infinite sample is

P 2

inf _ _
w = G = g

(4.32)
We now have to use solutions of the homogeneous differential equation in or-
der to arrive at an image displacement which guarantees the correct boundary
conditions. In this highly symmetric case, it is sufficient to use the trivial,
i.e. linear solution as an ansatz:

img

u;™" = ax; (4.33)
where a has to be determined from the boundary conditions. For force dipoles
in general, u™™ diverges ~ 1/r? and u™ vanishes at the origin. For a free
spherical surface, n; = z;/r and normal stress is

ng T 0 "Ny =

Fau(2 + 3A)% . (4.34)

mc 14
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If normal stress should vanish at r = R, we need

P

me(2+ 3A)R3 (4:35)

Afree =

Therefore the effect of the free surface is to increase the radial displacement
at the boundary (for a force dilation dipole, that is P > 0; for a force
contraction dipole, P < 0, all displacements change sign). For a clamped
surface, the displacement at the boundary has to be decreased to cero:

—-P
Qclamped = 47TCR3 .

(4.36)

The elastic interaction between isotropic force dipoles vanishes in an infinite
isotropic elastic medium. However, for finite sized samples, an interaction is
induced by the image displacements:

Thus this interaction is attractive and repulsive for free and clamped surfaces,
respectively. It is independent of separation and vanishes ~ 1/R3 for large
R.

For the general problem of the elastic sphere, no image system has been
constructed that solves the elastic boundary value problem and it is not clear
whether such an image system exists. Nevertheless, the elastic equations
for the elastic sphere can be solved analytically by applying an expansion
in terms of vector spherical harmonics. This approach has been used by
Hirsekorn and Siems [80] to solve the Neumann problem of an anisotropic
force dipole in an elastic sphere with a free boundary. We will follow this
approach also in order to solve the Dirichlet problem of a force dipole in
a clamped sphere. Both results are then used to calculate the change in
effective stiffness encountered by a force dipole in clamped and free spheres,
respectively.

Analytical solutions to differential equations for scalar fields in spherical
coordinates can be obtained by an expansion in terms of spherical harmonics,
which form a complete orthonormal basis set on the unit sphere. In a similar
way, the general solution to the equilibrium condition Eq. (4.11) for the
vector field @(7) can be expressed as a sum over so-called wvector spherical
harmonics (VSH). These calculations are rather involved [17]. Our results
can be shown to simplify in the limit of isotropic force dipoles to the results
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Figure 4.9: Deformation of an elastic sphere (R = 1, A = 2, ¢ = 1) with a
free surface by a contraction dipole oriented in the z-direction. In (a) the dipole
is placed at the origin, ¥ = (0,0,0). In (b) the dipole is placed off-center at
r= (%, 0,0). The pictures show a cut through the x-z-plane, but it has rotational
symmetry only in (a).

obtained formerly for the case of hydrogen in metal [173]. In Fig. 4.9 we
use our results to plot two examples for a deformed elastic sphere with free
boundaries under the action of a contraction dipole. The final result for
AW?, that is for the interaction of the dipole with the sphere surface, has
the following scaling form:

P? T

b—— J—
AW? = = ful(5.0)

(4.38)
where r is the distance to the sphere center and # is the dipole orientation
with respect to the surface normal. The function f, contains a sum over all
angular momenta of the expansion in vector spherical harmonics and does
not vary qualitatively as v (or, equivalently, A) is varied. With regard to cell
orientation, we find the same results as for the elastic halfspace: cells will
orient parallel (perpendicular) to a free (clamped) surface, respectively. As
shown in Fig. 4.7b, we also find a similar result for the effect of distance to
the surface: for free (clamped) boundary conditions, a small (large) distance
to the sphere center is more favorable, since the surface favors (disfavors)
mechanical activity. The new aspect here is the role of the sphere radius R.
Since |AW/| increases when R decreases, one can effectively rigidify (soften)
a material with a clamped (free) surface by reducing system size. For the in-
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AW in reduced units

Figure 4.10: Cellular dipole-dipole interactions AW = AW> + AW? in an elas-
tic sphere (A = 2) in units of PP’/cR3 for clamped (dashed gray) and free (full
gray) boundary conditions. A z-dipole is fixed at 7= (%, 0,0). A x-dipole (a,b,c),
y-dipole (d,e,f) and z-dipole (g,h,i) is moved along the coordinate axes. The bound-
ary condition introduces corrections to the interaction in infinite medium (black
line).

teraction of a physical dipole with the surface embedded in an elastic sphere,
we once more obtain the opposite results. Dipoles are attracted (repelled)
and orient towards (away from) a free (clamped) surface.

So far we have considered the interaction of a force dipole with the bound-
ary. One may extend our model of cell-cell interactions to cells embedded
in finite geometries and study how their boundaries alter the interaction be-
tween cells. In an elastic sphere containing many cells, we can separate the
contributions to the effective stiffness into a contribution from the boundary
induced field, i.e. a cell-surface interaction as discussed above, and a con-
tribution from the elastic fields of other cells embedded in the sphere, i.e.
a cell-cell interaction term. This contribution is modified with respect to
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the interaction term in infinite medium, Eq. (4.26), by a boundary mediated
interaction term. The indirect interaction term is given by contracting the
dipole tensor of the first dipole with the image strain caused by the second
dipole. The most important result here is that the image term varies on the
macroscopic scale R. For physical dipoles, elastic interactions in finite sized
geometries have been studied extensively, in particular for isotropic dipoles,
that do not interact in infinite medium and where the interaction between
dipoles is mediated solely via the boundary [173]. The interaction of physi-
cal isotropic defects is always attractive (repulsive) for isotropic dipoles in a
free (clamped) sphere. Due to the macroscopic interaction range of isotropic
physical dipoles the indirect interactions lead to structure formation on the
macroscopic scale (macroscopic modes), e.g. in hydrogen-metal alloys. For
anisotropic dipoles the image interaction introduces corrections to the direct
interaction term, which vary on the macroscopic scale. In Fig. 4.10 we plot
the interaction of two anisotropic dipoles in infinite medium and the modi-
fied interactions in clamped and free spheres, respectively. For example, the
image correction in a free sphere for two parallel z-dipoles (one placed at the
sphere center) along the x-axis reads

AW’ (z) = PP'((112 + 352A + 370A% + 135A%) (4.39)
—12(T+ 4A)(2 + BA + 3A%) (%)2 )/(4(2 + 3A) (14 + 19A)mcR?) .

For A — oo (v = 1/2), this becomes

AW () = 76];5;%3 {45 48 (%)1 . (4.40)

For a clamped sphere, we find

PP [—(686 + 280A + 24A2) + 45(1 + A)(T + 4A) (%)2}
AW (z) = (4.41)
120(7 + 2A)meR?
which for v = 1/2 becomes
PP T\ 2
AWl(2) = ——— | -2+ 15 (= . 4.42
Welo) = S [ +15(5) ] (4.42)

Again we find that clamped and free surface result in opposite effects. On
the microscopic scale (i.e. for small cell-cell distances), the direct interaction
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Figure 4.11: Elastic interaction energy V; in units of P?/cR? for two parallel
anisotropic physical force dipoles of magnitude P in an isotropic elastic sphere with
radius R and elastic constants ¢ and A = 2 (Poisson ratio v = 1/3). For this value
of A, the direct elastic interaction is repulsive (dotted lines). (a) Free surface: the
image correction (dashed line) is attractive and generates a new minimum in the
full interaction potential (solid line). (b) Clamped surface: the image correction
is repulsive.

dominates. For macroscopic cell separations, the boundary term introduces
significant contributions that dominate over the direct term close to the sur-
face. For some cases, the boundary can induce new maxima or minima in
the dipole-dipole interaction landscape. Note that for a full treatment, the
dipole-surface interactions have to be included. In conclusion, in contrast to
isotropic dipoles, structure formation of anisotropic dipoles is dominated by
effects on cellular and elastic scales, which result from direct interactions.
Since they compete with boundary induced effects on a macroscopic scale,
in general we expect hierarchical structures.

4.3.6 Summary example section

In the second part of this chapter, we applied the general formalism from
the first part to different situations of interest. In general, we found that
physical and cellular force dipoles interact in opposite ways with each other,
external strain field or sample boundaries, because V;, = —W. For example,
physical anisotropic force dipoles on top of thick elastic films or in infinite
elastic material locally prefer the T-configuration (for Poisson ratio v = 1/2),
while cellular anisotropic force dipoles align in strings (independent of the
value for v). The predicted structure formation for physical force dipoles
and active cells is similar to the ones of electric quadrupoles and dipoles,
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respectively. We also found that in general, free and clamped boundaries
will have opposite effects. For example, cellular anisotropic force dipoles
are repeled and attracted by free and clamped boundaries, respectively. In
the vicinity of these boundaries, they will align in parallel and perpendicu-
lar, respectively. In general, all the interaction laws derived here show the
universal scaling W ~ (P?/El®)f,(6;), where f is a non-trivial function of
Poisson ratio v and the different angles ;, which has to be calculated for
each situation of interest. Except for the case of external strain, the cellular
force pattern interacts with itself (case of boundaries) or with another cellu-
lar force pattern (case of elastic interaction of cells), therefore W ~ P?. The
scaling W ~ 1/I3 is typically for force dipoles. Here the length [ can either
be distance (e.g. between cell and boundary or between two cells) or sample
size (in the elastic sphere). Finally, W ~ 1/E. Although W decreases with
increasing Young modulus F, that is elastic effects become smaller, at the
same time mechanical activity of cells usually increases. For this reason, we
expect that there exists a range of optimal values for E for which the elastic
effects in cell adhesion described here should be most pronounced (possibly
around E = kPa, the physiological order of magnitude for cell and tissue
stiffness).

Our predictions for cell organization in soft media are in excellent agree-
ment with experimental observations. Cell orientation with the direction
of external strain has been reported experimentally many times, both for
fibroblast on elastic substrates [77] and in collagen gels [9, 45]. In the ex-
perimental community, it is also well known that mechanical activity of cells
increases for clamped boundary conditions [68]. The predicted orientation
effects close to boundaries have been observed numerous times, e.g. the par-
allel orientation of cells close to free surfaces [9]. Our model predicts the
same orientation effects for an elastic substrate with two regions of different
rigidities (Fig. 4.8¢): cells on the soft and stiff sides of the boundary orient
perpendicular and parallel to it, respectively. Indeed fibroblasts migrating
from a soft to a stiff region keep their perpendicular orientation and cross over
to the stiff side, while fibroblasts migrating from a stiff to a soft region do not
cross the boundary, but turn by 90 degrees and move parallel to the bound-
ary [116]. Cell organisation in elastic spheres has been monitored before
mainly for rather large cell densities, e.g. for fibroblast-populated collagen
microspheres, an assay which has been introduced to study compaction of
tissue equivalents [127]. In order to study the interaction between single cells
and boundary discussed above, one had to use much lower cell densities. In
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general, collective effects might be of large importance when studying tissue
equivalents. For example, it has been reported that when boundary condi-
tion are changed from clamped to free by cutting the collagen gel, fibroblasts
show the predicted reorientation by 90 degrees only when sufficiently many
cells are present [168]. In fact our calculations and simulations show that cells
can orient in parallel even with respect to clamped boundaries, if there are
sufficiently many cells such that the direct elastic interaction between cells
dominates the single cell response of perpendicular orientation. In practice,
the single cell response might also be disturbed because elastic signals could
be screened by traction of randomly oriented cells. Indeed such an effect has
been reported for experiments with elastic substrates [116].

4.4 Conclusions

It has long been known, especially in the medical and bioengineering commu-
nities, that cell organization in soft media is strongly influenced by the me-
chanical properties of the environment. Here we presented a model which is
able to explain numerous experimental observations that have been reported
for organization of cells (especially fibroblasts) both on elastic substrates and
in hydrogels. The excellent agreement of our results with experiments sug-
gests that cell organization can be predicted from local mechanical properties
which the cell actively senses in its environment. In fact the only property of
cellular regulation which enters our model is the assumption that cells locally
prefer large effective stiffness. Otherwise our modelling focuses on the elastic
properties of the extracellular environment.

We close this chapter by discussing some open issues. Modelling the
soft environment of cells as an isotropic elastic medium is certainly a good
assumption for elastic substrates. The situation is more complicated for hy-
drogels, in particular because they might not behave elastically and because
they feature fiber degrees of freedom. Cell organization in gels is often ex-
plained by contact guidance, the alignment of cells along topographic features
like collagen fibers. Since fibers can become aligned due to cell traction, con-
tact guidance provides a long-ranged and persistent mechanism for cellular
self-organization in tissue equivalents [132]. This process has been modeled
before. In the theory of Ref. [132], flux equations for cellular and matrix
densities are combined with mechanical equations which include cells as cen-
ters of isotropic contraction. This might be a good model for chondrocytes,
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which tend to show a spherical morphology. The anisotropic biphasic theory
(ABT) from Ref. [7] aims at cells like fibroblasts and smooth muscle cells,
whose typical morphology in tissue equivalents is bipolar. ABT introduces
a cell orientation tensor, which is coupled to a fiber orientation tensor, since
cells are assumed to react foremost to fiber degrees of freedom. In our model,
the force dipole tensor represents cell orientation as does the cell orientation
tensor in ABT, but it is coupled to elastic degrees of freedom, since cells are
assumed to react foremost to large effective stiffness.

Because models for contact guidance in tissue equivalents focus on fiber
degrees of freedom and high cell densities, they do not explain the single
cell responses observed on elastic substrates, where contact guidance usually
is ruled out [77, 116]. The large predictive power of our model for elastic
substrate experiments suggests that active mechanosensing by single cells
might also be involved with cell organization in hydrogels. However, for the
collagen assay from Ref. [63] it has been shown that as a result of exter-
nal strain, fibers become rearranged and stress relaxes towards zero. In a
matrix which cannot support any stress, our elastic considerations do not
apply and contact guidance through formerly aligned fibers might be the
only relevant clue for cell organization [63]. However, it is important to note
that in our model, stress is actively generated by cells and thus needs to
be supported only over time scales in which the cell actively senses the me-
chanical properties of its environment. In particular, if fiber alignment has
resulted in some anisotropic mechanical environment, the cell might sense the
anisotropic mechanical properties of the matrix and orient itself correspond-
ingly. This might explain why cells have been found to align to a greater
extent with respect to external strain than the surrounding collagen fibrils
[63] and why our modelling is also successful for hydrogels. In general, fu-
ture experiments are needed to clarify the relative importance of topographic
versus mechanical clues for cell organization in hydrogels, while future mod-
elling is needed to account for the mechanical (in particular, viscoelastic)
properties of hydrogels.

We also want to point out that contact guidance is a bidirectional clue and
provides only guidance, in contrast to external elastic strain, which provides
taxis. In our model, taxis is reflected by the position dependence of AW. For
example, our theory not only predicts that cells prefer to orient parallel to free
boundaries, but also that cells prefer to move away from them. Moreover a
simple preference for cell alignment along fibers does not predict what cells do
if they encounter a fiber junction in the gel. Although we are not concerned
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with cell locomotion here, our modelling would suggest that cells prefer the
fiber under largest tension, exactly as has been observed experimentally for
neutrophils migrating in human amnion [120].

As explained before, there is a growing body of evidence now that integrin-
based cell-matrix contacts act as local mechanosensors which channel me-
chanical information about the environment directly into cellular decision
making. Although this does not concern our modelling directly, here we
suggested that the upregulation of growth of cell-matrix contacts in a stiff
environment might result from the fact that it is triggered by a threshold
in force, whose build-up is more efficient for larger stiffness. An equivalent
viewpoint is that growth of cell-matrix contacts is faster on stiffer substrates.
As experimental test for this hypothesis, we suggest correlation studies for
growth of cell-matrix contacts and cellular organization, especially close to
sample boundaries, where cells can amplify the mechanical input provided by
boundary induced strain through active mechanosensing. Quantitative data
about growth behavior of cell matrix contact will allow us to further refine
our model in a more quantitative way, possibly also including modelling of
cellular features like morphology and force pattern, which are not the focus
of this work.

Since elastic effects are long-ranged and propagate quickly, they provide
an appealing mechanism for signal transduction for mechanically active cells
in soft media. However, they are also unspecific and cells might not be
able to distinguish between different sources. On the other hand, additional
information channels, like soluble ligands, will certainly supplement elastic
signals. Moreover, cells in highly differentiated organisms are likely to in-
terprete mechanical signals only in their own physiological context, which is
more restricted than for cells in an arbitrary environment.
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